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Abstract

The shift of high-tech production companies from time-to-market to
time-to-volume during the 00s put the tail-end of the so-called ‘ramp-up’
in a critical position. Whereas existing literature uses established (stable)
production processes as use cases assessing performance on cost, quality,
flexibility, and productivity, the ramp-up has other challenges. Tradi-
tionally, ramp-up stages are characterized as unstable, unpredictable,
inflexible, and complex. However, Industry 4.0 is expected to radically
change the future of ramp-up management. Since the ramp-up is ill-
understood, the goal of this work is not only to quantify early-stage
ramp-up performance but also to enable companies to accelerate ramp-
up such that they secure their mission toward mass manufacturing as
well as their digital transformation. This work contributes to the field of
ramp-up manufacturing by (i) introducing a ramp-up performance mea-
surement framework for job shops including seven performance indices
suitable for companies in ramp-up (ii) designing and implementing a low-
cost and scaleable Real-Time Location System that can capture real-time
positions of products on the shop floor. The effectiveness of the proposed
framework and Real-Time Location System is assessed by deployment
at a photonic semiconductor foundry in ramp-up and testing the per-
formance measurement framework accordingly. Results show that the
proposed framework is capable of quantifying how far a production pro-
cess is removed from ramp-up. On top of that, it is demonstrated that
the proposed Real-Time Location System reveals additional information,
such as exact production pathways, that an existing WIP tracking system
is not capable of capturing during this stage.

Keywords: Ramp-up, job shop, Real-Time-Location-Systems,
manufacturing, Industry 4.0
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1 Introduction

Moving a new technology from development to mass manufacturing brings
technical, financial, and organizational challenges for companies. Within
established production industries, e.g. consumer electronics, automotive, and
semiconductor, the investments required for mass manufacturing can go up
to multi-million or even multi-billion dollars. The pressure on recovering the
initial investment is immense. Especially during the start-up phase of such a
transition, the pressure on increasing production volume is enormous. Besides,
swift and early start-up of mass manufacturing maximizes the financial profit
and return on investment (Terwiesch, Bohn, & Chea, 2001; Weber & Yang,
2014). Some authors even state that an aggressive capacity ramp rate is vital
for the commercial success of the enterprise (Haller, Peikert, & Thoma, 2003).
The start-up phase of mass manufacturing is also referred to as the ‘ramp-
up’. Ramp-up is a poorly defined concept within manufacturing (Terwiesch &
Bohn, 2001), which is the key motivation behind this work. We define ramp-
up as the period between unstable, project-based pilot production and stable,
routine-based series production (Figure 1).

Fig. 1: Position of ramp-up phase in manufacturing

The challenge during ramp-up is that the production processes are ill-
understood. Reaching consistency in output is of more significance than a
one-off good result (Doltsinis, Ratchev, & Lohse, 2013). In particular, the
early-stages of ramp-up contain immature production processes. Although
Figure 1 implies a division between the development and ramp-up phases,
these phases often happen simultaneously due to product improvement cycles
and/or companies with multiple product lines. Not surprisingly, for a manufac-
turing environment yield, the earnings generated over a specific period of time
against the investment, can stay low for multiple years during the attempt to
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ramp-up production. An example is the semiconductor industry, which already
expressed the urgency for acceleration during the ramp-up (Benfer, 1993; R.C.
Leachman, 1996).

A production environment with similar machines and workstations for a
variety of products is typically considered a job shop (G.Q. Huang, Zhang, &
Jiang, 2008). Additionally, job shops typically consist of various (re-entrant)
manufacturing jobs assigned to a variety of machines. Examples of job shops
are automotive, hard disk, and semiconductor production processes. Automa-
tion has always been the driving force behind mass manufacturing in job shops.
It results in cost reduction, increased quality, and reduced manufacturing cycle
times allowing production companies to stay ahead of the competition (Keith,
1996). Automation is accelerated due to the rise of Internet of the Things (IoT)
(Monostori et al., 2016; Uhlemann, Lehmann, & Steinhilper, 2017). Standing
on the eve of the fourth industrial revolution, manufacturing obtained a new
dimension due to IoT, which enhances the level of automation and enables
production companies to create an extra layer of visibility using low-cost IoT
sensors. As a result of the increased availability and resolution of production
data, a (near) real-time snapshot of the production process is created. Before,
manual acquisition of data in production environments took up the major-
ity of the time (Pawellek, 2014). Consequently, a better understanding of the
production process should lead to a more predictable and shorter ramp-up
time (Ball, Roberts, Natalicchio, & Scorzafave, 2011; Hentz et al., 2013). In
specific, indoor positioning and real-time asset tracking solutions increased in
popularity piggybacking on the so-called Industry4.0 concept (Klaus Schwab,
2015): increased connectivity and smart automation within industrial environ-
ments. Such solutions, which identify the location of objects throughout the
manufacturing process (near) real-time using IoT sensors, are referred to as
Real-Time-Location Systems (RTLS) (Rácz-Szabó et al., 2020).

Fig. 2: Ramp-up performance index and ramp-up zones. I: start ramp-up II: ramp-
ing up III: ramp-up completed.
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A research gap for adequate performance management of (early-staged)
ramp-up manufacturing has already been identified by Terwiesch and Bohn
(2001). Consequently, our work aims to fill this gap by contributing to produc-
tion performance management of ramp-up production by leveraging existing
IoT applications. Figure 2 presents a schematic representation of the con-
tribution. The ramp-up performance measurement framework differentiates
between three different stages in ramp-up, which will be introduced later.
Ramp-up performance is quantified using a single ramp-up performance index
consisting of the aggregated result of multiple individual indices representing
ramp-up characteristics.

More specifically, the contribution of this work is two-fold: first, we present
a ramp-up performance measurement framework for job shops leveraging real-
time production process data collected by an RTLS. The scope of the proposed
ramp-up performance measurement framework considers different ramp-up
performance metrics to be evaluated over time. Secondly, a low-cost component
RTLS is developed to capture real-time positions of products. However, the
main contribution of this work is not designing and implementing an RTLS,
but rather leveraging the extra production visibility of the position data gener-
ated by an RTLS. To the best of our knowledge, this work is the first to leverage
real-time position information coming from an RTLS to quantify ramp-up per-
formance. Hereby the aim is to contribute to the field of ramp-up production
of a job shop.

To achieve a contribution to this field, this work aims to address the fol-
lowing research question: How can real-time location systems contribute to
ramp-up performance measurement of job shops? The underlying hypothe-
sis is that an RTLS reveals the discrepancy between what companies ‘think’
that is happening in their production process and what is actually happening.
In general, we believe better decisions can be made during this chaotic and
unpredictable ramp-up phase (Terwiesch et al., 2001)

Beyond RTLS in ramp-up manufacturing, this work aims to unravel the
potential of real-time data-generating IoT applications in an early stage of
the ramp-up process and demonstrate the power of real-time data in ramp-up
manufacturing. Additionally, this work possibly assists production companies
in their digital transformation. During this transition, decision-making on the
operational level switches from daily time intervals to real-time. Adequate
responses on (un)foreseen events become more and more important as the
number of jobs keep rising.

This work is organized as follows. In section 2 related work in the field of
ramp-up manufacturing, ramp-up production, and IoT in manufacturing are
discussed. Moreover, section 3 elaborates on the research methodology con-
taining the RTLS design and proposed ramp-up performance measurement
framework. Subsequently, section 5 introduces a case study within the semi-
conductor industry for which the framework and RTLS were implemented.
Lastly, section 6 presents the results of the proposed ramp-up performance
measurement framework for the case study followed by the discussion and
conclusion.
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2 Related work

This section discusses related work starting with studies on ramp-up manufac-
turing industries and key drivers towards a successful ramp-up. Moreover, a
more detailed overview of work considering the ramp-up of job shop environ-
ments is presented followed by a narrow review of leveraging real-time data in
the ramp-up of complex production environments.

2.1 Ramp-up production

The field of ramp-up production processes is studied extensively since the late
80’s, begin 90’s, and onward Benfer (1993); Bohn (1995); Bradbee, Gates,
and Wilcox Jr. (1989); Flaherty (1990); Leachman (2002). However, the stud-
ies on ramp-up production are overshadowed by operational research which
focused on time-to-market, which explicitly excludes the ramp-up phase. Due
to the shift of high-tech production companies from time-to-market to time-to-
volume during the 00s, putting the tail end of the ramp-up in a critical position
(Terwiesch et al., 2001). Ever since the first mention of ramp-up production
processes in manufacturing it is a poorly defined concept. Some authors define
the ramp-up phase as the time interval from the end of the prototyping phase
to the full-volume production (Sturm, Dorner, Reddig, & Seidelmann, 2003).
Others approach the ramp-up phase as the period between the completion of
development and full capacity utilization (Terwiesch & Bohn, 2001). Terwi-
esch et al. (2001) define the production ramp-up as the period during which a
manufacturing process makes the transition from zero to full-scale production
at targeted levels of cost and quality. Ball et al. (2011) present a wider view
of the ramp-up in an attempt to make it a topic standing on its own. Differ-
ent definitions of a ramp-up are presented here, but their work also detected
agreements among the authors’ definition of a ramp-up. In short, an exact
definition of a ramp-up in manufacturing is not explicitly stated in the litera-
ture. Since this work does not attempt to clarify the ambiguity in definitions of
ramp-up phases in manufacturing, it was decided to adopt an existing defini-
tion. Considering previous work, from now on the ramp-up phase in this work
is defined as the period between unstable, project-based pilot production and
stable, routine-based series production (Figure 1).

Automation is key to series production. Several key drivers behind automa-
tion have been established over the years (Nof S. Y., 2019). Material-handling
is mentioned as the first key driver towards fully automated wafer fabs. A sec-
ond driver is the reduction of operators, which remain the significant source
of particle generation inside cleanrooms. Another important driver behind
fab automation is standardization for reducing integration effort and perfor-
mance risk. This third driver closely relates to the purpose of Semiconductor
Equipment and Materials International standards (SEMI) standards 1.

Measuring the performance of ramp-up manufacturing is a challenging task.
Mainly because manufacturing-related processes are ill-understood during the

1www.semi.org/en/Standards/P 000787
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ramp-up phase, resulting in low yield and production volumes (Terwiesch
& Bohn, 2001). Yield, the earnings generated over a specific period in time
against the investment, can stay low for multiple years during the attempt to
scale up production. Multiple studies discuss the phase in which investments
were high and volumes stayed low (Benfer, 1993; R.C. Leachman, 1996).

2.2 Ramp-up in job shop environment

Ramp-up production is particularly complicated for job shops. Terwiesch and
Bohn (2001) expresses the urgency for learning during the ramp-up phase in a
job shop environment. Meaning, although production costs are at their highest
and yield at their lowest, it is key to run engineering trials and keep improving
the understanding of production processes. Simulation-based approaches to
test the effect of dispatch rules or batch sizes on yield are well-known in the
field of job shop ramp-up (Sturm et al., 2003)

Aggressive ramp-up rates guarantee company success, but the risk of unbal-
anced production systems must be mitigated. Haller et al. (2003) designed a
methodology for semiconductor companies that accelerated the ramp-up rate
as soon as the factory performance allowed it. By introducing a so-called Work-
In-Progress (WIP) ‘cap’ cycle times were kept at their lowest while improving
the yield.

Within the automotive industry, it is stressed to investigate the ramp-up
phase prior to the time-to-market process (Clark, 1991). An example from
the automotive industry in Sweden addresses the role of information during
production ramp-up (Fjällström, Säfsten, Harlin, & Stahre, 2009) in the man-
ufacturing industry. It was found that when critical events occurred during
ramp-up the source and type of information were deemed useful when handling
the event. Formalized networks need to be established to support information
exchange and dissemination, but the role of spontaneous communication by
informal information exchange may not be underestimated (Fjällström et al.,
2009).

Besides, time-to-market is key to ensuring profits, return on investments,
and competitiveness. Weber and Yang (2014) address these elements in a
theoretical framework for wafer fab managers helping them make strategic
decisions during the ramp-up phase. This work describes three types of wafer
fabs: leading-edge manufacturers, fast followers, and slow followers. Here, it
was concluded that under no circumstances a slow follower could be more prof-
itable than a leading-edge manufacturer. One could argue that the bias for
action is real to guarantee a return on investment.

In particular, Doltsinis et al. (2013) started on a systematic framework
to formalize the ramp-up phase and prepare data collection instruments to
quantify the performance of ramp-up manufacturing. This work is important
because it focuses on the very early stages of ramp-up, which are undefined,
unstable, and ill-understood. As use case, they identify the most relevant
performance metrics to ramp up a robotic arm based on qualitative and
quantitative data.



10 2 RELATED WORK

2.3 Ramp-up using real-time data

Leveraging real-time data of machines is used to improve quality. Nowadays,
low-cost sensors increase the ability to collect data on almost all facets of
a production line. First, IoT solutions within manufacturing in general are
discussed after which we zoom in on RTLS.

2.3.1 Internet of Things in Manufacturing

Several paradigms arose regarding IoT applications within manufacturing
operations. Digital twins are seen as a digital equivalent of a physical pro-
duction process, which allows for optimization with a shorter time between
data collection and the creation of the digital twin (Uhlemann et al., 2017).
Uhlemann et al. (2017) state that deficits limiting the realization of Digital
Twins are the manual acquisition of motion data, which limits the potential of
simulation and real-time availability of data. Secondly, decentralized data col-
lection and standardization of data acquisition have not been achieved. Finally,
this work mentions the high cost of new IT environments that inhibit the
vertical infrastructure for Industry 4.0. A by-product of digital twins is a dig-
ital shadow, which is an artifact of a digital twin interfacing with a real-time
replica of the physical system (Trauer, Schweigert-Recksiek, Engel, Spreitzer,
& Zimmermann, 2020). Somewhat related are Cyber-Physical Systems (CPS).
CPS are systems of collaborating computational entities, which are intensively
connected with processes in the physical world (Ariane Hellinger & Heinrich
Seeger, 2011). In other words, these systems are physical and engineered whose
processes are monitored and controlled by a computing and communication
core (Rajkumar, Lee, Sha, & Stankovic, 2010).

Cyber-Physical Production Systems (CPPS) arose as a specialist branch
of CPS focusing on smart manufacturing. CPPS has the potential to lead to
the 4th industrial revolution (Industry 4.0), and relies on the latest develop-
ments in the field of manufacturing, communication, and computer science
(Monostori et al., 2016).

In another attempt to capture the aspects of IoT applications within man-
ufacturing industries, S. Huang, Guo, Zha, Wang, and Fang (2017) introduced
the term Internet of Manufacturing Things (IoMT). IoMT is defined as a
multi-source real-time manufacturing information-driven optimal management
system for shop- floors. IoMT consists of hardware and software aiming to
control the production orders from raw materials to finished products

2.3.2 Real-Time Location Systems (RTLS)

Indoor positioning has become more and more popular in recent years. While
low-cost sensors found their way to the market, the accuracy, size, and effi-
ciency of sensors kept improving simultaneously. Hence, RTLS automatically
piggybacked from the fourth industrial revolution (Kang et al., 2016).

According to ISO standards, RTLS are ”wireless systems with the ability
to locate the position of an item anywhere in a defined space at a point in
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Fig. 3: RTLS infrastructure

time that is, or is close to, real-time. The position is derived by measurements
of the physical properties of the radio link.” (ISO, 2014).

In general, the RTLS infrastructure consists of four elements. (i) Beacons
are placed on objects to be traced. (ii) Fixed anchors which communicate wire-
lessly with the beacons. (iii) A positioning engine that calculates the positions
of beacons via the data it receives from the anchors. Finally, (iv) a user appli-
cation with an interface between the RTLS back-end and the user. Figure 3
presents a visualization of the RTLS infrastructure.

Applications of RTLS are manifold. Moreover, different communication
protocols are established to suit the needs of different indoor localization use
cases (Thiede, Sullivan, Damgrave, & Lutters, 2021). Due to this strong use
case dependency there is no single technology to support these systems (Rodas,
Barral, & Escudero, 2013) and thus no uniform architecture as well.

An RTLS aims to help organizations in optimizing workflow, reveal process
times, identify bottlenecks and connect to other IoT systems in the factory
(Thiede et al., 2021; Toro, Wang, & Akhtar, 2021). An RTLS has a long
history. During their extensive literature study conducted on CPS, Monos-
tori et al. (2016) concluded that Radio-Frequency Identification (RFID) and
cloud computing are the two most commonly applied technologies in realiz-
ing IoT in manufacturing environments. Other studies used real-time position
data of WIP to simulate the benefits of RTLS (Chongwatpol & Sharda, 2013;
Nian, Guo, Wei, Jiang, & Yuan, 2014). The results of their work show that
RFID-based scheduling rules and WIP control outperform traditional methods
concerning cycle time and machine utilization.

Within the semiconductor manufacturing industry, there are some concrete
examples. NXP, a Dutch-American semiconductor manufacturer, for example,
uses RFID to verify whether the correct lot is loaded on the equipment(NXP,
2014). After the implementation, better control of WIP and real-time move-
ments of lots was realized. Additionally, through this extra layer of visibility,
the dispatching process improved, reducing the lead times. Similarly, Infineon
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Technologies also installed an RFID-based lot-tracking system, which reduced
handling errors and thus the scrap products (Thiesse, Fleisch, & Dierkes, 2006).
Similar to our case study Thiesse et al. (2006) stated that wafer fabs typically
have a strong customer orientation, which requires flexibility and operator-
centered automation to cope with the variability of the process. This work
concluded that RTLS can lead to the more strategic use of production flexibil-
ity and enhance customer-oriented production. The major difference between
our work is twofold. First, Infineon made use of RFID. Second, Infineon decided
that besides collecting data, the RTLS should communicate with operators to
enhance cleanroom operations.

Taking into account the above-mentioned work, RTLS still faces a lot
of challenges: the environment, interference, frequency, desired accuracy, and
high investment costs. Besides, selecting the type of RTLS technology strongly
depends on the environment and use case (Rodas et al., 2013; Thiede et al.,
2021; Toro et al., 2021).

To summarize, the field of ramp-up production is overshadowed by studies
on time-to-market, which explicitly eliminate the ramp-up phase. Ergo, ramp-
up is ill-understood while it is the key factor of company success. Especially
for a job shop like in the automotive and/or semiconductor industry a swift
ramp-up is important to guarantee a return on investment. The rise of the
fourth industrial revolution and the increasing presence of IoT in manufactur-
ing enabled digital solutions, for example an RTLS, to be smaller, more energy
efficient, and cost-effective. With the increasing number of sensors in manu-
facturing environments, the ability of continuous (near) real-time automated
data collection became more realistic. As Schmitt et al. (2018) state, ‘Real-
time data is needed during the ramp-up phase to increase the quality and
speed of decisions taken by humans’ (Broy et al., 2011; Schmitt et al., 2018).

Table 1: Research gap

Haller et al. (2003),
Fjällström (2009),
Keith et al (1996),
Terwiesch et al. (2001)

Rácz-Szabó et al. (2020),
Thiesse et al. (2006)

Doltsinis
et al.
(2013)

Smolenaars
et al.
(2022)

Ramp-up perfor-
mance

x x x

Job shop x x x
Real-time data x x x

To conclude, Table 1 reveals how our work is positioned against the above-
mentioned literature. The research gap which we try to fill is the ramp-up
performance management of a job shop leveraging real-time production data.
By introducing a low-cost scaleable RTLS providing real-time production data
in a job shop environment we hope to contribute to a better understanding
ramp-up performance. Table 2 provides an overview of the use cases discussed
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Table 2: Studied use cases on ramp-up performance measurement

Author Terwiesch
(2001)

Doltsinis
(2013)

Clark (1991),
Fjällström
(2009)

Haller (2003) Smolenaars
(2022)

Case
study/In-
dustry

Hard disk
drive

Gluing robot Automotive Electronic
Integrated
Circuits

Photonic Integrated
Circuits

in the above-mentioned literature and our work. The next section will elaborate
will elaborate on the proposed ramp-up performance measurement framework.

3 Research Methodology

In order to understand ramp-up performance, two procedures are followed:
the development of a ramp-up performance measurement framework and the
design of a low-cost RTLS for ramp-up manufacturers. The latter enables a
comparison between the location data of products and existing production
data. To validate the two procedures a case study at a scale-up photonic semi-
conductor foundry was carried out to evaluate the proposed framework and
implement the low-cost RTLS. The rest of this section elaborates in detail on
each of the elements of the framework.

3.1 Ramp-up performance measurement framework

This section elaborates on the performance measurement framework enabling
companies to calculate and design ramp-up performance indicators. A high-
level overview of the proposed ramp-up performance measurement framework
is presented in Figure 4.

Fig. 4: Ramp-up performance measurement framework

The first step of the framework is identifying suitable ramp-up indices,
which reflect on key characteristics of ramp-up production. Secondly, suitable
data sources are selected to gather data for the identified ramp-up indices.
Thirdly, data from these data sources is collected and subsequently cleaned,
transformed, and stored in the factory data cube (FDC). What the exact
position of the FDC is in the data collection architecture will be explained in
section 3.4. Furthermore, the ramp-up indices are calculated and the results
are stored in the FDC as well. Using the results of the previous step the
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overall ramp-up performance is calculated by aggregating the individual ramp-
up indices. Again the result is stored in the FDC. Finally, the overall ramp-
up performance, in combination with the individual indices, is evaluated and
improved.

3.2 Definition of ramp-up indices

As discussed above, the ramp-up indices are considered key performance indi-
cators of the ramp-up. A ramp-up performance index is defined as an indicator
reflecting the performance of a production process in a transition towards high-
volume production. Furthermore, it is chosen to adapt the general definition
of an index as a concept that should be periodically reviewed and updated
(Doltsinis et al., 2013). However, we make a distinction between ramp-up
performance indices and registration accuracy indices (Figure 5).

Fig. 5: Definition of ramp-up indices

Performance indices answer the questions ”how well is the production per-
forming?” On the other hand, ramp-up production processes are considered
unpredictable and unstable as mentioned in section 2. Therefore, the second
question one should ask during ramp-up performance measurement is ”how
accurate is the registration of performance indices?”. Hence, an accuracy of
registration index is defined as an indicator reflecting the degree of deviation
between what we register, for example via a Manufacturing Execution System
(MES), and what actually happens during the production process.

Regarding the first category (performance indices) existing literature uses
established (stable) production processes as use cases assessing performance
on cost, quality, flexibility, and productivity (Hon, 2005), also known as the
Devils quadrangle (Jansen-Vullers et al., 2007). Nonetheless, performance indi-
cators like cost and flexibility are not necessarily dominant for companies in
ramp-up, due to unstable and project-based production. Research and devel-
opment are dominating during the early phases of ramp-up. Measuring the
performance during this transition is often considered troublesome. Similar to
Doltsinis et al. (2013), the proposed framework formally captures the ramp-
up performance by introducing multi-dimensional indices reflecting important
ramp-up characteristics, which will be introduced hereafter. Yet, the proposed
ramp-up performance measurement framework differs in terms of scope and
granularity compared to the performance framework of Doltsinis et al. (2013).
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First of all, the focus of our work is on a job shop including multiple work-
stations instead of a single workstation. Second, Doltsinis et al. (2013) assume
that the ramp-up of a (set of) machine(s) is defined as a sequence of adap-
tions and adjustments applied to a system, but our work also acknowledges
the system’s unpredictability and instability resulting over time. For example,
(un-)scheduled breakdowns of machines resulting in factory and/or machine
down-times.

Table 3: Overview of ramp-up performance and registration accuracy indicators

ID performance indicators ID registration accuracy indicators
1 production disruptions 5 pathway deviations
2 completed production steps 6 production visibility
3 quality of products 7 production traceability
4 process time

Given the distinction between performance and accuracy of registration
indices, Table 3 introduces the relevant indices for the proposed ramp-up
performance measurement framework. The motivation and terminology are
associated with each ramp-up index based on generic job shop terminology
after which each index is explained in more detail as follows:

1. production disruptions: the number of equipment downtime registered
by an MES, according to industry standards (for example SEMI standards
within the microelectronics industry (SEMI, 2021)). This index (f1(t)) aims
to emphasize the magnitude of disruptions encountered during period t,
which is one of the main issues in the ramp-up phases (Doltsinis et al., 2013).
2. completed production steps: the number of completed production
activities in a production process during period t. This index (f2(t)),
accounts for the completion of registered production steps. The complexity
of job shops is a key motivation behind this index, since early-stage ramp-up
processes suffer from ill-understood production processes.
3. quality of products: the quality standards and/or desired quality of
products produced measured via the number of rework steps performed
during period t. Increasing quality while reducing cost is one of the key
challenges during ramp-up (Ball et al., 2011). Therefore this index (f3(t)) is
included as a ramp-up index.
4. process time: actual time a person or machine spends on a spe-
cific production step. This index (f4(t,m)) captures mean process times of
production steps at each machine during period t.
5. pathway deviations: discrepancy between the registered pathway of
products through the production process versus the actual pathway. This
index (f5(t)) quantifies the similarity between when and where production
steps are registered and when and where they are actually happening dur-
ing period t. Deviations in the registered and actual pathway are considered
as an indicator contributing to a successful ramp-up process, because early
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ramp-up production processes are often ill-understood and insufficiently
documented.
6. production visibility: the deviation between the number of registered
production steps and the actual number of production steps during period
t. This index (f6(t,m)) is somewhat related to the completed production
steps index (f2(t)), but rather focuses on the deviation of the registered
and actual completed number of steps. Similar to the previous index, the
motivation behind production visibility as an accuracy indicator is the fact
that insufficient visibility of production steps contributes to a slower ramp-
up.
7. production traceability: difference in registered process time per step
and actual time spent at the workstation during period t. Similar to (f4(t))
this index looks at time spent at a machine or workstation, but this index
(f7(t,m)) aims to quantify the lack of traceability in registering the real
process times of production steps performed at each machine. This index
is motivated by the fact that capacity planning decisions need to be based
on the correct processing times of products and tools. Incorrect information
contributes to slowing down the overall ramp-up process.

Each of the above-mentioned ramp-up indices takes t as input, stating the
period over which the index is calculated. As such, each index is not continuous
but looks over discrete consecutive periods t of equal size. Depending on the
scope and granularity of the case study, t can be set to minutes, hours, days,
weeks, etc. Next, each of the introduced ramp-up performance and registration
accuracy indices will be discussed in detail.

3.2.1 Production disruptions

In contrast to streamlined production processes - in which unexpected dis-
ruptions can be predicted accurately - ramp-up production processes suffer
from unexpected events, such as down-times, machine breakdowns, etc. Let
J be a set of disruptions of manufacturing resulting from non-conformance,
e.g. (un)scheduled machine downtimes and/or out-of-stock. Such disruptions
negatively impact the continuity of the production process, the cycle times
of products, and consequently the ramp-up speed. Capturing the above-
mentioned disruptions is done by adopting and modifying the first index of
(Doltsinis et al., 2013) presented in Equation (1)

f1(t) =

J∑
j=1

xt,jγj (1)

where xt,j ∈ N0 represents the number of disruptions of type j ∈ J in period
t. Each disruption j is weighted by a factor γj ∈ [0, 1] allowing for different
impacts associated with disruptions.
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3.2.2 Completed production steps

Whereas the performance of production systems is normally assessed in terms
of throughput, the rate of production, early-stage ramp-up consists of a mix
of R&D and production activities. Consequently, a basal performance indi-
cator used within manufacturing ramp-up is the number of production steps
completed per time unit per equipment. A production step is defined as the
completion of a process not differentiating between production and R&D since
these types of processing are somewhat intertwined during ramp-up. On that
account, this second index captures the performance of the production process
in terms of completed production steps. Let M be the set of machines, then
the total number of completed production steps during period t is

f2(t) =

M∑
m=1

yt,m (2)

where yt,m represents the number of completed production steps during period
t at machine m.

3.2.3 Quality of products

Quality of products is very important throughout the ramp-up. More impor-
tant is consistent quality instead of a one-off good product. Previous work
has described the importance of a quality indicator within ramp-up (Doltsi-
nis et al., 2013; Hon, 2005; Terwiesch et al., 2001). However, whereas mature
complex job shops use instruments such as yield, the number of good-off prod-
ucts coming out of the production process over the total number of started
products (Zhu, Johnsson, Varisco, & Schiraldi, 2018), to approach the quality
performance of their production process, yield is not always suitable for early-
stage ramp-up production companies. For example, yield is heavily influenced
by R&D activities which are symbolic for early-stage ramp-up. To underline, if
yield can be used, this must be preferred over an alternative performance mea-
sure, but especially early-stage ramp-up normally does not lend itself to this
way of quantifying product quality. Alternatively, to avoid focusing on one-off
good products the third index looks at the number of rework steps performed
during a certain period t. Zhu et al. (2018) already identified rework as a man-
ufacturing performance indicator. Rework is identified as an extra production
step required to recover a products state before it can continue the regular
production flow. Let W be the set of rework steps that can be performed on
products to restore the desired quality. Then the third ramp-up performance
index is presented in Equation (3).

f3(t) =

W∑
w=1

at,wϵw (3)

where at,w ∈ N0 represents the number of rework steps of type w during period
t. Similar to production disruptions each rework step is weighted by a factor
ϵw ∈ [0, 1] allowing for different impacts associated with rework steps.
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3.2.4 Process time

Key in manufacturing ramp-up is the introduction of a WIP tracking system
e.g. MES. The establishment of an MES enables managers to steer the opera-
tion better. Especially in job shop environments collecting actual process and
cycle times is a challenging or sometimes impossible task. Continuous changes
in the way of working in conjunction with research and development crossing
production increase the complexity of collecting accurate timestamps. Even
with an MES in place, the resulting discrepancy between actual and theoret-
ical process times may negatively affect the ramp-up. For example, decisions
regarding the optimization of planning, capacity, and shifts can only be based
on accurate theoretical process times for each production step. Let M be the
set of machines and S the set of all production steps. Then Sm,t is the set of
production steps completed at machine m during period t. For all m ∈ M ,
the fourth index captures the average process time for a specific workstation
during period t

f4(t,m) =

∑
s∈Sm

dt,s,m

yt,m
(4)

where dt,s,m refers to the registered duration of process step s completed at
machine m during period t. Similar to Equation (2) yt,m denotes the number
of production steps performed during period t at machine m.

3.2.5 Pathway deviations

Ideally, the position and historical pathway of a product should be known at
all times. The real-time position is of interest for process speed (search time
for products), whereas the pathway is of importance for quality purposes. For
example, if a machine had a wrong setting one would like to know which
batches went through this machine and when to safeguard the quality of the
end product. During ramp-up, this level of visibility is often not present. Real-
ity may be different from what is registered because of rework and or R&D
activities. Therefore, the fifth ramp-up performance index aims at answering
the question: where have products been compared to where one assumes they
have been? Let r be the pathway that a product completes throughout the pro-
duction process. If r contains visits to three machines (nodes) m1,m2,m3 then
r consists of a set of edges [em1,m2

, em2,m3
], where emi,mj

represents the edge
between mi and mj where i, j ∈ M and i ̸= j. Let R be the set of pathways r
visited during period t. To evaluate the difference between where batches have
been versus where one thinks they have been, we are interested in

f5(t) = g(Rt, R
′
t) (5)

where g(Rt, R
′
t) is the similarity between Rt, the set of pathways registered by

a regular MES and R′
t, the set of pathways actually visited by a product during

period t. The similarity is represented in Equation (5) as a function g taking
Rt and R′

t as input parameters. Computing the similarity of trajectories is a
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fundamental operation in movement analytics (Tao et al., 2021). The similarity
of pathways can be calculated in different ways. Some common methods for
g(Rt, R

′
t) are presented in Figure 6.

Fig. 6: Some common similarity metrics between sets: a) Euclidean distance b)
cosine similarity c) Sørensen-Dice d) Jaccard

Equation (5) returns a measure of similarity, a positive value between 0 and
1, where 0 reflects no similarity and 1 implies two sets of identical pathways.

Each similarity metric has its characteristics and depending on the case
study one should select a suitable metric. Therefore the chosen similarity met-
ric for our case study is motivated in section 6, but this section briefly highlights
the (dis)advantages of commonly used similarity metrics. Almost all similarity
metrics are derived from the Euclidean distance similarity, which calculates the
shortest distance between two points (Liberti & Lavor, 2017). It will output
the distance of a pathway r, but will not quantify the difference in order when
comparing a set of pathways between R and R′. Also, Euclidean distance does
not scale well with larger data sets (Koutra, Parikh, Ramdas, & Xiang, 2011).
In addition, the cosine similarity metric neglects the distance between points
but looks at the orientation of pathways. This technique is often used in text
mining to compute the similarity of documents (Koutra et al., 2011), but also
to compare historical car routes (Akter, Patwary, Akter, & Nahar, 2014). The
cosine angle between two pathways r indicates the similarity in orientation.
The main advantage of this technique is that it does not take into account the
length comparing a set of pathways between R and R′, since it is reasonable
to assume there are a lot of differences between the real-time and registered
pathways. The main disadvantage is the fact that the magnitude (distance)
is not taken into account. Thirdly, the Sørensen-Dice coefficient is an intu-
itive similarity metric indicating the similarity between two sets of pathways
R and R′ by looking at the percentage of overlap. We define overlap of path-
ways as common edges (emi,mj ) present in both R and R′. Using Figure 6 the
Sørensen-Dice similarity can be calculated by two times the intersection of sets
of pathways R and R′ divided by the sum of R and R′. This similarity metric is
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often used in sparse data sets (Koutra et al., 2011) and can also be justified as
the intersection of two fuzzy sets (Roberts, 1986). Compared to the Euclidean
distance similarity, the Sørensen-Dice similarity gives less weight to totally dif-
ferent pathways (outliers), which retains the sensitivity for sparse data sets.
Its main disadvantage is the overstatement of sets of pathways with minimal
positive overlap. A similar, but slightly altered and commonly used similarity
metric is the Jaccard index (Jaccard, 1912), which calculates the size of the
intersection divided by the size of the union between sets of pathways R and
R′. Figure 6 illustrates the intuition behind the Jaccard similarity, which is to
compare the intersection between sets of pathways relative to the size. Jaccard
similarity is often used in text mining and e-commerce to identify similar texts
and customers respectively. In our case, it is highly related to the Sørensen-
Dice similarity, since both weigh each pathway against the size of sets. On the
other hand, the main disadvantage of Jaccard similarity is the impact on the
size of the union for large data sets.

3.2.6 Production visibility

Apart from the discrepancy in the pathway of products, the number of regis-
tered production steps also play a vital role in the maturement of ramp-up. For
example, if more steps are happening in real-time than registered one could
state the visibility of the production process is lacking behind. Again, let M be
the set of machines, then for all m ∈ M the sixth index captures the accuracy
of the number of registered completed production steps

f6(t,m) = yt,m − y′t,m (6)
where yt,m, similar to Equation (2), denotes the number production steps
performed during period t at machine m registered by an MES. Since we are
now interested in how accurate the number of registered production steps is,
y′t,m refers to the number of actual production activities completed during
period t at machine m.

3.2.7 Production traceability

The third and last registration accuracy index, and the seventh and final index
in total aims to quantify the accuracy of the amount of allocated time that can
be traced back to specific production steps. For example, if an MES registers
a process time of 1 hour at a certain workstation, but in reality, it was only
there for 30 minutes. Then for the remaining 30 minutes, this process cannot
be traced. In line with the motivation behind this index, which states that
ramp-up decisions require correct information, the production traceability for
all m ∈ M is characterized as

f7(t,m) =
∑

s∈Sm,t

(dt,s,m − d′t,s,m) (7)

where, again, M is the set of machines and Sm,t the set of production steps
completed at machine m during period t. Similar to f4(t,m), dt,s,m refers to
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the registered duration of process step s completed at machinem during period
t and d′t,s,m refers to the actual time spent on process step s at machine m
during period t.

3.3 Data sources

Given the above-mentioned identified ramp-up indicators, divided over per-
formance and registration accuracy indicators, this section is dedicated to
selecting suitable data sources to gather the information required to calculate
the indices.

The most common baseline of every production system that aims to ramp
up towards high-volume production is an MES. This is the linkage between
manufacturing and office planning (Qiu & Zhou, 2004). Traditionally, ramp-up
stages are characterized as unstable, unpredictable, inflexible, and complex.
However, Industry4.0 is expected to radically change the future of ramp-up
management (Schmitt et al., 2018). Besides the MES, an RTLS is selected as
the most suitable data source to collect real-time location data from products
during the production process. A detailed elaboration on the RTLS design,
hardware, and software will be discussed in section 4. Important to note that in
practice an MES system can be replaced by other information systems guiding
the production, e.g. Enterprise Resource Planning systems if an MES system
is not present.

Conversely, both systems have their limitations. Since MES and RTLS are
selected as data sources the number of candidate ramp-up performance indices
are limited. An overview of indices covered by MES and RTLS is presented
in Table 4. Additionally, to indicate which performance indicator is primarily
measured by a data source ‘X’ is used as a notation whereas ‘x’ denotes when
this data source’s primary goal is not to capture this indicator.

Table 4: Coverage of ramp-up performance indicators by selected data sources

ID Indicator type MES RTLS
1 production disruptions performance X
2 completed production steps performance X X
3 quality of products performance
4 process time performance X X
5 pathway deviations registration accuracy x X
6 production visibility registration accuracy x X
7 production traceability registration accuracy x X

As demonstrated in earlier work RTLS in job shops can capture objects
concerning location and time (Arkan & Van Landeghem, 2013; Chongwatpol
& Sharda, 2013; Nian et al., 2014; Thiesse et al., 2006). Moreover, an RTLS
is not able to capture immediate disruptions of the production process (f1(t))
as well as the quality of products (f3(t)). Similarly, we assume an MES is
not able to capture the quality of products. This might be the case in a more
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mature stage of production where product quality is fed to the MES, but for
early-stage ramp-up, this is often not in place yet.

3.4 Data collection and architecture

Fig. 7: Selected data sources

This section describes the data collection and ramp-up performance mea-
surement architecture according to the data sources provided in section 3.3
and visualized in Figure 7. Before this architecture is described, it is impor-
tant to have an understanding of the difference between RTLS data and MES
data. Figure 8 illustrates the format of RTLS data when processed by the posi-
tioning engine. Table 6 is an example of the most relevant columns collected
during a production step by the MES.

Columns Value
X 14.93
Y 31.05

Timestamp 2022-07-27 10:37:31.68
Zone Rack 4

Beacon ID B59
Anchor ID A34

Fig. 8 & Table 5: Scatter plot of collected object x,y positions (left) and example
of data entry row (right)

MES data entries (Table 6) relate to a specific process step and related
equipment. However, the major disadvantage is the dependency on operator



3.4 Data collection and architecture 23

Table 6: Example of MES data

WaferID BatchID Step Start Duration Equipment Flow User
125235 1201 Wet-etch 2022-10-04

10:31:05.27
856 Wet-bench 1 PFA John

Smith

activities. Data only changes if an operator executes an activity in the MES
on a PC or tablet. Data generated by the RTLS (Figure 8) on the other hand
is indirectly related to a production activity, but rather a physical location.
Based on its physical location one can relate the position to a self-defined zone
in which certain production steps are performed.

Figure 9 provides the ramp-up performance measurement architecture
including the proposed RTLS embedded in an existing factory information
system infrastructure.

Fig. 9: Data and information system architecture

The ramp-up performance measurement architecture consists of three dif-
ferent layers: a planning system, RTLS, and control systems. Some also refer
to the division of planning and control systems as front-end (business related)
and back-end (shop-floor-related) systems (Qiu & Zhou, 2004). This division is
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the most generic enterprise information system architecture and therefore suit-
able for companies in ramp-up, which often do not have advanced information
systems in place yet. The three layers are now described in more detail.

The planning layer contains business-oriented information systems such as
sales management, Enterprise Resource Planning (ERP), and production plan-
ning. Such systems enable companies to increase their revenues by channeling
services and sales more efficiently. At the back-end, the control layer consists
of systems that control machines, production execution, and production logis-
tics. For example, an MES system or quality management system. Control
systems typically focus on reducing manufacturing-related costs and efficient
back-end applications (Lars Mönch, John W. Fowler, & Scott J. Mason, 2013).
In general, the RTLS is a layer positioned alongside the shop floor and business-
related systems (Thiede et al., 2021). The RTLS hardware and software is
capable of capturing (near) real-time positions of batches on the production
floor. Beacons were attached to batches and anchors were placed at fixed
locations (workstations, machines, storage) on the shop floor and communi-
cated locations to a central database. The location data was then fed to the
location engine which interpreted the raw measurement to the real-time loca-
tion of batches. Subsequently, an application added business logic to real-time
locations such as production zones and constraints. Afterward, the applica-
tion distributes the location data including context and business logic to both
planning and control systems.

3.5 Data pre-processing

Both MES and RTLS data had to be pre-processed before it was used to
calculate the ramp-up performance. MES data was reduced to only those
entries related to workstations, equipment, or other locations, which were also
traceable by the RTLS. Besides, entries like the one presented in Table 6 with
missing information were dropped. Regarding the RTLS data, extensive infor-
mation on signal processing is explained in Appendix 8, but the pre-processing
steps after the location engine (Figure 9) are as follows. As discussed earlier in
this section, the software already accounts for faulty positions by introducing
a threshold of a certain number of observations within 120 seconds before
assigning a beacon to a certain anchor. This eliminates most of the incorrect
positions, but another challenge when handling RTLS data is two locations
close to each other. This results in position ‘flipping’: objects will be assigned
to locations A and B consecutively for short periods. For example, in 60
seconds object X has been 10 times at location A for a duration of 3 seconds
and 10 times at location B for a duration of 3 seconds. Position ‘flipping’ has
tried to be overcome during the calibration of the hardware. Nonetheless, it
cannot be prevented completely. Ergo, it was decided to remove all entries in
the RTLS data of objects present at certain locations with a duration of less
than 5 seconds.
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In summary, the ramp-up performance measurement architecture described
in Figure 9 enables companies in (early-stage) ramp-up to collect and com-
pare production-related information (MES) and product location information
(RTLS).

3.6 Calculate ramp-up indices

Since each index contains different units and the goal is to combine them
into an overall ramp-up performance index an extra step is required after the
individual calculation of performance and registration accuracy indices. This
step consists of two parts and is conceptualized in Figure 10.

Fig. 10: Calculation of individual ramp-up indices

Firstly, the result of each index is transformed such that its minimum value
is equal to -1 and the maximum value is 0. The approach here is to set the
completion of the ramp-up equal to 0, and the start of the ramp-up to -1,
such that each index indicates how far the index is from reaching its target.
Secondly, fine-scaled structures (noise) in the indices are reduced by applying
a smoothing technique over the index. It is not an attempt to fit a curve, but
solely to focus on the underlying pattern. The consequence of this second part
is that each function f(t), which has been transformed between -1 and 0, is
smoothed by smoothing function s(t). For sake of simplicity, this works looks
into two widely accepted smoothing techniques to reduce fine-scaled structures
in the data: simple moving average (SMA) and simple exponential smoothing
(SES). section 6 elaborates in detail on which smoothing technique is applied
for which index, but below the simple moving average and simple exponential
smoothing techniques are briefly explained.

SMA, also known as the ‘rolling’ average, looks into the mean value of the
last k time periods. The value during period t is therefore the mean value of
the result between [t− k, t]. One remaining question is setting the right value
for k. In other words, how many historical time periods (t−k) would one like to
take into account when determining the ramp-up performance during period
t? It is difficult to define k beforehand without looking at the raw result first.
Therefore, k should be determined after inspecting the raw data. As guidelines
for setting the value of k for each index individually, one can hold on to the
following principles: (i) If zig-zag patterns within the graph are still visible
the value of k is too low. (ii) If the peaks are ‘washed’ away, the value of k is
too high and information about a potential underlying pattern is lost. (iii) If
the peaks remain visible and the zig-zag pattern has been smoothed the value



26 3 RESEARCH METHODOLOGY

of k is a suitable candidate. For example, the most right-hand graph (s(t)) in
Figure 10.

The other technique that is used is single exponential smoothing (SES).
This technique has been proposed by Brown R.G. (1959); Holt (1957); Win-
ters (1960) and is often used in forecasting. SES knows a single smoothing
parameter α ∈ [0, 1], which determines how much the result during period t
is influenced by previous results. A large value for α indicates shifting impor-
tance to only the most recent observations, whereas a low value for α indicates
shifting the importance towards historical observations. One difference com-
pared to SMA is that SES uses all historical observations, whereas SMA only
uses historical observations of the last k periods.

3.7 Calculate overall ramp-up performance

The combined impact of the aforementioned ramp-up indices completes the
proposed ramp-up performance measurement framework. section 3.2 defined 7
ramp-up indicators. Consequently, the overall ramp-up index is the aggregated
result of Equations (1), (2), (3), (4), (5), (6), and (7). Mathematically, the
overall ramp-up index can be formalized as

foverall(t) = s1(t)α1 + s2(t)α2 + s4(t)α4 + s5(t)α + s7(t)α7 (8)

where for each ramp-up index, the result is transformed and subsequently
smoothed taking into account t−k periods for SMA or α in the case of SES to
reduce fine-scaled structures as described in the previous section. Additionally,
considering the individual contribution and process-dependent relevance of the
multi-dimensional overall ramp-up index, a weight α for each ramp-up index
enables the user to account for this effect. Each individual ramp-up index can
be read as penalty function. For each index, the following applies: the more
negative the more unpredictable, unstable, and ill-understood the process is.
The closer it gets to 0 the more predictable your process is and the better the
ramp-up process is going. This behavior is transferable to the overall ramp-
up index in Equation (8). The lies in the interval [-7,0] where -7 indicates the
start of the ramp-up and 0 the final stage of ramp-up completion. Figure 11
zooms in on the conceptual function of the overall ramp-up index across multi-
dimensions for a simplified version containing 7 ramp-up indicators. Hence the
minimum value is −7 : αi = 1

To give the overall ramp-up index more context, different zones within the
index score were created: ramp-up completed, ramping-up, and start ramp-
up. We believe the different stages within ramp-up should be investigated
further, but these three stages can be seen as basic stepping stones throughout
a ramp-up. Table 7 aims to describe the characteristics of these three stages
based on the limited work available on ramp-up management (Schmitt et al.,
2018; Sturm et al., 2003; Terwiesch & Bohn, 2001). Nevertheless, we want
to underline this is just an indication based on the available literature on
early ramp-up ramp-up. To the best of our knowledge, there is no work on
different stages within the ‘tail end of ramp-up’ (Terwiesch et al., 2001). To
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Fig. 11: Calculate overall ramp-up performance

Table 7: Characteristics of ramp-up stages

Stage Characteristics

Near ramp-up completion
stable production, high volume,
consistent output, mature, utilizing capacity

Ramping up
project based production, medium volume, slow set-ups,
inconsistent output, maturing, underutilized capacity

Start ramp-up
pilots based production, machine breakdowns, low-volume,
unstable output, immature, creating capacity

prevent a one-sided subjective interpretation of different phases in ramp-up,
the proposed overall ramp-up index contains two model parameters λ1 and
λ2, which specify the start of the ramp-up completion zone and end of the
start ramp-up zone respectively. By introducing these parameters this work
aims to trigger companies to define at least three basic stages within the total
ramp-up phase until future work provides more clarity. For Figure 11 λ1 and
λ2 are chosen such that each zone is equally covered over the complete length
of the index [-7,0]. In practice, λ1 and λ2 should be thoroughly designed by
operations management to align with the long-term production strategy.

3.8 Evaluate and learn

The final step of the proposed ramp-up performance measurement framework
evaluates the individual ramp-up indices and the projected overall ramp-up
index. This step does not contain quantitative methods but connects exist-
ing ramp-up approaches from related work and practical experience gained
throughout this research. Evaluation of the results should eventually lead to
lessons learned. According to Doltsinis et al. (2013), the nature of an index
is that it should be periodically reviewed as is the intention of the proposed
framework in our work. Only by periodically reviewing the ramp-up strategy
based on the proposed indices, the ramp-up can be improved. To conclude the
the ramp-up performance framework, evaluating the ramp-up indices regularly
is the final step toward ramp-up improvement.
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4 Low cost RTLS

This section explains on high-level the RTLS design. A more detailed descrip-
tion of the design and implementation choices can be found in Appendix 8. The
focus of this work is not to design an RTLS system that improves existing real-
time tracking sensor-based solutions, but rather to investigate the potential of
a low-cost solution for manufacturers during ramp-up. Production companies
in ramp-up often do not have the resources for a complete real-time track-
ing solution. On top of that, a flexible and scaleable RTLS is desired during
the ramp-up because of continuous changes to increase production volume.
To achieve this it was decided to build our own RTLS to reduce the cost and
maintain flexibility in fast-changing ramp-up environments.

Fig. 12: Detailed RTLS architecture

Although an RTLS does not have a uniform architecture (Rodas et al.,
2013) we stick to the ‘most generic form’ of systems available consisting of:
anchors, beacons, a database, a positioning engine, and an application as
presented in Figure 3. The protocols for communication between hardware
and software and software tools and languages used to build the RTLS are
presented in more detail in Figure 12.

Hardware: consists of Commercial Of-The-Shelf (COTS) components.
Bluetooth Low Energy (BLE) is chosen as wireless technology, which satis-
fies the requirements of having an accuracy of < 1m. Figure 2a) presents a
battery-powered BLE beacon. Figure 2b) presents the anchor which consists of
an ESP32-E controller board. Figure 2c) presents the design of the 3D printed
anchor casing to protect the anchor against dust.

Bluetooth beacons continuously send out a signal over the iBeacon proto-
col. Each beacon is attached to a product on the shop floor. Anchors, which
are powered over USB-C, are placed at positions of interest. For example, a
machine, workstation, desk, storage rack, etc. Each anchor ‘listens’ to these sig-
nals and writes the Received Signal Strength Index (RSSI) values to a database
every 5 sec. This is done via the User Diagram Protocol (UDP). Both beacons
and anchors are configured by a C++ script. The database consists of JSON files
which can be accessed directly using SQL. RSSI values represent the amount
of power present in a radio signal (measured in dBm), which can be translated
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(a) Tag (b) Anchor (c) 3D printed anchor housing

Fig. 13: a) Teltonika Bluetooth Low Energy beacon controlled by an ST Microelec-
tronics BlueNRG-2 microcontroller. Range up to 80m and weight of 18 gr. Dimensions
56.6mm x 38mm x 13mma. Casing according to IP67 standard. b) FireBeetle 2
ESP32-E. Based on a ESP-WROOM-32E main controller board powered by USB-C.
2.4GHz Wifi and BLE moduleb. c) 3D printed housing for the anchor.

a https://teltonika-gps.com/eye/, accessed on May 23 2022
b https://www.dfrobot.com/, accessed on May 23 2022

to a distance measurement (Friis, 1946). The details of this translation can be
found in Appendix 8.

Software: consists of the database, the positioning engine, and the appli-
cation. The positioning engine is connected to the database via an Application
Programming Interface (API). The RSSI values are then converted to an x,y,
and z coordinate. For testing we created a C# script to execute this conversion
and Python was used primarily for data analysis using data coming directly out
of the database. To speed up the actual deployment it was decided to replace
these tools by software of an external vendor. For this purpose, we partnered
with Indutrax GmbH2, who provided an application that was suitable for our
case study. Inside the positioning engine, a presence-detection algorithm was
chosen to be suitable of capturing the presence of beacons near anchors. Pres-
ence is detected by the number of observations within the range of a specific
anchor. For example, if 5 observations within 120 seconds of a single beacon
under a certain threshold are measured, the beacon is considered as present
at that specific anchor. In reality, the exact number of observations might
vary slightly per anchor due to calibration after placement which is explained
in more detail in Appendix 8. Lastly, the positions are fed into an applica-
tion to process movements and enable large-scale data collection. For testing,
the application consisted of a simple .NET application using JavaScript. For
deployment, this was also replaced by the Indutrax application. In addition. the
application aided in a real-time visual displaying the real-time lots of objects
carrying a beacon.

2https://www.indutrax.net/
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5 Case Study: ‘Lab to Fab‘

In this section, the case study is described for which the proposed RTLS and
ramp-up performance measurement framework is implemented in practice.
Firstly, background information on the semiconductor industry is provided
after which the company is introduced. Thirdly, the implementation of the
proposed RTLS at this company is described.

5.1 Background

Integrated Circuits (IC chips). Semiconductors are microelectronic chips
that rely on the electronic properties of the material. IC chips are used in
almost all everyday electronic devices. The semiconductor industry is one of
the few global industries that are in growth modus to smartness (Khakifirooz,
Fathi, & Wu, 2019), due to a worldwide continuous demand3. Rising num-
bers of IoT devices and the onward digitization of our world are causing a
mismatch between the supply and demand of ICs. The semiconductor indus-
try is not able to adhere to the high volumes requested by their customers.
From car manufacturers to telecommunication providers, all low- and high-
tech manufacturers are in a battle for ICs (Smith, 2021). ICs are typically
manufactured in foundries. Taiwan Semiconductor Manufacturing Company
(TSMC) for example is the largest manufacturer of ICs (World Semiconductor
Trade Statistics (WSTS), 2022).

Photonics. A special type of IC chip is on its way to change the world of
integrated circuits: Photonic Integrated Circuits (PICs). Opposed to regular
IC chips, PICs use light and its corresponding properties to carry informa-
tion, which leads to faster data processing performance and energy efficiency.
In more detail, an order of magnitude increase in speed can be achieved by
the manipulation of light on a single chip. The expectation is that PICs will
lead to a technological revolution similar to the one when regular ICs were
introduced in the 1980s. With this opportune prospect and promising results,
the European Commission decided to classify photonics as one of the six Key
Enabling Technologies (KET) (Müller & Potters, 2019).

Industries using PICs vary from aviation to healthcare and from telecom-
munication to agriculture. To give an example, data centers are infamous for
energy hunger such that energy efficiency is expected to become one of the
key purchasing arguments (Poess & Nambiar, 2008). Studies have shown that
the use of PICs can reduce power consumption by a factor of approximately
2.2 (Glick et al., 2020). Furthermore, PICs also play an increasingly important
role in aircraft, 5G applications, air quality monitoring, autonomous driving,
and ultra-secure cryptography.

3USD 555.9 billion in 2021 compared to USD 440.4 billion in 2020. A 26.2% increase (World
Semiconductor Trade Statistics (WSTS), 2022)
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5.2 Company: SMART Photonics

SMART Photonics is a pure-play foundry of Photonic Integrated Circuits
(PICs) currently in transition from ‘Lab to Fab’. SMART Photonics is in the
race of becoming the first foundry of PICs that successfully completes the
ramp-up phase. As mentioned in earlier research the success of a company
within the semiconductor industry depends heavily on a swift ramp-up to
guarantee the return on enormous investments, which are required to scale up
production (Terwiesch & Bohn, 2001).

Fig. 14: Impression of SMART Photonics: the process, product, and technology.

SMART Photonics, a spin-off from Eindhoven University of Technology,
now finds its headquarters at the High-Tech Campus in Eindhoven, The
Netherlands. SMART Photonics is a foundry offering production services for
mainly Indium Phosphide-based photonic integrated components. SMART
Photonics offers the complete production process from epitaxial growth and
re-growth, processing, polishing, and dicing of wafers into PICs. As an inde-
pendent pure-play foundry, they support customers from the proof of concept
phase up to and including full production. As a foundry, SMART also offers
single or combined process steps to complete or be a back-up for the production
processes of customers.

From Lab to Fab. The production and manufacturing of (P)ICs are one
of the most complex manufacturing processes. At SMART chips are produced
on 3- and 4-inch wafers in between 50 and 500 different production steps.
The transition from ‘Lab to Fab’ comes hand in hand with automation, which
is mentioned as a key driver behind ramp-up manufacturing. Automation in
the company’s manufacturing processes is introduced step-by-step according
to the internationally-used industrial standard ANSI/ISA-95 for production
automation (ANSI/ISA, 2000).

SMART Photonics introduced a manufacturing execution system (MES)
in the company as part of the ISA-95 standard (level 3). Besides WIP tracking
the implemented system eliminated the majority of the paper flow, guides
the production process, and collects manufacturing data. It is the connecting
layer between the business (planning) and the production floor (control). The
resolution of MES lies between daily reporting and discrete events (hourly/per
minute).
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5.3 RTLS implementation

In total 20 anchors were placed in the cleanrooms of SMART Photonics and
100 wafer boxes received a beacon attached to the lower back-side of the 3-
inch wafer box using 3M double-sided waterproof tape. Figure 15 presents
some pictures of the implementation of the anchors and beacons. Important
to note is that a single wafer box can carry up to 25 3-inch wafers. Wafer
transportation boxes as presented in Figure 15 do not leave the clean room.

Fig. 15: RTLS hardware implementation. a) some of the anchors after being pro-
grammed and tested outside the cleanroom b) single anchor being attached at a
workstation c) beacon attached to a 4-inch wafer box for testing outside the clean-
room d) beacon attached to a 3-inch wafer box inside the cleanroom

The facilities of the case study are densely populated by (metallic) semi-
conductor equipment and continuously changing due to expanding processes.
A selection of 20 workstations was equipped with anchors. Figure 16 presents
a conceptual layout of the RTLS implementation.

To process the raw RSSI values and transform them into positions we used
the interface provided by Indutrax GmbH to retrieve the positions of wafer
boxes in real time. Their application enabled real-time wafer box searching
and out-of-the-box analysis instruments. Figure 17 contains a screenshot of the
application. Nevertheless, since no tools existed yet to calculate the ramp-up
performance we exported the RTLS data from the factory data cube (FDC)
(see Figure 9) and analyzed the data using Python (version 3.9).

In total over 305.000 events were registered by the MES between June 2021
and November 2022 was analyzed. The RTLS systems took 6 months to design
and develop and were implemented in August 2022. Between August 2022
and November 2022 in total 166.000 data points were collected by the RTLS.
However, since not all workstations are covered by the RTLS, the MES data
is reduced to events related to workstations that are monitored by the RTLS
as well. Therefore, after data inspection and pre-processing MES data related
to 23.155 events and 38.256 data points collected by the RTLS are considered
as input for the ramp-up performance measurement framework.
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Fig. 16: RTLS implementation

6 Results

This section will discuss the results of the ramp-up performance measure-
ment framework introduced in section 3. Due to confidentiality reasons, the
results are anonymized, such that sensitive information regarding the compa-
nies production performance can not be tracked. This means that also names
of machines and processes are masked or given a pseudonym.

All results are collected via the case study described in section 5. The
structure of this section follows the order of each ramp-up index explaining the
results one by one and ending with the overall ramp-up index. For our specific
case study, it was chosen to set the time period t = 1. Meaning, the granularity
of the results is calculated over consecutive periods each having a length of
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Fig. 17: Indutrax application screenshot

1 day. Apart from the quantitative results, a qualitative exemplification of
observations is presented for each index. These examples are reconstructed in
consultation with shift leads, engineers, and operators or by observations in
the cleanroom. As explained before, a limitation of this work is the fact that
the quality performance index (f3(t)) cannot be measured using the chosen
data sources. Hence, no results for f3(t) are collected.

6.1 Production disruptions

First, f1(t) is calculated using Equation (1) resembling the number of pro-
duction disruptions. This index can only be calculated with MES data using
Table 4. Additionally, the additional weighing factor γj was set equal to 1
∀j. For this case study, disruptions of the production consisted of two types
of events: a scheduled or unscheduled down event for a machine. Both event
types are registered according to the semiconductor industry-wide standards
for the specification for definition and measurement of equipment productivity
(SEMI, 2021). These standards state that unscheduled down events contain
events such as repair, maintenance delay, out-of-specification, etc., whereas
scheduled down events contain events such as preventive maintenance, setup,
change of consumable materials, etc. Figure 18 presents the result of the num-
ber of disruptions over time. Besides the actual values, it appeared that a
simple moving average technique taking into account k = 35 periods reveals
the undulating series of disruptions over time.

The disproportional peak around the start of November 2022 is due to
a two-week planned down-time of workstations to make the transition from
3- to 4-inch wafers. This observation underlines the immature and unstable
characteristics of early ramp-up. Nevertheless, such activities are necessary to
move forward during ramp-up and can therefore not be considered outliers.
However, this observation also affects the indexation of the other disruptions.
In addition, to turn this result into a workable ramp-up index one extra step
is required, which is described in 3.6. The result is first scaled to a range of



6.2 Completed production steps 35

Fig. 18: f1(t) Production disruptions Fig. 19: s1(t): Ramp-up production dis-
ruption index

[0,1] followed by a transformation such that -1 refers to the maximum number
of disruptions and 0 to a situation with 0 disruptions. The outcome of this
transformation is presented in Figure 19.

To illustrate typical causes of disruptions during ramp-up. Table 8 provides
more insight into the origin of disruptions based on qualitative information.

Table 8: Exemplification of scenarios contributing to production disruptions based
on qualitative data

Event Description
Unscheduled-down Machine stop due to a process out of specification/control limits
Scheduled-down Machine conversion (e.g. to different wafer size for R&D purposes)
Unscheduled-down Waiting for machine vendor (e.g. missing spare parts)

6.2 Completed production steps

The second ramp-up performance index f2(t) tracks the number of completed
production steps. According to Table 4, both MES and RTLS are capable
of tracking the completed production steps over time. Data collected via the
MES provides insights into how many production steps are registered. Six
months of MES data was analyzed against 3 months of RTLS data. Figure 20
presents the registered steps via MES and Figure 22 presents the registered
steps with the RTLS. Apart from the actual results, it was decided to apply
SES with α = 0.2 as an additional smoothing technique. Finally, the number of
completed steps is transformed to a range of [-1,0] to indicate how far the index
is removed from the ramp-up completion. This transformation is achieved by
normalizing the number of completed steps against a maximum capacity of
steps. This maximum value was established after a discussion with production
leads. Consequently, Figure 21 and 23 contain the transformed result indicating
the index s2(t) for both MES and RTLS respectively.
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The following observations can be derived from the results. First, the num-
ber of moves registered by the MES system seems consistent over time. In
certain moments there was no production at all, but no periods with sub-
sequent low completed production steps. RTLS-registered production steps
contain more variation. Days with a number of steps close to their maximum
capacity are succeeded by days without any registered production step. For
sake of clarity, these spikes in the data are not the result of position ‘flipping’
nor incorrect measurements, since these have been filtered out as mentioned
in section 3.5. Therefore, these spikes imply that products have been moved
to several workstations more often than registered by the MES. It can not
be concluded based on this data if these are ‘unauthorized’ production steps,
simply because the current MES integration allows for production steps to
be performed outside MES. Nonetheless, after discussions with engineers, the
most likely explanation for these excessive mismatches is R&D activities not
yet implemented in the MES. Overall, the performance index for completed
production steps presented in Figures 21 and 23 for MES and RTLS respec-
tively, indicate a process far from ramp-up completion. The explanation for
this effect is logical. As mentioned, the result is normalized against the maxi-
mum capacity of the number of steps that can be completed per day. During
the deployment, the capacity was underutilized resulting in fewer completed
production steps per period.

Fig. 20: f2(t) Completed production
steps registered by MES

Fig. 21: s2(t): Ramp-up completed pro-
duction steps index using MES

To illustrate typical causes of excessive high/low completed steps during
ramp-up, Table 9 provides more insight. These scenarios are reconstructed in
consultation with shift leads and operators.

Figure 24 presents a spatiotemporal representation of the second example in
Table 9. One can clearly observe the multiple spatial movements of a wafer box
on the map containing several visits to M1. For example, a step that requires
multiple visual inspections in between processing at M1. All these movements
are captured by the RTLS. The MES does not capture this revisiting behavior.
MES only registers a start and end time for this process step, but the RTLS
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Fig. 22: f2(t) Completed production
steps registered by RTLS

Fig. 23: s2(t): Ramp-up completed pro-
duction steps index using RTLS

Table 9: Exemplification of scenarios contributing to completed production steps
based on qualitative data

Event Description
Incorrect commu-
nication

Engineers do not notify operators via MES, but via Teams/mail on lot
status change, which corrupts the MES data.

Single step with
revisit(s)

Workstation and PC are separated which causes multiple walks between
PC and workstation for a single step, hence not all steps are registered by
MES (Figure 24).

Missing waferbox Wafer box could not be located

Fig. 24: RTLS vs MES example: single step with revisit(s)

data learns us that this duration consists of multiple runs at M1, transportation
between M1 and T, and time spent at T.
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6.3 Quality of products

The third ramp-up performance index f3(t) focuses on product quality. As
mentioned in the introduction of this section this index was not covered by
the RTLS and MES. It’s straightforward to observe that an RTLS is not capa-
ble of capturing product quality with location data. Unfortunately, quality
management was performed outside the MES in this case study.

6.4 Process time

The fourth ramp-up index f4(t,m), and the final performance index before
the registration accuracy indices are presented, covering the process time of
steps. This index focuses on the time a person or machine spends on a spe-
cific production step and it is registered by MES, but in theory, it can also be
derived from RTLS data. Shorter and more consistent process times are asso-
ciated with a mature and predictable ramp-up. MES data as of May 2021 is
used and RTLS data was included as of August 2022. For sake of simplicity,
this section only presents the average process time over all machines instead
of the process time per machine.

Figure 25 and Figure 27 present the daily average process time for MES
and RTLS respectively. It was decided to use SMA with k = 5 as a smoothing
technique. Subsequently, Figure 26 and 28 present the transformed ramp-up
indices for MES and RTLS respectively. This is the transformed result indi-
cating how far the average process time index of production steps is removed
from ramp-up completion. Similar to f2(t), this transformation is achieved by
normalizing the average process time to a maximum daily process time estab-
lished after discussion with production leads. Additionally, a transformation
results in the index ranging from -1 to 0 indicating the distance to ramp-up
completion.

Fig. 25: f4(t,m) Average process time
registered by MES

Fig. 26: s4(t): Ramp-up process time
index using MES

Between May 2021 and November 2022 a slightly declining pattern of
MES-registered process times can be seen in Figure 25 indicating the average
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Fig. 27: f4(t,m) Average process time
registered by RTLS

Fig. 28: s4(t): Ramp-up process time
index using RTLS

process times of production steps are decreasing. This observation implies the
process improves over time since on average less time is spent on similar pro-
duction steps. A conceivable cause of this observation is the acquisition of new
machines, which process wafers faster or in batches, which both reduce the
average process time per wafer. However, the variation in the average process
time seems to be perpetual. Occasionally high average process times are moti-
vated by additional rework steps or the situation where the step is signed off
at a later moment than the actual step end date.

Regarding the process times registered with the RTLS the average pro-
cess time is short. Similar to MES the result contains significant peaks. After
observing the operators it was concluded that sometimes the wafer transporta-
tion boxes are not stored near the machine but somewhere else (e.g. desk,
storage rack, etc.). As a result, the RTLS only registers a short visit to the
machine while in reality, the wafers are still in process.

Overall, it seems to be that the process time index for both MES and RTLS
is close to ramp-up completion. However, one aspect that is not captured is
the number of wafers in production. During the deployment, there were several
decisions made by management, which reduced the WIP (e.g. to give priority to
certain orders or to reduce the load on certain machines). It is straightforward
that less WIP enables operators to process the wafers faster. Nevertheless, both
indices contain spikes 2 to 4 times as high as the smoothed line. This hints on
the negative impact of events on the process time. Since these events cannot
be derived from these figures, Table 10 illustrates some scenarios resulting in
excessive process times during ramp-up.

Figure 29 presents a spatiotemporal representation of the second example
in Table 10. This example contains three production steps including visits to
M2, M1, and M2 again respectively. By looking at the timeline one can observe
that the RTLS was capable of capturing the timestamps of each visit. Yet, the
same production steps captured by the MES are corrupted. The time related
to the first visit to M2 is excessive, whereas the registered time for the other
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Table 10: Exemplification of scenarios contributing to process time based on
qualitative data

Event Description
Missing resources E.g. mask needed for production step could not be located
Corrupted time
registration

(Experienced) operators can perform tasks based on experience, so do not
use MES for every production step (Figure 29)

Excessive process
time

Operator forgets to sign off step such that process time keeps accumulating

Fig. 29: RTLS vs MES example: corrupted time registration

two visits is unrealistically short. This is the consequence of allowing people
to deviate from the MES.

6.5 Pathway deviations

The first ramp-up registration accuracy index, and fifth overall index, deals
with the discrepancy of object locations. As stated in section 1, an RTLS
is capable of revealing what is actually happening in our production process
compared to what one ‘thinks’ is happening. Furthermore, an RTLS enabled
us to look in real-time where and for how much time wafer boxes were posi-
tioned. It is assumed that an RTLS implemented in a mature and predictable
production process is mimicking the object locations registered with an MES.
In other words, this discrepancy fades out when coming closer to ramp-up
completion. To quantify how accurately the actual production process is reg-
istered, f5(t) measures the registration accuracy of pathways. This is done
by comparing pathways registered by the RTLS and MES. As explained in
section 3.2.5 different techniques can be used to achieve this goal. For this spe-
cific case study, it was chosen to implement a Sørensen-Dice similarity. This
similarity technique was chosen over an Euclidean distance since the layout
of the cleanroom was U-shaped and consists of several ‘smaller’ areas. Using
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Fig. 30: f5(t) Sørensen-Dice similarity
between MES and RTLS measured path-
ways

Fig. 31: s5(t): Ramp-up pathway devia-
tion index

the shortest distance between machines results in unrealistic outcomes. The
cosine similarity metric overcomes this issue because it compares the orienta-
tion of pathways. Still this metric was also neglected, since we were not able
to capture all routes. In other words, only 20 workstations were provided with
anchors. Ergo, the exact route between these workstations included additional
steps, which were not analyzed in this work. The Sørensen-Dice and Jaccard
similarity techniques resulted in similar results, but the former was preferred
over the Jaccard similarity since it is less prone to the size of the data set. On
beforehand it was expected that the size of the data sets would influence the
result. In practice, this expectation was justified, because the RTLS data col-
lected per month was 5 to 6 times larger compared to collected MES data in
the same period. Moreover, the Sørensen-Dice similarity is also the most intu-
itive metric of all four as it calculates the percentage of overlap between sets
of pathways collected with MES and RTLS.

Figure 30 presents the outcome of the Sørensen-Dice similarity of path-
ways. Since the RTLS was fully operational in August 2022 the similarity was
calculated from that moment onward. The similarity ranges from 0 to 1 imply-
ing no similarity at all to a 1-on-1 similarity respectively. Additionally, it was
decided to apply an SMA with k = 3 as a smoothing technique. Subsequently,
the similarity values require a small transformation such that its values fit
between a -1 to 0 scale where -1 implies no similarity at all and 0 a one-on-one
relationship. The result is presented in Figure 31.

A first observation is the overall similarity values are low (< 0.5), indicat-
ing that pathways registered by MES are significantly dissimilar to pathways
registered by the RTLS. On the ‘best’ day around 50% of the paths completed
by wafer boxes are similar to the ones registered by the MES. In other words,
the remaining 50% of the pathways is not overlapping with each other. Addi-
tionally, there are certain moments at which the similarity value is equal to 0
indicating 0 similarities between routes. Comparable to other indices, this can
be explained that this index does not take into account the number of wafer



42 6 RESULTS

boxes in production. Consequently, the index in Figure 31 indicates the reg-
istration accuracy is far from ramp-up completion. The overlap of locations,
where wafer boxes have actually been versus registered locations, is minimal.
Hence, the accuracy of registering is still immature and incomplete. To illus-
trate typical causes for the discrepancy among MES and RTLS registered
pathways, Table 11 provides more insights. These examples are designed in
consultation with shift leads and operators when discussing the results.

Table 11: Exemplification of scenarios contributing to pathway deviations based on
qualitative data

Event
Location hopping Certain production steps are repeated at different locations. This results

in extended pathways while MES does not register extra steps.
Room for error Since operations can be performed without MES, operators will do so

(un)intentionally resulting in additional pathways.
Incorrect storage Sometimes batches are not stored away after processing (or taken to an

external location) such that its path might deviate from it’s expected path
(Figure 32).

Fig. 32: RTLS vs MES example: incorrect storage

Figure 32 presents a spatiotemporal representation of the third example in
Table 11. This example contains a single process step visiting M1. The MES
data captures the start and end time of this step, which is all it is capable of in
this case. Based on internal agreements the wafer box should be stored in R2
after finishing this process step. Looking at the RTLS timeline we do observe
that the wafer box visits T and PC after being processed on M1. But more
important, is the fact that after signing off the step in MES at the PC the wafer
box is not stored at R2. Since the proposed RTLS implementation does not
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Fig. 33: f6(t,m) Registration accuracy
of completed production steps registered
by RTLS and MES

Fig. 34: s6(t): Ramp-up production vis-
ibility index

cover the entire cleanroom it could be that the wafer box is in a blind spot of the
RTLS. However, based on qualitative information it also happens that wafer
boxes are incorrectly stored or taken by engineers. In short, the MES implies
that this wafer box must be at R2, while in reality, its location is unknown
potentially resulting in excessive search times, unnecessary communication or
‘worst case scenario’: a lost wafer box.

6.6 Production visibility

The sixth ramp-up index f6(t,m) presents the registration accuracy of com-
pleted production steps at each machine: the production visibility. Whereas
f5(t) looked at the registration accuracy of pathways through the factory, this
index looks at how many steps are performed versus how many steps are regis-
tered? Figure 33 presents the result for f6(t,m). SMA with k = 5 was selected
as the smoothing technique. Additionally, the result of f6(t,m) is transformed
such that it fits the ramp-up index conditions ranging from -1 to 0; indi-
cating the distance from ramp-up completion. The transformed result (s6(t))
was achieved by normalizing the deviation of registered production steps con-
cerning a maximum capacity of production steps per day established after
discussion with production leads.

First and foremost, apart from the three peaks, it appears that the dif-
ference between completed steps registered by MES and RTLS is minimal.
Furthermore, the difference is stable over time. This stable behavior is espe-
cially reflected in the smoothed SMA for a relatively low value for k. Although
the difference is small, its origin was still investigated. It was concluded that
certain subsequent steps are executed at the exact same location which does
not trigger the RTLS. As a result, fewer production steps are registered by
the RTLS. Secondly, the three peaks are all single-day observations. Meaning
‘something’ happened on this day which increased the number of registered
production steps outside the ‘eye’ of the MES. This exceptional behavior is in
line with observations from researchers and engineers. For example, the fact
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that a certain production step is not correctly implemented in MES enabling
the operator to walk back and forth between two machines without MES reg-
istering these ’movements’. Nevertheless, it is expected that this behavior is
observed more frequently instead of three times only. After discussion with shift
leads and observations in the clean room, no sound motivation was found to
explain these differences in registered production steps. The only explanation
which could not be ruled out is the effect of replacing anchors and/or beacons
throughout the deployment during the inspection of the RTLS. Overall the
registration accuracy index of production visibility in Figure 34 indicates the
accuracy of registering production steps is close to ramp-up up. This might
seem confusing since s2(t), which looked at the number of completed produc-
tion steps, is far from ramp-up completion. However, f2(t) looks at the number
of completed steps, whereas f6(t,m) covers the registration accuracy. When
combining these indices, one could state that on the one hand, the number
of completed production steps is insufficient (production capacity is underuti-
lized). On the other hand, the registration of completed production steps is
mature since the difference between what is registered and what is actually
happening on the shop floor is small.

Table 12 discusses some of the frequently occurring events related to devi-
ations between production steps registered with an MES and RTLS. These
events are designed based on observations inside the cleanroom.

Table 12: Exemplification of scenarios contributing to production visibility based
on qualitative data

Event Description
Immature MES Steps in the MES are not implemented in enough detail enabling operators

to perform production steps outside of MES (Figure 35).
External produc-
tion step

Handful (crucial) production steps are performed at an external location

Out of cleanroom Engineer takes a batch to grey room or his/her desk.

Figure 35 presents a spatiotemporal representation of the first example in
Table 12. This example contains a single production step at M1. MES regis-
tered the start and end date of this step, but the RTLS implies an additional
visit to M2. Without additional information, it must be assumed this extra step
was deemed necessary. Nevertheless, potentially valuable information about
this extra step at M2 is lost if MES is not able to capture it. This is the
result of an MES that is, similar to the production process itself, continuously
expanding and evolving along the ramp-up. Even though such scenarios are
imminent the production data generated at M2 can be of use for product or
process-related issues regarding the ramp-up.

6.7 Production traceability

The seventh and final ramp-up index (f7(t,m)) quantifies the difference in
registered process time per step and actual time spent at the workstation.
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Fig. 35: RTLS vs MES example: immature MES

Fig. 36: f7(t,m) Registration accuracy
of production time registered by RTLS
and MES

Fig. 37: s7(t): Ramp-up production
traceability index

This difference is considered an indicator of production traceability. Again,
MES data as of May 2021 is used and RTLS data was included as of August
2022. For sake of simplicity, only the difference in average process time over all
selected workstations is presented. Figure 36 presents the average difference in
process time of each production step registered between MES and RTLS. It
was decided to use SMA as a smoothing technique with a k = 5 since no clear
underlying trends were visible. Afterward, the result is transformed to s7(t),
which is presented in Figure 37. Similar to s3(t), this transformation is achieved
by normalizing the average process time with respect to a maximum value of
process time (in min) established after discussion with production leads.

The results of the production traceability learns us the following: Firstly, on
certain days there is a difference in the order of 102 minutes which cannot be
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traced by the MES. After discussing the results with engineers and operators,
numerous reasons are motivating this difference. For example, operators who
forget to sign off a step in MES result in unrealistic process times. For a total
of 20 workstations, this is acceptable. The exceptions of a few hundred minutes
on certain days are in line with reality. Secondly, Figure 36 also reveals periods
for which the difference between registered and actual process times is minimal
or even close to zero. Looking back to f2(t) and f4(t,m) this observation has
a similar explanation i.e. low WIP. If f2(t) and f4(t,m) are not taking into
account the WIP so will this index. In other words, differences in registered
process times are typically low, because there is not much WIP inside the
production process. The third interesting observation is that the peaks do
not have the same location as the peaks of the previous index in Figure 33
indicating that days when a lot of production steps happen outside of the MES
it does not necessarily result in an excessive lack of production visibility. In
other words, these steps are often short production steps. Overall, the accuracy
of registering process time is insufficient. In contrast to the previous index
(f6(t,m)), the registration accuracy index for production traceability is varying
a lot. Although s7(t) appears to be close to ramp-up completion this is mainly
due to periods with low WIP. Specifically, the significant peaks indicate the
lack of traceability for certain periods.

Table 13 elaborates on reoccurring scenarios throughout the process effect-
ing the production traceability. These scenarios are identified after going
through the RTLS data together with shift leads and operators.

Table 13: Exemplification of scenarios contributing to production traceability based
on qualitative data

Event Description
Excessive process
times

An operator or engineer might forget to sign off a step in MES causing
excessive process times. Especially if there is no subsequent shift (during
night or weekend) this affect the process times a lot.

Leave wafer box at
workstation

operators are not forced to store boxes away and therefore tend to forget
to put it back or leave it there when taking a break.

Experience opera-
tors

experience operators know certain processes by heart. Therefore they tend
to perform all steps and do the ‘administration’ as they call it later in
MES causing unrealistic process times.

Figure 38 presents a spatiotemporal representation of both the first and
second examples in Table 13. This example contains a production step with a
visit to M1. After being processed on M1 the wafer box is put at a table as
can be derived from the RTLS timeline. What happens next remains unclear.
Based on the MES data the step is still in production but based on observations
and consultations with operators, the wafer box is left at T because it was time
for a break or accidentally forgotten to sign off in MES resulting in unrealistic
process times registered by the MES.
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Fig. 38: RTLS vs MES example: single step, multiple locations

6.8 Overall ramp-up metric

Given the calculated ramp-up indices (four performance indices and three reg-
istration accuracy indices), the overall ramp-up index can be calculated as
explained in section 3.7. Similar to (Doltsinis et al., 2013) the individual ramp-
up indices are transformed to the same scale to enable the aggregation into
one single overall ramp-up metric. However, where Doltsinis et al. (2013) used
this overall ramp-up metric to asses the ramp-up progress of one single robotic
arm, this work aims to assess the overall ramp-up performance of a job shop.
For this case study, the individual contribution of each ramp-up index was
considered equal. Meaning, weights α1, ..., α7 were all equal to 1.

(i)foverall(t) = s1(t) + s2(t) + s4(t,m)

s.t.

min = −3.0

max = 0.0

(ii)foverall(t) = s1(t) + s2(t) + s4(t,m) + s5(t) + s6(t,m) + s7(t,m)

s.t.

min = −6.0

max = 0.0

The challenge during ramp-up is that production processes are ill-
understood. To answer our research question the overall ramp-up index is
calculated twice: (i) once with indices that can be calculated using MES data.
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(ii) once with indices using also indices based on RTLS data. The answer if
RTLS can contribute to ramp-up performance measurement lies in the differ-
ence between (i) and (ii). The overall ramp-up index is not calculated solely
on RTLS data. This would conflict with our assumption of the need for an
MES. Mathematically this results in the following two overall ramp-up indices
for (i) and (ii) respectively.

Both overall ramp-up indices (i) and (ii) are presented in Figure 39 and
40 respectively. Recall that the model requires two parameters to indicate the
start of the ramp-up completion zone and the end of the start ramp-up zone
(Table 7). It was decided to set these model parameters λ1 and λ2 equal to
1/3, and 2/3 of the minimum ramp-up value. This was based on discussions
with operations managers.

Fig. 39: foverall(t) based on MES data Fig. 40: foverall(t) based on RTLS and
MES data

Since both overall-ramp-up indices have an unequal number of individual
ramp-up indices the minimum value of the index is different. As explained
above, the result in Figure 39 is based on three indices, hence the minimum
value of 3×−1, whereas the result in Figure 40 is based on six indices, hence
the minimum value of 6×−1. Moreover, the RTLS was implemented at a later
stage. The start and end of the implementation are visualized in Figure 40 by
the purple lines.

Without taking into account the RTLS, Figure 39 presents an undulating
ramp-up behavior. Over a period of 12 months (October 2021 until October
2022) this behavior is unchanged. However, around November 2022 a sig-
nificant drop is observed. This drop is mainly caused by s1(t) (production
disruptions) due to the downtime of critical machines to enable the transition
from 3- to 4-inch wafers. This decision by production managers also affected
some of the other indices contributing to this observation in the overall ramp-
up index. According to the three basic ramp-up stages presented in Table 7,
the ramp-up performance based on MES data has passed the stage of ‘start
ramp-up’ and is currently in the stage of ‘ramping up’.
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Secondly, the overall ramp-up performance index in Figure 40, including
MES and RTLS data, reveals additional information. Up until April 2022, the
result is the same. Between the start and completion of the RTLS implementa-
tion, the result shows some deviations related to the introduction of the RTLS.
Nevertheless, we focus only on the period after the RTLS is completely imple-
mented as of August 2022. First of all, although the smoothed result does not
reveal a lot, multiple downward-faced peaks of the performance index can be
observed in the actual results (blue line). These are mostly caused by regis-
tration accuracy indices s6(t,m) and s7(t,m). This observation illustrates the
lack of visibility and traceability of the production process during ramp-up.
Between the introduction of the RTLS and the end of the deployment, the
overall ramp-up performance is positioned closely below the λ1 threshold, and
sometimes even exceeding λ1 it for a short period. Moreover, the combined
result of MES and RTLS data hints at the arrival of a new stage in the ramp-
up. From ‘ramping up’ the production process is transitioning into a new stage
of ‘ramp-up completed’. This transition is not visible without collecting the
real-time position data.

All in all, according to the proposed ramp-up performance measurement
framework, SMART Photonics is amid the ramp-up stage. From interviews
with management and experts on sight, this resembles the current status of
their ‘Lab to Fab’ transition. The smoothed overall ramp-up index does not
show a clear difference between RTLS and MES data, while this difference in
the individual indices is more abundant. This might have to do with account-
ing for different weights per ramp-up index. As mentioned, for this study we
set all weights α1, ..., α7 equal to 1. Nonetheless, adding the registration accu-
racy indices, leveraging RTLS data, provides additional information to the
overall index. For example, the fluctuations caused by the immediate result
of discrepancies between what MES and RTLS are registering. Without look-
ing into the responsible individual index these fluctuations cannot be clearly
allocated by looking solely to the overall performance index.

Fig. 41: Ramp-up performance managerial implications
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The goal of this work was not only to quantify early-stage ramp-up per-
formance, but also to enable companies to accelerate ramp-up such that they
secure their mission toward mass manufacturing. As such the final step of
the proposed ramp-up performance measurement framework is ‘Evaluate and
learn’ (Figure 4). The aim here is to connect novel ramp-up management
approaches (Schmitt et al., 2018) to the experience gained throughout this
research to contribute to the field of future ramp-up. As a result, Figure 41
connects recommendations of ramp-up performance, job shop, and Industry
4.0-related literature to the degree of ramp-up. With this Figure we conclude
the results by providing a tangible road map for production companies based
on our experience and related work discussed in section 2.

For each of the three ramp-up phases, some potential stepping stones are
provided on the right-hand side of Figure 41. The approaches of the exist-
ing literature are assigned to a stage based on characteristics per ramp-up
stage presented in Table 7. The other stepping stones are based on expert
interviews with production managers inside the company as well as academic
experts within the field of manufacturing systems. It must be stated these
stepping stones are subjective and should be supported by additional research
within this field. Nonetheless, given the literature and interviews, we are con-
fident that these elements are useful stepping stones to lead a job shop type
of production process through ramp-up.

7 Discussion

Quantifying production performance during an unpredictable and ill-
understood period may never be fully accurate. Also the proposed low-cost
RTLS does not reveal all hidden elements that an MES can not capture.
Nonetheless, we are confident the proposed performance measurement frame-
work and RTLS contribute to a better understanding of the ramp-up. This
section critically discusses how the framework and RTLS can be improved as
well as their limitations.

This work acknowledges the fact that the framework is limited to perfor-
mance indicators, which can be measured with the existing MES and proposed
RTLS. As mentioned, the selected data sources are not (yet) capable of cap-
turing the quality of products throughout the ramp-up. While this is still
considered an important metric during (and after) ramp-up, our results are
impacted by its absence and could be improved by including this index in the
future.

One potential flaw of the proposed framework is not taking into account
the time horizon of a typical ramp-up when selecting a case study. Especially
for our chosen case study, it is difficult to interpret the results. Historical ramp-
ups of semiconductor manufacturers could take a few years up to a decade.
With only 18 months of MES data and 4 months of RTLS data, it is difficult
to draw conclusions on long-term ramp-up behavior.
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Moreover, the impact of an individual ramp-up index on the overall ramp-
up index is visible. For example, the peak in production disruptions (f1(t))
in Figure 19 is present in the overall ramp-up index (Figure 39). These are
no outliers since they could be motivated by contextual information with help
of engineers, shift leads, and/or operators. However, the consequence of this
current design is that the overall ramp-up index contains a lot of variation.
Currently, the effect of such fine-scaled structures is tackled by smoothing
techniques. Perhaps this could be improved by introducing different levels for
the ramp-up performance measurement framework. For example, a level for
which the individual ramp-up indices are assessed for daily review and a more
strategic level which excludes such fine-scaled structures.

Another aspect that the proposed framework does not take into account
is the stability of indices. According to Doltsinis et al. (2013) reaching consis-
tency in output is of more significance than a one-off good result. The current
design of the ramp-up indices does account for the accuracy of registering
performance, but not for variability. Rewarding stability (or penalizing vari-
ability) could contribute to better ramp-up performance management.

Regarding the design of the proposed RTLS, many improvements can be
made to compete with industry standards. For example, the energy efficiency
of anchors and beacons, including 3D localization instead of 2D, and the use
of more advanced localization techniques to increase the accuracy of positions.
However, the goal of this work was not to outperform existing RTLS solutions,
but rather to investigate the potential of a low-cost solution for manufacturers
during ramp-up.

Concerning the implementation of the proposed RTLS, there are a few
limitations. Due to the densely populated cleanroom and confidence of the
positioning engine, it takes the RTLS between 20 and 120 seconds to verify a
change in position. This window is considered ‘near real-time’. Furthermore,
in our case study, only 20 workstations were considered. The limitation of not
having global coverage resulted in ‘blind spots’ objects if none of the anchors
picked up a signal of a beacon. This could be solved by adding more anchors.
However, the required budget and time to achieve this were not allocated to
this case study.

Throughout the deployment, a few external factors influenced the desired
quantity of the collected data. One factor was a decision to reduce the WIP to
give priority to a limited set of orders. This had a great impact on the number
of wafer boxes we were tracking during the deployment. Secondly, during the
deployment, several scheduled maintenance activities of critical machines put
some orders on hold. Hereby, the activity inside the cleanroom was reduced,
impacting our results as well. On the other hand, these factors are also exactly
what characterizes the ramp-up.
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8 Conclusion

The goal of this work was to contribute to adequate performance measure-
ment of an early-stage ramp-up in job shop-type manufacturing environments.
The shift of high-tech production companies from time-to-market to time-to-
volume during the 00s, puts the tail end of the ramp-up in a critical position.
Simultaneously, the rise of IoT in manufacturing increases the number of
low-cost sensors in manufacturing environments boosting the next industrial
revolution. Combining both developments, this work explored whether an
RTLS can contribute to ramp-up performance measurement of job shops.

As a result, we proposed a framework for measuring the ramp-up perfor-
mance. The framework is inspired by the rise of IoT in manufacturing and
builds upon the single workstation ramp-up performance framework designed
by Doltsinis et al. (2013). To support this framework with real-time produc-
tion data, this work introduces an information system architecture containing
a low-cost and scaleable RTLS alongside an existing MES. During ramp-up,
when existing performance measurements (cost, flexibility, quality, and time)
are not always applicable yet, the framework demonstrates its capability of
real-time ramp-up performance measurement. Seven multi-dimensional indica-
tors have been identified to quantify the ramp-up performance and registration
accuracy of a job shop. Four indices covered the ramp-up performance by mea-
suring production disruptions, product quality, completed production steps,
and process times. The remaining three indices covered the accuracy of regis-
tering production data by measuring pathway deviations, production visibility,
and production traceability.

As a result of this (near) real-time insight into ramp-up performance, the
overall ramp-up performance indicates the distance removed from ramp-up
completion. Furthermore, we divided the total ramp-up into three different
stages. Concrete recommendations based on our results serve as stepping stones
throughout each stage, connecting the overall ramp-up performance index to
existing ramp-up approaches in the literature and managerial implications.
To the best of our knowledge, the proposed framework is unique for ramp-
up performance measurement within a job shop, but also the first to leverage
real-time location information to quantify ramp-up performance.

In essence, the implementation of the proposed framework and RTLS
within the case study resulted in observations in line with earlier research. The
RTLS resulted in better traceability of wafer boxes and increased visibility of
production steps. However, these findings were expected, because these have
been demonstrated in earlier work. The proposed framework aimed at reveal-
ing the discrepancy between what one ‘thinks’ is happening in their production
process and what is actually happening to improve ramp-up decisions. For
five indices we reconstructed multiple scenarios resulting in a slower ramp-up
based on data collected by the RTLS. Lastly, the overall ramp-up index also
answers a more strategic question ‘how far are we from ramp-up completion?’
A rewarding observation is the undulating behavior of the overall ramp-up
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metric, which is conceptually illustrated in several earlier research, but is now
approached quantitatively.

All in all, using a low-cost and scaleable RTLS during ramp-up has
demonstrated its usefulness in improving ramp-up performance measurement
by revealing the unseen. Additionally, the automated collection of real-time
positions of objects is undoubtedly the next step in the industrial revolu-
tion However, it is important to note that an RTLS should not be the only
source of information used as input for ramp-up performance measurement.
Towards the end of ramp-up, when production becomes less R&D-based and
more stable, the production process automatically becomes prone to generic
factory physics. In other words, a proper MES must be in place by then.
The question if RTLS will play a role in an established job shop has already
been identified, but how real-time location data can be used even more in
performance measurement of job shops is to be determined in future work.

To conclude this work the following suggestions for future work are
considered.

Cross-validation of the proposed framework must confirm the suitability of
the framework for job shops in ramp-up for other industries than the semicon-
ductor industry. As soon as this has been confirmed and more data is collected,
future work could focus on extending the framework with a predictive layer:
projecting the future ramp-up performance based on the individual indices.

Secondly, given the development of the Industry4.0 concept and and
increasing number of sensors in manufacturing environments, we assume the
quality of an RTLS will increase while the economy of scale will reduce its
costs. Future work is in line with this assumption. The RTLS will continue to
collect data, opening new doors for future research.

Similar to Thiesse et al. (2006), factory layouts can be designed using
real-time location data. Another possibility could be designing dispatching
rules or queue priorities based on locations. Fourthly, the period from ramp-
up start to end is still ill-understood, while high-tech production companies
experience a shift from time-to-market to time-to-volume. On that account,
to better position existing ramp-up approaches thorough research on different
sub-phases inside the ramp-up transition is required.

Regarding the implementation at SMART Photonics, it was chosen to start
looking into intertwining the MES and RTLS more through integration of the
beacons inside an electronic label. This is a beacon combined with an e-paper
display that presents live information from the MES. The regular paper-based
system could then be replaced as well. Also, it was decided to explore the
expansion of the RTLS within the current facilities.
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Appendix A: Hardware selection

Selection criteria for RTLS is a very important step in the implementation
phase (Gladysz & Santarek, 2017; Toro et al., 2021). Gladysz and Santarek
(2017) describe wireless technologies commonly used in manufacturing envi-
ronments are: RFID, Wi-Fi, Bluetooth Low Energy (BLE), Ultra-Wide-Band
(UWB), and vision. Subsequently, four main criteria for selecting RTLS tech-
nology are drafted in their book on Implementing Industry 4.0 (Toro et al.,
2021). These criteria are positioning accuracy, power consumption, cost, and
ability to use existing wireless infrastructure. More extensively, Gladysz and
Santarek (2017) developed a set of criteria for RTLS selection. Due to the
wide range of available technologies they try to answer the question: how to
choose the best system for the purpose of a specific case? The main goal of this
work was to present and verify a methodology for RTLS selection in indus-
trial environments, because they found a research gap in this area. The criteria
were established using a Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS). In total, three types of criteria can be distinguished:
financial, implementation, and technical. All criteria and their interrelations
are presented in Figure 1. The methodology is focused on selecting the right

Fig. 1: Sets of RTLS selection criteria and their relation (Gladysz & Santarek, 2017))

technology in an early-stage of RTLS implementation. Prior to this, the ques-
tion if RTLS is needed and how it contributes to the strategic advantage of
the company should be answered first.

Taking into account the above-mentioned design criteria it was decided to
use Bluetooth Low energy tags and anchors as hardware components. Figure
2 presents schematics and more specifications of both tags and anchors. The
motivation behind this choice was the following:

• Cost: BLE tags and anchors are relatively cheap due to their popularity in
short range communication devices. One requirement was that they should
be water proof, because wafer boxes are being washed every now and then.

• Existing infrastructure: Although passive RFID tags are probably the most
easy to integrate in existing infrastructue, BLE tags are small and its battery
last for around 5 years. Regarding anchors, BLE anchors can be powered by
Power Over Ethernet (POE) or USB. This way of powering might favour
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UWB as suitable RTLS technology, but re-charging batteries now and then
is not desired in this case.

• Accuracy: currently UWB has probably the best accuracy on the market
(+-0.1m) depending on interferrence of surrounding objects. Using BLE,
this will probably be in the range of +- 1m. Nonetheless, this is considered
sufficiently enough for this work.

• Power consumption: BLE has a very low power consumption level

Appendix B: Hardware configuration

(a) Tag (b) Anchor

Fig. 2: a) Teltonika Bluetooth Low Energy beacon controlled by a ST Microelectron-
ics BlueNRG-2 microcontroller. Range up to 80m and weight of 18 gr. Dimensions
56.6mm x 38mm x 13mm4. Casing according to IP67 standard. b) FireBeetle 2
ESP32-E. Based on a ESP-WROOM-32E main controller board powered by USB-C.
2.4GHz Wifi and BLE module.5

Wafers are transported in wafer transportation boxes. Each box can carry
up to 25 3-inch wafers. Figures 3 and 4 contain the box in a closed and open
state.

Subsequently tags are attached on the lower back side of a wafer box using
3M double sided circle shaped tape. Tape was preferred over mounting, because
of particle generation. After discussion with the shift leaders it turned out
that the backside was the only option for beacon placement, since boxes are
stacked: excluding the top side. Labels are put on the front and operators are
taught to grab the boxes by the long sides, so this leaves us with the back.

Before the complete experiment is installed, a ground truth is established
to get a feeling for the accuracy and sensitivity of the selected hardware. First
the behavior of Bluetooth signals should be understood. Anchors collect the
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Fig. 3: 3-inch wafer box
closed (side view) Fig. 4: 3-inch wafer box open (top view)

Received Signal Strength Indication (RSSI) values of beacons. The RSSI value
resembles the power of a received radio signal (measured in dBm). A higher
RSSI value, represents a higher the signal strength.

Equation (1) presents the theoretical background behind the RSSI value

RSSI = −10nlog10(
d

d0
) +A0 (1)

where d is the distance between the beacon and the anchor. A0 reflects a
referenced RSSi value at distance d0 (in meters). Usually d0 is set equal to
1.0, such that A0 becomes the signal strength at 1.0 meter. n is the signal
propagation exponent, which is a constant that differs from environment to
environment. This formula is derided from Friss’ simple transmission formula
(Friis, 1946). Rewriting Equation (1) in to Equation (2)

d = d0(10
A0−RSSI

10n ) (2)

provides the distance based on the RSSI value.
The test set-up for establishing a ground truth is presented in Figure 5.

One anchor is placed on the left side of a table. Two beacons were placed
on the table. One beacon at 10cm distance and one at 100cm distance from
the anchor. The tests were made in an office space where the environment
conditions changed during experiment (people walking, doors opening and
closing etc.).

Two calibration experiments were conducted each lasting for 96 hours (4
days). The experiment was conducted twice with different anchors and bea-
cons. The first experiment used anchor 207 and beacons 242 and 257 at distance
10cm and 100cm respectively. The resulting RSSI values are presented in
Figure 6 and 7.

The second experiment used anchor 85 and beacons 257 and 242 at dis-
tance 10cm and 100cm respectively. The resulting RSSI values are presented
in Figure 8 and 9.

Table 1 presents the mean and standard deviation of both experiments as
well as the theoretical distance when these mean RSSI values are plugged into
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Fig. 5: Calibration set-up. 1 anchor, 1 box at 10cm, and 1 box at 100 cm

Fig. 6: RSSI of beacon 242. Distance =
10cm. Std. (σ) = 1.387

Fig. 7: RSSI of beacon 257. Distance =
100cm. Std. (σ) = 1.025

Fig. 8: RSSI of beacon 257. Distance =
10cm. Std. (σ) = 0.843

Fig. 9: RSSI of beacon 242. Distance =
100cm. Std. (σ) = 3.513

Equation (2). n was set equal to 2 and A0 equal to -58 dBm (which was the
average of earlier experiments).
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Table 1: Results calibration experiment

Experiment beacon distance (m) µRSSI σRSSI µd (m) ±sigma (m) mean error (m)

1 0.1 -17.9 1.39 0.010 0.012, 0.008 0.090
1 -57.8 1.03 0.978 1.100, 0.868 0.022

2 0.1 -24.0 0.84 0.020 0.022, 0.018 0.080
1 -58.7 3.51 1.084 1.624, 0.724 0.084

Overall the mean errors are all < 10cm. For the measurements at 100cm
distance this is acceptable, but for the 10cm measurements this is relatively
a big error. A possible explanation is the environmental noise. It is therefore
advised to make use of a noise filter to improve the accuracy.
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