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”Big whirls have little whirls,
which feed on their velocity.
And little whirls have lesser whirls,
and so on to viscosity.”

Lewis F. Richardson

Figure 1: A turbulent cascade as seen by Leonardo da Vinci. Reproduced from [1].



Abstract

Abstract

Currently, a pathway to transition away from the use of fossil fuels that is widely re-
searched is the conversion of bio-based syngas. Many industrial processes that convert
syngas operate on metal-based catalysts under energy-intensive conditions. An alterna-
tive method to convert syngas is by means of fermentation by acetogenic bacteria, such as
Clostridium autoethanogenum. However, the conventional bioreactors are typically mass
transfer limited, yielding high reactor volumes. A method to overcome these mass transfer
limitations is by utilizing the rotor-stator spinning disc reactor (rs-SDR), which exhibits
high mass transfer rates.

In this work, Computational Fluid Dynamics (CFD) simulations are constructed and
validated to study the hydrodynamics in the rs-SDR and study the mechanical effects
of the hydrodynamics in a turbulent Couette flow on the bacterial cell. For this, Large
Eddy Simulations (LES) are employed to capture the turbulent nature of the flow using
the wall-adapting local eddy viscosity sub-grid-scale turbulence model. Ultimately, an
Eulerian-Lagrangian simulation of bacteria-laden flow in the rs-SDR is constructed using
the multiphase paricle-in-cell (MP-PIC) model.

A validation case for a rotor-stator cavity is constructed and CFD simulation results are
compared with literature. The simulation results are in good agreement with the literature
results for the lower radial positions, but the model deviates more significantly at higher
radial positions. The simulation for the rotor-stator cavity is extended to the complete
rs-SDR with optional throughflow. Several verification tests are successfully performed
on the simulation results. As an experimental validation, the residence time distribution
(RTD) is compared with simulated RTDs. For the turbulent regime in the rs-SDR, the
correspondence with the experimental RTD is satisfactory.

A turbulent Couette flow is simulated and validated and a bacterial cell is placed in
the flow field by means of an Eulerian simulation with the Volume of Fluid method. A
tumbling motion is observed. The drag force is found to be the dominant force acting
on the bacterial cell, but according to the Tresca and Von Mises failure criteria, plastic
deformation in the rs-SDR is not likely.

Finally, the methodology of simulating particle-laden flows in the rs-SDR using an Eulerian-
Langrangian simulation is explicated and the particle dynamics are found to be in line
with the simulated hydrodynamics.
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Chapter 1 – Introduction

Chapter 1

Introduction

With the ever-growing needs of the global population, the urgency of efficient use of en-
ergy and resources has become more prominent [2]. With the current absence of abundant
carbon-neutral energy resources, an increase in energy consumption is prone to an increase
of emission of greenhouse gases. The chemical industry has a major role in the emission
of greenhouse gases and energy usage [3], which comes with great responsibility in tran-
sitioning towards a more environmentally sustainable industry. One technique to reduce
the emission of greenhouse gases is by transitioning from fossil fuels to fuels from ligno-
cellulosic biomass [4]. This entails the production of syngas from gasification of biomass.
Thereafter, the syngas can be chemically converted towards valuable fuels or feedstock for
the chemical industry.

Industrial processes that currently convert syngas into more valuable products consist of
metal-based catalytic processes that operate under energy-intensive conditions [5]. Chem-
ical conversion routes under investigation consist of catalytic ethanol production [6] and
hydrogenation to methanol [7], amongst others . Another widely researched syngas conver-
sion route is the hydrogenation to hydrocarbons through the Fischer-Tropsch mechanism
[8].

In contrast to the metal-based catalytic processes, microbial pathways of converting syngas
into valuable chemicals are currently researched [9]. Microbial syngas fermentation can
produce value-added chemicals without the need of catalysts or solvents and sustainably
reduce the pressure on biomass and land use [9–11]. Additionally, significantly higher
selectivity can be obtained in biochemical conversion pathways [12]. The use of anaerobic
syngas fermenting microbes reduces the competition in the food market, which is viewed
as a major drawback in first generation biofuels [12]. A microbial syngas fermentation
pathway that is promising is the fermentation by Clostridium autoethanogenum, which
converts CO or CO2 and H2 into acetic acid, ethanol and 2,3-butanediol [13].

The standard reactor set-up for microbial syngas fermentation to acetate and ethanol is
limited to (fed) batch reactors, continuously stirred tank reactors and bubble columns
[14]. However, it is known that the volumetric mass transfer rate from gas to liquid is
typically limited in these reactor set-ups. The rotor-stator spinning disc reactor (rs-SDR)
is a reactor that can overcome mass transfer limitations by intensified mass transfer due
to high shear rates induced by the rotor [15–17], yielding mass transfer coefficient up to
40 times higher than in conventional equipment [15].

Before the fermentation process by Clostridium autoethanogenum can be intensified by
operation in the rs-SDR, research should be performed on the general hydrodynamics in
the rs-SDR. Numerous studies have been performed on the hydrodynamics in the rotor-
stator spinning disc reactor [18, 19], yet one inclusive model is still absent. Computational
fluid dynamics (CFD) can be used to visualise all important flow and turbulence aspects
and contribute to such inclusive model. Additionally, the effect of the shear forces and
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turbulent fluctuations in the reactor on the bacteria is still topic for research. To study
these effects, both reactor scale as bacterial scale CFD models will be constructed and
validated.

In Chapter 2, an extensive explanation of theoretical concepts is provided, which ranges
from the essence of turbulence, hydrodynamics in the rs-SDR and the application of
computational fluid dynamics in turbulent flows to the bacterial syngas fermentation
by Clostridium autoethanogenum and bacterial cell wall deformation. In Chapter 3, the
methodology that was used to construct the computational fluid dynamics models are
treated. In Chapter 4, the results of the models are discussed and a conclusion is drawn
from these results in Chapter 5. This thesis is concluded with recommendations for further
study in Chapter 6.
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Chapter 2

Theoretical Background

2.1 Turbulence

Several definitions of turbulence are available and many try to catch the complex be-
haviour of turbulent flow in a single definition. It turns out that giving a formal definition
of turbulence is rather difficult, and it may not be very useful to provide one [20]. A
better way to define turbulence is by characterizing the features of flow that exemplify the
turbulent behaviour.

At a critical value of the Reynolds number (Re = uLν-1), which is a measure for the
relative importance of inertial forces and the viscous forces, the inertial forces dominate
the viscous forces, initiating a radical change towards turbulent flow [21]. Turbulent flow,
as opposed to laminar flow, is characterised by an instantaneous and irregular deviation
in the velocity profile relative to the mean velocity. This is visualised in Figure 2.1.
Additionally, the repeatability of such instantaneous flow profiles is limited. Turbulent
flows are extremely sensitive towards very small changes in the initial conditions, meaning
that the instantaneous velocity profiles are not repetitive for similar cases. This is related
to the non-linearity of turbulence systems [20]. For non-linear dynamic systems, it is known
that initially infinitesimally close trajectories diverge when a small separation of the initial
condition (δ) is present at a rate of δ exp(λt) [22]. In this, λ is the Lyapunov characteristic
exponent, which is part of a spectrum of Lyapunov exponents. The maximum Lyapunov
exponent determines the predictability of the trajectories, as a positive Lyapunov exponent
will cause diverging trajectories and hence chaotic flow [23].

Thus, two main characteristics of turbulent flow can be listed [20].

• The velocity field fluctuates randomly in time and is highly disordered in space,
exhibiting a wide range of length scales.

• The velocity field is unpredictable in the sense that a small change in the initial
conditions will produce a large change to the subsequent motion.

Additionally, it must be noted that turbulent flow is inherently three-dimensional. Even
in flows where only pressure or the mean velocity changes in one or two direction, the
turbulent structures that arise can still be three-dimensional [21]. The final characteristic
of turbulence that should be discussed is that turbulent flow is dissipative, meaning that
energy is transferred from a large scale to a small scale, where it is dissipated into heat.
In literature, this process is usually referred to as the energy cascade.
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Figure 2.1: The characteristic random and irregularly fluctuating velocity profiles in turbu-
lent flow. In this graph, U denotes the average velocity and u′(t) denotes the instantaneous
velocity. Reproduced from [21].

2.1.1 Energy cascade

Flow structures that are formed in turbulent media are vortices, which are usually referred
to as eddies. These eddies can range in size over a broad scale, which is important for
the energy dissipation. The largest eddies can undergo vortex stretching, which is the
phenomenon in which the large eddies absorb energy from the mean flow and perform
deformation work on the smaller eddies. Meanwhile, the vortices stretch in one direction,
which causes an increment in radius in the other two directions to obey angular momentum
conservation. This will continue until an unstable eddy radius is reached, after which eddy
break-up will occur. The energy that is contained by these eddies as a function of the
characteristic frequency is termed the energy spectrum of turbulence (E(κ), with κ being
the eddy wavenumber). This spectrum is visualised in Figure 2.2. From this, it can be
seen that the smaller eddies (higher wavenumber) contain less turbulent energy. The total
turbulence kinetic energy can be computed from the energy spectrum, which is represented
in Equation 2.1 together with the definition of the turbulent kinetic energy. In here, u′iu

′
i

denotes the ensemble averaged square of the velocity fluctuations.

k =
1

2
(u′iu

′
i) =

∫ ∞
0

E(κ)dκ (2.1)

From Figure 2.2, it can be clearly seen that three regimes are present. Two main length
scales, the integral scale (L0) and the Kolmogorov microscale (η), describe the transitions
between these regimes. The integral scale is the largest eddy scale in a turbulent system
which contains the most turbulent kinetic energy, meaning that the size is limited by the
flow dimensions. The Kolmogorov microscale is the smallest eddy length scale, which is
characterised by a local Reynolds number in the order of unity [25]. This means that
the viscous stresses are sufficiently large to dissipate the turbulent kinetic energy into
heat. The mathematical formulation for this length scale is given in Equation 2.2 [26].
The regime in between the integral scale and Kolmogorov microscale (which is termed the
inertial range) was studied theoretically by Kolmogorov and an expression was deduced
for the dependency of the spectral energy on the wavenumber, which is later referred to
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Figure 2.2: The spectral energy distribution of turbulence as part of the energy cascade.
In this figure, L0 denotes the integral scale and η denotes the Kolmogorov microscale.
Reproduced from [24].

as ”Kolmogorov’s -5/3 law” [25, 26].

η =

(
ν3

ε

) 1
4

(2.2)

Whereas the randomly fluctuating instantaneous velocity profiles are difficult to model
due to the aforementioned reasons, the mean velocity and turbulence characteristics are
possible to predict by means of models. The method to do so for complex flow geometries
is the field of computational fluid dynamics, which will be discussed in Section 2.2.

2.2 Computational Fluid Dynamics

From the 1960s, the use of Computational Fluid Dynamics (CFD) in research and design in
various industries was initiated and with the increasing computational resources available,
CFD has become a vital tool in the design of industrial processes. CFD can be defined as
the analysis of systems involving fluid flow, heat transfer and potential other associated
phenomena such as chemical reactions by means of computer-based simulations [21], which
revolve around numerically solving the Navier-Stokes equations.

2.2.1 Navier-Stokes equations

The Navier-Stokes equations can be viewed as mathematical equations expressing the
conservation of momentum and mass for fluids, which determine the motion of the fluids.
In Equation 2.3, the Navier-Stokes equation for a generalised fluid is given. In Equation
2.4, the continuity equation is depicted, which must be valid for incompressible flows.
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∂

∂t
(ρu) +∇ · (ρuu) = −∇p+∇ · τ + ρg (2.3)

∇ · u = 0 (2.4)

When Newton’s law of viscosity (Equation 2.5) is applied, which states that the stress
tensor is proportional to the gradient of the velocity with a proportionality constant being
the dynamic viscosity (µ), Equation 2.6 can be derived.

τ = µ∇u (2.5)

∂u

∂t
+∇ · (uu) = −1

ρ
∇p+ ν∇2u+ g (2.6)

For complex systems, no analytical solution exists. Therefore, the equations have to be
solved numerically by means of discretisation. Direct Numerical Simulation (DNS) is one
method to solve these equations numerically. However, to simulate turbulent flow, DNS
requires that the flow structures should be resolved to the Kolmogorov microscale. It is
known that the spatial Kolmorogov microscale scales with the Reynolds number according
to Equation 2.7, in which L0 denotes the integral scale. Consequently, the number of grid
cells in a domain can be determined to scale analogously with the Reynolds number.
as shown in Equation 2.8. The number of time steps required to simulate a certain time
domain can also be related to the Reynolds number, since the (maximum) time step should
equal the interaction time at the Kolmogorov microscale in order to get a numerically stable
solution. This is expressed in Equation 2.9. The computational time can be estimated
to be proportional to the product of the number of grid cells on a domain cubed, since
turbulence is inherently three-dimensional, and the number of time steps. This results in
a scaling law of computational time with the Reynolds number cubed. Therefore, using
DNS to solve turbulence problems with high Reynolds number is infeasible in many cases
and different solution strategies should be used.

η ∼ Re-
3
4L0 (2.7)

Nx ∼
Ldomain

∆x
∼ Ldomain

L0
Re

3
4 (2.8)

Nt ∼
tsim
∆t
∼ tsim
η/u

∼ tsim
L0/u

Re
3
4 (2.9)

tcomp ∼ N3
xNt ∼

(
tsim
L0/u

)(
Lbox
L0

)3

Re3 (2.10)

2.2.2 Reynolds-averaged Simulation

One of such different solution strategies is modelling turbulence by means of Reynolds-
averaged simulation (RAS). This numerical technique consists of solving the Navier-
Stokes equations for time-averaged variables. The methodology is started by performing
a Reynolds decomposition on the velocity and pressure, which is represented in Equation
2.11 and 2.12. In this, the parameters are split into a time-averaged and fluctuating quan-
tity. With the substitution of the decomposed pressure and velocity into the Navier-Stokes
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equations, the time-averaged Navier-Stokes equation can be derived after some simple al-
gebraic modifications and the assumption of commutativity of the time averaging. This
equation is depicted in Equation 2.13.

u = u+ u′ (2.11)

p = p+ p′ (2.12)

∂u

∂t
+∇ · (uu) = −1

ρ
∇p+ ν∇2u+∇ · u′u′ + g (2.13)

Compared to the instantaneous Navier-Stokes equation (Equation 2.6), an additional term
arises that represents the turbulent stresses (u′u′), which are typically referred to as the
Reynolds stresses. To close the system of equations, it is necessary to develop a turbulence
model to predict the Reynolds stresses. Throughout the last decades, several turbulence
models were established that can predict the Reynolds stresses for RAS simulations. The
most common turbulence models are given in Table 2.1, ranked on basis of the computa-
tional costs of the model.

Number of additional transport equations Turbulence model

0 Prandtl’s mixing length model

2 k − ε model
k − ω model

7 Reynolds Stress model

Table 2.1: Turbulence closure models for RAS in the order of increasing numerical com-
plexity.

A complete and detailed overview of all relevant RAS turbulence closure models is beyond
the scope of this research. However, an attempt will be made to elaborate upon the
working principle of these turbulence models. Most of the simple turbulence models, such
as Prandtl’s mixing length models and the k − ε and k − ω models are based on the
Boussinesq assumption, which states that the Reynolds stresses are proportional to the
mean rates of deformation, analogous to the viscous stresses in Newton’s law of viscosity.
The Boussinesq assumption is given in Equation 2.14. In this equation, k is the turbulent
kinetic energy per unit of mass and νt is the turbulent eddy viscosity. The factor δij denotes
the Kronecker delta, which has a value of 1 if i = j and has a value of 0 if i 6= j. These
relatively simple turbulence models revolve around accurate estimations of the turbulent
eddy viscosity. To exemplify, Prandlt’s mixing length model estimates the turbulent eddy
viscosity on basis of the mean velocity gradient and the k−ε model estimates the turbulent
eddy viscosity by means of solving transport equations for the turbulent kinetic energy
per unit of mass (k) and the rate of dissipation of turbulent kinetic energy per unit of
mass (ε). Analogously, the k − ω model uses the turbulence frequency (ω) as a second
variable for estimating the turbulent eddy viscosity.

−ui
′uj
′ = νt

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
kδij (2.14)

These simple turbulence models are incapable of dealing with anisotopic turbulence due
to the fact that the underlying assumptions (mainly the Boussinesq approximation) as-
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sume that the Reynolds stresses are proportional to the mean rate of deformation of the
main flow. Therefore, these models will fail to represent correct turbulence behaviour
at conditions at which anisotropic turbulence will occur. Additionally, the presence of
extra body forces may contribute to the breakdown of this model. To avoid the use of
the Boussinesq assumption and to include complex effects, the Reynolds Stress model was
developed. This model solves the transport equations for the Reynolds stresses directly,
including the complex turbulent processes such as turbulent diffusion of the Reynolds
stresses, production of turbulence, dissipation and inhomogeneity of the turbulence. With
the introduction of these transport equations, the computational costs rise, but so does
the possibility of capturing complex turbulent behaviour.

2.2.3 Large Eddy Simulation

Instead of averaging the Navier-Stokes equations temporally as in RAS, the Navier-Stokes
equations can also be spatially averaged using a filtering function. This is the underlying
principle of Large Eddy Simulation (LES). Using this approach, the Navier-Stokes equa-
tions can be solved up to some spatial resolution for the filtered velocity and pressure.
As opposed to RAS, LES is also able to model a part of the turbulence characteristics.
The extent to which the turbulence will be modelled is dependent on the selected fil-
ter size and it should be selected such that the largest eddies are resolved. Resolving
these is important, as the large eddies contribute the most to the total turbulent kinetic
energy (see Figure 2.2). The small-scale structures are not resolved and their effect on
the mean flow is modelled. Hence, the computational costs are lower compared to DNS,
while the turbulent nature is modelled more accurately than for RAS with a justifiable
increase of computational costs. Since turbulent energy tends to dissipate from the large
eddies towards the smaller eddies via the energy cascade, the approach of modelling the
smaller eddies with closure models is justified. However, it must be noted that influence
of the small-scale eddies on the large-scale eddies is not accounted for correctly in LES
[27]. The uncertainty contained in the small-scale eddies can propagate to the large-scale
eddies, leading to a mathematical ill-posed problem [27]. Even though this uncertainty
in the small-scale eddies might lead to inaccurate flow behaviour, the overall statistical
properties resemble the modelled situation in many cases [28].

Filtering and filtering functions

Multiple methods of filtering the Navier-Stokes equations exist. These approaches can be
subdivided into explicit filtering and implicit filtering. In explicit filtering, a filter function
is applied to the original function. The most used filter function in implementations of LES
in CFD is the top-hat filter, which is depicted for a three-dimensional case in Equation
2.15. This filter effectively averages the original function such that fluctuations of scales
much less than the cutoff width ∆ are smoothened out. More advanced filtering functions
are the Gaussian filter (Equation 2.16) and the spectral cutoff filter (Equation 2.17), but
the use of these in finite volume implementations of LES remains limited [21]. Implicit
filtering is filtering of the of the fluctuations by an implementation in the discretisation of
the Navier-Stokes equations. This is similar to the explicit implementation by application
of a top-hat filter. For this reason, the cutoff width is related to the grid cell sizes, as the
filtering is limited in resolution by the grid cell size. Therefore, the cutoff width is mostly
selected to be the cube root of the grid cell volume, as given in Equation 2.18.
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G(x,x′,∆) =

{
1/∆3 |x− x′| ≥ ∆/2

0 |x− x′| > ∆/2
(2.15)

G(x,x′,∆) =
( γ

π∆2

) 3
2

exp

(
−γ |x− x

′|2

∆2

)
(2.16)

G(x,x′,∆) =
3∏
i=1

sin ((xi − x′i)/∆)

(xi − x′i)
(2.17)

∆ = 3
√

∆x∆y∆z (2.18)

Filtering the Navier-Stokes equations

When it is assumed that the filtering operations are commutative, the LES Navier-Stokes
equations can be derived similarly to the derivation of the Reynolds-averaged Navier-
Stokes equations. The LES Navier-Stokes equations are depicted in Equation 2.19. In this
equation, the tilde denotes the filtered quantity.

∂ũ

∂t
+∇ · (ũu) = −1

ρ
∇p̃+ ν∇2ũ+ g (2.19)

However, this equation contains a term which requires information of the non-filtered
velocity ((ũu)), which is unknown. Therefore, a mathematical operation, as depicted in
Equation 2.20, is performed to capture this using the introduction of the sub-grid-scale
stress tensor τSGS . This can be substituted into the derived Navier-Stokes equations to
yield the filtered Navier-Stokes equations as shown in Equation 2.21. Similar to the RAS
case, this again yields an unclosed system, in which the sub-grid-scale stress tensor should
be modelled using a closure model.

∇ · (ũu) = ∇ · (ũũ) + (∇ · (ũu)−∇ · (ũũ)) = ∇ · (ũũ) +∇ · τSGS (2.20)

∂ũ

∂t
+∇ · (ũũ) = −1

ρ
∇p̃−∇ · τSGS + ν∇2ũ+ g (2.21)

In order to better understand the sub-grid-scale stress tensor, the velocity can be de-
composed into a filtered quantity and a fluctuating quantity, as performed in Equation
2.22. When this is substituted into the definition of τSGS , three contributions can be
derived, which are the Leonard stresses, cross stresses and the Reynolds stresses for LES.
The Leonard stresses are stresses that are related to effects on the resolved scale. The
cross stresses are related to interactions between the resolved flow and the sub-grid-scale
structures. Finally, the LES Reynolds stresses are caused by momentum transfer of the
sub-grid-scale eddies with the resolved flow, similar to the Reynolds stresses as discussed
for RAS. These stresses must be modelled using closure models in order to solve the sys-
tem of equations. Despite the different nature of the stresses, sub-grid-scale turbulence
models estimate the sub-grid-scale stress tensor by means of a single model [27]. The most
common LES turbulence models are briefly discussed hereafter.
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u = ũ+ u′ (2.22)

τSGS = ũu− ũũ =
( ˜̃uũ− ũũ)+ ˜̃uu′ + ũ′u′ (2.23)

τSGS = L+C +R (2.24)

• Leonard stresses: L =
( ˜̃uũ− ũũ)

• Cross stresses: C = ˜̃uu′

• Reynolds stresses for LES: R = ũ′u′

Sub-grid-scale stress models

The most frequently used sub-grid-scale stress models are based on eddy viscosity models,
similar to the turbulence closure models for RAS. For this, the Boussinesq assumption
is applied, as depicted in Equation 2.25 with the deformation tensor of the filtered field
as defined in Equation 2.26. Since this assumption now only concerns the sub-grid-scale
eddies, the problem with anisotropy is mitigated, as smaller eddies are generally more
isotropic [25]. Then, turbulence closure models can be used to estimate the kinematic
turbulent eddy viscosity νt.

τSGSij = 2νtS̃ij +
1

3
δijτ

SGS
ll (2.25)

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
(2.26)

Smagorinsky-Lilly

The most common turbulence model in LES is the Smagorinksy-Lily model, which origi-
nates from 1963 [29]. In this model, an eddy viscosity was introduced that should represent
the three-dimensional turbulence in the sub-grid scales. It was established on the foun-
dations of Prandlt’s mixing length model, with an eddy viscosity that is proportional to
a characteristic length scale and velocity scale. This length scale was selected to be the
cutoff width and as in Prandlt’s model, the velocity scale is modelled by the product of this
length scale and the average strain rate of the resolved flow. The concluding equation for
the kinematic turbulent eddy viscosity is then given in Equation 2.27. In this equation, the
constant Cs is still present. Lily adapted the Smagorinsky model by a theoretical study for
appropriate values of this constant [30, 31]. By assuming that wavenumber of the eddies
associated to the cutoff width lie within the Kolmogorov inertial range, meaning that the
turbulent kinetic energy scales with k-5/3, a value of 0.18 can be found. This is found by
adjusting the value of this constant such, that the ensemble averaged sub-grid turbulent
kinetic energy dissipation should be identical to the turbulent energy dissipation rate ε.
However, still many different values of this constant are used in literature, as it seems that
different cases require different values of Cs in order to produce accurate results which
lack overdamping [21]. Additionally, the Smagorinsky model is too dissipative close to
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walls when compared with theoretical profiles close to the wall [27]. This indicates that
the application of this model is not universal and a more sophisticated approach might be
necessary.

νt = (Cs∆)2
√

2S̃ijS̃ij with Cs ≈ 0.18 (2.27)

Wall-adapting local eddy viscosity

A turbulent viscosity model that was developed in order to mitigate the problems as-
sociated with the classical Smagorinsky model is the wall-adapting local eddy-viscosity
(WALE) model. It was developed by Nicoud and Ducros in 1999 [32]. A main char-
acteristic of the model is that it is both a function of the rate of strain as well as the
rotation rate, as these both contribute to turbulent structures. Additionally, the model
should behave such that no additional wall damping is necessary and the no-slip boundary
condition is naturally reproduced with the proper wall scaling. The corresponding model
that complies with these requirements is depicted in Equations 2.28 - 2.30. In this, the
constant Cw is a constant of which a value of 0.55 ≤ Cw ≤ 0.60 was found by equaliz-
ing the ensemble-averaged sub-grid kinetic energy dissipation rate to this of the classical
Smagorinsky model [32]. With this constant, the proper asymptotic behaviour of the eddy
viscosity close to solid walls was found, making the WALE model more appropriate for
wall-bounded flows than the classical Smagorinsky model.

νt = (Cw∆)2

(
SdijS

d
ij

)3/2
(
S̃ijS̃ij

)5/2
+
(
SdijS

d
ij

)5/4 (2.28)

Sdij =
1

2

(
g̃ij

2 + g̃ji
2
)
− 1

3
δij g̃kk

2 (2.29)

g̃ij =
∂ũi
∂xj

(2.30)

2.2.4 Extensions towards multiphase CFD

For the purpose of simulating bacterial cells in flow, a multiphase CFD approach is re-
quired. In literature, the number number of studies to simulate bacteria in flow using
CFD remains limited, yet the deformation of biological cells was widely researched for
cardiovascular systems. Especially, the red blood cells are known to be able to deform in
shear flows and are likely to aggregate in certain cases [33]. Many simulation strategies
were developed to study the effect of shear rates, flow rate or flow morphology on blood
flow [34–37]. Amongst these, Euler-Euler and Euler-Langrange models are present. In the
sections below, the mathematical backgrounds of these types of models are given.

Euler-Euler models

In the Euler-Euler approach, the two phases are treated as interpenetrating continua [10].
This means that solid phases can be considered as a pseudo-fluid [38]. The phases are

Page 11



Chapter 2 – Theoretical Background

identified by means of a volume fraction. This volume fraction (α) for phase k can be
solved using the conservation equation as in Equation 2.31. The momentum conservation
equation is given in Equation 2.32 [39]. In this equation, the two interfacial forces are the
drag force FD,k and the surface tension force F s,k.

∂αk
∂t

+ uk · ∇αk = 0 (2.31)

∂ (ρkαkuk)

∂t
+∇ · (ρkαkukuk) = −αk∇p+∇ · (µkαk∇uk) + ρkαkg + FD,k + F s,k

(2.32)

The drag force can be described as in Equation 2.33, where subscripts c and d denote the
continuous and dispersed phase. For the drag coefficient CD, several correlations can be
used, such as the Schiller and Neumann correlation [39]. The force related to the surface
tension can be expressed using the continuum surface force (CSF) model [40].

FD,k =
3

4
ρcαcαdCD

|ud − uc| (ud − uc)
dd

(2.33)

In order to implement such Euler-Euler model, a method to capture the interface between
the two phases must be established. In simulations performed on red blood cells, the
Volume of Fluid (VoF) method showed to accurately capture this interface [33–35, 37].
This can be done by implementing a colour function F = f(x, y, z, t), which has a value
between zero and unity [41]. It indicates the fractional amount of fluid present at a certain
position at a certain time [42]. This fraction can again be related to the volume fraction.
In order to reduce numerical smearing, a compressive VoF technique was introduced,
which yields sharp interfaces of similar quality to interfaces constructed from geometric
reconstruction schemes using piecewise linear interface calculation [43]. In this compressive
approach, an artificial interface-compression velocity uc is introduced, which is defined
such that the gradient of the volume fraction steepens near the interface. Using this
strategy, the conservation equation for the volume fraction as defined in Equation 2.31 can
be redefined to Equation 2.34. The term αk (1− αk) ensures that only near the interface,
meaning when volume fractions are in between 0 and 1, the interface compression is active
[43].

∂αk
∂t

+ uk · ∇αk +∇ · (ucαk (1− αk)) = 0 (2.34)

The interface compression velocity is given by Equation 2.35. In this, Cα is the compression
coefficient, which determines the magnitude of the interface compression velocity. In case
of a compression coefficient of 0, no interface compression takes place and for a compression
coefficient of 1, sharp interface capturing is applied.

uc = min(Cα|u|,max(|u|)) ∇α
|∇α|

(2.35)

A main benefit of the VoF model using interface compression is that it is much easier to
implement and performs faster compared to other surface capturing techniques [42, 43].
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Additionally, this method is mass conservative, in contrast to methods like the level set
method [42]. A drawback of this model is that merging of interfaces can occur automati-
cally.

Euler-Lagrange models

In the Euler-Lagrange method, the fluid phase is still modelled as a continuum using the
Navier-Stokes equations, but the dispersed phase is solved by tracking the particles indi-
vidually [38]. Using the calculated flow field, forces on the particles can be computed and
the motion can be obtained by Newton’s second law and the equations for rotation [10].
Interparticle collision can be modelled using a contact model. Two main contact models
are the hard-sphere model and the soft-sphere model [44]. In the soft-sphere approach,
the particles can overlap and deform using a linear spring/dashpot model, from which a
repulsive force arises [44]. In the hard-sphere approach, the particles cannot overlap and
the interaction forces are impulsive. The total impulse acting on a particle can be com-
puted using the coefficients of restitution and coefficient of friction. Using this impulse, the
post-collision motion can be computed. Since the fluid field is affected by the particles and
vice-versa, adequate coupling between the Eulerian and Lagrangian solvers is necessary.
This can be done in different ways, such as one-way (fluid-particle interactions), two-
way (fluid-particle and particle-fluid interactions) and four-way coupling (fluid-particle,
particle-fluid, particle-particle and particle-wall interaction) [45]. Due to this, the com-
plexity and computational time is much greater compared to Eulerian-Eulerian models.
Elghobashi studied the regimes at which each type of fluid-particle coupling becomes
important and these are depicted in Figure 2.3. On basis of the volume fraction of par-
ticles (αp) and either the ratio between the particle response time and the Kolmogorov
time (τp/τK) or the ratio between the particle response time and the eddy turnover time
(τp/τe), the type of coupling required can be determined. At low volume fractions of
particles, the momentum of the particles has negligible effects on the flow and turbulence
and one-way coupling (regime 1) is sufficient. At larger volume fractions, the particles will
affect the turbulence and two-way coupling should be used. This is divided into regime 2
and regime 3 on basis of the nature of interaction with the turbulence. At low values of the
particle response time, the particles will cause an increased dissipation rate (regime 3) and
at higher values of τp, the particles will enhance the production of turbulent kinetic energy
(regime 2). When the volume fraction of the particles is increased further, a more dense
suspension of particles is obtained and particle-particle interaction will become important,
making it important to use four-way coupling (regime 4).

Deformation

In order to accurately simulate the deformation of red blood cells in flow, different de-
formation models were included in CFD models. Ju et al. [48] reviewed the numerical
methods to describe this cell deformation. One of these deformation models is the shell-
based deformation model, in which the membrane is modelled as an infinitesimally thin
shell that can deform, leading to interfacial tension. This interfacial membrane tension
can be decomposed into an in-plane tension and a transverse shear tension. These sepa-
rate tensions can then be related to constitutive equations, such as a neo-Hookean model.
Another method to model the deformation is by means of spring-based models. These
models consist of a network of springs and dampers that can represent the viscoelasticity
in cells. In this method, the cell is discretised by a set of points which are interconnected
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Figure 2.3: Classification of the Euler-Lagrange coupling strategies for particle-laden flows
according to Elghobashi [46]. Reproduced from [47]

by springs. This method was applied to Stokes flow for 2D cases [49]. Implementations of
these models towards 3D cases and highly turbulent fields have yet to be investigated, as
the flow is restricted to Stokes flow [33]. Another method of implementing the deformation
in cells is by means of describing the cell as a viscous droplet in a full Eulerian simulation
[37]. The viscoelasticity can then be implemented via constitutive equations that describe
the effective viscosity on basis of the shear rate amongst other parameters [50]. The benefit
of this technique is that it can be easily implemented in standard multiphase flow solvers
combined with VoF and it enables 3D simulation due to lower (numerical) complexity [33].

2.3 Hydrodynamics in the rotor-stator spinning disc reactor

A pioneering work in the hydrodynamics of enclosed rotating discs without superimposed
throughflow was performed by Daily and Nece [51]. On basis of two main parameters,
the rotational Reynolds number (Reω as defined in Equation 2.36) and the ratio between
the axial clearance of rotor and stator and disc radius (G, as defined in Equation 2.36),
four hydrodynamic regimes were encountered. The classification of the flow regimes was
denoted as follows.

• Regime I: Laminar flow, merged boundary layers

• Regime II: Laminar flow, separated boundary layers

• Regime III: Turbulent flow, merged boundary layers

• Regime IV: Turbulent flow, separated boundary layers

Later, an overview was made by Launder et al. [52] that maps the hydrodynamic regimes
on basis of the rotational Reynolds number Reω and the dimensionless interdisc spacing
G. This overview is given in Figure 2.4.

Reω =
ωrotr

2
d

ν
with G =

s

rd
(2.36)

The boundary layers as mentioned in the work by Daily and Nece [51] were theoretically
studied by Von Kármán and Bödewadt. The work by Von Kármán consists of a study
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Figure 2.4: Map of the four flow regimes proposed by Daily and Nece [51]. Merged
boundary layers: I (laminar) and III (turbulent). Unmerged boundary layers: II (laminar)
and IV (turbulent). Reproduced from [52]. The red line denotes the range of operation
for experiments, whereas the points denote the simulations.

of a rotatating disc in quiescent medium [53]. The boundary layer near the rotating disc
that is formed in this process, named after Von Kármán himself, can be described by a
net radial velocity in the positive direction and an axial velocity in the direction of the
disc. Additionally, the velocity in the azimuthal direction is related to the linear velocity
of the rotating disc.

Bödewadt studied the reversed case, in which a rotating fluid interacts with a stationary
disc [54]. The boundary layer formed in this process is inversely related to the Von Kármán
boundary layer, with a net radial velocity in the negative direction and an axial velocity
away from the disc.

In the descriptions of the hydrodynamics in rotor-stator fluid flow, the velocity profiles
can be viewed as a combination of the Von Kárman boundary layer and the Bödewadt
boundary layer. With high gap ratio values, the boundary layers are separated, resulting
in an inviscid core between the boundary layers. This inviscid core is characterised by
having negligible viscous forces, which is related to the absence of shear stresses, rather
than a negligible viscosity. A type of flow that can be observed in the separated boundary
layer regime is Stewartson flow. In this flow type, the Bödewadt boundary layer is absent
and only the boundary layer near the rotor is formed. The bulk of the fluid is at rest. A
schematic overview of the Stewartson flow is given in Figure 2.5a. Another type of flow
that can be observed in the separated boundary layer regime is Batchelor flow (Figure
2.5b). In this flow type, the Bödewadt boundary layer is formed at the stator and the
inviscid core is rotating. The boundary conditions determine whether the Stewartson or
Batchelor flow structures will be observed [18]. In case of a fully enclosed rotating disc,
the flow structures that will arise are like Batchelor flow, whereas a superimposed external
throughflow will cause Stewartson flow.

The importance of throughflow can be quantified using the flow rate coefficient (Cw),
which is defined in Equation 2.37. In this definition, a positive volumetric flow rate (and
hence a positive flow rate coefficient) denotes a centrifugal throughflow. In many cases,
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Figure 2.5: Schematic overview of the velocity profiles in the tangential and radial direction
for Stewartson flow (a) and Batchelor flow (b). Reproduced from [18].

the external throughflow rate is negligible in comparison with the recirculation rate in the
Von Kármán boundary layers [55]. However, the external throughflow can affect the flow
structures significantly [56] and it further complicates the hydrodynamics in the rs-SDR.

CW =
φV
νrd

(2.37)

With external centrifugal throughflow, a Stewartson-like flow structure is observed at low
radial positions [56, 57]. At these low radial positions, a Von Kárman boundary layer is
formed near the rotor and the tangential velocity decreases to zero in the inviscid core
that is formed. The radial velocity is positive for all axial positions. This flow regime
can be described as a thoughflow governed regime. A schematic overview of this regime
is given in Figure 2.6a.

At high radial positions, the flow structure becomes rotation governed and the flow struc-
tures will behave as a torsional Couette flow or a Batchelor flow [56–58]. The gap ratio will
determine in this case whether the merged boundary layer hydrodynamics as in a torsional
Couette flow will be dominant, or whether the flow will resemble the separated boundary
layer flow structures as in Batchelor flow. With low gap ratio values, the boundary layers
merge, which results in an absence of the inviscid core and a continuously changing tan-
gential and radial velocity profile along the axial coordinate. In Figure 2.6b, the rotation
governed flow structures in case of a torsional Couette flow is depicted.

So clearly, there are radial positions at which the transition from the throughflow gov-
erned regime towards the rotation governed flow is present. The radial position (non-
dimensionalised with the disc radius) at which this transition happens was studied theo-
retically by Phadke et al. [59] and was found to be a function of the flow rate coefficient and
the rotational Reynolds number. This dependence is depicted in Equation 2.38. Addition-
ally, a constant (c) was introduced, of which the theoretical value (0.219) was confirmed
by CFD Reynolds stress model simulations [58]. It must be noted that this result is only
valid for the transition in the Batchelor regime. For the case of torsional Couette flow,
no literature is available on predicting the radial position at which the transition occurs.
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Figure 2.6: Schematic overview of the velocity profiles in the tangential and radial direction
for throughflow governed (a) and rotation governed (b) flow regimes for a superimposed
external centrifugal throughflow. Reproduced from [18].

Also, the gap ratio seems to have no effect on the radial position at which the transition
occurs from the throughflow governed to the rotation governed region. For the Batchelor
regime, literature research confirms that the gap ratio does not seem to be a relevant
parameter [57, 60], yet the effect of the gap ratio in the torsional Couette flow is not
adequately accounted for [18].

r∗trans =

(
1

c

Cw

Re
4
5
ω

) 5
13

(2.38)

The macromixing behaviour of fluid flow in the rs-SDR can be described by a combination
of plug flow volume and n ideally stirred tanks-in-series [19], and hence the residence time
distribution curve can be described by Equation 2.39. In here, τpf denotes the residence
time of the plug flow governed region, τm denotes the mean residence time and n denotes
the number of tanks-in-series.

Emod(t) =


0 t < τpf

tn−1

(n−1)!
(
τm−τpf

n

)n exp

(
− t(

τm−τpf
n

)
)

t ≥ τpf
(2.39)

As a final remark, it should be noted that the hydrodynamics discussed in this section
are only applicable to Newtonian fluids. To take the effect of non-Newtonian fluids into
consideration, numerical simulations in the field of computational fluid dynamics (CFD)
are most likely required to tackle the complexity.
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2.4 Microbial fermentation of syngas by Clostridium au-
toethanogenum

In 1993, the bacterial species Clostridium autoethanogenum (C. auto) was isolated from
rabbit feces [61]. The culture consists of gram-positive, motile bacteria which can metabolise
C1 compounds such as CO, H2 and CO2 or mixtures thereof with ethanol and acetate as
end-products [61, 62]. In the next section, an overview of the bacterial properties is
provided.

2.4.1 Bacterial properties

Using microscopy techniques, the size and shape of the bacteria were studied by Abrini
et al. [61]. It was found that the micro-organisms appereared as rod-type bacteria with a
considerable distribution in size. Depending on the culture age and feed source, bacterial
lengths were found ranging from 2.1 to 9.1 µm. In old cultures, large filamentous cells up
to 42.5 µm were observed. The distribution in the bacterial cell diameter was found to
be less broad, with values ranging from 0.5 to 0.6 µm. An average bacterial cell diameter
of 0.5 µm and length of 3.2 µm was found. The density of bacteria was studied by
Bratbak et al. [63]. The buoyant density of the bacterial cells studied was found to range
between 1.09 and 1.13 g cm-3. Since the bacterial species in this study mimic Clostridium
autoethanogenum in terms of morphology and chemically (gram-positive), the density of
Clostridium autoethanogenum can be assumed to be within this range.

Using contact angle measurements of droplets of solvents on a solid surface of filtrated
cells of Clostridium carboxidivorans, the bacterial surface tension was investigated [64].
The surface tension was measured to be 56 mJ m-2, corresponding with a contact angle
for water of 33◦. Since the bacterial specie Clostridium carboxidivorans closely resembles
Clostridium autoethanogenum in terms of chemical cell wall composition and morphology,
it can be assumed that Clostridium autoethanogenum will also have this intermediately
hydrophobic character.

As Clostridium autoethanogenum is gram-positive [61], it can be concluded that the prin-
cipal component of the cell wall is peptidoglycan [65]. The mechanical properties of cell
walls consisting of peptidoglycan was studied by Mendelson et al. [66]. Using bacte-
rial thread made from peptidoglycan, stress-strain experiments were performed to study
the viscoelastic properties of bacterial cell walls. It must be noted that the properties
measured are actually those of the cell wall, because its multifilament construction might
suggest that the mechanical properties observed do not apply to a single bacterial cell.
However, due to the absence of slipping between filaments as measured in the stress-strain
curves, the measured properties represent the bacterial cell wall [67].

It was found that the yield stress is highly dependent on the relative humidity. When
wetted, the bacterial cell wall has a tensile strength of 3 MPa [67]. The stress-strain curves
found behave much like other viscoelastic polymers, which enables fitting a viscosity to
the stress-strain curves. It was found that a viscous material with a viscosity of 20 MPa ·h
represents the experimentally obtained strain rates [68].
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Chapter 3

Methods

3.1 Simulation of a rotor-stator cavity

The computational fluid dynamics simulation of flow in a rotor-stator cavity, and all
subsequent CFD simulations, were performed in OpenFOAM. OpenFOAM is an acronym
for Open Source Field Operation and Manipulation, which highlights the main aspects of
the software [69]. It consists of a C++ library containing applications that fall into the
categories of solvers and utilities [70]. To these, custom made applications can be added.
These solvers are at the heart of the OpenFOAM toolbox. Additionally, pre-processing
and post-processing utilities are presents, that can be used to initialise the problem on a
mesh and visualise or analyse the results, respectively.

Numerical implementation

CFD analyses in OpenFOAM are based on the finite volume method, in which the compu-
tational domain is discretised into volume elements at which the equations can be solved
[69]. Therefore, numerical schemes should be implemented. OpenFOAM makes predom-
inantly use of collocated variable arrangements [70]. Thus, interpolation schemes are
necessary to transform cell-based quantities to cell faces and convert volume integrals to
surface integrals [70]. The interpolation schemes that were used for the simulation of the
rotor-stator cavity are depicted in Table 3.1. Generally, the higher-order cubic interpola-
tion scheme was used, since this scheme shows higher than second order convergence rates
in some cases and yields better accuracy with lower numerical diffusion compared to stan-
dard OpenFOAM central differencing schemes [71]. Additionally, it captures the turbulent
decay in terms of energy dissipation better, although it underestimates the turbulent en-
ergy dissipation rate [71]. For both the laplacian as well as the surface-normal gradient
interpolation schemes, non-orthogonal correction was added. This is especially important
for this case, since cylindrical geometries lead inevitably to non-orthogonal meshes [72].
However, the non-orthogonality of the mesh should still be minimised, as the correction
steps for highly non-orthogonal meshes can lead to numerical instabilities [70]. For the
divergence scheme, van Leer interpolation was used, which is a total variation diminish-
ing (TVD) scheme [73]. This scheme ensures that unphysical spatial oscillations that can
arise in convection-dominated flows with central differencing discretisation are suppressed,
while keeping reasonable accuracy [74].

Next to the spatial discretisation, tempororal discretisation is necessary. The discretisation
method that was selected in this simulation is the Crank-Nicolson method. The Crank-
Nicolson scheme is second-order and implicit in time. This scheme can be implemented
in OpenFOAM as a blended scheme, being a Crank-Nicolson scheme blended with the
backward Euler scheme for stabilisation and limiting of numerical oscillations. A coefficient
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Mathematical term Interpolation scheme

Gradient Gauss cubic

Divergence Gauss van Leer

Laplacian Gauss cubic corrected

Interpolation Cubic

Surface-normal gradient Cubic corrected

Table 3.1: Interpolation schemes that were used in the rotor-stator cavity simulations.

was introduced that determines the relative contribution of the Crank-Nicolson scheme
and the backward Euler scheme, of which a value of 0 corresponds to a full backward Euler
discretisation and a value of 1 corresponds to a full Crank-Nicolson discretisation. A value
of 0.9 was selected to increase the accuracy as the Crank-Nicolson scheme is second order,
but blend in the stabilizing effect of the backward Euler scheme [21].

Next to the numerical schemes, also solvers should be selected to solve the discretised
system of algebraic equations. For the pressure field, the GAMG solver was selected and
for the additional fields, the solver smoothSolver was used. This selection is based on
the default solvers in tutorials of OpenFOAM [70]. The GAMG solver is a geometric-
algebraic multigrid solver, which solves a set of equations in an efficient way by solving
the problem on a coarser grid, which is then used to solve for the fine problem case
[21]. In such algorithms, preconditioners and smoothers should be used to enhance the
rate of convergence by smoothening the residuals. For GAMG, GaussSeidel and FDIC
were selected to be the smoother and preconditioner, respectively. The tolerances for the
residuals in pressure were set to 1 · 10-6 and for the additional quantities to 1 · 10-5.

When solving the equations for pressure and velocity, a coupling between these quantities
is observed. In case of a compressible flow, an equation of state can be used to solve for
the pressure. However, for incompressible cases a different solution strategy should be
used. The velocity and pressure should be solved such that the pressure field yields via
the momentum equations a velocity field which obeys the continuity equation. Algorithms
that perform such solution strategy are iterative solvers, of which PISO and PIMPLE are
the main algorithms [21]. In PISO, the velocity is computed in a first predictor step with
an intermediate pressure field, after which the pressure field is corrected using a Poisson
equation such that continuity is satisfied. This procedure is performed iteratively until
convergence. PIMPLE adds an additional outer loop to this scheme. In each outer loop,
the momentum predictor is solved once more with the converged pressure and velocity
from the inner loop. Also, the PIMPLE algorithm adds the flexibility that the turbulence
model is evaluated in each outer loop. Since the flow that is solved is highly turbulent,
the PIMPLE algorithm was selected, with one inner corrector and five outer correctors at
which the turbulence model is evaluated.

The WALE turbulence model for LES was selected for this case. Despite the fact that the
Smagorinksy can be considered as a standard LES sub-grid-scale turbulence model, the
drawbacks as described in Section 2.2.3 make the use of this turbulence model undesired.
The main benefits of the use of WALE were discussed previously and one of these was
that the rotational aspects of the turbulent flow are captured more adequately with the
WALE turbulence model [32]. Especially this aspect of WALE makes the implementation
of this turbulence model in rotor-stator flows suitable. The cutoff width was selected to
be the cube root of the grid cell volume.
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Figure 3.1: Schematic overview (not to scale) of a cross-section of the geometry used in
the rs-SDR cavity simulations.

Computational mesh

The mesh that resembles the geometry of the rotor-stator cavity was constructed using
the utility blockMesh. This utility constructs a mesh with hexahedral cells from certain
blocks. The mesh was constructed from four blocks that correspond to a quarter of the
annular region between rotor and stator. The circular boundaries near the edge and the
shaft are made by arcs. These four blocks are combined to form the mesh. Using topoSet,
the inlet and outlet regions on the mesh were defined. This results in a mesh which is
schematically depicted in Figure 3.1. The dimensions are listed in Table 3.2.

Property Size [m]

dinlet 0.11

dshaft 0.076

drotor 0.5

dstator 0.56

h 0.009

Table 3.2: Dimensions of the geometry studied in the rs-SDR cavity simulation.

To resolve the boundary layer, a variable grid size in the wall-normal direction was used
with refinement close to the walls. In the wall-normal direction, an expansion coefficient
of 10 was used such that each cell closer to the wall has a size which is 10 times smaller. In
the radial direction, the grid size was varied with an expansion coefficient of 5, resulting in
a smaller grid size near the rim of the rotor and the shaft. In the tangential direction, no
grid refinement was applied. In order to accurately resolve the boundary layer, multiple
grid cells should be in the viscous sublayer. Therefore, the value of the dimensionless
wall-normal coordinate y+ should be below 1 [75, 76]. The definition of y+ is given in
Equation 3.1. In each simulation, the utility yPlus was used to check this requirement.
In all simulations, the value of y+ was well below 1. The grid size that was found to be
adequate for resolving the boundary layer and keeping computational time reasonable was
found to be Nθ x Nr x Nz = 300 x 500 x 140. This resulted in a total number of grid
cells of 21 million. For this grid, the utility checkMesh was used to compute parameters
that indicate the mesh quality. The maximum non-orthogonality was computed to be less
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than 1◦ and the maximum aspect ratio was approximately 200.

y+ =
yvτ
ν

(3.1)

Initialisation and boundary conditions

The initial condition for the pressure was selected to be a uniform pressure of 0, with a
zeroGradient boundary condition at each wall and the inlet and outlet. For the turbulent
viscosity, an initial value of the kinematic viscosity of water was given. The boundary
conditions on the walls were selected to be fixedValue to a value of 0. For the inlet and
outlet, the turbulent viscosity is calculated by the turbulence model. The initial velocity
field is initialised such that the velocity at radial positions lower than the rotor radius
equals 40 percent of the rotational velocity of the rotor at that radial position. This value
of 0.4 was selected after literature review on similar systems [56, 57], yet this value does
not affect the steady-state solution as its purpose is merely to decrease the time at which
a steady state is reached. At radial positions larger than the rotor radius, the velocity
is initialised to linearly decrease to zero at the edge of the cavity. At the stator and the
edge of the cavity, a no-slip boundary condition is imposed. The rotatingWallVelocity
is imposed to the rotor and the shaft to describe the no-slip boundary condition for a
rotating patch. For the inlet and the outlet, a linear velocity profile for the tangential
component was forced as a boundary condition, such that the tangential velocity is zero
at a stationary wall and equal to ωrotr at a rotating wall. To initialise turbulence, random
Gaussian fluctuations were superimposed to the initial velocity profile. This initial field
can be consulted in Listing N.13.

Simulation procedure

The flow solver pimpleFoam was executed in parallel using mpirun. Using mpirun, multiple
processes can be processed simultaneously on multiple cores, yielding significant decrease
in computational time. To run the simulation on multiple cores, the domain should be
decomposed such that each domain can be processed on one core. The decomposition
method was selected to be the Scotch method, which minimises the number of processor
boundaries and interprocessor communication, and consequently the computational time
[77]. The simulations were processed on 256 cores on the supercomputer Snellius. In
Appendix E, the scalability analysis on the number of cores is given, from which it was
determined that 256 cores would lead to the shortest computational time. After the
simulation finished, the computational domains were reconstructed to yield to original
domain back again.

The time step that was used was selected on basis of the Courant-Friedrichs-Lewy number.
The CFL number, as defined in Equation 3.2, should be below 1 for numerical stability [39,
71]. The time step was adapted such that the maximum CFL number on the computational
domain remained at a value of 0.2. On basis of the averaged velocity profiles on multiple
locations in the rotor-stator cavity system, it was verified whether a steady state was
reached. A steady state was confirmed when the temporal gradient of the relative difference
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with the previous time step starts to oscillate around 0.

Co =
ui∆t

∆xi
(3.2)

After the simulation was performed, the energy dissipation rate (ε) was computed from the
strain rate tensor (Sij). This computation is given in Equations 3.3 and 3.4 [32]. In this
equation, νeff denotes the effective kinematic viscosity, which is the sum of the turbulent
eddy viscosity and the molecular viscosity. This equation can be expanded in all Cartesian
coordinates and rewritten to Equation 3.5 [78]. Using the definition of the covariance, the
relation between the average of the products and the product of the averages was used.
An example of this is provided in Equation 3.6. Finally, to get the total energy dissipation
rate, the energy dissipation rate as predicted by the sub-grid-scale turbulence model is
added to the resolved energy dissipation rate (Equation 3.7.

ε = 2νeffSijSij (3.3)
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(3.6)

εtot = ε+ εSGS (3.7)
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3.2 Simulation of a rs-SDR

The model of the hydrodynamics in a rotor-stator cavity was extended towards a complete
rs-SDR with optional throughflow. In order to do this, a computer-aided design (CAD)
was constructed in SolidWorks and converted to an OpenFOAM mesh. In the remainder of
this section, the methodology of setting up these simulations and performing the analysis
is provided.

Numerical implementation

The numerical implementation of the complete rs-SDR simulations is identical to the rotor-
stator cavity simulations, apart from the interpolation schemes. These schemes are given
in Table 3.3. Compared to the rotor-stator cavity simulations, a higher-order scheme for
the divergence terms is used. This yields a higher order of convergence and hence smaller
computational time, but reduces the stability compared to the TVD scheme as used in
the rotor-stator cavity case. As the computational time of this simulation was found to be
rather large, improving the order of convergence was concluded to be of more importance.

Mathematical term Interpolation scheme

Gradient Gauss cubic

Divergence Gauss cubic

Laplacian Gauss cubic corrected

Interpolation Cubic

Surface-normal gradient Cubic corrected

Table 3.3: Interpolation schemes that were used in the rotor-stator spinning disc reactor
simulations.

Computational mesh

Firstly, SolidWorks was used to make a CAD that resembles the shaft and rotor of a
rs-SDR. Using blockMesh, a mesh was made shaped like the cylindrical enclosing of the
rs-SDR. The mesh on which the flow behaviour is simulated was obtained by subtracting
the CAD design of the rotor and shaft from the cylindrical enclosing using the utility
snappyHexMesh. This geometry can be found in Appendix F, together with the CAD of
the rotor and shaft. Refinement was included such that grid cell sizes near the walls were
increasingly smaller. The details on the construction of the mesh can be found in the
source code in listing N.12. Using the grid dependency study as presented in Appendix G,
an adequate resolution was determined. To conclude, this resulted in a mesh consisting of
1.5 · 106 cells with a maximum non-orthogonality of 0.14◦.

Initialisation and boundary conditions

The velocity field was initialised on basis of the inlet flow rate and the rotational rate
of the disc. Using a velocity of 40% of the local rotor velocity, as discussed previously,
the tangential velocity was computed at each radial position. On the basis of continu-
ity, the radial velocity was computed at each radial position. Thereafter, the radial and
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tangential velocity were decomposed into Cartesian coordinates for implementation into
OpenFOAM. The pressure field was initialised to be uniform 0 and the turbulent viscosity
was uniformly initialised using the kinematic viscosity. On the walls, a no-slip boundary
condition was applied for the velocity and a zero-gradient boundary condition for the
pressure. The rotatingWallVelocity was imposed to the rotor and the shaft to describe
the no-slip boundary condition for a rotating patch. For the turbulent viscosity, nutUS-
paldingWallFunction was applied at all walls, to lessen the importance of the constraints
on y+ and r+, especially. At the inlet, a fixedValue boundary condition was forced for
the velocity, which ensures a constant inlet flow rate. The pressure boundary condition
was zero-gradient at this location. At the outlet, the pressure was fixed at the reference
pressure and the velocity was modelled using an inletOutlet boundary condition. This
boundary condition computes the velocity using a zero-gradient boundary condition, but
sets the velocity to zero in case of an inward velocity. For the turbulent viscosity, the
calculated boundary condition was used.

Simulation procedure

The flow solver pimpleFoam was executed in parallel using mpirun on 256 cores on the
Dutch supercomputer Snellius. The mesh was decomposed using the Scotch method.
Adaptive time-stepping was implemented to ensure a CFL number of 0.2. On basis of the
averaged velocity profiles, it was verified whether a steady-state was reached. A steady
state was confirmed when the temporal gradient of the relative difference with the previous
time step starts to oscillate around 0. For all simulations, a steady state was reached after
approximately half a residence time.

Residence time distribution modelling

After a steady-state velocity field was obtained from the simulations, the residence time
distribution was estimated from this field. The solver scalarTransportFoam was rewritten
to describe the convection and diffusion of a passive scalar (f) in a velocity field. The
equation that is solved is given in Equation 3.8. In this simulation, the velocity field and
the turbulent diffusion coefficient were obtained from the previously simulated velocity
field and local turbulent viscosity, using a turbulent Schmidt number of 0.9. For the
molecular diffusion coefficient of the passive scalar, a value of 1 · 10-9 m2 s-1 was used. At
the outlet, the mixing cup concentration is computed in each time step. Since the inlet
concentration of the passive scalar is set to unity as a step input, the time derivative of
the mixing cup outlet concentration represents the residence time distribution function.
For more simulation details, the source code in Listings N.34 and N.35 can be consulted.

∂f

∂t
+∇ · fu = ∇ · (Dm +Dt)∇f (3.8)
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3.3 Simulation of bacterial-resolved flow

3.3.1 Simulation of a turbulent Couette flow

In order to study the effect of shear and turbulence on the bacterium Clostridium au-
toethanogenum, a turbulent Couette flow field is simulated. This flow field resembles the
flow in the rs-SDR in terms of shear and turbulent kinetic energy, but requires signifi-
cantly less computational costs to simulate due to the absense of rotational effects. In this
section, the methodology of simulating turbulent Couette flow is outlined. Two cases are
simulated. For one case, which acts as a validation case, the bottom wall and top wall
move in opposite directions with equal velocity. More details on this validation case can be
found in Appendix A. In the other case, which will be used for the bacterial deformation
simulations, the bottom wall is stationary and the top wall moves.

Numerical implementation

The interpolation schemes that were used in this simulation are given in Table 3.4. In all
cases, linear interpolation schemes were selected, as these were found to be non-dissipative,
which is important to capture the turbulent character of the flow [79]. Time discretisation
was selected to be Crank-Nicolson with a blending coefficient of 0.9. The solvers are
selected analogously to the previous simulation cases. For pressure-velocity coupling,
PISO was selected with 2 correctors. The LES sub-grid-scale model was selected to be
WALE with a cutoff width cubeRootVol.

Mathematical term Interpolation scheme

Gradient Gauss linear

Divergence Gauss linear

Laplacian Gauss linear corrected

Interpolation Linear

Surface-normal gradient Orthogonal

Table 3.4: Discretisation schemes that were used in the simulations of a turbulent Couette
flow.

Computational mesh

The mesh was constructed using blockMesh from one block with hexahedral cells. The
mesh is a rectangular cuboid. In the wall-normal direction, non-uniform grid spacing is
used, with an expansion coefficient of 200. This was done to ensure wall resolving and
place grid cells in the viscous sublayer. The mesh sizes that were used in the simulations
for the validation case and the Couette flow field simulation that is to be used in the
bacterial cell deformation simulation are listed in Table 3.5. The number of grid cells was
selected to be Nx x Ny x Nz = 50 x 110 x 50 after a grid dependency study was performed
on the validation case, which is given in Appendix A.
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Validation case Bacterial deformation flow field

Length [m] 0.05 1 · 10-3

Width [m] 0.05 2 · 10-4

Height [m] 0.05 1 · 10-3

Table 3.5: Mesh sizes that were used in the simulations of a turbulent Couette flow.

Initialisation and boundary conditions

Only the boundary conditions on the walls are discussed, since the boundaries on the sides
are treated as cyclic boundaries to resemble an infinite plate case. For the pressure field,
the wall boundary conditions was selected to be zeroGradient and the initial condition
was set to 0. For the turbulent viscosity, Spalding’s wall function was used to force the
correct turbulent viscosity profile near the wall. The kinematic viscosity was used as the
initial condition. The boundary conditions for the velocity at the walls was set to a no-slip
condition forcing the wall velocity. The initial velocity field was acquired by running a
simulation with initially a linear velocity profile with random Gaussian perturbations in
all directions at a high Reynolds number to ensure a turbulent initial velocity field.

Simulation procedure

The flow solver pisoFoam was executed in parallel using mpirun on 16 cores. The decom-
position was performed using the Scotch method. The time step was selected such that
the maximum CFL number remained at 0.2. On basis of the averaged velocity profiles, it
was verified whether a steady state was reached. A steady state was confirmed when the
temporal gradient of the relative difference with the previous time step starts to oscillate
around 0.

3.3.2 Bacterial cell simulation

To study the effect of shear and turbulence effects on the bacterial cell, a bacterial cell
is simulated in a turbulent Couette flow of which the simulation details were previously
discussed. In this turbulent Couette flow, the bottom wall is stationary and the top
wall moves in a uniaxial direction, to resemble the flow in a rotor-stator spinning disc
reactor. Analogous to the deformation investigations on red blood cells [34, 35, 37], the
VoF method was implemented to model the bacterial cells. The literature review on
bacterial properties in Section 2.4 was used to determine simulation parameters. In the
remainder of this section, the details on the numerical implementation and simulation are
discussed.

Numerical implementation

The numerical schemes that were used are given in Table 3.6. In most cases, standard
linear interpolation schemes were used. For the discretisation of the divergence terms,
different schemes were implemented for each term. In order to increase the numerical
stability, the limited scheme LimitedLinearV 1 was implemented. This scheme limits
towards upwind discretisation in regions with a rapidly changing gradient. The limiter is
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calculated on basis of the component of the velocity vector in which the gradient changes
the most rapidly. This increases stability, but reduces accuracy [70]. In order to accurately
capture the interface in the VoF method, the velocity-weighted multicut piecewise linear
interface calculation (MPLICU) scheme was implemented. This scheme is especially more
accurate in cases of high shear, as it uses velocities at the faces in order to compute the
face flux. Additionally, this scheme is more precise for meshes with refinement. Both these
aspects make this scheme suitable for the bacterial simulations. Time discretisation was
selected to be a complete Crank-Nicolson scheme. In contrast to previous simulations, the
Smagorinsky-Lily sub-grid-scale turbulence model was selected, as WALE is incompatible
with multiphase solvers in OpenFOAM.

The solvers used in the simulation were selected analogously to tutorial cases. For pres-
sure, PCG was selected with a DIC smoother. The hydrostatic pressure was solved using
GAMG with DIC as a smoother. All other solvers were selected to be smoothSolver with
a symmGaussSeidel smoother. The volume fraction was solved with an interface compres-
sion coefficient (Cα) of 1. The pressure-velocity coupling was solved using PIMPLE with
2 corrector loops and 4 non-orthogonal corrector steps. Other numerical settings can be
found in Listing N.24 and N.25.

Mathematical term Interpolation scheme

Gradient Gauss linear

Divergence (default) Gauss linear

div(ρ · φ,U) Gauss limitedLinearV 1

div(φ, α) MPLICU

Laplacian Gauss linear corrected

Interpolation Linear

Surface-normal gradient Corrected

Table 3.6: Discretisation schemes that were used in the simulations of a bacterial cell.

Computational mesh

The same base mesh was used as discussed for the turbulent Couette case. To decrease
the maximum CFL number in these simulations, a moving mesh was introduced that
moves with half of the wall velocity. In order to model the flow on a bacterial scale, the
base mesh was refined. This refinement was performed gradually throughout the domain.
In 10 steps, a box with decreasing size around the location where the bacterial cell is
to be initialised is refined by bisecting the cells in each direction. Using this procedure,
a sufficiently refined mesh was obtained to resolve the bacterium. This yields a total
number of grid cells of 1.3 · 106. The quality of the mesh was checked using checkMesh,
which showed an average non-orthogonality of 6◦ and a maximum aspect ratio of 38. The
maximum non-orthogonality was found to be 68◦. From this, it was concluded that the
mesh is adequate for simulation, but non-orthogonal correctors are required.

Initialisation and boundary conditions

Similar to the turbulent Couette case, cyclic boundaries on the sides were applied. On the
walls, a zeroGradient boundary condition was used for the (hydrostatic) pressure. For the
turbulent viscosity, a calculated 0 boundary condition was used. The kinematic viscosity
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was used as the initial condition. For the velocity, a fixedValue boundary condition is
applied to mimic the no-slip condition. The velocity of the top wall was calculated using
the specified Reynolds number on basis of the channel width and water viscosity. As an
initial field, the turbulent Couette flow field as described in Section 3.3.1 was used. Using
the utility funkySetFields, the volume fraction of the bacterial cell was set to unity using a
mathematical expression for the shape of the bacterial cell. The cell shape was described
by a cylinder with two ellipsoid caps. More details on the geometry of the bacterium
can be found in Appendix C. The implementation of this geometry in the OpenFOAM
simulation can be found in Listing N.27. Near the bacterial cell, the velocity fluctuations
were filtered out close to and inside of the bacterial cell in order to avoid instantaneous
deformation during the initialisation of the model.

Physical models

Multiple physical models were implemented in the multiphase solver multiphaseInterFoam.
Firstly, the surface tension force was modelled by the CSF model with a surface tension
between the bacterial and water phase equal to 0.0056 N/m on basis of the previously
discussed literature. The correlation for drag of both phases was selected to be the
Schiller-Naumann correlation. The isothermal diameter model was used for the bacte-
rial phase. Since the Schiller-Naumann correlation is strictly only valid for spheres, the
results should be studied with this in mind. Virtual mass is taken into account by means
of the constantCoefficient model. Finally, gravity is also included in the model.

The deformation of the bacterium was modelled using a viscoelastic model. The Herschel-
Bulkley model was implemented to capture the highly viscous character of the bacterium at
low shear rates and yielding at higher shear rates. The Herschel-Bulkey model describes
fluids that behave as rigid solids with high viscosity at local shear stresses lower than
the yield stress, but start to flow as non-linear viscous fluids when this yield stress is
exceeded [80]. The implementation of the Herschel-Bulkey model in OpenFOAM is given
in Equation 3.9. In this equation, ν0 is the kinematic viscosity at low shear rates, τ0
is the density-normalised yield stress and kHB is the consistency coefficient. The order,
nHB, was set to unity to represent Newtonian behaviour. The values for the yield stress,
kinematic viscosity and consistency coefficient were selected on basis of the previously
discussed literature on the mechanical properties of bacterial cell walls.

ν = min(ν0,
τ0
γ̇

+ kHB γ̇
nHB−1) (3.9)

Simulation procedure

The flow solver multiphaseInterFoam was executed in parallel using mpirun on 4 cores.
The decomposition was performed using the Scotch method. The time step was selected
such that the maximum CFL number remained between 0.2 and 0.3. In these simulations
with an interface compression velocity, the CFL should also be evaluated on basis of the
interface compression velocity. It was found that the CFL number related to the interface
compression was not limiting for all cases. For all cases, a simulation time of approximately
0.2 eddy turnover times was ensured.
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3.4 Simulation of particle-laden rs-SDR flow

In this section, the simulation of bacteria-laden flow inside the rs-SDR is discussed. For
this, an Euler-Lagrange simulation was set up. Firstly, the type of coupling was deter-
mined according to the regimes of Elghobashi [46], as depicted in Figure 2.3. Using a
biomass concentration of 0.3 g/L, the volume fraction was determined to be such that
two-way coupling is necessary. Euler-Lagrange simulations that track each particle indi-
vidually are more fundamental applications, but the associated computational costs limits
its application to small domains or low numbers of particles [81]. The multiphase particle-
in-cell (MP-PIC) method was developed to simulate particle-laden flows that can range
from dilute to dense loadings and variable particle sizes [82]. The method is based on cap-
turing multiple particles into a computational particle. The dynamics of the real particle
phase can then by extracted by solving a Liouville equation for the particle distribution
function. This methodology is discussed in Appendix L. In this way, accurate mapping
from Lagrangian particles to the Eulerian grid is enabled [82]. Using this model, multi-
phase flows can be simulated that would otherwise require excessive computational time
with reasonable accuracy [82, 83]. The model has been applied to particle-laden flows such
as flows inside a hydrocylone [81], circulating fluidized beds [84] and rotating drums [85].
In this section, the implementation of this model to bacteria-laden flow in the rs-SDR is
discussed. It must be noted that this section is by no means an extensive review of the
MP-PIC method and the reader is referred to Andrews et al. [82] for more theoretical
details.

Numerical implementation

For the numerical implementation of this model, the solvers and discretisation schemes
were implemented as discussed in Section 3.2 for the simulation of the complete rs-SDR.
As an addition, limitedLinear numerical schemes were added to ensure boundedness of the
volume fractions. These numerical schemes can be consulted the source code in Listing
N.32. In contrast to previous simulations, the Smagorinsky-Lily sub-grid-scale turbulence
model was selected, as WALE is incompatible with multiphase solvers in OpenFOAM.
The computational mesh and the geometry of the rs-SDR as used in this simulation is the
same as the mesh as presented in Section 3.2. As initial conditions of the flow inside the
rs-SDR, the mean results of the LES simulations were used, which were averaged over 25
rotations. The same boundary conditions were maintained.

Physical models

As discussed previously, the fluid-particle interactions were solved in a coupled manner
using the MP-PIC model. In cloudProperties, all details on the particle phase can be
specified. Firstly, the particle forces were specified. In this model, the gravity, drag,
virtual mass, pressure gradient and lift force were included. For the virtual mass force,
a virtual mass force constant of 0.5 was included. For the drag force, the non-spherical
drag correlation by Haider and Levenspiel was implemented, since this predicts the drag
on objects with a sphericity similar to the bacterium with reasonable accuracy [86]. For
the lift force, the Saffman-Mei correlation is used, which considers shear-induced lift [87].
It must be noted that this correlation was strictly only applicable to spherical geometries,
whereas the bacteria are rod-like. Therefore, the results of this simulation should be
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treated with this caveat in mind. More details on the particle forces can be consulted in
Appendix L

The computational particles were injected using the patchInjection model and the number
of these parcels was determined to be 1 million per second. The injection velocity of the
particles was set equal to the inlet velocity of the fluid. The particle size distribution
was set to a fixed value equal to the bacteria length. The interaction with the walls was
described by a rebound with an arbitrarily selected elasticity coefficient 0.97 of and a
restitution coefficient of 0.09. However, the influence of these parameters seems limited
due to the low number of interactions with the walls. For the inter-particle interactions,
the implicit packing model was selected using the Harris-Crighton particle stress model.
A linear dependency of the stress and the particle fraction was assumed. The close-packed
volume fraction of the bacteria was selected to be 0.4 on basis of a study on packing of
rod-shape cylinders with varying aspect ratios [88].

Simulation procedure

The solver denseParticleFoam was executed in parallel using mpirun on 256 cores on
Snellius. The decomposition was performed using the Scotch method. The time step was
selected such that the maximum CFL number remained between 0.2 and 0.3. The particles
were injected continuously and uniformly in time throughout the simulation time, which
was selected to be one residence time.
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Figure 3.2: A schematic representation of the setup used for the macromixing characteri-
sation of the rs-SDR.

3.5 Residence time distribution experiments

In order to validate the rs-SDR simulations, the macromixing behaviour in the rs-SDR
was studied. In Figure 3.2, a schematic overview is given for the setup that was used
to determine the residence time distribution in the rs-SDR. For this, water was passed
through the bottom of the rs-SDR to the top of the reactor, after which it was disposed in
a waste vessel. The flow was maintained using a VerderGear VG1000 gear pump. Using a
KD Scientific syringe pump, a methylene blue tracer solution (4.69 · 10-2 M) was injected
into the flow at a flow rate of 1.39·10-7 m3 s-1. At the inlet and outlet, 10 mm Avantes flow
cells were used to monitor the absorption spectra using optical fibres. The light source
used was an AvaLight-DHS, which produces light with a wavelength over a range of 191
nm to 750 nm. The spectrometer (AvaSpec-DUAL) measured the number of counts with
an integration time of 1.1 ms. A PMMA rs-SDR was used, which has the same dimensions
as implemented in the model, as specified in Appendix F. The inlet flow rate was set to
1 · 10-5 m3 s-1 and the rotational speed was varied from 71 to 1145 RPM. The absorption
of the tracer was measured at 613 nm. Using Beer-Lambert’s law and a calibration curve,
the absorbance was converted to tracer concentration. These calibration curves can be
consulted in Appendix H. After injection, the outlet signal was measured for at least 10
residence times. Each experiment was performed three times.

To take into account relatively long injection time with respect to the residence time, a
time-domain deconvolution was used [89]. For this, the outlet signal was described as a
convolution between the inlet signal and the reactor model, as described in Equation 3.10.
Using MATLAB’s lsqnonlin, the model parameters of the engineering model (Equation
2.39) were fitted on basis of the error between the measured outlet concentration and
the predicted outlet concentration. Using this method, high R2 values (≥ 0.99) can be
obtained [89].

cout(t) =

∫ t

0
E(t)cin(t− τ)dt (3.10)
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Chapter 4

Results and Discussion

4.1 Rotor-stator cavity simulations

To validate the simulation of the rotor-stator cavity system, a simulation case was set
up that corresponds to the system that was experimentally studied and modelled using a
Reynolds stress model (RSM) by Poncet et al. [57]. In Figure 4.1, the axial profiles of the
averaged tangential and radial velocity are plotted for different radial positions. The value
of z∗ was defined to be 0 at the rotor and 1 at the stator. The velocities are normalised by
the local linear disc velocity. It can be seen that the correspondence with the experimental
results is adequate for the tangential velocities. For the radial velocity profile, the corre-
spondence with the experimental results adequate at low radial positions, but at higher
radial positions, the model deviates significantly from the experimental data. In Figure
4.2, the normal components of the Reynolds stresses are compared with experimental and
simulation results from Poncet et al. [57]. The Reynolds stresses were normalised with the
square of the local disc velocity. The Reynolds stresses that resulted from the simulations
in this study consist of both the resolved and unresolved part of the Reynolds stresses,
which were both time-averaged and summed to obtain the total Reynolds stress tensor.
From Figure 4.2, it can be seen that there are strong deviations between the experimental
data and the simulation results. At low radial positions, the correspondence with the ex-
perimental data is better than the RSM model, but the correspondence is worse at higher
radial positions.

The entrainment coefficient, which is defined as the ratio between the tangential velocity
in the core of the fluid and the tangential velocity of the disc at that radial position, was
studied by Poncet et al. [57]. In this study, a correlation was found for the entrainment
coefficient as a function of the local flow rate coefficient. A limiting entrainment coeffi-
cient of 0.43 is predicted at zero superimposed throughflow. From the velocity profiles as
depicted in Figure 4.1, it was found that the entrainment coefficient is 0.39 at midradial
position, which deviates slightly compared to the experimental correlation. However, the
entrainment coefficient does closely match with the experimental and simulation results by
Poncet et al. [57] at lower radial position. At higher radial positions, the underestimation
of the entrainment coefficient is more prominent when compared to the results by Poncet
et al. [57].

In Figure 4.3, the axial profile of the energy dissipation rate and the turbulent kinetic
energy in the rotor-stator cavity are visualised. From this figure, it can be seen that
most of the turbulent kinetic energy is present in the turbulent boundary layers, with the
largest turbulent kinetic energy in the Bödewadt layer. Next to this, it was found that
the energy dissipation rate in this boundary layer is much larger than in the inviscid core
of the flow and near the rotor. A similar distribution of the turbulent kinetic energy was
reported by Poncet et al. [56], who reported a maximum normalised turbulent kinetic
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Figure 4.1: Comparison of the axial velocity profiles with the validation case by Poncet
et al. [57]. The red circles denote the experimental data by Poncet et al., the yellow line
denotes the RSM simulation data by Poncet et al. and the blue line denotes the simulation
results from this study.

Figure 4.2: Comparison of the Reynolds stress profiles with the validation case by Poncet
et al. [57]. The red circles denote the experimental data by Poncet et al., the yellow line
denotes the RSM simulation data by Poncet et al. and the blue line denotes the simulation
results from this study.
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(a) Energy dissipation rate (b) Turbulent kinetic energy

Figure 4.3: Axial profiles of turbulent characteristics of the flow in the rotor-stator cavity
at a radial position of 0.8rd.

energy (k∗ = k/(ωro)
2) of 9 ·10-3, which resembles the averaged value of 1 ·10-2 at a radial

position of 99.5% of the disc radius in this study.

4.2 rs-SDR simulations

The simulation of the rotor-stator cavity was extended towards simulating the complete
rotor-stator spinning disc reactor. The flow in the rs-SDR was simulated for four different
rotational Reynolds numbers. In this section, the results of these simulations are discussed.

To validate the flow fields in the rs-SDR, the residence time distribution of the rs-SDR was
studied experimentally and numerically from the CFD simulations. Using the engineering
model for a rs-SDR (Equation 2.39), these RTDs can be characterised by a number of
tanks-in-series and a volume fraction that corresponds to the PFR-zone. In Figure 4.4,
these characteristics are visualised for the experimentally obtained RTDs. It can be seen
that with increasing rotational Reynolds number, the volume fraction of the PFR-zone
and the number of tanks-in-series decreases, which is related to the increase of the rotation
governed zone in the rs-SDR. At a rotational Reynolds number below 1 · 105, a different
trend was observed, as the transition towards the laminar regime occurs at this Reynolds
number. In this regime, the volume fraction of the PFR-zone rapidly increases and the
number of the tanks-in-series decreases. These trends are in correspondence with results
from literature [18, 89].
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(a) Volume fraction of PFR-zone (b) Number of tanks-in-series

Figure 4.4: The characteristics of the RTD in the rs-SDR according to the engineering
model for the experimentally obtained RTDs.

(a) 25 rad/s (b) 50 rad/s (c) 75 rad/s

Figure 4.5: The experimentally obtained residence time distributions using deconvolution
with the engineering model compared with the simulation results. The solid lines denote
the experimental results and the dashed line denote the simulation results.

In Figure 4.5, the experimental residence time distributions that were deconvoluted using
the engineering model are compared with the simulated residence time distributions. For
the simulations that were performed in the turbulent regime, the correspondence with
the simulation results and the experimental RTD is generally well. The simulation in
the laminar regime did not correspond well with the experimental RTD, as the simulated
RTD was found to have less dispersion as in the experimental result, yielding a RTD
that resembles a PFR and CSTR in series. The relatively small deviation between the
simulated and experimental RTD in the turbulent regime can be related to the dispersion
in the PFR-zone that is present in the simulations, but which is not considered in the
engineering model. To take into account this dispersion, a different engineering model is
proposed, which describes the macromixing behaviour in the rs-SDR by means of a non-
ideal PFR with axial dispersion and a CSTR in series. In Equation 4.1, the response of a
pulse injection for a non-ideal PFR is given. This response was numerically used as inlet
condition for a CSTR. The derivation of this equation is elaborated upon in Appendix I.

cout(t) =
(
Pe

τPF
4πt

)0.5
exp

(
−Pe(1− t/τPF )2

4t/τPF

)
(4.1)

This proposed reactor model was used in the deconvolution to study the RTD from the
experimental results. In Figure 4.6, the fitted volume fraction of the PFR-zone and the
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Péclet number are depicted as a function of the rotational Reynolds number for both the
experimental data as well as the simulation results. In the turbulent regime, it can be
seen that the volume fraction of the throughflow governed zone decreases with increasing
rotational Reynolds number, but the Péclet number remains constant. In the laminar
regime, the Péclet number increases due to the lower dispersion and the volume fraction
of the PFR-zone decreases. The simulations results in the turbulent regime correspond
well to the experimental results, however the Péclet number is underestimated, which can
be related to additional numerical dispersion in the simulations. In Appendix I, more
details are provided on the fitting of the engineering model and the proposed non-ideal
model, together with the simulation of the residence time distribution.

(a) Volume fraction of PFR-zone (b) Péclet number

Figure 4.6: The characteristics of the RTD in the rs-SDR using deconvolution with the
proposed non-ideal model on the experimental data and the simulation results.

In Figure 4.7, the axial profiles of the mean radial velocity are visualised for different
radial positions. The value of z∗ was defined to be 0 at the rotor and 1 at the stator. It
can be seen that at low radial positions, a throughflow governed velocity profile is present,
whereas the rotation governed velocity profiles are present at higher radial positions. The
throughflow governed zone can be allocated to the PFR zone in the rs-SDR and the ro-
tation governed zone behaves as a (or multiple) CSTR(s) due to the intense recirculation.
To connect these velocity profiles to the overall macromixing behaviour in the rs-SDR,
the radial position at which this transition occurs was compared with Equation 2.38. The
transition radius for the simulation results was defined as the radius at which the axial
derivative of the radial velocity at the rotor is zero. At this radial position, the onset of
the recirculation in the Bödewadt boundary layer starts. In Figure 4.8, the simulated and
experimental results of the transition radius are compared to Equation 2.38. The exper-
imentally determined transition radii are found to follow the correlation by De Beer [19]
generally well, meaning that the transition radius increases with increasing dimenionless

parameter (CWRe
-4/5
ω )5/13. It can be seen that the transition radius is underestimated by

the simulation results, which is related to the definition of the transition radius from the
velocity profiles. To be considered as a well-mixed zone in the engineering model, a higher
degree of recirculation is required. Therefore, the transition radius on basis of the velocity
profiles is lower than the transition radii that were experimentally observed, yet it can

be seen that the scaling law as function of the dimensionless parameter (CWRe
-4/5
ω )5/13 is

similar. In Appendix J, more details are provided on the recirculation in the rs-SDR.
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Figure 4.7: Radial velocity profiles in the rs-SDR model (Re = 2.18 ·105 and φv = 1 ·10-5)
at different radial positions that exemplify the transition from a throughflow governed
regime to a rotation governed regime.

Figure 4.8: Transition radius predicted from the velocity profiles compared to the predic-
tion by De Beer [19]. The squares represent the experimental results as predicted using
the engineering model on the RTDs.
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Figure 4.9: Parity plot for the simulated entrainment coefficient and the entrainment
coefficient determined for by the correlation as depicted in Equation 4.2. Five percent
deviation lines are included.

The entrainment coefficient was determined as a function of the radial position for the
simulated Reynolds numbers. For the top gap at which centripetal throughflow is present,
the entrainment coefficient was compared with the correlation for the entrainment coeffi-
cient as function of the local throughflow coefficient (Cqr). This correlation, together with
the definition of the local throughflow coefficient are depicted in Equation 4.2 [56].

K = 2 (5.9Cqr + 0.63)5/7 − 1 with Cqr =
Q(Ωr2/ν)0.2

2πr3Ω
(4.2)

In Figure 4.9, the entrainment coefficient for the different simulated rotational speeds are
compared to the prediction with the correlation by Poncet et al. [56]. To reduce inlet and
outlet effects, the entrainment coefficient was determined at mid-radial position. For the
three simulations with the highest Reynolds number, the simulation results correspond
well to the correlation and the deviation remains between the five percent deviation lines.
The maximum deviation was found at the lowest simulated Reynolds number, since this
simulation is in the laminar regime of the rs-SDR and the correlation is only applicable to
turbulent flows of Batchelor type.

When it is assumed that the flow is of a Batchelor type and that the boundary layers are
separated, the thickness of both the Von Kármán and Bödewadt boundary layer is expected
to scale with the Reynolds number according to Equation 4.3 [90]. The boundary layer
thickness was defined for the Bödewadt layer as the distance from the stator at which the
axial derivative of the azimuthal velocity is zero. To remain in the Batchelor flow regime,
the boundary layer thickness was determined at a radial position of 0.06 m. The thickness
of the Von Kármán boundary layer was defined as the axial position at which the azimuthal
velocity has developed for 99%. In Figure 4.10, the boundary layer thicknesses from the
simulation results are given. For both the Von Kármán and the Bödewadt boundary
layer, the thickness follows the scaling law accurately with R2-values of 0.997 and 0.977
for the Bödewadt and Von Kármán layer, respectively. The thickness of the Bödewadt
boundary layer is larger than the Von Kármán boundary layer and, in contrast to the
Von Kármán boundary layer, does not approach zero at infinite Reynolds number. This
was hypothesised to be related to the superimposed throughflow, which causes an increase
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Figure 4.10: The thicknesses of the Von Kármán and Bödewadt boundary layers at half
disc-radius in the rs-SDR with a superimposed throughflow. A trendline was included to
demonstrate the scaling relationship as shown in Equation 4.3.

in the boundary layer thickness, in contrast to cases without superimposed throughflow
where the boundary layer thickness does decrease to zero at infinite Reynolds number [90].

δbl ∝
1√
Reh

with Reh =
Ωh2

ν
(4.3)

4.3 Bacterial-resolved flow

The results of the simulation of bacterial-resolved flow are discussed in this section. Firstly,
the results of the turbulent Couette flow field are discussed. The methodology for sim-
ulating a Couette flow field was successfully validated by means of literature data by
Pirozolli et al. [91]. Besides, a grid dependency study was performed and a sufficiently
grid-independent velocity field was obtained. These results, accompanied by further elab-
oration, can be reviewed in Appendix A. Subsequently, the Couette flow fields that acts
as an initial field for the bacterial-resolved flow simulations were simulated. In Appendix
B, the results of the flow fields at the selected Reynolds numbers are presented. As a
verification case, a RAS simulation was performed and similar results were obtained.

Using these Couette flow fields, the effect of shear and turbulence on the bacterium were
studied for three Reynolds numbers. Additionally, the orientation at which the bacterium
is initialised was set to spanwise, streamwise and wall-normal to study its effect on the
bacterium dynamics. It was found that the drag force acting on the bacterial cell is the
dominant force. In Figure 4.11, the orientations of the drag forces acting on the bacterial
cell can be found for the lowest simulated Reynolds number. Figures of the orientation of
the drag forces on the bacterium for the other Reynolds numbers can be found in Appendix
D. It can be seen that these forces will cause a rotation in the shear plane, which is an
effect of shear on elliptical cylinders that was previously observed both in experiments and
numerical simulations [92–94]. For details on the drag force calculation and the resulting
torque, Appendix K can be consulted. In Figure 4.12, the magnitude of the drag force and
torque are visualised for the tested Reynolds numbers and bacterium orientations. It can
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be seen that the drag force magnitude increases with increasing Reynolds number. Next
to this, the orientation has an effect on the force magnitude. When oriented streamwise,
the bacterial cell experiences little forces due to the small flow-normal surface area. When
the bacterial cell is placed in a spanwise orientation, the force magnitude increases, as
the flow-normal area increases. Additionally, the bacterium experiences more shear forces
due to the spanwise velocity gradients present in the Couette flow field. The maximum
force was obtained in a wall-normal orientation, since the shearing effect is larger as the
bacterium experiences a larger velocity difference.

To demonstrate the rotation that these forces cause, the torque was computed. Similar
trends as discussed for the drag force can be observed. In most of the simulated cases, the
orientation of the torque in the spanwise direction was found to be dominant, which results
in a rotation in the shear plane, as was visualised in Figure 4.11a. When the bacterium was
initialised in a spanwise orientation, the torque in the spanwise direction was found to be
less significant compared to torque in the streamwise direction. This can be related to the
small lever arm vector for rotation in the shear plane and the presence of velocity gradients
in the spanwise direction in the Couette flow field. From the results as presented in Figure
4.12, predictions can be made of the preferential allignment of the bacterial cells. Since
the torque on the bacterial cell is the smallest in a streamwise orientation, the angular
acceleration will be small. When the torque imposed by the drag force surpasses the
viscous torque, the bacterial cell can rotate towards a wall-normal orientation, for which
the torque applied on the bacterial cell is much greater. Simulations performed with
orientations in intermediate positions between the steamwise and wall-normal orientation
confirm the trend of increasing torque magnitude at a larger angle with the flow field.
As the torque is much greater in this orientation, a large angular acceleration is imposed,
so the bacterium will reorient in a short time frame to the streamwise direction. This
specific motion was observed for microorganisms in shear flows and is usually referred to
as tumbling [95]. This non-uniform rotational motion will cause a probability distribution
of bacterium orientations with a maximum close to the streamwise orientation. Such
distribution was also experimentally observed for elongated cylinders in shear flows [94].

Finally, the stresses that result from the forces that act on the bacterial cell were deter-
mined. To study the possibility of plastic yielding of these bacteria, the Tresca criterion
was used. This criterion predicts that failure of the material happens in shear, which is as
expected in the turbulent Couette case, due to the high shear rates. When the maximum
shear stress on any plane surpasses a critical value, yielding is expected to occur. The
Tresca criterion gives the relation between the shear yield strength and the tensile yield
strength, which was found to be that the shear yield strength is half of the tensile yield
strength [96]. When this yield criterion is applied to the simulations, it was found that
the yield limit is not surpassed for the lowest Reynolds numbers. At the highest simu-
lated Reynolds number (Re = 1 · 106), it was found that the yield stress is surpassed by
approximately 25 percent of the tensile yield strength and yielding is expected to occur in
all bacterium orientations. When the Von Mises yield criterion is applied, which presumes
that yielding occurs when the total strain energy density is larger than a critical value
[96], same conclusions were obtained. To confirm that the yield stress is not surpassed in
flows similar to the rs-SDR, a simulation in wall-normal orientation was performed with
a Reynolds number of 825, which yields the same shear rate as the maximum shear rate
in the rs-SDR used in this research at a rotational speed of 50 rad s-1. A similar tumbling
motion was simulated for several periods of rotation and the yield stress in the bacterial
cell was not surpassed.
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(a) Streamwise

(b) Wall-normal

(c) Spanwise

Figure 4.11: Drag forces acting on the bacterial cell for different orientation at a Reynolds
number of 21333. The magnitude of the vectors are not to scale with respect to each
individual figure.
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Figure 4.12: The magnitude of the drag force on the bacterium together with the re-
sulting torque for different bacterial orientations and Reynolds numbers. The blue bars
denote streamwise orientation of the bacterium, red denotes wall-normal orientation of
the bacterium and yellow denotes a spanwise orientation.

4.4 Particle-laden flow in the rs-SDR

From the MP-PIC simulation in the rs-SDR, the instantaneous particle volume fraction
distributions were studied. It was found that the particle dynamics are in line with the
hydrodynamics as predicted from the CFD simulations in the rs-SDR. In the throughflow
governed regime near the inlet, a uniform particle distribution was observed. In the
rotation governed regime, the particles were found to recirculate in the Von Kármán
and Bödewadt boundary layers. This yields initially high volume fractions of particles
in the turbulent boundary layers in contrast to the inviscid core. After longer times,
the particles propagate from the turbulent boundary layers to the inviscid core and a
homogeneous particle distribution was observed in the rotation governed regime, similar
to the throughflow governed regime. In Appendix M, the dynamics of the bacteria in the
rs-SDR after injection is elaborated upon.

In Figure 4.13, the axial profiles of the particle volume fraction are given for different
radial positions for the bottom and top gap. It can be seen that the particle distribution
is flat throughout the axial gap between rotor and stator. For the particle distributions
in the top gap and bottom gap, similar distributions were observed. Differences in the
magnitude of the particle volume fraction between the top and bottom gap were found to
be minimal. Effects of the centrifugal flow in the bottom gap and the centripetal flow in
the top gap seem to have little influence on the particle volume fractions, as the density
difference between the water and the bacteria is relatively low.
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Figure 4.13: Particle volume fraction distributions in the rs-SDR at different radial posi-
tions in the lower gap (blue line) and top gap (red line).
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Chapter 5

Conclusions

In this work, the hydrodynamics in the rs-SDR and its effect on bacteria confined in such
flow were studied using CFD in OpenFOAM. Firstly, a validation case was set up on basis
of a rotor-stator cavity as studied by Poncet et al. [57]. Using Large Eddy Simulations
with the WALE sub-grid-scale turbulence model, satisfactory agreement with experimental
result by Poncet et al. [57] was observed for the tangential velocity profiles. At high radial
positions, the simulation was found to deviate significantly from the experimental results
for the Reynolds stress profiles and radial velocity profiles.

The simulation of the cavity was successfully extended to describe the hydrodynamics
in the rs-SDR with optional throughflow. A methodology was provided to construct the
mesh that describes the rs-SDR and to numerically stabilise the simulations. Validation
tests on the entrainment coefficient and boundary layer thickness were performed on the
rs-SDR simulations and adequate agreement was observed. On basis of the radial velocity
profiles, the transition between a throughflow governed regime and a rotation governed
regime was observed. The transitional radius was estimated from these velocity profiles
and it was observed to scale with the Reynolds number and throughflow coefficient as
according to literature [57, 59]. Related to this, the RTDs were experimentally studied
and compared with simulated RTDs. For the cases in the turbulent regime, the simulation
was in agreement with the experiments, but the simulated RTD in the laminar regime
underestimated the dispersion. To further study the macromixing in the rs-SDR, the
engineering model was extended towards an axially-dispersed PFR and a CSTR in series.
This proposed model described the breakthrough in the RTD better, but yields overall
similar correspondence with the engineering model with a non-integer number of tanks.

A high-Reynolds number Couette flow was simulated and validated to be used as a flow
field to simulate mechanical shear effects on the bacterial cell. Using an Eulerian simu-
lation with the Volume of Fluid method, the forces on the bacterial scale related to the
shear effects were simulated. The drag force acting on the bacterium was found to be the
dominant force, which causes a rotation in the shear plane. From these forces, a tumbling
motion of the bacterial cell was predicted with a preferential alignment in the flow direc-
tion. Using the Tresca and Von Mises failure criteria, plastic deformation at the shear
rates in the rs-SDR was not predicted for the timespan measured.

Finally, the possibility for simulating particle-laden flow in the rs-SDR using an Eulerian-
Lagrangian simulation with the multiphase particle-in-cell model was explored. Such
simulation was constructed to describe the bacteria-laden flow and particle dynamics were
observed to be similar to the overall hydrodynamics in the rs-SDR, with uniform flow
in the throughflow governed zone and recirculation in the Bödewadt and Von Kármán
boundary layers in the rotation governed zone. As the local shear rates are higher in these
turbulent boundary layers, this emphasizes the need for studying the (long-term) shear
effects on the bacteria when operated in a rs-SDR.
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Chapter 6

Recommendation

In this work, a methodology was provided to simulate the turbulent flow in the rotor-stator
spinning disc reactor. The verification tests that were employed to assess the quality of the
simulation results are satisfactory, but additional verification and validation would improve
the quality of the research. One of such would be to compare experimentally obtained
micromixing times with the micromixing time as predicted from the CFD simulations.
The axial profiles of the micromixing times currently do not correspond to experimentally
obtained micromixing times, but it must be noted that these experiments are intrusive,
which can distort the local hydrodynamics.

Additionally, a validation technique should be implemented to validate the particle dy-
namics in the rs-SDR. Especially due to the non-spherical geometry of the bacteria, the
utilised force correlations are strictly speaking not valid. Additionally, the great amount
of input parameters makes validation important for the implementation of the MP-PIC
model. Therefore, a non-invasive validation technique is required to validate the particle
dynamics. One possibility to do so is by making use of magnetic particle tracking, which
tracks a single particle over time through the measurement of a generated magnetic field
[97, 98]. Another technique to study the particle dynamics would be optical methods, but
since these rely on continuous visibility of the particles, the geometry remains limited to
2D cases [98], making it less suitable for the rs-SDR.

To study the mechanical effects on the bacterial cell during confinement in shear flows, a
simplified simulation was constructed that considers the bacterial cell to be a pseudofluid
with a high viscosity. In order to improve the simulations of bacterial cells in shear flows,
more experimental research is required on the bacterium Clostridium autoethanogenum.
Currently, the mechanical properties of the bacterial cell were determined from viscoelas-
tic measurements on the bacterial thread made of peptidoglycan. However, the bacterial
cell wall does not exclusively consist of peptidoglycan and is most likely anisotropic in
mechanical properties. Additionally, it is known that bacteria can move in various direc-
tion due to chemotaxis, gyrotaxis or gravitaxis [99, 100]. These are topics which are still
not researched for Clostridium autoethanogenum and should be studied before expanding
the current simulation. To take into account the anisotropy of the bacterial cell, a spring-
based model could be implemented [48], which would require development of an inhouse
code.

It has been shown that CFD is a valuable tool to predict the hydrodynamics in the rs-
SDR with feasible simulation times. Extensions of the simulations to describe multiphase
and/or reactive systems can be important for further optimization and development of
process intensification in the rs-SDR.
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Grid dependency study Couette flow

Nx Ny Nz

Coarse 40 85 40

Middle 50 110 50

Fine 65 140 65

Unresolved 50 50 50

Table A.1: The number of grid cells used in the grid dependency study of the turbulent
Couette flow

In Figure A.1, the grid dependency study for a turbulent Couette flow with a Reynolds
number equal to 21333 is given. In this figure, several simulations are compared with DNS
data as found by Pirozzoli et al. [91]. The number of grid cells in each direction is given in
Table A.1. The methodology for these simulations was discussed in Section 3.3.1. It can
be seen that all simulations are relatively close to the DNS results. The simulation without
wall-resolving closely matches the coarse mesh, apart from the locations close to the walls.
Due to the wall function that was forced at these locations, a different friction velocity was
found. The coarse mesh was found to be unable to accurately describe the friction velocity
near the wall, which is related to a y+ value which was too large to resolve the viscous
sublayer. The middle mesh did not suffer from these problems and the friction velocity
was accurately resolved. The fine mesh did not show significant differences in the velocity
profile. To limit the computational time while resolving the viscous sublayer, the middle
mesh was selected in further simulations. For the bacterial deformation simulations, a
finer grid was used compared to the middle mesh. This mesh was selected on basis of the
spatial domain of the bacterial deformation simulation to ensure similar non-dimensional
grid cell sizes. In the spanwise direction, a finer mesh was used to resolve the bacterial
cell. Additionally, it must be noted that acquiring a grid-independent solution is infeasible
for LES simulations, since the grid size directly determines the cutoff width for the eddies
that are resolved.
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Figure A.1: The grid dependency study for a turbulent Couette flow with Re = 21333.
The DNS data was reproduced from Pirozzoli et al. [91]. The unresolved case denotes a
mesh without wall-resolving.
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Results turbulent Couette flow

In this Appendix, the results of the turbulent Couette velocity profiles are discussed,
that were used as an initial field in the bacterial-resolved flow simulations. In Figure
B.1, the streamwise velocity profiles are depicted for the simulated Reynolds numbers.
For the simulation at a Reynolds number of 21333, a RAS simulation using the k − ω
shear stress transport model was performed as a verification case. It can be seen that
the RAS simulation predicts a steeper velocity profile in the core, which is associated
to the higher turbulence intensity predicted by RAS. The near-wall behaviour of both
simulations shows similar characteristics, with the characteristic slip zones near the walls.
It can be seen that with increasing Reynolds number, the average inner-scaled velocity
slope (S = (h/uc)(du/dy)) decreases. This effect was also reported by Pirozolli et al. [91],
although a quantitative comparison of this trend with experimental results from literature
yields different trends [101, 102]. This discrepancy is most likely related to experimental
difficulty measuring relatively small velocity gradients in the core of the flow.

It can be seen that compared with the low Reynolds number simulation, the higher
Reynolds number simulation show some oscillatory behaviour in the core of the flow. This
is related to large-scale motions that form in the channel core. In the spanwise direction,
oscillating streamwise velocity zones are observed, as depicted in Figure B.2. Pirozolli et
al. [91] studied the spanwise two-point correlation function of the streamwise velocity and
found results demonstrating the sinusoidal behaviour. With increasing Reynolds number,
the confinement effects showed to increase. A similar trend was found in this study, as de-
picted in Figure B.2. Possible remedies to reduce the effect of these large-scale motions are
spanwise averaging or averaging on a timescale equal to the period of such wave. However,
since the sinusoidal behaviour of the large-scale motion in the spanwise direction yields a
supposedly infinite correlation length, simulations and experiments of Couette flows are
likely to be contaminated by confinement effects [91], which highlights the complexity of
this type of flow.
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Figure B.1: Results of the Couette cases that are to be used as an initial field in the
bacterial-resolved flow simulations. As a verification, a simulation with RAS was included.

Figure B.2: Spanwise profiles of the streamwise velocity at the symmetry plane (η = 0)
showing the large-scale motions due to confinement effects.
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Geometry of bacterial cell

Figure C.1: Schematic overview of the initialisation of the bacterial cell in the flow field.

The geometry in which the bacterial cell was initialised in the simulation is discussed in
this section. In Figure C.1, a schematic representation of the bacterial cell is provided.
The bacterial cell consists of a cylinder with two ellipsoids at the caps of the cylinder.
Using microscope images of the bacterial cells (see Figure C.2), it was established that
the fraction of the bacterial cell that consists of the straight centre (kbac) is approximately
0.9. This means that the relative size of the ellipsoid caps is approximately 0.05 for
each cap, respectively. The bacterium is initialised in the center of the Couette flow, but
the initialisation is flexible such that the bacterial cell can be initialised at any location
(xc, yc, zc). The cylinder can be described by Equation C.1, for the case in which the
bacterial cell is oriented in the x-direction. The domain of the bacterial cell (the x-
coordinate in Equation C.1) is related to the length of the bacterium. The ellipsoids that
represent the caps of the bacterial cell can be described by Equations C.2 and C.3.

(y − yc)2 + (z − zc)2 ≤ r2bac ∧ xbegin ≤ x ≤ xend (C.1)

(x− (xc − 0.5kbaclbac))
2

((1− kbac)lbac)2
+

(y − yc)2

r2bac
+

(z − zc)2

r2bac
≤ 1 (C.2)

(x− (xc + 0.5kbaclbac))
2

((1− kbac)lbac)2
+

(y − yc)2

r2bac
+

(z − zc)2

r2bac
≤ 1 (C.3)
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To study the effect of the orientation of the bacterial cell on the local hydrodynamics and
forces acting on the bacterium, the initial situation was rotated around the z-axis with an
angle θ. This rotation corresponds to a matrix operation as defined in Equation C.4. This
results in the coordinate transformation as depicted in Equations C.5 to C.7, which can be
applied to the equations that describe the geometry of the bacterium. In these equations,
the translations are included that ensure a rotation around the center point (xc, yc, zc).

x′y′
z′

 =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

xy
z

 (C.4)

x′ = (x− xc) cos θ − (y − yc) sin θ + xc (C.5)

y′ = (x− xc) sin θ + (y − yc) cos θ + yc (C.6)

z′ = z (C.7)

Figure C.2: Scanning electron microscopy picture of Clostridium autoethanogenum. Re-
produced from [61].

Page 58



Results of bacterial-resolved flow

Appendix D

Results of bacterial-resolved flow

In Figures D.1 and D.2, the orientation of the drag force on the bacterial cell is visualised
for the other two simulated Reynolds numbers and bacterium orientations. It must be
noted that the magnitude of the vectors is not to scale in comparison with the other fig-
ures. In this figure, the x-coordinate denotes the streamwise direction, the y-coordinate
denotes the wall-normal direction and the z-coordinate denotes the spanwise direction.
Similar trends as discussed in Section 4.3 can be observed. Next to this, it can be observed
that deformation and yielding occurs when the bacterium is oriented in the wall-normal
direction at a Reynolds number of 1 · 106 (Figure D.2b). This is in correspondence with
the predictions using the Von Mises and Tresca criterion and the simulated shear stresses
in the bacterial cell. Due to the available computational resources, simulation of one com-
plete large-scale eddy-turnover time was unfeasible. For each simulation, the normalised
simulation time by the eddy turn-over time is approximately 0.2. The eddy turn-over time,
as defined in Equation D.1, can be described as the characteristic time scale at which one
large-scale eddy is dissipated into heat according to the energy cascade. Therefore, the
influence of large-scale eddies on the bacterial cell is not averaged out sufficiently and the
results should be interpreted with this caveat in mind.

teddy =
h

uwall
(D.1)
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(a) Streamwise

(b) Wall-normal

(c) Spanwise

Figure D.1: Drag forces acting on the bacterial cell for different orientation at a Reynolds
number of 6 · 105. The magnitude of the vectors are not to scale with respect to each
individual figure.
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(a) Streamwise

(b) Wall-normal

(c) Spanwise

Figure D.2: Drag forces acting on the bacterial cell for different orientation at a Reynolds
number of 1 · 106. The magnitude of the vectors are not to scale with respect to each
individual figure.
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Scalability of parallel performance

In Figure E.1, the time required for one iteration of the simulation of a rotor-stator cavity
is plotted as a function of the number of cores used in the parallel computation. This
graph was obtained by simulating this case for 100 time steps. The last four time steps
before the simulation would be finalised were taken into consideration in the production
of this graph. Of these four time steps, the mean time per iteration was computed and
is depicted in Figure E.1. This was done for the two super computers that were used
in this research, Cartesius and Snellius. It can be seen that increasing the number of
cores is beneficial for the computational time, but increasing the number of cores further
is not expected to increase the computational speed. Additionally, it can be noted that
the upgrade from Cartesius to Snellius decreased the computational time slightly. As a
reference, the ideal time per iteration is given, which was computed by assuming that the
computational time is halved with a double number of cores.

Figure E.1: The time per iteration in the rotor-stator cavity simulation as a function of the
number of cores that were used in parallel computations. The ideal scalability is included
as reference. The error bars denote the maximum deviation between the observed iteration
times.
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Geometry of rs-SDR mesh

Property Size [m]

Stator radius 0.067

Rotor radius 0.066

Shaft radius 0.006

Inlet radius 0.01

Outlet radius 0.005

Interdisc spacing (bottom) 0.002

Interdisc spacing (top) 0.002

Rotor thickness 0.008

Table F.1: Geometric properties of the rotor-stator spinning disc reactor as simulated in
this study.

In Table F.1, the dimensions of the rs-SDR that was simulated in this study are provided.
Using these dimensions, the rotor and shaft of the rs-SDR were designed in SolidWorks.
This resulted in the CAD as depicted in Figure F.1. The mesh that was constructed using
this CAD is visualised in Figure F.2. In this configuration of the rs-SDR, the shaft is only
affecting the bottom gap between rotor and stator. The inlet is located at the bottom
stator with a geometry as a concentric circle around the shaft. The outlet is located at
the centre of the top stator.

Figure F.1: The CAD of the rotor and shaft of the rotor-stator spinning disc reactor as
simulated in this study.
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Figure F.2: A bisected view of the mesh that represents the zones of the rotor-stator
spinning disc reactor that are open to flow. Note that the inlet and outlet are not visualised
in this view, as these are implemented in the model via patches on the mesh.

Page 64



Grid dependency study of the rs-SDR

Appendix G

Grid dependency study rs-SDR

Nθ Nr Nz

Coarse 125 100 90

Middle 200 150 140

Fine 250 200 180

Table G.1: The number of grid cells used in the grid dependency study of the rs-SDR

To select an accurate resolution of the grid, a grid dependency study was performed on
the rs-SDR simulation as was discussed in Section 3.2. The number of grid cells that was
selected for the grid dependency study are depicted in Table G.1. In Figure G.1, the results
of the grid dependency study are visualised. The axial velocity profiles between the rotor
and the top stator are depicted for three radial positions. From the velocity profiles, it was
decided that the coarse mesh was inadequate of capturing the flow behaviour accurately,
since spikes and oscillations were observed in the velocity profiles. The relative difference
between the middle and the fine mesh was computed for different axial profiles of the
radial velocity and the maximum deviation was found to be well below 8 percent. On
basis of this and keeping computational costs limited, it was decided that the middle was
used in further simulations.

(a) r = 0.01rd (b) r = 0.2rd (c) r = 0.4rd

Figure G.1: Grid dependency study on the simulation of the rotor-stator spinning disc
reactor simulation at Re = 2.18 · 105 and φv = 1 · 10-5 m3 s-1. The axial velocity profiles
are visualised for the axial gap between rotor and top stator. The blue line denotes the
coarse mesh, the red line denotes the middle mesh and the yellow line denotes the fine
mesh.
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Experimental calibrations

Before the residence time distributions in the rs-SDR were experimentally determined, the
set-up as described in Section 3.5 was calibrated. For this, the gear pump and UV-VIS
spectrometer were calibrated. The pump was calibrated by measuring the mass flow rate
as a function of the set gear pump percentage. This calibration curve can be seen in Figure
H.1 and an R2-value bigger than 0.99999 was obtained.

The UV-VIS calibration was performed by circulating a solution with a known concen-
tration of methylene blue through the reactor. At the inlet and the outlet, the UV-VIS
spectra were measured after 10 recirculation times of the vessel containing the bulk so-
lution. In order to promote homogenisation of the tracer, the rotational speed of the
spinning disc was set to 50 rad/s. As a reference, the spectra were also measured for dark
conditions and when circulating water. The absorbance was computed according to Equa-
tion H.1, in which N0 and Nref denote the measured intensity in the dark and for water,
respectively. At low concentrations, the absorbance can be related to Beer-Lambert’s law,
which is expressed in Equation H.2. In Figure H.2, the measured absorbance for different
concentrations are displayed. The absorbances were measured for the absorption peaks of
methylene blue, which were found to be 292, 613 and 664 nm [103]. It can be seen that
Beer-Lambert’s law corresponds well to the experimental data at low concentrations, but
at higher concentration a deviation was observed from the linear relationship. In Figure
H.2, the fitted line was obtained by fitting the experimental data below an absorbance of 1.
In this region, an R2-value above 0.99 was obtained for all measured wavelengths. From
this fitting, the molar extinction coefficient was determined according to Equation H.2
with an optical path length of 10 mm. The results of the molar extinction coefficients are
displayed in Table H.1. The maximum R2-value (> 0.999) was found at a wavelength of
613 nm and it can be seen that the linear regime is valid for higher concentrations. This
makes this wavelength optimal for the residence time distribution measurements. For
these measurements, it was ensured that the maximum concentration stays below 3 · 10-4

M to ensure operation in the linear regime.

A = − log(N −N0)

log(Nref −N0)
(H.1)

A = εmlpathc (H.2)
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Wavelength [nm] Molar extinction coefficient [m2 mol-1]

Inlet outlet

292 373.7 409.9

613 467.5 521.7

664 756.2 833.7

Table H.1: The molar extinction coefficient of methylene blue as measured by UV-VIS
spectroscopy for both the flow cells at the inlet and the outlet.

Figure H.1: Calibration curve of the VerderGear V1000 gear pump.

(a) Inlet (b) Outlet

Figure H.2: Calibration curves using the Beer-Lambert law for both the flow cells located
at the inlet and the outlet measured at the absorption peaks of methylene blue. The trend
lines are included to visualise the linear regimes.
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Residence time distribution rs-SDR

In this Appendix, the residence time distributions of the rs-SDR that were studied by
means of experiments and simulations are discussed. Firstly, the residence time distri-
bution experiments are discussed. The RTD was measured for 13 different rotational
speeds and all experiments were performed in triplo. Using the calibration curve for the
concentration of methylene blue, the inlet and outlet concentrations were measured. It
was ensured that the injection peak remains below three seconds and the maximum con-
centration near the injection zone was maintained below 3 · 10-4 M to stay in the linear
regime. In Figure I.1, a typical profile of the normalised inlet and outlet concentrations
are depicted. Using the deconvolution strategy as discussed in Section 3.5, accurate fits
of the engineering model were obtained with a R2-value above 0.99 for all experiments.
In Figure I.2, the result of a fit is compared to the measured outlet concentration for a
typical experiment.

Using MATLAB’s gradient function, the gradient of the outlet concentration was computed
and the RTD was determined. The resulting RTD was processed using a moving average
to filter the fluctuations in the results. Thereafter, the engineering model was fitted to the
simulated results. For all turbulent cases, an adequate fit was obtained for all simulations
(R2 > 0.997), but the laminar case was found to be unsuccessfully represented by the
simulation results. It was found that the engineering model predicts a more steep gradient
after the residence time of PFR-zone has been passed compared to the simulation results.
This is related to the dispersion that was considered in the simulation. Due to this, also
the proposed engineering model with non-ideal dispersion in the throughflow governed
regime was fitted to the experimental data and accurate fits were obtained with a R2-
value above 0.99 for all experiments. When the proposed engineering model was fitted
to the simulation results, a fit was obtained with R2-value above 0.996 for all turbulent
simulations. In Figure I.3, the simulated RTDs are visualised with the experimental results
and the fit of the proposed engineering model. Intermediate steps in the derivation of the
non-ideal PFR after a step input are given in Equations I.1-I.4. For more details, [104]
can be consulted.

∂c

∂t
+ u

∂c

∂z
= Dax

∂2c

∂z2
(I.1)

θ =
tu

L
=

t

τPF
Z =

z

L
Pe =

uL

Dax
(I.2)

∂c

∂θ
+
∂c

∂Z
=

1

Pe

∂2c

∂Z2
(I.3)

cout(t) =
(
Pe

τPF
4πt

)0.5
exp

(
−Pe(1− t/τPF )2

4t/τPF

)
(I.4)
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Figure I.1: The normalised inlet and outlet concentrations for a typical experiment. For
this case, a rotation speed of 525 RPM was used.

Figure I.2: The measured outlet concentration compared with the result of a typical fitted
outlet concentration by means of the deconvolution strategy. For this case, a rotation
speed of 525 RPM was used.
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Figure I.3: Comparison of the simulated residence time distribution and the experimentally
obtained residence time distribution using the deconvolution with the proposed reactor
model. Also, the fit of the proposed reactor model on the experimental RTD is included.
The black line denotes the experimental results, the red line denotes the simulation result
and the blue line denotes the fit of the proposed reactor model on the simulation results.
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Recirculation in the rs-SDR

To study the recirculation at higher radial positions in the rs-SDR, the degree of recircu-
lation was defined as in Equation J.1. In Figure J.1, the degree of recirculation can be
seen for the simulations at different rotational speeds. At low radial positions, the degree
of recirculation is 1, meaning that there is no recirculation present and the flow regime is
throughflow governed. At a certain radial position, the degree of recirculation increases
and keeps increasing with increasing radial position. The radial position at which this
happens coincides with the definition of the transition radius for the throughflow gov-
erned and rotation governed regime. However, the experimentally obtained transition
radii are determined by means of the RTD. In order to be a well-mixed zone in the engi-
neering model, the degree of recirculation must be significantly higher than 1. Therefore,
the transitional radius as determined from the velocity profiles is underestimated when
compared to experimentally obtained values from RTDs.

Degree of recirculation =

∫ h
0 2πr|ur|dh∫ h
0 2πrurdh

≈
∫ h
0 2πr|ur|dh

φv
(J.1)

Figure J.1: Comparison of the degree of recirculation as a function of the radial coordinate
for different rotational speeds.
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Interfacial force calculations

In this Appendix, the methodology of calculating the interfacial forces on the bacterium
is presented. The main force was found to be the drag force. Additional forces that are
present, such as the virtual mass force, gravitational force and lift force were considered to
be insignificant compared to the drag force when determining the magnitude of the forces
acting on the bacterium.

FD,k =
3

4
ρcαcαdCD

|ud − uc| (ud − uc)
dd

(K.1)

CD =


24(1+0.15Re0.683p )

Rep
Rep≤ 1000

0.44 Rep≥ 1000
(K.2)

Rep = dd
|ud − uc|

νc
(K.3)

The total drag force was computed as a multiplication of the mean force density as given in
Equation K.1 and the bacterial cell volume. By integrating the force density over the area
of the bacterial cell and dividing by this cell area, the mean force density was computed.

From the drag force, the resulting torque was computed. This computation is given in
Equation K.4. In this computation, the center of rotation was selected to be the center of
the bacterium. Similarly to the drag force calculations, the total torque was computed by
integration.

M = r × F (K.4)
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Appendix L

MP-PIC implementation

In this Appendix, some background is provided on the implementation of the MP-PIC
model for bacteria-laden flow in the rs-SDR. Firstly, the Liouville equation that is used to
compute the particle volume fraction distribution function is elaborated upon, after which
the physical models that were used to describe the particle dynamics are discussed.

In Equation L.1, the Liouville equation that describes the particle distribution function is
depicted [82]. In this equation, ∇x and ∇v represent the divergence operator relative to
the position and velocity, respectively. The acceleration a is computed by means of the
forces acting on the particles, which are discussed in the remainder of this section.

∂θ

∂t
+∇x · (θu) +∇v · (θa) = 0 (L.1)

In Equation L.2, the computation of the particle acceleration is shown [82]. It can be seen
that the acceleration consists of multiple contributions. The contributions as depicted in
Equation L.2 represent (in order of appearance) the contribution due to drag, pressure
gradients, gravity, lift force and inter-particle stresses. Additionally, the effect of virtual
mass was taken into account.

a = CD(uc − ud) +
1

ρp
∇p+ g + CL(uc − ud)×∇× uc −

1

ρpαp
∇τ (L.2)

Physical models and correlations were used to quantify some of these forces. For the drag
force, the non-spherical drag correlation by Haider and Levenspiel [86] was used, which is
given in Equations L.3 and L.4. In this correlation, φ denotes the sphericity of the bacteria,
which was calculated to be 0.655. In Equation L.5, the implementation of the virtual mass
is demonstrated. For the virtual mass coefficient Cvm, a value of 0.5 was selected. The
shear-induced lift force implementation in OpenFOAM using the Saffman-Mei model is
provided in Equation L.6 and L.7 [105]. To conclude, the inter-particle stress model by
Harris and Crighton is depicted in Equation L.8 [83], in which Ps is the solids pressure
and αcp is the close-packed particle volume fraction. For numerical implementation, the
singularity is avoided by using a small value for εs.
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• Drag: non-spherical drag model

CD =
24

Rep

(
1 + exp

(
2.3288− 6.4581φ+ 2.4486φ2

)
Re(0.0964+0.5565φ)

p

)
+

Rep exp
(
4.905− 13.8944φ+ 18.4222φ2 − 10.2599φ3

)
Rep + exp(1.4681 + 12.2584φ− 20.7322φ2 + 15.8855φ3)

(L.3)

Rep = dd
|ud − uc|

νc
(L.4)

• Virtual mass

Fvm = ρcVpCvm

(
Duc
Dt
− dud

dt

)
(L.5)

• Lift force: Saffman-Mei

CL =

{
6.46 ·

(
1− 0.3314

√
Rew
2Rep

)
exp(−0.1Rep) + 0.3314

√
Rew
2Rep

Rep≤ 40

0.3385 ·
√

0.5Rew Rep≥ 40
(L.6)

Rew =
ρcd

2|∇ × uc|
µc

(L.7)

• Harris-Crighton inter-particle stress model

τ = Ps
αp

max(αcp − αp, εs(1− αp)
(L.8)
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Particle dynamics in the rs-SDR

The dynamics of the bacterial cells in the rs-SDR were studied using the MP-PIC model.
As discussed in Section 4.4, the dynamics of the bacteria resembles the hydrodynamics in
the rs-SDR that were elucidated in this study. In Figure M.1, three overviews are given
of the particles in the rs-SDR at different simulation times. For the MP-PIC simulation,
a rotational Reynolds number of 2.18 · 105 and a volumetric flow rate of 1 · 10-5 m3 s-1 was
used. The particles are visualised in a bisected slice of the rs-SDR, such that the radial
motion of the particles can be studied. The colour coding that is used is the particle
age, which is defined as the duration between the current time and the time at which the
particle was injected.

In Figure M.1a, the particles are visualised for a short time. It can be seen that the bacteria
move radially outward from the inlet via the Von Kármán boundary layer. In Figure M.1b,
it can be seen that recirculation in the boundary layers is occuring at the higher radial
positions. In the inviscid core at the rotation governed regime, a lower particle fraction is
observed. After more than one residence time, the particles were found to propagate from
the turbulent boundary layers to the inviscid core, yielding a homogeneous distribution
of particles in the rs-SDR, as visualised in Figure M.1c. From the particle age, a clear
transition zone between the rotation-governed regime and the throughflow governed regime
can be noticed. At low radial positions near the inlet, the particle age is uniform and low.
At higher radial positions, the distribution of particles ages is broad, denoting the mixing
in the rotation-governed regime.
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(a) t = 0.05τ

(b) t = 0.5τ

(c) t = 1.4τ

Figure M.1: Distribution and particle age of bacteria in the MP-PIC simulation at different
simulation times in a bisected slice of the rs-SDR.
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Code listings

N.1 rotor-stator cavity

Listing N.1: Allrun file of rotor-stator cavity simulation

1 #!/bin/sh

2 cd ${0%/*} || exit 1 # Run from this directory

3 . $WM_PROJECT_DIR/bin/tools/RunFunctions # Source tutorial run functions

4

5

6 ####################### The steps to run the simulation #######################

7

8 runApplication blockMesh # Creating the mesh

9

10 runApplication topoSet

11

12 runApplication createPatch -overwrite

13

14 runApplication checkMesh # Checking the mesh

15

16 runApplication decomposePar -force # Divide the workload over the cores

17

18 runApplication mpirun -np 256 pimpleFoam -parallel # Run the simulation in

parallel

19

20

21 runApplication reconstructPar -latestTime # Reconstruct the decomposed folders

22

23

24 #--------------------------------------------------------------------------

Listing N.2: blockMeshDict file specifying the geometry of the rotor-stator cavity simula-
tion

1 /* --------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v1806 |

5 | \\ / A nd | Web: www.OpenFOAM.com |

6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object blockMeshDict;

14 }

15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

16 #include "../ Parameters"

17 #include "../ Calculations"

18

19 scale 1;

20

21 vertices //list of vertices defining the geometry

22 (

23 ($rO_2 $rO_1 0) //This is point 0. Not 1!
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24 ($rO_3 $rO_2 0) //This is point 1

25 ($rO_4 $rO_3 0) // point 2

26 ($rO_1 $rO_4 0) // point 3

27 ($rO_2 $rO_1 $h) //point 4

28 ($rO_3 $rO_2 $h) //point 5

29 ($rO_4 $rO_3 $h) //point 6

30 ($rO_1 $rO_4 $h) //point 7

31 ($rI_2 $rI_1 0) // point 8

32 ($rI_3 $rI_2 0) // Point 9

33 ($rI_4 $rI_3 0) // point 10

34 ($rI_1 $rI_4 0) // point 11

35 ($rI_2 $rI_1 $h) //point 12

36 ($rI_3 $rI_2 $h) //point 13

37 ($rI_4 $rI_3 $h) //point 14

38 ($rI_1 $rI_4 $h) //point 15

39 );

40

41 blocks // defining the blocks which the geometry is made out of

42 (

43

44 hex (0 1 9 8 4 5 13 12) ($Ntheta_ $Nr $Nz) simpleGrading (1 ((50 50 5) (50 50

0.2)) ((50 50 10) (50 50 0.1)))

45 hex (1 2 10 9 5 6 14 13) ($Ntheta_ $Nr $Nz) simpleGrading (1 ((50 50 5) (50 50

0.2)) ((50 50 10) (50 50 0.1)))

46 hex (2 3 11 10 6 7 15 14) ($Ntheta_ $Nr $Nz) simpleGrading (1 ((50 50 5) (50 50

0.2)) ((50 50 10) (50 50 0.1)))

47 hex (3 0 8 11 7 4 12 15) ($Ntheta_ $Nr $Nz) simpleGrading (1 ((50 50 5) (50 50

0.2)) ((50 50 10) (50 50 0.1)))

48

49 );

50

51

52 edges

53 (

54 arc 0 1 (0 $R3_ 0)

55 arc 4 5 (0 $R3_ $h)
56 arc 1 2 ($R3 0 0)

57 arc 5 6 ($R3 0 $h)
58 arc 2 3 (0 $R3 0)

59 arc 6 7 (0 $R3 $h)
60 arc 3 0 ($R3_ 0 0)

61 arc 7 4 ($R3_ 0 $h)
62

63 arc 9 8 (0 $R1_ 0)

64 arc 13 12 (0 $R1_ $h)
65 arc 10 9 ($R1 0 0)

66 arc 14 13 ($R1 0 $h)
67 arc 11 10 (0 $R1 0)

68 arc 15 14 (0 $R1 $h)
69 arc 8 11 ($R1_ 0 0)

70 arc 12 15 ($R1_ 0 $h)
71 );

72

73

74 boundary

75 (

76 // Define the boundaries of the 4 block system (easiest way to understand is by

drawing the system)

77 rotatingWalls

78 {

79 type wall;

80 faces

81 (

82 (0 8 9 1)

83 (1 9 10 2)

84 (2 10 11 3)

85 (3 11 8 0)

86 );

87 }

88

89 fixedWalls

90 {

91 type wall;
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92 faces

93 (

94 (4 12 13 5)

95 (5 13 14 6)

96 (6 14 15 7)

97 (7 15 12 4)

98 );

99 }

100

101 back

102 {

103 type wall;

104 faces

105 (

106 (8 12 13 9)

107 (9 13 14 10)

108 (10 14 15 11)

109 (11 15 12 8)

110 );

111 }

112

113 front

114 {

115 type wall;

116 faces

117 (

118 (0 4 5 1)

119 (1 5 6 2)

120 (2 6 7 3)

121 (3 7 4 0)

122 );

123 }

124

125 );

126

127 // ************************************************************************* //

Listing N.3: fvSolution file specifying the solvers of the rotor-stator cavity simulation

1 /* --------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v1806 |

5 | \\ / A nd | Web: www.OpenFOAM.com |

6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "system";

14 object fvSolution;

15 }

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

17

18 solvers

19 {

20 p

21 {

22 solver GAMG;

23 smoother GaussSeidel

24 preconditioner FDIC;

25 tolerance 1e-06;

26 relTol 0.05;

27 cacheAgglomeration yes;

28 nPreSweeps 2;

29 nPostSweeps 2;

30 }

31

32 pFinal

33 {

34 $p;
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35 relTol 0;

36 }

37

38 "(U|nut|nuTilda|flm|fmm)"

39 {

40 solver smoothSolver;

41 smoother GaussSeidel;

42 tolerance 1e-05;

43 relTol 0;

44 }

45

46 UFinal

47 {

48 $U;
49 relTol 0;

50 }

51

52 }

53

54 PIMPLE

55 {

56 nCorrectors 1;

57 nNonOrthogonalCorrectors 0;

58 pRefCell 0;

59 pRefValue 0;

60 nOuterCorrectors 5;

61 turbOnFinalIterOnly no;

62

63 residualControl

64 {

65 U 1e-05;

66 p 5e-04;

67 }

68 }

69

70

71

72

73

74 // ************************************************************************* //

Listing N.4: fvSchemes file specifying the schemes of the rotor-stator cavity simulation

1 /* --------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v1806 |

5 | \\ / A nd | Web: www.OpenFOAM.com |

6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "system";

14 object fvSchemes;

15 }

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

17

18 ddtSchemes

19 {

20 default CrankNicolson 0.9;

21 }

22

23 gradSchemes

24 {

25 default Gauss cubic;

26 grad(p) Gauss cubic;

27 grad(U) Gauss cubic;

28 grad(nut) Gauss cubic;

29 }

30
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31 divSchemes

32 {

33 default Gauss vanLeer;

34 div(phi ,U) Gauss vanLeer;

35 div(phi ,nut) Gauss vanLeer;

36 div(yPhi ,yWall) Gauss vanLeer;

37 div((nuEff*dev2(T(grad(U))))) Gauss cubic;

38 }

39

40 laplacianSchemes

41 {

42 default Gauss cubic corrected;

43 laplacian(yWall) Gauss cubic corrected;

44 }

45

46 interpolationSchemes

47 {

48 default cubic;

49 }

50

51 snGradSchemes

52 {

53 default cubic corrected;

54 }

55

56

57 // ************************************************************************* //

Listing N.5: Initial and boundary conditions of the velocity for the rotor-stator cavity
simulation

1 /* --------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v1906 |

5 | \\ / A nd | Web: www.OpenFOAM.com |

6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volVectorField;

13 object U;

14 }

15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

16 #include "../ Parameters" // Include the parameters

17 #include "../ Calculations" // Include the Calculation for the parameters

18

19 dimensions [0 1 -1 0 0 0 0];

20

21 internalField #codeStream

22 {

23 codeInclude

24 #{

25 #include "fvCFD.H"

26 #};

27

28 codeOptions

29 #{

30 -I$(LIB_SRC)/finiteVolume/lnInclude \

31 -I$(LIB_SRC)/meshTools/lnInclude
32 #};

33

34 codeLibs

35 #{

36 -lmeshTools \

37 -lfiniteVolume

38 #};

39

40 code

41 #{

42 const IOdictionary& d = static_cast <const IOdictionary &>(dict);
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43 const fvMesh& mesh = refCast <const fvMesh >(d.db());

44

45 vectorField v(mesh.nCells ());

46

47 scalar uB = 0.4; // Relative bulk velocity

48

49 forAll(v, i)

50 {

51 const scalar x = mesh.C()[i][0];

52 const scalar y = mesh.C()[i][1];

53

54 scalar r = sqrt(pow(x,2)+pow(y,2));

55

56 if (r <= $R2 ){

57

58 scalar vT = r * uB * $w;
59

60 scalar vY = vT * r / (x + pow(y,2) / x);

61

62 scalar vX = - y / x * vY;

63

64 // Get some random perturbation for the velocity to initialize

65

66 scalar vX_rand = ( rand() * 1e-9 ) - 1;

67 scalar vY_rand = ( rand() * 1e-9 ) - 1;

68 scalar vZ_rand = ( rand() * 1e-10 ) - 0.11;

69

70 scalar vX_perturb = vX + vX_rand;

71 scalar vY_perturb = vY + vY_rand;

72 scalar vZ_perturb = vZ_rand;

73

74 v[i] = vector(vX_perturb ,vY_perturb ,vZ_perturb);

75

76 }

77 else

78 {

79 // Velocity 0 at R2 and wRi at R3 linearly

80 scalar vT = uB *(-(r - $R2) / ($R3 - $R2) * $w *$R2 + $w * $R2);
81

82 scalar vY = vT * r / (x + pow(y,2) / x);

83

84 scalar vX = - y / x * vY;

85

86 scalar vX_rand = ( rand() * 1e-9 ) - 1;

87 scalar vY_rand = ( rand() * 1e-9 ) - 1;

88 scalar vZ_rand = ( rand() * 1e-10 ) - 0.11;

89

90 scalar vX_perturb = vX + vX_rand;

91 scalar vY_perturb = vY + vY_rand;

92 scalar vZ_perturb = vZ_rand;

93

94 v[i] = vector(vX_perturb ,vY_perturb ,vZ_perturb);

95

96 }

97

98 }

99

100 writeEntry(os, "", v);

101

102 #};

103 };

104

105

106 boundaryField

107 {

108 rotor

109 {

110 type rotatingWallVelocity;

111 origin (0 0 0);

112 axis (0 0 1);

113 omega constant $w;
114 }

115
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116 stator

117 {

118 type noSlip;

119 }

120

121 front

122 {

123 type noSlip;

124 }

125

126 back

127 {

128 type rotatingWallVelocity;

129 origin (0 0 0);

130 axis (0 0 1);

131 omega constant $w;
132 }

133

134 inlet

135 {

136 type fixedValue;

137 value #codeStream

138 {

139 codeInclude

140 #{

141 #include "fvCFD.H"

142 #};

143

144 codeOptions

145 #{

146 -I$(LIB_SRC)/finiteVolume/lnInclude \

147 -I$(LIB_SRC)/meshTools/lnInclude
148 #};

149

150 codeLibs

151 #{

152 -lmeshTools \

153 -lfiniteVolume

154 #};

155

156 code

157 #{

158 const IOdictionary& d = static_cast <const IOdictionary&>

159 (

160 dict.parent ().parent ()

161 );

162

163 const fvMesh& mesh = refCast <const fvMesh >(d.db());

164 const label id = mesh.boundary ().findPatchID("inlet");

165 const fvPatch& patch = mesh.boundary ()[id];

166

167 vectorField U(patch.size(), vector(0, 0, 0));

168

169 forAll(U,i)

170 {

171 const scalar x = patch.Cf()[i][0];

172 const scalar y = patch.Cf()[i][1];

173

174 scalar r = sqrt(pow(x,2)+pow(y,2));

175

176 // Velocity linearly between zero at R4 and wRi at R1

177 scalar vT = -(r - $R1) / ($R4 - $R1) * $w *$R1 + $w * $R1;
178

179 scalar vY = vT * r / (x + pow(y,2) / x);

180

181 scalar vX = - y / x * vY;

182

183 U[i] = vector(vX,vY ,0);

184 }

185

186 writeEntry(os,"",U);

187 #};

188
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189 };

190 }

191

192 outlet

193 {

194 type fixedValue;

195 value #codeStream

196 {

197 codeInclude

198 #{

199 #include "fvCFD.H"

200 #};

201

202 codeOptions

203 #{

204 -I$(LIB_SRC)/finiteVolume/lnInclude \

205 -I$(LIB_SRC)/meshTools/lnInclude
206 #};

207

208 codeLibs

209 #{

210 -lmeshTools \

211 -lfiniteVolume

212 #};

213

214 code

215 #{

216 const IOdictionary& d = static_cast <const IOdictionary&>

217 (

218 dict.parent ().parent ()

219 );

220

221 const fvMesh& mesh = refCast <const fvMesh >(d.db());

222 const label id = mesh.boundary ().findPatchID("outlet");

223 const fvPatch& patch = mesh.boundary ()[id];

224

225 vectorField U(patch.size(), vector(0, 0, 0));

226

227

228 forAll(U,i)

229 {

230

231 const scalar x = patch.Cf()[i][0];

232 const scalar y = patch.Cf()[i][1];

233

234 scalar r = sqrt(pow(x,2)+pow(y,2));

235

236 // Velocity linearly from 0 at R2 to wRi at R3

237

238 scalar vT = -(r - $R2) / ($R3 - $R2) * $w *$R2 + $w * $R2;
239

240 scalar vY = vT * r / (x + pow(y,2) / x);

241

242 scalar vX = - y / x * vY;

243

244 U[i] = vector(vX,vY ,0);

245 }

246 writeEntry(os,"",U);

247 #};

248 };

249 }

250

251

252 // ************************************************************************* //

Listing N.6: Initial and boundary conditions of the pressure for the rotor-stator cavity
simulation

1 /* --------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v1906 |

5 | \\ / A nd | Web: www.OpenFOAM.com |
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6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volScalarField;

13 object p;

14 }

15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

16

17 dimensions [0 2 -2 0 0 0 0];

18

19

20 internalField uniform 0;

21

22 boundaryField

23 {

24 rotor

25 {

26 type zeroGradient;

27 }

28

29 stator

30 {

31 type zeroGradient;

32 }

33

34 front

35 {

36 type zeroGradient;

37 }

38

39 back

40 {

41 type zeroGradient;

42 }

43

44 inlet

45 {

46 type zeroGradient;

47 }

48

49 outlet

50 {

51 type zeroGradient;

52 }

53 }

54

55

56 // ************************************************************************* //

Listing N.7: Initial and boundary conditions of the turbulent viscosity for the rotor-stator
cavity simulation

1 /* --------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v1906 |

5 | \\ / A nd | Web: www.OpenFOAM.com |

6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volScalarField;

13 object nut;

14 }

15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

16 #include "../ Parameters" // Include the parameters

17

18 dimensions [0 2 -1 0 0 0 0];
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19

20 internalField uniform $nu;
21

22 boundaryField

23 {

24 rotor

25 {

26 type fixedValue;

27 value uniform 0;

28 }

29

30 stator

31 {

32 type fixedValue;

33 value uniform 0;

34 }

35

36 front

37 {

38 type fixedValue;

39 value uniform 0;

40 }

41

42 back

43 {

44 type fixedValue;

45 value uniform 0;

46 }

47

48 inlet

49 {

50 type calculated;

51 value uniform 0;

52 }

53

54 outlet

55 {

56 type calculated;

57 value uniform 0;

58 }

59 }

60

61

62 // ************************************************************************* //

N.2 rs-SDR simulation

Listing N.8: Allrun file of rs-SDR simulation

1 #!/bin/sh

2 cd ${0%/*} || exit 1 # Run from this directory

3 . $WM_PROJECT_DIR/bin/tools/RunFunctions # Source tutorial run functions

4

5 ################### The steps to run the simulation ###################

6

7 runApplication blockMesh # Creating the mesh

8

9 runApplication surfaceFeatures # Extract edges from trisurface

10

11 runApplication snappyHexMesh -overwrite

12

13 runApplication topoSet # Define additional faces

14

15 runApplication createPatch -overwrite # Make additional patches

16

17 runApplication checkMesh #Check the mesh

18

19 runApplication decomposePar -force # Divide the workload over the cores

20

21 runApplication mpirun -np 256 pimpleFoam -parallel # Run the simulation in

parallel with 256 cores with pisoFoam
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22

23 runApplication reconstructPar -latestTime # Reconstruct the decomposed folders

24

25 #--------------------------------------------------------------------

Listing N.9: blockMeshDict file specifying the geometry of the rs-SDR simulation

1 /* --------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: 2.2.1 |

5 | \\ / A nd | Web: www.OpenFOAM.org |

6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object blockMeshDict;

14 }

15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

16 #include "../ Parameters"

17 #include "../ Calculations"

18

19 convertToMeters 1; //This gives you the scale: 0.001 would mean all units in this

file are [mm]

20

21 Rd_ #calc "$Rd * -1.0";

22

23 vertices //list of vertices defining the geometry

24 (

25 ($R2 $R1 0) //This is point 0. Not 1!

26 ($R3 $R2 0) //This is point 1

27 ($R4 $R3 0) // point 2

28 ($R1 $R4 0) // point 3

29 ($R2 $R1 $h) //point 4

30 ($R3 $R2 $h) //point 5

31 ($R4 $R3 $h) //point 6

32 ($R1 $R4 $h) //point 7

33 (0 0 0) // point 8

34 (0 0 $h) //point 9

35 );

36

37 blocks // defining the block which the geometry is made out of

38 (

39

40 hex (0 1 8 8 4 5 9 9) ($Ntheta_ $Nr $Nz) simpleGrading (1 ((1 10 10) (60 60 1)(6

3 1)) ((1 5 20)(1 5 0.1)(8 60 1)(1 5 10)(1 5 0.05)))

41 hex (1 2 8 8 5 6 9 9) ($Ntheta_ $Nr $Nz) simpleGrading (1 ((1 10 10) (60 60 1)(6

3 1)) ((1 5 20)(1 5 0.1)(8 60 1)(1 5 10)(1 5 0.05)))

42 hex (2 3 8 8 6 7 9 9) ($Ntheta_ $Nr $Nz) simpleGrading (1 ((1 10 10) (60 60 1)(6

3 1)) ((1 5 20)(1 5 0.1)(8 60 1)(1 5 10)(1 5 0.05)))

43 hex (3 0 8 8 7 4 9 9) ($Ntheta_ $Nr $Nz) simpleGrading (1 ((1 10 10) (60 60 1)(6

3 1)) ((1 5 20)(1 5 0.1)(8 60 1)(1 5 10)(1 5 0.05)))

44

45 );

46

47 edges

48 (

49 arc 0 1 (0 $Rd_ 0)

50 arc 4 5 (0 $Rd_ $h)
51 arc 1 2 ($Rd 0 0)

52 arc 5 6 ($Rd 0 $h)
53 arc 2 3 (0 $Rd 0)

54 arc 6 7 (0 $Rd $h)
55 arc 3 0 ($Rd_ 0 0)

56 arc 7 4 ($Rd_ 0 $h)
57 );

58

59 boundary

60 (

61 walls // choose a name for the boundary
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62 {

63 type wall; // define the type of the boundary

64 faces

65 (

66 (0 4 5 1)

67 (2 6 7 3)

68 (2 1 5 6)

69 (3 7 4 0)

70 );

71 }

72

73

74 top

75 {

76 type patch;

77 faces

78 (

79 (5 9 9 4)

80 (6 9 9 5)

81 (7 9 9 6)

82 (4 9 9 7)

83 );

84 }

85

86

87 bottom

88 {

89 type patch;

90 faces

91 (

92 (0 8 8 1)

93 (1 8 8 2)

94 (2 8 8 3)

95 (3 8 8 0)

96 );

97 }

98 );

99

100

101 // ************************************************************************* //

Listing N.10: fvSolution file specifying the solvers of the rs-SDR simulation

1 /* --------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: 5 |

5 | \\ / A nd | Web: www.OpenFOAM.org |

6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "system";

14 object fvSolution;

15 }

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

17

18 solvers

19 {

20 p

21 {

22 solver GAMG;

23 tolerance 1e-06;

24 relTol 0.05;

25 smoother GaussSeidel;

26 preconditioner FDIC;

27 cacheAgglomeration yes;

28 nPreSweeps 2;

29 nPostSweeps 2;

30 }
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31

32 pFinal

33 {

34 $p;
35 relTol 0;

36 }

37

38 "(U|nut|nuTilda|Phi)"

39 {

40 solver smoothSolver;

41 smoother GaussSeidel;

42 tolerance 1e-05;

43 relTol 0.1;

44 }

45

46 UFinal

47 {

48 $U;
49 relTol 0;

50 }

51 }

52

53 PIMPLE

54 {

55 nCorrectors 1;

56 nNonOrthogonalCorrector 0;

57 pRefCell 0;

58 pRefValue 0;

59 nOuterCorrectors 5;

60 turbOnFinalIterOnly no;

61

62 residualControl

63 {

64 U 1e-05;

65 p 5e-04;

66 }

67 }

68

69 cache

70 {

71 grad(U);

72 }

73

74

75

76 // ************************************************************************* //

Listing N.11: fvSchemes file specifying the schemes of the rs-SDR simulation

1 /* --------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v1806 |

5 | \\ / A nd | Web: www.OpenFOAM.com |

6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "system";

14 object fvSchemes;

15 }

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

17

18 ddtSchemes

19 {

20 default CrankNicolson 0.9;

21 }

22

23 gradSchemes

24 {
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25 default Gauss cubic;

26 grad(p) Gauss cubic;

27 grad(U) Gauss cubic;

28 grad(Phi) Gauss cubic;

29 grad(nut) Gauss cubic;

30 }

31

32 divSchemes

33 {

34 default Gauss cubic;

35 div(phi ,U) Gauss cubic;

36 div(div(phi ,U)) Gauss cubic;

37 div(phi ,nut) Gauss cubic;

38 div(yPhi ,yWall) Gauss cubic;

39 div((nuEff*dev2(T(grad(U))))) Gauss cubic;

40 }

41

42 laplacianSchemes

43 {

44 default Gauss cubic corrected;

45 laplacian(1,Phi) Gauss cubic corrected;

46 laplacian(yWall) Gauss cubic corrected;

47 }

48

49 interpolationSchemes

50 {

51 default cubic;

52 }

53

54 snGradSchemes

55 {

56 default cubic corrected;

57 }

58

59

60 // ************************************************************************* //

Listing N.12: snappyHexMeshDict file specifying the construction of the mesh of the rs-
SDR simulation

1 /* --------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: 2.2.1 |

5 | \\ / A nd | Web: www.OpenFOAM.org |

6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object autoHexMeshDict;

14 }

15

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

17 #include "../ Parameters" // Include the parameters

18 #include "../ Calculations" // Include the calculations for the constants

19

20 z1 #calc "$h - 0.0005";

21 r1 #calc "$Ri + 0.002";

22

23 // Which of the steps to run

24 castellatedMesh true;

25 snap false;

26 addLayers false;

27

28

29 // Geometry. Definition of all surfaces. All surfaces are of class

30 // searchableSurface.

31 // Surfaces are used

32 // - to specify refinement for any mesh cell intersecting it

33 // - to specify refinement for any mesh cell inside/outside/near
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34 // - to ’snap’ the mesh boundary to the surface

35 geometry

36 {

37 discShaft_2mm.stl

38 {

39 type triSurfaceMesh;

40 name discShaft_2mm;

41 }

42

43 // Regions for additional refinement

44 outletRefinement

45 {

46 type searchableCylinder;

47 point1 (0 0 $h);
48 point2 (0 0 $z1);
49 radius $Ro;
50 }

51

52 };

53

54

55

56 // Settings for the castellatedMesh generation.

57 castellatedMeshControls

58 {

59

60 // Refinement parameters

61 // ~~~~~~~~~~~~~~~~~~~~~

62

63 // If local number of cells is >= maxLocalCells on any processor

64 // switches from from refinement followed by balancing

65 // (current method) to (weighted) balancing before refinement.

66 maxLocalCells 10000000;

67

68 // Overall cell limit (approximately). Refinement will stop immediately

69 // upon reaching this number so a refinement level might not complete.

70 // Note that this is the number of cells before removing the part which

71 // is not ’visible ’ from the keepPoint. The final number of cells might

72 // actually be a lot less.

73 maxGlobalCells 100000000;

74

75 // The surface refinement loop might spend lots of iterations refining just a

76 // few cells. This setting will cause refinement to stop if <= minimumRefine

77 // are selected for refinement. Note: it will at least do one iteration

78 // (unless the number of cells to refine is 0)

79 minRefinementCells 2;

80

81 // Number of buffer layers between different levels.

82 // 1 means normal 2:1 refinement restriction , larger means slower

83 // refinement.

84 nCellsBetweenLevels 1;

85

86

87

88 // Explicit feature edge refinement

89 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

90

91 // Specifies a level for any cell intersected by its edges.

92 // This is a featureEdgeMesh , read from constant/triSurface for now.

93 features

94 (

95 {

96 file "discShaft_2mm.eMesh";

97 level 0;

98 }

99 );

100

101

102

103 // Surface based refinement

104 // ~~~~~~~~~~~~~~~~~~~~~~~~

105

106 // Specifies two levels for every surface. The first is the minimum level ,
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107 // every cell intersecting a surface gets refined up to the minimum level.

108 // The second level is the maximum level. Cells that ’see’ multiple

109 // intersections where the intersections make an

110 // angle > resolveFeatureAngle get refined up to the maximum level.

111

112 refinementSurfaces

113 {

114 discShaft_2mm

115 {

116 // Surface -wise min and max refinement level

117 level (0 0);

118 }

119 }

120

121 resolveFeatureAngle 20;

122

123

124 // Region -wise refinement

125 // ~~~~~~~~~~~~~~~~~~~~~~

126

127 // Specifies refinement level for cells in relation to a surface. One of

128 // three modes

129 // - distance. ’levels ’ specifies per distance to the surface the

130 // wanted refinement level. The distances need to be specified in

131 // descending order.

132 // - inside. ’levels ’ is only one entry and only the level is used. All

133 // cells inside the surface get refined up to the level. The surface

134 // needs to be closed for this to be possible.

135 // - outside. Same but cells outside.

136

137 refinementRegions

138 {

139 outletRefinement

140 {

141 mode inside;

142 levels ((0 0));

143 }

144 }

145

146

147 // Mesh selection

148 // ~~~~~~~~~~~~~~

149

150 // After refinement patches get added for all refinementSurfaces and

151 // all cells intersecting the surfaces get put into these patches. The

152 // section reachable from the locationInMesh is kept.

153 // NOTE: This point should never be on a face , always inside a cell , even

154 // after refinement.

155 // This is an outside point locationInMesh ( -0.033 -0.033 0.0033);

156 locationInMesh (0 0.0665 0.005); // Inside point

157

158 // Whether any faceZones (as specified in the refinementSurfaces)

159 // are only on the boundary of corresponding cellZones or also allow

160 // free -standing zone faces. Not used if there are no faceZones.

161 allowFreeStandingZoneFaces true;

162 }

163

164

165

166 // Settings for the snapping.

167 snapControls

168 {

169 //- Number of patch smoothing iterations before finding correspondence

170 // to surface

171 nSmoothPatch 4;

172

173 //- Relative distance for points to be attracted by surface feature point

174 // or edge. True distance is this factor times local

175 // maximum edge length.

176 tolerance 4;

177

178 //- Number of mesh displacement relaxation iterations.

179 nSolveIter 5;
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180

181 //- Maximum number of snapping relaxation iterations. Should stop

182 // before upon reaching a correct mesh.

183 nRelaxIter 5;

184

185 // Feature snapping

186

187 //- Number of feature edge snapping iterations.

188 // Leave out altogether to disable.

189 nFeatureSnapIter 5;

190

191 //- Detect (geometric) features by sampling the surface

192 implicitFeatureSnap true;

193

194 //- Use castellatedMeshControls :: features

195 explicitFeatureSnap false;

196

197 //- Detect features between multiple surfaces

198 // (only for explicitFeatureSnap , default = false)

199 multiRegionFeatureSnap false;

200 }

201

202

203

204 // Settings for the layer addition.

205 addLayersControls

206 {

207 // Are the thickness parameters below relative to the undistorted

208 // size of the refined cell outside layer (true) or absolute sizes (false).

209 relativeSizes true;

210

211 // Per final patch (so not geometry !) the layer information

212 layers

213 {

214 "discShaft_2mm"

215 {

216 nSurfaceLayers 0;

217 }

218 }

219

220 // Expansion factor for layer mesh

221 expansionRatio 1.5;

222

223

224 // Wanted thickness of final added cell layer. If multiple layers

225 // is the thickness of the layer furthest away from the wall.

226 // See relativeSizes parameter.

227 finalLayerThickness 0.7;

228

229 // Minimum thickness of cell layer. If for any reason layer

230 // cannot be above minThickness do not add layer.

231 // See relativeSizes parameter.

232 minThickness 0.05;

233

234 // If points get not extruded do nGrow layers of connected faces that are

235 // also not grown. This helps convergence of the layer addition process

236 // close to features.

237 nGrow 0;

238

239

240 // Advanced settings

241

242 // When not to extrude surface. 0 is flat surface , 90 is when two faces

243 // are perpendicular

244 featureAngle 30;

245

246 // Maximum number of snapping relaxation iterations. Should stop

247 // before upon reaching a correct mesh.

248 nRelaxIter 5;

249

250 // Number of smoothing iterations of surface normals

251 nSmoothSurfaceNormals 1;

252
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253 // Number of smoothing iterations of interior mesh movement direction

254 nSmoothNormals 3;

255

256 // Smooth layer thickness over surface patches

257 nSmoothThickness 2;

258

259 // Stop layer growth on highly warped cells

260 maxFaceThicknessRatio 0.5;

261

262 // Reduce layer growth where ratio thickness to medial

263 // distance is large

264 maxThicknessToMedialRatio 0.3;

265

266 // Angle used to pick up medial axis points

267 minMedianAxisAngle 90;

268

269 // Create buffer region for new layer terminations

270 nBufferCellsNoExtrude 0;

271

272

273 // Overall max number of layer addition iterations. The mesher will exit

274 // if it reaches this number of iterations; possibly with an illegal

275 // mesh.

276 nLayerIter 30;

277

278 // Max number of iterations after which relaxed meshQuality controls

279 // get used. Up to nRelaxIter it uses the settings in meshQualityControls ,

280 // after nRelaxIter it uses the values in meshQualityControls :: relaxed.

281 nRelaxedIter 10;

282 }

283

284

285

286 // Generic mesh quality settings. At any undoable phase these determine

287 // where to undo.

288 meshQualityControls

289 {

290 //- Maximum non -orthogonality allowed. Set to 180 to disable.

291 maxNonOrtho 65;

292

293 //- Max skewness allowed. Set to <0 to disable.

294 maxBoundarySkewness 20;

295 maxInternalSkewness 4;

296

297 //- Max concaveness allowed. Is angle (in degrees) below which concavity

298 // is allowed. 0 is straight face , <0 would be convex face.

299 // Set to 180 to disable.

300 maxConcave 80;

301

302 //- Minimum pyramid volume. Is absolute volume of cell pyramid.

303 // Set to a sensible fraction of the smallest cell volume expected.

304 // Set to very negative number (e.g. -1E30) to disable.

305 minVol 1e-13;

306

307 //- Minimum quality of the tet formed by the face -centre

308 // and variable base point minimum decomposition triangles and

309 // the cell centre. Set to very negative number (e.g. -1E30) to

310 // disable.

311 // <0 = inside out tet ,

312 // 0 = flat tet

313 // 1 = regular tet

314 minTetQuality -1e30;

315

316 //- Minimum face area. Set to <0 to disable.

317 minArea -1;

318

319 //- Minimum face twist. Set to <-1 to disable. dot product of face normal

320 //- and face centre triangles normal

321 minTwist 0.05;

322

323 //- minimum normalised cell determinant

324 //- 1 = hex , <= 0 = folded or flattened illegal cell

325 minDeterminant 0.001;
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326

327 //- minFaceWeight (0 -> 0.5)

328 minFaceWeight 0.05;

329

330 //- minVolRatio (0 -> 1)

331 minVolRatio 0.01;

332

333 //must be >0 for Fluent compatibility

334 minTriangleTwist -1;

335

336 //- if >0 : preserve single cells with all points on the surface if the

337 // resulting volume after snapping (by approximation) is larger than

338 // minVolCollapseRatio times old volume (i.e. not collapsed to flat cell).

339 // If <0 : delete always.

340 // minVolCollapseRatio 0.5;

341

342

343 // Advanced

344

345 //- Number of error distribution iterations

346 nSmoothScale 4;

347 //- amount to scale back displacement at error points

348 errorReduction 0.75;

349

350

351

352 // Optional : some meshing phases allow usage of relaxed rules.

353 // See e.g. addLayersControls :: nRelaxedIter.

354 relaxed

355 {

356 //- Maximum non -orthogonality allowed. Set to 180 to disable.

357 maxNonOrtho 75;

358 }

359 }

360

361

362 // Advanced

363

364 // Flags for optional output

365 // 0 : only write final meshes

366 // 1 : write intermediate meshes

367 // 2 : write volScalarField with cellLevel for postprocessing

368 // 4 : write current intersections as .obj files

369 debug 0;

370

371

372 // Merge tolerance. Is fraction of overall bounding box of initial mesh.

373 // Note: the write tolerance needs to be higher than this.

374 mergeTolerance 1E-6;

375

376

377 // ************************************************************************* //

Listing N.13: Initial and boundary conditions of the velocity for the rs-SDR simulation

1 /* --------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: 2.2.1 |

5 | \\ / A nd | Web: www.OpenFOAM.org |

6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volVectorField;

13 object U;

14 }

15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

16 #include "$FOAM_CASE/Parameters" // Include the parameters

17 #include "$FOAM_CASE/Calculations" // Include the Calculation for the

parameters
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18

19 dimensions [0 1 -1 0 0 0 0];

20

21 internalField #codeStream

22 {

23 codeInclude

24 #{

25 #include "fvCFD.H"

26 #};

27

28 codeOptions

29 #{

30 -I$(LIB_SRC)/finiteVolume/lnInclude \

31 -I$(LIB_SRC)/meshTools/lnInclude
32 #};

33

34 codeLibs

35 #{

36 -lmeshTools \

37 -lfiniteVolume

38 #};

39

40 code

41 #{

42 const IOdictionary& d = static_cast <const IOdictionary &>(dict);

43 const fvMesh& mesh = refCast <const fvMesh >(d.db());

44 vectorField v(mesh.nCells ());

45

46 forAll(v, i)

47 {

48

49 const scalar x1 = mesh.C()[i][0];

50 const scalar y1 = mesh.C()[i][1];

51 const scalar z = mesh.C()[i][2];

52 const scalar r = sqrt(pow(x1 ,2)+pow(y1 ,2));

53 float x;

54 float y;

55

56 if (x1 == 0 && y1 == 0){

57

58 x = 0.000001;

59 y = 0.000001;

60

61 }

62 else if (x1 != 0 && y1 == 0){

63

64 x = x1;

65 y = 0.000001;

66

67 }

68 else if (x1 == 0 && y1 != 0){

69

70 x = 0.000001;

71 y = y1;

72

73 }

74 else{

75

76 x = x1;

77 y = y1;

78

79 }

80

81

82 if (r <= $Rr ){

83

84 if (z <= $h2 ){

85 scalar vT = r * $uB * $w;
86 scalar vR = $phi / (2 * $pi * r * $h1);
87

88 scalar vY = (vR * (y / r )) + (vT * (x / r ));

89 scalar vX = (vR * (x / r )) - (vT * (y / r ));

90

Page 96



Code listings

91 v[i] = vector(vX,vY ,0);

92 }

93

94

95 else{

96 scalar vT = r * $uB * $w;
97 scalar vR = - $phi / (2 * $pi * r * $h2);
98

99 scalar vY = (vR * (y / r )) + (vT * (x / r ));

100 scalar vX = (vR * (x / r )) - (vT * (y / r ));

101 v[i] = vector(vX,vY ,0);

102 }

103

104 }

105 else{

106

107 // Velocity 0 at R2 and wRi at R3 linearly

108 scalar vT = $uB * (-(r - $Rr) / ($Rd - $Rr) * $w * $Rr + $w * $Rr);
109 scalar vY = vT * r / (x + pow(y,2) / x);

110 scalar vX = - y / x * vY;

111 // Initialize upward velocity

112 scalar vZ = $phi / (($pi * $Rd * $Rd) - ($pi * $Rr * $Rr));
113 v[i] = vector(vX,vY ,vZ);

114 }

115

116 }

117

118 writeEntry(os, "", v);

119

120 #};

121 };

122

123 boundaryField

124 {

125 walls

126 {

127 type noSlip;

128 }

129

130 top

131 {

132 type noSlip;

133 }

134

135 bottom

136 {

137 type noSlip;

138 }

139

140 topWall

141 {

142 type noSlip;

143 }

144

145 bottomWall

146 {

147 type noSlip;

148 }

149

150 discShaft_2mm

151 {

152 type rotatingWallVelocity;

153 origin (0 0 0);

154 axis (0 0 1);

155 omega constant $w;
156 }

157

158 inlet

159 {

160 type fixedValue;

161 value uniform (0 0 $v_in);
162 }

163
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164 outlet

165 {

166 type inletOutlet;

167 value uniform (0 0 0);

168 inletValue uniform (0 0 0);

169 }

170

171 }

172

173 // ************************************************************************* //

Listing N.14: Initial and boundary conditions of the pressure for the rs-SDR simulation

1 /* --------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: 2.2.1 |

5 | \\ / A nd | Web: www.OpenFOAM.org |

6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volScalarField;

13 object p;

14 }

15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

16 #include "$FOAM_CASE/Parameters" // Include the parameters

17 #include "$FOAM_CASE/Calculations" // Include the Calculation for the

parameters

18

19 dimensions [0 2 -2 0 0 0 0];

20

21 internalField uniform 0;

22

23 boundaryField

24 {

25 walls

26 {

27 type zeroGradient;

28 }

29

30 top

31 {

32 type zeroGradient;

33 }

34

35 bottom

36 {

37 type zeroGradient;

38 }

39

40

41 topWall

42 {

43 type zeroGradient;

44 }

45

46 bottomWall

47 {

48 type zeroGradient;

49 }

50

51 discShaft_2mm

52 {

53 type zeroGradient;

54 }

55

56 inlet

57 {

58 type zeroGradient;

59 }
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60

61

62 outlet

63 {

64 type fixedValue;

65 value uniform 0;

66 }

67

68 }

69

70 // ************************************************************************* //

Listing N.15: Initial and boundary conditions of the turbulent viscosity for the rs-SDR
simulation

1 /* --------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: 2.2.1 |

5 | \\ / A nd | Web: www.OpenFOAM.org |

6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volScalarField;

13 object U;

14 }

15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

16 #include "$FOAM_CASE/Parameters" // Include the parameters

17 #include "$FOAM_CASE/Calculations" // Include the Calculation for the

parameters

18

19 dimensions [0 2 -1 0 0 0 0];

20

21 internalField uniform $nu;
22

23 boundaryField

24 {

25 walls

26 {

27 type nutUSpaldingWallFunction;

28 value uniform 0;

29 }

30

31 top

32 {

33 type nutUSpaldingWallFunction;

34 value uniform 0;

35 }

36

37 bottom

38 {

39 type nutUSpaldingWallFunction;

40 value uniform 0;

41 }

42

43

44 topWall

45 {

46 type nutUSpaldingWallFunction;

47 value uniform 0;

48 }

49

50 bottomWall

51 {

52 type nutUSpaldingWallFunction;

53 value uniform 0;

54 }

55

56 discShaft_2mm

57 {
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58 type nutUSpaldingWallFunction;

59 value uniform 0;

60 }

61

62 inlet

63 {

64 type calculated;

65 value uniform 0;

66 }

67

68 outlet

69 {

70 type calculated;

71 value uniform 0;

72 }

73

74 }

75

76 // ************************************************************************* //

N.3 Turbulent Couette flow

Listing N.16: Allrun file of turbulent Couette simulation

1 #!/bin/sh

2 cd ${0%/*} || exit 1 # Run from this directory

3 . $WM_PROJECT_DIR/bin/tools/RunFunctions # Source tutorial run functions

4

5 ####################### The steps to run the simulation #######################

6

7 runApplication blockMesh # Creating the mesh

8

9 runApplication checkMesh # Checking the mesh

10

11 runApplication decomposePar -force # Divide the workload over the cores

12

13 runApplication mpirun -np 6 pisoFoam -parallel # Run the simulation in parallel

14

15 runApplication reconstructPar -latestTime # Reconstruct the decomposed folders

16

17 #----------------------------------------------------------------------------

Listing N.17: blockMeshDict file specifying the geometry of the turbulent Couette simu-
lation

1 /* --------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v1806 |

5 | \\ / A nd | Web: www.OpenFOAM.com |

6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object blockMeshDict;

14 }

15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

16 #include "../ Parameters"

17 #include "../ Calculations"

18

19 scale 1;

20

21 vertices

22 (

23 (0 0 0)

24 ($l 0 0)

25 ($l $h 0)
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26 (0 $h 0)

27 (0 0 $w)
28 ($l 0 $w)
29 ($l $h $w)
30 (0 $h $w)
31 );

32

33 blocks(

34

35 hex (0 1 2 3 4 5 6 7) ($Nx $Ny $Nz) simpleGrading (1 1 1)

36 );

37

38 edges

39 (

40 );

41

42

43 boundary

44 (

45 // Define the boundaries of the 1 block system (easiest way to understand is by

drawing the system)

46 top

47 {

48 type wall;

49 faces

50 (

51 (3 7 6 2)

52 );

53 }

54

55 bottom

56 {

57 type wall;

58 faces

59 (

60 (0 4 5 1)

61 );

62 }

63

64 inlet

65 {

66 type cyclic;

67 neighbourPatch outlet;

68 faces

69 (

70 (0 3 7 4)

71 );

72 }

73 outlet

74 {

75 type cyclic;

76 neighbourPatch inlet;

77 faces

78 (

79 (1 2 6 5)

80 );

81 }

82

83

84 front

85 {

86 type cyclic;

87 neighbourPatch back;

88 faces

89 (

90 (0 3 2 1)

91 );

92 }

93

94 back

95 {

96 type cyclic;

97 neighbourPatch front;
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98 faces

99 (

100 (4 7 6 5)

101 );

102 }

103 );

104

105 // ************************************************************************* //

Listing N.18: fvSolution file specifying the solvers of the turbulent Couette simulation

1 /* --------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v1806 |

5 | \\ / A nd | Web: www.OpenFOAM.com |

6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "system";

14 object fvSolution;

15 }

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

17

18 solvers

19 {

20 p

21 {

22 solver GAMG;

23 smoother GaussSeidel;

24 preconditioner DIC;

25 tolerance 1e-06;

26 relTol 0.05;

27 cacheAgglomeration yes;

28 nPreSweeps 2;

29 nPostSweeps 2;

30 }

31

32 pFinal

33 {

34 $p;
35 relTol 0;

36 }

37

38 "(U|nut|nuTilda)"

39 {

40 solver smoothSolver;

41 smoother GaussSeidel;

42 tolerance 1e-05;

43 relTol 0;

44 }

45 }

46

47 PISO

48 {

49 nCorrectors 2;

50 nNonOrthogonalCorrectors 0;

51 pRefCell 0;

52 pRefValue 0;

53 }

54

55

56 // ************************************************************************* //

Listing N.19: fvSchemes file specifying the schemes of the turbulent Couette simulation

1 /* --------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
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4 | \\ / O peration | Version: v1806 |

5 | \\ / A nd | Web: www.OpenFOAM.com |

6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "system";

14 object fvSchemes;

15 }

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

17

18 ddtSchemes

19 {

20 default CrankNicolson 0.9;

21 }

22

23 gradSchemes

24 {

25 default Gauss cubic;

26 grad(p) Gauss cubic;

27 grad(U) Gauss cubic;

28 grad(nut) Gauss cubic;

29

30 }

31

32 divSchemes

33 {

34 default Gauss linear;

35 div(phi ,U) Gauss linear;

36 div(phi ,nut) Gauss linear;

37 div(yPhi ,yWall) Gauss linear;

38 div((nuEff*dev2(T(grad(U))))) Gauss linear;

39 }

40

41 laplacianSchemes

42 {

43 default Gauss linear corrected;

44 laplacian(yWall) Gauss linear orthogonal;

45 }

46

47 interpolationSchemes

48 {

49 default linear;

50 }

51

52 snGradSchemes

53 {

54 default orthogonal;

55 }

56

57 wallDist

58 {

59 method meshWave;

60 }

61

62

63 // ************************************************************************* //

Listing N.20: Initial and boundary conditions of the velocity for the turbulent Couette
simulation

1 /* --------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v1906 |

5 | \\ / A nd | Web: www.OpenFOAM.com |

6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

Page 103



Code listings

10 version 2.0;

11 format ascii;

12 class volVectorField;

13 object U;

14 }

15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

16 #include "../ Parameters" // Include the parameters

17 #include "../ Calculations" // Include the Calculation for the parameters

18

19 dimensions [0 1 -1 0 0 0 0];

20

21

22 internalField #codeStream

23 {

24 codeInclude

25 #{

26 #include "fvCFD.H"

27 #};

28

29 codeOptions

30 #{

31 -I$(LIB_SRC)/finiteVolume/lnInclude \

32 -I$(LIB_SRC)/meshTools/lnInclude
33 #};

34

35 codeLibs

36 #{

37 -lmeshTools \

38 -lfiniteVolume

39 #};

40

41 code

42 #{

43 const IOdictionary& d = static_cast <const IOdictionary &>(dict);

44 const fvMesh& mesh = refCast <const fvMesh >(d.db());

45

46 vectorField v(mesh.nCells ());

47

48 forAll(v, i)

49 {

50 const scalar y = mesh.C()[i][1];

51

52 scalar vX = y/$h*$v; // In the case of stationary bottom wall

53

54 // Add turbulent perturbations

55

56 scalar v_x_rand = ( rand() * 1e-9 ) - 1.2;

57 scalar v_y_rand = ( rand() * 1e-9 ) - 1.2;

58 scalar v_z_rand = ( rand() * 1e-9 ) - 1.2;

59

60

61 scalar vX_perturb = vX + v_x_rand;

62 v[i] = vector(vX_perturb ,v_y_rand ,v_z_rand);

63

64 }

65

66 writeEntry(os, "", v);

67

68 #};

69 };

70

71 boundaryField

72 {

73 top

74 {

75 type fixedValue;

76 value uniform ($v 0 0);

77 }

78

79 bottom

80 {

81 type fixedValue;

82 value uniform (0 0 0);
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83 }

84

85 inlet

86 {

87 type cyclic;

88 }

89

90 outlet

91 {

92 type cyclic;

93 }

94

95 front

96 {

97 type cyclic;

98 }

99

100 back

101 {

102 type cyclic;

103 }

104 }

105

106 // ************************************************************************* //

Listing N.21: Initial and boundary conditions of the pressure for the turbulent Couette
simulation

1 /* --------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v1906 |

5 | \\ / A nd | Web: www.OpenFOAM.com |

6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volScalarField;

13 object p;

14 }

15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

16

17 dimensions [0 2 -2 0 0 0 0];

18

19

20 internalField uniform 0;

21

22 boundaryField

23 {

24 top

25 {

26 type zeroGradient;

27

28 }

29

30 bottom

31 {

32 type zeroGradient;

33 }

34

35 inlet

36 {

37 type cyclic;

38 }

39

40 outlet

41 {

42 type cyclic;

43 }

44

45 front

Page 105



Code listings

46 {

47 type cyclic;

48 }

49

50 back

51 {

52 type cyclic;

53 }

54 }

55

56 // ************************************************************************* //

Listing N.22: Initial and boundary conditions of the turbulent viscosity for the turbulent
Couette simulation

1 /* --------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v1906 |

5 | \\ / A nd | Web: www.OpenFOAM.com |

6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volScalarField;

13 object nut;

14 }

15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

16 #include "../ Parameters" // Include the parameters

17

18 dimensions [0 2 -1 0 0 0 0];

19

20 internalField uniform $nu;
21

22 boundaryField

23 {

24 top

25 {

26 type nutUSpaldingWallFunction;

27 value uniform 0;

28 }

29

30 bottom

31 {

32 type nutUSpaldingWallFunction;

33 value uniform 0;

34 }

35

36 inlet

37 {

38 type cyclic;

39 }

40

41 outlet

42 {

43 type cyclic;

44 }

45

46

47 front

48 {

49 type cyclic;

50 }

51

52 back

53 {

54 type cyclic;

55 }

56 }

57

58 // ************************************************************************* //
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N.4 Bacterial-resolved flow

Listing N.23: Allrun file of the bacterial-resolved flow simulation

1 #!/bin/sh

2 cd ${0%/*} || exit 1 # Run from this directory

3

4 # Source tutorial run functions

5 . $WM_PROJECT_DIR/bin/tools/RunFunctions
6

7 ####################### The steps to run the simulation #######################

8

9 runApplication blockMesh # Make the mesh

10

11 # Perform gradual refining

12 for i in 1 2 3 4 5 6 7 8 9

13 do

14 runApplication -s $i \

15 topoSet -dict system/topoSetDict.${i} -time 0

16

17 runApplication -s $i \

18 refineMesh -overwrite -dict system/refineMeshDict.${i}
19 done

20

21 runApplication checkMesh # Check the mesh

22

23 # Clean the folder

24 rm -r 0/

25 cp -r 0.orig/ 0/

26

27 # Map the flowfield of a Couette flow

28

29 runApplication mapFields ../ Flowfield_21333 -consistent -sourceTime latestTime

30 runApplication funkySetFields -time 0 # Insert the bacterium

31 runApplication decomposePar -force -latestTime # Decomposing

32 runApplication mpirun -np 6 multiphaseInterFoam -parallel # Running in parallel

33 runApplication reconstructParMesh # Reconstruct the mesh

34 runApplication reconstructPar # Reconstruct the fields

35 #---------------------------------------------------------------------

Listing N.24: fvSolution file specifying the solvers of the bacterial-resolved flow simulation

1 /* --------------------------------*- C++ -*----------------------------------*\

2 ========= |

3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

4 \\ / O peration | Website: https :// openfoam.org

5 \\ / A nd | Version: 8

6 \\/ M anipulation |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "system";

14 object fvSolution;

15 }

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

17

18 solvers

19 {

20 "alpha.*"

21 {

22 nAlphaCorr 1;

23 nAlphaSubCycles 2;

24 cAlpha 1;

25 cycleAlpha yes;

26 solver smoothSolver;

27 smoother symGaussSeidel;

28 tolerance 1e-8;

29 relTol 0;

30 }
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31

32 "pcorr"

33 {

34 solver PCG;

35 preconditioner DIC;

36 tolerance 1e-10;

37 relTol 0;

38 }

39

40 pcorrFinal

41 {

42 $pcorr;
43 relTol 0;

44 }

45

46 p_rgh

47 {

48 solver GAMG;

49 smoother DIC;

50 tolerance 1e-8;

51 relTol 0;

52 }

53

54 p_rghFinal

55 {

56 $p_rgh;
57 relTol 0;

58 }

59

60 U

61 {

62 solver smoothSolver;

63 smoother symGaussSeidel;

64 tolerance 1e-5;

65 relTol 0;

66 minIter 1;

67 }

68

69 UFinal

70 {

71 $U;
72 relTol 0;

73 }

74

75 "e.*"

76 {

77 solver smoothSolver;

78 smoother symGaussSeidel;

79 tolerance 1e-8;

80 relTol 0;

81 minIter 1;

82 }

83

84 "(k|epsilon|Theta).*"

85 {

86 solver smoothSolver;

87 smoother symGaussSeidel;

88 tolerance 1e-7;

89 relTol 0;

90 minIter 1;

91 }

92 }

93

94 PIMPLE

95 {

96 momentumPredictor yes;

97 nOuterCorrectors 1;

98 nCorrectors 2;

99 nNonOrthogonalCorrectors 4;

100 pRefCell 0;

101 pRefValue 0;

102 turbOnFinalIterOnly no;

103 }
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104

105 relaxationFactors

106 {

107 fields

108 {

109 p 0.3;

110 p_corr 0.3;

111 }

112

113 equations

114 {

115 U 0.6;

116 }

117 }

118

119

120 // ************************************************************************* //

Listing N.25: fvSchemes file specifying the schemes of the bacterial-resolved flow simula-
tion

1 /* --------------------------------*- C++ -*----------------------------------*\

2 ========= |

3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

4 \\ / O peration | Website: https :// openfoam.org

5 \\ / A nd | Version: 8

6 \\/ M anipulation |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "system";

14 object fvSchemes;

15 }

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

17

18 ddtSchemes

19 {

20 default CrankNicolson 1;

21 }

22

23 gradSchemes

24 {

25 default Gauss linear;

26 }

27

28 divSchemes

29 {

30 default Gauss linear;

31 div(rhoPhi ,U) Gauss linearUpwind grad(U);

32 div(rho*phi ,U) Gauss limitedLinearV 1;

33 div(phi ,alpha) Gauss MPLICU;

34 div(phirb ,alpha) Gauss linear;

35 div (((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;

36 }

37

38 laplacianSchemes

39 {

40 default Gauss linear corrected;

41 }

42

43 interpolationSchemes

44 {

45 default linear;

46 }

47

48 snGradSchemes

49 {

50 default corrected;

51 }

52
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53

54 // ************************************************************************* //

Listing N.26: dynamicMeshDict file specifying the moving mesh of the bacterial-resolved
flow simulation

1 /* --------------------------------*- C++ -*----------------------------------*\

2 ========= |

3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

4 \\ / O peration | Website: https :// openfoam.org

5 \\ / A nd | Version: 8

6 \\/ M anipulation |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "constant";

14 object dynamicMeshDict;

15 }

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

17

18 #include "../ Parameters"

19 #include "../ Calculations"

20

21 dynamicFvMesh dynamicMotionSolverFvMesh;

22

23 motionSolverLibs ("libfvMotionSolvers.so");

24

25 motionSolver solidBody;

26

27 cellZone none;

28

29 solidBodyMotionFunction linearMotion;

30

31 velocity ($v_mesh 0.0 0.0);

32

33

34 // ************************************************************************* //

Listing N.27: funkySetFieldsDict file specifying the initialisation of the bacterium in the
bacterial-resolved flow simulation

1 /* --------------------------------*- C++ -*----------------------------------*\

2 ========= |

3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

4 \\ / O peration | Website: https :// openfoam.org

5 \\ / A nd | Version: 8

6 \\/ M anipulation |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "system";

14 object funkySetFieldsDict;

15 }

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

17

18 #include "../ Parameters"

19 #include "../ Calculations"

20

21 expressions

22 (

23 InitFieldAlpha

24 {

25 field alpha.bac;

26 variables

27 (

28 "h=1e-3;"
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29 "l=0.2*h;"

30 "w=1*h;"

31 "xc=0.5*l;"

32 "yc=0.5*h;"

33 "zc=0.5*w;"

34 "rbac =0.25e-6;"

35 "lbac =3.2e-6;"

36 "k=0.9;"

37 );

38 expression "1";

39 condition "(sqr(pos().x-xc)/sqr(rbac)+sqr(pos().y-(yc -0.5*k*lbac))/sqr((1-k)*

lbac)+sqr(pos().z-zc)/sqr(rbac) <1) || (sqr(pos().x-xc)/sqr(rbac)+sqr(pos().y-(

yc+0.5*k*lbac))/sqr((1-k)*lbac)+sqr(pos().z-zc)/sqr(rbac) <1) || ((pos().y > (yc

-0.5*k*lbac)) && (pos().y < (yc+0.5*k*lbac)) && (sqr(pos().x-xc)+sqr(pos().z-zc

) < sqr(rbac)))";

40 keepPatches true;

41 }

42 InitFieldAlpha2

43 {

44 field alpha.water;

45 variables

46 (

47 "h=1e-3;"

48 "l=0.2*h;"

49 "w=1*h;"

50 "xc=0.5*l;"

51 "yc=0.5*h;"

52 "zc=0.5*w;"

53 "rbac =0.25e-6;"

54 "lbac =3.2e-6;"

55 "k=0.9;"

56 );

57 expression "0";

58 condition "(sqr(pos().x-xc)/sqr(rbac)+sqr(pos().y-(yc -0.5*k*lbac))/sqr((1-k)*

lbac)+sqr(pos().z-zc)/sqr(rbac) <1) || (sqr(pos().x-xc)/sqr(rbac)+sqr(pos().y-(

yc+0.5*k*lbac))/sqr((1-k)*lbac)+sqr(pos().z-zc)/sqr(rbac) <1) || ((pos().y > (yc

-0.5*k*lbac)) && (pos().y < (yc+0.5*k*lbac)) && (sqr(pos().x-xc)+sqr(pos().z-zc

) < sqr(rbac)))";

59 keepPatches true;

60 }

61

62

63 // Filter the turbulent fluctuation near bacterium in initialization

64 VelOverall

65 {

66 field U;

67 variables

68 (

69 "Re =21333;"

70 "nu_water =1e-6;"

71 "h=1e-3;"

72 "v=Re*nu_water /(0.25*h);"

73 );

74 expression "vector ((v/h)*(pos().y) ,0,0)";

75 condition "(pos().y < 0.52 * h) && (pos().y > 0.48 * h) ";

76 keepPatches true;

77 }

78

79 );

80

81 // ************************************************************************* //

Listing N.28: phaseProperties file specifying the phases in the bacterial-resolved flow sim-
ulation

1 /* --------------------------------*- C++ -*----------------------------------*\

2 ========= |

3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

4 \\ / O peration | Website: https :// openfoam.org

5 \\ / A nd | Version: 8

6 \\/ M anipulation |

7 \*---------------------------------------------------------------------------*/

8 FoamFile
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9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "constant";

14 object phaseProperties;

15 }

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

17

18 type basicMultiphaseSystem;

19

20 phases (bac water);

21

22 bac

23 {

24 type purePhaseModel;

25 diameterModel isothermal;

26 isothermalCoeffs

27 {

28 d0 3e-6;

29 p0 1e5;

30 }

31

32 residualAlpha 1e-6;

33 }

34

35 water

36 {

37 type purePhaseModel;

38 diameterModel constant;

39 constantCoeffs

40 {

41 d 1e-4;

42 }

43

44 residualAlpha 1e-6;

45 }

46

47 blending

48 {

49 default

50 {

51 type linear;

52 // minimum volume fraction of a phase to be considered as continuous phase

53 minFullyContinuousAlpha.bac 1;

54 minPartlyContinuousAlpha.bac 0;

55 minFullyContinuousAlpha.water 1;

56 minPartlyContinuousAlpha.water 0;

57 }

58

59 drag

60 {

61 type linear;

62 minFullyContinuousAlpha.bac 0.7;

63 minPartlyContinuousAlpha.bac 0.5;

64 minFullyContinuousAlpha.water 0.7;

65 minPartlyContinuousAlpha.water 0.5;

66 }

67 }

68

69 surfaceTension

70 (

71 (bac and water)

72 {

73 type constant;

74 sigma 0.056; //[N/m]

75 }

76 );

77

78 aspectRatio

79 (

80 (bac in water)

81 {
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82 type constant;

83 E0 6.4;

84 }

85

86 (water in bac)

87 {

88 type constant;

89 E0 1.0;

90 }

91 );

92

93 drag

94 (

95 (bac in water)

96 {

97 type SchillerNaumann;

98 residualRe 1e-3;

99 swarmCorrection

100 {

101 type none;

102 }

103 }

104

105 (water in bac)

106 {

107 type SchillerNaumann;

108 residualRe 1e-3;

109 swarmCorrection

110 {

111 type none;

112 }

113 }

114

115 (bac and water)

116 {

117 type segregated;

118 m 0.5;

119 n 8;

120 swarmCorrection

121 {

122 type none;

123 }

124 }

125 );

126

127 virtualMass

128 (

129 (bac in water)

130 {

131 type constantCoefficient;

132 Cvm 0.5;

133 }

134

135 (water in bac)

136 {

137 type constantCoefficient;

138 Cvm 0.5;

139 }

140 );

141

142 heatTransfer

143 (

144 (bac in water)

145 {

146 type RanzMarshall;

147 residualAlpha 1e-4;

148 }

149

150 (water in bac)

151 {

152 type RanzMarshall;

153 residualAlpha 1e-4;

154 }
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155 );

156

157 phaseTransfer

158 ();

159

160 lift

161 ();

162

163 wallLubrication

164 ();

165

166 turbulentDispersion

167 ();

168

169 interfaceCompression

170 ();

171

172 // Minimum allowable pressure

173 pMin 10000;

174

175

176 // ************************************************************************* //

Listing N.29: transportProperties file specifying the momentum transport in the bacterial-
resolved flow simulation

1 /* --------------------------------*- C++ -*----------------------------------*\

2 ========= |

3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

4 \\ / O peration | Website: https :// openfoam.org

5 \\ / A nd | Version: 8

6 \\/ M anipulation |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "constant";

14 object transportProperties;

15 }

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

17

18 phases

19 (

20 water

21 {

22 transportModel Newtonian;

23 nu [ 0 2 -1 0 0 0 0 ] 1e-06;

24 rho [ 1 -3 0 0 0 0 0 ] 997;

25 }

26

27 bac

28 {

29 transportModel HerschelBulkley;

30 nu0 [ 0 2 -1 0 0 0 0 ] 6.55 e04;

31 tau0 [ 0 2 -2 0 0 0 0 ] 2.73 e03;

32 k [ 0 2 -1 0 0 0 0 ] 0.0909;

33 n [ 0 0 0 0 0 0 0 ] 1;

34 rho [ 1 -3 0 0 0 0 0 ] 1100;

35

36 }

37

38 );

39

40 sigmas

41 (

42 (water bac) 0.056

43 );

44

45

46 // ************************************************************************* //
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N.5 MP-PIC simulation

Listing N.30: Allrun file of the MP-PIC simulation

1 #!/bin/sh

2 cd ${0%/*} || exit 1 # Run from this directory

3

4 # Source tutorial run functions

5 . $WM_PROJECT_DIR/bin/tools/RunFunctions
6

7 rm -rf 0/

8 cp -r 0.orig/ 0/

9

10 runApplication blockMesh

11

12 runApplication surfaceFeatures # Extract edges from trisurface

13

14 runApplication snappyHexMesh -overwrite

15

16 runApplication topoSet # Define additional faces

17

18 runApplication createPatch -overwrite # Make additional patches

19

20 runApplication checkMesh #Check the mesh

21

22 mv 0/U.water 0/ UMean

23 mv 0/nut.water 0/nut

24

25 # Map the mean results of the simulation to the geometry

26 runApplication mapFields ../ rsSDR_throughflow_2mm -sourceTime latestTime

27

28 mv 0/UMean 0/U.water

29 mv 0/nut 0/nut.water

30

31 runApplication decomposePar -force

32

33 runApplication mpirun -np 256 denseParticleFoam -parallel # Run the simulation in

parallel

34

35 runApplication reconstructPar -latestTime # Reconstruct the decomposed folders

36

37 #------------------------------------------------------------------------------

Listing N.31: fvSolution file specifying the solvers of the MP-PIC simulation

1 /* --------------------------------*- C++ -*----------------------------------*\

2 ========= |

3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

4 \\ / O peration | Website: https :// openfoam.org

5 \\ / A nd | Version: 9

6 \\/ M anipulation |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 format ascii;

11 class dictionary;

12 location "system";

13 object fvSolution;

14 }

15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

16

17 solvers

18 {

19 alpha.water

20 {

21 max 1;

22 }

23

24 p

25 {

26 solver GAMG;

27 tolerance 1e-06;
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28 relTol 0.01;

29 smoother GaussSeidel;

30 }

31

32 pFinal

33 {

34 solver GAMG;

35 tolerance 1e-06;

36 relTol 0;

37 smoother GaussSeidel;

38 }

39

40 "(U|k|epsilon|omega).water"

41 {

42 solver smoothSolver;

43 smoother symGaussSeidel;

44 tolerance 1e-05;

45 relTol 0.1;

46 }

47

48 "(U|k|epsilon|omega).waterFinal"

49 {

50 solver smoothSolver;

51 smoother symGaussSeidel;

52 tolerance 1e-05;

53 relTol 0.1;

54 }

55

56 cloud:alpha

57 {

58 solver GAMG;

59 tolerance 1e-06;

60 relTol 0.1;

61 smoother GaussSeidel;

62 }

63 }

64

65 PIMPLE

66 {

67 nOuterCorrectors 1;

68 nCorrectors 2;

69 momentumPredictor yes;

70 nNonOrthogonalCorrectors 0;

71 pRefCell 0;

72 pRefValue 0;

73 }

74

75 relaxationFactors

76 {

77 }

78

79

80 // ************************************************************************* //

Listing N.32: fvSchemes file specifying the schemes of the MP-PIC simulation

1 /* --------------------------------*- C++ -*----------------------------------*\

2 ========= |

3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

4 \\ / O peration | Website: https :// openfoam.org

5 \\ / A nd | Version: 9

6 \\/ M anipulation |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 format ascii;

11 class dictionary;

12 object fvSchemes;

13 }

14 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

15

16 ddtSchemes

17 {
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18 default CrankNicolson 0.9;

19 }

20

21 gradSchemes

22 {

23 default Gauss cubic;

24 }

25

26 divSchemes

27 {

28 default none;

29 div(alphaPhi.water ,U.water) Gauss linearUpwindV unlimited;

30 div ((( alpha.water*nuEff.water)*dev2(T(grad(U.water))))) Gauss linear;

31 div(phiGByA ,cloud:alpha) Gauss linear;

32 div(alphaPhi.water ,epsilon.water) Gauss limitedLinear 1;

33 div(alphaPhi.water ,k.water) Gauss limitedLinear 1;

34 }

35

36 laplacianSchemes

37 {

38 default Gauss cubic corrected;

39 }

40

41 interpolationSchemes

42 {

43 default cubic;

44 }

45

46 snGradSchemes

47 {

48 default corrected;

49 }

50

51 // ************************************************************************* //

Listing N.33: cloudProperties file specifying the particle dynamics properties in the MP-
PIC simulation

1 /* --------------------------------*- C++ -*----------------------------------*\

2 ========= |

3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

4 \\ / O peration | Website: https :// openfoam.org

5 \\ / A nd | Version: 9

6 \\/ M anipulation |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 format ascii;

11 class dictionary;

12 location "constant";

13 object cloudProperties;

14 }

15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

16 #include "$FOAM_CASE/Parameters" // Include the parameters

17 #include "$FOAM_CASE/Calculations" // Include the Calculation for the

parameters

18

19 type MPPICCloud;

20

21 solution

22 {

23 coupled true;

24 transient yes;

25 cellValueSourceCorrection off;

26 maxCo 0.3;

27

28 interpolationSchemes

29 {

30 rho.water cell;

31 U.water cellPoint;

32 mu.water cell;

33 alpha.water cell;

34 curlUcDt cellPoint;
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35 DUcDt cellPoint;

36 }

37

38 averagingMethod dual;

39

40 integrationSchemes

41 {

42 U Euler;

43 }

44

45 sourceTerms

46 {

47 schemes

48 {

49 U semiImplicit 1;

50 }

51 }

52 }

53

54 constantProperties

55 {

56 rho0 $rho_bac;
57 }

58

59 subModels

60 {

61 particleForces

62 {

63 nonSphereDrag

64 {

65 alphac alpha.water;

66 phi 0.6546;

67 }

68

69 gravity;

70

71 virtualMass

72 {

73 Cvm 0.5;

74 U U.water;

75 }

76

77 pressureGradient

78 {

79 U U.water;

80 }

81

82 SaffmanMeiLiftForce

83 {

84 U U.water;

85 }

86 }

87

88 injectionModels

89 {

90 model1

91 {

92 type patchInjection;

93 massTotal $mass_inj;
94 SOI 0;

95 parcelBasisType mass;

96 patchName inlet;

97 duration $inj_time;
98 parcelsPerSecond 1e6;

99 U0 (0 0 $v_in);
100 flowRateProfile constant 1;

101 sizeDistribution

102 {

103 type fixedValue;

104 fixedValueDistribution

105 {

106 value $l_bac;
107 }
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108 }

109 }

110 }

111

112 dispersionModel none;

113

114 patchInteractionModel localInteraction;

115

116 localInteractionCoeffs

117 {

118 patches

119 (

120 walls

121 {

122 type rebound;

123 e 0.97;

124 mu 0.09;

125 }

126 inlet

127 {

128 type rebound;

129 e 0.97;

130 mu 0.09;

131 }

132 topWall

133 {

134 type rebound;

135 e 0.97;

136 mu 0.09;

137 }

138 bottomWall

139 {

140 type rebound;

141 e 0.97;

142 mu 0.09;

143 }

144 discShaft_2mm

145 {

146 type rebound;

147 e 0.97;

148 mu 0.09;

149 }

150 outlet

151 {

152 type escape;

153 }

154 );

155 }

156

157 heatTransferModel none;

158

159 surfaceFilmModel none;

160

161 packingModel implicit;

162

163 implicitCoeffs

164 {

165 alphaMin 1e-6;

166 rhoMin 1.0;

167 applyLimiting true;

168 applyGravity false;

169 particleStressModel

170 {

171 type HarrisCrighton;

172 alphaPacked 0.4;

173 pSolid 5.0;

174 beta 2.0;

175 eps 1.0e-2;

176 }

177 }

178

179 dampingModel none;

180
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181 isotropyModel none;

182

183 stochasticCollisionModel none;

184

185 radiation off;

186 }

187

188

189 cloudFunctions

190 {}

191

192

193 // ************************************************************************* //

N.6 RTD solver

Listing N.34: createFields file extracting the fields to be used to predict the RTD

1 Info << "Reading field T\n" << endl;

2

3 volScalarField T

4 (

5 IOobject

6 (

7 "T",

8 runTime.timeName (),

9 mesh ,

10 IOobject ::MUST_READ ,

11 IOobject :: AUTO_WRITE

12 ),

13 mesh

14 );

15

16

17 Info << "Reading field U\n" << endl;

18

19 volVectorField U

20 (

21 IOobject

22 (

23 "U",

24 runTime.timeName (),

25 mesh ,

26 IOobject ::MUST_READ ,

27 IOobject :: AUTO_WRITE

28 ),

29 mesh

30 );

31

32

33 Info << "Reading field nut\n" << endl;

34

35 volScalarField nut

36 (

37 IOobject

38 (

39 "nut",

40 runTime.timeName (),

41 mesh ,

42 IOobject ::MUST_READ ,

43 IOobject :: AUTO_WRITE

44 ),

45 mesh

46 );

47

48

49 Info << "Reading transportProperties\n" << endl;

50

51 IOdictionary transportProperties

52 (

53 IOobject
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54 (

55 "transportProperties",

56 runTime.constant (),

57 mesh ,

58 IOobject :: MUST_READ_IF_MODIFIED ,

59 IOobject :: NO_WRITE

60 )

61 );

62

63 Info << "Reading viscosity nu\n" << endl;

64

65 dimensionedScalar nu

66 (

67 transportProperties.lookup("nu")

68 );

69

70

71 Info << "Reading molecular diffusivity Dm\n" << endl;

72

73 dimensionedScalar Dm

74 (

75 transportProperties.lookup("Dm")

76 );

77

78 Info << "Reading turbulent Schmidt number ScT\n" << endl;

79

80 dimensionedScalar ScT

81 (

82 transportProperties.lookup("ScT")

83 );

84

85 volScalarField Dt

86 (

87 IOobject

88 (

89 "Dt",

90 runTime.timeName (),

91 mesh ,

92 IOobject ::NO_READ ,

93 IOobject :: NO_WRITE

94 ),

95 nut / ScT + Dm

96 );

97

98 #include "createPhi.H"

99

100 #include "createFvOptions.H"

Listing N.35: RTDFoam file specifying the scalar transport solver to be used to predict
the RTD

1 /* ---------------------------------------------------------------------------*\

2 ========= |

3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

4 \\ / O peration | Website: https :// openfoam.org

5 \\ / A nd | Copyright (C) 2011 -2018 OpenFOAM Foundation

6 \\/ M anipulation |

7 -------------------------------------------------------------------------------

8 License

9 This file is part of OpenFOAM.

10

11 OpenFOAM is free software: you can redistribute it and/or modify it

12 under the terms of the GNU General Public License as published by

13 the Free Software Foundation , either version 3 of the License , or

14 (at your option) any later version.

15

16 OpenFOAM is distributed in the hope that it will be useful , but WITHOUT

17 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

19 for more details.

20

21 You should have received a copy of the GNU General Public License

22 along with OpenFOAM. If not , see <http ://www.gnu.org/licenses/>.
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23

24 Application

25 RTDFoam

26

27 Description

28 Solves the transient transport equation for a scalar on a

29 turbulent field for RTD purposes.

30

31 \*---------------------------------------------------------------------------*/

32

33 #include "fvCFD.H"

34 #include "fvOptions.H"

35 #include "simpleControl.H"

36

37 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

38

39 int main(int argc , char *argv [])

40 {

41 #include "setRootCaseLists.H"

42 #include "createTime.H"

43 #include "createMesh.H"

44

45 simpleControl simple(mesh);

46

47 #include "createFields.H"

48

49 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

50

51 Info << "\nCalculating scalar transport\n" << endl;

52

53 #include "CourantNo.H"

54

55 while (simple.loop(runTime))

56 {

57 Info << "Time = " << runTime.timeName () << nl << endl;

58

59 while (simple.correctNonOrthogonal ())

60 {

61 fvScalarMatrix TEqn

62 (

63 fvm::ddt(T)

64 + fvm::div(phi , T)

65 - fvm:: laplacian(Dt , T)

66

67 );

68

69 TEqn.relax();

70 fvOptions.constrain(TEqn);

71 TEqn.solve();

72 fvOptions.correct(T);

73

74 }

75

76 runTime.write ();

77 }

78

79 Info << "End\n" << endl;

80

81 return 0;

82 }

83

84

85 // ************************************************************************* //

N.7 Data analysis rotor-stator cavity

Listing N.36: Data analysis script for the rotor-stator cavity simulations

1 %This file extracts the velocity data from the OpenFOAM

2 %simulation singleGraph postProcessing utility

3
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4 %%% Validation turbulence properties %%%%

5 clear; close all; clc;

6 %% Simulation constants

7 %%%% User input desired simulation %%%%

8 % See Excel file for details simulations

9 pSG = 1000; %Number of points in singleGraphs

10

11 simN = ’rsCav_7 ’; %Name simulation

12

13 % insert the latest time in string format that is in the postProcessing folder

14

15 Time = "1.000";

16

17 % Axial coordinates at which the data is plotted

18 list_ax_pos = [0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99];

19

20 %% Extract Data

21

22 for i= 11:21

23 k = i-10;

24 sGN = strcat(’graphUniform ’,num2str(i));

25

26 data_scalars = table2array(readtable(fullfile(simN ,’postProcessing ’,sGN ,Time ,’

line_scalars ’)));

27 data_scalars = unique(data_scalars ,’rows’);

28

29 data_symmtensors = table2array(readtable(fullfile(simN ,’postProcessing ’,sGN ,

Time ,’line_UPrime2Mean_R_RMean ’)));

30 data_symmtensors = unique(data_symmtensors ,’rows’);

31

32 % Make a matrix of pSG long , with at each pSG the [3x3] gradUPrimeSqrMean

tensor

33 gUP2Mean = zeros(pSG ,3,3);

34

35 for j = 1:pSG

36 gUP2Mean(j,1,:) = data_scalars(j ,9:11);

37 gUP2Mean(j,2,:) = data_scalars(j ,12:14);

38 gUP2Mean(j,3,:) = data_scalars(j ,15:17);

39 end

40

41 % Make a matrix of pSG long , with at each pSG the [3x3] gradUPrimeMean tensor

42 gUPMean = zeros(pSG ,3,3);

43

44 for j = 1:pSG

45 gUPMean(j,1,:) = data_scalars(j ,18:20);

46 gUPMean(j,2,:) = data_scalars(j ,21:23);

47 gUPMean(j,3,:) = data_scalars(j ,24:26);

48 end

49

50 % Compute the covariances and correct the averages

51 covariance_xy = cov(gUPMean (:,1,2),gUPMean (:,2,1));

52 crossProdMean_xy = covariance_xy (1,2) + gUPMean (:,1,2).* gUPMean (:,2,1);

53

54 covariance_xz = cov(gUPMean (:,1,3),gUPMean (:,3,1));

55 crossProdMean_xz = covariance_xz (1,2) + gUPMean (:,1,3).* gUPMean (:,3,1);

56

57 covariance_yz = cov(gUPMean (:,2,3),gUPMean (:,3,2));

58 crossProdMean_yz = covariance_yz (1,2) + gUPMean (:,2,3).* gUPMean (:,3,2);

59

60 % Extract the effective viscosity

61 nuEffMean = data_scalars (:,6);

62

63 % Extract the sub -grid -scale energy dissipation rate

64 eps_SGS = data_scalars (:,3);

65

66 for j = 1:pSG

67 EDR_resolved(j,1) = nuEffMean(j) * (2 * gUP2Mean(j,1,1) + gUP2Mean(j,2,1) +

gUP2Mean(j,3,1) + gUP2Mean(j,1,2) + ...

68 2 * gUP2Mean(j,2,2) + gUP2Mean(j,3,2) + gUP2Mean(j

,1,3) + gUP2Mean(j,2,3) + ...

69 2* gUP2Mean(j,3,3) + 2*( crossProdMean_xy(j) +

crossProdMean_xz(j) + ...

70 crossProdMean_yz(j)));
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71 end

72

73 % Compute the total energy dissipation rate

74 EDR_total_LES (:,k) = eps_SGS + EDR_resolved;

75 rad_pos_LES (:,k) = abs(data_scalars (:,1));

76

77 UPrime2Mean = data_symmtensors (: ,2:8);

78 k_unresolved = data_scalars (:,2);

79

80 % Compute the total turbulent kinetic energy

81 TKE(:,k) = 0.5.*( UPrime2Mean (:,1)+UPrime2Mean (:,4)+UPrime2Mean (:,6)) +

k_unresolved;

82 end

83

84 %% plotting

85

86 % plot EDR as a function of radial position for each axial position

87

88 figure (1)

89 loglog(rad_pos_LES (2:end ,:),EDR_total_LES (2:end ,:))

90 xlabel(’Radial position [m]’)

91 ylabel(’Energy dissipation rate [w/kg]’)

92 legendCell = strcat(string(num2cell(list_ax_pos)),’h’);

93 legend(legendCell)

94 title(’Radial profiles of the EDR for LES’)

95

96 % plot mean EDR as a function of axial position

97

98 for i = 1: length(list_ax_pos)

99 EDR_total_LES_RadialAvg(i) = mean(EDR_total_LES (:,i));

100 end

101

102 figure (2)

103 plot(EDR_total_LES_RadialAvg ,list_ax_pos)

104 ylabel(’z^* [-]’)

105 xlabel(’Energy dissipation rate [W/kg]’)

106 title(’Radially averaged EDR for LES’)

107

108 % plot the mean energy dissipation rate as a function of the radial

109 % position

110 EDR_total_LES_AxialAvg = trapz(list_ax_pos ,EDR_total_LES ,2)./( list_ax_pos(end)-

list_ax_pos (1));

111 figure (3)

112 loglog(rad_pos_LES ,EDR_total_LES_AxialAvg)

113 xlabel(’Radial position [m]’)

114 ylabel(’Energy dissipation rate [w/kg]’)

115 title(’Axially averaged EDR for LES’)

116

117 % Check the increment of EDR as a function of r

118 for i = 1: length(EDR_total_LES_AxialAvg)-1

119 slope_LES(i) = (log(EDR_total_LES_AxialAvg(i+1))-log(EDR_total_LES_AxialAvg(i))

)/...

120 (log(rad_pos_LES(i+1))-log(rad_pos_LES(i)));

121 end

122

123 figure (4)

124 plot(rad_pos_LES (1:end -1,1),movmean(slope_LES ,100))

125 xlabel(’Radial position [m]’)

126 ylabel(’Slope [-]’)

127 title(’Slope in loglog plot for LES’)

128 mean_slope_LES = mean(slope_LES)

129

130 %% Different Axial profile: Extract Data

131

132 sGN = ’graphUniform24 ’;

133

134 data_scalars = table2array(readtable(fullfile(simN ,’postProcessing ’,sGN ,Time ,’

line_scalars ’)));

135 data_scalars = unique(data_scalars ,’rows’);

136

137 data_symmtensors = table2array(readtable(fullfile(simN ,’postProcessing ’,sGN ,

Time ,’line_UPrime2Mean_R_RMean ’)));

138 data_symmtensors = unique(data_symmtensors ,’rows’);
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139

140 % Make a matrix of pSG long , with at each pSG the [3x3] gradUPrimeSqrMean

tensor

141 gUP2Mean = zeros(pSG ,3,3);

142

143 for j = 1:pSG

144 gUP2Mean(j,1,:) = data_scalars(j ,9:11);

145 gUP2Mean(j,2,:) = data_scalars(j ,12:14);

146 gUP2Mean(j,3,:) = data_scalars(j ,15:17);

147 end

148

149 % Make a matrix of pSG long , with at each pSG the [3x3] gradUPrimeMean tensor

150 gUPMean = zeros(pSG ,3,3);

151

152 for j = 1:pSG

153 gUPMean(j,1,:) = data_scalars(j ,18:20);

154 gUPMean(j,2,:) = data_scalars(j ,21:23);

155 gUPMean(j,3,:) = data_scalars(j ,24:26);

156 end

157

158 % Compute the covariances and correct the averages

159 covariance_xy = cov(gUPMean (:,1,2),gUPMean (:,2,1));

160 crossProdMean_xy = covariance_xy (1,2) + gUPMean (:,1,2).* gUPMean (:,2,1);

161

162 covariance_xz = cov(gUPMean (:,1,3),gUPMean (:,3,1));

163 crossProdMean_xz = covariance_xz (1,2) + gUPMean (:,1,3).* gUPMean (:,3,1);

164

165 covariance_yz = cov(gUPMean (:,2,3),gUPMean (:,3,2));

166 crossProdMean_yz = covariance_yz (1,2) + gUPMean (:,2,3).* gUPMean (:,3,2);

167

168 % Extract the effective viscosity

169 nuEffMean = data_scalars (:,6);

170

171 % Extract the sub -grid -scale energy dissipation rate

172 eps_SGS = data_scalars (:,3);

173

174 for j = 1:pSG

175 EDR_resolved(j,1) = nuEffMean(j) * (2 * gUP2Mean(j,1,1) + gUP2Mean(j,2,1) +

gUP2Mean(j,3,1) + gUP2Mean(j,1,2) + ...

176 2 * gUP2Mean(j,2,2) + gUP2Mean(j,3,2) + gUP2Mean(j

,1,3) + gUP2Mean(j,2,3) + ...

177 2* gUP2Mean(j,3,3) + 2*( crossProdMean_xy(j) +

crossProdMean_xz(j) + ...

178 crossProdMean_yz(j)));

179 end

180

181 axial_pos_graphUniform24 (:) = abs(data_scalars (:,1));

182

183 UPrime2Mean = data_symmtensors (: ,2:8);

184 k_unresolved = data_scalars (:,2);

185

186 % Compute the total turbulent kinetic energy

187 TKE_graphUniform24 = 0.5.*( UPrime2Mean (:,1)+UPrime2Mean (:,4)+UPrime2Mean (:,6))

+ k_unresolved;

188 % Compute the total energy dissipation rate

189 EDR_total_graphUniform24 = eps_SGS + EDR_resolved;

190

191 %% plotting

192 figure (5)

193 semilogx(EDR_total_graphUniform24 ,axial_pos_graphUniform24 ./0.009)

194 ylabel(’z^* [-]’)

195 xlabel(’Energy dissipation rate [W/kg]’)

196 title(’EDR for LES’)

197

198 figure (6)

199 plot(TKE_graphUniform24 ,axial_pos_graphUniform24 ./0.009)

200 ylabel(’z^* [-]’)

201 xlabel(’Turbulent kinetic energy [m^2 s^{-2}]’)

202 title(’TKE for LES’)
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N.8 Data analysis RTD experiments

Listing N.37: Data analysis script for the RTD experiments

1 % This script is used to find the RTD curves of a rs -SDR

2 ... configuration based on the in- and outlet UV VIS signal

3 clear; clc; close all;

4 %% Constants

5 %Extinction coefficients methylene blue UV-VIS spectrum [m^2/mol]

6

7 extCoeff_in613 = 476.5; %664 nm peak inlet

8 extCoeff_out613 = 521.7; %664 nm peak outlet

9

10 %Path length UV -VIS cells [mm]

11 lIn = 10; %Inlet

12 lOut = 10; %Outlet

13

14 %rs -SDR configuration

15 h1 = 2e-3; %Gap distance bottom[m]

16 h2 = 2e-3; %Gap distance top [m]

17 rD = 0.066; %Radius disk [m]

18 rR = 0.067; %Radius SDR [m]

19 rI = 0.006; %Inner radius [m]

20 hD = 0.008; %Thicknes rotor [m]

21

22 G = h1/rD; %Axial clearance

23 Vr = (h1+h2+hD)*pi*rR^2-hD*pi*rD^2-...

24 h1*pi*rI^2; %Reactor volume [m3]

25

26 nu = 1e-6; %Viscosity [m^2/s^2]

27

28 % Setting on the pump

29 phi_set = 22;

30 % Volumetric flowrate pump from calibration [m3/s]

31 phi = 4.4744e-07* phi_set;

32

33 % List of runs on different RPMs

34 List_RPMs = [71; 95; 119; 143; 239; 334; 382; 429; 477; 525; 573; 621; 716; 859;

1002; 1145];

35

36 %% Start loop over all data

37 for j = 1: length(List_RPMs)

38 expN = cell2mat(strcat ({’runs ’},num2str(List_RPMs(j)) ,{’_22’}));

39

40 for k = 1:3

41 dataSetN = cell2mat(strcat(num2str(List_RPMs(j)) ,{’_22 ’},num2str(k)));

42

43 % Tested rotational rate [RPM] (user input)

44 rRate0 = List_RPMs(j);

45 w = rRate0 *2*pi/60; %[Rad/s]

46 Re = w*rD^2/nu; %Reynolds number

47

48 % Import UV-VIS data in- and outlet

49

50 dataUV_in613 = readtable(fullfile(’Experimental data’,expN ,dataSetN ,’

inlet613nm.dat’) ,...

51 ’HeaderLines ’ ,9);

52 dataUV_out613 = readtable(fullfile(’Experimental data’,expN ,dataSetN ,’

outlet613nm.dat’) ,...

53 ’HeaderLines ’ ,9);

54

55 %% Construct dataset

56 % Choose UV-VIS signal (sensitivity versus range of operation)

57 UV_in = dataUV_in613.Var3;

58 UV_out = dataUV_out613.Var3;

59

60 extCoeff_in = extCoeff_in613;

61 extCoeff_out = extCoeff_out613;

62

63 %Date time vectors [clock time]

64 tUV_in = dataUV_in613.Var1;

65 tUV_out = dataUV_out613.Var1;

Page 126



Code listings

66

67 %Time vectors [s]

68 sUV_in = dataUV_in613.Var2;

69 sUV_out = dataUV_out613.Var2;

70

71 %Dark measurement reference

72 n0_in = -4.7; %Inlet

73 n0_out = -3.41; %Outlet

74

75 %Light measurment reference

76 nRef_in = 61802.31; %Inlet

77 nRef_out = 33508.53; %Outlet

78

79 %% Clean data

80 %Set data lower than threshold to value surrounding points

81 ...to filter out disturbances caused by vibrations/air bubbles

82 Ithreshold = 0.5;

83 nShift = 10;

84 indexDis = UV_out <nRef_out*Ithreshold;

85 indexRem = false(length(indexDis) ,1);

86 indexRem(nShift +1:end) = indexDis (1:end -nShift);

87 UV_out(indexDis) = UV_out(indexRem);

88

89 %% Find injections

90 %Detect significant change from baseline inlet UV

91

92 threshold = 0.6; %Threshold fraction reference

93 ... intensity denoting injection

94 tRecord_b = 1; %Time to record before injection [s]

95 tRecord_in = 4; %Time to record after injection

96 ... input signal [s]

97 tRecord_out = 50; %Time to record output signal [s]

98 nRecord = 100; %Points to record

99

100 % Time vector [s]

101 dt = mean([ sUV_out(end)/length(sUV_out) ...

102 sUV_in(end)/length(sUV_in)]);

103 nData = ceil(( tRecord_in+tRecord_out)/dt);

104 t = 0:dt:( tRecord_in+tRecord_out);

105

106 % Find significant change from base line

107 index = UV_in/nRef_in <threshold;

108 index = [0 ; index (2:end)-index (1:end -1)];

109

110 timeInj = tUV_in(index >0); %Injection time [s]

111

112 % Ensure that only the initial injection time is selected

113 timeInj = unique(timeInj ,’rows’);

114 %timeInj = timeInj (1);

115 timeInj = timeInj(end);

116

117 %% Calculate RTD curve

118 % Loop over every injection to find RTD at certain rotational rate

119 ... and flowrate

120

121 %Start time [s]

122 timeS = timeInj -tRecord_b /3600/24;

123 %End time inlet signal [s]

124 timeE_in = timeInj+tRecord_in /3600/24;

125 %End time outlet signal [s]

126 timeE_out = timeInj +( tRecord_out+tRecord_b)...

127 /3600/24;

128

129 indexS_in = find(tUV_in ==timeS , 1,’first ’);

130 indexE_in = find(tUV_in ==timeE_in , 1,’last’);

131

132 indexS_out = find(tUV_out ==timeS , 1,’first ’);

133 indexE_out = find(tUV_out ==timeE_out , 1,’last’);

134

135 % Shift time if start time does not exist

136 tShift = 1;

137 while isempty(indexE_in) || isempty(indexE_out) || ...

138 isempty(indexS_in) || isempty(indexS_out)
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139

140 timeS = timeS -tShift /3600/24;

141 timeE_in = timeE_in -tShift /3600/24;

142 timeE_out = timeE_out -tShift /3600/24;

143

144 indexS_in = find(tUV_in ==timeS , 1,’first’);

145 indexE_in = find(tUV_in ==timeE_in , 1,’last’);

146

147 indexS_out = find(tUV_out ==timeS , 1,’first ’);

148 indexE_out = find(tUV_out ==timeE_out , 1,’last’);

149 end

150

151 %Light measurment reference (correct for change in baseline)

152 nRef_in = mean(UV_in(indexS_in -nRecord :...

153 indexS_in));

154 nRef_out = mean(UV_out(indexS_out -nRecord :...

155 indexS_out));

156

157 %Absorance

158 UVAds_in = -log10((UV_in(indexS_in:indexE_in)...

159 -n0_in)./( nRef_in -n0_in));

160 UVAds_out = -log10 (( UV_out(indexS_out:indexE_out)...

161 -n0_out)./( nRef_out -n0_out));

162

163 %Concentration [M]

164 cIn = UVAds_in/lIn/extCoeff_in *1e3;

165 cOut = UVAds_out/lOut/extCoeff_out *1e3;

166

167 %Normalized concentration

168 cIn_ = cIn/trapz(dt ,cIn);

169 cOut_ = cOut/trapz(dt,cOut);

170

171 %Expected mean residence time [s]

172 tau = Vr/phi;

173

174 %Find E curve using deconvolution in time domain

175 [tE , E] = deConv(cIn_ ,cOut_ ,0,0,dt);

176

177 %Deconvolution using fitting of engineering model

178 diff = 0.4;

179 [tE , Efit , p] = deConvFit(cIn_ ,cOut_ ,0,0,dt ,tau ,diff);

180

181 % Convolute RTD with inlet concentration

182 [tC , cOut_fit] = conv(cIn_ ,Efit*dt ,0,0,dt);

183

184 % Fit parameters (n tanks , tauPFR , tau)

185 n_tanks_fit = p(1);

186 tauPFR_fit = p(2);

187 tau_mean_fit = p(3);

188

189 %Save and set data to same base

190 cOut_ = interp1 (0:dt:( length(cOut_) -1)*dt...

191 ,cOut_ ,t);

192 cIn_ = interp1 (0:dt:( length(cIn_) -1)*dt...

193 ,cIn_ ,t);

194 E = interp1 (0:dt:( length(E) -1)*dt...

195 ,E/dt,t);

196 Efit = interp1 (0:dt:( length(Efit) -1)*dt...

197 ,Efit ,t);

198 cOut_fit = interp1 (0:dt:( length(cOut_fit) -1)*dt...

199 ,cOut_fit ,t);

200

201 %Remove NaN values

202 cOut_(isnan(cOut_)) = 0;

203 cIn_(isnan(cIn_)) = 0;

204 E(isnan(E)) = 0;

205 Efit(isnan(Efit)) = 0;

206 cOut_fit(isnan(cOut_fit)) = 0;

207

208 %Transition radius from plug flow to well mixed (dimensionless)

209 %Corrected for fitted residence time ...

210 %(air occupying part of volume/dead volume)

211
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212 rTrans = sqrt((p(2)*phi -(Vr -(h1+h2)*pi*...

213 rD^2))/(2*pi*rD^2*h1*p(3)...

214 /tau)+(rI/rD)^2);

215

216 %Expected rTransition from theory

217 cW = phi/nu/rD;

218 c = 0.219;

219 rTransM = (1/c*cW/Re ^(4/5))^(5/13);

220

221 %Determine coeffcient of determination (R^2) for fit

222 cOut_mean = mean(cOut_);

223 SStot = sum((cOut_ -cOut_mean).^2);

224 SSres = sum((cOut_ -cOut_fit).^2);

225 R2 = 1-SSres/SStot;

226

227 n_tanks_fit = p(1);

228 tauPFR_fit = p(2);

229 tau_mean_fit = p(3);

230 V_PFR_norm_fit = p(2)/p(3);

231

232 %Write to file

233 save(dataSetN ,’n_tanks_fit ’,’tauPFR_fit ’,’tau_mean_fit ’,’V_PFR_norm_fit ’,’E’,’Efit’

,’cOut_ ’,’cOut_fit ’,’cIn_’,’t’,’R2’,’rTrans ’,’rTransM ’);

234

235 end

236

237 end

238

239

240 %% (De)convolution functions

241 %Convolution

242 function [tC , cOut] = conv(cIn ,E,tS_in ,ts_E ,dt)

243 %Construct Toeplitz matrix

244 m = length(cIn);

245 n = length(E);

246 v = m+n-1;

247

248 A = zeros(v,m);

249 for i=1:m

250 A(i:n+i-1,i)= E;

251 end

252 %Perfom matrix multiplication to find outlet concentration

253 cOut = A*cIn;

254 %Time vector corresponding the outlet concentration

255 tC = (tS_in+ts_E):dt:(v-1)*dt+( tS_in+ts_E);

256 end

257

258 %Deconvolution

259 function [tE , E] = deConv(cIn ,cOut ,tS_in ,tS_out ,dt)

260 % Construct time vector

261 m = length(cIn);

262 v = length(cOut);

263 n = v-m+1;

264

265 tE = (tS_out -tS_in):dt:(dt*(n-1)+(tS_out -tS_in));

266

267 % Find E curve with optimisation

268 g = @(f) OF(f,cIn ,cOut);

269

270 E0 = ones(n,1); % Initial guess

271

272 E = lsqnonlin(g,E0 ,zeros(n,1) ,[]);

273

274 end

275

276 %Objective function

277 function error = OF(f,cIn ,cOut)

278 %Construct Toeplitz matrix

279 m = length(cIn);

280 v = length(cOut);

281 n = v-m+1;

282

283 A = zeros(v,m);
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284 for i=1:m

285 A(i:n+i-1,i)= f;

286 end

287

288 error = cOut -A*cIn;

289 end

290

291 %Deconvolution by fitting of engineering model

292 function [tE , E , p] = deConvFit(cIn ,cOut ,tS_in ,tS_out ,dt,tau ,diff)

293 %Construct time vector

294 m = length(cIn);

295 v = length(cOut);

296 n = v-m+1;

297

298 tE = (tS_out -tS_in):dt:(dt*(n-1)+(tS_out -tS_in));

299

300 % Find E curve with optimisation

301 p0 = [2 2 tau]; % Initial guess

302

303 g = @(p) OFFit(p,cIn ,cOut ,tE,dt);

304

305 p = lsqnonlin(g,p0 ,[1.001 0 (1-diff)*tau],...

306 [3 inf (1+ diff)*tau]);

307

308 E = EM(tE ,p(3),p(1),p(2));

309

310 end

311

312 %Objective function

313 function error = OFFit(p,cIn ,cOut ,tE ,dt)

314 %Construct Toeplitz matrix

315 m = length(cIn);

316 v = length(cOut);

317 n = v-m+1;

318

319 f = EM(tE ,p(3),p(1),p(2))*dt;

320

321 A = zeros(v,m);

322 for i=1:m

323 A(i:n+i-1,i)= f;

324 end

325

326 error = (cOut -A*cIn);

327 end

328

329 %Engineering model

330 function E = EM(t,tau ,n,tau_PFR)

331 tau_i = (tau -tau_PFR)/n;

332 E = heaviside(t-tau_PFR).*(t-tau_PFR)...

333 .^(n-1)/( gamma(n)*tau_i^n).*...

334 exp(-(t-tau_PFR)/tau_i);

335 end

N.9 Data analysis rs-SDR

Listing N.38: Data analysis script for the RTD prediction from rs-SDR simulations

1 clear; close all; clc;

2 %% settings model

3

4 rd = 0.066; %disc radius [m]

5 rs = 0.067; %stator radius [m]

6 rshaft = 0.006; % shaft radius [m]

7 h = 2e-3; % in 1 mm config: 1e-3 % gap height [m]

8 thickness_rotor = 8e-3; % Thickness rotor [m]

9 total_thickness = 0.012; % in 1 mm config: 0.01 [m]

10 G = 0.0303; % in 1 mm config: 1.52e-2

11 nu = 1e-6; % Kinematic viscosity water [m^2 s^-1]

12 omega = 50; % Rotational velocity [rad/s]

13 Q = 1e-5; % Injection flow rate [m^3/s]

14 Cw = 151; % Throughflow coeffiicent [-]
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15

16 V_R = (pi*rs^2* total_thickness) -(pi*rd^2* thickness_rotor)-(pi*rshaft ^2*h);

17

18 V_R_added = 5.12e-07; %% Added volume in tubing and injection zone

19 V_R = V_R + V_R_added;

20

21 t_RTD = linspace (0,25,1e4); % Time for simulation

22

23 % parameters for fitting

24 init_guess = [6 1.7 1];

25 LB = [0 0 0];

26 UB = [20 20 20];

27

28 %% 10 rad/s

29 % Results from experiments

30

31 V_PFR_per_V_R_10 = 0.215;

32 n_10 = 1.549;

33

34 % Reconstruct experimental RTD

35

36 tau_m = (V_R/Q);

37 tau_PFR_10 = V_PFR_per_V_R_10*tau_m;

38 tau_i_10 = (tau_m -tau_PFR_10)/n_10;

39

40 E_exp_10 = heaviside(t_RTD -tau_PFR_10).*(t_RTD -tau_PFR_10)...

41 .^(n_10 -1)/(gamma(n_10)*tau_i_10^n_10).*...

42 exp(-(t_RTD -tau_PFR_10)/tau_i_10);

43

44 % Analyzing the simulation data

45 Data_sim_10 = readmatrix(fullfile(’RTD_10rads ’,’surfaceFieldValue.dat’));

46

47 t_sim_10 = Data_sim_10 (:,1);

48 Avg_outlet_10 = Data_sim_10 (:,2);

49

50 RTD_sim_10 = gradient(Avg_outlet_10 ,t_sim_10);

51 RTD_sim_10 = movmean(RTD_sim_10 ,500);

52

53 % Fit the engineering model to the simulated RTD

54

55 param.Q = Q;

56 param.V_R = V_R;

57 param.RTD_sim = RTD_sim_10;

58 param.t_sim = Data_sim_10 (:,1);

59

60 results_fit_10 = lsqnonlin(@fitcrit ,init_guess ,LB,UB ,[],param);

61

62 tau_m_fit_10 = results_fit_10 (1);

63

64 n_fit_10 = results_fit_10 (2);

65 tau_PFR_fit_10 = results_fit_10 (3);

66 V_PFR_norm_10 = tau_PFR_fit_10/tau_m_fit_10;

67

68 tau_i_fit_10 = (tau_m_fit_10 -tau_PFR_fit_10)/n_fit_10;

69 E_fit_10 = heaviside(t_sim_10 -tau_PFR_fit_10).*( t_sim_10 -tau_PFR_fit_10)...

70 .^( n_fit_10 -1)/(gamma(n_fit_10)*tau_i_fit_10^n_fit_10).*...

71 exp(-(t_sim_10 -tau_PFR_fit_10)/tau_i_fit_10);

72

73 %% 25 rad/s

74 % Results from experiments

75

76 V_PFR_per_V_R_25 = 0.1733;

77 n_25 = 1.667233333;

78

79 % Reconstruct experimental RTD

80

81 tau_m = (V_R/Q);

82 tau_PFR_25 = V_PFR_per_V_R_25*tau_m;

83 tau_i_25 = (tau_m -tau_PFR_25)/n_25;

84

85 E_exp_25 = heaviside(t_RTD -tau_PFR_25).*(t_RTD -tau_PFR_25)...

86 .^(n_25 -1)/(gamma(n_25)*tau_i_25^n_25).*...

87 exp(-(t_RTD -tau_PFR_25)/tau_i_25);
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88

89 % Analyzing the simulation data

90 Data_sim_25 = readmatrix(fullfile(’RTD_25rads ’,’surfaceFieldValue.dat’));

91

92 t_sim_25 = Data_sim_25 (:,1);

93 Avg_outlet_25 = Data_sim_25 (:,2);

94

95 RTD_sim_25 = gradient(Avg_outlet_25 ,t_sim_25);

96 RTD_sim_25 = movmean(RTD_sim_25 ,500);

97

98 % Fit the engineering model to the simulated RTD

99

100 param.Q = Q;

101 param.V_R = V_R;

102 param.RTD_sim = RTD_sim_25;

103 param.t_sim = Data_sim_25 (:,1);

104

105 results_fit_25 = lsqnonlin(@fitcrit ,init_guess ,LB,UB ,[],param);

106

107 tau_m_fit_25 = results_fit_25 (1);

108

109 n_fit_25 = results_fit_25 (2);

110 tau_PFR_fit_25 = results_fit_25 (3);

111 V_PFR_norm_25 = tau_PFR_fit_25/tau_m_fit_25;

112

113 tau_i_fit_25 = (tau_m_fit_25 -tau_PFR_fit_25)/n_fit_25;

114 E_fit_25 = heaviside(t_sim_25 -tau_PFR_fit_25).*( t_sim_25 -tau_PFR_fit_25)...

115 .^( n_fit_25 -1)/(gamma(n_fit_25)*tau_i_fit_25^n_fit_25).*...

116 exp(-(t_sim_25 -tau_PFR_fit_25)/tau_i_fit_25);

117

118 %% 50 rad/s

119 % Results from experiments

120

121 V_PFR_per_V_R_50 = 0.1222;

122 n_50 = 1.778;

123

124 % Reconstruct experimental RTD

125

126 tau_m = (V_R/Q);

127 tau_PFR_50 = V_PFR_per_V_R_50*tau_m;

128 tau_i_50 = (tau_m -tau_PFR_50)/n_50;

129

130 E_exp_50 = heaviside(t_RTD -tau_PFR_50).*(t_RTD -tau_PFR_50)...

131 .^(n_50 -1)/(gamma(n_50)*tau_i_50^n_50).*...

132 exp(-(t_RTD -tau_PFR_50)/tau_i_50);

133

134 % Analyzing the simulation data

135 Data_sim_50 = readmatrix(fullfile(’RTD_50rads ’,’surfaceFieldValue.dat’));

136

137 t_sim_50 = Data_sim_50 (:,1);

138 Avg_outlet_50 = Data_sim_50 (:,2);

139

140 RTD_sim_50 = gradient(Avg_outlet_50 ,t_sim_50);

141 RTD_sim_50 = movmean(RTD_sim_50 ,500);

142

143 % Fit the engineering model to the simulated RTD

144

145 param.Q = Q;

146 param.V_R = V_R;

147 param.RTD_sim = RTD_sim_50;

148 param.t_sim = Data_sim_50 (:,1);

149

150 results_fit_50 = lsqnonlin(@fitcrit ,init_guess ,LB,UB ,[],param);

151

152 tau_m_fit_50 = results_fit_50 (1);

153

154 n_fit_50 = results_fit_50 (2);

155 tau_PFR_fit_50 = results_fit_50 (3);

156 V_PFR_norm_50 = tau_PFR_fit_50/tau_m_fit_50;

157

158 tau_i_fit_50 = (tau_m_fit_50 -tau_PFR_fit_50)/n_fit_50;

159 E_fit_50 = heaviside(t_sim_50 -tau_PFR_fit_50).*( t_sim_50 -tau_PFR_fit_50)...

160 .^( n_fit_50 -1)/(gamma(n_fit_50)*tau_i_fit_50^n_fit_50).*...
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161 exp(-(t_sim_50 -tau_PFR_fit_50)/tau_i_fit_50);

162

163 %% 75 rad/s

164 % Results from experiments

165

166 V_PFR_per_V_R_75 = 0.139033333;

167 n_75 = 1.5924;

168

169 % Reconstruct experimental RTD

170

171 tau_m = (V_R/Q);

172 tau_PFR_75 = V_PFR_per_V_R_75*tau_m;

173 tau_i_75 = (tau_m -tau_PFR_75)/n_75;

174

175 E_exp_75 = heaviside(t_RTD -tau_PFR_75).*(t_RTD -tau_PFR_75)...

176 .^(n_75 -1)/(gamma(n_75)*tau_i_75^n_75).*...

177 exp(-(t_RTD -tau_PFR_75)/tau_i_75);

178

179 % Analyzing the simulation data

180 Data_sim_75 = readmatrix(fullfile(’RTD_75rads ’,’surfaceFieldValue.dat’));

181

182 t_sim_75 = Data_sim_75 (:,1);

183 Avg_outlet_75 = Data_sim_75 (:,2);

184

185 RTD_sim_75 = gradient(Avg_outlet_75 ,t_sim_75);

186 RTD_sim_75 = movmean(RTD_sim_75 ,500);

187

188 % Fit the engineering model to the simulated RTD

189

190 param.Q = Q;

191 param.V_R = V_R;

192 param.RTD_sim = RTD_sim_75;

193 param.t_sim = Data_sim_75 (:,1);

194

195 results_fit_75 = lsqnonlin(@fitcrit ,init_guess ,LB,UB ,[],param);

196

197 tau_m_fit_75 = results_fit_75 (1);

198

199 n_fit_75 = results_fit_75 (2);

200 tau_PFR_fit_75 = results_fit_75 (3);

201 V_PFR_norm_75 = tau_PFR_fit_75/tau_m_fit_75;

202

203 tau_i_fit_75 = (tau_m_fit_75 -tau_PFR_fit_75)/n_fit_75;

204 E_fit_75 = heaviside(t_sim_75 -tau_PFR_fit_75).*( t_sim_75 -tau_PFR_fit_75)...

205 .^( n_fit_75 -1)/(gamma(n_fit_75)*tau_i_fit_75^n_fit_75).*...

206 exp(-(t_sim_75 -tau_PFR_fit_75)/tau_i_fit_25);

207 %% compute integrals

208

209 Area_exp_10 = trapz(t_RTD ,E_exp_10);

210 Area_sim_10 = trapz(t_sim_10 ,RTD_sim_10);

211 Area_fit_10 = trapz(t_sim_10 ,E_fit_10);

212

213 Area_exp_25 = trapz(t_RTD ,E_exp_25);

214 Area_sim_25 = trapz(t_sim_25 ,RTD_sim_25);

215 Area_fit_25 = trapz(t_sim_25 ,E_fit_25);

216

217 Area_exp_50 = trapz(t_RTD ,E_exp_50);

218 Area_sim_50 = trapz(t_sim_50 ,RTD_sim_50);

219 Area_fit_50 = trapz(t_sim_50 ,E_fit_50);

220

221 Area_exp_75 = trapz(t_RTD ,E_exp_75);

222 Area_sim_75 = trapz(t_sim_75 ,RTD_sim_75);

223 Area_fit_75 = trapz(t_sim_75 ,E_fit_75);

224

225 %% renormalize

226 E_exp_10 = E_exp_10 ./ Area_exp_10;

227 E_exp_25 = E_exp_25 ./ Area_exp_25;

228 E_exp_50 = E_exp_50 ./ Area_exp_50;

229 E_exp_75 = E_exp_75 ./ Area_exp_75;

230

231 RTD_sim_10 = RTD_sim_10 ./ Area_sim_10;

232 RTD_sim_25 = RTD_sim_25 ./ Area_sim_25;

233 RTD_sim_50 = RTD_sim_50 ./ Area_sim_50;
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234 RTD_sim_75 = RTD_sim_75 ./ Area_sim_75;

235

236 E_fit_10 = E_fit_10 ./ Area_fit_10;

237 E_fit_25 = E_fit_25 ./ Area_fit_25;

238 E_fit_50 = E_fit_50 ./ Area_fit_50;

239 E_fit_75 = E_fit_75 ./ Area_fit_75;

240

241 %% plotting

242

243 figure (1)

244 plot(t_sim_25 ,Avg_outlet_25)

245 hold on

246 plot(t_sim_10 ,Avg_outlet_10)

247 plot(t_sim_50 ,Avg_outlet_50)

248 plot(t_sim_75 ,Avg_outlet_75)

249 hold off

250 ylabel(’Outlet value [-]’)

251 xlabel(’Time [s]’)

252 legend(’25 rad/s’,’50 rad/s’)

253

254 figure (2)

255 plot(t_RTD ,E_exp_10 ,’-m’)

256 hold on

257 plot(t_sim_10 ,RTD_sim_10 ,’--m’)

258 plot(t_sim_10 ,E_fit_10 ,’-.m’)

259 plot(t_RTD ,E_exp_25 ,’-b’)

260 plot(t_sim_25 ,RTD_sim_25 ,’--b’)

261 plot(t_sim_25 ,E_fit_25 ,’-.b’)

262 plot(t_RTD ,E_exp_50 ,’-k’)

263 plot(t_sim_50 ,RTD_sim_50 ,’--k’)

264 plot(t_sim_50 ,E_fit_50 ,’-.k’)

265 plot(t_RTD ,E_exp_75 ,’-r’)

266 plot(t_sim_75 ,RTD_sim_75 ,’--r’)

267 plot(t_sim_50 ,E_fit_75 ,’-.-r’)

268 hold off

269 ylabel(’E(t)’)

270 ylim ([0 0.18])

271 xlabel(’Time [s]’)

272 legend(’Experiment 10 rad/s’,’Experiment 25 rad/s’,’Simulation 25 rad/s’,’Fit 25

rad/s’,’Experiment 50 rad/s’,’Simulation 50 rad/s’,’Fit 50 rad/s’,’Experiment

75 rad/s’, ’interpreter ’,’latex’)

273

274 %% functions

275

276 function [error] = fitcrit(x,param)

277

278 tau = x(1);

279 n = x(2);

280 tau_PFR = x(3);

281

282 %% Get simulation data

283 t_sim = param.t_sim;

284 RTD_sim = param.RTD_sim;

285

286 %% get the engineering model results

287 tau_i = (tau -tau_PFR)/n;

288 E = heaviside(t_sim -tau_PFR).*(t_sim -tau_PFR)...

289 .^(n-1)/( gamma(n)*tau_i^n).*...

290 exp(-(t_sim -tau_PFR)/tau_i);

291

292 error = abs(RTD_sim (:)-E(:));

293

294 end
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