
 Eindhoven University of Technology

MASTER

QP-MPC solvers for real-time control of fast nonlinear systems using inexpensive
microcontrollers

Lam, V.T.T.

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/eba122f9-d40f-41a5-ad54-3f4bcf1fd0a2

Technische Universiteit Eindhoven (TU/e)
QP-MPC solvers for real-time control of
fast nonlinear systems using inexpensive

microcontrollers
Graduation MSc thesis

Name: V.T.T. (Victor Trừơng Thịnh) Lâm
ID: 0857216

S-number: s134462
Department: Electrical Engineering (EE)

Group: Control Systems (CS)
Email: v.t.t.lam@student.tue.nl

Supervisor: dr. M. (Mircea) Lazar

Presented on:
Wednesday July 1, 2020 9:00 − 9:40

Defended on:
Wednesday July 1, 2020 9:40 − 11:40

Graduation Committee:
dr. M. (Mircea) Lazar (supervisor)

prof. dr. P.M.J. (Paul) van den Hof (chairman)
dr. S. (Sofie) Haesaert

dr. D. (Dip) Goswami

Graduation MSc thesis Wednesday July 1, 2020 9:00 − 11:40

QP-MPC solvers for real-time control of fast
nonlinear systems using inexpensive microcontrollers

V.T.T. (Victor Trừơng Thịnh) Lâm

Abstract—In this thesis, we present a new design
of a fast quadratic programming (QP)-solver for
model predictive control (MPC) using inexpensive
microcontrollers. The implementation of MPC is
hampered by the need of expensive computational
hardware, because high computational power for
solving a QP within the sampling period 𝑇𝑠 (which
is usually small for fast nonlinear systems) as well
as high memory capacity is necessary due to large
memory footprints. This motivates us to design a new
QP-solver that can be executed on an inexpensive
microcontroller which is characterized by its limited
computational power and memory capacity. The
presented QP-solver based on Hildreth’s algorithm
is deployed on an Arduino Due microcontroller. For
illustration purposes, MPC with integral action was
used in a real-time reference tracking problem on the
magnetic levitator setup, which has fast nonlinear
dynamics and requires small sampling period 𝑇𝑠 = 5
ms. Experimental results show that the designed QP-
solver is suitable for real-time control of fast nonlinear
systems (with small 𝑇𝑠 = 5 ms) using inexpensive
microcontrollers.

Keywords: Model Predictive Control, Execution times,
Quadratic Programming, Inexpensive Microcontrollers

I. Introduction
Model predictive control (MPC) is a control technique

that is very attractive for high-tech applications. It has
several advantages in comparison with classical control,
such as PID. First, MPC can anticipate for future refer-
ence changes. Second, safety or actuator constraints can be
handled a priori, by means of solving a quadratic program
(QP). Finally, by means of solving a QP, it is doing
optimal tracking and therefore has good performance.
However, implementation of MPC is hampered by the
need of expensive computational hardware. This is due
to the need for high computational power for solving a
QP within the sampling period 𝑇𝑠 (which is small for fast
nonlinear systems) as well as high memory capacity.

Recently, there were many efforts to develop MPC de-
sign and implementation methods, including optimization
solvers for MPC, that can run on inexpensive microcon-
trollers. Inexpensive microcontrollers are platforms that
are characterized by their low cost, which makes them very
attractive to apply on a large scale. On the other hand,
their relative low memory, low processor speed and limited
library functions makes it challenging to apply MPC on
fast nonlinear systems that require small sampling time
𝑇𝑠. The biggest challenge in MPC is to solve a QP fast
enough, within a small sampling instance 𝑇𝑠.

In the past, MPC design already has been implemented
on inexpensive microcontrollers. However, these imple-
mentations were very limited due to the limited compu-
tation power and memory capacity of inexpensive micro-
controllers. First, MPC-QP with only box constraints have
been imposed in [1], for which fast-gradient methods can

be used. Box constraints are more easy to solve than affine
constraints. Second, an Arduino Uno has been used for
low level control (such as receiving output 𝑦 and sending
input 𝑢 to the plant) only, while MPC-QP are solved in
other hardware such as a PC with Matlab in [2] or even
Matlab simulation on PC only in [3]. Third, offline MPC
such as unconstrained MPC [4], [5] or explicit MPC [6]
were implemented rather than online MPC which requires
solving an MPC-QP and is more challenging. Finally,
applications that do not require fast sampling time 𝑇𝑠,
such as in process control [7] that has 𝑇𝑠 = 1 s and 𝑇𝑠 = 3
s.

Many algorithms have been developed for solving QPs,
such as OSQP [8] and active-set QP-solvers qpOASES
[9], [10], [11] and Hildreth [12]. A fast gradient QP-
solver is qpdunes [13], [14] but affine constraints are not
yet supported, only box constraints. In the literature,
QP-solvers qpOASES, Hildreth and qpDUNES are well-
known. However, it was the case that either these were
slow applications (such as process control) that did not
require a small 𝑇𝑠, the QP-solver had a big memory
footprint, the platform used has high computational power
and large memory capacity, or prediction and control
horizons were small which makes the QPs to be less
complex. In [15], qpOASES has been implemented on a
PC, but its code size is 835 kB for prediction horizon
𝑁𝑝 = 12 and control horizon 𝑁𝑐 = 5. MPC was ex-
ecuted on programmable logic controllers (PLCs) using
QP-solvers qpOASES [16], [17] and Hildreth [18], [19], [20].
In [21], [22] MPC has been conducted on a myRIO from
National Instruments composed of both an FPGA and a
microcontroller using QP-solver qpOASES. Hardware in
the loop (HIL) simulations were performed on an Atmel
ARM Cortex-M3 using qpOASES in [23], where in some
cases the memory overflows due to a big memory footprint.
Relevant details of these applications are summarized and
provided in Appendix A. Several observations can be
made. First, qpOASES usually demands a quite large
memory footprint. Second, qpOASES has been used in
slow applications which do not require a small 𝑇𝑠, such as
in process control. Third, most of the platforms have high
computational power and large memory capacity. Finally,
some QPs were less complex due to small prediction or
control horizon.

The main challenge in implementing online MPC (by
solving a QP with affine constraints) on an Arduino, for
example, is the lack of memory, libraries and computa-
tional power. This requires careful MPC problem formu-
lation and customized QP solvers for MPC. This also mo-
tivates us to design a new QP-solver that can be executed
on an inexpensive microcontroller which is characterized
by its limited computational power and memory capacity.
We choose to design a QP-solver based on Hildreth for a

V.T.T. (Victor Trừơng Thịnh) Lâm Page 1 of 16

Graduation MSc thesis Wednesday July 1, 2020 9:00 − 11:40

number of reasons. First, it permits simple implementa-
tion in C/C++-code and it is not as memory demanding
as qpOASES. Second, due to its simplicity of operations it
can be executed fast and efficiently on inexpensive micro-
controllers. Third, it is open-source Matlab code and is
publicly accessible [12]. Finally, even though qpOASES’
code is also open-source in C++, Hildreth’s algorithm
is still less complicated then qpOASES’, which means
that Hildreth is less memory demanding than qpOASES
and can be executed fast and efficiently. The designed
QP-solver’s CPU-time and accuracy will be compared
with qpOASES for three reasons: qpOASES is fast, has
a high accuracy and is quite popular in the literature
as shown above. Matlab also has default QP-solvers,
such as quadprog and mpcqpsolver. Since quadprog’s and
mpcqpsolver’s code are protected, we do not know their
algorithms and base our designed QP-solver on them.
Although quadprog is very slow, we consider its solution
to be optimal and define the absolute value of the error
w.r.t. quadprog’s solution as a measure of accuracy of a
QP-solver, i.e.

𝑒QP-solver = ∣𝑢quadprog − 𝑢QP-solver∣ , (1)

where 𝑢quadprog and 𝑢QP-solver denote the MPC control
input trajectory computed by quadprog or a QP-solver,
respectively, that has been applied to the plant.

This thesis will focus on three main aspects. First,
designing a new QP-solver based on Hildreth’s QP-solver.
The designed QP-solver should be simple enough to run on
an inexpensive microcontroller, but fast enough for real-
time control of a fast nonlinear system. The QP-solver
should also be able to handle stalling situations. Second,
formulating an MPC problem and deploying it on an
inexpensive microcontroller. We will introduce the concept
of constraint horizon 𝑁𝑞 in order to reduce complexity of
memory footprint and reduce the consumed CPU-time.
For robustness, we design and use MPC with integral
action as it removes constant offset in reference tracking.
The Arduino Due, shown in Fig. 1, based on the Atmel
ARM Cortex-M3, is chosen as the microcontroller target,
because it has the most attractive specifications among all
Arduino’s [24], as summarized in Table I.

Table I: Arduino Due specifications

Price
Flash
mem-
ory

SRAM CPU
speed

Li-
brary

€ 20,- − € 40,-
(€ 35,- official) 512 kB 96 kB 84

MHz
simple
C/C++-
library

Finally, conducting experiments on a fast nonlinear system
for validation. The magnetic levitator is chosen as the
experimental setup, because its dynamics are nonlinear
(as we will see later) and its sampling time is small, i.e.
𝑇𝑠 = 5 ms.

The structure of this thesis is as follows. Brief prelimi-
naries about MPC with integral action and MPC-QPs are
discussed in Section II. The considered problem, active
set QP-solver design for MPC, is formulated in Section
III. In Section IV, we present two new QP-solvers based
on Hildreth followed by some analysis. In Section V, we
present some aspects about real-time implementation on

Figure 1: Arduino Due with shield only.

an Arduino. Simulation and experimental results are pre-
sented in Section VI. Conclusions and recommendations
are summarized in Section VII.

II. Preliminaries

This section provides the necessary knowledge on inte-
gral action MPC and formulation of MPC as a QP.

A. Integral action linear MPC with affine term
The derivation of the discrete-time state-space model

Σ𝑑

Σ𝑑 ∶= {𝑥𝑝(𝑘 + 1) = 𝐴𝑑𝑥𝑝(𝑘) + 𝐵𝑑𝑢(𝑘) + 𝑤𝑑
𝑦(𝑘) = 𝐶𝑑𝑥𝑝(𝑘) + 𝐷𝑑𝑢(𝑘)

can be found in Appendix D.
For MPC with integral action, we define new variables

Δ𝑥𝑝(𝑘) ∶= 𝑥𝑝(𝑘) − 𝑥𝑝(𝑘 − 1),
Δ𝑦(𝑘 + 1) ∶= 𝑦(𝑘 + 1) − 𝑦(𝑘),

Δ𝑢(𝑘) ∶= 𝑢(𝑘) − 𝑢(𝑘 − 1),

where 𝑥𝑝 is state variable of the original discrete-time
state-space model. This gives the augmented discrete-time
state-space model

𝑥(𝑘 + 1) = [𝐴𝑑 0
𝐶𝑑𝐴𝑑 𝐼]

⏟⏟⏟⏟⏟⏟⏟
𝐴

𝑥(𝑘) + [𝐵𝑑
𝐶𝑑𝐵𝑑

]
⏟⏟⏟⏟⏟

𝐵

Δ𝑢(𝑘)

𝑦(𝑘) = [0 𝐼]⏟
𝐶

𝑥(𝑘), where 𝑥(𝑘) = [Δ𝑥𝑝(𝑘)
𝑦(𝑘)] ,

where (𝐴, 𝐵) should be controllable and (𝐴, 𝐶) should be
observable. Note that the affine term 𝑤𝑑 cancels out in the
augmented state-space model. Next, we define predicted
inputs Δ𝑈𝑘, predicted outputs 𝑌𝑘 and future reference 𝑅𝑘
as

Δ𝑈𝑘 ∶= [Δ𝑢𝑇
0|𝑘 ⋯ Δ𝑢𝑇

𝑁−1|𝑘]𝑇 ,

𝑌𝑘 ∶= [𝑦𝑇
1|𝑘 ⋯ 𝑦𝑇

𝑁|𝑘]𝑇 ,

R𝑘 ∶= [𝑟𝑇
1|𝑘 ⋯ 𝑟𝑇

𝑁|𝑘]𝑇

with the following relation

𝑌𝑘 = Φ𝑥(𝑘) + ΓΔ𝑈𝑘, (2)

V.T.T. (Victor Trừơng Thịnh) Lâm Page 2 of 16

Graduation MSc thesis Wednesday July 1, 2020 9:00 − 11:40

where

Φ = ⎡⎢
⎣

𝐶𝐴
⋮

𝐶𝐴𝑁
⎤⎥
⎦

, Γ = ⎡⎢
⎣

𝐶𝐵 ⋯ 0
⋮ ⋱ ⋮

𝐶𝐴𝑁−1𝐵 ⋯ 𝐶𝐵
⎤⎥
⎦

,

𝑥(𝑘) = 𝑥0|𝑘 and 𝑁 is the prediction horizon, which
indicates how many steps ahead we look in the future. In
this thesis, the control horizon is equal to the prediction
horizon, i.e. 𝑁𝑐 = 𝑁 . For some weighting matrices 𝑄, 𝑅
for stage cost, 𝑃 ≻ 𝑄 for terminal cost and future tracking
error 𝑒𝑖|𝑘 = 𝑦𝑖|𝑘 − 𝑟𝑖|𝑘 for 𝑖 = 0, … , 𝑁 , we define the MPC
cost function as

𝐽 (𝑥(𝑘), Δ𝑈𝑘) = 𝑒𝑇
𝑁|𝑘𝑃𝑒𝑁|𝑘+

𝑁−1
∑
𝑖=0

[𝑒𝑇
𝑖|𝑘𝑄𝑒𝑖|𝑘 + Δ𝑢𝑇

𝑖|𝑘𝑅Δ𝑢𝑖|𝑘]

= 𝑒𝑇
0|𝑘𝑄𝑒0|𝑘 + 𝐸𝑇

𝑘 Ω𝐸𝑘 + Δ𝑈𝑇
𝑘 ΨΔ𝑈𝑘,

where

𝐸𝑘 ∶= [𝑒𝑇
1|𝑘 ⋯ 𝑒𝑇

𝑁|𝑘]𝑇 = 𝑌𝑘 − R𝑘,

Ω =
⎡
⎢⎢
⎣

𝑄
𝑄

⋱
𝑃

⎤
⎥⎥
⎦

, Ψ =
⎡
⎢⎢
⎣

𝑅
𝑅

⋱
𝑅

⎤
⎥⎥
⎦

,

which drives 𝑒𝑖|𝑘 and Δ𝑢𝑖|𝑘 to 0 when the steady-state has
been reached.

Substituting (2) and removing the constant terms gives

̄𝐽 (𝑥(𝑘), Δ𝑈𝑘) = 1
2Δ𝑈𝑇

𝑘 𝐸Δ𝑈𝑘 + Δ𝑈𝑇
𝑘 𝐹, (3)

where

𝐸 = 2 (Ψ + Γ𝑇 ΩΓ) ≻ 0, 𝐹 = 2Γ𝑇 Ω (Φ𝑥(𝑘) − R𝑘) .
̄𝐽 and 𝐽 have the same unique global minimizer (both

are convex since 𝐸 ≻ 0), so it suffices to minimize ̄𝐽 . In
practice, there are always actuator constraints or safety
constraints on the output. In general, constraints could
also be imposed on the state vector 𝑥, but we consider
constraints on Δ𝑢, 𝑢 and 𝑦 only.

Δ𝑢 ∈ [Δ𝑢min, Δ𝑢max] , 𝑢 ∈ [𝑢min, 𝑢max] , 𝑦 ∈ [𝑦min, 𝑦max]

We can write these constraints into the form

𝑀𝑖𝑦𝑖|𝑘 + 𝑍𝑖Δ𝑢𝑖|𝑘 ≤ 𝑏𝑖, 𝑀𝑁𝑦𝑁|𝑘 ≤ 𝑏𝑁

for 𝑖 = 0, … , 𝑁 − 1 and

𝑀𝑖 =
⎡
⎢⎢
⎣

0
0

−𝐼𝑞
𝐼𝑞

⎤
⎥⎥
⎦

, 𝑍𝑖 =
⎡
⎢⎢
⎣

−𝐼𝑚
𝐼𝑚
0
0

⎤
⎥⎥
⎦

, 𝑏𝑖 =
⎡
⎢⎢
⎣

−Δ𝑢min
Δ𝑢max
−𝑦min
𝑦max

⎤
⎥⎥
⎦

,

𝑀𝑁 = [−𝐼𝑞
𝐼𝑞

] , 𝑏𝑁 = [−𝑦min
𝑦max

] ,

where 𝑚 and 𝑞 are dimensions of Δ𝑢(𝑘) and 𝑦(𝑘), respec-
tively. If we recall 𝑦(𝑘) = 𝐶𝑥(𝑘), then we can rewrite
constraints in compact form as

D𝑥(𝑘) + M𝑌𝑘 + EΔ𝑈𝑘 ≤ C, (4)

where

D = ⎡⎢
⎣

𝑀0𝐶
⋮
0

⎤⎥
⎦

, C = ⎡⎢
⎣

𝑏𝑇
0
⋮

𝑏𝑁

⎤⎥
⎦

,

M =
⎡
⎢⎢
⎣

0 ⋯ 0
𝑀1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑀𝑁

⎤
⎥⎥
⎦

, E =
⎡
⎢⎢
⎣

𝑍0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑍𝑁−1
0 ⋯ 0

⎤
⎥⎥
⎦

.

Substituting (2) and using the relation
𝑈𝑘 = S𝑢(𝑘 − 1) + T Δ𝑈𝑘, (5)

where

𝑈𝑘 = ⎡⎢
⎣

𝑢0|𝑘
⋮

𝑢𝑁−1|𝑘

⎤⎥
⎦

,S = ⎡⎢
⎣

𝐼𝑚
⋮

𝐼𝑚

⎤⎥
⎦

, T = ⎡⎢
⎣

𝐼𝑚 ⋯ 0
⋮ ⋱ ⋮

𝐼𝑚 ⋯ 𝐼𝑚

⎤⎥
⎦

,

and defining

𝑈min = [𝑢𝑇
min ⋯ 𝑢𝑇

min]𝑇 ∈ R𝑚𝑁 ,
𝑈max = [𝑢𝑇

max ⋯ 𝑢𝑇
max]𝑇 ∈ R𝑚𝑁 ,

we obtain the affine constraints
𝐿Δ𝑈𝑘 ≤ 𝑐 + 𝑊𝑥(𝑘) − 𝑉 𝑢(𝑘 − 1)

with

𝐿 = ⎡⎢
⎣

MΓ + E
T

−T
⎤⎥
⎦

, 𝑐 = ⎡⎢
⎣

C
𝑈max

−𝑈min

⎤⎥
⎦

,

𝑊 = ⎡⎢
⎣

−D − MΦ
0
0

⎤⎥
⎦

, 𝑉 = ⎡⎢
⎣

0
S

−S
⎤⎥
⎦

,

where C is defined in (4) and S, T are defined in (5).
The convex objective function and affine constraint

result in a convex QP given as

min
Δ𝑈𝑘

̄𝐽 (𝑥(𝑘), Δ𝑈𝑘) = 1
2Δ𝑈𝑇

𝑘 𝐸Δ𝑈𝑘 + Δ𝑈𝑇
𝑘 𝐹,

s.t. 𝐿Δ𝑈𝑘 ≤ 𝑐 + 𝑊𝑥(𝑘) − 𝑉 𝑢(𝑘 − 1)
(6)

Finally, an observer is necessary for computing 𝑥(𝑘)
from measured output 𝑦(𝑘) using the following observer
model

̂𝑥(𝑘 + 1) = (𝐴 − 𝐿𝐶) ̂𝑥(𝑘) + 𝐵Δ𝑢(𝑘) + 𝐿𝑦(𝑘), (7)
where ̂𝑥(𝑘) is the estimated state. Defining the estimation
error

𝑒(𝑘) ∶= 𝑥(𝑘) − ̂𝑥(𝑘),
the estimation error dynamics is derived as

𝑒(𝑘 + 1) = (𝐴 − 𝐿𝐶)𝑒(𝑘).
Observer gain matrix 𝐿 is chosen in such a way that
|𝜆 (𝐴 − 𝐿𝐶)| < 1 and 𝑒(𝑘) converges to 0 as fast as
possible.

Finally, the receding horizon principle is applied as
follows. First, output 𝑦(𝑘) is measured and state ̂𝑥(𝑘) is
estimated using the observer. Second, the MPC-QP (6) is
solved to obtain Δ𝑈∗

𝑘. Finally, from Δ𝑈∗
𝑘 the first element

Δ𝑢(𝑘) = Δ𝑢∗
0|𝑘 is used for computing the next control

input
𝑢(𝑘) = Δ𝑢(𝑘) + 𝑢(𝑘 − 1)

and repeat.

V.T.T. (Victor Trừơng Thịnh) Lâm Page 3 of 16

Graduation MSc thesis Wednesday July 1, 2020 9:00 − 11:40

B. MPC-QP
In general, we can formulate the MPC-QP (6) in the

following form

min
𝜃

𝐽 (𝜃) = 1
2𝜃𝑇 𝐸𝜃 + 𝜃𝑇 𝐹, s.t. 𝑀𝜃 ≤ 𝛾, (8)

where the decision variable is Δ𝑈𝑘 → 𝜃. For simplicity,
we consider control input 𝑢 ∈ R and measured output
𝑦 ∈ R are scalars, i.e. 𝑞 = 𝑚 = 1. The objective
function 𝐽 (𝜃) ∈ R is quadratic in the decision variable
𝜃 ∈ R𝑁 and the constraints are affine in 𝜃. The matrices
𝐸 ∈ R𝑁×𝑁 and 𝑀 ∈ R𝑝×𝑁 are constant, while vectors
𝐹 ∈ R𝑁 and 𝛾 ∈ R𝑝 are depending on state 𝑥(𝑘), future
reference R𝑘 or previous control input 𝑢(𝑘 − 1). The total
number of constraints is denoted as 𝑝 and the active
set is denoted by A which consists of indices of active
constraints. The number of active constraints is denoted
as 𝑐 ≤ 𝑝

2 , since the constraints equally consist of lower and
upper bounds and the lower and upper bounds cannot be
active simultaneously. It can be seen that complexity in
terms of memory footprint (for storage) and CPU-time
(number of computations) depends on prediction horizon
𝑁 as a kind of a tuning knob.

III. Problem formulation
This section consists of two parts. First, we formulate

the objectives of this thesis. Second, we describe the active-
set solver Hildreth, on which we will base our new QP-
solver. We also briefly describe the active-set QP-solver
qpOASES.

A. Fast QP-solver design for Arduino
The problem formulation can be expressed in two objec-

tives, each with its challenges. As a first objective, we want
to design a QP-solver which should be simple enough to
run on an Arduino, but fast enough for real-time control of
a fast nonlinear system. Our new QP-solver will be based
on the Hildreth QP-solver.

Our second objective is to make the MPC problem
suitable for real-time control on an Arduino. This could
be done by solving a few subproblems. First, complex-
ity in terms of memory footprint and CPU-time, should
be low and it should be possible influence it by using
some additional parameter as a tuning knob. Second, an
easy workflow from Matlab design to Arduino real-time
deployment is necessary. Finally, the designed QP-solver
should prevent stalling of the solver. Stalling cases are for
example, that it takes too long to solve a QP, i.e. CPU-
time > 𝑇𝑠 or there might be numerical problems such as
NaN numbers.

B. Previous QP-solvers: Hildreth and qpOASES
Here, we will compare active-set QP-solvers Hildreth

and qpOASES and motivate why we design a new QP-
solver based on Hildreth. The designed QP-solver will be
compared with qpOASES for reasons already mentioned
in the introduction.

1) Hildreth: The Hildreth QP-solver takes as input the
matrices 𝐸, 𝑀 and vectors 𝐹, 𝛾 from QP (8) and outputs
the constrained solution 𝜃. Its algorithm is as follows
(details can be found in [12]):

1. Unconstrained solution: 𝜃 = −𝐸\𝐹

2. Check 𝑀𝜃 > 𝛾 in a scalar-based for-loop, if all
constraints are satisfied then stop else continue end

3. Compute 𝐻 = 𝑀(𝐸\𝑀𝑇), 𝐾 = 𝑀(𝐸\𝐹 + 𝛾) and
initialize Lagrange multiplier 𝜆𝑚 = 0 (cold-start). Set
𝑚 = 0

4. Update 𝜆𝑚 in a scalar-based for-loop, with

𝑤𝑚
𝑖 = − 1

ℎ𝑖𝑖
[𝑘𝑖 +

𝑖−1
∑
𝑗=1

ℎ𝑖𝑗𝜆𝑚
𝑗 +

𝑛
∑

𝑗=𝑖+1
ℎ𝑖𝑗𝜆𝑚−1

𝑗]

𝜆𝑚
𝑖 = max (0, 𝑤𝑚

𝑖)

if (𝜆𝑚 − 𝜆𝑚−1)𝑇 (𝜆𝑚 − 𝜆𝑚−1) ≤ 𝛿 or 𝑚 ≥ 𝑚̄ then
stop else continue end

5. Return 𝜃 = −𝐸\𝐹 − 𝐸\𝑀𝑇 𝜆𝑚

where tolerance 𝛿 = 1 ⋅ 10−7 and maximum number of
iteration 𝑚̄ = 38. Note that the backslash operator (\) is
a way to solve a system of linear equations such as 𝐴𝑥 = 𝑏,
i.e. 𝑥 = 𝐴\𝑏.

2) qpOASES: The qpOASES QP-solver parametrises
vectors 𝐹 and 𝛾 from QP (8) as affine functions of
parameter 𝑤 and outputs the constrained solution 𝜃. Its
algorithm is as follows (details can be found in [9], [10],
[11]):

1. Compute updates Δ𝑤, Δ𝐹 , Δ𝛾
2. Compute primal and dual step directions Δ𝜃 and Δ𝜆
3. Maximum homotopy step length 𝜏max is determined
4. Variables 𝑤, 𝜃, 𝜆 are updated using 𝜏max
5. if 𝜏max = 1 then solution 𝜃 found and stop else

based on 𝜏max ∈ [0, 1) add or remove constraint from
the active set A and continue with Step 1 end

3) Comparison: The main differences between Hildreth
and qpOASES are summarized and provided in Table II

Table II: Differences between Hildreth and qpOASES
Hildreth qpOASES
Scalar operations and
divisions, no matrix
inversion, little
matrix-vector operations

Many matrix-vector
operations

Simple and basic
mathematical operations
based on KKT-conditions

Based on KKT-conditions.
Matrix updates using
advanced mathematical
operations such as:
Cholesky factorization,
TQ factorization, Givens
plane rotation

Works with 𝐸, 𝐹 , 𝑀, 𝛾
from (8) directly

Vectors 𝐹 and 𝛾 from (8)
are parametrised as affine
functions of parameter 𝑤

Numerical convergence to
𝜆

Based on current active
set A, 𝜆 is found exactly

Active set A is found as
soon as 𝜆 converged

Converges to optimal
active set A by adding and
removing constraints to
active set A

The three main reasons why we will base our designed
QP-solver on Hildreth are the following. First, Hildreth
uses basic mathematical operations, while qpOASES uses
advanced ones that result in a large memory footprint.
Second, Hildreth involves little matrix-vector operations
and performs scalar-based operations such as division.
This avoids matrix inversions and thus avoids numerical
degeneracy problems in case of singularity. Finally, Hil-
dreth works directly with matrices and vectors from (8),
while qpOASES parametrises the vectors from (8) as affine
functions of parameter 𝑤.

V.T.T. (Victor Trừơng Thịnh) Lâm Page 4 of 16

Graduation MSc thesis Wednesday July 1, 2020 9:00 − 11:40

IV. Designed QP-solvers

In this section, we present two designed Hildreth-based
QP-solvers. Hildreth+’ is presented briefly, while Hil-
drethAct is discussed more in depth including convergence
and complexity analysis in terms of memory footprint and
computational complexity. For comparison, complexity of
qpOASES will be analysed as well. The concept of con-
straint horizon 𝑁𝑞 will also be introduced in this section.

A. Hildreth+’
When running Hildreth algorithm on the Arduino, we

noticed it exceeded sampling period 𝑇𝑠 severely, which
makes it unsuitable for running on the Arduino. Hence, we
made a few modifications to Hildreth’s QP-solver which
we will call Hildreth+’. It is still very similar to the
original Hildreth algorithm. It takes as input the matrices
𝐸−1, 𝑀, 𝐻 = 𝑀𝐸−1𝑀𝑇 and vectors 𝐹, 𝛾 from QP (8) and
outputs the constrained solution 𝜃. Constant matrices 𝐸−1

and 𝐻 are precomputed offline. Its step-by-step algorithm
is provided in Appendix B only, rather than its pseudo
code, in order to give a clear overview of the mathematics
(details can be found in [25].

Some key differences with respect to the original Hil-
dreth are given in Table III.

Table III: Difference between Hildreth+’ and Hildreth
Step Hildreth+’ Hildreth

2 Vectorized constraint
check

Scalar-based for-loop
constraint check

3, 6 Warm-start 𝜆 Cold-start 𝜆

4
Better rate of convergence
(ROC) using SOR [26],
inspired by Jacobi and
Gauss-Seidel method [27]

Usual ROC

1, 3,
5

Precomputing constants
𝐻 = 𝐿 + 𝐷 + 𝑈, 𝐸−1
offline, where 𝐿, 𝑈 denote
strict lower-,
upper-triangular matrices
and 𝐷 denotes the
diagonal matrix.

Computing 𝐻 online and
solves backslash operator
on 𝐸 online

4 Subtracts 𝜆𝑚 − 𝜆𝑚−1 once
and reuses it

Subtracts 𝜆𝑚 − 𝜆𝑚−1
twice

3

Reduced dimensions 𝜆̃, 𝐻̃
and 𝐾̃ by extracting
indices of non-violated
constraints that may
become active

Full dimensions 𝜆, 𝐻 and
𝐾

5 Reuse of 𝜃 from Step 1 Computes −𝐸\𝐹 again
5 Reduced dimension 𝑀̃ Full dimension 𝑀

B. HildrethAct
When running Hildreth+’ on the Arduino, sampling

period 𝑇𝑠 was still exceeded but less severe than Hildreth.
However, Hildreth+’ is still unsuitable for running on
the Arduino. Hence, we designed a new QP-solver which
we will call HildrethAct. Although HildrethAct is very
different from the original Hildreth algorithm, it does still
rely on the key KKT-conditions. It takes a input the
matrices 𝐸−1, 𝑀, 𝐻 = 𝑀𝐸−1𝑀𝑇 and vectors 𝐹 , 𝛾 from
QP (8) and outputs the constrained solution 𝜃. Constant
matrices 𝐸−1 and 𝐻 are precomputed offline. Its step-
by-step algorithm is provided in Appendix C only, rather
than its pseudo code, in order to give a clear overview of
the mathematics. In what follows, we refer to the steps in
this step-by-step algorithm of HildrethAct.

This QP-solver has numerous strengths with respect to
the original Hildreth algorithm:

1. The QP-solver HildrethAct only terminates when
optimality (condition Step 5.d.) and feasibility (condi-
tion Step 5) are reached or when max_iter is reached.

2. When the number of violated constraints is
• 0, then no constraints are active. Unconstrained

solution is used with |A| = 0, 𝜆 = ⌀ and 𝐻−1
act = ⌀,

• 1, then this constraint must be active. Constrained
solution is used with |A| = 1 and 𝜆, 𝐻−1

act ∈ R,
• ≥ 2, then some of these constraints could be active.

Constrained solution is used with |A| = 𝑐, 𝜆 ∈ R𝑐

and 𝐻−1
act ∈ R𝑐×𝑐, where 𝑐 denotes the number of

active constraints, A denotes the active set, |A| =
𝑐 denotes the cardinality (number of elements) of
active set A, 𝜆act denotes the Lagrange multiplier
corresponding to A, 𝐻−1

act denotes the matrix inverse
of 𝐻 corresponding to A.

3. Ideally, we would like to know the active set A a priori.
Then it is easy to compute

𝜆act = −𝐻−1
act𝐾act

with matrix 𝐻act = 𝑀act𝐸−1𝑀𝑇
act and vector 𝐾 =

𝛾act + 𝑀act𝐸−1𝐹 . HildrethAct combines the KKT-
conditions from Hildreth together with the constraint
adding/removing principle from qpOASES which will
converge to the optimal active set.

4. Using additive and subtractive matrix updates (its
pseudo-code will be omitted due to space limitations,
but it is a more efficient implementation of [28]
optimized for Arduino Due) are used for updating
𝐻−1

act and 𝜆act. This avoids direct matrix inversions
and thus avoids numerical degeneracy problems in
case of singularity.

5. Constant matrices 𝐻 and 𝐸−1 are precomputed of-
fline.

6. 𝐾0 from Step 3 is reused in Step 5.g and 𝜃0 from Step
2 is reused in Step 6.

7. Let 𝑝 denote the total number of constraints, then the
number of active constraints is 𝑐 ≤ 𝑝

2 , because upper
and lower bounds cannot be active simultaneously.

8. Like Hildreth, we keep the cold-starting feature, be-
cause warm-starting is disadvantageous when the ac-
tive set changes frequently due to disturbances in the
experiment.

C. Convergence analysis HildrethAct
In this section, we will analyse the QP-solver Hil-

drethAct and show it will always converge to a feasible and
optimal solution without cycling. In what follows, we refer
to the steps of the step-by-step HildrethAct algorithm
given in Appendix C

First, suppose max_iter = infinity, i.e. we do not
have time constraints (such as sampling time 𝑇𝑠) in the
ideal case, then the algorithm only terminates when con-
strained solution 𝜃 is feasible, which is ensured by the
termination condition of the while-loop in Step 5 to be
𝐾min ≥ 0, i.e. 𝐾 does not contain negative elements (no
constraints are violated anymore). Likewise, the algorithm
only terminates when constrained solution 𝜃 is optimal,
which is ensured by the termination condition of the
while-loop in Step 5.d to be 𝜆min ≥ 0, i.e. 𝜆act does not

V.T.T. (Victor Trừơng Thịnh) Lâm Page 5 of 16

Graduation MSc thesis Wednesday July 1, 2020 9:00 − 11:40

contain negative elements (no active constraints became
inactive).

Second, consider the following scenario. Constraint 𝑧 is
added to the active set A and |A| = 𝑐 = 1, because con-
straint 𝑧 is violated the most (corresponding to 𝐾min < 0).
Later, we also add constraint 𝑦 to the active set A for
the same reasoning and |A| = 𝑐 = 2. When we compute
𝜆act, we observe that there are negative elements in 𝜆act
which indicate some constraints in the active set A became
inactive. This is only possible when active set A contains
2 or more elements, i.e. 𝑐 ≥ 2. Suppose active constraint
𝑦 covers the active constraint 𝑧 (𝑧 is a subset of 𝑦, i.e.
𝑧 ⊂ 𝑦), which makes constraint 𝑧 the most redundant
(corresponding to 𝜆min < 0). Constraint 𝑧 is then removed
from the active set A and is inactive now. Since constraint
𝑦 (which also covers constraint 𝑧) is still in active set A,
both constraints 𝑦 and 𝑧 can not be violated anymore and
will not be added to the active set A again, thus preventing
cycling. Thus, HildrethAct converges to the feasible and
optimal solution in a finite number of iterations.

Finally, the QPs we consider are always bounded as 𝐸 ≻
0 resulting in a convex objective function. Together with
affine constraints, the QPs will be convex which guarantees
a global unique minimum.

D. Constraint horizon 𝑁𝑞
We would like to introduce the concept of constraint

horizon 𝑁𝑞, where we put only upper and lower bounds
on stage variables 𝑦𝑖|𝑘, 𝑢𝑖|𝑘 and Δ𝑢𝑖|𝑘 for 𝑖 = 0, … , 𝑁𝑞 − 1
(giving 6𝑁𝑞 constraints) and upper and lower bounds on
terminal variable 𝑦𝑁𝑞|𝑘 (giving 2 constraints), which gives
us a total number of constraints

𝑝 = 6𝑁𝑞 + 2.
The constraint horizon 𝑁𝑞 can be bounded in between
𝑁min ≤ 𝑁𝑞 ≤ 𝑁 , where 𝑁 is the used prediction horizon
and 𝑁min is the lowest prediction horizon that resulted
in a stable and feasible system. In this way complexity, in
terms of memory footprint and computational complexity,
of the QP can be reduced. This permits us to increase
↑ 𝑁 and reduce ↓ 𝑇𝑠 for better tracking performance.
This alternative is more computationally efficient than
move-blocking, where 𝑁𝑞 = 𝑁 and additional equality
constraints are introduced, which increases the QP’s com-
plexity.

E. Memory footprint analysis HildrethAct and qpOASES
In this section, we compare memory footprints of Hil-

drethAct and qpOASES, in terms of how many numbers
need to be stored. We will omit the minor contributions
of scalar numbers.

1) HildrethAct: The memory footprint of HildrethAct
is summarized in Table IV

Table IV: Memory footprint HildrethAct
Input data Internal data

Data
𝐸−1 ∈ R𝑁×𝑁 , 𝐹 ∈ R𝑁 ,
𝑀 ∈ R𝑝×𝑁 , 𝐻 ∈ R𝑝×𝑝,
𝛾 ∈ R𝑝

𝜃, 𝜃0 ∈ R𝑁 ,
𝐾, 𝐾0 ∈ R𝑝,
𝐻−1

act ∈ R𝑤×𝑤,
𝜆act,A ∈ R𝑤,

General 𝑁2 + 𝑁 + 𝑝𝑁 + 𝑝2 + 𝑝 2𝑁 + 2𝑝 + 𝑤2 + 2𝑤
In terms
of 𝑁, 𝑁𝑞

𝑁2 + 𝑁(6𝑁𝑞 + 3) +
36𝑁2

𝑞 + 30𝑁𝑞 + 6 2𝑁 + 9𝑁2
𝑞 + 24𝑁𝑞 + 7

where 𝑁 is the prediction horizon, 𝑁𝑞 is the constraint
horizon such that 𝑁min ≤ 𝑁𝑞 ≤ 𝑁 , the total number of
constraints is denoted as 𝑝 = 6𝑁𝑞 + 2 and 𝑤 = 𝑝

2 , i.e. at
most half of the number of constraints are in the active
set, because upper and lower bounds can not be active
simultaneously.

Hence, a total of

𝑁2 + 𝑁(6𝑁𝑞 + 5) + 45𝑁2
𝑞 + 54𝑁𝑞 + 13

numbers need to be stored. When 𝑁𝑞 ≪ 𝑁 , we can see
that the memory footprint is significantly reduced, as the
terms

𝑁2 + 𝑁(6𝑁𝑞 + 5) + 13
dominate.

2) qpOASES: The memory footprint of qpOASES is
summarized in Table V

Table V: Memory footprint qpOASES
Input data Internal data

Data 𝐸 ∈ R𝑁×𝑁 , 𝐹 ∈ R𝑁 ,
𝛾 ∈ R𝑝, 𝑀 ∈ R𝑝×𝑁

𝜃, Δ𝜃 ∈ R𝑁 ,
𝜆, Δ𝜆,A ∈ R𝑝,
𝑅, 𝑇 , 𝑄 ∈ R𝑁×𝑁

General 𝑁2 + 𝑁 + 𝑝 + 𝑝𝑁 3𝑁2 + 2𝑁 + 3𝑝
In terms
of 𝑁, 𝑁𝑞

𝑁2 + 𝑁(6𝑁𝑞 + 3) +
6𝑁𝑞 + 2 3𝑁2 + 2𝑁 + 18𝑁𝑞 + 6

where 𝑅 denotes the Cholesky factorization and 𝑇 , 𝑄 de-
note TQ-factorization (modification of QR-factorization).

Hence, a total of

4𝑁2 + 𝑁(6𝑁𝑞 + 5) + 24𝑁𝑞 + 8
numbers need to be stored. When 𝑁𝑞 ≪ 𝑁 , we can see
that the memory footprint is significantly reduced, as the
terms

4𝑁2 + 𝑁(6𝑁𝑞 + 5) + 8
dominate.

3) Comparison: We can conclude that when 𝑁𝑞 ≪ 𝑁 ,
HildrethAct has a smaller memory footprint for data
storage than qpOASES. It is of importance to note that
𝑁 and 𝑁𝑞 are the tuning knobs for memory footprint.

F. Computational complexity analysis HildrethAct and
qpOASES

In this section, we compare computational complexity
of HildrethAct and qpOASES, in terms of number of
arithmetic operations, such as additions, subtractions and
multiplications.

1) HildrethAct: The total number of arithmetic opera-
tions has been found as

4𝑁2 + 𝑁(2𝑐 − 2) + 𝑝(2𝑁 + 1) + 2+
(𝛼 − 1) [3(𝑐 − 1)2 + 6(𝑐 − 1) + 5 + 𝑐 + 𝑝(2𝑐 + 1)] +
𝛽 [2𝑐2 + 7𝑐 + 2]

where 𝑁 is the prediction horizon, 𝑁𝑞 is the constraint
horizon such that 𝑁min ≤ 𝑁𝑞 ≤ 𝑁 , the total number of
constraints is denoted as 𝑝 = 6𝑁𝑞 + 2 and 𝑐 ≤ 𝑝

2 denotes
the number of active constraints (lower and upper bounds
cannot be active simultaeously), 𝛼 > 0 denotes how many
times constraints are added to active set A (Step 5) and
𝛽 ≥ 0 denotes how many times constraints are removed

V.T.T. (Victor Trừơng Thịnh) Lâm Page 6 of 16

Graduation MSc thesis Wednesday July 1, 2020 9:00 − 11:40

Controller Plant

R

r

Future	reference

R

y

u

CPU

du

iter

act

flag

Constrained	MPC

u value

Control	input	to
actuator	signal

Convert	to	uint16 DAC0

ARDUINO

Arduino	Actuator	Pin

ARDUINO

Pin:	0
Arduino	Sensor	Pin

Convert	to	double

value y

Sensor	signal	to
output

ReadResolution

Analog	Read	12	bits

Data

Figure 2: Simulink diagram for real-time experiments.

from active set A (Step 5.d). These steps refer to the step-
by-step algorithm of HildrethAct in Appendix C.

It should be noted that 𝑁 , 𝑝, 𝛼 and 𝛽 are fixed, while 𝑐
is not. Furthermore, 𝑁 , 𝑝 are know a priori, while 𝛼, 𝛽, 𝑐
are not. Since 𝑁, 𝑐, 𝑝 > 0 and 𝑐, 𝑁 < 𝑝, the following terms
are dominating

4𝑁2 + 𝑝(2𝑁 + 1) + (𝛼 − 1) [3(𝑐 − 1)2] + 2𝛽𝑐2.

2) qpOASES: The total number of arithmetic opera-
tions has been found as

5𝑁2 − 2𝑁𝑐 + 2𝑐2 + 𝑁(𝑝 − 𝑐)+
𝛼 [10𝑁2 − 6𝑁𝑐 + 2𝑐2 + 𝑁(𝑝 − 𝑐)] +
𝛽 [71

2𝑁2 − 21
2𝑁𝑐 + 27

8𝑐2 + 𝑁(𝑝 − 𝑐)] .

Since 𝑁, 𝑐, 𝑝 > 0 and 𝑐, 𝑁 < 𝑝, the following terms are
dominating

5𝑁2 + 2𝑐2 + 𝛼 [10𝑁2 + 2𝑐2] + 𝛽 [71
2𝑁2 + 27

8𝑐2] .

3) Comparison: HildrethAct is less computational com-
plex and has lower CPU-time than qpOASES, when we
consider the 𝑁2 in the dominating terms. However, since
usually 𝑝 ≫ 𝑐, then HildrethAct becomes slower the more
constraints are active as its computational complexity
depends on

𝑝(2𝑁 + 1) + 𝛼𝑝(2𝑐 + 1) + 2𝛽𝑐2,

while qpOASES becomes faster the more constraints are
active as its computational complexity depends on

𝑁(𝑝 − 𝑐) + 𝛼𝑁(𝑝 − 𝑐) + 𝛽𝑁(𝑝 − 𝑐).

Again, it is of importance to note that 𝑁 and 𝑁𝑞 are the
tuning knobs for computational complexity.

V. Real-time implementation on Arduino

In this section, we discuss how to make real-time imple-
mentation of the MPC problem suitable for an Arduino.
First, we present the workflow from designing in Matlab
to running an experiment on the Arduino. Finally, we
present a method to prevent the QP-solver to stall during
real-time experiments, followed by other considerations.

A. Workflow
The Simulink diagram used in the performed experi-

ments is shown in Fig. 2. The model must run in External
Mode (Monitor & Tune) and the Arduino Due should be
connected to a PC. In- and output pin blocks from the
Arduino Support Package for Simulink and Matlab are
necessary for assigning pins to variables such as control
input 𝑢 and measured output 𝑦. Data type conversion of
type uint16 and double are necessary for Arduino specific
reasons.

The workflow that starts from Matlab-script and ends
up in real-time experiment control is given as:

1. Write m-function in Matlab for
• constrained MPC with integral action
• future reference generator
• mapping from control input 𝑢 to actuator value
• mapping from sensor value to output 𝑦

2. Connect Arduino Due to PC via USB-cable
3. Call the m-functions in User-defined MATLAB-

function blocks in Simulink
4. Connect the blocks to in- and output pin blocks from

the Arduino Suppose Package for Simulink and Matlab
5. Add an S-function Builder Block for reading 12 bits

analog signals and select Arduino Due as hardware
6. Click Monitor & Tune (External Mode) to deploy

generated C-code to Arduino board and the setup can
be controlled in real-time standalone on the board.
Sensor and actuator data can be viewed in real-time
and logged via Scope.

Overrun is defined as

CPU-time > 𝑇𝑠

where 𝑇𝑠 is the sampling period. In Simulink, the option
Overrun detection can be enabled where a built-in LED
(usually on pin 13) will light up when overrun occurs.

In Matlab, CPU-time can be measured as:

Script 1: CPU-time measurement in Matlab
1 startTime = tic;
2
3 % Code for measurement
4
5 elapsed = toc(startTime);

Similarly, we can measure CPU-time on an Arduino using
the following code in a Matlab-function:

V.T.T. (Victor Trừơng Thịnh) Lâm Page 7 of 16

Graduation MSc thesis Wednesday July 1, 2020 9:00 − 11:40

Script 2: CPU-time measurement in Arduino
1 startTime = uint32(0);
2 finishTime = uint32(0);
3
4 if (coder.target('rtw'))
5 startTime = coder.ceval('micros');
6 end
7
8 % Code for measurement
9

10 if (coder.target('rtw'))
11 finishTime = coder.ceval('micros');
12 end
13
14 elapsed = finishTime - startTime;

which can be called in a Simulink-block. The Simulink-
model can be converted into C-code and deployed on an
Arduino.

After converting the Simulink-model into C-code and
deploying to Arduino, the Diagnostic View-window pops
up which will display the memory footprint of the deployed
C-code.

The reference trajectory is designed in advance and
known a priori. However, we cannot store all samples as it
would require a huge memory footprint or even overflow
the memory. Rather, we store only the values of each piece-
wise constant part and compute R𝑘 based on these values.
Furthermore, constants such as 2Γ𝑇 ΓΦ, 2Γ𝑇 Ω in (3) and
(𝐴 − 𝐿𝐶) in (7) can be precomputed offline to save CPU-
time.

Details about the blocks in Fig. 2 such as future refer-
ence generation (futureR), constrained MPC with integral
action algorithm (ConMPC), sensor mapping (Sensor) and
actuator mapping (Actuator) are as step-by-step algo-
rithms provided in Appendix E, rather than pseudo-code
in order to have a clear overview of the mathematics.
These functions were implemented as efficiently as possible
and optimized for the Arduino Due, but these details are
omitted due to space limitations.

B. Stalling prevention
There are two causes why a QP-solver stalls. The first

cause is constraint infeasibility, when the feasible set
defined by affine constraints 𝑀𝜃 ≤ 𝛾 is empty. The second
cause is time infeasibility, when the QP-solver has not
finished within the sampling period 𝑇𝑠, i.e. CPU-time
> 𝑇𝑠.

1) Constraint infeasibility: A QP-problem is constraint
infeasible when the feasible set described by the polytope
defined by the affine constraints 𝑀𝜃 ≤ 𝛾 is empty, i.e. it
has zero vertices. There is a Matlab-function plotregion
[29] which contains an algorithm for vertex enumeration
and can compute the vertices of a feasible set, however it
works only for 3D/2D feasible sets. For higher dimensions,
this is a NP-hard problem [30]. Another reason why we do
not compute these vertices, if possible, is that it may take
a while to compute, which is challenging for small 𝑇𝑠.

2) Time infeasibility: Especially for small 𝑇𝑠, it is chal-
lenging to achieve CPU-time < 𝑇𝑠. The complexity of the
QP could be reduced by removing redundant constraints.
Redundant constraints are constraints that do not change
the feasible set when they are removed. Note they are
different than inactive constraints, because while they do
not change the optimal solution when they are removed,
but they may not be redundant. However, it still may take
a while to compute the redundant constraints and again

Table VI: Flag-system: meanings, causes and actions
Flag Meaning Cause Action

0
QP-solver fully
converged to
feasible and
optimal solution

QP is
feasible
and
CPU-time
< 𝑇𝑠

Apply solution
𝑢(𝑘) to plant

1
𝜆act in
QP-solver is NaN
or ∞

QP is
infeasible

Compute
unconstrained
solution
𝜃0 = −𝐸−1𝐹
with saturation
such that Δ𝑢 ∈
[Δ𝑢min, Δ𝑢max]
and
𝑢 ∈ [𝑢min, 𝑢max]

2

Solution of
QP-solver is
sub-optimal and
is infeasible
(does not satisfy
Δ𝑢 ∈
[Δ𝑢min, Δ𝑢max]
and 𝑢 ∈
[𝑢min, 𝑢max])

QP-solver
terminated
too early,
because
max_iter is
reached

Saturate
sub-optimal
solution such
that Δ𝑢 ∈
[Δ𝑢min, Δ𝑢max]
and
𝑢 ∈ [𝑢min, 𝑢max]

3

Solution of
QP-solver is
sub-optimal but
is feasible
(satisfies Δ𝑢 ∈
[Δ𝑢min, Δ𝑢max]
and 𝑢 ∈
[𝑢min, 𝑢max])

QP-solver
terminated
too early,
because
max_iter is
reached

Apply solution
𝑢(𝑘) to plant

could take longer than the permitted sampling time 𝑇𝑠.
Another reason why we do not compute the redundant
constraints, is that we want to keep the affine constraints
𝑀𝜃 ≤ 𝛾 as generalized as possible.

3) Flag-system: Hence, as an alternative solution for
handling stalling problem, we opted for using a flag sys-
tem, which has been implemented for the HildrethAct
step-by-step algorithm in Appendix C (Steps 5.d, 5.e
and 5.f) and ConMPC-block step-by-step algorithm pro-
vided in Appendix E. The meanings, causes and actions
for the flag-system are summarized in Table VI, where
HildrethAct is meant by ’QP-solver’ and constraint in-
feasibility is meant by ’infeasible’. Using the flag-system,
both causes of QP-solver stalling are solved. The first
cause, constraint infeasibility is prevented by checking
whether 𝜆act in QP-solver is NaN or ∞. The second cause,
time infeasibility (CPU-time > 𝑇𝑠) is handled by tuning
max_iter such that CPU-time < 0.9𝑇𝑠. But we have
to make sure that computing the flags with if-, else-
statements and computing the unconstrained saturated
solution, as provided in Appendix C and Appendix E,
must be done within 0.1𝑇𝑠, to make sure that the total
CPU-time < 𝑇𝑠.

C. Other considerations
Computing the unconstrained solution and the con-

strained solution, in Step 1 and Step 5 respectively of the
original Hildreth, are equivalent to solving 𝜕 ̄𝐽(𝜃)

𝜕𝜃 = 0 (with
cost function ̄𝐽) and the KKT equation

𝐸𝜃 = −𝐹, 𝐸𝜃 = −𝐹 − 𝑀𝑇 𝜆𝑚

resepctively, for 𝜃 ∈ R𝑁 , where 𝑁 is the prediction
horizon. Hence, we are solving a system of linear equations
with 𝑁 unknowns in 𝑁 linear equations. To keep it as

V.T.T. (Victor Trừơng Thịnh) Lâm Page 8 of 16

Graduation MSc thesis Wednesday July 1, 2020 9:00 − 11:40

a more general problem, suppose we want to solve the
system of linear equations

𝐴𝑥 = 𝑏
for 𝑥 ∈ R𝑛, where 𝑛 ∈ N, which consists of 𝑛 unknowns in
𝑛 linear equations. There are three approaches for solving
this problem, which are summarized in the following and
we draw a few conclusions on these approaches.

1) Approach 1: Offline inverse, where we precompute
offline invA = inv(A), then x = invA*b.

This is the fastest approach as tested in Matlab and
on the Arduino Due. It resulted in good tracking perfor-
mance, because CPU-time < 𝑇𝑠, which as indicated by
the built-in LED not lighting up. However, this approach
is only suitable for when 𝐴 ∈ R𝑛×𝑛 is a constant. This is
the case for linear MPC, where linearization is done once
around an equilibrium point. The hessian 𝐸 ∈ R𝑁×𝑁 is
therefore static, with prediction horizon 𝑁 . This approach
is therefore also applied to Hildreth+’ (see Appendix B)
and HildrethAct (see Appendix C).

2) Approach 2: Offline LU-factorization, where we pre-
compute offline 𝐿𝑈 = 𝐴 as [L,U,~] = lu(A,'vector')
and solve 𝐿(𝑈𝑥) = 𝑏 using 𝐿𝑦 (forward substitution) and
𝑈𝑥 = 𝑦 (backward substitution). The substitutions are
fast since 𝐿 is lower-triangular with 1’s in diagonal and 𝑈
is upper-triangular.

This approach is bit slower than the first one as tested
in Matlab and on the Arduino Due. It resulted in
poor tracking performance, because CPU-time > 𝑇𝑠 as
indicated by the built-in LED lighting up. However, this
is the only option when 𝐴 is varying. This is the case
for MPC algorithms based on time-varying linear models,
where hessian 𝐸 is changing every time.

3) Approach 3: Solve system of equations online, where
we solve 𝐴𝑥 = 𝑏 online using x = linsolve(A,b);, x =
A\b; or x = mldivide(A,b);.

This approach succeeded in Matlab, but failed dur-
ing compiling to C/C++-code and uploading to the Ar-
duino Due. This is due to x = mldivide(A,b) and x
= A\b requiring the mldivide-library function and x =
linsolve(A,b) requiring the linsolve-library function,
which were both not found for the Arduino Due.

We can summarize the findings as follows. First, offline
LU-factorization is slower than offline inverse computation
as verified on Matlab and Arduno Due. Second, online
LU-factorization, however, is faster than online inverse
computation as verified on Matlab.

VI. Experimental validation on a magnetic
levitator setup

Experimental validation will be done on a magnetic
levitator setup as it has fast nonlinear dynamics, with
sampling period chosen equal to 𝑇𝑠 = 5 ms. Its dynamics
are described by the continuous-time nonlinear differential
equation given as

𝑚 ̈𝑦 = 𝑐𝑚𝑢 + 𝑝𝑚
(𝑎 − 𝑑) − 𝑦 − 𝑚𝑔 (9)

with coil current as control input 𝑢 and vertical ball
position as measured output 𝑦. The nonlinear differential
equation (9) can be linearized around an operating point
(𝑦0, 𝑢0) = (0.0225, 1.23) and can be rewritten to the
continuous-time state-space model Σ𝑐 with affine term

𝑤𝑐, with state 𝑥 = [𝑦 𝑣]𝑇 , where 𝑣 is the vertical
ball velocity. The derivation of the discrete-time state-
space model Σ𝑑 with affine term 𝑤𝑑 follows the approach
summarized in Appendix D. This discrete-time state-space
model is then used for integral action MPC.

First, we present simulation results performed in Mat-
lab on a PC. The results show accuracy with respect
to quadprog among the QP-solvers qpOASES, Hildreth
and HildrethAct. Simulation results of Hildreth+’ on a
different application can be found in [25]. QP-solvers Hil-
dreth and HildrethAct were designed in Matlab m-scripts,
but are converted into MEX-files for fair comparison with
qpOASES, which also is a MEX-file. However, quadprog
is not converted into a MEX-file, because its code is
protected and we regard it as a black-box. MEX-files can
link precompiled C/C++-code to a Matlab-function that
can be called inside Matlab. Hence compiling time is
excluded, because it does not need to recompile Matlab
m-code to C/C++ every time. Since Arduino uses precom-
piled C/C++-code as well, this gives a realistic result, only
the different clock frequencies of the PC and Arduino play
a role.

Second, we will use the HildrethAct QP-solver on the
magnetic levitator experimental setup using an Arduino
Due microcontroller. Here, we present reference tracking,
flag-system, computational complexity in terms of CPU-
time and memory footprint of HildrethAct on the Arduino
Due. The PC is only used for data logging and for com-
piling Simulink-code into C/C++-code that is deployed
on the Arduino Due. The QP-solver HildrethAct runs
standalone on the Arduino Due. We did not run qpOASES
on the Arduino, because it had a big memory footprint (or
even memory overflow) and required large sampling period
𝑇𝑠 as seen in the literature study in the introduction, such
as [21], [22], [23].

A. Simulations
The simulations are performed in Matlab on an Acer

Aspire 5 laptop with 8.00 GB RAM (7.66 GB available)
and processor clock speed of 1.99 GHz (@1.80 GHz). Since
the Arduino Due has clock frequency of 84 MHz, there is
a factor difference of around 21× in the CPU-time of the
laptop in simulation.

The simulation lasts for 70 s and with sampling time
𝑇𝑠 = 4 ms this is equivalent to 17500 samples. The
reference is a square wave with amplitude of 4 mm around
𝑦0 = 0.0225 m and each level lasts for 10 seconds.

1) Results: The CPU-time, accuracy in terms of the
error defined in (1) with respect to quadprog and num-
ber of iterations are presented in Fig. 3, zoomed in for

Table VII: MPC parameters for simulation
Parameter Value Unit
Stage cost weight 𝑄 1 [−]
Stage cost weight 𝑅 0.02 [−]
Terminal cost weight 𝑃 2𝑄 [−]
Prediction horizon 𝑁 30 [−]
Constraint horizon 𝑁𝑞 30 [−]
Sampling period 𝑇𝑠 4 [ms]
[Δ𝑢min, Δ𝑢max] [−0.025, 0.025] [A]
[𝑢min, 𝑢max] [0.73, 1.73] [A]
[𝑦min, 𝑦max] [0.018, 0.028] [m]
max_iter ∞ [−]
Reference [𝑟min, 𝑟max] [0.0185, 0.0265] [m]

V.T.T. (Victor Trừơng Thịnh) Lâm Page 9 of 16

Graduation MSc thesis Wednesday July 1, 2020 9:00 − 11:40

(a) Sample interval [7450, 7620] [−] (b) Sample interval [9950, 10080] [−]
Figure 3: Simulation results.

Table VIII: Average, maximum, minimum CPU-time and accuracy of QP-solvers qpoases, Hildreth, HildrethAct

QP-solver Avg. CPU-time Max. CPU-time Min. CPU-time Accuracy: average error w.r.t.
quadprog

quadprog 0.0031 0.0333 0.0022 −
qpOASES upt w 5.0117 ⋅ 10−5 0.0012 4.1100 ⋅ 10−5 1.5463 ⋅ 10−5

Hildreth 6.2905 ⋅ 10−5 0.0023 4.8000 ⋅ 10−5 1.5460 ⋅ 10−5

HildrethAct 2.8351 ⋅ 10−5 3.7010 ⋅ 10−4 2.4600 ⋅ 10−5 1.5463 ⋅ 10−5

two sample intervals. Similar results can be observed for
other time windows, but are not reported due to space
limitations. The average, maximum, minimum CPU-time
and accuracy of the QP-solvers in terms of the error with
respect to quadprog are summarized in Table VIII on the
next page, where again the error is defined in (1). In each
column the best numerical result is highlighted in blue
with bold font. Here, the abbreviation ’qpOASES upt w’
denotes the qpOASES QP-solver, but with ’warm-start’-
and ’update’-features turned on. The ’warm-start’-feature
permits active set A to be reused from the previous sample,
which results in less number of iterations because only
changes in A are updated. The ’update’-feature permits
qpOASES to update 𝐹 and 𝛾 in (8) only as they depend
on estimated state ̂𝑥 and future reference R𝑘. Hildreth and
HildrethAct are cold-started, which means that active set
A is computed from scratch, which means more iterations
are needed.

2) Observations: We can make four observations from
Fig. 3 and Table VIII. First, we can see that HildrethAct
has the same accuracy as qpOASES. This is also true for
other prediction horizons 𝑁 and constraint horizons 𝑁𝑞.
Second, we can see that HildrethAct needs significantly
less iterations than Hildreth, which therefore makes Hil-
drethAct faster than Hildreth. Third, although qpOASES
needs less iterations than HildrethAct due to warm-start,
HildrethAct is actually faster if we divide the CPU-time
by the number of iterations. Finally, HildrethAct has the
lowest maximum, minimum and average CPU-time.

3) MPC parameters: All MPC parameters are summa-
rized in Table VII on the previous page.

Note that for simulation we use 𝑁𝑞 = 𝑁 , which means

the QP has full complexity. Furthermore, max_iter is set
to ∞ for QP-solver HildrethAct to fully converge to an
optimal and feasible solution with flag 0.

Figure 4: Experimental setup.

Magnetic levitator

Arduino Due

PC

Measured output 𝑦Control input 𝑢

Log data

Figure 5: Schematic experimental setup (simplified).

V.T.T. (Victor Trừơng Thịnh) Lâm Page 10 of 16

Graduation MSc thesis Wednesday July 1, 2020 9:00 − 11:40

(a) Measured output 𝑦 tracking reference 𝑟

(b) Control input 𝑢

B. Real-time experiments
In Fig. 4, a picture of the magnetic levitator experimen-

tal setup is shown, where the ball is floating (magnetic
force is equal to gravity) during experiment. In the figure
can also be seen that power-LED turned on but built-in
pin 13 (for overrun detection) is off because CPU-time
< 𝑇𝑠.
The blue USB-cable in Fig. 4 connects the Arduino to
the PC for data logging and uploading the C/C++-code.
The PC is a Microsoft Surface Pro 3, but its specifications
are not relevant. HildrethAct is run standalone on the
Arduino Due. A simplified schematic representation of the
experimental setup is sketched in Fig. 5.

A shield forms the bridge between the magnetic levita-
tor setup and the Arduino Due. In our case, pin DAC1 on
the shield is connected to the actuator that provides the
coil current as control input 𝑢 and pin 0 on the shield is
connected to the sensor for reading vertical ball position
as output 𝑦.

The experiment lasts for 70 s and with sampling time
𝑇𝑠 = 5 ms this is equivalent to 14000 samples. The
reference is a square wave with amplitude of 2 mm around
𝑦 = 0.0225 m and each level lasts for 10 seconds.

1) Results: Here, HildrethAct is cold-started, because
the active set may be completely different from previous

(c) Incremental control input Δ𝑢

(d) CPU-time

iterations due to disturbances on the experimental setup.
Experimental data are presented in Fig. 6 on the next two
pages. The plots showing the number of iterations km and
flag-indicator were omitted due to space limitations. At
most 4 iterations and on some occasions 3 and 2 iterations
are performed, but mostly 1. On some occasions the QP-
solver did not fully converge, as max_iter of 4 has been
reached and the corresponding flags are 3 and 2 in order
to respect the constraints on Δ𝑢, 𝑢 and 𝑦. However, in
most cases the QP-solver converged fully to an optimal
and feasible solution as the flag is mostly 0.

2) Observations: We can make four observations about
the experimental data. First, the output 𝑦 tracks the
reference 𝑟 without offset due to the integral action MPC.
There is some overshoot, but the output settles to the
steady-state value pretty fast. There are also high fre-
quency oscillation when the setpoint is reached in steady-
state, this could be reduced by choosing a smaller 𝑇𝑠. We
can also see that the controller anticipates for future refer-
ence changes by jumping early. PID cannot anticipate and
therefore may have larger overshoots and higher settling
time. Second, we can see that CPU-time < 𝑇𝑠, which is
also indicated by the built-in LED on pin 13 which did
not light up. Finally, we can see that constraints on Δ𝑢,
𝑢 and 𝑦 are respected and CPU-time is the highest when

V.T.T. (Victor Trừơng Thịnh) Lâm Page 11 of 16

Graduation MSc thesis Wednesday July 1, 2020 9:00 − 11:40

(e) Number of active constraints 𝑐
Figure 6: Experimental data.

constraints are active, but it is useful to see that mostly
constraints are not active.

3) MPC parameters: All MPC parameters are sum-
marized in Table IX on the next page. The parameters
for simulation were different with the idea to have as
many constraints active as possible for better comparison
between the QP-solvers. In simulation the constraints were
more tight and the cost weights 𝑄, 𝑅, 𝑃 were tuned
accordingly. Note that for experiment we use 𝑁𝑞 ≪ 𝑁 , to
reduce the complexity of the QP. Furthermore, max_iter
is set to 4 as this value approximately corresponds to CPU-
time < 0.9𝑇𝑠, which results in flags 0, 2, or 3. The flag of
1 did not occur, because the QP was always feasible and
𝜆 was not NaN or ∞.

4) Memory footprint HildrethAct: The memory foot-
print of HildrethAct on the Arduino Due (Atmel ARM
Cortex-M3) is presented in Table X on the next page. It
is much lower than the ones for QP-solvers in the literature
discussed in the introduction, such as [21], [22], [23].

Table IX: MPC parameters for experiment
Parameter Value Unit
Stage cost weight 𝑄 1 [−]
State cost weight 𝑅 0.0005 [−]
Terminal cost weight 𝑃 40𝑄 [−]
Prediction horizon 𝑁 14 [−]
Constraint horizon 𝑁𝑞 4 [−]
Sampling period 𝑇𝑠 5 [ms]
[Δ𝑢min, Δ𝑢max] [−0.1, 0.1] [A]
[𝑢min, 𝑢max] [0, 3] [A]
[𝑦min, 𝑦max] [0.018, 0.028] [m]
max_iter 4 [−]
Baud rate 115200 [bits/s]
Reference [𝑟min, 𝑟max] [0.0205, 0.0245] [m]

Table X: Memory footprint HildrethAct on Arduino Due
(Atmel ARM Cortex-M3)

Memory type Bytes % full Total
Program (.text) or
Flash memory 60688 11.6 512 kB
Data (.data + .bss)
or SRAM 15020 15.3 96 kB

VII. Conclusion

In this thesis, we designed two MPC-QP solvers Hil-
dreth+’ and HildrethAct, which are based on the Hildreth
QP-solver algorithm. Hildreth’s algorithm has been used
as a starting point, due to its simple implementation
of KKT-conditions. The HildrethAct QP-solver has been
analysed for its memory footprint and computational com-
plexity.

The MPC problem is made suitable for real-time control
on an Arduino by reducing the complexity of a QP by
introducing the concept of constraint horizon 𝑁𝑞. Work-
flow from design in Matlab to real-time implementation
on an Arduino has been described. The flag-system is
chosen to prevent stalling of our QP-solver. Accuracy
of HildrethAct has been compared with Hildreth and
qpOASES in simulation on a PC. Finally, integral action
MPC with affine term using HildrethAct as the QP-solver
has been deployed standalone on an Arduino Due which
succesfully tracked a reference on the magnetic levitator
setup. This is a fast nonlinear system that requires a
small sampling period of 𝑇𝑠 = 5 ms. HildrethAct had a
much smaller memory footprint than the QP-solvers in
the literature and CPU-time < 𝑇𝑠 during experiment.

Recommendations for future research is twofold. First,
formulating a quasi-LPV approach for the magnetic levita-
tor setup, as this approach exploits the nonlinearity of the
model. Second, conducting research on infeasibility detec-
tion by QP-solvers quadprog, qpOASES and mpcqpsolver.

VIII. Acknowledgements

First, I would like to thank my daily supervisor dr.
Mircea Lazar for organizing this project. His advice and
knowledge of MPC helped me a lot in designing the QP-
solvers. His idea to start with the Hildreth’s QP-solver
was a good move and inspired the design of the new
QP-solvers. He is always willing to help and discuss any
problems I encountered. I learned a lot from his detailed
feedback on my progress reports and final thesis.

I am thankful to ing. Will Hendrix for providing techni-
cal support and Simulink software for the experimental
setup and Arduino.

Many thanks to the people from MathWorks for trou-
bleshooting Matlab and Simulink related problems and
to MSc Shengling Shi for sharing ideas about the experi-
mental setup.

I would also like to thank the graduation committee
consisting of prof. Paul van den Hof, dr. Mircea Lazar, dr.
Sophie Haesaert and dr. Dip Goswami for providing me
detailed feedback during the halfway evaluation. It was
very useful to reflect on my work and I learned a lot from
it.

Last but not least, I would like to thank my parents
Huỳnh Tuyết Nga and Lâm Thành Hồ and my sister Cindy
Lâm Minh Kiều for their support during my thesis and
making my study possible. During my studies, I learned
many important things from them.

References

[1] P. Zometa, M. Kögel, T. Faulwasser, and R. Findeisen, “Imple-
mentation Aspects of Model Predictive Control for Embedded
Systems,” Proceedings of the American Control Conference,
2012.

V.T.T. (Victor Trừơng Thịnh) Lâm Page 12 of 16

Graduation MSc thesis Wednesday July 1, 2020 9:00 − 11:40

[2] D. Piga, S. Formentin, and A. Bemporad, “Direct data-driven
control of constrained linear parameter-varying systems: A hi-
erarchical approach,” IEEE Transactions on Control Systems
Technology, vol. 26, pp. 1422–1429, 2018.

[3] P. Chalupa, J. Novák, and M. Malý, “Modelling and model
predictive control of magnetic levitation laboratory plant,” Pro-
ceedings 31st European Conference on Modelling and Simula-
tion, 2017.

[4] R. Kouki, H. Salhi, and F. Bouani, “Application of Model Pre-
dictive Control for a thermal process using STM32 Microcon-
troller,” 2017 International Conference on Control, Automation
and Diagnosis (ICCAD’17), Hammamet - Tunisia, 2017.

[5] pronenewbits, “Arduino Unconstrained MPC Library.” [On-
line]. Available: https://github.com/pronenewbits/Arduino_
Unconstrained_MPC_Library

[6] M. Gulan, G. Takács, N. A. Nguyen, S. Olaru, P. Rodríguez-
Ayerbe, and B. Rohal’-Ilkiv, “Efficient Embedded Model Predic-
tive Vibration Control via Convex Lifting,” IEEE Transactions
on Control Systems Technology, vol. 27, pp. 48 – 62, 2019.

[7] J. Hedengren, “Process Control Temperature Lab.” [Online].
Available: https://github.com/APMonitor/arduino

[8] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd,
“OSQP: An Operator Splitting Solver for Quadratic Programs,”
arXiv: 1711.08013, 2019.

[9] H. J. Ferreau, “Model Predictive Control Algorithms for Ap-
plications with Millisecond Timescales,” Universiteit Leuven,
Department of Electrical Engineering, PhD thesis, 2011.

[10] H. J. Ferreau, “An Online Active Set Strategy for Fast Solution
of Parametric Quadratic Programs with Applications for Pre-
dictive Engine Control,” Ruprecht-Karls-Universität Heidelberg,
MSc thesis, 2006.

[11] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and
M. Diehl, “qpOASES: a parametric active-set algorithm for
quadratic programming,” Mathematical Programming Compu-
tation, vol. 6, pp. 327–363, 2014.

[12] L. Wang, “Model Predictive Control System, Design and Imple-
mentation using Matlab,” Springer, 2009.

[13] J. V. Frasch, M. Vukov, H. J. Ferreau, and M. Diehl, “A
dual Newton strategy for the efficient solution of sparse
quadratic programs arising in SQP-based nonlinear MPC,”
Optimization Online, pp. 1–8, 2013. [Online]. Available: http:
//www.optimization-online.org/DB_FILE/2013/07/3972.pdf

[14] J. V. Frasch, M. Vukov, H. J. Ferreau, and M. Diehl, “A new
quadratic programming strategy for efficient sparsity exploita-
tion in SQP-based nonlinear MPC and MHE,” 19th World
Congress, IFAC, 2014.

[15] S. Zavitsanou, A. Chakrabarty, E. Dassau, and F. J. Doyle III,
“Embedded Control in Wearable Medical Devices Application
to the Artificial Pancreas,” Processes, vol. 4, 2016.

[16] B. J. T. Binder, D. K. M. Kufoalor, and T. A. Johansen, “Scal-
ibility of QP solvers for Embedded Model Predictive Control
Applied to a Subsea Petroleum Production System,” 2015 IEEE
Conference on Control Applications (CCA), 2015.

[17] D. K. M. Kufoalor, B. J. T. Binder, H. J. Ferreau, L. Imsland,
T. A. Johansen, and M. Diehl, “Automatic Deployment of In-
dustrial Embedded Model Predictive Control using qpOASES,”
2015 European Control Conference (ECC), 2015.

[18] B. Huyck, L. Callebaut, F. Logist, H. J. Ferreau, M. Diehl, J. De
Brabanter, J. F. Van Impe, and B. De Moor, “Implementation
and Experimental Validation of Classic MPC on Programmable
Logic Controllers,” 2012 20th Mediterranean Conference on
Control & Automation (MED), Barcelona, Spain, 2012.

[19] B. Huyck, H. J. Ferreau, M. Diehl, J. De Brabanter, J. F.
Van Impe, B. De Moor, and F. Logist, “Towards Online Model
Predictive Control on a Programmable Logic Controller: Prac-
tical Considerations,” Mathematical Problems in Engineering,
vol. 23, pp. –, 2012.

[20] B. Huyck, J. De Brabanter, B. De Moor, J. F. Van Impe, and
F. Logist, “Online model predictive control of industrial pro-
cesses using low level control hardware: a pilot-scale destillation
column case study,” Control Engineering Practice, vol. 28, pp.
34–48, 2014.

[21] C. Ibañez, C. Ocampo-Martinez, and B. Gonzalez, “Embed-
ded optimization-based controllers for industrial processes,”
2017 IEEE 3rd Colombian Conference on Automatic Control
(CCAC), pp. 1–6, 2017.

[22] C. Ibañez and C. Ocampo-Martinez, “Implementation of
optimization-based controllers for industrial processes,”
Barcelona School of Industrial Engineering (ETSEIB),
Barcelona, Spain, MSc thesis, 2017.

[23] S. Adhau, S. Patil, D. Ingole, and D. Sonawane, “Implemen-
tation and Analysis of Nonlinear Model Predictive Controller

on Embedded Systems for Real-time Applications,” 2019 18th
European Control Conference (ECC), 2019.

[24] Arduino, “Arduino Due.” [Online]. Available: https://store.
arduino.cc/arduino-due

[25] V. T. T. Lam, A. Sattar, L. Wang, and M. Lazar, “Fast Hildreth-
based Model Predictive Control of Roll Angle fir a Fixed-
Wing UAV,” Accepted for presentation at the 2020 IFAC World
Congress, Berlin, Germany, July 2020.

[26] S. Mittal, “A Study of Successive Over-relaxation (SOR)
Method Parallelization Over Moderm MPC Languages,” Inter-
national Journal of High Performance Computing and Network-
ing, Inderscience, vol. 7, pp. 292 – 298, 2014.

[27] S. Roberts, “Topic 3, Iterative methods for 𝐴𝑥 = 𝑏, 3.2 Jacobi
method, 3.3 Gauss-Seidel method,” University of Oxford, Ma-
chine Learning Research Group, Lecture notes, 2010.

[28] Y. Cao, “Update Inverse Matrix,” 2008. [On-
line]. Available: https://www.mathworks.com/matlabcentral/
fileexchange/18063-update-inverse-matrix

[29] P. Bergström, “Plot 2d/3d region,” 2010. [On-
line]. Available: https://www.mathworks.com/matlabcentral/
fileexchange/9261-plot-2d-3d-region

[30] B. Grünbaum, “Convex Polytopes,” Springer, 2003. [Online].
Available: https://www.springer.com/gp/book/9780387004242

Appendix A
State-of-the-art: memory footprint and

CPU-time of various QP-solvers
The details of memory footprint and CPU-time for

various QP-solvers found in the literature are summarized
in Table XI on the next page.

Appendix B
Step-by-step Hildreth+’ algorithm

0. The persistent variable 𝜆̃ is defined for warm-start.
Reuse solution from previous iteration 𝜆̃ = 𝜆̃old

1. Unconstrained solution: 𝜃 = −𝐸−1𝐹
2. Compute 𝐾 = 𝛾 − 𝑀𝜃, if constraints satisfied, i.e.

all(K >= 0) then return else continue end
3. Compute indices that satisfy 𝐾 < 𝜎 and extract

corresponding rows and columns of 𝐻 and 𝐾 to be
𝐻̃ and 𝐾̃ resp.

4. Using successive overrelaxation (SOR), update 𝜆̃𝑚 in
a scalar-based for-loop, with

𝑤𝑚
𝑖 = (1 − 𝜔) 𝜆̃𝑚−1

𝑖 + 𝜔 ⋅ 1
𝐷𝑖𝑖

[−𝑘𝑖 − (𝐿𝑖 + 𝑈𝑖) 𝜆̃𝑚−1]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

original

𝜆̃𝑚
𝑖 = max (0, 𝑤𝑚

𝑖)
if 𝑒 = 𝜆𝑚 − 𝜆𝑚−1, 𝑒𝑇 𝑒 ≤ 𝛿 or 𝑚 ≥ 𝑚̄ then stop
else continue end

5. Extract rows of 𝑀 corresponding to indices from Step
4 and return 𝜃 = 𝜃 − 𝐸−1𝑀̃𝑇 ̃𝜆𝑚, where 𝜃 from Step
1 is reused.

6. Store 𝜆̃old = 𝜆̃ for warm-start.

Appendix C
Step by step HildrethAct algorithm

1. Define maximum number of iterations max_iter,
flag = 0

2. Compute unconstrained solution 𝜃0 = −𝐸−1𝐹
3. Compute 𝐾0 = 𝛾 − 𝑀𝜃0
4.a. Set iteration counter to km = 1

b. Compute 𝐾min = min (𝐾0)
c. if 𝐾min ≥ 0 then stop else continue end
d. Initialize empty active set A = ⌀, empty Lagrange

multiplier 𝜆act = ⌀ and inverse matrix 𝐻−1
act = ⌀

5. while 𝐾min < 0 (infeasible) then

V.T.T. (Victor Trừơng Thịnh) Lâm Page 13 of 16

https://github.com/pronenewbits/Arduino_Unconstrained_MPC_Library
https://github.com/pronenewbits/Arduino_Unconstrained_MPC_Library
https://github.com/APMonitor/arduino
http://www.optimization-online.org/DB_FILE/2013/07/3972.pdf
http://www.optimization-online.org/DB_FILE/2013/07/3972.pdf
https://store.arduino.cc/arduino-due
https://store.arduino.cc/arduino-due
https://www.mathworks.com/matlabcentral/fileexchange/18063-update-inverse-matrix
https://www.mathworks.com/matlabcentral/fileexchange/18063-update-inverse-matrix
https://www.mathworks.com/matlabcentral/fileexchange/9261-plot-2d-3d-region
https://www.mathworks.com/matlabcentral/fileexchange/9261-plot-2d-3d-region
https://www.springer.com/gp/book/9780387004242

Graduation MSc thesis Wednesday July 1, 2020 9:00 − 11:40

Table XI: State-of-the-art: memory footprints and CPU-time of various QP-solvers

Application Platform CPU-
speed

Total
memory QP-solver Sampling

period 𝑇𝑠
Memory
footprint

CPU-
time

Predic-
tion,
control
horizon
𝑁𝑝, 𝑁𝑐

Process control
of temperature
[18]

Siemens
CPU319-
3DP/PN
PLC

250
MHz 8 Mb qpOASES 1 s − Max.

125 ms
𝑁𝑝 = 22,
𝑁𝑐 = 7

Hildreth Max.
24 ms

Process control
of temperature
[19]

qpOASES − 112 kB Max.
210 ms

Hildreth 7 kB Max.
52 ms

Process control
of temperature
[20]

qpOASES − 51420
bytes

Max.
2026
ms,
Avg.
1308.8
ms

𝑁𝑝 = 50,
𝑁𝑐 = 10

Hildreth 53124
bytes

Max.
556 ms,
Avg.
212.4
ms

Process control
of water level
in tank [21]

National
Instru-
ments NI
myRIO-
1900

667
MHz

nonvolatile
512 MB,
DDR3 256
MB

qpOASES 1.430 s − 1430
ms

𝑁𝑝 = 𝑁𝑐 =
10

Process control
of water level
in tank [22]

707 KB 400 ms 𝑁𝑝 = 𝑁𝑐 =
5

756 KB 1430
ms

𝑁𝑝 = 𝑁𝑐 =
10

DC motor
control (2
states) [23]

Atmel
ARM
Cortex-M3

84
MHz

program
memory
512 kB,
SRAM 96
kB

qpOASES − 352 kB Avg.
242 𝜇s

𝑁𝑝 = 𝑁𝑐 =
5

qpDUNES 298 kB Avg.
305 𝜇s

Hovercraft
control (6
states) [23]

qpOASES,
qpDUNES 500 ms Memory

overflow
Not
avail-
able

Quadrotor
control (9
states) [23]

−

Process control
of petroleum
production [16]

ABB
AC500
PM592-
ETH
PLC

500
MHz

User
program 4
MB, user
memory 4
MB

qpOASES −
Program
372 kB,
Data 119
kB

Max.
12 ms,
Avg. 3
ms

17
variables,
83
inequalities

Process control
of liquid-gas
seperator [17]

1 s

Double
precision
floating
point: PLC
code size
1.59 MB,
data size
0.29 MB

Warm-
start,
double
preci-
sion:
max.
13.1
ms,
avg.
4.9 ms

24
variables,
96 inequal-
ities, 24
bounds

Electric pump
control [17]

Double
precision
floating
point: PLC
code size
0.37 MB,
data size
0.11 MB

Warm-
start,
double
preci-
sion:
max.
7.3 ms,
avg.
2.0 ms

17
variables,
78 inequal-
ities, 17
bounds

V.T.T. (Victor Trừơng Thịnh) Lâm Page 14 of 16

Graduation MSc thesis Wednesday July 1, 2020 9:00 − 11:40

a. Add constraint index corresponding to 𝐾min to
active set A

b. Update 𝐻−1
act and 𝜆act using additive matrix update

c. Compute 𝜆min = min (𝜆act)
d. while 𝜆min < 0 (not optimal) then

i. Remove constraint index corresponding to 𝜆min
from active set A

ii. Update 𝐻−1
act and 𝜆act using subtractive matrix

update
iii. Compute 𝜆min = min (𝜆act)
iv. Set km = km + 1
v. if 𝜆 = NaN or 𝜆 = ∞ then flag = 1 and

stop else continue end
vi. if km >= max_iter then flag = 2 and stop

else continue end
end

e. if 𝜆 = NaN or 𝜆 = ∞ then flag = 1 and stop
else continue end

f. if km >= max_iter then flag = 2 and stop else
continue end

g. Compute 𝐾 = 𝐾0 + 𝐻act𝜆act
h. Compute 𝐾min = min (𝐾)
i. Set km = km + 1
end

6. Compute constrained solution 𝜃 = 𝜃0 − 𝐸−1𝑀𝑇
act𝜆act

In Step 4.d, the symbol ⌀ denotes an empty set. The min-
function takes as input a vector and outputs the smallest
number and the corresponding index.

Appendix D
Derivation of the state-space model with affine

term
Suppose we have a continuous-time state-space model

Σ𝑐 given as

Σ𝑐 ∶=

⎧{{
⎨{{⎩

̇𝑥𝑝 = 𝐴𝑐𝑥𝑝 + 𝐵𝑐𝑢 + 𝑤𝑐

= 𝐴𝑐𝑥𝑝 + [𝐵𝑐 𝑤𝑐] [𝑢
1]

𝑦 = 𝐶𝑐𝑥𝑝 + 𝐷𝑐𝑢.
Because of the affine term 𝑤𝑐, we need to augment the con-
trol input with an additional 1. Using Matlab-function
c2d, we can convert it to the discrete-time state-space
model Σ𝑑 with sampling period 𝑇𝑠.

Σ𝑑 ∶=

⎧{{
⎨{{⎩

𝑥𝑝(𝑘 + 1) = 𝐴𝑑𝑥𝑝(𝑘) + 𝐵𝑑𝑢(𝑘) + 𝑤𝑑

= 𝐴𝑑𝑥𝑝(𝑘) + [𝐵𝑑 𝑤𝑑] [𝑢(𝑘)
1]

𝑦(𝑘) = 𝐶𝑑𝑥𝑝(𝑘) + 𝐷𝑑𝑢(𝑘).
Appendix E

Simulink-blocks
A. Sensor-block

This block takes as input the sensor value 𝑠 and outputs
the measured output 𝑦 = 𝛼𝑠 + 𝛽, where 𝛼, 𝛽 ∈ R are
constant.

B. Actuator-block
This block takes as input the control input 𝑢 and

outputs the actuator value 𝑝 = 𝜓𝑢, where 𝜓 ∈ R is
constant.

C. Step-by-step algorithm futureR-block
This algorithm outputs future reference R𝑘 ∈ R𝑁 and

the very next reference sample R1 ∈ R, with prediction
horizon 𝑁 .

1. Define two persistent variables: sample counter 𝑖
and future reference R𝑘

2. if R𝑘 is empty then
a. Determine how many times 𝑞 each piece-wise con-

stant part fits within 𝑁 and how many samples 𝑟
remain using [𝑞, 𝑟] = quorem(𝑁 , samples per piece-
wise constant part).

b. Generate R𝑘 based on 𝑞 and 𝑟.
end

3. if 𝑖 is empty then set 𝑖 = 𝑁 − 1 end
4. if 𝑖 > 𝑁 − 1 then

a. Determine how many times 𝑞 each piece-wise con-
stant part fits within 𝑖 and how many sample 𝑟
remain using [𝑞, 𝑟] = quorem(𝑖, samples per piece-
wise constant part).

b. Remove first element of R𝑘 and append new value
based on 𝑞 and 𝑟.

end
5. Extract R1 as first element of R𝑘
6. Increase sample counter 𝑖 = 𝑖 + 1

The quorem-function taks as input two scalars 𝑎, 𝑏 ∈ R
and outputs the quotient 𝑞 and remainder 𝑟 of the division
𝑎
𝑏 .
D. Step-by-step algorithm ConMPC-block

The inputs are future reference R𝑘 ∈ R𝑁 and output
𝑦 ∈ R, where 𝑁 is the prediction horizon. The outputs
are scalars control input 𝑢, CPU-time, incremental control
input Δ𝑢, number of iterations km, number of active
constraints 𝑐 and flag.

1. Start timer for CPU-time
2. Define persistent variables 𝑢old, ̂𝑥old, Δ𝑢old
3. Load constants such as equilibrium points (𝑦0, 𝑢0),

observer matrices etc.
4. if 𝑢old is empty then 𝑢old = 𝑢0 end
5. if ̂𝑥old is empty then ̂𝑥old = [0 0 𝑦0]𝑇 end
6. if Δ𝑢old is empty then Δ𝑢old = 0 end
7. State estimation with observer

̂𝑥 = (𝐴 − 𝐿𝐶) ̂𝑥old + 𝐵Δ𝑢old + 𝐿𝑦
8. Compute

𝐹 = 2Γ𝑇 Ω (Φ ̂𝑥 − R𝑘) , 𝛾 = 𝑐 + 𝑊 ̂𝑥 − 𝑉 𝑢old

9. Solve QP using the HildrethAct solver [Δ𝑈𝑘, km, flag,
𝑐, 𝜃0] = HildrethAct(𝐸−1, 𝐹 , 𝑀 , 𝛾, 𝐻)

10. Extract Δ𝑢 as first element of Δ𝑈𝑘
11. Compute control input 𝑢 = 𝑢old + Δ𝑢
12. Flag system:

if flag = 2 then
a. if sub-optimal solution satisfies Δ𝑢 ∈

[Δ𝑢min, Δ𝑢max] and 𝑢 ∈ [𝑢min, 𝑢max] then set flag
= 3 else saturate the sub-optimal solution such
that Δ𝑢 ∈ [Δ𝑢min, Δ𝑢max] and 𝑢 ∈ [𝑢min, 𝑢max]
end

elseif flag = 1 then
a. Sature unconstrained solution 𝜃0 such that Δ𝑢 ∈

[Δ𝑢min, Δ𝑢max] and 𝑢 ∈ [𝑢min, 𝑢max]

V.T.T. (Victor Trừơng Thịnh) Lâm Page 15 of 16

Graduation MSc thesis Wednesday July 1, 2020 9:00 − 11:40

end
13. Update 𝑢old = 𝑢, ̂𝑥old = ̂𝑥, Δ𝑢old = Δ𝑢
14. Stop timer and compute CPU-time

V.T.T. (Victor Trừơng Thịnh) Lâm Page 16 of 16

	Introduction
	Preliminaries
	Integral action linear MPC with affine term
	MPC-QP

	Problem formulation
	Fast QP-solver design for Arduino
	Previous QP-solvers: Hildreth and qpOASES
	Hildreth
	qpOASES
	Comparison

	Designed QP-solvers
	Hildreth+'
	HildrethAct
	Convergence analysis HildrethAct
	Constraint horizon Nq
	Memory footprint analysis HildrethAct and qpOASES
	HildrethAct
	qpOASES
	Comparison

	Computational complexity analysis HildrethAct and qpOASES
	HildrethAct
	qpOASES
	Comparison

	Real-time implementation on Arduino
	Workflow
	Stalling prevention
	Constraint infeasibility
	Time infeasibility
	Flag-system

	Other considerations
	Approach 1
	Approach 2
	Approach 3

	Experimental validation on a magnetic levitator setup
	Simulations
	Results
	Observations
	MPC parameters

	Real-time experiments
	Results
	Observations
	MPC parameters
	Memory footprint HildrethAct

	Conclusion
	Acknowledgements
	References
	Appendix A: State-of-the-art: memory footprint and CPU-time of various QP-solvers
	Appendix B: Step-by-step Hildreth+' algorithm
	Appendix C: Step by step HildrethAct algorithm
	Appendix D: Derivation of the state-space model with affine term
	Appendix E: Simulink-blocks
	Sensor-block
	Actuator-block
	Step-by-step algorithm futureR-block
	Step-by-step algorithm ConMPC-block

