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Interpretable, discrete multivariate time-series
classification, using wire bond signal data from

semiconductor manufacturing
Cas Rosman

Abstract—In this study, we propose a methodology for discrete
multivariate time-series classification with automated signal and
feature selection. The methodology is applied to real operational
machine signal data from the wire bonding process at NXP
Semiconductors N.V. During wire bonding several sensors ac-
tively monitor the process, generating a discrete multivariate
time-series for each device. After wire bonding, an automatic
visual inspection labels the quality of each device. To the best
of our knowledge, we are the first that focuses on predicting
the wire bond quality for entire devices rather than individual
wires. The proposed methodology consists of several steps. First,
we extract features from the discrete multivariate time-series and
train a baseline model on all features. Second, we use permutation
feature importance as a sorter for a sequential backwards search
to subsequently find the optimal signals and feature set. Finally,
the classification performance when using the reduced signals
and feature set is compared to the performance of the baseline
model. We conclude that the dimensionality of the data can be
significantly reduced without losing classification performance.
The reduced dimensionality leads to highly interpretable classi-
fication results in the wire bond use case.

Index Terms—Wire Bonding, Feature Extraction, Feature Se-
lection, Multivariate Time-Series Classification, Random Forest
Classification, Permutation Feature Importance, Dimensionality
Reduction, IIoT

I. INTRODUCTION

SEMICONDUCTOR manufacturers are increasingly gen-
erating large amounts of data. Due to the rise of the

Industrial Internet of Things (IIoT), production machines are
more interconnected and equipped with all kinds of sensors
that continuously monitor the production process for each
device. Meanwhile, trends in the electronics market have
led to demand for miniaturization and higher performance
standards of semiconductors [1]. The higher demands for
semiconductors present several challenges. One such chal-
lenge is the increased risk of product failures caused by the
manufacturing process. To meet this challenge, the newly
available manufacturing data presents an opportunity for the
semiconductor industry, allowing for improved ways to predict
and prevent product failures. However, generating valuable
insights from manufacturing data becomes more challenging
and computationally expensive when ample data is available.
The high dimensionality of the newly available data presents
a real challenge for the industry.

One process step particularly affected by the miniaturization
and higher performance standards is wire bonding. This pro-
cess is part of the semiconductor packaging process, which is
the interface between the semiconductor manufactures and the

electronics manufacturers. The semiconductor packaging pro-
cess consists of several steps, including wafer backgrinding,
sawing, die attaching, wire bonding, moulding, marking and
more. To meet the increasing demands on semiconductors, the
wire bonding process is advancing on all fronts, one of which
is that the recent wire bond machines are equipped with more
and more sensors to monitor the process continuously. Wire
bonding, therefore, is a key example of a process that generates
increasing amounts of data that can be used to conform the
process to current and future market demands.

Wire bonding is the process of connecting the device to
the outside world (lead frame) with a conductive wire. In
this study, we consider thermosonic ball bonding. The process
steps are depicted in Figure 1. In thermosonic ball bonding, a
Free Air Ball (FAB) is formed before the first contact using an
electronic spark. The capillary moves so the ball makes contact
with the bond pad on the device. By applying scrubbing, force
and heat, the ball is bonded to the bond pad, creating the ball
bond. Similarly, the capillary moves towards the lead frame to
create the stitch bond. The cycle is repeated for all wires on
each device.

Figure 1. Thermosonic ball bonding process steps [2]

After wire bonding, an Automatic Optical Inspection (AOI)
labels the device as either Pass or Fail. When a device fails the
AOI, a human inspector labels the failure by assigning a failure
mode. Examples of failure modes are Tie bar deformation,
Sagging wire and Broken wire. During wire bonding, several
sensors are active, generating a discrete multivariate time-
series for each device. A subset of signals is depicted in
Figure 2, the signal values are plotted on the y-axis, and the
Discrete time (t) is plotted on the x-axis. The inspection result
for this particular device is Fail due to Tie bar deformation.
Note that the AOI does not generate labels on wire level, so
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Figure 2. Subset of machine signal data for one device instance. The discrete time (t) represents the wire id in wire bonding context. The subscripts ball and
stitch indicate if the signal is measured for the ball or stitch bond on the corresponding wire id. The signal abbreviations are specified in section IV.

the specific wire where the failure occurs (discrete time (t)) is
unknown.

While there are many studies on wire bond quality pre-
diction using machine signal data, current studies predict
the quality of each wire, assuming the quality of each wire
is known. While this works in some environments, such
information is not widely available for all devices in real-world
scenarios. Moreover, we focus on interpretability by reducing
the dimensionality of the data. Therefore, in this study, we
develop a novel method for discrete multivariate time-series
classification with automated signal and feature selection. We
apply the method to real-world wire bond machine signal
data (Figure 2) from NXP Semiconductors N.V. The method
enables us to classify devices (on the corresponding AOI
labels) and find the least required signals and features to do
so. Reducing the number of signals and features in the data
improves the interpretability and computation performance of
the classification algorithm [3]. Another advantage is that the
risk of overfitting is significantly reduced when non-relevant
signals and features are removed [4].

This paper is organized as follows: Section II presents the
relevant literature. In Section III, we propose the methodology
that is applied to real-world data from NXP Semiconductors
N.V. in Section IV. We discuss the study in Section V and
derive managerial implications in Section VI. The study is
concluded and future research opportunities are identified in
Section VII.

II. LITERATURE REVIEW

Wire bond quality prediction using machine signal data has
been studied within semiconductor manufacturing for several
decades. We first (i) identify early works within this research
scope. Secondly (ii), we identify a literature stream where
developments in sensor technology are the main driver of
advancements in wire bond quality prediction. Third (iii), a
clear shift from experimental setups to in situ process moni-
toring is identified in the literature. Finally (iv), several papers
that focus on interpretable methods for wire bond quality
prediction using machine signal data have been identified.

(i) Early work already proposes to use machine data ob-
tained during wire bonding to predict bond quality. Pufall et

al. [5] note that ultrasonic signal is a powerful predictor of
bond quality that can be used to substitute Statistical Process
Control (SPC) and minimize the number of destructive tests
required to guarantee product quality. Similarly, Wang et al.
[6] indicate that a Artificial Neural Network (ANN) model
based on wire bond machine data can predict the pull strength
of the wires.

(ii) After these two seminal works, developments in sensor
technologies are the main driver of advancements in wire bond
quality prediction. Or et al. [7] implement a piezoelectric
sensor to monitor the changes in the ultrasonic vibrations
during wire bonding. They use the frequency signal from the
sensor to predict the shear strength of the wires by calculating
the steady-state amplitude to the peak value of the second
harmonic of the frequency. After installing a piezoelectric
sensor on the surface of the horn to measure the vibrations
during wire bonding, Zhang et al. [8] use the amplitude
changing characteristics in joint time-frequency distribution of
the measured vibrations as input to a ANN model to predict the
shear strength of the wires. Subsequently, the use of a micro-
temperature sensor underneath the bonding point to correlate
the bonding temperatures to the expected shear strength of the
wire bonds is researched by Suman et al. [9]. Zhong et al. [10]
and Gual et al. [11] propose implementing a laser vibrometer
to predict the bonding strength by measuring slight changes
in the resonance frequency of the capillary.

These methods, however, are not suited for in situ moni-
toring since they change the configuration of the transducer
system or device. The proposed setups, therefore, cannot be
used in real-world manufacturing applications [12].

(iii) Instead, Ling et al. [13] use a Hilbert transform to
obtain the complex valued real and imaginary part of the
electrical signals of the transducer system without changing
the initial setup of the wire bonding machines. They state
that the measured waveforms are fully responsible for the
bond quality. Finally, the data is fed to a Back Propagating
Neural Network (BPNN) to predict bond strength. The use
of electrical signals from the transducer system is developed
further in the literature. Feng et al. [14] refine the process
of mining electrical signals from the ultrasonic generator to
predict bond quality. They extract features that are selected by
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experts from the ultrasonic generator signal data and perform
Principal Component Analyses (PCA) on these features. The
selected features are subsequently used to predict the wire
shear strength using an ANN. Wuwei et al. [15] use the
same method as Feng et al. [14] but study the data generated
by a piezoelectric sensor. Wang et al. [12] use wavelets to
decompose the electrical signals of the transducer system and
determine the characteristics of the fundamental frequency
component together with the time and frequency-domain char-
acteristics. Using these characteristics, Wang et al. predict
the shear strength of bonds using a BPNN. In a series of
publications, Arjmand et al. [16]–[18] first extract features
from the electrical transducer signals and use the features
to classify wire bonds in categories representing the corre-
sponding quality. They also determine the survival probability
of the bonds over time for each class using real-world data.
The use of quality indices is introduced by Hagenkötter et
al. [19]. They extract features from electrical signals of the
transducer system together with the output of other sensors on
the wire bond machines and compare the extracted features to
a threshold for assessing the expected bond quality. They also
determine the weight of each feature, meaning its contribution
to the expected wire quality. Finally, PCA is performed on
the features. By combining PCA and Tachugi methods, Tzeng
et al. [20] optimize process parameters and determine the
ones most influential to the wire bond process. Feng et al.
[21] use the voltage current and signals from the ultrasonic
generator, and extract the bonding features by combining
Wigner-Ville distribution with empirical mode decomposition.
The most important features are selected using PCA. Lastly,
they train a ANN using the selected features to predict wire
bond quality. For future research, Feng et al. [21] indicate their
methodology can be enhanced by using a improved feature
selection procedure.

Previously mentioned studies do not generate results that we
consider to be interpretable in our use case because they do not
explain what patterns in the data indicate that failures occur.
The mentioned studies propose a variety of methods including
prediction models that are difficult to interpret and PCA for
dimensionality reduction. We do not consider PCA to be truly
interpretable, since the different features need to be distinct
from each other to be interpretable [22]. This means that the
summarizing features obtained from PCA are not useful for
interpretable classification in our use case.

The literature does propose methods that focus on inter-
pretability. The following studies have a similar goal to our
research. However, like all literature mentioned in this review,
they require direct feedback (labels) on the quality of each
individual wire. This feedback is not available for all devices
when using real-world data.

(iv) Montealegre and Hagenkötter [23] propose a cytokine-
formal immune network, which is able to deal with high
dimensional data coming from the wire bond machines by
incorporating feature extraction and selection methods to pre-
dict bond quality for each wire. Using weld power and horn
displacement, Lee et al. [24] determine the key features of
these signals to bond quality from sampled wires. They also
provide a guideline for feature extraction and selection in

process monitoring for wire bonding. Chun-Min et al. [25]
develop a fuzzy quality prediction evaluation model for the
wire bonding process. They create a process-quality index with
a one-to-one mathematical relationship to the process yield of
each wire.

The presented studies show that many researchers focus on
predicting the quality of individual wires. The researchers rely
on direct feedback on each wire’s quality in the form of a
label or quantitative measurement. However, when using real-
world data, feedback on individual wire quality is not widely
available for each device. To the best of our knowledge, no
study focuses on predicting the wire bond quality for entire
devices rather than individual wires. Due to a lack of direct
feedback on the quality of individual wires and the increasing
dimension of available data from real-world manufacturing,
a method is required to classify wire bond quality for each
device and reduce dimensionality from the input data. Such a
method will allow the industry to generate valuable insights
into data patterns correlated to quality issues and reduce
computation / data storage cost.

III. METHODOLOGY

We propose a novel methodology for discrete Multivariate
Time-Series (MTS) classification with automated signal and
feature selection. We combine the MTS classification method
proposed by Baldán et al. [26] with a feature reduction
framework proposed by Schelthoff et al. [27]. Baldán et al.
[26] classify MTS based on features they extract from the
MTS. Schelthoff et al. [27] propose a permutation based
feature reduction framework to find the relevant features for
classification. We expand the methodology by implementing
a selection Threshold that allows the user to make a trade-
off between dimensionality reduction and classification per-
formance. We also add a signal selection step that determines
the least required amount of signals for classification. The
proposed methodology allows the user to classify labeled MTS
with a reduced set of signals and features while keeping
the classification performance within a certain Threshold
from the classification performance obtained when using all
available data.

A. Data structure of labeled discrete multivariate time-series

The proposed methodology can be applied to any set of
N labeled discrete MTS (number of devices) with length T
(number of wires per device) and S amount of signals (active
sensors in the machines). Table I presents the structure of the
input data where:

• n ∈ {1, 2, ..., N}, is the instance of a MTS. In wire
bonding context, n indicates the device instance.

• t ∈ {1, 2, ..., T}, is the discrete moment of time in MTS
instance n. For wire bonding, t represents the wire id.

• xs(n, t), s ∈ {1, 2, ..., S}, represents the value of signal
s measured for MTS instance n at time t.

• y(n) ∈ {0, 1}, indicates the binary label corresponding to
MTS instance n. In wire bonding context, the AOI gen-
erates the label where 0 represents Pass and 1 represents
Fail.
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Table I
STRUCTURE OF INPUT DATA

n t x1 x2 ... xS y

1 1 x1(1, 1) x2(1, 1) ... xS(1, 1) y(1)
1 2 x1(1, 2) x2(1, 2) ... xS(1, 2) y(1)
... ... ... ... ... ... ...
1 T x1(1, T ) x2(1, T ) ... xS(1, T ) y(1)
2 1 x1(2, 1) x2(2, 1) ... xS(2, 1) y(2)
2 2 x1(2, 2) x2(2, 2) ... xS(2, 2) y(2)
... ... ... ... ... ... ...
2 T x1(2, T ) x2(2, T ) ... xS(2, T ) y(2)
... ... ... ... ... ... ...
N T x1(N,T ) x2(N,T ) ... xS(N,T ) y(N)

B. Feature extraction

We extract Z features for each signal s and all MTS
instances n resulting in Table II. The value of the extracted
features are indicated by fs,z(n), s ∈ {1, 2, ..., S}, z ∈
{1, 2, ..., Z}, representing the value of feature z extracted from
signal s in MTS instance n. Table II will consist of N rows
and S · Z + 1 columns after the labels y(n) are included.

Table II
EXTRACTED FEATURES

n f1,1 f1,2 ... f1,Z f2,1 ... f2,Z ... fS,Z y

1 ... ... ... ... ... ... ... ... ... ...
2 ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
N ... ... ... ... ... ... ... ... ... ...

C. Feature reduction framework

After extracting features, we implement the proposed fea-
ture reduction framework. We present the high level working
of the framework in Figure 3 and included a detailed de-
scription with pseudocode in Appendix A. The initial data
consists of all features extracted from all signals and the
corresponding labels that need to be predicted (Table II).
To prepare the data, we ignore features with no variance
since they contain no relevant information for the classification
algorithm. Perfect co-linearity is also removed from the data
to eliminate features that contain the same information. The
data set is then split randomly into train (60%), test (20%) and
validation (20%) data sets. In the course of this study we use
a Random Forest classifier. We train a baseline classification
model using all extracted features. The hyper-parameters of
the baseline model are tuned based on classification of the test
data set. After hyper-parameter tuning, the model is tested on
the unseen validation data. We then apply the permutation
based feature reduction method proposed by Schelthoff
et al. [27] to subsequently eliminate irrelevant signals and
features. Finally, we train a final model using the reduced
feature set and tune the hyper-parameters of the model. The
classification performance of the final model is then compared
to the baseline model performance.

1) Baseline model: The baseline model uses all extracted
features to perform classification. For hyper-parameter tuning,

Figure 3. Feature reduction framework.

we predefined the hyper-parameters for the Random Forest
classifier to limit the search space according to Table III. The
hyper-parameters are defined as follows:

• Criterion: Determines how the model evaluates the in-
formation gained from each split.

• Estimators: Number of decision trees with random for-
est.

• Max depth: Maximum allowable depth of each decision
tree.

• Max features: Maximum allowable features to consider
when looking for the best split points. Here auto means
the amount of features is equal to max depth, and sqrt
means the square root of the total number of features is
selected.

• Min samples split: The minimum number of samples to
split an internal node.

• Min samples leaf: The minimum number of samples
required to build a leaf.

• Bootstrap: Determines if bootstrap samples will be used
for building trees.

• Warm start: Determines if the model can use the solution
from the previous call when building the forest or a whole
new forest is fitted.

Table III
HYPER-PARAMETER SPACE FOR THE RANDOM FOREST CLASSIFIERS

hyper-parameter Value Range

criterion Gini
estimators 200 - 2000
max depth 10 - 110
max features [auto, sqrt]
min samples split [2, 5, 10]
min samples leaf [3, 4, 5, 6]
bootstrap [True, False]
warm start [True, False]

2) Baseline Model Evaluation: We select the Matthews
Correlation Coefficient (MCC) to evaluate the performance
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of the classification models. “The MCC is the only binary
classification performance metric that generates a high score
only if the binary predictor was able to predict the majority
of positive data and negative instances correctly.“ [28], [29].
Therefore, it is a reliable indicator of classification perfor-
mance for our use case.

The MCC value is calculated with Equation 1, where TP
represents the number of True Positives, TN represents True
Negatives, FP indicates the number of False Positives, and FN
represents the False Negatives.

MCC = TP·TN−FP·FN√
(TP+FP)·(TP+FN)·(TN+FP)·(TN+FN)

(1)

The outcome will be in the range of [-1,1], where -1 repre-
sents total disagreement between prediction and observation, 0
indicates the prediction model performs no better than random
guessing and 1 means perfect predictions.

We normalize the MCC values to be in the range [0,1]
using Equation 2.

nMCC =
MCC + 1

2
(2)

The model performance is represented by the nMCC value
calculated from classification results on the unseen validation
data. The nMCC also serves as the optimization target for
hyper-parameter tuning on the test set.

3) Permutation-based Feature Set Reduction: We re-
duce the signal set and feature set subsequently with the
permutation-based feature set reduction method proposed by
Schelthoff et al. [27].

To reduce the signal set, we calculate each signal’s Permu-
tation Signal Importance (PSI). See Section A8 for a detailed
description. The PSI is defined as the relative performance
change when randomly permuting a signal compared to the
classification performance of the baseline model. PSI values
above 1 indicate that the classification performance dropped
after permuting a signal. When the PSI equals 1, the per-
mutation does not affect the classification performance. PSI
values lower than 1 indicate that permuting a signal increased
the classification performance. To calculate the PSI, we first
randomly shuffle one signal’s values at a time in the validation
data set. Second, using the baseline model on the shuffled val-
idation data, we evaluate the average change in classification
quality expressed in nMCC to determine the contribution of
the signal to the classification model. We repeat these two
steps K times for each signal and calculate the average PSI to
avoid coincidental signal importance due to randomness. The
signals are then sorted based on their respective PSI.

When the signals are sorted, we iteratively add signals
from most to least important to all the data sets (train, test
and validation) and retrain the model with hyper-parameter
tuning each iteration. For each iteration, we calculate the
corresponding nMCC by classifying the validation data set.
The optimal signal set is then defined as the least amount of
signals required to obtain a nMCC value equal to or within
a certain Threshold of the nMCC from the baseline model.

Table IV
SIGNAL CATEGORIES

Measurement frequency Signal type Signal number

Every Bond Input signal 1-8
Every Wire Input signal 9-15
Every Device Input signal 16-21
Every Bond Output signal 22-24
Every Wire Output signal 24-26

After selecting the optimal signal set, we repeat the
permutation-based feature set reduction on the individual
features that are left since not all features corresponding to the
optimal signal set will be relevant to the classification model.
We follow the same steps for feature selection as for signal
selection. However, as a sorter, we calculate each feature’s
Permutation Feature Importance (PFI). See Section A12 for a
detailed description. The PFI represents the relative classifica-
tion performance change when permuting one feature in the
validation data compared to the baseline model performance.

What remains after signal and feature selection, is the least
amount of (optimal) features the model needs to perform clas-
sification while keeping the classification performance within
the set Threshold value of the baseline model according to
the nMCC performance metric.

IV. FRAMEWORK APPLICATION

We apply the method described in Section III to real-world
wire bond machine signal data from NXP Semiconductors
N.V. (see Figure 2). In this section, we describe the wire bond
specific input data and elaborate on the result after applying the
methodology. We also validate the results by cross-validating
the features we found.

A. Data description

We explain the available data from the wire bonding by
describing the measured signals and the extracted features
from those signals. We also describe the available labels and
summarize the input data.

1) Signals: All signals are described below and categorized
according to Table IV. The categorization is based on measure-
ment frequency and signal type. The measurement frequency
indicates what signals are measured separately for each bond
(ball and stitch bond), each wire or once per device. Signal
type refers to signals measured during wire bonding (Input
signals) and after wire bonding (Output signals). Some signal
abbreviations contain the subscripts ball and stitch, since they
are measured twice per wire. We consider these as separate
signals. The following signals are considered:

1) DXball, DXstitch: Die distance in the x direction from
the reference system in millimeters.

2) DYball, DYstitch: Die distance in the y direction from
the reference system in millimetres.

3) USGball, USGstitch: USG current generated by the
ultrasonic generator during bonding in milliampere.

4) Fball, Fstitch: Force on capillary in z-direction in Newton.
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5) ZPCball, ZPCstitch: Capillary distance in z direction
from reference system in micrometres at moment of
contact with the device.

6) ZPEball, ZPEstitch: Capillary distance in z direction
from reference system in micrometres at the end of the
bonding sequence in micrometres.

7) RZCball, RZCstitch: Capillary distance in z direction
from reference system in micrometres at the moment of
contact relative to value from the previous wire (removing
heat block height tilt variation).

8) RZEball, RZEstitch: Z position of the capillary at the
end of bonding sequence relative to value from the
previous index (removing heat block height tilt variation)
in micrometres.

9) INTF : Time interval between the ball and stitch bond
in milliseconds.

10) INTS: Time interval between the end of bonding the
previous wire and the start of bonding the current wire
in milliseconds.

11) DH: Difference in height between die and lead frame
reference system in millimetres.

12) DT : Angle between the die and lead reference system in
degrees.

13) BHD: Height difference between ball bond contact and
stitch bond contact of the wire in millimetres.

14) IMP1: The ratio of sinusoidal voltage between the
bonding impedance and the reference impedance.

15) IMP2: The ratio of sinusoidal voltage between bonding
impedance and impedance in Air (PreBleed impedance).

16) DRball, DRstitch: Die rotation compared to reference
system in degrees.

17) FSA1ball, FSA1stitch: Average measured difference in
z position (compared to reference system) between ball
and stitch bond.

18) FSS1ball, FSS1stitch: Standard deviation of measured
difference in z position (compared to reference system)
between ball and stitch bond.

19) FSA2ball, FSA2stitch: Average measurement using
Contact Seek Time. This measurement is used to monitor
floating.

20) FSS2ball, FSS2stitch: Standard deviation of measure-
ment using Contact Seek Time. This measurement is used
to monitor floating.

21) V : Average Electronic Flame-Off Process (EFO) voltage
per device.

22) DEFCball, DEFCstitch: Deformation on contact in
micrometers.

23) DEFTball, DEFTstitch: Deformation on touchdown in
micrometers.

24) ∅: Diameter of the ball in millimetres.
25) BPX: Location of the centre of the ball in x direction

from the middle of the bond pad in millimetres.
26) BPY : Location of the centre of the ball in y direction,

measured from the middle of the bond pad in millimetres.
Considering that some signals are measured for both ball

and stitch bonds, we have 41 signals for each device.
2) Features: For every signal s, we extract the following

(highly interpretable) features z resulting in feature fs,z:

• Minimum (fs,min)
• Absolute maximum (fs,absmax)
• Maximum (fs,max)
• Root mean square (fs,rms)
• Variance (fs,var)
• Standard deviation (fs,std)
• Mean (fs,mean)
• Median (fs,med)
• Sum of values (fs,sum)
In total, we extract 9 features from 41 signals resulting in

369 features that are used for classification.
3) Labels: As described in section I, a AOI labels each

device as Pass or Fail after wire bonding. A human inspector
assigns a certain failure mode when a device fails the AOI.
For this study, we select the Tie bar deformation failure
mode. Therefore y(n) ∈ {0, 1}, indicates the binary label
corresponding to MTS instance n where 0 means the product
Passed the AOI, and 1 means the product contained a Tie bar
deformation error.

4) Input data: For this study, we select one product type
produced on one type of machine. The data on wire bond
failure modes is unbalanced, meaning that devices labeled as
Pass far outnumber those labeled as Fail due to a Tie bar
deformation. Highly imbalanced data, often makes machine-
based processing difficult or even impossible [30]. Therefore,
we select all devices containing a Tie bar deformation from
the data and under-sample the devices that passed the AOI
by randomly selecting N amount of devices that passed the
AOI, such that we have 80% Passed and 20% Failed (due to
Tie bar deformation) devices in the data. We do not include
contextual data like machine id, coordinate on leadframe and
time of production. In prestudy, we found that this information
is sensitive to so-called leakage, causing overfitting of the
models. Leakage occurs when the data that is used for training
the classification model contains information that the model is
trying to predict. As a result, we study a total of 405 devices,
of which 81 are labeled as a Tie bar deformation error, and the
rest Passed the AOI. For each device instance n, we extracted
369 features corresponding to 41 signals. We add the labels
y(n). Therefore, the input data structure is a table consisting
of 405 rows with 370 columns.

B. Results

The proposed methodology is applied to the labeled wire
bond machine signal data. We run a number of experiments
with different Threshold values and signal types. Subse-
quently, we select the results from one experiment for further
evaluation. After presenting the results, we cross-validate them
using different subsets of the data for validation.

1) Experiments: In this study, we combined two method-
ologies, added the ability for signal selection and imple-
mented a Threshold for signal/feature selection. Therefore,
we study the effect of applying the proposed method on
different signal types according to Table IV using different
Threshold ∈ {0.95, 0.99, 1} values. We expect that higher
Threshold values will result in more signals and features
being selected in the optimal signal and feature sets because
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Table V
EXPERIMENT RESULTS

Experiment # T
hr
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ho
ld
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e
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nM
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C f
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al

Opti
mal

# sig
na

ls

Opti
mal

# fea
tur

es

Experiment 1 0.95 All 1 0.99 1 2
Experiment 2 0.99 All 1 0.99 1 2
Experiment 3 1 All 1 1 2 3
Experiment 4 0.95 Input 1 0.99 1 2
Experiment 5 0.99 Input 1 0.99 1 2
Experiment 6 1 Input 1 1 2 3
Experiment 7 0.95 Output 0.98 0.95 1 1
Experiment 8 0.99 Output 0.98 0.98 1 2
Experiment 9 1 Output 0.98 0.98 1 2

the Threshold determines the allowed drop in classification
performance compared to the baseline model. For the signal
types we expect (based on domain expert knowledge) that
Output signals are better classifiers for Tie bar deformation
failures than Input signals.

The experiments with the corresponding results are pre-
sented in Table V. The classification performance when using
all features is indicated with nMCCbaseline. nMCCfinal rep-
resents the classification performance when using the optimal
number (#) of signals with the optimal number (#) of features.

The experiment results show that the initial classification
performance is high regardless of the selected signal type.
However, the models using the Input signals generate a slightly
better classification performance than the models using Output
signals. The number of signals and features in all cases is
reduced to two signals and a total of three features at maximum
while keeping nMCCfinal higher than the set Threshold
value, which means that only a fraction of the available data
is required to achieve sufficient classification performance.
The influence of the Threshold on the output is also clear.
The algorithm automatically selects more signals and features
when a higher classification performance is required.

2) In-depth analyses of results: We select Experiment 3
to present further analyses since it is the most comprehen-
sive study, including all available signals and the selection
Threshold = 1, meaning classification performance cannot
be dropped compared to the performance of the baseline model
performance.

The signal selection is visualized in Figure 4, where PSI
represents the relative performance change when shuffling
signal s compared to the baseline model. nMCC represents
the classification performance after keeping the top (based
on PSI) number of signals represented on the x-axis. The
figure depicts the first six signals (out of 41) that are added
based on their respective PSI. The PSI values obtained from
this experiment indicates that all but the top 3 most relevant
signals did not impact the classification performance when
randomly permuted since their respective PSI equals 1. The
main conclusion from the signal selection is that we only need
the two signals with the highest PSI score to obtain sufficient
classification performance according to the set Threshold
value. Therefore, the optimal signal set is defined as the top
2 signals according to their respective PSI.
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Threshold

Figure 4. Top 6 important signals according to its corresponding PSI and
nMCC after adding the signal to the data.
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Figure 5. Features sorted on PFI with classification performance nMCC
after adding the feature to the data.

Similarly, Figure 5 visualizes the feature selection. We keep
only features corresponding to optimal signals selected in the
previous step. In this case, we only keep six features, the
other features describing the top two signals got removed
when removing features with no variance or features that have
perfect co-linearity to other features. The figure shows that
we only need the top three features, sorted on their respective
PFI, to obtain sufficient classification performance. nMCC
represents the classification performance after keeping the
amount of top features indicated on the x-axis.

For analyses we plot the optimal set of features in Figure 6.
The features form clear clusters between devices that passed
the AOI (blue) and the devices that failed the AOI due to Tie
bar deformation (red). The obvious clusters explain why the
classification performance is high using this data set. Since
the extracted features are interpretable, these results can be
analysed to explain why certain products Fail due to Tie bar
deformation in the wire bond process.

To confirm that the features we found are relevant over
the entire data set, we cross-validate the result by randomly
selecting different subsets of the data as the validation data set.
We repeat Experiment 3, while randomly selecting different
subsets of the data for validation, 10 times. The selected
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optimal signals and features remained the same over all 10
different validation sets, meaning that the signals and features
we found generate strong classification results over the entire
data set.
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Figure 6. Scatter plot matrix of the optimal feature set.

V. DISCUSSION

This study aims to predict wire bond quality per device by
classifying labeled discrete MTS and focuses on interpretabil-
ity by finding the least required signals and features to do so.
In this section, we first (i) discuss the originality of our study.
Second (ii), we discuss our decisions when designing the
methodology. In the third (iii) part, we discuss the decisions
made when applying the proposed methodology to real-world
wire bond data. Finally (iv), we discuss the results, indicate
the advantages of our proposed method and identify future
research opportunities.

(Originality, i) To the best of our knowledge, we are the
first to predict wire bond quality for devices rather than
individual wires. Considering real-world wire bond data from
NXP Semiconductors N.V., predicting bond quality for devices
is relevant because feedback on the bond quality of individual
wires is not widely available for all devices. Therefore, taking
into account the structure of real-world wire bond machine
signal data, we propose a novel methodology that combines
the MTS classification method of Baldán et al. [26] with the
feature reduction framework proposed by Schelthoff et al. [27].
The methodology is expanded on by including signal selection
and implementing a selection Threshold.

(Methodology, ii) We decided to classify labeled discrete
MTS using extracted features since features can accurately
represent MTS and preserve most of the relevant information
while eliminating the need for complex MTS classification
models that are hard to interpret [26]. Due to the multivariate
nature of the data in our use case and the number of fea-
tures we can extract from the discrete MTS’s, we decided
to implement the feature reduction framework by Schelthoff
et al. [27], allowing us to find the least required amount

of features for classification. However, combining these two
methodologies did not immediately generate desired results
for our use case. When using a ”large” amount of features, no
effect on classification performance is detected when randomly
permuting a single feature. This means that sorting features
based on PFI was not effective. Therefore, we expand the
methodology by first determining the optimal signal set and
only then search for the optimal feature set. By first selecting
the optimal signal set, the challenge of dealing with a “large“
amount of features is reduced because the effect of permuting
a signal is more evident on the classification performance than
the effect of permuting individual features. The methodology
is further expanded by implementing the selection Threshold,
allowing the user to trade off desired classification perfor-
mance for dimensionality reduction. Another decision that we
made is to use a Random Forest classifier throughout this
study. In a pre-study, we found that the Random Forest has
the best classification performance in our use case. However,
the methodology can be combined with any classification
model meaning that for each use case the user can choose
the best classifier. Furthermore, by selecting a specific failure
mode to study, we applied the proposed method to a binary
classification problem. In future research, it would be of great
interest to apply the proposed method to multiclass (including
multiple failure modes) classification problems as well.

(Application, iii) In our application framework, we selected
highly interpretable features since we focus on the inter-
pretability of the classification results. If in a use case inter-
pretability is of minor relevance or the classification results are
insufficient, one can try extracting other/more features. Any
features can be extracted from the MTS adjusted to the need
of each particular use case. In a pre-study, we extracted 19000
different features from the MTS for each device instance,
using a python package called tsfresh [31], and we were still
able to find the most relevant features using the proposed
methodology.

(Results, iv) The results show that we can obtain excellent
classification performance in the given wire bond use case
and find the least required amount of signals and features. A
clear advantage of the proposed methodology is that it can
be applied to any labeled discrete MTS. Moreover, having a
set with rich amount of Pass examples and a scarce amount
of bond Failure examples, which is often the case in reality
[23], does not have a major impact on the classification perfor-
mance. When analysing the results of the wire bond use case
one must take into account that the the machine signal data
is not i.i.d. over all devices. The distributions of some signals
change over time and can differ per machine. We randomly
sample devices over the entire population, meaning that the
signals and features we find are important over time and
on different machines. However, in future research it would
be of great interest to investigate the effect of using time-
based splitting on the output of the proposed methodology.
In this study, we scoped the framework application to only
one product type produced on the same machine type from
NXP Semiconductors N.V. The scope can be expanded to
other product/machine types at different manufacturers. Also,
any process generating labeled discrete MTS can be studied
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using the proposed methodology. Furthermore, in this study,
we fixed the ratio of Passed (80%) to Failed (20%) devices
because these are common practice values. Other ratios might
generate better results and insights. Again, future publications
can take this into account.

VI. MANAGERIAL IMPLICATIONS

The proposed methodology allows for discrete MTS classi-
fication while finding the least required amount of signals and
features.

The ability to classify discrete MTS can be implemented as
a additional quality check during real-world manufacturing.
Early detection helps to minimize the time and cost required
to produce semiconductors; it can also helps to improve pro-
duction yield [32]. The classification results can also be used
to optimize the test sampling strategy. During semiconductor
manufacturing, several tests are performed, some of which on
a sample basis. By sample testing the devices that are labeled
by the model as a potential failure, the testing equipment can
be utilized more efficiently, meaning test cost reduction or
lowering the probability of faulty devices being shipped to
the customer.

The ability to find the relevant signals and features for
classification is a tool to understand why certain failures
occur. When it is known what patterns in the machine signal
data lead to quality issues, failures can be prevented. For
instance, by machine settings optimization and preventive
maintenance, companies can prevent signal values drifting to
patterns that are known for increased risk of failures. Another
useful application is that irrelevant signals can be turned off,
saving data storage and computational costs.

To take on the challenge of manufacturing semiconductors
with increased performance standards, we encourage decision-
makers to utilize the opportunities offered by the rise of IIoT.
While challenging to work with, the newly obtained data can
generate great value for the semiconductor industry.

VII. CONCLUSION

In this study, we developed a methodology for labeled
discrete MTS classification with automated signal and feature
selection. The methodology is applied to real-world wire bond
machine signal data.

Three main conclusions can be drawn from this study.
First, the proposed methodology allows for accurate wire
bond quality classification per device. Second, we are able
to find the least required amount of signals and features for
classification, reducing the dimensionality of the input data
coming from the wire bond process. Third, by extracting
highly interpretable features from the MTS and finding the
most relevant ones, we show that the classification results are
interpretable and therefore useful for analyses.

However, in this study, we focus on one failure mode, prod-
uct type, machine type and process at NXP Semiconductors
N.V.

In future research, it would be of great interest to expand the
study using different data sources. This will test the limits of
the methodology by inputting labeled discrete MTS of varying

lengths and amounts of signals and features. Another interest-
ing expansion is to apply the proposed method for multiclass
classification. The method can be used to find signals and
features that allow for classifying multiple classes. Hence,
we will focus our next studies on multiclass classification by
classifying more than one failure mode at a time.
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APPENDIX

A. Algorithm for discrete MTS classification with automated
signal and feature selection

In this appendix we provide a detailed description of
the proposed methodology with pseudocode. The proposed
methodology can be applied to any set of N labeled discrete
MTS (number of devices) with length T (number of wires
per device) and S amount of signals (active sensors in the
machines).

Table II (dinitial) serves as input for algorithm 1. The
algorithm classifies the labels y(n) and finds the optimal signal
and feature sets to do so while keeping the classification per-
formance within a set threshold from the performance obtained
when using all available data. We describe algorithm 1 in the
following.

1) High level description: The following steps describe the
high level working of algorithm 1:

• Lines [1-3]: Prepare data by removing features with
no variance, removing perfect co-linearity and randomly
splitting the data into train (60%), test (20%) and valida-
tion (20%) data sets.

• Lines (4,5): Perform initial classification using all re-
maining features.

• Lines [6-16]: Determine the optimal signal set by rank-
ing signals based on their Permutation Signal Importance
(PSI) to the classification performance (Lines [6-9])
and adding signals from most to least importance to the
data until the classification performance is within a set
Threshold to the initial classification performance (Lines
[11-15]).

• Lines (17,18): Update data to only include the optimal
signals and labels and create a new classification model
on the reduced data set.

• Lines [19-28]: Determine the optimal feature set by
ranking features based on their Permutation Feature Im-
portance (PFI) to the classification performance (Lines
[19-22]) and adding features from most to least important
to the data until the classification performance is within
a set Threshold to the initial classification performance
(Lines [24-28]).

• Lines [29-32]: Perform final classification using the
reduced feature set.

2) Performance metric: We select the Matthews Correlation
Coefficient (MCC) to evaluate the performance of the classi-
fication models. “The MCC is the only binary classification
performance metric that generates a high score only if the
binary predictor was able to predict the majority of positive
data instances and the majority of negative data instances
correctly“ [28], [29]. Therefore it is a reliable indicator of
classification performance for our use case.

The MCC value is calculated with Equation 1. The out-
come will be in the range of [-1,1], where -1 represents total
disagreement between prediction and observation, 0 indicates
the prediction model performs no better than random guessing
and 1 means perfect predictions. In this study, we normalize
the MCC values to be in the range [0,1] using Equation 2.

Algorithm 1: MTS classification with automated sig-
nal and feature selection
Input: dinitial, Threshold
Output: Optimal signals, Optimal features, nMCCbaseline,

nMCCfinal

1: Remove features fs,z with no variance from dinitial
2: Remove perfect co-linearity from dinitial
3: dtrain, dtest, dvalidation := Randomly split dinitial

on rows
4: mbaseline := Create classification model
5: Calculate nMCCbaseline

6: for signal s in {1,2,...,S} do
7: Calculate Permutation Signal Importance PSI(s) with

algorithm 2
8: end for
9: Sorted signals := Sort signals s ∈ {1, 2, ..., S} on

corresponding PSI(s) in decreasing order
10: g := 1
11: while nMCCsignal(keep signals) <

nMCCbaseline ∗ Threshold do
12: keep signals := [first g signals s in Sorted signals]
13: Calculate nMCCsignal(keep signals) with

algorithm 3
14: g := g + 1
15: end while
16: Optimal signals := keep signals except for last signal

in list
17: dtrain, dtest, dvalidation := keep only features

corresponding to signals in Optimal signals and labels
y(n)

18: msignal := Create classification model
19: for all remaining features fs,z in dvalidation do
20: Calculate Permutation Feature Importance PFI(fs,z)

with algorithm 4
21: end for
22: Sorted features := Sort features on corresponding

PFI(fs,z) in decreasing order
23: g := 1
24: while

nMCCfeature(features) < nMCCbaseline∗Threshold
do

25: keep features := [first g features fs,z in
Sorted features]

26: Calculate nMCCfeature(keep features) with
algorithm 5

27: g := g + 1
28: end while
29: Optimal features := keep features except for last

feature in list
30: dtrain, dtest, dvalidation := keep only features in

Optimal features and labels y(n)
31: mfinal := Create classification model
32: Calculate nMCCfinal
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3) Remove variance (Line 1): For each feature fs,z we
calculate the variance σ2

s,z with Equation 3.

σ2
s,z =

∑N
n=1(fs,z(n)− µs,z)

2

N
(3)

Where µs,z =
∑N

n=1 fs,z(n)

N represents the mean of feature
fs,z . We remove all features fs,z from dinitial when the
corresponding σ2

s,z = 0 since these features are constant
over all MTS instances n, therefore containing no relevant
information for the classification algorithm.

4) Remove perfect co-linearity (Line 2): Perfect co-linearity
is removed from the data to eliminate features that describe
the same information. When a feature fs,z has an exact
linear relation with another feature fs,z , we drop one of these
features from dinitial.

5) Create dtrain, dtest, dvalidation (Line 3): Split dinitial
randomly on rows so that 60% of rows are assigned to dtrain,
20% to dtest and 20% to dvalidation.

6) Create classification model (Lines 4, 18, 31): We train
a classification model on dtrain and tune the model’s hyper-
parameters by maximizing the nMCC performance metric
on predicting the labels for dtest. To reduce the effect of
randomness on the hyper-parameter selection, we use Strati-
fiedKFold Cross-Validation when tuning the hyper-parameters.
For all machine learning steps in the algorithm we use the
PyCaret package proposed by Ali et al. [33]. PyCaret is a
Python wrapper around several machine learning libraries and
frameworks, including scikit-learn. As proposed by Schelthoff
et al. [27] a Random Forest classifiers is used in this study. We
predefined hyper-parameters for the Random Forest classifier
to limit the search space according to Table VI. The hyper-
parameters are defined as follows:

• Criterion: Determines how the model evaluates the in-
formation gained from each split.

• Estimators: Number of decision trees in Random Forest.
• Max depth: Maximum allowable depth of each decision

tree.
• Max features: Maximum allowable features to consider

when looking for the best split points. Here “auto“ means
the amount of features is equal to max depth, and “sqrt“
means the square root of the total number of features is
selected.

• Min samples split: The minimum number of samples to
split an internal node.

• Min samples leaf: The minimum number of samples
required to build a leaf.

• Bootstrap: Determines if bootstrap samples will be used
for building trees.

• Warm start: Determines if the model can use the solution
from the previous call when building the forest or a whole
new forest is fitted.

7) Calculate nMCC (Lines 5, 32): To validate the perfor-
mance of the classification model, we predict the labels on
unseen data (dvalidation), and calculate the nMCC perfor-
mance metric using Equation 1 and Equation 2.

8) Calculate Permutation Signal Importance PSI(s) (Line
(7): The PSI(s) is computed using algorithm 2. To calculate

Table VI
HYPER-PARAMETER SPACE FOR THE RANDOM FOREST CLASSIFIERS

hyper-parameter Value Range

criterion Gini
estimators 200 - 2000
max depth 10 - 110
max features [auto, sqrt]
min samples split [2, 5, 10]
min samples leaf [3, 4, 5, 6]
bootstrap [True, False]
warm start [True, False]

the PSI(s), we select all features fs,z corresponding to signal
s and randomly permute the rows of the selected features
in dvalidation, leaving relations between the selected features
intact. Without retraining, we then use the classification model
trained on all features (mbaseline) to perform classification on
the shuffled dvalidation(s, k) and calculate the classification
performance nMCCshuffle(s, k). Previous steps are repeated
K = 100 times, so we can take the average value of
nMCCshuffle(s, k), k ∈ {0, 1, ...,K} to reduce the effect
of randomness. The PSI(s) is defined as the relative perfor-
mance change, compared to nMCCbaseline, when randomly
permuting signal s. High PSI(s) scores indicate that signal s
contributes more to the classification performance than signals
with a lower PSI(s) score.

Algorithm 2: PSI(s) calculation
Input: signal s, K := 100, mbaseline, nMCCbaseline,

dvalidation
Output: PSI(s)

1: for k in range(1,K) do
2: dvalidation(s, k) := Randomly permute all features

belonging to signal s in dvalidation
3: Use mbaseline to classify labels y(n) of

dvalidation(s, k)
4: Calculate corresponding nMCCshuffle(s, k)
5: end for
6: nMCCshuffle(s) :=

∑K
k=1 nMCCshuffle(s,k)

K

7: PSI(s) := nMCCbaseline

nMCCshuffle(s)

9) Calculate nMCCsignal(keep signals) (Lines [11-15]):
The nMCCsignals(keep signals) is computed with algo-
rithm 3 and represents the classification performance when
only features belonging to signals s in list keep signals are
included in the data. We add signals from most to least impor-
tant according to its PSI(s) score to dtrain, dtest, dvalidation
until the classification performance is sufficient according to
nMCCsignal(keep signals) < nMCCbaseline ∗Threshold.

10) Determine optimal signals (Line 16): The optimal set
of signals is defined as the least amount of signals we need
in order to perform classification while not dropping the clas-
sification performance nMCCdrop(s) below nMCCbaseline ·
Threshold.

11) Update signals in data-frames (Line 17): Since we
know the optimal signal set, we keep only the features
belonging the optimal signals in dtrain, dtest and dvalidation.
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Algorithm 3: Calculate nMCCsignals(keep signals)

Input: keep signals, dtrain, dtest, dvalidation
Output: nMCCsignals(keep signals)

1: dtrain(keep signals), dtest(keep signals),
dvalidation(keep signals) := keep only features
belonging to signals s in list keep signals, and labels
y(n) from dtrain, dtest, dvalidation

2: msignal(keep signals) := Train classification model on
dtrain(keep signals), tune hyper-parameters on
dtest(keep signals)

3: Calculate nMCCsignal(keep signals) by classifying
dvalidation(keep signals) with msignal(keep signals)

12) Calculate Permutation Feature Importance PFI(fs,z)
(Line 20): The PFI(fs,z) is computed using algorithm 4.
To calculate the PFI(fs,z), we randomly permute the rows
of the selected feature in dvalidation. Without retraining,
we then use msignal to perform classification on the shuf-
fled dvalidation(fs,z, k) and calculate the classification per-
formance nMCCshuffle(fs,z, k). Previous steps are repeated
K = 100 times, so we can take the average value of
nMCCshuffle(fs,z, k), k ∈ {0, 1, ...,K} to reduce the effect
of randomness. The PFI(fs,z) is defined as the relative
performance change, compared to nMCCbaseline, when ran-
domly permuting feature fs,z . High PFI(fs,z) scores indicate
that feature fs,z contributes more to the classification perfor-
mance than features with a lower PFI(fs,z) score.

Algorithm 4: PFI(fs,z) calculation
Input: feature fs,z , K := 100, msignal, nMCCbaseline

Output: PFI(fs,z)
1: for k in range(1,K) do
2: dvalidation(fs,z, k) := Randomly permute feature fs,z

in dvalidation
3: Use msignal to classify labels y(n) of

dvalidation(fs,z, k)
4: Calculate corresponding nMCCshuffle(fs,z, k)
5: end for
6: nMCCshuffle(fs,z) =

∑K
k=1 nMCCshuffle(fs,z,k)

K

7: PFI(fs,z) =
nMCCbaseline

nMCCshuffle(fs,z)

13) Calculate nMCCfeatures(fs,z) (Lines [24-28]): The
nMCCfeatures(fs,z) represents the classification perfor-
mance after adding features based on PFI(fs,z) to dtrain,
dtest, dvalidation. The nMCCfeatures(fs,z) is computed us-
ing algorithm 5. We iterative add features from most to
least important according to its PFI(fs,z) score until until
the condition nMCCfeature(features) < nMCCbaseline ∗
Threshold is met.

14) Determine optimal features (Line 29): The optimal
feature set is defined as the least amount of features we need in
order to perform classification while not dropping the classifi-
cation performance nMCCdrop(fs,z) below nMCCbaseline ·
threshold.

Algorithm 5:
Calculate nMCCfeatures(keep features)

Input: keep features, dtrain, dtest, dvalidation
Output: nMCCfeatures(keep features)

1: dtrain(keep features), dtest(keep features),
dvalidation(keep features) := Keep only features in list
keep features, and labels y(n) from dtrain, dtest,
dvalidation

2: mfeature(keep features) := Train classification model
on dtrain(keep features), tune hyper-parameters on
dtest(keep features)

3: Calculate nMCCfeature(keep features) by classifying
dvalidation(keep features) with
mfeature(keep features)

15) Update features in data-frames (Line 30): Since we
know the optimal feature set, we keep only these features in
dtrain, dtest and dvalidation.
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