
 Eindhoven University of Technology

MASTER

Machine Learning Accelerated Tomographic Reconstruction
for Multispectral Imaging on TCV

van Leeuwen, Loek S.

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/979db1ef-9567-461a-93d2-a8411d9d5a9a

Machine Learning Accelerated
Tomographic Reconstruction
for Multispectral Imaging on TCV

Loek van Leeuwen

Supervised by:

Jonathan Citrin and Maarten Schoukens

Science and Technology of Nuclear Fusion
Electrical Engineering: Artificial Intelligence for Engineered Systems

Machine Learning Accelerated Tomographic
Reconstruction for Multispectral Imaging on TCV

Loek van Leeuwen

Supervised by:

Jonathan Citrin
Maarten Schoukens

Eindhoven, November 7, 2022

Acknowledgements i

Acknowledgements

First and foremost I would like to thankmy supervisors Jonathan andMaarten, with whom Imet almost every
week to discuss new ideas and to whom I tried to explain what I found (and in that process understanding
it better myself!). You motivated me to try out new things, but at the same time kept me focussed when I
got distracted. Meeting every Wednesday kept me on track, but also forced me to look back and realize
what I had done that week. I am very grateful to you both for your help and supervision.

I would also like to thank Artur and all other people at the SPC, for introducing me to everything MANTIS
and TCV related, and making Lausanne feel like home; you taught me a great deal, and all your answers to
both my simple and complex questions helped me a lot.

Eefje, you helped me a lot with my project: from proofreading everything I wrote, to lending me an ear to
tell all my ideas and mini day-planning to. Without you, this thesis would be full of weirdly constructed
sentences, more difficult to read, and much more repetitive1.

Finally, I would like to thank everyone else: family, friends, colleagues and housemates, for listening to my
stories about how cool nuclear fusion is, and taking my mind off my thesis when needed.

1Also thanks a lot for introducing me to https://www.thesaurus.com

https://www.thesaurus.com

Abstract ii

Abstract

A multispectral camera setup is used to infer a 2D map of plasma parameters in a tokamak from spectral
emissions. However, the light measured by these cameras is line integrated in the toroidal direction, whereas
emissivities on the poloidal plane are necessary for the inference. The poloidal plasma emissivity can be
obtained by tomographic reconstruction, but classical techniques are too slow to use these emissivities
for real-time control. To understand the strengths and shortcomings of the model-based approaches, we
analyse the existing methods, and use this knowledge into the development of the model-informed deep
learning architectures.

We present two machine-learning based approaches to accelerate the reconstruction of the poloidal
emissivities. One based on the back-projection operator, with a learned non-linear filter to process the
back-projection. The other approach based on the model-based iterative approach, where the proximal
projection operators are learned.

Both approaches yield more accurate results on synthetic data than the iterative approach while being
near fast enough for real-time control applications. The two approaches generalize well to other machines
and geometries, such as MAST-U. Only changing the geometry matrix and retraining is required, but no
additional tuning is needed. An additional analysis is done to find out what the options are to transfer these
machine-learning based solutions from a local development and research environment to a production
environment.

CONTENTS iii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1
1.1 Nuclear Fusion . 1
1.2 Multispectral Imaging on TCV . 1
1.3 Machine Learning . 3
1.4 Research Questions and Thesis Outline . 3

2 Classical Methods for Tomographic Reconstructions 4
2.1 Linear Imaging Model . 4
2.2 The Reconstruction Problem and Methods . 5

2.2.1 Direct Reconstruction Methods . 5
2.2.2 Iterative Reconstruction Methods . 7

2.3 Regularization Techniques for Inverse Problems . 10
2.4 A Bayesian Perspective to Tomographic Reconstruction . 11

3 Convolutional Neural Networks for Inverse Problems 13
3.1 Convolutional Neural Networks . 13
3.2 Deep Unfolded Networks . 16

4 Design and Setup of the Neural Network Training and Evaluation 18
4.1 Synthetic Dataset Generation . 18
4.2 Network and Training Parameters . 19
4.3 Performance Evaluation . 20

5 Machine Learning Accelerated Tomographic Reconstruction for Multispectral Imaging on TCV 21
Abstract . 22
5.1 Introduction . 22
5.2 Iterative Reconstruction Techniques . 23
5.3 Machine Learning Accelerated Reconstruction . 25

5.3.1 Nonlinear Filtering with U-Net . 25
5.3.2 Deep Unfolded Networks . 26

5.4 Experimental Setup . 27
5.4.1 Synthetic Dataset . 27
5.4.2 Network and Training Parameters . 27
5.4.3 Performance Evaluation . 28

5.5 Results and Discussion . 28
5.5.1 Results on Synthetic Dataset . 28
5.5.2 Results on Measured Data . 30
5.5.3 Sensitivity and Robustness . 30

5.6 Conclusion . 31
5.7 Outlook . 31
Appendices . 32
5.A Stability Proof of the SIRT Algorithm . 32
5.B Convolutional Neural Networks . 32
5.C Comparison Between Different U-Nets . 32

CONTENTS iv

6 Additional Results and Discussion 34
6.1 Intermediate Representation of the Deep Unfolded Network . 34
6.2 Limitations of the Synthetic Dataset . 34

7 Deployment for Real-Time Tomographic Reconstructions 38
7.1 Integration into the MANTIS TCV system . 38
7.2 Real-Time Deployment Architectures . 38

7.2.1 Multi-Instance GPU Virtualization . 40
7.2.2 NVIDIA Triton Inference Server . 40

7.3 Practical Approach for Implementation . 41

8 Conclusions and Outlook 42
8.1 Outlook . 42

Bibliography 47

1. Introduction 1

Introduction 1
1.1 Nuclear Fusion

It is currently estimated that the world energy demand in 2050 will be a factor of two to three times the
current energy demand, caused by social economical developments all over the world [1]. Ideally, the
present and future energy production is from a sustainable source. One of these future sustainable energy
sources is nuclear fusion power, where energy is created by fusing together deuterium and tritium, which
are isotopes of hydrogen. In this reaction a helium ion and a neutron are created, both with a high amount
of kinetic energy:

2
1H+ 3

1H→ 4
2He(3.5MeV) + 1

0n(14.1 MeV). (1.1)
A sufficient reaction rate requires high temperatures in the order of 10 keV to 20 keV. At these temperatures
the fuel is ionized and becomes a plasma. Because the plasma consists of charged particles, it can be
contained with magnetic fields created by (superconducting) coils. In the core of the plasma the particles
gyrate around closed magnetic field lines, constraining them to the magnetic surface defined by these
magnetic field lines. However, by collisions with other particles on nearby magnetic surfaces and by
turbulence, the particles (and thus the heat) move perpendicular to the magnetic field lines. This results
in a particle and heat flux out of the plasma core towards the edge of the plasma, which is called the
scrape-off-layer (SOL).

The helium particles created by the fusion reaction are not desired in the plasma as they dilute the relative
fuel density. Thus, to improve the avoidance of helium ash build-up, as well as avoiding the accumulations
of impurities sputtered from the wall, a specific magnetic ‘divertor’ geometry was designed that better
isolates the plasma exhaust region from the main core plasma [2, 3].

To avoid damage to the divertor wall materials, the heat flux and particle flux of the plasma in this region
should be minimized [2]. By careful injection of neutral particles, such as nitrogen or hydrogen, one can
control this heat and particle flux towards the target [4]. In the case of hydrogen neutrals injection, also
called fuelling, the plasma will transfer energy and momentum to these neutral particles [5]. In the case of
nitrogen injection, called seeding, the energy loss is mainly caused by an increase in radiation power [6].
The atomic and molecular reactions causing a loss of energy and momentum result in a colder and denser
plasma near the divertor target. The state with a pressure gradient along the field lines to the target, in
combination with a low pressure at the target, is referred to as detachment [7], which should be controlled
for optimal performance and material durability.

The aim of detachment control is to make sure that the heat and particle fluxes towards the target do not
exceed the material threshold, such that the divertor tiles do not get damaged [8]. However, one would
also need to ensure that the plasma does not cool too much, as this can result in the detachment front
moving towards the core. If the front comes too close to the x-point, the plasma closer to the core cools too
much, resulting in a degradation of the plasma confinement and performance [9].

1.2 Multispectral Imaging on TCV

For control of the fluxes in the divertor region, one also needs measurements in this region and a way
to reconstruct the state using these measurements. In this work we focus on the reconstruction for the

1. Introduction 2

a b

Figure 1.1: (a) A poloidal cross-section of the TCV tokamak, with the magnetic field lines indicated in red.
The outer red blue line indicates the scrape-off-layer (SOL), which diverts the particles towards the targets. (b)
The view of the MANTIS camera in the tokamak is not perpendicular to the poloidal plane, but at an angle,
measuring line-integrated emissions. Adapted from [5].

Tokamak à configuration variable (TCV), at the Swiss Plasma Centre in Lausanne. Various diagnostics,
such as bolometry [10], Langmuir probes [11], and multispectral imaging [12, 13] are used in the TCV
to reconstruct the plasma state. The benefit of the latter is that it is real-time capable, non-invasive, and
allows for 2D imaging, and has been achieved on TCV using the Multispectral Advanced Narrowband
Tokamak Imaging System (MANTIS). Figure 1.1 illustrates the location of the MANTIS camera, along with
the rendered view from the same angle as the MANTIS camera. Using this camera system, feedback control
of the detachment front has already been achieved on TCV [14].

In the core of a fusion plasma, the electron temperature is high enough to assume that the hydrogen ions
are fully ionized. This means that no hydrogen ion-electron reactions take place in the core, from which
photons are emitted. Mind that this is not the case for some impurities, which can be not fully ionized in
the core. We will focus on the excitation-relaxation reaction and the recombination reaction.

In the excitation reaction a collision with an electron excites an ion [15]:

e+ A→ e+ A∗,n, (1.2)

where A∗ is an atom in the excited state. The n is the principal quantum number, denoting the energy level
above the ground state. The excited atom will undergo radiative decay resulting in the emission of energy,
which was previously kinetic energy, as a photon:

A∗,n→ A∗,k + hν, (1.3)

where k is a principal quantum number, h the Planck constant and ν the frequency of the photon. In
the case where k = 2 and A= H, the transitions from any n are referred to as the Balmer lines. Another
possibility of radiation is by recombination, in which an ion recombines with an electron, releasing energy
in the process:

A+,n + e→ A∗,k + hν. (1.4)

These emitted photons can then be analysed and used to infer the electron temperature, electron density
and neutral density [16, 17, 18], using the MANTIS camera system.

The MANTIS camera system allows for measuring up to ten different spectral lines simultaneously. The
spectral filters are chosen such that the excitation-relaxation and the recombination reactions of the species
in the plasma are inferred. The reactions rates are a function of the temperature, ion density and neutral
density in the plasma. Thus, by using the 2D emission information from the different emission lines emitted

1. Introduction 3

by different species in the plasma, combined with collisional-radiative modelling, one can make a 2D
reconstruction of multiple plasma parameters in the divertor region, which define the plasma state in this
region. These 2D maps would then allow for advanced control schemes by determining particle sources and
sinks. The measurements MANTIS makes are however line integrated, meaning that light from different
(R, Z)-coordinates is summed. For plasma state reconstruction one needs a poloidal cross-section of the
emissions, rather than line-integrated measurements. The inversion process from the measured camera
image to the poloidal plane is computationally intensive, making it unsuitable for real-time control. The
plasma dynamics have a timescale of approximately 15 ms. To prevent sampling issues, we need to sample
twice as fast, and in practice a factor of eight to ten is used. This means that the inversion calculation
should take less than 2 ms [14], which is difficult to achieve using traditional iterative techniques.

1.3 Machine Learning

Neural networks have been shown to excel at solving a range of regression and classification tasks, including
but not limited to machine translation, time series analysis, data-driven control, image classification, style
transfer and image generation [19, 20, 21]. Because of this major success in a range of fields, we are
interested if these techniques can also be applied to our problem setting, with the goal of reducing the
inversion estimation time.

Tomographic reconstructions are also necessary in other fields of science dealing with imaging, such as
geophysical imaging and medical imaging. Research in these fields shows that neural networks can be used
to approximate the tomographic inversion while being computationally more efficient [22, 23] and can
even yield more accurate results. Moreover, neural networks have already been used in fusion tomography
applications, where 1D bolometry data in JET and soft X-ray data in COMPASS was used to reconstruct 2D
profiles [24].

1.4 Research Questions and Thesis Outline

In this study we investigate how we can achieve a fast poloidal emissivity reconstruction in the divertor
region of TCV, using (model-informed) machinelearning techniques. We will answer the following research
questions:

How can the poloidal emissivity of a plasma in the TCV tokamak be reconstructed from MANTIS measurements
for real-time control?

How can machine-learning be used in the estimation of tomographic reconstructions, incorporating phys-
ical knowledge of the system?

In Chapter 2 we introduce the imaging problem and discuss the existing iterative techniques that are
used to solve this problem. Next, the theory behind convolutional neural networks and their application
in reconstruction problems is discussed in Chapter 3. The main results are presented and discussed
in Chapter 5, and is to be submitted for publication in the journal Nuclear Fusion. Information about the
real-time deployment is presented Chapter 7. Finally, the work is concluded, and ideas for future work are
introduced in Chapter 8.

2. Classical Methods for Tomographic Reconstructions 4

Classical Methods for Tomographic
Reconstructions 2

In this chapter we first look into how we can model the tomographic reconstruction problem. Then we
discuss several existing reconstruction methods, which form the basis for the machine learning based
approaches in the chapter thereafter.

2.1 Linear Imaging Model

To reconstruct the emissivity of the plasma in the poloidal plane, we need a forward model g : X → Y ,
where we define X as the poloidal space, and Y as the camera image space. If we now assume that the
measured intensity on the camera cells are a linear combination of the emissivities in different locations on
the poloidal plane, we can use a linear map, represented by the matrix G:

y= Gx+ e, (2.1)

where y ∈ Y is a measured camera image, x ∈ X the poloidal emissivity and e the measurement noise, but
also any unmodeled effects. The matrix G is referred to here as the geometry matrix, which is constructed
by point fitting locations in a measured image to a CAD model of the TCV tokamak [13] using the Calcam
software package [25]. This package performs a ray-tracing from each pixel sensor to each grid cell in X
and thus constructing G while assuming toroidal symmetry.

The camera sensor has a resolution of 1032 by 772 pixels. The inversion grid is generally a triangular grid
consisting of 14549 cells. This results in a large and tall geometry matrix G ∈ R796704×14549

+ . Because of the
carbon tiles in the TCV tokamak which have a low reflectivity, we can model the projection to the camera
without any reflections. Each camera cell now only measures the emissivity from a few poloidal cells,
resulting in a high sparsity of G, approximately 0.9955. Two examples of a forward modelled poloidal
emissivity are shown in Figure 2.1.

In this figure we can see the mapping from the poloidal plane to the camera plane: because of the assumed
toroidal symmetry, the emissivity turns around the centre column. We can also see that the camera image is

0.75 1.00

R [m]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Z
[m

]

0 500

0

200

400

600

800

1000

(a) A poloidal emissivity from logos.

0.75 1.00

R [m]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Z
[m

]

0 500

0

200

400

600

800

1000

(b) A poloidal emissivity from randomly drawn lines.

Figure 2.1: Two examples of poloidal plasma emissivities with their corresponding camera images.

2. Classical Methods for Tomographic Reconstructions 5

brighter at the high field side, while dimmer more towards the low field side, as is expected. Consequently,
the data more towards the high field side and lower Z-values, is easier to reconstruct.

2.2 The Reconstruction Problem and Methods

Reconstructing the poloidal emissivity from the measured camera image can be formulated as an (uncon-
strained) optimization problem for some norm p:

x∗ = argmin
x
∥y− Gx∥p = arg min

x
L(x), (2.2)

where L is the optimization objective, also referred to as the cost function or the loss function. If we use
the Euclidean norm (p = 2) and square it, the objective reduces to the least squares objective:

L(x) = ∥y− Gx∥22. (2.3)

2.2.1 Direct Reconstruction Methods
First we analyse direct reconstruction methods. This method is not used in the end, but is included for
discussion, context and completeness. We can solve the optimization problem using the direct method by
first rewriting the optimization objective as:

1
2
∥Gx− y∥22 =

1
2
(Gx− y)T (Gx− y) =

1
2

xT GT Gx+ yT Gx+
1
2

yT y, (2.4)

where the factor 1
2 can be added without changing the optimum. If we now take the gradient of the

objective function with respect to x:
∇L(x) = GT (Gx− y), (2.5)

from which we can express the normal equations as:

L(x= 0) =⇒ GT Gx= GT y. (2.6)

If we now assume that G is full rank, we find the least squares solution:

x∗ =

G+
︷ ︸︸ ︷

(GT G)−1GT y, (2.7)

where G+ is called the Moore-Penrose pseudo-inverse. However, we can not assume that in our case G is
full rank, and that the pseudo-inverse can be used. Or to be more specific, the product GT G should be
non-singular.

In the case that G is not full rank, we can calculate (an approximation to) the pseudo-inverse using the
(truncated) singular value decomposition (SVD). The SVD is a matrix factorization for G ∈ Rm×n such that:

G = UΣV T , (2.8)

where U ∈ Rm×m and V ∈ Rn×n are unitary matrices and the columns of these matrices are called the left-
and right-singular vectors respectively. Σ ∈ Rm×n is a diagonal matrix containing the singular values. The
pseudo-inverse can now be calculated as:

G+ = (UΣV T)−1 = VΣ+U T , (2.9)

where Σ+ is calculated by taking the reciprocal of all non-zero (singular) values. The problem however
with this factorization is the loss of sparsity: the matrices we use in this thesis all have a high sparsity. The
SVD on the other hand does not necessarily produce in a sparse factorization, resulting in more memory
usage to store the matrices and more operations to perform calculations with these matrices. We can
rewrite Equation (2.9) to minimize the density of the ‘inverse information’:

G+ = VΣ+U T GT . (2.10)

Another problem with this approach is the possibility of a (near) singular G+: combined with a noisy
measurement, approximating the inverse might result in an amplification of the noise. Both problems

2. Classical Methods for Tomographic Reconstructions 6

0.6 0.8 1.0

R [m]

−0.8

−0.6

−0.4

−0.2

0.0

0.2
Z

[m
]

k = 100

0.6 0.8 1.0

R [m]

k = 1000

0.6 0.8 1.0

R [m]

k = 5000

0.6 0.8 1.0

R [m]

k = 14549

Figure 2.2: Reconstruction of the poloidal emissivity using the truncated singular value decomposition for
estimating the inverse geometry matrix. The value of k represents the number of singular values used.

can be solved by using a truncated SVD. In this approach we reduce all the singular values smaller than
some threshold to zero. The reduction of singular values also allows for removing values from the U and V
matrices, reducing the memory need of the factorization. Furthermore, by only using the larger singular
values we effectively regularize the problem making this approach less sensitive to noise, which we will
further discuss in Section 2.3 for the other methods. The amplification of noise becomes more clear by
rewriting the solution of the inverse problem with the SVD as:

x∗ = G+y= VΣ+U T y=
∑

i

ui
T y
σi

vi. (2.11)

Here we can see that for smaller singular values the fraction becomes large really fast. There is a trade-off in
how many singular values we want to use: a lower number of singular values results in less operations and
memory usage, and regularizes more, while a larger number of singular values results in more operations
and memory usage. The optimal low rank approximation G̃k for a rank k can be calculated as:

G̃k = UkΣkV T
k , (2.12)

where only the first k column and row vectors of U and V are used, and only the first k singular values
from Σ, such that Uk ∈ Rm×k, Σk ∈ Rk×k and Vk ∈ Rk×n. Using this low rank approximation we can similarly
calculate a low rank approximation of the pseudo-inverse. This corresponds to filtering out the smaller
singular values and components:

G̃+k =
∑

i

φk(i)
ui

T y
σi

vi, (2.13)

with filtering function

φk(i) =

¨

1 i ≤ k
0 i > k

(2.14)

Figure 2.2 illustrates a reconstruction using the truncated singular value decomposition for different ranks
k. This figure shows us that indeed for k = 5000 the reconstruction is already of good quality. However, in
the full rank case artefacts are introduced because of numerical precision errors in calculating the singular
value decomposition, amplifying these small differences. The truncated SVD yields great results for the
estimation of the poloidal emissivity, but we will mainly focus on iterative methods because of the following
reasons:

1. Calculating the singular value decomposition does not scale well with the dimensions of the geometry
matrix, in particular with the number of reconstruction cells.

2. Prior physical knowledge, such as the emissivity should be positive, can be implemented into iterative
algorithms more easily. Different regularization functions/cost functions can be used in iterative
methods, while it is set for the singular value decomposition.

2. Classical Methods for Tomographic Reconstructions 7

3. There less of an amplification of noise; iterative methods themselves regularize, especially the SIRT
algorithm we discuss later. This also means that less tuning of the amount of singular values k with
respect to the noise is necessary.

2.2.2 Iterative Reconstruction Methods
An approach to utilize the sparsity in G is to use an iterative approach. Instead of trying to approximate a
direct solution, we iteratively update our estimate to approach a stationary point and thus a solution to the
inverse problem. We will focus on line-search methods where the current estimate xk is updated with a
search direction pk scaled by the step size µk [26]:

xk+1 = xk +µkpk. (2.15)

If we use the gradient of the previously defined objective function in Equation (2.3) as the search direction,
we use the steepest descent direction, resulting in the following iterative update scheme:

xk+1 = xk −µ∇ f (xk) = xk −µGT (Gxk − y), (2.16)

which is known as the gradient descent algorithm, and the basis for many optimization algorithms (in
machine learning). Finder a proper value for the step size, also known as the learning rate, is of importance:
a step size that is too small will cause no change at all in xk, while a step size that is too large causes the
solution to diverge. To find a good value for µ one could use for example exact line search methods or
Armijo line search methods [26], however, we will not focus on these methods in this thesis.

Instead, we use a family of methods that has been specifically developed for CT imaging called the ART
family. Specifically, we will use the simultaneous and iterative reconstruction technique (SIRT). This
algorithm and variants (SART / ART) have been extensively used in the field of medical and geophysical
imaging [27, 28, 29, 30, 31].

First we use the fact that G is a forward mapping which describes how all the pixels are combined and
summed into inversion cells. This means that the transpose GT projects the inversions cells back onto the
pixels, i.e. it tells us for each inversion cell, which pixel correspond to that cell [32, 33].

To get more of a feeling for the forward mapping and its back projection, we work through a reduced
projection example1. We assume a two-by-two square volume-grid, denoted by [x0, x1, x2, x3]. We are
able to measure the integrated intensity along the diagonals and the edges of the square, as illustrated
in Figure 2.3. The yi denote the different sensors. This problem is similar to the original problem in that
the number of sensors is larger than the number of volume cells, and that each volume cells is measured
multiple times. If we assume a larger contribution for emissivities closer to the sensor (2), and a smaller

x0 x1

x2 x3

y0 y1 y2

y3

y4

y5

Figure 2.3: An illustration of the setting for the reduced problem. We have emissivities from x i , measured by
different sensors yi . The colours are used to differentiate between the different projection lines.

contribution for those further away (1), we can find a mapping G : X → Y between the emissivities and the
1This example is inspired by and adapted from https://www.12000.org/my_notes/image_projection_matrix/index.htm

https://www.12000.org/my_notes/image_projection_matrix/index.htm

2. Classical Methods for Tomographic Reconstructions 8

measurements as:

G =

x0 x1 x2 x3

y0 2 0 1 0

y1 0 2 0 1

y2 0 2p
2

1p
2

0

y3 1 2 0 0

y4 0 0 1 2

y5
1p
2

0 0 2p
2

, (2.17)

where an additional factor of 1p
2
is added for the diagonal measurements. By transforming according to G

we can thus find the measurement data yi given the emissivities x i . However, we can also express data in
measurement space in emissivity space by multiplying with GT . To understand what this means, we first
consider only y0 and y1. If we would now do a back projection we would ‘smear out’ the data, according to
G: consider the following emissivities: x = [2,4, 1,3]T , then we would have y0 = 5 and y1 = 11. By only
using the rows corresponding to y0 and y1 from the geometry matrix, we have that:

x̂=

GT

︷ ︸︸ ︷

2 0

0 2

1 0

0 1

y
︷ ︸︸ ︷

�

5

11

�

=

10

22

5

11

. (2.18)

In this example we can see that the back-projection does not estimate the emissivities. The relative values
between x0and x2 hold, but not x1and x3. If we do the same, but now using all measurements, we obtain:

y=

5

11
9p
2

10

7
8p
2

, x̂=

24

51

16.5

33

. (2.19)

Again we do not recover the emissivity values x, but we do recover approximate relative values. Thus, this
example shows us that we can use a back-projection to project the measurement values back to emissivity
space. This back-projection is not a good pseudo-inverse, but it is still very useful: if we have an error in
measurement space, this is a way to express the error in emissivity space!

Going back to the original problem, Equation (2.16) can also be better understood with this knowledge:
the term Gxk maps the current inversion estimate to the measurement space, after which the error in
measurement space is calculated Gxk−y, which is then projected back to inversion space GT (·). As previously
mentioned, finding a good value for the step size is an iterative process, and the convergence speed and
stability of the iterative algorithm depends on this choice. In the SIRT algorithm, the step size problem is
solved by preconditioning the geometry matrix to ensure a stable convergence. First the error correction
term Gxk− y is multiplied with the matrix R, which is a diagonal matrix containing the inverse row sums of
G, so rii = 1/

∑

j gi j . This is equivalent to solving the weighted least-squares problem [32, 33, 34]:

L(x) = ∥Gx− y∥2R. (2.20)

The R matrix reduces the error contribution of pixels in measurement space that correspond with a longer
ray length. Without this R, the steepest descent direction would be biased towards minimizing the error for
pixels that receive the most contribution from the reconstruction space.

If we now precondition the normal equations corresponding to the weighted least squares problem by a
matrix C we have that:

CGT RGx= CGT Ry, (2.21)

where C is a diagonal matrix containing the inverse column sums of G: c j j = 1/
∑

i gi j . The C matrix plays
the same role for GT as R does for G. To understand the effect of the C and R matrix better, we continue

2. Classical Methods for Tomographic Reconstructions 9

0 500

0

200

400

600

800

1000

R

0.50 0.75 1.00 1.25

R [m]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Z
[m

]

C

Figure 2.4: The R and C matrices that ‘precondition’ in the SIRT algorithm. The R matrix compensates for the
ray length and thus the amount of light that a pixel receives. The C matrix compensates for the amount of rays
that contribute to a volume cell. The direct view line of the camera can be seen clearly in the values of C .

the example from Figure 2.3. The R and C matrix are given by:

C =

�

3+ 1p
2

�−1
0 0 0

0
�

4+ 2p
2

�−1
0 0

0 0
�

2+ 1p
2

�−1
0

0 0 0
�

1+ 3p
2

�−1

, R=

1
3 0 0 0 0 0

0 1
3 0 0 0 0

0 0
p

2
3 0 0 0

0 0 0 1
3 0 0

0 0 0 0 1
3 0

0 0 0 0 0
p

2
3

(2.22)

If we now calculate x̂ from the SIRT-based back-projection we can see the effect of the C and R matrix on
the emissivity estimates:

x̂SIRT = CGT Ry≈

2.3

3.7

2.3

2.7

. (2.23)

This result shows us that using the SIRT-based back projection the estimated emissivity is already much
closer to the actual emissivity (which we elaborate on later in this chapter). All values are close to the
actual emissivity, except for x2. To better understand the C and R matrix in context of the actual problem,
the diagonals of the C and R matrix are shown in Figure 2.4. The effect of the C and R matrix on a
measured image are shown in Figure 2.5. Going back to the actual problem, rewriting the normal equations
in Equation (2.21) to an iterative update scheme results in:

xk+1 = xk −µCGT R(Gxk − y), (2.24)

which can then be rearranged to:

xk+1 = (I −µCGT RG)xk −µCGT Ry, (2.25)

from which we can derive the stability properties of the update scheme. The following derivation is adapted
from [32, 33]. For a stable convergence we must have that the term (I −µCGT RG) has a spectral radius
ρ(·) smaller than one, i.e. all eigenvalues λ are inside the unit circle. The eigenvalues are equal to:

λ= 1−λi; λi = λi(CGT RG). (2.26)

Because the matrices C , R and GT G are all positive semi-definite, we have that the eigenvalues λi are
greater than or equal to zero. Next, we use that the spectral radius of a matrix is smaller than or equal to
the matrix norm, for any natural matrix norm:

ρ(A)≤ ∥A∥. (2.27)

2. Classical Methods for Tomographic Reconstructions 10

0.75 1.00

R [m]

−0.8

−0.6

−0.4

−0.2

0.0

0.2
Z

[m
]

GTy

0.75 1.00

R [m]

GTRy

0.75 1.00

R [m]

CGTy

0.75 1.00

R [m]

CGTRy

Figure 2.5: The effect of the C and R matrix on the back projection of a camera image. The R matrix
compensates for the ray length, which roughly corresponds with the radial coordinate: the rightmost poloidal
plane shows a higher emissivity for higher Z[m] and R[m], compared to the third pane. The C matrix highlights
the structure of the emissivity and compensates for the direct field of view of the camera.

By rewriting this condition using the∞ norm, we have that:

ρ(CGT RG)≤

CGT RG

∞ ≤

CGT

∞∥RG∥∞, (2.28)

where the last inequality follows from the sub-multiplicativity of a matrix norm. We choose to use the∞
norm here, because the explicit expression for the∞ norm of a matrix is given by the largest row sum:

∥A∥∞ =max
k

∑

l

�

�ak,l

�

�, (2.29)

which motivates the choice for the C and R to equal the inverse row (and column) sum of G. We now have
that ∥RG∥∞ = 1 and

CGT

∞ = 1. Combining these results gives us:

ρ(I −µCGT RG) =max
i
|1−µλi |= |1−µ|. (2.30)

The requirement for stability is that the spectral radius is smaller than one, so the bounds on the step size
µ can be determined as:

|1−µ|< 1 =⇒ 0< µ < 2, (2.31)
where a larger µ leads to a faster convergence.

2.3 Regularization Techniques for Inverse Problems

One problem with the methods described previously is that the system matrix G might be ill-conditioned,
resulting in an amplification of measurement noise. Furthermore, these methods do not include any
additional information about the physics of the problem or prior information we have, such as that the
emissivity on the poloidal plane is always positive. One solution is to use regularization techniques, with
which unwanted characteristics in x are penalized, and desired properties in x are promoted. We can add a
regularization term to the objective function as:

Lr(x) = ∥Gx− y∥22 +µR(x), (2.32)

where µ is the regularization factor, and R the regularization function. In the case that the regularization
function is convex and differentiable, we can solve the regularized problem by finding the normal equations
corresponding with Equation (2.32).

It can however be the case that we want to use a regularization function that is not differentiable: in signal
processing it is often known if a signal x is sparse or not. In this case, we would like to use the ℓ1-norm as a
regularization function, as this sparsifies the solution. However, the function corresponding to the ℓ1-norm
R(x) =

∑

i |x i | is not differentiable at the origin. Instead of directly solving the equation, we can use the
proximal gradient descent method [35], where a two-step process is used:

2. Classical Methods for Tomographic Reconstructions 11

1. Calculate the state update to minimize the unconstrained cost function L(x)

2. Project the updated state with a proximal operator to minimize for the regularization function R(x)

This can also be expressed as:

zk+1 = xk +µkpk (2.33)
xk+1 = P(zk+1), (2.34)

where P(·) is a proximal operator. An example of a proximal operator corresponding to the previously
discussed ℓ1 regularization function is the soft thresholding operator:

Pµ(z) =

z −µ, z ≥ µ
0, |z|< µ
z +µ, z ≤ −µ

, (2.35)

which combined with the update scheme in Equation (2.33) results in the Iterative Soft Thresholding
Algorithm (ISTA), which is an algorithm commonly used in signal processing [36]. If we apply this same
method to the SIRT algorithm, we arrive at the following proximal SIRT algorithm:

zk+1 = (I −µCGT RG)xk −µCGT Ry (2.36)
xk+1 = P(zk+1). (2.37)

The proximal operator can be designed by hand, however this can be involved. An example of a physics-
informed proximal operator is a max operation: we know that the emissivity can not be negative. So, the
proximal operator then becomes: P(z) =max(0,z). We can also try to parametrize the proximal operator as
a neural network, which will be the basis for a model-informed machine-learning architecture. Interestingly,
the term µ is now not only a term for stability, but can also be seen as a data-consistency term. If µ is large,
a lot of the measurement data and the model is included. If µ approaches zero, no measurement data or
model knowledge is used, and the update only consists of the (neural) proximal mapping.

2.4 A Bayesian Perspective to Tomographic Reconstruction

In the previous sections we have derived different methods for reconstructing the poloidal emissivity. The
basis for these methods is the minimization of the squared error. However, we can better motivate this
choice, and analyse what assumptions we make when using the least-squares objective. We start with the
linear model defined in Equation (2.1):

y= Gx+ e. (2.38)
The noise term e is of high interest here, as the noise model determines our final optimization objective.
Ideally, we would have that we model the following elements:

1. The measurement error of the sensor

2. The error because of a mismatch between the actual geometry and the (linearly)-fitted geometry
matrix G

3. The error because of additional reflections in the tokamak that are currently not taken into account
in the creation of the geometry matrix

We know that the error for the first two elements can as well be positive as negative. For the last item
we have that the because of reflections, only more emission is measured and thus present in y, thus the
error here can only be positive. However, modelling the error using different distributions results in an
expression that is unsuitable for a symbolic derivation. Instead, we make a major assumption that the
error follows a zero-mean Gaussian distribution. Furthermore, we also assume independence between
the random variables, such that the covariance matrix only has on its diagonal. So, we can model the
probability of a certain camera image now as:

p(y|G,x) =N (y|Gx,Σ). (2.39)

In our case, we would like to know the probability of the poloidal emissivity given the camera image
p(x|G,y). This can be derived from Bayes’ theorem as:

p(x|G,y) =
p(y|G,x)p(x|G)

p(y|G)
, (2.40)

2. Classical Methods for Tomographic Reconstructions 12

where p(x|y) is the posterior, p(y|x) the likelihood, p(x) the prior and p(y) the evidence. For brevity, we
have omitted the dependence on the G in notation. Now, we would like to optimize the posterior and find
an estimate for the poloidal emissivity x̂ by calculating the Maximum A-Posteriori estimate (MAP):

x̂= argmax
x

p(x|y)∝ arg max
x

p(y|x)p(x), (2.41)

where we can remove the evidence because it does not influence the maximum. By writing out the
expression for the probability distribution p(y|x), we have that:

p(y|x)p(x) =N (y|Gx,Σ)p(x) =
1

Æ

(2π)d |Σ|
exp

�

−
1
2
(y− Gx)TΣ−1(y− Gx)

�

p(x), (2.42)

where d is the dimensionality of the distribution (size of x). To simplify the optimization we can take the
logarithm of this expression, reducing the product here to an (easier to work with) sum:

log (p(y|x)p(x)) = log p(y|x) + log p(x) (2.43)

= −
d
2

log(2π)−
1
2

log(|Σ|)−
1
2
(y− Gx)TΣ−1(y− Gx) + log p(x). (2.44)

Because we are optimizing for x, we can omit the first two terms which are not dependent on x. If we now
multiply the function with −1 and minimize instead of maximize the probability density function we have
that:

x̂= argmin
x

1
2
(y− Gx)TΣ−1(y− Gx)
︸ ︷︷ ︸

∥y−Gx∥2
Σ−1

− log p(x)
︸ ︷︷ ︸

−R(x)

. (2.45)

We have recovered the previously discussed least-squares objective, however, nowwith a good understanding
of what assumptions we make. Mind that the regularization function is represented by the prior on the
data. One difference is that we now weigh the least-squares problem by the covariance matrix, so the
problem reduces to the least-squares problem if we assume a variance of one for all elements. One final
simplification step we can take is to assume an equal variance for all elements and no covariance between
the elements:

x̂= arg min
x

1
2σ2
∥y− Gx∥22 − log p(x). (2.46)

3. Convolutional Neural Networks for Inverse Problems 13

Convolutional Neural Networks for Inverse
Problems 3

In this chapter the theory needed for machine learning based tomographic reconstructions is discussed.
First, a general introduction to deep learning and convolutional neural networks is presented. Next, we
take a look at U-Net based architectures and how we can incorporate physical knowledge of the system
into U-Net based architectures. Finally, we discuss the application of deep unfolded networks, in which a
neural network is incorporated into the iterative algorithms discussed.

3.1 Convolutional Neural Networks

Before the wide-spread adoption of neural networks (and the computational capacity to train them),
convolutions were already used in the field of image processing. In these computer vision applications,
the kernel was often designed by hand[37, 38]. Examples of these kernels are ridge detection kernels,
sharpening kernels, and gradient detection kernels12. The convolution is calculated by element-wise
multiplication of the kernel and a portion of the image, and summing these multiplied values. The
expression for a 2D convolution is then given by 3:

Oi j =
k0−1
∑

s0=0

k1−1
∑

s1=0

Hs0,s1
Ii+s0, j+s1

, (3.1)

where O ∈ R(n0−2)×(n1−2) is the output, I ∈ Rn0×n1 is the input and H ∈ Rk0,k1 the kernel. The design of
kernels for specific applications is time-intensive, making the automatic learning of these kernels beneficial.
Consecutive convolutions with learned kernels are called convolutional neural networks (CNN) and have
been used with great success for time signal classification [39], image classification [40, 41] and many
more applications.

The reason we use a convolutional neural network is that in the case of images of size 256 by 256, a
conventional neural network would have 2562 · 2562 ≈ 4.3 · 109 learnable parameters in the weight matrix!
By using convolutions, we impose a prior on the data that there is a local correlation between neighbouring
data points. A learnable convolutional layer usually convolves the input, adds a bias and then passes it
through a non-linear activation function f [42]:

y= f

b+
k0−1
∑

s0=0

k1−1
∑

s1=0

Hs0,s1
xi+s0, j+s1

!

, (3.2)

where a 2D input and output are assumed. This is equivalent to learning a weight matrix with only elements
on the tridiagonal in a Toeplitz structure, with all other elements set to zero. More complexity can be
added to the layer by increasing the number of learnable kernels H. If we denote the convolutional operator

1Take a look at this website for a great interactive visualization of different kernels: https://setosa.io/ev/image-kernels/
2For a more hands-on introduction using the Julia programming language, from the open course ‘Introduction to Computational

Thinking’ by MIT, you can watch https://www.youtube.com/watch?v=8rrHTtUzyZA.
3This site also helped a lot in writing this section: https://deeplearningmath.org/convolutional-neural-networks.html

https://setosa.io/ev/image-kernels/
https://www.youtube.com/watch?v=8rrHTtUzyZA
https://deeplearningmath.org/convolutional-neural-networks.html

3. Convolutional Neural Networks for Inverse Problems 14

No dilation Dilation rate = 1

Figure 3.1: The filled red squares in the grid represent the kernel, which scans the image (the grid) in a
convolution. On the left the kernel is not dilated, while on the right the kernel is dilated with a dilation rate of
1. The dilated kernel has a bigger receptive field as it ‘sees’ more pixels at the cost of detecting high frequency
data directly with the kernel.

with filter H as TH(x), we can combine the different kernels as:

yk = f

�

bk +
L
∑

l

THk
(xl)

�

, (3.3)

where k denotes the kernel index of the output y and L the number of kernels of the input x.

These convolutional kernels have a limited receptive field, as this is determined by its size (w×h). However,
we would sometimes like to increase the receptive field of the network, such that the network also uses
information not in the direct vicinity of a pixel. Several solutions exist to increase the receptive field: one
could increase the size of the kernel, however this leads to more learnable parameters in the system thus
increasing the learning time of the network. The next option is to dilate the convolutional kernel, which
means that the convolution is now calculated as:

Oi j =
k0−1
∑

s0=0

k1−1
∑

s1=0

Hs0,s1
Ii+d·s0, j+d·s1

. (3.4)

Figure 3.1 clarifies this dilated convolution by showing a convolutional kernel and its output for two
different dilation factors. The third option is chaining several convolutional layers with dimensionality
reduction layers, which we take a look at next.

Pooling layers, which map a portion of the input into a single number, can be used to reduce the dimension-
ality of the input image ∈ Rn0×n1×nc , where nc is the number of channels. An example is the max-pooling
layer with a width w, where the input is grouped in w×w matrices, and then applying the max function to
that sub matrix. Instead of using a pooling operation one could also increase the stride of the convolutional
layers, meaning that rows/columns are skipped, and thus reducing the output size.

Even though the spatial resolution is decreased in convolutional neural networks, one generally wants to
transform this spatial information into feature information. Thus, it is common to see an increase in the
number of filters (kernels) as the spatial resolution of the image decreases.

In the classical application of CNNs: classification, the goal is to learn a reduced representation through
consecutive convolutional layers, and then use this representation as an input in a classifier. This classifier
(often a fully-connected neural network) then learns to maps the reduced representation to a class. So, this
classifier has ten outputs if we have ten different classes. An illustration of a convolutional neural network
is shown in Figure 3.24.

Encoder Decoder Networks

A convolutional neural network can be used to compress and classify data, as shown above, but can also be
used to decompress or deconvolute data. An application of this is to transform 1D data into 2D images,
which has been successfully done in the field of fusion on JET for bolometry data and for COMPASS for

4An interactive visualization of CNNs can be found here: https://poloclub.github.io/cnn-explainer/. There is also one for
fully-connected neural networks: https://playground.tensorflow.org/

https://poloclub.github.io/cnn-explainer/
https://playground.tensorflow.org/

3. Convolutional Neural Networks for Inverse Problems 15

Figure 3.2: An illustration of a convolutional neural network consisting of a feature learning back-
bone and a classification head. The feature learning backbone learns a reduced representation of
the data. The classification head maps this representation to the different classes. Image copied
from https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk/learning-resources/cnn-
architectures/deep-learning-convolutional-neural-networks-computer-vision.

soft X-ray data [24]. This deconvolution is often implemented in two different ways, the first of which is
using a transposed convolution operator, which maps a (smaller) input to a (larger) output by multiplying
the kernel with each element of the input. The second approach is upsampling the input and applying a
normal convolution to this image. It has been shown that former approach leads to high frequency noise
artefacts in the output, showing up as chequerboard patterns [43], so the latter approach will be used in
this project.

The compressing convolutional network and the decompressing deconvolutional network can be chained
together, such that the output of the first is the input of the second network. This is called an encoder-
decoder network (or auto encoder if both networks have the similar architecture). The connection layer
between these two networks is often called the latent space Z , also referred to as the bottleneck, that
contains a compressed representation of the system. This bottleneck can consist of multiple fully connected
(FC) layers or convolutional layers. The benefits of using convolutional layers here are that fewer parameters
are needed for the network, resulting in faster training, and a network that is agnostic to image size. The
goal of the Encoder-Decoder architecture is to learn the networks Eθ : Y → Z and Dθ : Z → Y such that:

y− (Dθ ◦ Eθ)(y) (3.5)

is minimized. The input to the network can be identical to the output, but it is also possible that the input
is altered and that the original image needs to be reconstructed, for example, in the case of noise removal.

One problem with the standard ED architecture is that the results heavily depend on the bottleneck size: a
small (spatial and filter dimension) bottleneck allows for insufficient information flow, while a network
with a too large (spatial dimension) size relies too much on the spatial correlation of the input data, both
resulting in a suboptimal reconstruction. The latter is especially important in our problem setting, in which
the input and output data are not spatially correlated in contrast to denoising EDs. Furthermore, some
information might already be extracted to useful features after the first or second down-sampling step,
instead of passing it through all the other encode and decode blocks.

A solution to this problem is to add residual connections between the encoder and decoder network,
such that the filters for every encoder block are appended to the decoder block filters with the same
spatial dimension. Such an architecture is called U-Net, which has also been used with great success for
a variety of tasks like image segmentation, image denoising, image super resolution and tomographic
reconstruction [44, 45].

In our problem setting we are not interested in reconstructing or segmenting the input to the network;
we would like to perform a domain transformation F : Y → X consisting of an encoder Eθ : Y → Z which

https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk/learning-resources/cnn-architectures/deep-learning-convolutional-neural-networks-computer-vision
https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk/learning-resources/cnn-architectures/deep-learning-convolutional-neural-networks-computer-vision

3. Convolutional Neural Networks for Inverse Problems 16

CGT R

U

Figure 3.3: The model-informed U-Net architecture, consisting of the SIRT-based back-projection which projects
the camera image onto the poloidal space, followed by a typical U-Net. The block inside the U-Net denote
convolutional layers. The black blocks and lines are the residual connections of the U-Net architecture, allowing
for more information flow.

maps the camera image information to a latent space Z of different dimensions because of the residual
connections and using a decoder Dθ : Z → X which reconstructs the poloidal emissivity from this latent
space.

However, we have prior knowledge of the system available as the geometry matrix G. We can incorporate
this knowledge into the network design by first back projecting the measured camera image to the poloidal
space, and then post-processing the back projection using the U-Net architecture:

x̂= (U ◦ CGT R)(y), (3.6)

where U : X → X is a (U-Net) post-processing operator and where the SIRT-based back-projection is
used. This solution can be seen as a learned regularized version of the direct pseudo-inverse estimation
corresponding to the normal equations in Equation (2.21):

x̂=

≈U(·)
︷ ︸︸ ︷

(CGT RG)−1 CGT Ry. (3.7)

Figure 3.3 shows the model-informed U-Net architecture as described above.

3.2 Deep Unfolded Networks

We can also incorporate physical model knowledge into the network design by considering the proximal
gradient descent algorithm in Equation (2.33). The purpose of the proximal operator P is to infuse prior
knowledge of the problem into the iterative solver, e.g. sparsifying the solution or making sure that the
solution is always positive. Designing these proximal operators is a task which requires substantial problem
knowledge, so instead we can parameterize these by neural networks Pk,θ and learn them from the data.
Mind that this is equivalent to learning the prior on the solution xk. To achieve this, the iterative loop
described in Equation (2.36) is unfolded for K iterations, resulting in a directed computational graph,
equivalent to a feedforward neural network:

zk+1 = (I −µkCGT RG)xk −µkCGT Ry (3.8a)
xk+1 = Pk,θ (zk+1). (3.8b)

Mind that we use a different proximal operator in each unrolled step, so there are K learned proximal
operators in total. Furthermore, the step size parameters µk are also learnable and differ for each unfold k.
This allows the network to ‘choose’ how much of the measured data it includes into each step; the step size
parameter µ is sometimes also referred to as the data consistency term. A U-Net architecture is used as
the proximal operator in the unfolded network. However, this is a smaller U-Net than in the case of the
post-processing U-Net, as precision is gained due to the unfolded iterations. The final architecture of the
unfolded network is illustrated in Figure 3.4. The estimate x̂0 is initialized with all zeros. The unrolling of
iterative loops and replacing some operators with neural networks is referred to as deep unfolding and has
been used in the field of (medical) imaging and signal processing [46, 47, 48, 49, 50, 51, 52]. Interesting
to note is that the informed U-Net architecture is a special case of the deep unfolded architecture, where
K = 1. Because x0 is initialized at zero, we have that the z1 is given by the back projection of y, which
corresponds to the model informed step of the U-Net based architecture.

3. Convolutional Neural Networks for Inverse Problems 17

CGT R

x̂0
Pk,θ

I −µkCGT RG

x̂k+1µk

x̂k ẑk+1

Figure 3.4: The deep unfolded architecture. The initial estimate of the poloidal emissivity x̂0 is initialized with
all zeros. The grey box represents the iterative part for K unfolds. The dashed lines represent data that are
different for each iteration k. U-Net architectures are used as the proximal operators.

4. Design and Setup of the Neural Network Training and Evaluation 18

Design and Setup of the Neural Network Training
and Evaluation 4

In the previous chapter the two model-informed architectures were introduced. In this chapter we dive
deeper into the hyperparameters of the network. Furthermore, we also look why an experimentally
obtained dataset is not optimal, and how we can create a good synthetic dataset. Finally, we analyse the
loss function used and motivate the evaluation criteria.

4.1 Synthetic Dataset Generation

Although existing data from the MANTIS camera system are available, creating a training dataset from
these data is suboptimal. We would like to train data for a single geometry matrix, but different shots have
different geometry matrices because of displacement and readjusting of the MANTIS cameras. Secondly
and more importantly, the ground truth poloidal emissivity is not available for the experimentally obtained
data, as this reconstruction is currently calculated using the SIRT algorithm. Using this inversion as training
data would result in artefacts from the iterative algorithm showing up in the inversion estimated by the
neural networks. Finally, as the MANTIS system most often measures a typical plasma scenario and shape,
the network might overfit to these shapes, resulting in a network that cannot generalize to new scenarios
or off-normal events.

Ideally, the dataset has similar characteristics to the experimentally obtained MANTIS data. The line
emission is typically constrained to regions with specific ranges of plasma temperature, plasma density and
neutral density, which particularly in the divertor region can have large gradients and magnetic-field-line
induced anisotropy. Therefore, we impose the following features in the synthetic data:

1. Random lines of different lengths, thicknesses, positions, brightnesses and orientations, with lengths
up to the order of the image size, but widths much smaller than the image size.

2. A random curvature is introduced to the lines, capturing the trends induced by the magnetic field
geometry.

3. Random degrees of brightness gradient along the length of the lines, capturing the trends induced
by the impact of parallel (to magnetic field) gradients of plasma temperature and density on line-
emission.

Random line segments are generated based on these criteria and drawn on a poloidal plane. Furthermore,
a Gaussian blur with a random kernel size is applied to the generated images. Finally, the drawn lines are
forward projected to create a camera view image, and both images are saved as an input-label pair. The
dataset used for training consists of 25 000 synthetically generated input-label pairs. A sample from the
generated dataset is shown in Figure 4.1.

For evaluation, we would like to know how robust the networks are to noise, so images with noise are
evaluated as well. We model the noise using two types of noise: the first one is constant noise, which
represents the diffusive background reflections inside the tokamak:

yc = y+ c ·max(y), (4.1)

4. Design and Setup of the Neural Network Training and Evaluation 19

0.75 1.00

R [m]

−0.8

−0.6

−0.4

−0.2

0.0

0.2
Z

[m
]

0 500

0

200

400

600

800

1000

0.75 1.00

R [m]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Z
[m

]

0 500

0

200

400

600

800

1000

Figure 4.1: Two examples from the synthetic dataset. The left image in each example shows a synthetic poloidal
emissivity profile with the desired properties, such as lines with curvatures and gradients. The right image in
each example shows the forward projection for the full camera sensor masked for the acquired region of interest
and the field of view.

No Noise Constant Noise Gaussian Noise Combined Noise

Figure 4.2: The effect of the different noise functions on a synthetic camera image. A constant factor c of 0.2
is used, and a standard deviation σ of 0.3 is used.

where c is the constant noise factor. The second noise type is Gaussian noise, which represents all other
unmodelled elements and sensor noise:

yg =N (y,σ2), (4.2)

where σ is the standard deviation and N a normal distribution. Noise is only added to the inside of the
tokamak, where light would be emitted. The two types of noise are visualized in Figure 4.2.

4.2 Network and Training Parameters

The U-Net architecture consists of [64,64, 64,128, 128,128] convolutional filters in the encoder followed
by [32, 32,32, 16,16, 16] convolutional filters in the decoder. The bottleneck consists of 64 filters. In each
encoder block, the input is processed two times by a convolution layer, followed by an instance normalization
layer, and a subsequent ReLU activation, and it is finally downsampled by a maximum pooling operator. In
each decoder block we have upsampling, concatenation with the skip connection, convolution, instance
normalization and afterwards a ReLU activation. The last three operations are performed twice.

For the deep unfolded network the loop is unfolded for K = 4 iterations and the parameterized proximal
operator is a U-Net architecture with [8, 8,16, 32] filters for both the encoder and decoder, with a bottleneck
of 32 filters. For each iteration there is a separate learned proximal operator, resulting in a total of five
learned proximal operators.

Both networks are trained for a fixed number of epochs. The weights of the epoch with the lowest validation
loss are used for evaluation and testing. An Adam optimizer is used with a learning rate of 10−3 and the

4. Design and Setup of the Neural Network Training and Evaluation 20

0.5 1.0 1.5

R [m]

−2.0

−1.5

Z
[m

]

0 500

0

500

1000

0.5 1.0 1.5

R [m]

−2.0

−1.5

Z
[m

]

0 500

0

500

1000

Figure 4.3: Two synthetic data pair for the MAST-U tokamak. The left image in each pair shows a synthetic
poloidal emissivity profile, the right image in each pair shows the forward projection. The toroidal direction in
the camera image is vertical, compared to the horizontal toroidal direction in the case of TCV.

mean squared error is used as the loss function. For the deep unfolded network, the loss is also calculated
for each intermediate output, such that the total loss is calculated as the intermediate losses summed
together [53, 54]:

Lunfolded =
∑

k

MSE(xk+1 = Pk,θ (zk+1),x). (4.3)

The intermediate losses promote a decrease of the error after each unfold, similar to the non-neural network
proximal gradient descent algorithm. Another benefit of using the loss at each unfolded step is that tuning
the number of unfolds is now easier: the network can be trained for a higher number of unfolds. If there
is no improvement after a certain amount of unfolds, we know that we can use that smaller amount of
unfolds, reducing the complexity of the network.

Because of the field of view of the camera, and because of obstructing elements like baffles, it can be the
case that the poloidal space is not completely observable. To account for this, the loss function is masked
such that it only includes the observable poloidal space, i.e. the loss of the poloidal volume cells with a
zero row in the geometry matrix are set to zero. The hyperparameters used in this study are determined
by a combination of manual optimization and parameter sweeps. The networks have been trained with an
NVIDIA V100 16 GB GPU on the MARCONI M100 supercomputer cluster. A single training takes 10 h to
24 h, depending on the initialization and the network architecture.

4.3 Performance Evaluation

The outputs of both networks are evaluated on both the synthetic dataset and on a dataset consisting
of images experimentally obtained by MANTIS for plasma discharge #65903 on TCV. To show that the
approach taken is also applicable to other machines, results for a synthetic sample of the MAST-U tokamak,
with a different geometry matrix, are also shown [55]. The MAST-U sample is shown in Figure 4.3.

We evaluate the network performance on the mean squared error, the mean absolute error, and the inference
time for a single sample on an NVIDIA TESLA V100 GPU.

In image generation tasks additional metrics are often used, which mainly focus on the shape and structure
of the predicted image. An example of such a metric is the structural similarity index (SSIM). However, we
care about the actual values produced by the network, as the output will be used for a Bayesian parameter
inference model. Thus, SSIM and similar metrics are not used.

To analyse the sensitivity of the network, we use the Jacobian of the neural network [56]:

Ji j(yh) =
dx̂i

dyi

�

�

�

�

yh

, (4.4)

where x̂i is estimated using the neural networks. The Jacobians are calculated for ten different synthetic
samples, and the absolute average Jacobian is calculated to express the sensitivity. Using this sensitivity,
we can approximate which parts of the image are more sensitive to changes in the input, and thus also to
noise.

An implementation of the described networks and the synthetic dataset generation can be found in the
following replication package: https://github.com/phaseolud/mantis-ml-inversion-replication.

https://github.com/phaseolud/mantis-ml-inversion-replication

5. Machine Learning Accelerated Tomographic Reconstruction for Multispectral Imaging on TCV 21

Machine Learning Accelerated Tomographic
Reconstruction for Multispectral Imaging on TCV 5

The contents of this chapter will be submitted as a paper to Nuclear Fusion, and therefore uses a two-column
layout. The paper retells the story from the preceding chapters in a condensed format.

5. Machine Learning Accelerated Tomographic Reconstruction for Multispectral Imaging on TCV 22

Abstract

A multispectral camera setup is used to infer a 2D map
of plasma parameters in a tokamak from spectral emis-
sions. However, the light measured by these cameras is
line integrated in the toroidal direction, whereas emissiv-
ities on the poloidal plane are necessary for the inference.
The poloidal plasma emissivity can be obtained by to-
mographic reconstruction, but classical techniques are
too slow to use these emissivities for real-time control.
We present two machine-learning based approaches to
accelerate the reconstruction of the poloidal emissivities.
Both approaches yield more accurate results on synthetic
data than the iterative approach while being near fast
enough for real-time control applications.

5.1 Introduction

In future fusion reactors such as DEMO and ITER, the al-
pha particles produced in the fusion reaction will play an
important role in the heating of the plasma. However, these
helium particles are not desired in the plasma after their
thermalization, as they dilute the relative fuel density. In
order to improve the avoidance of helium ash build-up the
ashes should be pumped away. Furthermore, the plasma-
wall interaction results in impurities sputtering from the
wall, which are undesirable in the plasma. Finally, the
power from the alpha particles exhausted from the reactor
should be dispersed. For these three reasons, a specific mag-
netic ‘divertor’ geometry was designed that better isolates
the plasma exhaust region from the main core plasma [2,
3].

To avoid damage to the divertor wall materials, the heat
flux and particle flux of the plasma in this region should
be minimized [2]. By careful injection of neutral particles
such as nitrogen or hydrogen, one can control these fluxes
towards the target [4]. In the case of hydrogen neutrals
injection, i.e. fuelling, the plasma transfers energy and
momentum to the neutral particles [5]. In the case of
impurity enrichment, e.g. nitrogen seeding, the energy
loss is mainly caused by an increase in radiation power [6].
The atomic and molecular reactions causing a loss of energy
and momentum result in a colder and denser plasma near
the divertor target. The state with a pressure gradient
along the field lines to the target in combination with a
low pressure at the target is referred to as detachment [7],
which should be controlled for optimal performance and
material durability.

The aim of detachment control is to prevent the exceedance
of the material threshold by the heat and particle fluxes
towards the target, thus preventing damage to the divertor
tiles [8]. However, the plasma should not be cooled too
much, as this can result in the detachment front moving
towards the plasma core [9], where the detachment front
corresponds to a temperature of approximately 5 eV [57].

a b

Figure 5.1: (a) A poloidal cross-section of the TCV tokamak,
with the magnetic field lines indicated in red. The outer thick
red line indicates the scrape-off-layer (SOL), which diverts the
particles towards the targets. (b) The view of the MANTIS
camera in the tokamak is not perpendicular to the poloidal
plane, but at an angle, measuring line-integrated emissions.
Adapted from [5].

If the front comes too close to the x-point, the temperature
drop of the plasma closer to the core results in degradation
of the plasma confinement and performance [9].

Both local measurements and their incorporation in a re-
construction of the divertor plasma state are necessary for
control of the fluxes in the divertor region. In this work, we
focus on the fast tomographic reconstruction of the emissiv-
ity in the divertor region for the tokamak à configuration
variable (TCV), at the Swiss Plasma Centre in Lausanne.
Various diagnostics systems, such as bolometry [10], Lang-
muir probes [11], and multispectral imaging [12, 13] are
used in the TCV to reconstruct the plasma state. The latter
is real-time capable, non-invasive, suitable for 2D imaging,
and it has been achieved on TCV using the Multispectral Ad-
vanced Narrowband Tokamak Imaging System (MANTIS).
Figure 5.1 illustrates the location of the MANTIS camera
along with the rendered view of what the MANTIS camera
sees. Feedback control of the detachment front has already
been used on TCV using this camera system [14].

Different species in the plasma emit light at different wave-
lengths. By measuring this spectral and spatial information,
a 2D reconstruction of the plasma state, temperature and
densities, in the divertor region can be made. The infer-
ence of the plasma temperature and densities, as well as
atomic process rates is based on collisional-radiative mod-
elling [16]. These 2D maps allow for advanced control
schemes through the determination of particle sources and
sinks. For this reconstruction the poloidal emissivities are
needed whereas MANTIS measures line integrated emissiv-

5. Machine Learning Accelerated Tomographic Reconstruction for Multispectral Imaging on TCV 23

0.75 1.00

R [m]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Z
[m

]

0 500

0

200

400

600

800

1000

Figure 5.2: An image measured with MANTIS on the right:
the divertor geometry diverts the plasma to the targets through
two legs. The measured light comes from the Deuterium
Balmer line emission D3→2. The reconstruction of the poloidal
emissivity on the left is calculated using the SIRT algo-
rithm [33, 32].

ities, meaning that light from different (R, Z) coordinates is
integrated. An example of the measured camera image to-
gether with the corresponding poloidal emissivity is shown
in Figure 5.2. For plasma state reconstruction one needs
the poloidal emissivity, rather than line-integrated measure-
ments. The inversion process from the measured camera
image to the poloidal plane is computationally intensive,
making it unsuitable for real-time control. The plasma dy-
namics have a temporal scale of approximately 15 ms. To
prevent sampling issues, we need to sample at least two
times faster than the temporal scale, and in practice a factor
of eight to ten is used. This means that the inversion calcu-
lation should take less than 2 ms [14], which is difficult to
achieve using traditional iterative techniques.

Previously, the reconstruction of the poloidal emissivity took
approximately 5 s per frame using the method described
in [13]. This results in a processing time of more than 1 h
per shot, which hinders fast scientific iteration. So, acceler-
ating the tomographic reconstructions does not only allow
for real-time processing, but also provides the opportunity
to have a faster offline data processing pipeline.

Tomographic inversions are also needed in other fields of
science dealing with imaging, such as geophysical and med-
ical imaging. Research in these fields has shown that neural
networks can be used to approximate the tomographic in-
version while being computationally more efficient and can
even yield more accurate results [22, 23]. In this study
we research how we can achieve a fast poloidal emissivity
reconstruction in the divertor region of TCV, using model-
informed machine learning techniques.

In Section 5.2 we introduce and review the imaging prob-
lem and discuss the existing iterative techniques which
have been used to solve the tomographic reconstruction
problem. We build upon this knowledge in the design of

the neural networks in Section 5.3, and subsequently, dive
into synthetic data generation and the experimental setup
in Section 5.4. The results are presented and discussed
in Section 5.5. This research is concluded in Section 5.6,
based on which ideas for future work are introduced in Sec-
tion 5.7.

5.2 Iterative Reconstruction Techniques

The mapping from the poloidal plane to the camera image
can be modelled as a linear forward map G : Rninv → Rnc ·mc

represented by the matrix G:

y= Gx+ e. (5.1)

nc and mc are the number of rows and columns of the ac-
quired image, ninv is the number of inversion cells, y the
flattened measured camera image, x the poloidal emissivity
and e a noise term to account for measurement noise, but
also for unmodelled effects like reflections inside the toka-
mak. The matrix G is referred to as the geometry matrix
and is constructed by point-fitting and ray-tracing locations
in an image measured with MANTIS to a CAD model of
the TCV tokamak [13] using the Calcam software pack-
age [25]. We assume both toroidal symmetry and that the
data for a camera pixel only comes from a single line of
sight. The single lines of sight for each camera image pixel,
combined with not modelling the reflections, results in a
sparse geometry matrix G. The carbon tiles inside TCV
reflect some light diffusively, but with a lower magnitude
than the direct emission from the plasma. This allows for
the approximation of not modelling the reflections.

The goal of the reconstruction is to find the poloidal emissiv-
ity given a measured camera image; the aim is to maximize
the probability density function p(x|y, G). We express this
maximization as:

x̂= argmax
x

p(x|y) = arg max
x

p(y|x, G)p(x|G)
p(y|G)

, (5.2)

which is called the maximum a posteriori (MAP) estimate.
In this expression p(y|x, G) is referred to as the likelihood,
p(x|G) as the prior, and p(y|G) as the evidence. As the
maximum does not depend on the evidence, we can omit
this last term from the optimization. We drop the geometry
matrix G from the notation for brevity.

If we assume a zero-mean Gaussian noise distribution for
the likelihood, with covariance matrix Σ, and optimize for
the log-transformed distributions we obtain:

argmax
x

log p(x|y) =

argmax
x

�

−
1
2
(y− Gx)TΣ−1(y− Gx) + log p(x)

�

,
(5.3)

where we dropped the terms of the log-likelihood which
do not depend on x. If we now rewrite the maximization

5. Machine Learning Accelerated Tomographic Reconstruction for Multispectral Imaging on TCV 24

problem to a minimization problem and assume indepen-
dent and equal variances σ2, we find the regularized least-
squares objective:

x̂= argmin
x

1
2σ2

C(x)=∥Gx−y∥22
︷ ︸︸ ︷

(y− Gx)T (y− Gx)−

R(x)
︷ ︸︸ ︷

log p(x), (5.4)

where R(x) is a regularization function, and C(x) is the
unregularized cost function.

To utilize the sparsity of the geometry matrix, iterative
methods are most often used in the field of image recon-
struction, in which large system matrices are involved. This
way it is not required to compute an explicit approximation
of (pseudo-) inverse. In iterative methods, we iteratively
update our estimate to approach a stationary point and
thus the solution to the inverse problem. In this study, we
will focus on line-search methods, in which the current
estimate xk is updated with a search direction pk which is
scaled by the step size µk [26]:

xk+1 = xk +µkpk. (5.5)

If we use the gradient of the unregularized objective func-
tion in Equation (5.4) as the search direction i.e. steepest
descent direction, the resulting iterative scheme is given
by:

xk+1 = xk −µ∇ f (xk) = xk −µGT (Gxk − y), (5.6)

which is known as the gradient descent algorithm, and
as the basis for many optimization algorithms. Finding a
proper value for the step size, also known as the learning
rate, is of importance: a too small step size will cause almost
no change in xk, whereas a too large step size causes the
solution to diverge. Methods such as exact line search or
Armijo line search could be used to find a good value for
µ [26]. However, we will not focus on these methods in
this paper.

Instead, we use the ART family of methods, which has been
specifically developed for CT imaging. Specifically, we will
use the simultaneous and iterative reconstruction technique
(SIRT). This algorithm and its variants (SART/ART) have
been used extensively in the field of medical and geophysi-
cal imaging [27, 28, 29, 30, 31].

Equation (5.6) can also be understood as follows: the term
Gxk maps the current inversion estimate to the measure-
ment space. Subsequently, the error in measurement space
is calculated Gxk − y, which is then mapped back to in-
version space GT (·). As previously mentioned, finding a
good value for the step size is an iterative process, and the
convergence speed and stability of the iterative algorithm
depend on this choice. In the SIRT algorithm, the step size
problem is solved by preconditioning the geometry matrix
to ensure a stable convergence. First, the error correction
term Gxk − y is multiplied with the matrix R, which is a
diagonal matrix containing the inverse row sums of G, so

rii = 1/
∑

j gi j. This is equivalent to solving the weighted
least-squares problem [32, 33, 34]. The R matrix reduces
the error contribution of pixels in measurement space that
correspond with a longer ray length. Without this R, the
steepest descent direction would be biased towards mini-
mizing the error for pixels that receive the most contribution
from the reconstruction space.

The gradient of the weighted least-squares problem is given
by:

∇CR(x) = GT R(Gx− y). (5.7)
If we precondition this gradient by the matrix C we obtain:

∇C∗R(x) = CGT R(Gx− y), (5.8)

where C is a diagonal matrix containing the inverse column
sums of G: c j j = 1/

∑

i gi j. The C matrix plays the same
role for GT as R does for G. Rewriting Equation (5.8) to an
iterative update scheme results in:

xk+1 = xk −µCGT R(Gxk − y), (5.9)

This can then be rearranged to:

xk+1 = (I −µCGT RG)xk +µCGT Ry, (5.10)

which is stable for 0 < µ < 2 [32, 33]. The proof by [32,
33] is rewritten, and shown in Appendix 5.A.

Another benefit of the SIRT algorithm is that the back pro-
jection (CGT Ry) results in more structural information than
the gradient descent-based back projection (GT y). The con-
volutional neural networks used for the machine learning
acceleration utilize this local structural information, making
the SIRT-based back projection better suited for incorpo-
ration in convolutional neural networks. To clarify this
structural information, the back projection for both the
SIRT and the gradient descent algorithm for a synthetic
sample are shown in Figure 5.3.

The described SIRT algorithm is an effective way to solve the
likelihood element of the Bayesian optimization. However,
in the formulation we also introduced the prior distribution
p(x). This prior distribution corresponds to the regulariza-
tion function R(x) in the objective minimization function.
In the case that the regularization function is differentiable,
we easily integrate it into the line search method. However,
not all regularization functions are differentiable, like the
ℓ1 regularization function, which is often used in signal
processing if it is known that the solution is sparse. Instead,
we can use the proximal gradient descent method [35], in
which the objective is optimized in a two-step process:

1. Calculate the estimate update to optimize for the
unregularized cost function C(x).

2. Project the updated state with a proximal operator
to optimize for the regularization function R(x).

This can also be expressed as:

zk+1 = xk +µkpk (5.11a)
xk+1 = P(zk+1), (5.11b)

5. Machine Learning Accelerated Tomographic Reconstruction for Multispectral Imaging on TCV 25

0.75 1.00

R [m]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Z
[m

]

Ground
Truth

0.75 1.00

R [m]

SIRT

0.75 1.00

R [m]

GD

Figure 5.3: A comparison of the SIRT-based back-projection
and the gradient descent-based back-projection. The left panel
shows a poloidal emissivity x with a corresponding synthetic
camera image y = Gx. The middle panel shows the SIRT-
based back-projection CGT Ry, and the right panel shows the
gradient descent-based back-projection GT y. The colour axes
are not standardized, as we would like to emphasize the
structure and not the specific values.

where P(·) is a proximal operator. An example of a proxi-
mal operator corresponding to the previously discussed ℓ1
regularization function is the soft thresholding operator:

Pµ(z) =

z −µ, z ≥ µ
0, |z|< µ
z +µ, z ≤ −µ

, (5.12)

which combinedwith the update scheme in Equation (5.11a)
results in the Iterative Soft Thresholding Algorithm (ISTA),
which is an algorithm commonly used in signal process-
ing [36]. If we apply this same method to the SIRT algo-
rithm, we arrive at the following proximal SIRT algorithm:

zk+1 = (I −µCGT RG)xk −µCGT Ry (5.13a)
xk+1 = P(zk+1). (5.13b)

The proximal operator is a way to incorporate regulariza-
tion information into the iterative scheme. Even more inter-
esting is the fact that equivalently this operator projects the
current estimate zk+1 according to the prior p(x). The proxi-
mal operator or prior can be designed by hand from physical
processes, but this can be a time-intensive and involved task.
Instead, we can parameterize the proximal operator as a
neural network, which will be the basis for Section 5.3.

5.3 Machine Learning Accelerated Reconstruc-
tion

Neural networks have been shown to excel at solving a
range of tasks in regression and classification, and have

already been applied to the field of medical and seismic
imaging [50, 44, 23] and (linear) inverse problems [58,
59]. This success in similar domains give rise to an interest
in the applications of these techniques to our setting, with
the goal of reducing the reconstruction time. We discuss
two types of network architectures: one based on the U-Net
architecture, and another based on the iterative update
scheme discussed in the previous section.

5.3.1 Nonlinear Filtering with U-Net

In the field of computer vision and image-based data, most
often convolutional neural networks (CNN) are used, which
are networks which consist of several parallel and sequen-
tial convolutions, where all the convolutional kernels are
learned [42]. In image classification tasks, features are
extracted using convolutional filters and pooling operators
until the image can be represented in some (small) latent
space. This part of a CNN is often called the encoder. The
output of the encoder is fed into a classification head, which
can be used to classify the images. However, we can also
deconvolve the latent space back to an image, in which
case the network is referred to as a decoder. If we combine
both networks, we have an Encoder-Decoder (ED) network,
which can represent an image in some lower dimensional
latent space Z also referred to as the bottleneck, and then
reconstruct it back to the image space [42, 60]. The goal of
the Encoder-Decoder architecture is to learn the networks
Eθ : Y → Z and Dθ : Z → Y such that:

y− (Dθ ◦ Eθ)(y) (5.14)

is minimized. The input to the network can be identical to
the output, but it is also possible that the input is altered
and that the original image needs to be reconstructed, for
example, in the case of noise removal. More background
information on CNNs is presented in Appendix 5.B.

In our problem setting we are not interested in denoising
or segmenting the input to the network; we would like
to perform a domain transformation F : Y → X consisting
of an encoder Eθ : Y → Z which maps the camera image
information to a latent space Z of different dimensions and
using a decoder Dθ : Z → X which reconstructs the poloidal
emissivity from this latent space. The network would then
be trained on image-pairs consisting of synthetic poloidal
emissivities with their corresponding camera images.

One problem with the standard ED architecture is that the
results heavily depend on the bottleneck size: a small (spa-
tial and filter dimension) bottleneck allows for insufficient
information flow, while a network with a too large (spatial
dimension) size relies too much on the spatial correlation
of the input data, both resulting in a suboptimal recon-
struction. The latter is especially important in our problem
setting, in which the input and output data are not spatially
correlated in contrast to denoising EDs. Furthermore, some
information might already be extracted to useful features

5. Machine Learning Accelerated Tomographic Reconstruction for Multispectral Imaging on TCV 26

y x̂

Figure 5.4: The U-Net architecture. The coloured blocks are
convolutional layers, with the height representing the spatial
size, and the width the number of filters. The black arrows
represent the residual connections, which concatenate the
filters of the encoder to the filters of the decoder. This allows
for information flow at different levels of spatial compression.

after the first or second down-sampling step, instead of
passing it through all the other encode and decode blocks.

A solution to this problem is to add residual connections
between the encoder and decoder network, such that the
filters for every encoder block are appended to the decoder
block filters with the same spatial dimension. Such an ar-
chitecture is called U-Net [61], which has also been used
with great success for a variety of tasks like image seg-
mentation, image denoising, image super resolution and
tomographic reconstruction [44, 45]. An illustration of the
U-Net architecture is shown in Figure 5.4. In this figure
we can see there is a latent space at different spatial di-
mensions. A smaller spatial dimensional corresponds with
a higher number of filters. Even tough we could train a
U-Net on our data, we have prior knowledge of the system
available as the geometry matrix G. So, it can be useful
to include this knowledge into the neural network design.
The incorporation of linear (potentially fitted) model knowl-
edge has been used with great success before in the field
of state-space identification methods [62], and in physics-
driven systems where the network is then referred to as a
physics informed neural network [58]. We incorporate this
knowledge into the network design by first back project-
ing the measured camera image to the poloidal space, and
then post-processing the back projection using the U-Net
architecture:

x̂= (U ◦ CGT R)(y), (5.15)

where U : X → X is a (U-Net) post-processing operator.
This solution can be seen as a learned regularized version
of the direct pseudo-inverse estimation:

x̂=

≈U(·)
︷ ︸︸ ︷

(CGT RG)−1 CGT Ry. (5.16)

Figure 5.5 shows the model-informed U-Net architecture

CGT R
U

Figure 5.5: The model-informed U-Net architecture, con-
sisting of the SIRT-based back-projection which projects the
camera image onto the poloidal space, followed by a typical
U-Net.

as described above. In Appendix 5.C we analyse the effect
of adding the model-based back-projection to the U-Net
architecture on the model performance.

5.3.2 Deep Unfolded Networks

We can also incorporate physical model knowledge into
the network design by considering the proximal gradient
descent algorithm in Equation (5.11a). The purpose of
the proximal operator P is to infuse prior knowledge of
the problem into the iterative solver, e.g. sparsifying the
solution or making sure that the solution is always posi-
tive. Designing these proximal operators is a task which
requires substantial problem knowledge. Instead, we can
parameterize these by neural networks Pk,θ and learn them
from the data. Mind that this is equivalent to learning the
prior on the solution xk. To achieve this, the iterative loop
described in Equation (5.13a) is unfolded for K iterations,
resulting in a directed computational graph, equivalent to
a feedforward neural network:

zk+1 = (I −µkCGT RG)xk −µkCGT Ry (5.17a)
xk+1 = Pk,θ (zk+1). (5.17b)

Mind that we use a different proximal operator in each
unrolled step, so there are K learned proximal operators
in total. Furthermore, the step size parameters µk are
also learnable and differ for each unfold k. This allows
the network to ‘choose’ how much of the measured data
it includes into each step; the step size parameter µ is
sometimes also referred to as the data consistency term. A
U-Net architecture is used as the proximal operator in the
unfolded network. However, this is a smaller U-Net than in
the case of the post-processing U-Net, as precision is gained
due to the unfolded iterations. The final architecture of the
unfolded network is illustrated in Figure 5.6. The estimate
x̂0 is initialized with all zeros. The unrolling of iterative
loops and replacing some operators with neural networks
is referred to as deep unfolding and has been used in the
field of (medical) imaging and signal processing [46, 47,
48, 49, 50, 51, 52]. Interesting to note is that the informed
U-Net architecture is a special case of the deep unfolded
architecture, where K = 1. Because x0 is initialized at zero,
we have that the z1 is given by the back projection of y,
which corresponds to the model informed step of the U-Net
based architecture.

5. Machine Learning Accelerated Tomographic Reconstruction for Multispectral Imaging on TCV 27

CGT R

x̂0
Pk,θ

I −µkCGT RG

x̂k+1µk

x̂k ẑk+1

Figure 5.6: The deep unfolded architecture. The initial esti-
mate of the poloidal emissivity x̂0 is initialized with all zeros.
The grey box represents the iterative part for K unfolds. The
dashed lines represent data that are different for each itera-
tion k.

5.4 Experimental Setup

5.4.1 Synthetic Dataset

Although existing data from the MANTIS camera system are
available, creating a training dataset from these data is sub-
optimal. We would like to train data for a single geometry
matrix, but different shots have different geometry matrices
because of displacement and readjusting of the MANTIS
cameras. Secondly and more importantly, the ground truth
poloidal emissivity is not available for the experimentally
obtained data, as this reconstruction is currently calculated
using the SIRT algorithm. Using this inversion as training
data would result in artefacts from the iterative algorithm
showing up in the inversion estimated by the neural net-
works. Finally, as the MANTIS system most often measures
a typical plasma scenario and shape, the network might
overfit to these shapes, resulting in a network that cannot
generalize to new scenarios or off-normal events.

Ideally, the dataset has similar characteristics to the experi-
mentally obtained MANTIS data. The line emission is typi-
cally constrained to regions with specific ranges of plasma
temperature, plasma density and neutral density, which
particularly in the divertor region can have large gradients
and magnetic-field-line induced anisotropy. Therefore, we
impose the following features in the synthetic data:

1. Random lines of different lengths, thicknesses, po-
sitions, brightnesses and orientations, with lengths
up to the order of the image size, but widths much
smaller than the image size.

2. A random curvature is introduced to the lines, captur-
ing the trends induced by the magnetic field geometry.

3. Random degrees of brightness gradient along the
length of the lines, capturing the trends induced by
the impact of parallel (to magnetic field) gradients of
plasma temperature and density on line-emission.

Random line segments are generated based on these criteria

0.75 1.00

R [m]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Z
[m

]

0 500

0

200

400

600

800

1000

Figure 5.7: An example from the synthetic dataset. The left
image shows a synthetic poloidal emissivity profile with the
desired properties, such as lines with curvatures and gradients.
The right image shows the forward projection for the full
camera sensor masked for the acquired region of interest and
the field of view.

and drawn on a poloidal plane. Furthermore, a Gaussian
blur with a random kernel size is applied to the generated
images. Finally, the drawn lines are forward projected to
create a camera view image, and both images are saved as
an input-label pair. The dataset used for training consists of
25000 synthetically generated input-label pairs. A sample
from the generated dataset is shown in Figure 5.7.

For evaluation, we would like to know how robust the net-
works are to noise, so images with noise are evaluated as
well. We model the noise using two types of noise: the
first one is constant noise, which represents the diffusive
background reflections inside the tokamak:

yc = y+ c ·max(y), (5.18)

where c is the constant noise factor. The second noise type
is Gaussian noise, which represents all other unmodelled
elements and sensor noise:

yg =N (y,σ2), (5.19)

where σ is the standard deviation and N a normal distri-
bution.

5.4.2 Network and Training Parameters

The U-Net architecture consists of [64, 64, 64, 128, 128,
128] convolutional filters in the encoder followed by [32,
32, 32, 16, 16, 16] convolutional filters in the decoder. The
bottleneck consists of 64 filters. In each encoder block,
the input is processed two times by a convolution layer,
followed by an instance normalization layer, and a subse-
quent ReLU activation, and it is finally downsampled by
a maximum pooling operator. In each decoder block we
have upsampling, concatenation with the skip connection,
convolution, instance normalization and afterwards a ReLU
activation. The last three operations are performed twice.

5. Machine Learning Accelerated Tomographic Reconstruction for Multispectral Imaging on TCV 28

For the deep unfolded network the loop is unfolded for
K = 5 iterations and the parameterized proximal operator
is a U-Net architecture with [8, 8,16, 32] filters for both the
encoder and decoder, with a bottleneck of 32 filters. For
each iteration there is a separate learned proximal operator,
resulting in a total of five learned proximal operators.

Both networks are trained for a fixed number of epochs.
The weights of the epoch with the lowest validation loss are
used for evaluation and testing. An Adam optimizer is used
with a learning rate of 10−3 and the mean squared error is
used as the loss function. For the deep unfolded network,
the loss is also calculated for each intermediate output,
such that the total loss is calculated as the intermediate
losses summed together:

Lunfolded =
∑

k

MSE(xk+1 = Pk,θ (zk+1),x). (5.20)

Because of the field of view of the camera, and because of
obstructing elements like baffles, it can be the case that the
poloidal space is not completely observable. To account for
this, the loss function is masked such that it only includes
the observable poloidal space, i.e. the loss of the poloidal
volume cells with a zero row in the geometry matrix are
set to zero. The hyperparameters used in this study are
determined by a combination of manual optimization and
parameter sweeps. The networks have been trained with
an NVIDIA V100 16 GB GPU on the MARCONI M100 su-
percomputer cluster. A single training takes 10 h to 24 h,
depending on the initialization and the network architec-
ture.

5.4.3 Performance Evaluation

The outputs of both networks are evaluated on both the
synthetic dataset and on a dataset consisting of images
experimentally obtained by MANTIS for plasma discharge
#65903 on TCV. To show that the approach taken is also
applicable to other machines, results for a synthetic sample
of the MAST-U tokamak, with a different geometry ma-
trix, are also shown [55]. The MAST-U sample is shown
in Figure 5.8.

We evaluate the network performance on the mean squared
error, the mean absolute error, and the inference time for a
single sample on an NVIDIA TESLA V100 GPU.

In image generation tasks additional metrics are often used,
which mainly focus on the shape and structure of the pre-
dicted image. An example of such a metric is the structural
similarity index (SSIM). However, we care about the actual
values produced by the network, as the output will be used
for a Bayesian parameter inference model. Thus, SSIM and
similar metrics are not used.

To analyse the sensitivity of the network, we use the Jaco-
bian of the neural network [56]:

Ji j(yh) =
dx̂i

dyi

�

�

�

�

yh

, (5.21)

0.5 1.0 1.5

R [m]

−2.25

−2.00

−1.75

−1.50

−1.25

Z
[m

]

0 500

0

250

500

750

1000

Figure 5.8: A synthetic data pair for the MAST-U tokamak.
The left image shows a synthetic poloidal emissivity profile,
the right image shows the forward projection. The toroidal
direction in the camera image is vertical, compared to the
horizontal toroidal direction in the case of TCV.

0.75 1.00

R [m]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Z
[m

]
Ground
Truth

0.75 1.00

R [m]

SIRT
K = 100

0.75 1.00

R [m]

U-Net

0.75 1.00

R [m]

Unfolded
K = 5

Figure 5.9: The estimated poloidal emissivities using the
classical and machine learning based methods for a sample
from the synthetic dataset.

where x̂i is estimated using the neural networks. The Ja-
cobians are calculated for ten different synthetic samples,
and the absolute average Jacobian is calculated to express
the sensitivity. Using this sensitivity, we can approximate
which parts of the image are more sensitive to changes in
the input, and thus also to noise.

An implementation of the described networks and the syn-
thetic dataset generation can be found in the following repli-
cation package: https://github.com/phaseolud/mantis-ml-
inversion-replication.

5.5 Results and Discussion

5.5.1 Results on Synthetic Dataset

Figure 5.9 shows that both the U-Net based model and the
deep unfolded model are successful in approximating the
reconstruction of the emissivity in the poloidal plane. For
data above R= −0.2 m, which correspond with information
that is not directly in the field of view, the machine learning
based solutions are more effective in reconstructing the
emissivity. The emission in the image is strongly weighted
towards the plane of tangency with the camera, which al-

https://github.com/phaseolud/mantis-ml-inversion-replication
https://github.com/phaseolud/mantis-ml-inversion-replication

5. Machine Learning Accelerated Tomographic Reconstruction for Multispectral Imaging on TCV 29

0.75 1.00

R [m]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Z
[m

]

Ground
Truth

0.75 1.00

R [m]

SIRT
K = 100

0.75 1.00

R [m]

U-Net

0.75 1.00

R [m]

Unfolded
K = 5

Figure 5.10: The estimated poloidal emissivities using the
classical and machine learning based methods for a syntheti-
cally generated sample, which highlights the reconstruction
capabilities for emission outside the direct field of view of the
camera, covering the plane of tangency to the plasma.

lows a good reconstruction by the SIRT algorithm in these
regions. However, SIRT is less successful where the plane
of tangency is not captured by the camera. In this case,
the poloidal emissivity is reconstructed from the toroidally
symmetric emission, which is more difficult as the informa-
tion is sparser in this region. The same result can be seen
more clearly in Figure 5.10. In this figure one can see that
the SIRT algorithm can reconstruct some emissivity for the
lines higher in the poloidal plane and for the horizontal
line, but an insufficient amount of data available to do a
high quality reconstruction in these regions; emissions in
the plane of tangency are accurately reconstructed by the
SIRT algorithm, whereas emissions outside the direct field
of view are more difficult to reconstruct.

Similar results can be observed for a synthetic sample for
the MAST-U tokamak, shown in Figure 5.11. We can see
that the machine learning based approaches outperform the
SIRT algorithm, especially for the more horizontal line near
Z =−1.8 m. The results presented for MAST-U are obtained
without any tuning of the hyperparameters. Only the geom-
etry matrix is changed, and the networks are retrained. This
highlights the transferability of the approaches presented
in this paper.

To quantify the performance of these three approaches, in
terms of both image quality metrics and inference time, the
mean squared error and mean absolute error for these three
methods on a synthetic test dataset were determined. These
are shown in Table 5.1. The inference times are shown in Ta-
ble 5.2, which indicate the computation time for different
batch sizes, evaluated on an NVIDIA V100 GPU. We can
see that the error metrics correspond to the visual inspec-
tion of both figures: both the deep unfolded model and the
U-Net outperform the SIRT algorithm. The deep unfolded
model has a lower mean squared error, whereas the U-net
has a lower mean absolute error for TCV than the other
methods. Moreover, both machine learning accelerated
methods are faster than the SIRT algorithm. Furthermore,

1.0 1.5

−2.00

−1.75

−1.50

Z
[m

]

Ground
Truth

1.0 1.5

SIRT
K = 100

1.0 1.5

R [m]

−2.00

−1.75

−1.50

Z
[m

]

U-Net

1.0 1.5

R [m]

Unfolded
K = 5

Figure 5.11: The estimated poloidal emissivities using the
classical and machine learning based methods for a synthetic
sample for the MAST-U tokamak.

Table 5.1: The evaluation metrics on a test dataset and
the number of trainable model parameters for the different
reconstruction methods.

Model / Metric MSE MAE # Parameters [M]

TCV
SIRT 0.0596 0.0980 –
U-Net 0.0107 0.0390 1.38
Unfolded 0.0092 0.0418 0.35

MAST-U
SIRT 0.0297 0.0511 –
U-Net 0.0044 0.0182 1.38
Unfolded 0.0077 0.0258 0.28

Table 5.2: The inference time in ms for the different estima-
tion methods for different batch sizes.

Model / Batch Size 1 2 4 8

SIRT 52.5 67.7 80.3 88.4
U-Net 3.8 4.5 5.0 5.3
Unfolded 3.2 3.2 3.7 3.9

5. Machine Learning Accelerated Tomographic Reconstruction for Multispectral Imaging on TCV 30

0.75 1.00

R [m]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Z
[m

]

SIRT
K = 100

0.75 1.00

R [m]

U-Net

0.75 1.00

R [m]

Unfolded
K = 5

Camera
Image

Figure 5.12: The measured camera image and the estimated
inversion for a sample from shot # 65903 measured with
MANTIS. The camera image is cropped on the right to only
include the region of interest containing emissions.

we see that the unfolded model is slightly faster than the
U-Net model, and scales better than the U-Net model. Both
machine learning solutions show results close to the target
inference time of 2 ms, with room for optimization in the
networks such as using half precision and using compilers
such as TensorRT.

5.5.2 Results on Measured Data

In the previous subsection we have seen that the machine
learning approaches are successful in reconstructing the
poloidal emissivity, but the data was synthetic and thus ideal
for these approaches, as the training images are generated
with the same geometry matrix that is used in the networks.
To verify that the machine learning approaches also yield
good results on real world data, we investigate the results
on an image measured with MANTIS.

The neural networks, in particular the U-Net, are also suc-
cessful in approximating the inversion for an image mea-
sured using the MANTIS system, as can be seen in Fig-
ure 5.12. This figure shows us that the outputs of the
neural network models are similar to the SIRT solution,
especially in the region of interest in the direct field of
view. Furthermore, the neural network models have fewer
inversion artefacts, which are visible in the SIRT solution
as dim curved lines in the bottom of the inversion and as
the dim near-horizontal line at Z = −0.4 m. These lines
arise from the non-toroidally symmetric elements in the
tokamak, such as the tiles. The location of the camera
and its view angle, combined with the inability of the cam-
era to place emission along the line of sight, also create
these artefacts. Interestingly, the deep unfolded network
estimates higher emissivities on the divertor legs than the
other methods. Results of both machine learning models
show inversions corresponding to physical processes: the
higher emission where the left leg touches the wall, caused
by reionisation of the neutral particles coming back from
the target, is correctly reconstructed. The informed U-Net

0.0 0.2

STDDEV

0.0

0.1

0.2

0.3

C
o
n

st
a
n
t

F
a
ct

o
r

U-Net

0.0 0.2

STDDEV

SIRT

0.05

0.10

0.15

0.20

Figure 5.13: The effect of Gaussian noise and constant noise
on the MSE for both the iterative SIRT algorithm and the
informed U-Net architecture.

model reconstructs the region around and above the x-point
more accurately than the deep unfolded model: the emis-
sivity is more uniform, and more in line with the physical
processes at play, whereas the deep unfolded model creates
some gaps between the emissivities. Quantifying the error
on the experimentally obtained images is difficult, as no
ground truth poloidal emissivity exists.

The training of the U-Net is more stable and converges to
roughly the same errors for different seeds. In contrast, the
deep unfolded network are much more sensitive to the ran-
dom initialization of the weights, and a multi-initialization
optimization is used to find the used deep unfolded net-
work.

5.5.3 Sensitivity and Robustness

As the U-Net model is most consistent in training and thus
more convenient to use in real-time applications, we analyse
the sensitivity of the U-Net and its robustness compared
to the SIRT algorithm for different noise levels. The effect
of adding both constant and Gaussian noise to the input
data is shown in Figure 5.13. This figure shows that the
U-Net approach yields more accurate reconstructions for
a constant noise factor. Furthermore, the SIRT algorithm
yields a lower error compared to the U-Net for Gaussian
noise with a higher standard deviation.

To analyse the sensitivity of the network we evaluate the
network Jacobian for ten different generated samples. We
then express the sensitivity as the absolute sum of these
Jacobians. The resulting Jacobian has dimensions (1032,
772, 256, 256), resulting in a non-straightforward visu-
alization. We visualize the sensitivity by downsampling
and resizing the Jacobian to a 2D matrix by flattening the
image dimensions. The image dimensions are reshaped
with C-like ordering, so the height is the ‘slow’ dimension
and the width the ‘fast’ dimension. In Figure 5.14 we see
that the network is most sensitive (to noise) in the upper
left, corresponding to the higher Z-coordinates in camera
space and a higher vertical position in camera space. This

5. Machine Learning Accelerated Tomographic Reconstruction for Multispectral Imaging on TCV 31

0 500 1000 1500 2000 2500 3000

Camera Space Pixel Index

0

500

1000

P
o
lo

id
a
l

S
p

a
ce

P
ix

el
In

d
ex

Figure 5.14: The Jacobian to represent the sensitivity of the
network. The input and output shape are reordered such that
the Z-axis decreases for increasing poloidal space index and
that camera space pixel index increases for a lower vertical
position in the camera.

0.75 1.00

R [m]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Z
[m

]

0 500

0

200

400

600

800

1000

Figure 5.15: The sensitivity summed over ten samples and
the camera space and the reconstruction space, respectively.
A lighter colour indicates a higher sensitivity. The higher sen-
sitivity regions correspond to the regions where the network
needs to reconstruct from a low information density.

is according to expectations: for higher Z-coordinates the
emissivity information becomes sparser as this is not in the
direct field of view of the camera anymore. From this sensi-
tivity analysis, we thus see that we should be cautious with
interpreting the data for higher Z-values in the poloidal
plane, as this region might be more sensitive to noise. We
also see that for lower Z-values in the direct field of view the
network sensitivity is low, meaning that the network results
are more robust in these regions. To gain further insight
in the sensitivity we sum over the poloidal and the camera
space, respectively. This results in the total sensitivity for
the corresponding space. This is illustrated in Figure 5.15.
This figure shows that the network is most sensitive to the
upper part of the camera image. This part corresponds
to the low information density regions. Furthermore, the
sensitivity is larger for higher R-values in the poloidal plane,
which is emission closer to the camera. For a typical plasma
scenario with a target at the high field side and the bot-
tom of the tokamak the U-Net is not very sensitive to noise.
The irregularities on the poloidal plane might result from
the limited size of the dataset, which only consists of ten

samples.

5.6 Conclusion

2D measurements of plasma emissivity can yield plenty of
information about the plasma state, such as plasma temper-
ature, plasma density and neutral density. These measure-
ments are used to both control the heat and particle flux
towards the target, and to reconstruct 2D plasma param-
eter profiles. For these reconstructions, emissivities in the
poloidal plane are needed. However, 2D imaging camera
system measurements, such as from the MANTIS diagnostic
at TCV, are line integrated: each pixel contains information
from multiple poloidal coordinates. The poloidal emissivity
can be recovered with tomographic inversion techniques
such as the SIRT algorithm. However, these techniques are
generally slow and not suitable for real-time control.

To accelerate the inversion process, we developed two neu-
ral network architectures: an informed U-Net architecture,
which uses model information by processing a back pro-
jected image, and a deep unfolded architecture, adapted
from the SIRT algorithm. To effectively train these networks
and reduce potential overfitting, we created a representa-
tive synthetic dataset. Both networks outperform the SIRT
algorithm in terms of accuracy and inference time evalu-
ated on the synthetic dataset. The machine learning based
approaches are more successful in reconstructing emission
which is not directly in the field of view of the camera. These
architectures also outperform the iterative approaches for
other geometries and tokamaks, even without any hyper-
parameter tuning. Only changing the geometry matrix and
retraining the network is required. However, it is difficult
to find a suitable metric for the reconstruction accuracy
of these measured images as no objective ground truth is
available. However, the classical methods share this same
limitation.

5.7 Outlook

Thus far, we have evaluated the U-Net and unfolded models
using the MSE and MAE with respect to the actual inver-
sion or the camera image. The goal of the fast inversion
approximations is to use them to infer plasma parameters
on TCV based on collisional-radiative modelling. Therefore,
an additional useful evaluation is to calculate the outputs
for the different inversion methods and use them as inputs
for the Bayesian parameter inference code. Another pos-
sible evaluation process is to apply the detachment front
tracking algorithm used for control and check if the outputs
of machine learning based inversions correspond with the
SIRT output. Furthermore, the fast reconstructions allow
for feedback control on tokamaks with geometries where
the plane of tangency is not directly visible.

In this study the assumption to not model the reflections
was made, as reflections would result in a denser geometry

5. Machine Learning Accelerated Tomographic Reconstruction for Multispectral Imaging on TCV 32

matrix and thus a higher computational load. However,
current and future reactors such as ITER and DEMO are
expected to have a metallic wall. Analysis of the presented
approaches for metallic wall devices is thus of interest.

The same architectures can also be applied to other geome-
tries and machines. However, these methods might also
have potential for other line-integrated measurements such
as bolometry.

Finally, the fast poloidal reconstruction of the emissivities is
only the first step in a two-step process for real-time plasma
parameter inference. The second step is to infer the plasma
state (temperatures and densities) from 2D poloidal emis-
sivities. This is again an inverse problem, related to the
collisional-radiative processes which relate the local plasma
parameters to local emissivity. Machine learning techniques
provide further opportunity in accelerating the inversion of
this second step, allowing for the development and appli-
cation of innovative control techniques for tokamak power
exhaust.

Appendices

5.A Stability Proof of the SIRT Algorithm

For a stable convergence we must have that the term (I −
µCGT RG) has a spectral radius ρ(·) smaller than one, i.e.
all eigenvalues λ are inside the unit circle. The eigenvalues
are equal to:

λ= 1−λi; λi = λi(CGT RG). (5.22)

Because the matrices C , R and GT G are all positive semi-
definite, we have that the eigenvalues λi are greater than
or equal to zero. Next, we use that the spectral radius of a
matrix is smaller than or equal to the matrix norm, for any
natural matrix norm:

ρ(A)≤ ∥A∥. (5.23)

By rewriting this condition using the∞ norm, we have
that:

ρ(CGT RG)≤

CGT RG

∞ ≤

CGT

∞∥RG∥∞, (5.24)

where the last inequality follows from the sub-multiplicativity
of a matrix norm. We choose to use the∞ norm here, be-
cause the explicit expression for the∞ norm of a matrix is
given by the largest row sum:

∥A∥∞ =max
k

∑

l

�

�ak,l

�

�, (5.25)

which motivates the choice for the C and R to equal the
inverse row (and column) sum of G. We now have that
∥RG∥∞ = 1 and

CGT

∞ = 1. Combining these results
gives us:

ρ(I −µCGT RG) =max
i
|1−µλi |= |1−µ|. (5.26)

The requirement for stability is that the spectral radius is
smaller than one, so the bounds on the step size µ can be
determined as:

|1−µ|< 1 =⇒ 0< µ < 2. (5.27)

5.B Convolutional Neural Networks

In conventional feedforward neural networks a connection
between two hidden layers x,y is given by:

y= f (Wx+ b) , (5.28)

where x are the inputs, y the outputs, b the bias, W the
weights and f the non-linear activation function. The
weights and biases are learned through back propagation.
For inputs and outputs with large dimensions, in the case of
images, feedforward neural networks would not be tractable:
an image to image transformation with images of size 256
by 256 would result in a weight matrix with 2562 · 2562 ≈
4.3 · 109 learnable parameters.

By using the assumptions that the data is locally correlated,
the full connections can be replaced by a (2D) convolution,
where the kernel H ∈ Rk0,k1 (also called filter) is learned:

y= f

b+
k0−1
∑

s0=0

k1−1
∑

s1=0

Hs0,s1
xi+s0, j+s1

!

, (5.29)

where a 2D input and output are assumed. This is equiva-
lent to learning a weight matrix with only elements on the
tridiagonal in a Toeplitz structure, with all other elements
set to zero. More complexity can be added to the layer by
increasing the number of learnable kernels H. If we denote
the convolutional operator with filter H as TH(x), we can
combine the different kernels as:

yk = f

�

bk +
L
∑

l

THk
(xl)

�

, (5.30)

where k denotes the kernel index of the output y and L the
number of kernels of the input x.

5.C Comparison Between Different U-Nets

In this paper we have focussed on a model-informed ar-
chitectures. It is also possible to learn a direct mapping
from camera image to poloidal emissivity. However, this
would require the neural network to learn a more difficult
mapping; the back projection already yields information
about the location of the emissivity. Furthermore, the back
projection yields a mapping from the camera image to the
reconstruction grid. For the direct mapping there should be
a preprocessing and resizing step to transform the camera
image dimensions to the appropriate input shape of the
U-Net.

5. Machine Learning Accelerated Tomographic Reconstruction for Multispectral Imaging on TCV 33

The results for the synthetic poloidal emissivities and cam-
era images, and the experimentally obtained camera im-
ages that are presented in this paper are used to evaluate the
uninformed U-Net architecture. Figure 5.16 shows a good
reconstruction of the poloidal emissivity by the uninformed
U-Net, better than the SIRT algorithm. The capabilities

0.75 1.00

R [m]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Z
[m

]

Ground
Truth

0.75 1.00

R [m]

SIRT
K = 100

0.75 1.00

R [m]

U-Net

0.75 1.00

R [m]

U-Net
Uninformed

Figure 5.16: A synthetically generated poloidal emissivity
and the reconstructions with the SIRT algorithm, the model-
informed U-Net and the uninformed U-Net.

of the uninformed become more clear in Figure 5.17. In

0.75 1.00

R [m]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Z
[m

]

Ground
Truth

0.75 1.00

R [m]

SIRT
K = 100

0.75 1.00

R [m]

U-Net

0.75 1.00

R [m]

U-Net
Uninformed

Figure 5.17: A synthetically generated poloidal emissivity
and the reconstructions with the SIRT algorithm, the model-
informed U-Net and the uninformed U-Net.

this figure we can see that the uninformed U-Net creates
more ‘wavy’ lines, in contrast to the straight lines estimated
by the SIRT algorithm and the informed U-Net. Neverthe-
less, the results of the uninformed U-Net are more in line
with the ground truth than the SIRT algorithm. This is
confirmed by the quantitative evaluation in Table 5.3. The
shortcomings of the uninformed U-Net become clear with
the experimentally obtained camera images, shown in Fig-
ure 5.18. This figure shows that the uninformed U-Net fails
to do an accurate reconstruction of the poloidal emissiv-
ity: the X-point is estimated at a different position in the
poloidal plane. Moreover, the estimates emissivities are not
smooth and underestimate the emissivities near the walls.
The uninformed U-Net does not generalize well for out of
distribution data, as is the case with the experimentally ob-
tained camera image. Phrased differently: the inclusion of

Table 5.3: The evaluation metrics on a test set for the TCV
tokamak for the different reconstruction methods.

Model / Metric MSE MAE

SIRT 0.0596 0.0980
U-Net 0.0107 0.0390
Unfolded 0.0092 0.0418
U-Net Uninformed 0.0238 0.0597

0.75 1.00

R [m]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Z
[m

]

SIRT
K = 100

0.75 1.00

R [m]

U-Net

0.75 1.00

R [m]

U-Net
Uninformed

Camera
Image

Figure 5.18: The measured camera image and the estimated
poloidal emissivities for a sample from shot # 65903measured
with MANTIS.

the geometry matrix in the network architecture allows for
generalizability and makes the network more performant
on out of distribution data.

6. Additional Results and Discussion 34

Additional Results and Discussion 6
In this chapter we discuss additional results and analysis that were not presented in the paper. First we
analyse the intermediate Representation of the deep unfolded network. Next, we look at the calculated
poloidal emissivities for the noisy inputs. Finally, we discuss the limitations of the synthetic dataset.

6.1 Intermediate Representation of the Deep Unfolded Network

The used deep unfolded network is unfolded for K = 5 iterations. The loss during training is calculated as a
sum of the loss at all intermediate representations, so it might be interesting to see if the estimated emissivity
improves for each iteration. Table 6.1 shows the errors on the synthetic test dataset for each unfold, together
with learned values for the step size parameters µk. The MSE and MAE decrease monotonically, as intended
by the loss at every unfold step. Furthermore, the step sizes muk are high compared to the stability limit of
1.99 for unfold two and four. This also means that more of the measurement data and model is incorporated
in that specific step. To gain more insight in the intermediate representations, the outputs for each layer
are visualized in Figures 6.1 and 6.2.

These figures show that for ‘simple’ poloidal emissivities the results after the first unfold are already
satisfactory. However, the more difficult to see emission profiles (e.g. the more horizontal lines in Figure 6.2),
need a higher number of unfolds to be reconstructed correctly.

6.2 Limitations of the Synthetic Dataset

Using a synthetic dataset has plenty of advantages, such as: fast data creation, less change on overfitting and
having a ground truth target. However, the synthetic dataset is not perfect: this became clear in the results
of both the uninformed U-Net architecture and in the deep unfolded architecture. The uninformed U-Net
architecture estimated the x-point in a different location, whereas the deep unfolded network estimated a
higher brightness on the leg, which are errors mostly visible for experimentally obtained data.

There are two main sources of mismatches between the synthetic dataset and the experimentally obtained
data:

Table 6.1: The MSE and MAE calculated using the outputs of the learned proximal layer of each iterative step.
The bottom row contains the learned step sizes used in the SIRT algorithm. The final column denotes the output
of the network.

Unfold Step k 0 1 2 3 4 O

MAE 0.0903 0.0848 0.0755 0.0672 0.0655 0.0418
MSE 0.0370 0.0332 0.0259 0.0134 0.0114 0.0092
µk 1.16 3.13 6.94 1.31 6.61 –

6. Additional Results and Discussion 35

0.75 1.00

R [m]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Z
[m

]

k = 0

0.75 1.00

R [m]

k = 1

0.75 1.00

R [m]

k = 2

0.75 1.00

R [m]

k = 3

0.75 1.00

R [m]

k = 4

0.75 1.00

R [m]

Output

Figure 6.1: The intermediate outputs for the deep unfolded architecture for a synthetic dataset sample. The
results are already good after the first unfold, because of the ‘simple’ poloidal emissivity profile.

0.75 1.00

R [m]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Z
[m

]

k = 0

0.75 1.00

R [m]

k = 1

0.75 1.00

R [m]

k = 2

0.75 1.00

R [m]

k = 3

0.75 1.00

R [m]

k = 4

0.75 1.00

R [m]

Output

Figure 6.2: The intermediate outputs for the deep unfolded architecture for a synthetic dataset sample. The
simple to reconstruct emissivities are already reconstructed on the first iteration, whereas the emissions not in
the direct field of view only become more clear for higher number of unfolds.

6. Additional Results and Discussion 36

0 500

0

200

400

600

800

1000

Unedited

0.5 1.0

R [m]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Z
[m

]

Unedited

0 500

0

200

400

600

800

1000

Edited

0.5 1.0

R [m]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Z
[m

]

Edited

Figure 6.3: The measured camera image and the calculated tomographic reconstruction using the SIRT
algorithm on the left. The poloidal emissivity is edited to remove most of the reconstruction artefacts. The
camera image on the right is generated by forward modelling the edited poloidal emissivity. Note the absence
of tiles at the bottom, and the absence of the port on the right (middle vertical) for the synthetic camera image.

0.75 1.00

R [m]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Z
[m

]

Unfolded

0.75 1.00

R [m]

U-Net

0.75 1.00

R [m]

U-Net Uninformed

0.75 1.00

R [m]

SIRT

Figure 6.4: The estimated poloidal emissivities with the different machine-learning methods for the synthetic
camera image. The estimated poloidal emissivities are almost identical to the ones estimated from the experi-
mentally obtained camera image.

1. The geometry matrix G is ray-traced from a fitted calibration. The fitted calibration is not perfect
(hence a fit), and already introduces some error. Furthermore, the geometry matrix G is a linear
approximation of the system, omitting potential non-linear effects of the lenses or light aberrations.
Finally, we do not model reflection, whereas they are (slightly) present in the tokamak.

2. The synthetic dataset samples have certain characteristics, such as curves and gradients. Furthermore,
different line widths and blur kernels are being used to make the dataset more diverse. However, the
dataset does not include the exact emissivities present in the experimental data: the experimental
data has more of glow around the legs and has more uniform regions of emissivity near the X-point.

We can find out more about the shortcomings of the synthetic dataset by analysing the experimentally
obtained data. We use the SIRT estimated poloidal emissivity, and remove the reconstruction artefacts by
hand. The original camera image and reconstruction, and the edited reconstruction and forward modelled
camera image are shown in Figure 6.3. By using the synthetic camera image from the edited poloidal
emissivity, we can find out if the suboptimal results for the uninformed U-Net and the higher emission
on the leg result from modelling errors or from a synthetic dataset that is not fully representative. If the
machine-learning methods yield undesirable results for the synthetic camera image (i.e. we have a perfect
model), we know that the dataset could be improved. The estimated poloidal emissivities for the synthetic
camera image are shown in Figure 6.4. In this figure we can see the same undesirable features as in the
emissivities estimated from the experimentally obtained camera image. This indicates that the synthetic

6. Additional Results and Discussion 37

dataset could still be improved to better emulate the emissivities measured in a tokamak. However, this is
also good news: the (asymmetric) reflections such as the ports and tiles do not influence the estimated
poloidal emissivity a lot, indicating that additional effort in a higher-fidelity model or geometry matrix G is
not as important as improving the dataset.

7. Deployment for Real-Time Tomographic Reconstructions 38

Deployment for Real-Time Tomographic
Reconstructions 7

The machine learning accelerated methods presented in this thesis yield highly satisfactory results. However,
the timing and testing has all be done on a local laptop and the Marconi M100 supercomputer. This does
not represent a real-time environment where robustness and easy of deployment is required. At the time
of writing a suitable GPU just arrived. However, there has not yet been an opportunity to test the GPU
for real-time deployment. Nonetheless, some of the solutions have been implemented already on a local
computer running Linux. This chapter describes possible methods we have considered (in advance), in
collaboration with NVIDIA.

7.1 Integration into the MANTIS TCV system

The current real-time MANTIS architecture consists of up to ten PCI Express (PCIe) compatible cameras.
PCIe is a serial interface, which is the standard for connecting elements of a computer such as graphics
cards and storage drives to the motherboard. The camera data streams are aggregated in a single PCIe
interface. The data is then streamed from the interface to a host computer through optical fibres. The
data is then directly streamed to the RAM, after which the data is processed by the CPUs, with a separate
CPU for each camera, allowing for parallel processing. The processed data is then aggregated and being
prepared for the digital control system (SCD) in a separate CPU. This CPU puts the data in the reflective
memory, which is similar to a shared RAM between computers. The SCD reads from the processed data
from this reflective memory and then uses this to compute and send a control signal. All this information is
from [12].

In the case of the machine-learning based tomographic reconstructions, the pipeline should be altered. First,
the data should not be written to the RAM, but directly into the GPU memory. Then, the machine-learning
reconstruction algorithms should have a pointer to the memory location, allowing for direct processing
without copying the data through the CPU, as is often the case. The direct writing to GPU memory is not a
standard feature available on every GPU, so for NVIDIA GPUs, the GPU should support GPUDirect RDMA1.
Finally, the obtained poloidal reconstructions should then be used to infer the 2D plasma parameters, such
as the plasma temperature, plasma density and neutral density. The CPU based and GPU based data flow
is illustrated in Figure 7.1.

7.2 Real-Time Deployment Architectures

The above-mentioned GPU-based data flow would require up to eleven GPUs which is not only costly but
also adds an overhead to manage the communication between those GPUs. Furthermore, motherboards
with this amount of PCIe slots are not very common. We discuss two different approaches we can take:
using multi-instance GPU virtualization or using NVIDIA Triton.

1See https://docs.nvidia.com/cuda/gpudirect-rdma/index.html

https://docs.nvidia.com/cuda/gpudirect-rdma/index.html

7. Deployment for Real-Time Tomographic Reconstructions 39

G

AEAG

1 2 n

xiSwitch

PCIe gen 2x2

PCIe host

Fibre
optics

RA
M

64
G
B

5
4
3

210

k 5
4
3

210

k

CPU 1
Proc
.so

5
4
3

210

k

CPU n
Proc
.so

CPU 2
Proc
.so

PCIe
Gen 3x8

CPU 12

CPU 13

Analysis
.so

SCD

RFM

Gas valves

TCV

G

AEAG

1 2 n

xiSwitch

PCIe gen 2x2

PCIe host

Fibre
optics

G
PU

RA
M

80
G
B

5
4
3

210

k 5
4
3

210

k

GPU 1
ML
Inv

5
4
3

210

k

GPU n
ML
Inv

GPU 2
ML
Inv

PCIe
Gen 3x8

CPU

ML
Param

SCD

RFM

Gas valves

Full frameCropped frame MetadataProcessing
output

Valve waveform Camera settingsReflective memory

TCV

Inference

GPU

Figure 7.1: The CPU-based data flow (left) and the GPU-based data flow (right). The cameras (top) measure
the plasma emissivity. These data is then streamed to the memory through the PCIe interface and the fibre
optics. The CPU/GPU process the acquired images in parallel (middle) after which the processed measurements
of the different cameras are combined. The combined data is again processed to compute a control signal,
which is transferred through the reflective memory to the control system (bottom). Adapted from [12].

7. Deployment for Real-Time Tomographic Reconstructions 40

Figure 7.2: A diagram illustrating the Triton inference server. The server can be called through HTTP or
gRPC, both exposed in a python and C++ API. Different models can be added by adding the files to the model
repository. Copied from https://developer.nvidia.com/nvidia-triton-inference-server.

7.2.1 Multi-Instance GPU Virtualization

Newer NVIDIA GPUs allow for multi-instance GPU (MIG) virtualization2, where one GPU is split up into up
to seven instances. Each instance is a fully isolated system, with its own memory and compute cores. The
benefit of use MIG is that errors and potential crashes would not affect the other instances. Furthermore,
every process can take place in parallel, allowing for a maximum GPU utilization. MIG would also allow for
other GPU tasks at TCV to run on the available GPU, without interfering with the real-time reconstruction.

7.2.2 NVIDIA Triton Inference Server
MIG is powerful and flexible, but at the same time needs manual configuration. For a real-time environment
such as TCV, we would ideally have the reconstructions models loaded and configured automatically. A
solution for this problem is the Triton inference server3, developed by NVIDIA. The Triton inference server
supports concurrent processing, just like MIG. The inference server runs in a separate docker container,
where communication to the server is done either through HTTP requests or gPRC; an API is available for
both python and C++. The data can be supplied as the body of the request, but it is also possible to pass
a pointer to the location of the data on the GPU. New models can be by easily adding them to a folder
called the model repository. Triton automatically detects these new models, and serves them directly. The
inference server works out of the box for all popular machine learning libraries and export formats. An
overview of the Triton inference server is shown in Figure 7.2. Two other notable benefits of Triton are the
automatic and easy monitoring of metrics4, and the model analyser5. The model analyser automatically
finds the needed allocations, configurations and settings for the model being used combined with the
latency and throughput requirements.

2See https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
3See https://developer.nvidia.com/nvidia-triton-inference-server
4See https://github.com/triton-inference-server/server/blob/main/docs/user_guide/metrics.md
5See https://github.com/triton-inference-server/model_analyzer

https://developer.nvidia.com/nvidia-triton-inference-server
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://developer.nvidia.com/nvidia-triton-inference-server
https://github.com/triton-inference-server/server/blob/main/docs/user_guide/metrics.md
https://github.com/triton-inference-server/model_analyzer

7. Deployment for Real-Time Tomographic Reconstructions 41

7.3 Practical Approach for Implementation

To incorporate the above-mentioned technologies and the machine-learning algorithm into the MANTIS
system, the following incremental approach is recommended:

1. Install the GPU into the computer, together with the required drivers and software.

2. Create an example (e.g. summing two numbers) with the Triton inference server, first using the
python API and then the C++ API.

3. Test the RDMA capabilities for the GPU, and create an example using C++ that writes the camera
data to a memory location on the GPU. In parallel with the previous item.

4. Create an example (summing two numbers) with the Triton inference server, using a memory pointer
on the GPU instead of directly sending the values using the API.

5. Create an example with the Triton inference server, using a memory pointer on the GPU to a synthetic
camera image. The camera image is processed with the designed machine-learning reconstruction
algorithms.

6. Create an example using C++ where camera images are written to the GPU memory directly, and
where the Triton inference server uses this camera image to do a simple operation, e.g. doubling the
values.

7. Create an example using C++ where pointers to the camera image are used in the Triton inference
server. The Triton inference server uses the designed machine-learning reconstruction algorithms.

Using the proposed approach we can incrementally test the different elements of the processing pipeline.

8. Conclusions and Outlook 42

Conclusions and Outlook 8
2D measurements of plasma emissivity can yield plenty of information about the plasma state, such as
plasma temperature, plasma density and neutral density. These measurements are used to both control
the heat and particle flux towards the target, and to reconstruct 2D plasma parameter profiles. For
these reconstructions, emissivities in the poloidal plane are needed. However, 2D imaging camera system
measurements, such as from the MANTIS diagnostic at TCV, are line integrated: each pixel contains
information from multiple poloidal coordinates. The poloidal emissivity can be recovered with tomographic
inversion techniques such as the SIRT algorithm. However, these techniques are generally slow and not
suitable for real-time control.

To accelerate the inversion process, we developed two neural network architectures: an informed U-Net
architecture, which uses model information by processing a back projected image, and a deep unfolded
architecture, adapted from the SIRT algorithm. To effectively train these networks and reduce potential
overfitting, we created a representative synthetic dataset. Both networks outperform the SIRT algorithm
in terms of accuracy and inference time evaluated on the synthetic dataset. The machine learning based
approaches are more successful in reconstructing emission which is not directly in the field of view of the
camera. These architectures also outperform the iterative approaches for other geometries and tokamaks,
even without any hyperparameter tuning. Only changing the geometry matrix and retraining the network is
required. However, it is difficult to find a suitable metric for the reconstruction accuracy of these measured
images as no objective ground truth is available. However, the classical methods share this same limitation.

We have also shown that the inclusion of the geometry matrix in the U-Net does not yield great differences
for the synthetic dataset. However, it allows for generalizability in the case of out of distribution data, i.e.
experimentally obtained camera images, whereas the uninformed U-Net lacks accuracy in this case.

8.1 Outlook

Thus far, we have evaluated the U-Net and unfolded models using the MSE and MAE with respect to
the actual inversion or the camera image. The goal of the fast inversion approximations is to use them
to infer plasma parameters on TCV based on collisional-radiative modelling. Therefore, an additional
useful evaluation is to calculate the outputs for the different inversion methods and use them as inputs for
the Bayesian parameter inference code. Another possible evaluation process is to apply the detachment
front tracking algorithm used for control and check if the outputs of machine learning based inversions
correspond with the SIRT output.

Furthermore, the fast reconstructions allow for feedback control on tokamaks with geometries where the
plane of tangency is not directly visible. In this thesis we have shown that the proposed approach also
transfers to MAST-U data without any fine-tuning. Nonetheless, this result was obtained on synthetic
data, and additional steps in the synthetic dataset generation might be needed to create valid results for
experimentally obtained data.

The deep unfolded model predicted larger poloidal emissivities for the experimentally obtained data than
both the U-Net and the SIRT algorithm, whereas it performed better on the synthetic dataset. We do not
know the exact reason why it predicts a larger emissivity there, but we can say that this indicates that the

8. Conclusions and Outlook 43

synthetic dataset is not fully representative. Thus, further efforts should be made in better analysing the
current dataset and the experimental data, and find what the most important missing features are.

In this study the assumption to not model the reflections was made, as reflections would result in a denser
geometry matrix and thus a higher computational load. However, current and future reactors such as ITER
and DEMO are expected to have a metallic wall. Analysis of the presented approaches for metallic wall
devices is thus of interest. We might use geometry matrix without reflections can be used in the network
(as it has fewer elements), while using the reflections based geometry matrix for the training set generation.
In this case, the reflections would be handled by the neural networks elements: the U-Net post-processing
or the proximal operators.

The same architectures can also be applied to other geometries and machines. However, these methods
might also have potential for other line-integrated measurements such as bolometry.

Interesting might be to analyse if additional measured data could be incorporated into the network, and
perform some kind of sensor fusion. In the shown derivation we assume the distributions to be of the form
p(·|G). However, in reality the prior is also dependent on the physical processes at play, so it might be of
the form p(·|G,m), where m are additional plasma parameters, such that the distribution of the poloidal
emissivity can be expressed as p(x|y,m, G).

Finally, the fast poloidal reconstruction of the emissivities is only the first step in a two-step process for
real-time plasma parameter inference. The second step is to infer the plasma state (temperatures and
densities) from 2D poloidal emissivities. This is again an inverse problem, related to the collisional-radiative
processes which relate the local plasma parameters to local emissivity. Machine learning techniques provide
further opportunity in accelerating the inversion of this second step, allowing for the development and
application of innovative control techniques for tokamak power exhaust.

BIBLIOGRAPHY 44

Bibliography

[1] B. J. van Ruijven, E. D. Cian, and I. S. Wing. “Amplification of future energy demand growth due to
climate change”. In: Nature Communications 2019 10:1 10 (1 June 2019), pp. 1–12. issn: 2041-1723.
doi: 10.1038/s41467-019-10399-3. url: https://www.nature.com/articles/s41467-
019-10399-3.

[2] J. H. You et al. “Divertor of the European DEMO: Engineering and technologies for power exhaust”.
In: Fusion Engineering and Design 175 (Feb. 2022), p. 113010. issn: 0920-3796. doi: 10.1016/J.
FUSENGDES.2022.113010.

[3] R. Pitts et al. “Physics basis for the first ITER tungsten divertor”. In: Nuclear Materials and Energy 20
(Aug. 2019), p. 100696. issn: 23521791. doi: 10.1016/j.nme.2019.100696.

[4] A. Kallenbach et al. “Impurity seeding for tokamak power exhaust: from present devices via ITER to
DEMO”. In: Plasma Physics and Controlled Fusion 55 (12 Nov. 2013), p. 124041. issn: 0741-3335.
doi: 10.1088/0741-3335/55/12/124041. url: https://iopscience.iop.org/article/10.
1088/0741-3335/55/12/124041%20https://iopscience.iop.org/article/10.1088/
0741-3335/55/12/124041/meta.

[5] T. Ravensbergen. “Advanced methods in control of the core density and divertor detachment in nu-
clear fusion devices”. Eindhoven University of Technology, DIFFER, Feb. 2021. isbn: 9789038652078.

[6] O. Février et al. “Nitrogen-seeded divertor detachment in TCV L-mode plasmas”. In: Plasma Physics
and Controlled Fusion 62 (3 Feb. 2020), p. 035017. issn: 0741-3335. doi: 10.1088/1361-6587/
AB6B00. url: https://iopscience.iop.org/article/10.1088/1361- 6587/ab6b00%
20https://iopscience.iop.org/article/10.1088/1361-6587/ab6b00/meta.

[7] G. F. Matthews. “Plasma detachment from divertor targets and limiters”. In: Journal of Nuclear
Materials 220-222 (Apr. 1995), pp. 104–116. issn: 0022-3115. doi: 10.1016/0022-3115(94)
00450-1.

[8] J. P. Gunn et al. “Surface heat loads on the ITER divertor vertical targets”. In: Nuclear Fusion 57
(4 Mar. 2017), p. 046025. issn: 0029-5515. doi: 10.1088/1741-4326/AA5E2A. url: https:
//iopscience.iop.org/article/10.1088/1741-4326/aa5e2a%20https://iopscience.
iop.org/article/10.1088/1741-4326/aa5e2a/meta.

[9] J. A. Goetz et al. “High confinement dissipative divertor operation on Alcator C-Mod”. In: Physics
of Plasmas 6 (5 Apr. 1999), p. 1899. issn: 1070-664X. doi: 10.1063/1.873447. url: https:
//aip.scitation.org/doi/abs/10.1063/1.873447.

[10] M. Bernert. “Analysis of the H-mode density limit in the ASDEX Upgrade tokamak using bolometry”.
Ludwig-Maximilians-Universität, Max-Planck-Institut für Plasmaphysik, 2013.

[11] O. Février et al. “Analysis of wall-embedded Langmuir probe signals in different conditions on the
Tokamak à Configuration Variable”. In: Review of Scientific Instruments 89 (5 May 2018), p. 053502.
issn: 0034-6748. doi: 10.1063/1.5022459. url: https://aip.scitation.org/doi/abs/10.
1063/1.5022459.

[12] A. Perek et al. “MANTIS: A real-time quantitative multispectral imaging system for fusion plasmas”.
In: Review of Scientific Instruments 90 (12 Dec. 2019). issn: 0034-6748. doi: 10.1063/1.5115569.
url: https://aip.scitation.org/doi/abs/10.1063/1.5115569.

[13] A. Perek et al. “Measurement of the 2D emission profiles of hydrogen and impurity ions in the
TCV divertor”. In: Nuclear Materials and Energy 26 (Mar. 2021), p. 100858. issn: 2352-1791. doi:
10.1016/J.NME.2020.100858.

[14] T. Ravensbergen et al. “Development of a real-time algorithm for detection of the divertor detachment
radiation front using multi-spectral imaging”. In: Nuclear Fusion 60 (6 May 2020), p. 066017. issn:
0029-5515. doi: 10.1088/1741-4326/AB8183. url: https://iopscience.iop.org/article/
10.1088/1741-4326/ab8183%20https://iopscience.iop.org/article/10.1088/1741-
4326/ab8183/meta.

https://doi.org/10.1038/s41467-019-10399-3
https://www.nature.com/articles/s41467-019-10399-3
https://www.nature.com/articles/s41467-019-10399-3
https://doi.org/10.1016/J.FUSENGDES.2022.113010
https://doi.org/10.1016/J.FUSENGDES.2022.113010
https://doi.org/10.1016/j.nme.2019.100696
https://doi.org/10.1088/0741-3335/55/12/124041
https://iopscience.iop.org/article/10.1088/0741-3335/55/12/124041%20https://iopscience.iop.org/article/10.1088/0741-3335/55/12/124041/meta
https://iopscience.iop.org/article/10.1088/0741-3335/55/12/124041%20https://iopscience.iop.org/article/10.1088/0741-3335/55/12/124041/meta
https://iopscience.iop.org/article/10.1088/0741-3335/55/12/124041%20https://iopscience.iop.org/article/10.1088/0741-3335/55/12/124041/meta
https://doi.org/10.1088/1361-6587/AB6B00
https://doi.org/10.1088/1361-6587/AB6B00
https://iopscience.iop.org/article/10.1088/1361-6587/ab6b00%20https://iopscience.iop.org/article/10.1088/1361-6587/ab6b00/meta
https://iopscience.iop.org/article/10.1088/1361-6587/ab6b00%20https://iopscience.iop.org/article/10.1088/1361-6587/ab6b00/meta
https://doi.org/10.1016/0022-3115(94)00450-1
https://doi.org/10.1016/0022-3115(94)00450-1
https://doi.org/10.1088/1741-4326/AA5E2A
https://iopscience.iop.org/article/10.1088/1741-4326/aa5e2a%20https://iopscience.iop.org/article/10.1088/1741-4326/aa5e2a/meta
https://iopscience.iop.org/article/10.1088/1741-4326/aa5e2a%20https://iopscience.iop.org/article/10.1088/1741-4326/aa5e2a/meta
https://iopscience.iop.org/article/10.1088/1741-4326/aa5e2a%20https://iopscience.iop.org/article/10.1088/1741-4326/aa5e2a/meta
https://doi.org/10.1063/1.873447
https://aip.scitation.org/doi/abs/10.1063/1.873447
https://aip.scitation.org/doi/abs/10.1063/1.873447
https://doi.org/10.1063/1.5022459
https://aip.scitation.org/doi/abs/10.1063/1.5022459
https://aip.scitation.org/doi/abs/10.1063/1.5022459
https://doi.org/10.1063/1.5115569
https://aip.scitation.org/doi/abs/10.1063/1.5115569
https://doi.org/10.1016/J.NME.2020.100858
https://doi.org/10.1088/1741-4326/AB8183
https://iopscience.iop.org/article/10.1088/1741-4326/ab8183%20https://iopscience.iop.org/article/10.1088/1741-4326/ab8183/meta
https://iopscience.iop.org/article/10.1088/1741-4326/ab8183%20https://iopscience.iop.org/article/10.1088/1741-4326/ab8183/meta
https://iopscience.iop.org/article/10.1088/1741-4326/ab8183%20https://iopscience.iop.org/article/10.1088/1741-4326/ab8183/meta

BIBLIOGRAPHY 45

[15] M. A. Lieberman and A. J. Lichtenberg. “Principles of Plasma Discharges and Materials Processing:
Second Edition”. In: Principles of Plasma Discharges and Materials Processing: Second Edition (Jan.
2005), pp. 1–757. doi: 10.1002/0471724254. url: https://onlinelibrary.wiley.com/doi/
book/10.1002/0471724254.

[16] A. Perek et al. A spectroscopic inference and SOLPS-ITER comparison of flux-resolved edge plasma
parameters in detachment experiments on TCV. 2021.

[17] K. Verhaegh et al. “Spectroscopic investigations of divertor detachment in TCV”. In: Nuclear Materials
and Energy 12 (Aug. 2017), pp. 1112–1117. issn: 2352-1791. doi: 10.1016/J.NME.2017.01.004.

[18] C. Bowman et al. “Development and simulation of multi-diagnostic Bayesian analysis for 2D inference
of divertor plasma characteristics”. In: Plasma Physics and Controlled Fusion 62 (4 2020). issn:
13616587. doi: 10.1088/1361-6587/AB759B.

[19] J. Chai and A. Li. “Deep Learning in Natural Language Processing: A State-of-the-Art Survey”. In:
Proceedings - International Conference on Machine Learning and Cybernetics 2019-July (July 2019).
issn: 21601348. doi: 10.1109/ICMLC48188.2019.8949185.

[20] L. Tai et al. “A Survey of Deep Network Solutions for Learning Control in Robotics: From Re-
inforcement to Imitation”. In: (Dec. 2016). doi: 10.48550/arxiv.1612.07139. url: https:
//arxiv.org/abs/1612.07139v4.

[21] M. Längkvist, L. Karlsson, and A. Loutfi. “A review of unsupervised feature learning and deep
learning for time-series modeling”. In: Pattern Recognition Letters 42 (1 June 2014), pp. 11–24. issn:
0167-8655. doi: 10.1016/J.PATREC.2014.01.008.

[22] L. Guasch et al. “Full-waveform inversion imaging of the human brain”. In: npj Digital Medicine
2020 3:1 3 (1 Mar. 2020), pp. 1–12. issn: 2398-6352. doi: 10.1038/s41746-020-0240-8. url:
https://www.nature.com/articles/s41746-020-0240-8.

[23] Y. Zhang et al. “Neural network-based image reconstruction in swept-source optical coherence
tomography using undersampled spectral data”. In: Light: Science & Applications 2021 10:1 10
(1 July 2021), pp. 1–14. issn: 2047-7538. doi: 10.1038/s41377-021-00594-7. url: https:
//www.nature.com/articles/s41377-021-00594-7.

[24] D. D. Carvalho et al. “Deep neural networks for plasma tomography with applications to JET and
COMPASS”. In: Journal of Instrumentation 14 (09 Sept. 2019), p. C09011. issn: 1748-0221. doi:
10.1088/1748-0221/14/09/C09011. url: https://iopscience.iop.org/article/10.
1088/1748-0221/14/09/C09011%20https://iopscience.iop.org/article/10.1088/
1748-0221/14/09/C09011/meta.

[25] S. Silburn et al. “Calcam”. In: (Nov. 2018). doi: 10.5281/ZENODO.1478555. url: https://doi.
org/10.5281/zenodo.1478555#.Ya5b2Uxt2fU.mendeley.

[26] J. Nocedal and S. J. Wright. Line Search Methods. 2006. doi: 10.1007/978-0-387-40065-5_3.
[27] C. O. Sorzano et al. “A Survey of the Use of Iterative Reconstruction Algorithms in Electron Mi-

croscopy”. In: BioMed Research International 2017 (2017). issn: 23146141. doi: 10.1155/2017/
6482567. url: /pmc/articles/PMC5623807/%20/pmc/articles/PMC5623807/?report=
abstract%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5623807/.

[28] P. Qiu et al. “A Numerical Study on Travel Time Based Hydraulic Tomography Using the SIRT
Algorithm with Cimmino Iteration”. In: Water 2019, Vol. 11, Page 909 11 (5 Apr. 2019), p. 909. issn:
2073-4441. doi: 10.3390/W11050909. url: https://www.mdpi.com/2073-4441/11/5/909/
htm%20https://www.mdpi.com/2073-4441/11/5/909.

[29] W. Guo and H. Chen. “Improving SIRT Algorithm for Computerized Tomographic Image Recon-
struction”. In: Lecture Notes in Electrical Engineering 128 LNEE (VOL. 5 2012), pp. 523–528. issn:
18761119. doi: 10.1007/978-3-642-25792-6_79. url: https://link.springer.com/
chapter/10.1007/978-3-642-25792-6_79.

[30] M. A. Brzostowski and G. A. McMechan. “3-D tomographic imaging of near-surface seismic velocity
and attenuation”. In: http://dx.doi.org/10.1190/1.1443254 57 (3 Feb. 2012), pp. 396–403. issn:
00168033. doi: 10.1190/1.1443254. url: https://library.seg.org/doi/abs/10.1190/1.
1443254.

[31] R. D. Radcliff and C. A. Balanis. “Reconstruction Algorithms for Geophysical Applications in Noisy
Environments”. In: Proceedings of the IEEE 67 (7 1979), pp. 1060–1064. issn: 15582256. doi:
10.1109/PROC.1979.11389.

[32] J. Gregor and T. Benson. “Computational analysis and improvement of SIRT”. In: IEEE Transactions on
Medical Imaging 27 (7 July 2008), pp. 918–924. issn: 02780062. doi: 10.1109/TMI.2008.923696.

https://doi.org/10.1002/0471724254
https://onlinelibrary.wiley.com/doi/book/10.1002/0471724254
https://onlinelibrary.wiley.com/doi/book/10.1002/0471724254
https://doi.org/10.1016/J.NME.2017.01.004
https://doi.org/10.1088/1361-6587/AB759B
https://doi.org/10.1109/ICMLC48188.2019.8949185
https://doi.org/10.48550/arxiv.1612.07139
https://arxiv.org/abs/1612.07139v4
https://arxiv.org/abs/1612.07139v4
https://doi.org/10.1016/J.PATREC.2014.01.008
https://doi.org/10.1038/s41746-020-0240-8
https://www.nature.com/articles/s41746-020-0240-8
https://doi.org/10.1038/s41377-021-00594-7
https://www.nature.com/articles/s41377-021-00594-7
https://www.nature.com/articles/s41377-021-00594-7
https://doi.org/10.1088/1748-0221/14/09/C09011
https://iopscience.iop.org/article/10.1088/1748-0221/14/09/C09011%20https://iopscience.iop.org/article/10.1088/1748-0221/14/09/C09011/meta
https://iopscience.iop.org/article/10.1088/1748-0221/14/09/C09011%20https://iopscience.iop.org/article/10.1088/1748-0221/14/09/C09011/meta
https://iopscience.iop.org/article/10.1088/1748-0221/14/09/C09011%20https://iopscience.iop.org/article/10.1088/1748-0221/14/09/C09011/meta
https://doi.org/10.5281/ZENODO.1478555
https://doi.org/10.5281/zenodo.1478555#.Ya5b2Uxt2fU.mendeley
https://doi.org/10.5281/zenodo.1478555#.Ya5b2Uxt2fU.mendeley
https://doi.org/10.1007/978-0-387-40065-5_3
https://doi.org/10.1155/2017/6482567
https://doi.org/10.1155/2017/6482567
/pmc/articles/PMC5623807/%20/pmc/articles/PMC5623807/?report=abstract%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5623807/
/pmc/articles/PMC5623807/%20/pmc/articles/PMC5623807/?report=abstract%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5623807/
https://doi.org/10.3390/W11050909
https://www.mdpi.com/2073-4441/11/5/909/htm%20https://www.mdpi.com/2073-4441/11/5/909
https://www.mdpi.com/2073-4441/11/5/909/htm%20https://www.mdpi.com/2073-4441/11/5/909
https://doi.org/10.1007/978-3-642-25792-6_79
https://link.springer.com/chapter/10.1007/978-3-642-25792-6_79
https://link.springer.com/chapter/10.1007/978-3-642-25792-6_79
https://doi.org/10.1190/1.1443254
https://library.seg.org/doi/abs/10.1190/1.1443254
https://library.seg.org/doi/abs/10.1190/1.1443254
https://doi.org/10.1109/PROC.1979.11389
https://doi.org/10.1109/TMI.2008.923696

BIBLIOGRAPHY 46

[33] A. van der Sluis and H. A. van der Vorst. “SIRT- and CG-type methods for the iterative solution of
sparse linear least-squares problems”. In: Linear Algebra and its Applications 130 (C Mar. 1990),
pp. 257–303. issn: 0024-3795. doi: 10.1016/0024-3795(90)90215-X.

[34] M. Jiang and G. Wang. “Convergence studies on iterative algorithms for image reconstruction”.
In: IEEE Transactions on Medical Imaging 22 (5 May 2003), pp. 569–579. issn: 02780062. doi:
10.1109/TMI.2003.812253.

[35] N. Parikh and S. Boyd. “Proximal Algorithms”. In: Found. Trends Optim. 1 (3 Jan. 2014), pp. 127–239.
issn: 2167-3888. doi: 10.1561/2400000003. url: https://doi.org/10.1561/2400000003.

[36] A. Beck and M. Teboulle. “A fast iterative shrinkage-thresholding algorithm with application
towavelet-based image deblurring”. In: ICASSP, IEEE International Conference on Acoustics, Speech
and Signal Processing - Proceedings (2009), pp. 693–696. issn: 15206149. doi: 10.1109/ICASSP.
2009.4959678.

[37] S.W. Smith. The Scientist and Engineer’s Guide to Digital Signal Processing. Available at www.dspguide.com.
California Technical Publishing, 1997. url: http://www.dspguide.com.

[38] R. Nevatia and K. R. Babu. “Linear feature extraction and description”. In: Computer Graphics
and Image Processing 13 (3 July 1980), pp. 257–269. issn: 0146-664X. doi: 10.1016/0146-
664X(80)90049-0.

[39] Z. Wang, W. Yan, and T. Oates. “Time Series Classification from Scratch with Deep Neural Networks:
A Strong Baseline”. In: Proceedings of the International Joint Conference on Neural Networks 2017-May
(Nov. 2016), pp. 1578–1585. doi: 10.1109/IJCNN.2017.7966039. url: https://arxiv.org/
abs/1611.06455v4.

[40] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet Classification with Deep Convolutional
Neural Networks”. In: Advances in Neural Information Processing Systems 25 (2012). url: http:
//code.google.com/p/cuda-convnet/.

[41] C. Szegedy et al. “Rethinking the Inception Architecture for Computer Vision”. In: Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2016-December (Dec.
2015), pp. 2818–2826. issn: 10636919. doi: 10.1109/CVPR.2016.308. url: https://arxiv.
org/abs/1512.00567v3.

[42] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.
[43] A. Odena, V. Dumoulin, and C. Olah. “Deconvolution and Checkerboard Artifacts”. In: Distill (Oct.

2016). issn: 2476-0757. doi: 10.23915/DISTILL.00003. url: http://distill.pub/2016/
deconv-checkerboard.

[44] S. Li et al. “Deep-Learning Inversion of Seismic Data”. In: IEEE Transactions on Geoscience and
Remote Sensing 58 (3 Jan. 2019), pp. 2135–2149. doi: 10.1109/TGRS.2019.2953473. url: http:
//arxiv.org/abs/1901.07733%20http://dx.doi.org/10.1109/TGRS.2019.2953473.

[45] X. Hu et al. “RUNet: A robust UNet architecture for image super-resolution”. In: IEEE Computer
Society Conference on Computer Vision and Pattern Recognition Workshops 2019-June (June 2019),
pp. 505–507. issn: 21607516. doi: 10.1109/CVPRW.2019.00073.

[46] V. Monga, Y. Li, and Y. C. Eldar. “Algorithm Unrolling: Interpretable, Efficient Deep Learning for
Signal and Image Processing”. In: IEEE Signal Processing Magazine 38 (2 Dec. 2019), pp. 18–44. issn:
15580792. doi: 10.48550/arxiv.1912.10557. url: https://arxiv.org/abs/1912.10557v3.

[47] N. Chennakeshava et al. “High resolution plane wave compounding through deep proximal learning”.
In: IEEE International Ultrasonics Symposium, IUS 2020-September (Sept. 2020). issn: 19485727.
doi: 10.1109/IUS46767.2020.9251399.

[48] N. Chennakeshava et al. “Deep Proximal Learning for High-Resolution Plane Wave Compounding”.
In: (Dec. 2021). doi: 10.48550/arxiv.2112.12410. url: https://arxiv.org/abs/2112.
12410v1.

[49] A. Balatsoukas-Stimming and C. Studer. “Deep Unfolding for Communications Systems: A Survey
and Some New Directions”. In: IEEE Workshop on Signal Processing Systems, SiPS: Design and
Implementation 2019-October (Oct. 2019), pp. 266–271. issn: 15206130. doi: 10.1109/SIPS47522.
2019.9020494.

[50] Z. Zhang and Y. Lin. “Data-Driven Seismic Waveform Inversion: A Study on the Robustness and
Generalization”. In: IEEE Transactions on Geoscience and Remote Sensing 58 (10 Oct. 2020), pp. 6900–
6913. issn: 15580644. doi: 10.1109/TGRS.2020.2977635.

[51] M. Mardani et al. “Neural Proximal Gradient Descent for Compressive Imaging”. In: Advances in
Neural Information Processing Systems 2018-December (June 2018), pp. 9573–9583. issn: 10495258.
doi: 10.48550/arxiv.1806.03963. url: https://arxiv.org/abs/1806.03963v1.

https://doi.org/10.1016/0024-3795(90)90215-X
https://doi.org/10.1109/TMI.2003.812253
https://doi.org/10.1561/2400000003
https://doi.org/10.1561/2400000003
https://doi.org/10.1109/ICASSP.2009.4959678
https://doi.org/10.1109/ICASSP.2009.4959678
http://www.dspguide.com
https://doi.org/10.1016/0146-664X(80)90049-0
https://doi.org/10.1016/0146-664X(80)90049-0
https://doi.org/10.1109/IJCNN.2017.7966039
https://arxiv.org/abs/1611.06455v4
https://arxiv.org/abs/1611.06455v4
http://code.google.com/p/cuda-convnet/
http://code.google.com/p/cuda-convnet/
https://doi.org/10.1109/CVPR.2016.308
https://arxiv.org/abs/1512.00567v3
https://arxiv.org/abs/1512.00567v3
https://doi.org/10.23915/DISTILL.00003
http://distill.pub/2016/deconv-checkerboard
http://distill.pub/2016/deconv-checkerboard
https://doi.org/10.1109/TGRS.2019.2953473
http://arxiv.org/abs/1901.07733%20http://dx.doi.org/10.1109/TGRS.2019.2953473
http://arxiv.org/abs/1901.07733%20http://dx.doi.org/10.1109/TGRS.2019.2953473
https://doi.org/10.1109/CVPRW.2019.00073
https://doi.org/10.48550/arxiv.1912.10557
https://arxiv.org/abs/1912.10557v3
https://doi.org/10.1109/IUS46767.2020.9251399
https://doi.org/10.48550/arxiv.2112.12410
https://arxiv.org/abs/2112.12410v1
https://arxiv.org/abs/2112.12410v1
https://doi.org/10.1109/SIPS47522.2019.9020494
https://doi.org/10.1109/SIPS47522.2019.9020494
https://doi.org/10.1109/TGRS.2020.2977635
https://doi.org/10.48550/arxiv.1806.03963
https://arxiv.org/abs/1806.03963v1

BIBLIOGRAPHY 47

[52] X. Wei et al. “Deep Unfolding with Normalizing Flow Priors for Inverse Problems”. In: (July 2021).
doi: 10.48550/arxiv.2107.02848. url: https://arxiv.org/abs/2107.02848v2.

[53] C. Mou, Q. Wang, and J. Zhang. “Deep Generalized Unfolding Networks for Image Restoration”. In:
(Apr. 2022).

[54] M.-I. Georgescu, R. T. Ionescu, and N. Verga. “Convolutional Neural Networks With Intermediate
Loss for 3D Super-Resolution of CT and MRI Scans”. In: IEEE Access 8 (2020), pp. 49112–49124.
issn: 2169-3536. doi: 10.1109/ACCESS.2020.2980266.

[55] T. Wijkamp. “Characterization of 2D atomic and molecular emission processes in the MAST-U super-X
divertor during detachment”. In: Nuclear Fusion (2022). To be submitted.

[56] G. Montavon, W. Samek, and K.-R. Müller. “Methods for interpreting and understanding deep
neural networks”. In: Digital Signal Processing 73 (Feb. 2018), pp. 1–15. issn: 10512004. doi:
10.1016/j.dsp.2017.10.011.

[57] L. Martinelli. “Implementation of high-resolution spectroscopy for ion (and electron) temperature
measurements of the TCV divertor plasma”. In: Review of Scientific Instruments (2022).

[58] M. Raissi, P. Perdikaris, and G. E. Karniadakis. “Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential
equations”. In: Journal of Computational Physics 378 (2019), pp. 686–707.

[59] J. R. Chang et al. “One Network to Solve Them All — Solving Linear Inverse Problems Using
Deep Projection Models”. In: IEEE, Oct. 2017, pp. 5889–5898. isbn: 978-1-5386-1032-9. doi:
10.1109/ICCV.2017.627.

[60] J. Zhai et al. “Autoencoder and Its Various Variants”. In: IEEE, Oct. 2018, pp. 415–419. isbn:
978-1-5386-6650-0. doi: 10.1109/SMC.2018.00080.

[61] O. Ronneberger, P. Fischer, and T. Brox. “U-Net: Convolutional Networks for Biomedical Image
Segmentation”. In: (May 2015).

[62] M. Schoukens. “Improved Initialization of State-Space Artificial Neural Networks”. In: 2021 European
Control Conference, ECC 2021 (2021), pp. 1913–1918. doi: 10.23919/ECC54610.2021.9655207.

https://doi.org/10.48550/arxiv.2107.02848
https://arxiv.org/abs/2107.02848v2
https://doi.org/10.1109/ACCESS.2020.2980266
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.1109/ICCV.2017.627
https://doi.org/10.1109/SMC.2018.00080
https://doi.org/10.23919/ECC54610.2021.9655207

	Acknowledgements
	Abstract
	Introduction
	Nuclear Fusion
	Multispectral Imaging on TCV
	Machine Learning
	Research Questions and Thesis Outline

	Classical Methods for Tomographic Reconstructions
	Linear Imaging Model
	The Reconstruction Problem and Methods
	Direct Reconstruction Methods
	Iterative Reconstruction Methods

	Regularization Techniques for Inverse Problems
	A Bayesian Perspective to Tomographic Reconstruction

	Convolutional Neural Networks for Inverse Problems
	Convolutional Neural Networks
	Deep Unfolded Networks

	Design and Setup of the Neural Network Training and Evaluation
	Synthetic Dataset Generation
	Network and Training Parameters
	Performance Evaluation

	Machine Learning Accelerated Tomographic Reconstruction for Multispectral Imaging on TCV
	Abstract
	Introduction
	Iterative Reconstruction Techniques
	Machine Learning Accelerated Reconstruction
	Nonlinear Filtering with U-Net
	Deep Unfolded Networks

	Experimental Setup
	Synthetic Dataset
	Network and Training Parameters
	Performance Evaluation

	Results and Discussion
	Results on Synthetic Dataset
	Results on Measured Data
	Sensitivity and Robustness

	Conclusion
	Outlook
	Appendices
	Stability Proof of the SIRT Algorithm
	Convolutional Neural Networks
	Comparison Between Different U-Nets

	Additional Results and Discussion
	Intermediate Representation of the Deep Unfolded Network
	Limitations of the Synthetic Dataset

	Deployment for Real-Time Tomographic Reconstructions
	Integration into the MANTIS TCV system
	Real-Time Deployment Architectures
	Multi-Instance GPU Virtualization
	NVIDIA Triton Inference Server

	Practical Approach for Implementation

	Conclusions and Outlook
	Outlook

	Bibliography

