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Time-Optimal Design and Control of Electric Race
Cars Equipped with Multi-Speed Transmissions

Camiel Cartignij

Abstract—This thesis presents models and algorithms to jointly
optimize the design and control of an electric race car equipped
with a multiple-gear transmission (MGT), specifically accounting
for the discrete gearshift dynamics. To benchmark its per-
formance, we also consider other transmission types, namely
a fixed-gear transmission (FGT) and a continuously variable
transmission (CVT). First, we develop convex models for the
vehicle dynamics, the FGT, the CVT, the electric motor (EM),
the inverter, and the battery, and we develop a mixed-integer
model for the MGT. Second, we devise a computationally efficient
algorithm to optimize the design and control of an MGT-
equipped car, including the gear ratio design, the gearshift
trajectory, and the EM power trajectory. In particular, we de-
velop an iterative algorithm, which combines convex optimization
and Pontryagin’s Minimum Principle to solve the mixed-integer
optimization problem. Third, we showcase our algorithm by
comparing the performance of a race car equipped with an FGT,
a CVT and an MGT with 2 to 4 speeds on the Zandvoort race
track. Our results show that the shortest lap time is obtained
by the 3-speed MGT-car, because it combines a high powertrain
efficiency with fast acceleration, in exchange for a limited increase
in weight. Finally, we leverage the computational efficiency of our
algorithm to evaluate the influence of the EM size and battery
energy limit on the achievable lap time, which reveals that an
MGT with 2 or 3 speeds is best suited for most scenarios.

I. INTRODUCTION

THE electrification of automotive powertrains has sparked
significant attention over the last years. Conventional

passenger vehicles are being replaced by hybrid and fully
electric vehicles [1], while existing racing classes are also
hybridized, and new fully electric racing classes are emerg-
ing. In motorsport, every millisecond counts, so all involved
technologies are pushed to their limits. For electric racing,
the available battery energy is a significant limitation, which
means that optimal energy management and electric motor
(EM) efficiency can make the difference to win a race. To
extract maximum performance while keeping the EM within
its most efficient operating range, various transmission types
can be used, which yield control over the EM operating range,
at the cost of the transmission’s own efficiency and weight.
At one end of the spectrum, the fixed-gear transmission
(FGT) is light and efficient, while providing little control
over the operating range of the EM. At the other end, the
continuously variable transmission (CVT) provides continuous
control over the EM operation, at the cost of increased
weight and decreased efficiency. Between these extremes, the
multiple-gear transmission (MGT) balances the efficiency of
an FGT with the operating range control of a CVT. To select
the optimal transmission for any given application, a joint
optimization of transmission design and powertrain control
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Fig. 1. Schematic layout of the electric race car powertrain under consid-
eration, consisting of a battery (BAT), an inverter (INV), an electric motor
(EM), a transmission (GB) and the wheels (W). The arrows indicate power
flows between components.

is required. However, the gearshifts of an MGT introduce
discrete dynamics, which turns the optimization of an MGT-
equipped race car into a mixed-integer optimal control problem
(MIOCP). MIOCPs are generally NP-hard, and can be very
difficult to solve [2]. Against this backdrop, this thesis presents
a computationally efficient algorithm for the optimization of
the design and control of an MGT-equipped electric race car.

Related literature: The mixed-integer time-optimal design
and control problem studied in this thesis pertains to two
main research streams, namely, energy management and time-
optimal control of (hybrid) electric vehicles.

For energy management, mainly non-causal optimization
is applied on drive cycles with known velocity and torque
requirements. Gearshift strategies for an MGT have been
optimized using dynamic programming [3], Pontryagin’s Min-
imum Principle (PMP) [4] and iterative combinations of dy-
namic programming, PMP and convex optimization [5]–[9]. In
[10], [11] the authors use outer convexification and rounding
to efficiently solve the gearshift problem, while others use
brute-force mixed-integer programming [4] and derivative-
free methods [12], [13]. Joint optimization of the gearshift
strategy and gear ratio design has been done using dynamic
programming [14], combined dynamic programming and con-
vex optimization [5] and mixed-integer nonlinear optimization
[15]–[17]. For the design and control of an FGT and CVT,
[18] applies analytic optimization, while [5], [19] use convex
optimization, with [20] also considering a thermal EM model.
However, since these methods use known drive cycles, none of
them can be directly applied to time-optimal control problems,
where the velocity trajectory is unknown.

For the time-optimal control of race cars, [21] proposes a
distance-based convex optimization framework. This frame-
work is extended to consider the design and control of an FGT



and CVT by [22], while [23] includes a thermal EM model,
and [24] adds modeling of tyre grip limits, and optimization
of the FGT ratios for individual tyres. In [25], the MGT
gearshift is optimized by using iterative dynamic programming
with PMP and convex optimization, while [26] uses outer
convexification and nonlinear programming to optimize the
gearshift. However, to the best of the authors’ knowledge,
there are no frameworks for time-optimal control of race cars
considering the gearshifts as well as the gear ratio design.

Statement of Contributions: This thesis provides a com-
putationally efficient framework to optimize the design and
control of the electric race car shown in Fig. 1, considering
an FGT, an MGT and a CVT. We optimize the FGT- and
CVT-equipped cars by employing convex optimization, and
we introduce an efficient iterative algorithm to optimize the
MGT-equipped car, by combining convex optimization with
PMP to efficiently account for the discrete gearshift dynamics.
Finally, we leverage our algorithm’s efficiency to compare the
performance of a race car equipped with an FGT, a CVT and
2- to 4-speed MGTs on the Zandvoort race track for multiple
battery energy limits and EM sizes.

Organization: The remainder of this thesis is structured as
follows: Section II presents a convex model of the powertrain,
whilst Section III describes the iterative algorithm for MGT
optimization. In Section IV we showcase the results obtained
with our algorithm, together with a validation of the algo-
rithm’s performance. In Section V we draw the conclusions
and provide an outlook on future research.

II. MODELING AND PROBLEM DEFINITION

In this section, we define the minimum-lap-time design and
control problem for the powertrain shown schematically in
Fig. 1. Our problem is fully convex, except for the mixed-
integer gear selection of the MGT. We formulate our problem
by extending the framework developed in [22] for FGT and
CVT optimization. We add the MGT model, and improve upon
the accuracy of the EM and CVT loss models. Furthermore,
we include the more accurate vehicle and inverter models from
[27]. In this framework, we consider the EM to be the limiting
factor with respect to speed, torque and power, so we do not
consider any of these limitations for the battery, inverter or
transmission models.

A. Objective and State Dynamics

We construct the minimum-lap-time design and control
problem in space-domain, which grants us a finite horizon, and
enables us to easily implement position-dependent parameters
such as the road slope and corner radius. The objective is to
minimize the lap time T , given by

minT = min

∫ S

0

dt

ds
(s)ds,

where S is the track length and dt
ds (s) is the lethargy, or

the inverse of the velocity. As Fig. 1 shows, our model
contains two state variables: the battery energy Ebat(s) and

the kinetic energy Ekin(s). We define the battery energy with
the integrator

dEbat(s)

ds
= −Fi(s), (1)

where Fi(s) is the internal battery force, the space-derivative
of the battery energy. We assume that the battery does not
exceed its energy limits during the lap, so we only constrain
∆Ebat, the maximum energy consumption over a lap, with

Ebat(0)− Ebat(S) ≤ ∆Ebat. (2)

At the wheel-side of the vehicle model, we define the kinetic
energy integrator using the longitudinal vehicle dynamics
assuming steady-state cornering, through

dEkin(s)

ds
= Fx,F(s) + Fx,R(s)− Fdrag(s)− Fg(s), (3)

where Fx,j(s) denotes the longitudinal force at axle j, with
j ∈ {F,R} denoting the front and rear axle, respectively.
Furthermore, Fdrag(s) is the aerodynamic drag, and Fg(s) is
the gravitational drag. Since we are optimizing over a single
lap, we constrain the kinetic energy at the beginning and end
of the lap to be equal, using

Ekin(0) = Ekin(S). (4)

In order to connect the state variables to the objective function
in a convex fashion, we define

Ekin(s) ≥
1

2
·mtot · v(s)2, (5)

where mtot is the total vehicle mass, and v(s) is the vehicle
velocity, related to the lethargy through

dt

ds
(s) · v(s) ≥ 1. (6)

We relaxed the equality signs in (5) and (6) to inequalities,
which allows us to convert each equation into a convex second-
order cone constraint (SOCC), as described in Appendix A.
Since the objective is to minimize the lethargy, these con-
straints should be active at the optimal solution.

In order to properly compare the various transmission types,
we consider the total vehicle mass as

mtot =

{
m0 +mm +mcvt if CVT,
m0 +mm +mgb0 +mgear · ngear if FGT, MGT,

(7)
where m0 is the base mass of the vehicle without transmission
or EM, mm is the EM mass, mcvt is the CVT mass, mgb0 is
the mass of a geared transmission without gears, and mgear is
the mass of a single FGT or MGT gear. To evaluate the effect
of the EM size, we scale the mass of the EM linearly, as

mm = mm0 · sm, (8)

where sm is the scaling factor, and mm0 is the mass of the
unscaled EM.



B. Vehicle Dynamics
In this section, we introduce a model for the vehicle dy-

namics by reformulating the bicycle model developed in [27].
This allows us to impose limits on the vehicle velocity and
propulsive force based on the road slope and corner radius.
First, we describe the longitudinal forces acting on the vehicle,
defining the aerodynamic drag force as

Fdrag(s) =
ρ · cd ·Af

mtot
· Ekin(s), (9)

where ρ is the air density, cd is the drag coefficient, and
Af is the frontal area of the vehicle. Second, we define the
gravitational drag as

Fg(s) = mtot · g · sin(θ(s)), (10)

where g is the gravitational constant and θ(s) is the road
inclination. Lastly, we define the longitudinal axle force as

Fx,j(s) = Fgb,j(s)− cr,j · Fz,j(s)− Fbrk,j(s), (11)

where Fgb,j(s) is the gearbox output force at axle j, cr,j is the
rolling resistance coefficient, Fz,j(s) is the vertical axle force,
and Fbrk,j(s) is the brake force per axle, which is defined to
be non-negative,

Fbrk,j ≥ 0, (12)

with a fixed brake balance rbrk between the axles,

Fbrk,F(s) · rbrk = Fbrk,R(s) · (1− rbrk). (13)

The total vertical force pushing on the vehicle consists of its
weight and aerodynamic downforce Fdown(s), described by

Fz,F(s) + Fz,R(s) = m · g · cos(θ(s)) + Fdown(s), (14)

where the downforce is defined as

Fdown(s) =
ρ · cl ·Af

mtot
· Ekin(s), (15)

with lift coefficient cl. The maximum longitudinal and lateral
forces on axle j are constrained by the tyre grip limits with

(Fz,j(s) · µj)
2 ≥ F 2

x,j(s) + F 2
y,j(s), (16)

where µj is the tyre friction coefficient and Fy,j(s) is the
lateral axle force. The total lateral force acting on the vehicle
is defined by the lateral force balance,

Fy,F(s) + Fy,R(s) =
2 · Ekin(s)

Rtrack(s)
, (17)

where Rtrack(s) is the space-dependent track radius. By as-
suming steady-state cornering, i.e., no yaw moment, the lateral
tyre force balance can be defined as

Fy,F(s) · lF = Fy,R(s) · lR, (18)

where lF and lR represent the longitudinal distance between
the center of gravity and the front and rear axle, respectively.
Lastly, we define the longitudinal force balance using the pitch
moment equilibrium as

Fz,R · lR + Fdown · lgp = (Fx,F + Fx,R) · hg

+ Fz,F · lF + Fdrag · hgp, (19)

where hg is the height of the center of gravity with respect
to the tyre contact patch, and hgp and lgp are the vertical
and longitudinal distance, respectively, between the center of
gravity and the center of pressure of the vehicle.

C. Transmission

In this section, we present constraints for the gear ratio
and models for the losses of the FGT, MGT and CVT.
For the sake of notational simplicity we include ratios and
losses for the final drive directly in the component models.
Henceforth, we will consider a rear-wheel driven vehicle,
so we set Fgb,F(s) = 0, and for notational convenience
Fgb(s) = Fgb,R(s). Since the FGT and MGT technologies
have a relatively constant efficiency [28], we consider their
losses using the constant efficiencies ηfgt and ηmgt, respec-
tively, using the convex notation from [22],

Fgb(s) ≤

ηj · Fm(s)
1

ηj
· Fm(s)

j ∈ {fgt,mgt}, (20)

where Fm(s) represents the mechanical EM force. The gear
ratio γ(s) of the FGT is defined as

γ(s) = γ1, (21)

with γ1 being the ratio of its first and only gear. For the MGT,
we introduce the binary gearshift variable b(s) ∈ Bngear =
{0, 1}ngear , which allows us to write the active gear ratio as

γ(s) =

ngear∑
i=1

γi · bi(s), (22)

where ngear is the number of gears. To make sure only one
gear is active simultaneously, we define

ngear∑
i=1

bi(s) = 1.

Similar to [25], we assume that gearshifts occur instanta-
neously and without shifting losses, since we consider a high-
performance quick-shift transmission.

For the CVT, the gear ratio is fixed to lay within the range

γ(s) ∈ [γmin, γmax], (23)

where the limits are defined by a constant ratio coverage cγ ,

γmin = cγ · γmax. (24)

Since the CVT is strongly characterized by its efficiency, we
employ an enhanced form of the transmission loss model
proposed in [22]. We approximate the gearbox losses with
a quadratic model,

Pm(s)− Pgb(s) = x⊤
gb(s)Qgbxgb(s),

with Qgb ∈ S5+, where Sj+ describes a j×j symmetric positive
semi-definite matrix. We define xgb(s) as a vector containing
the in- and outputs of the CVT, given by

xgb(s) =
[

1√
ωm(s)

√
ωm(s)

ωgb(s)√
ωm(s)

Pm(s)√
ωm(s)

Pgb(s)√
ωm(s)

]⊤
,



Fig. 2. Comparison between the gearbox output torque (Tgb) of the measured
data and the convex model of the CVT for various gear ratios at two different
input speeds. The normalized RMSE of the output power of the full model
is 0.38 %.

where ωm(s) and ωgb(s) are the EM and CVT output speed,
and Pm(s) and Pgb(s) are the EM and CVT output power,
respectively. We determine the fitting coefficients of the Qgb

matrix using semi-definite programming. Since the model
estimates the CVT losses, while both Pgb(s) and Pm(s) are
present in xgb(s), a very accurate fit can be obtained, as shown
in Fig. 2. Finally, we convert the power-based loss model to
forces by multiplying with the lethargy-squared, yielding

(Fm(s)− Fgb(s)) ·
γ(s)

rw
≥ ygb(s)

⊤Qgbygb(s), (25)

where rw is the wheel radius, and with

ygb(s) =
[
dt
ds (s)

γ(s)
rw

1
rw

Fm(s) Fgb(s)
]⊤

. (26)

Since Qgb is a positive definite matrix, this model can be
converted into an SOCC, as shown in Appendix A.

D. Electric Motor

In this section, we derive a scalable model of the EM. We
provide a convex loss model, together with convex bounds for
the maximum EM speed, power and torque. Similarly to the
CVT model, we capture the EM efficiency with

Pac(s)− Pm(s) = xm(s)
⊤Qmxm(s),

where Qm ∈ S4+ is a positive semi-definite matrix, and xm(s)
is a vector containing the relevant in- and outputs, defined as

xm(s) =
[

1√
ωm(s)

√
ωm(s)

Pm(s)√
ωm(s)

Pac(s)√
ωm(s)

]⊤
,

where Pac(s) represents the electrical EM power.
Since our framework optimizes the transmission design so

that the EM is used as efficiently as possible, we strive to
accurately capture the qualitative properties of the EM effi-
ciency map. To this end, we additionally capture the optimal
operating line of the EM, which we define as

∂ηm(Tm, ωm)

∂ωm

∣∣∣∣
Tm,ω∗

m(Tm)

= 0,

Fig. 3. Normalized comparison between the EM input data and model. The
normalized RMSE of the input power is 0.94 %.

Fig. 4. EM maps showing the effect of fitting the optimal operating
line (OOL). The figure on the left is obtained by optimizing the EM loss
model without considering the optimal operating line, while the right figure
is obtained by including the x⊤

m,oQme1 term in the semi-definite program.

where ω∗
m(Tm) represents the optimal operating line, ηm is the

EM efficiency and Tm is the EM torque. By differentiating our
efficiency model with respect to the EM speed, as worked out
in Appendix B, we can define the optimal operating line as

x⊤
m,oQme1 = 0,

with e1 =
[
1 0 0 0

]⊤
and xm,o = xm|Tm,ω∗

m(Tm).
Finally, we determine the fitting coefficients of the Qm matrix
by jointly fitting the losses and the optimal operating line, as

Qm = arg min
Qm∈S4+

∥Pac(s)− Pm(s)− xm(s)
⊤Qmxm(s)∥2

+ ∥x⊤
m,oQme1∥2.

We normalize the power and speed data to keep the weight of
the losses and optimal operating line equivalent, and solve the
problem using semi-definite programming. The resulting loss
model is shown in Fig. 3, whereas Fig. 4 shows the effect
of including the optimal operating line in the model. By
converting the power-based model to forces, we obtain the
convex model

(Fac(s)− Fm(s)) ·
γ(s)

rw
≥ ym(s)

⊤Qmym(s), (27)



with

ym(s) =
[
dt
ds (s)

γ(s)
rw

Fm(s) Fac(s)
]⊤

, (28)

where Fac(s) is the electrical EM force.
We consider the limits of the EM in the force domain,

similar to [22]. The maximum EM torque Tm,max constrains
the mechanical EM force through

Fm(s) ∈ [−1, 1] · Tm,max · γ(s)
rw

, (29)

while the EM power limit is established with

Fm(s) ∈ [−1, 1] ·
(
cm,1 ·

γ(s)

rw
+ cm,2 ·

dt

ds
(s)

)
, (30)

with fitting coefficients cm,1 and cm,2. Finally, the maximum
EM speed ωm,max is constrained with

γ(s) ≤ rw ·
dt

ds
(s) · ωm,max. (31)

To vary the EM size, we scale the EM losses and limits
linearly with respect to torque, similarly to [22]. We use
scaling factor sm, which is defined as

sm =
Tm,max

Tm0,max
,

where Tm0,max represents the unscaled maximum EM torque.
The maximum EM power is scaled similarly, as

cm,i = cm0,i · sm ∀i ∈ {1, 2},

where cm0,i represents an unscaled fitting coefficient.

E. Inverter

The inverter transforms the direct current from the battery
into alternating current for the EM. We model the inverter
losses similar to [29], using the quadratic model,

(Fdc(s)− Fac(s)) ·
dt

ds
(s) ≥ αinv · F 2

ac(s), (32)

where Fdc(s) is the force equivalent to the direct current
inverter power, and αinv is a quadratic fitting coefficient.

F. Battery

In this section we provide a quadratic battery loss model.
We model the battery output force Fb(s) with

Fb(s) = Fdc(s) + Paux ·
dt

ds
(s), (33)

where Paux represents the power required for all auxiliary
components in the vehicle, like electronics and cooling pumps.
The battery losses are captured with

(Fi(s)− Fb(s)) ·
dt

ds
(s) · Psc ≥ F 2

i (s), (34)

where Psc is the short-circuit power, which we assume to be
constant.

G. Minimum-Lap-Time Optimization Problem
In this section, we distinguish between the different types of

optimization variables, and solve the minimum-lap-time design
and control problem in space-domain. From here on, we will
drop the position dependence (s) in our notation when it is
clear from context. First, we consider the design variables,
p = γ1 for the FGT, p = {γ1, . . . , γngear

} for the MGT and
p = γmax for the CVT. For notational convenience, we model
the design variables as state variables with zero dynamics,

dγi(s)

ds
= 0, (35)

which leaves only the initial conditions as free optimiza-
tion variables. With this, we consider the state variables
as x = {Ebat, Ekin, p}. We define the control inputs
as u = {Fm, Fbrk,F, Fbrk,R}, with the additional con-
trol input γ(s) for the CVT and b(s) for the MGT.
Lastly, we define the remaining variables as lifting variables
z = {v, dt

ds , Fgb, Fac, Fdc, Fb, Fi, Fx,F, Fx,R, Fy,F, Fy,R, Fz,F,
Fz,R, Fdrag, Fdown}, and formulate the optimization problem
as follows:

Problem 1 (Minimum-lap-time problem). The time-optimal
design and control strategies are the solution of

min
x,u,z

∫ S

0

dt

ds
(s)ds,

s.t. (1)− (19), (27)− (35),

and


(20), (21) if FGT,
(20), (22) if MGT,
(23)− (26) if CVT.

For both the FGT and CVT, Problem 1 is fully convex and
can be solved for the globally optimal solution in polynomial
time [30] using commercially available solvers. However, due
to the discrete set B in constraint (22), the problem for the
MGT is a non-convex MIOCP, which makes it computation-
ally demanding to solve numerically.

III. MGT OPTIMIZATION METHODOLOGY

In this section, we propose an iterative algorithm to solve
the MIOCP for the optimal design and control of an MGT-
equipped race car. The algorithm is loosely based on Benders
decomposition, as shown in Appendix E. First, we subdivide
the MIOCP into a continuous optimization problem (COP),
which optimizes the continuous design and control variables
for a given gearshift trajectory, and a gearshift optimization
problem (GOP), which optimizes the gearshifts for a given
state and co-state trajectory. Then we provide the iterative
algorithm itself, after which we conclude with a discussion
regarding optimality and convergence criteria.

To distinguish between iterations of our algorithm, we intro-
duce the (·)k notation to describe the current iteration k ∈ N.
To improve readability, we separate the continuous inputs from
the discrete input using c = u\b = {Fm, Fbrk,F, Fbrk,R}. Last,
since the continuous inputs and lifting variables are optimized
by both the COP and GOP, we distinguish between the results
of the respective problems with a (·)C and (·)G notation.



A. Continuous Optimization Problem Definition

Since (22) contains a multiplication between the two op-
timization variables γi and bi, it is not convex. We resolve
this issue by removing γ(s) from the optimization entirely
by employing a Big-M formulation [31], which transforms a
constraint of the form f(γ(s)) ≤ 0, like (31), into the form

f(γi) ≤M · (1− bi(s)) ∀i ∈ {1, . . . , ngear},

with M a scalar, significantly larger than f(γi). By apply-
ing this transformation to constraints (27)-(31), as shown
in Appendix C, we can define the optimization problem
without γ(s). The resulting problem is convex, except for the
binary gearshift variable b(s). However, by providing a pre-
determined trajectory bk−1(s), we can define the convex COP:

Problem 2 (Continuous Optimization Problem). We define the
COP for MGT optimization as

(xk, ckC, z
k
C) = argmin

x,c,z

∫ S

0

dt

ds
(s)ds,

s.t.: State dynamics and limits: (1)− (4), (35),
Vehicle dynamics: (5)− (19),
Loss models: (20), (32)− (34),
Big-M EM models: (39)− (43),

b(s) := bk−1(s) ∀s ∈ [0, S].

This fully convex COP can be solved in polynomial time,
similar to Problem 1 for the FGT and CVT.

B. Gearshift Optimization Problem Definition

We optimize the binary gearshift trajectory by applying
PMP, which allows us to efficiently solve the problem for
each position on track s independently. According to PMP
[32], the optimal solution satisfies

(u⋆, z⋆) = argmin
u,z
H(x⋆, λ⋆, u, z), (36)

where (·)⋆ denotes an optimal trajectory, and H is the Hamil-
tonian, derived similar to [33] as

H(s) = dt

ds
(s) +

ngear∑
i=1

(λγi
· 0) + λbat(s) · (−Fi(s))

+ λkin(s) · (Fx,F(s) + Fx,R(s)− Fdrag(s)− Fg(s)) ,

where λbat(s), λkin(s), and λγi
(s) are the costates associated

to the state integrators (1), (3) and (35), respectively. If we
provide a pre-determined state and costate trajectory (x, λ),
the Hamiltonian minimization problem can be solved at every
position s independently, thereby significantly reducing the
computational complexity. By minimizing the Hamiltonian
for each gear option separately with convex optimization,
the optimal trajectory can be determined by selecting the
Hamiltonian with the minimum value at each position s. This
yields ngear convex optimization problems that can be solved
in polynomial time. By providing a pre-determined state and
costate trajectory (xk(s), λk(s)), we can formulate the GOP
as follows:

Problem 3 (Gearshift Optimization Problem). We define the
GOP for MGT optimization as

(bk, ckG, z
k
G) = argmin

b,c,z
H(s),

s.t.: Vehicle dynamics: (5)− (19),
Loss models: (20), (32)− (34),
Big-M EM models: (39)− (43),{
x(s) := xk(s)

λ(s) := λk(s)
∀s ∈ [0, S].

Note that the GOP uses a pre-determined (xk, λk) trajectory,
while omitting the state dynamics (1) and (3). Therefore its
solution is not guaranteed to be feasible for Problem 1 without
additional conditions, which we will provide in Section III-D.

C. Iterative Algorithm

This part of the thesis is dedicated to the proposal of an
algorithm that optimizes the combined design and control of
an MGT-equipped race car, by iterating between the COP
and GOP until the trajectories converge. The criteria for
convergence will be provided in Section III-D after discussing
the feasibility and optimality of the problems. The iterative
algorithm is described in Algorithm 1, and schematically
shown in Fig. 5. Since iterating between the COP and GOP
can result in a situation where the GOP jumps back and forth
between two gearshift trajectories, we dampen the costate
trajectories similar to [25], as

λ̃k = λk−1 + q ·
(
λk − λk−1

)
,

where λ̃k is the damped trajectory and q ∈ [0, 1] is the
damping coefficient. At convergence, when λk = λk−1, the
damping becomes irrelevant and yields λ̃k = λk.

Algorithm 1: Iterative algorithm for the optimization
of an electric race car equipped with an MGT.

k ← 1, b0 ← Derive initial strategy;
while not converged do

(xk, λk, ckC, z
k
C)← Solve COP(bk−1);

if k > 1 then
λ̃k ← λk−1 + q ·

(
λk − λk−1

)
;

else
λ̃k ← λk

end
(bk, ckG, z

k
G)← Solve GOP(xk, λ̃k);

if satisfied (37) and (38) then
(x⋆, b⋆, c⋆, z⋆)← (xk, bk, ckC, z

k
C);

Stop;
end
k ← k + 1;

end
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Fig. 5. Iterative algorithm for the optimization of an electric race car equipped
with an MGT.

D. Discussion of Optimality and Convergence

In order to devise convergence criteria for the iterative
algorithm, this section establishes conditions for the feasibility
and optimality of the COP and the GOP.

Lemma 1. If the COP yields a feasible solution, this solution
is also feasible for Problem 1.

Proof. Since the feasible domain of the COP is a subset of
the feasible domain of Problem 1, any solution that is feasible
for the COP is inherently also feasible for Problem 1.

Lemma 2. Consider the case where the GOP gear trajectory
is equal for two iterations, bk = bk−1, and where λ̃k = λk. If
the ckC, z

k
C trajectory resulting from the COP is feasible and

equal to the ckG, z
k
G trajectory resulting from the GOP, then

the GOP solution is feasible for Problem 1.

Proof. Suppose, for contradiction, that there exists a GOP
solution (xk, λ̃k, bk, zkG, c

k
G) that is infeasible for Problem 1,

while it is equal to the COP solution (xk, λk, bk−1, zkC, c
k
C).

This implies that the COP solution is also infeasible for
Problem 1, since the solutions are equal. However, Lemma 1
states that any feasible COP solution is also feasible for
Problem 1, which is a contradiction.

Lemma 3. If the trajectory bk−1, which is fed into the COP,
is globally optimal for Problem 1, then the resulting trajectory
(xk, λk, ckC, z

k
C) is also globally optimal for Problem 1.

Proof. Since the COP is convex, its solution is globally
optimal for the given bk−1 trajectory [30]. Therefore, if
the bk−1 trajectory is globally optimal for Problem 1, the
(xk, λk, ckC, z

k
C) solution to the COP is also globally optimal

for Problem 1.

Lemma 4. Consider the case where the GOP is fed with the
(xk, λk) trajectory that is globally optimal for Problem 1. If
the GOP solution, (bk, ckG, z

k
G), is unique, as well as feasible

for Problem 1, then it is also globally optimal for Problem 1.

Proof. First, consider that the GOP and Problem 1 have equiv-
alent constraints, except that the GOP constrains the (x, λ)
trajectory, while not containing constraints (1)-(4). Therefore,
the feasible domain of Problem 1 is a subset of the feasible
domain of the GOP for the fixed globally optimal (x⋆, λ⋆).
Second, consider that according to (36), the GOP solution
(bk, ckG, z

k
G) is globally optimal for the provided (xk, λk)

trajectory, if it is unique. Therefore, if the GOP solution is
unique, but not globally optimal for Problem 1, then it is either
not feasible for Problem 1, or the (xk, λk) trajectory fed into
the GOP is not globally optimal for Problem 1.

In order to obtain a potential candidate for optimality, the
solution of the iterative algorithm should satisfy the feasibility
and optimality conditions from Lemma 1-4, which we imple-
ment as

∥(yk − yk−1)∥∞ ≤ ϵ ∀y ∈ {b, x, λ}, (37)

∥(ykG − ykC)∥∞ ≤ ϵ ∀y ∈ {c, z}, (38)

where ϵ is a small normalized scalar to allow for numerical
tolerances. If these conditions are satisfied, the algorithm is
terminated.

Since the COP and GOP both minimize the lap time,
iterating between the two will improve the lap time to a
point where neither problem can independently improve the
lap time further. At this point, the gear trajectory will remain
the same for multiple iterations, and (37) will be satisfied.
When considering a fixed (b, x, λ) trajectory, both the COP
and GOP will consider the same (c, z) trajectory to be optimal.
Therefore, at convergence, (38) will be satisfied as well. In
conclusion, the algorithm will converge to a situation where
the convergence criteria are satisfied, and where the GOP
solution is feasible for Problem 1.

Lastly, if either the COP or the GOP finds the globally
optimal trajectory, Lemmas 3 and 4 state that the algorithm
will converge at this point if the GOP solution is unique. This
gives us some confidence in the quality of our results, and
even though we can only provide necessary conditions for
optimality, our numerical results provided in Section IV do
indicate that our algorithm provides a promising candidate for
the optimal solution.

IV. RESULTS AND VALIDATION

This section presents the numerical results obtained by
applying our framework to various transmission types. First,
we evaluate the performance of a race car equipped with
an FGT, a CVT, a 2-speed MGT (2GT), a 3-speed MGT
(3GT) and a 4-speed MGT (4GT). Second, we compare the
performance for multiple battery energy limits and EM sizes,
and lastly, we verify the accuracy of our EM and CVT models,
and validate the performance of our iterative algorithm.



Fig. 6. Convergence of the iterative algorithm, showing the difference between
the lap time at each iteration and the final converged lap time (Tconv).

Fig. 7. Velocity, gear ratio, and transmission output power trajectories for
each car, with ∆Ebat = 11MJ. To compare, we also show the relative lap
time of each car with respect to the FGT-equipped car.

A. Numerical Results

In this section, we apply our framework to one lap around
the 4.2 km long Zandvoort race track, using the InMotion
LMP3 race car [34] as a demonstrator. We solve Problem 1
for the FGT- and CVT-equipped cars, and apply the iterative
algorithm for the cars with a 2GT, a 3GT and a 4GT. The
parameters which distinguish the transmission types can be
found in Table II of Appendix D. We parse the cone programs
with YALMIP [35], using a forward Euler discretization of
∆s = 4m, and solve with MOSEK [36] on a laptop with
a 2.6 GHz processor and 16 GB RAM. Problem 1 takes on
average 1.2 s to solve for the FGT and 1.4 s for the CVT, while
the iterative algoritm takes on average 63 s to converge. A
detailed breakdown of the computation times for each problem
is shown in Table III of Appendix D. As initial guess for the
gearshift, we use a strategy where the full lap is driven in first
gear, except for one discrete step in each other gear. This way,
solving the COP yields multiple distinct gear ratios, which
allows the GOP to derive an improved gearshift strategy.

In Fig. 6, we show the convergence behavior of the iterative
algorithm. As can be observed, the algorithm gets close to

Fig. 8. Comparison between the lap times obtained by race cars equipped with
different transmission types. The results are shown over a range of battery
energy limits, specifically showing the relative lap times with respect to the
FGT-equipped car. We further show the velocity and gear ratio trajectories
for 3 battery energy limits to clarify the difference in lap times.

the final converged lap time within a few iterations, while
there is no definitive correlation between the number of gears
and the amount of iterations required for convergence. In
Fig. 7, we present the results for a battery energy limit of
∆Ebat = 11MJ, for which the vehicle is significantly energy-
limited. As can be observed, the CVT-equipped car performs
considerably worse than the other cars. Even though the CVT
improves the EM efficiency with 1.2 % compared to the FGT,
its own average efficiency is 1 % lower than that of the FGT.
In combination with its increased weight, this still causes
an increase in lap time. The 2GT-car, on the other hand,
outperforms the FGT-car by having an increased EM effi-
ciency and by being able to accelerate faster and regeneratively
brake both later and more aggressively. The 3GT-car contains
an added gear with a very low ratio, which allows for a
high EM efficiency at high speed but low power sections. In
combination with a higher first gear ratio, this allows the 3GT-
car to accelerate faster out of corners compared to the 2GT-car,
yielding even faster lap times. The 4GT-car, however, cannot
provide enough additional performance with its added gear to
make up for its higher weight, making it marginally slower
than the 2GT-car.

To understand the effect of the available battery energy on
the optimal transmission type, Fig. 8 shows the performance
over a range of battery energy limits, together with the
acceleration behavior at a representative straight track section
for three battery energy limits. As can be observed, compared
to the FGT- and CVT-cars, all three MGT-cars show similar



Fig. 9. Operating points of the EM for each MGT-equipped car. We
specifically show the operating points for 3 battery energy limits to showcase
the different utilization of each gear in each scenario.

behavior, having better lap times for low energy levels due to
increased powertrain efficiency, while also performing better
at high energy levels due to superior acceleration performance.
However, around ∆Ebat = 13MJ, neither the increased
efficiency nor the acceleration performance have enough effect
to overcome the additional component weight, making only
the 2GT-car marginally faster than the FGT-car. In Fig. 9,
the operating points of the EM can be seen for all three
MGT-cars and for multiple battery energy limits. Observe
that for ∆Ebat = 6MJ, each additional gear is used to
get the EM operation closer to its peak efficiency, while for
∆Ebat = 16MJ, each additional gear is used to increase the
time spent at maximum power.

To better understand the role the transmission can play in
optimizing the size of the EM, Fig. 10 shows the lap time
for a range of EM sizes. Note that a similar pattern can be
seen for the EM size as for the battery energy limit, while
the underlying reason is the opposite. For small EM sizes,
the MGT-cars can better exploit the maximum power area of
the EM, while for large EM sizes, the MGTs improve the
EM efficiency, making more energy available for acceleration.
Overall, the EM size at which the fastest lap time is obtained
is virtually the same for each car, due to the strong influence
of the EM size on the vehicle weight.

In conclusion, all three MGT-equipped cars generally out-
perform the FGT- and CVT-cars. Based on the situation, either
the 2GT-car or 3GT-car delivers the best performance, while
the 4GT-car is not able to make its 4th gear worth its weight
in lap time gain.

Fig. 10. Comparison between the lap times obtained by race cars equipped
with different transmission types over a range of EM sizes for ∆Ebat =
11MJ. We specifically show the relative lap times with respect to the FGT-
equipped car.

Fig. 11. Comparison between the convex and nonlinear EM and CVT models,
and the resulting battery energy drift for ∆Ebat = 11MJ.

B. Validation

In this section, we first validate the accuracy of the EM
and CVT models, after which we evaluate the quality of the
iterative algorithm by solving part of the lap using a state-of-
the-art mixed-integer optimizer. Last, we verify that the lap
time of an idealized MGT-car with increasingly more gears
converges to that of an idealized CVT-car.

In Fig. 11, we compare the performance of the convex
model with that of a nonlinear model that directly employs
the efficiency maps of the EM and CVT. By recomputing
the energy consumption based on the losses of the nonlinear
model, we can observe that the total drift in energy consump-
tion reaches only 0.03 % for ∆Ebat = 11MJ. Over the full
range of battery energy limits, the average drift reaches 1.31 %,
while the maximum drift reaches 1.78 %.

In order to validate the efficacy of the iterative algorithm,
we solve the MIOCP directly using the MOSEK mixed-integer
second-order cone programming solver, which employs a
branch-and-bound algorithm to solve the problem with global
optimality guarantees. However, due to the complex nature



TABLE I
COMPARISON OF COMPUTATION TIMES BETWEEN A MIXED-INTEGER

SOLVER AND THE ITERATIVE ALGORITHM ON A SHORT SECTION OF THE
TRACK. SOLVED FOR A 2GT.

Mixed-integer Iterative
Solving
time

Section
time

Solving
time

Section
time

Section time
differenceNsteps

12 43 s 3.5946 s 2 s 3.5946 s 0.0 ms
14 120 s 3.4959 s 2 s 3.4959 s 0.0 ms
16 575 s 3.4256 s 2 s 3.4259 s 0.3 ms
18 1940 s 3.3403 s 2 s 3.3403 s 0.0 ms
20 8153 s 3.4759 s 2 s 3.4759 s 0.0 ms
22 34915 s 3.4302 s 2 s 3.4302 s 0.0 ms

of our problem, the mixed-integer solver can only solve for
a discretization of Nsteps = 22 steps in less than 10 hours.
Since the original problem contains Nsteps = 1058 steps,
this means that the mixed-integer solver can only solve only
around 2 % of the lap within 10 hours. Therefore, we validate
the iterative algorithm by using a coarser discretization, and
by optimizing only a small section of the track, containing
a braking zone, a corner, and an acceleration zone. Since
Lemma 3 states that the COP will return the globally optimal
solution if it is fed with the globally optimal binary gearshift
trajectory, we expect equal results if the mixed-integer solver
finds the same gearshift trajectory. To exemplify the computa-
tional complexity of our problem, we present the computation
times for the mixed-integer algorithm and iterative algorithm
for a varying number of discretization steps in Table I. As
can be observed, the mixed-integer algorithm soon becomes
intractable, while the iterative algorithm obtains virtually the
same section times in much less computation time. For only
one simulation is the section time obtained by the iterative
algorithm 0.3 milliseconds slower, due to a poor initial guess.
This confirms that the iterative algorithm provides us with a
promising candidate for optimality.

Lastly, to verify the performance and robustness of the itera-
tive algorithm on the entire lap, we compare the performance
of an idealized MGT- and CVT-equipped car, ignoring the
transmission weights, efficiencies and ratio limits. Since a
CVT is essentially an MGT with an infinite number of gears,
simulating the MGT-car with an increasing number of gears
should result in a lap time approximating that of the CVT-car.
As can be seen in Fig. 12, the results neatly converge to a
difference in lap time below 10 ms at 22 speeds, showing that
our algorithm functions for large numbers of gears.

V. CONCLUSION

In this thesis, we presented an efficient algorithm to opti-
mize the design and control of an electric race car, consider-
ing a continuously variable transmission (CVT), a fixed-gear
transmission (FGT) and a multiple-gear transmission (MGT).
We derived convex models for the system components, and
developed an iterative algorithm to efficiently handle the
mixed-integer nature of the MGT gearshifts, by combining
convex optimization and Pontryagin’s Minimum Principle
(PMP). We provided necessary conditions for the optimality
of our solution, and showed that our algorithm can converge

Fig. 12. Comparison between the lap times of an ideal CVT (iCVT) and
an ideal MGT (iMGT) for ∆Ebat = 11MJ. Additionally, we show the gear
ratio trajectories of the iCVT and an ideal 22-speed MGT (i22GT).

to the globally optimal solution, whilst our results showed that
our algorithm indeed provides a promising candidate for the
optimal solution. Furthermore, we studied the performance of
the various transmission types on the Zandvoort race track for
multiple battery energy limits and EM sizes. We observed that
an MGT can balance the respective advantages of an FGT and
a CVT, by delivering significant control over the EM operating
range at a low cost. However, we also noted that adding too
many gears can be detrimental to the lap time, highlighting
that careful optimization is required.

The efficiency of our framework opens the door for future
research to investigate the optimal transmission design when
considering a full race season. When optimizing over a number
of race tracks, we expect that the performance of the CVT- and
4GT-equipped cars will improve due to their control flexibility.
Furthermore, steps could be taken to improve the accuracy of
the modeling components, for example by considering thermal
EM limitations, gearshift losses, or more accurate weight and
efficiency models for the individual MGT components.
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APPENDIX A
SECOND-ORDER CONE PROGRAM

All quadratic models used in our optimization problems are
of the form

y1 · y2 ≥ y23 , with y23 ≥ 0,

which we can reformulate as the second-order cone constraint
(SOCC)

y1 + y2 ≥
∥∥∥∥ 2 · y3
y1 − y2

∥∥∥∥
2

.

For the kinetic energy and lethargy equations, (5) and (6), as
well as for the inverter and battery loss models, (32) and (34),
this implementation is trivial. However, for the CVT and EM
models, (25) and (27), an intermediate step is required. By
using a Cholesky factorization,

x⊤Qx = x⊤C⊤Cx, with Q ∈ S+,

we can now formulate the models as SOCCs with y3 = Cx.

APPENDIX B
MOTOR MODEL

In this appendix we work out how to incorporate the optimal
operating line into the EM loss model. We consider

∂ηm(Tm, ωm)

∂ωm

∣∣∣∣
Tm,ω∗

m(Tm)

= 0,

with the EM efficiency ηm, defined as

ηm =

(
Pm

Pm + x⊤
mQmxm

)sign(Pm)

,

with
Pm = Tm · ωm.

We additionally define

zm =
xm√
ωm

=

[
1

ωm
1 Tm Tac

]⊤
,

and
∂
(
z⊤mQmzm

)
∂ωm

= − 2

ω2
m

z⊤mQme1.

By substitution, we obtain for Pm > 0

0 =

∂

(
Tmωm

Tmωm + x⊤
mQmxm

·

(
1

ωm

1
ωm

))
∂ωm

,

which we can differentiate with respect to ωm, yielding

0 =
0 + Tm

2
ω2

m
z⊤mQme1

(Tm + z⊤mQmzm)
2 .

By eliminating all scaling factors that do not influence the
coefficients of the Qm matrix, we finally obtain the result,

0 = x⊤
mQme1.

Using the same methodology for Pm < 0 yields the same
result, providing us a way to incorporate the optimal operating
line into the EM loss model.

APPENDIX C
BIG-M FORMULATION

We define the Big-M EM loss model as

(Fac(s)− Fm(s)) ·
γi
rw
≥ y⊤m,γ(s)Qmym,γ(s)

−M · (1− bi(s)), (39)

with

ym,γ(s) =

[
dt

ds
(s)

γi
rw

Fm(s) Fac(s)

]⊤
. (40)

For the EM torque limit, we define

Fm(s) ∈ [−1, 1] ·
(
Tm,max · γi

rw
+M · (1− bi(s))

)
, (41)

while for the EM power limit, we define

Fm(s) ∈ [−1, 1] ·
(
cm,1 ·

γi
rw

+cm,2 ·
dt

ds
(s) +M · (1− bi(s))

)
, (42)

and lastly, for the EM speed limit, we define

γi ≤ rw ·
dt

ds
(s) · ωm,max +M · (1− bi(s)). (43)

APPENDIX D
VEHICLE PARAMETERS AND OPTIMIZATION RESULTS

The parameters that change between the various transmis-
sion types can be seen in Table II, while Table III shows the
computation times for our framework. Note that mainly the
GOP computation time is strongly influenced by the number
of gears, since it has to solve a convex optimization problem
for each possible gear option.

TABLE II
RELEVANT VEHICLE PARAMETERS

Parameter Symbol Value
Mass base vehicle m0 1315 kg
Mass CVT mcvt 70 kg
Mass geared transmission
excluding gears

mgb0 30 kg

Mass per gear mgear 5 kg
Mass unscaled EM mm0 58 kg
Efficiency FGT ηfgt 97 %
Efficiency MGT ηmgt 97 %

TABLE III
COMPUTATION TIMES, AVERAGED OVER 130 MEASUREMENTS

COP GOP Iterations Total
runtime

CVT - - 1 1.36 s
FGT - - 1 1.17 s
2GT 1.54 s 1.39 s 10 29.28 s
3GT 1.87 s 2.03 s 16 60.84 s
4GT 2.20 s 2.69 s 20 98.26 s



APPENDIX E
BENDERS DECOMPOSITION

The Benders decomposition is a technique that can be used
to solve our MIOCP by decomposing the original problem into
a sub-problem and master problem. The sub-problem yields a
feasible solution and upper bound for the original problem us-
ing convex optimization on a known discrete trajectory, while
the master problem yields a lower bound for the solution of the
original problem using mixed-integer linear programming. By
iterating between these problems, the upper and lower bound
converge towards each other until a satisfactory optimality gap
is obtained. In this appendix we describe how the Benders
decomposition could be implemented for Problem 1. We first
describe the sub-problem and master problem, after which
we shortly discuss the iterative algorithm and the issues with
applying it to our problem. For further information regarding
the Benders decomposition we refer the reader to [37].

A. Sub-problem

The sub-problem for the Benders decomposition is very
similar to our COP, using a big-M formulation and pre-
determined gearshift trajectory bk. Similarly to our algorithm
we employ the (·)k notation to describe the current iteration
k ∈ N+. We formulate the Benders sub-problem as:

Problem 4 (Benders Sub-Problem). We define the Benders
sub-problem for MGT optimization as

T k
UB = min

x,c,z

∫ S

0

dt

ds
(s)ds,

s.t.: State dynamics and limits: (1)− (4), (35),
Vehicle dynamics: (5)− (19),
Loss models: (20), (32)− (34),
Big-M EM models: (39)− (43),

b(s) := bk(s) : λk
b(s) ∀s ∈ [0, S].

This problem is solved using convex optimization, yielding
T k
UB, and the dual trajectory to b(s) := bk(s), defined as λk

b.

B. Master problem

In the Benders master problem, the gearshift trajectory bk

and a lower bound for the optimal solution T k
LB are deter-

mined, by adding a so-called ”cutting plane” in each iteration.
We formulate the Benders master problem as follows:

Problem 5 (Benders Master Problem). We define the Benders
master problem for MGT optimization as

T k
LB = min

α,bk
α

s.t.: α ≥ −M
α ≥ T j

UB + λj
b

(
bk − bj

)
∀j ∈ {1, . . . , k − 1}

with optimization variable α ∈ R and with M a significantly
large scalar which provides a lower bound to the problem in
the first iteration.

This problem is solved using mixed-integer linear program-
ming, yielding T k

LB, b
k.

C. Iterative algorithm and discussion

The strategy for solving the Benders decomposition is
shown in Algorithm 2.

Algorithm 2: Benders decomposition algorithm.

i← 1, T 1
LB ← −∞, b1 ← Derive initial strategy;

while not converged do
(T k

UB, λ
k
b)← Solve sub-problem;

if T k
UB − T k

LB ≤ ϵ then
T ⋆ ← T j

UB;
Stop;

end
(T k

LB, b
k)← Solve master problem;

k ← k + 1;
end

The issue with using the Benders decomposition for our
problem is that a large number of cutting planes is required
for the algorithm to converge. Since the master problem is
still a mixed-integer optimization problem, it does not provide
polynomial time convergence guarantees. While the problem
can be solved efficiently for the first few iterations, the
complexity increases as more cuts are required. Due to the
particularities of our problem with a relatively long horizon,
the Benders decomposition requires a large number of cuts,
making it an inefficient method for solving our problem. Our
GOP is inspired by the Benders master problem, but to make
it more computationally efficient, we decompose the problem
so that it can be solved for each position separately. This
significantly decreases the computational complexity, while we
no longer obtain a lower bound for our problem.
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