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Abstract

This thesis considers an online optimization-based motion planning system for an all-wheel drive
autonomous racing car, driving in a formula student competition. These competitions consist of
unknown track layouts where no head-to-head racing is allowed. The motion planning system is
responsible for the localization of the vehicle with respect to a reference path and determining the
optimal control input to drive this reference path as fast as possible. First, a localization method
is defined in the Frenet coordinate system to determine the error coordinates. Then, to mitigate
external disturbances on the controller input, an Extended Kalman Filter is developed to observe
the vehicle velocities and error states. The optimal control input is determined with nonlinear
model predictive control, which is often limited by the computational burden, simplified vehicle
models, or relying on a hierarchical control strategy. In this thesis, the principle of cascading
vehicle models within a single horizon is applied to obtain a long horizon while using a two-track
model, including a nonlinear tire model, to determine the optimal control input. The considered
inputs are the desired longitudinal force at each of the wheels and the desired steering rate.
The primary objective is to minimize the time to reach the end of the prediction horizon, where
a transformation to the spatial domain is used to formulate time as an optimization variable.
Via simulations, the performance of different horizon configurations is compared using lap time,
computation time, and vehicle behavior. These results indicate that similar performance can be
obtained while reducing the average solve time compared with a single two-track model.
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Chapter 1

Introduction

The automotive industry has evolved in the past few years, focusing on replacing the human driver
step-by-step, where the ultimate goal is towards Full Self-Driving (FSD) vehicles. In 2020 Tesla
released their FSD beta software, allowing its customers to exploit the advantages of entirely
autonomously driving cars on public roads [1]. To allow FSD vehicles on the public road, the
software has to handle all situations that can occur on the road, including emergency situations.
These particular situations result in the software handling the vehicle at its performance limits
to avoid accidents. Yet research showed that current software could not reach the level of per-
formance of an expert human driver. To bridge the gap between autonomous driving and driver
performance, the main improvements for future work are online adaption of the safety distances,
online assessment of the vehicle performance limit considering velocity-dependent influences, and
robust controlling of the vehicle at the handling limits [2].

Many future challenges lay within the scope of motion planning, which can be divided into three
different tasks; 1. perception/localization, 2. motion strategy/path planning, and 3. motion
control [3] [4]. This project will focus on the path planning and vehicle control aspect, where
the goal is to seek the limits of a car while driving. Seeking the car’s limits is one of the main
goals of racing, where racing has proven itself over the years to ensure fast testing, development,
and enhancement of new technologies [5], resulting in the typical vehicle we know nowadays [6].
Furthermore, the advent of autonomous racing events, such as Roborace [7] and Formula Student
Driverless Cup [8], will contribute towards developing the typical vehicle of the future.

Available motion planners for autonomous racing applications can be distinguished into three cat-
egories. The first category includes motion planning systems that track different control inputs
using static feedback control. The static feedback controller uses a trajectory, which is also de-
termined offline. The second category consists of pure online optimization-based motion planning,
where both path planning and reference tracking are optimized online, providing more flexibility
to the system. At last, the third category combines the benefits of offline trajectory optimization
to perform path planning and uses an online optimization-based method to follow this trajectory,
providing computation times that allow for real-time implementations [9], but can only be used
when the track layout is known beforehand.

This project focuses on developing an online motion planning system that fits under category
two and is therefore responsible for online path planning and tracking control. Additionally, an
autonomous racing car, in the presence of actuator and track limits, and no overtaking of any
competitors are considered. The considered race car for this project is shown in Figure 1.1,
which is the autonomous racing car of University Racing Eindhoven (URE). The racing car uses
a steering actuator, capable of tracking the desired steering trajectory, and four electric in-wheel
motors, which all can be controlled independently to achieve the desired traction. This means that

Online Motion Planning for All-Wheel Drive Autonomous Race Cars. 1



the control inputs of the vehicle are the steering wheel angle and four motor torques. Furthermore,
it is assumed that a state estimator is available to provide all states for online implementation.

Figure 1.1: URE15D at Formula Student Spain 2021.

1.1 Control Challenges

First of all, driving at the limits of the car result in highly nonlinear dynamics. Controlling
highly nonlinear dynamics often requires complex controllers and results in complex optimization
problems. A dynamic vehicle model including slip is required to include all the nonlinear vehicle
behavior, such as tire forces. However, using a vehicle model with slip introduces a singularity
into the system when we consider driving at low velocities.

One of the significant difficulties in developing a safe and robust motion planner is the variety
of driving situations that occur during racing. Finding a solution for all these situations often
requires nonlinear optimization with non-convex cost functions. Unfortunately, solving a non-
convex optimization problem heavily depends on the initialization, resulting in only local rather
than global minima can be found [10]. Moreover, non-convex optimizations do not guarantee
convergence to the same solution for different driving scenarios.

Using model predictive control (MPC) to implement online motion planning requires an efficient
algorithm. Since the introduction of MPC, engineers have been challenged to find the balance
between accurate results and the required computational power. The prediction horizon length is
a crucial parameter to obtain stability and determines the complexity of the optimization problem.
In general, the applications with long prediction horizons should provide smoother results than a
short prediction horizon [11] [12]. Ideally, one would like to use an infinite horizon length, tending
to find the optimal control for all given allowable initial states, but the problem occurs that the
open-loop optimal control problem cannot be solved sufficiently fast. As a result, a sufficiently
large finite prediction horizon is chosen to obtain computational feasibility and maintain stability
[13]. However, providing theoretical proof of NMPC stability is often hard due to the complexity
of the optimization problem. Therefore, most often, the stability is analyzed using simulation.

1.2 Current Solutions

Path Tracking Controllers

Over the years, different path-tracking controllers have been developed for autonomous vehicles.
The position of a car can be controlled by defining its error coordinates from a given path. A
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simple layout for controlling the position on the road can be found via a Pure Pursuit [14], or
Stanley Controller [15]. Such controllers use a simple kinematic bicycle model to obtain the
desired steering angle. The desired steering angle is based on the error coordinates with respect to
a look-ahead point in front of the vehicle and the vehicle heading. The Pure Pursuit and Stanley
controllers have been proven to work in low-velocity environments but have poor performance in
cases of high velocities, and varying curvature [16].

Among the existing path-tracking controllers, the PID controller is popular due to its simplicity
and engineering applications. Autonomous racing requires driving at the vehicle’s limits, wherein
[17] it is shown that this is possible via a PID controller. The PID controller is combined with
feedforward control to minimize the error between the vehicle’s center of percussion and a given
path. Vehicle stability can be guaranteed via yaw stability control, and the closed-loop system’s
stability is proven by utilizing Lyapunov theory, even when the rear tires are saturated. However,
the PID controller comes with a lack of versatility [18]. The controller parameters can be tuned
towards an optimal and desired performance, but once the operating conditions change, the control
parameters are no longer optimal [16].

Therefore, optimal control theory is used to find the optimal control input which minimizes an
objective function for a given dynamical system. In the case of a linear control system and
a quadratic objective function, a linear-quadratic regulator (LQR) can be used as a feedback
controller to obtain the optimal control input. An LQR provides the optimal control feedback
gains to enhance closed-loop stability while maintaining high performance. The disadvantage for
LQR arises when disturbances and transient behavior occur in the system [18]. LQR provides
robust stability and is computationally efficient when it comes to linear systems, but non-linear
behavior results in a decrease in performance [16]. Therefore, the LQR system often requires
additional controllers, such as a PID controller [18], or a non-linear optimal control problem has
to be solved via either an augmented LQR [19] or MPC.

MPC is an optimal control method that has been applied since the 1980s but has become a more
viable control method due to the improved computing technologies over recent years. The popular-
ity of model predictive control is growing with the increasing system complexity engineers have to
deal with these days [16]. An MPC can be implemented with a direct physical understanding of the
parameters once the dynamical system has been identified. The growing popularity is also due to
the constraint handling of MPC and the key characteristic of solving optimization problems online
[20]. However, applying non-linear model predictive control (NMPC) for online reference tracking
still results in computational disasters. Also, the NMPC comes with a great challenge to prove
the system’s stability, leading to the fact that most controllers are verified through simulations
rather than mathematical proof [16].

This thesis focuses on a path-tracking controller for autonomous racing applications, which requires
the controller to push the vehicle to its limits. To achieve this goal, a complex optimization
problem has to be solved while considering different vehicle and path constraints. Based on the
information provided here, NMPC is regarded as the most viable solution to push the car to its
limits. However, as mentioned, NMPC requires solving computational and stability challenges.
Therefore, the following part discusses NMPC methods developed for online reference tracking
with autonomous vehicles.

Curvilinear Model Predictive Control

In [9], a hierarchical motion planning strategy is used for autonomous racing. First, a high-level
NMPC is used to perform trajectory optimization (TRO) offline based on a curvilinear dynamic
bicycle model, which includes nonlinear tire dynamics. Subsequently, the online reference tracking
controller uses both the track and optimal trajectory. The online reference tracking controller
is an NMPC based on the same curvilinear dynamic bicycle model. The curvilinear dynamic
bicycle model includes a torque vectoring moment determined via a proportional controller. The
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proportional controller uses some gain ptv and the difference between the desired yaw rate and the
actual yaw rate. The use of the proportional controller introduces difficulties in tuning the system
since the optimal solution is now dependent on controller input. Secondly, the desired yaw rate
is based on a kinematic steady-state cornering bicycle model, which does not provide accuracy at
high velocity and does not account for the tire characteristics, potentially causing a performance
cap.

Consequently, [21] expanded on the work in [9], with the focus on co-designing the low-level vehicle
control (LLC) to work in harmony with the higher-level control. At first, the mid-level controller
is adapted to consider the torque vectoring moment as a system input, allowing the high-level
trajectory planner to fully utilize the torque vectoring capabilities. Secondly, the solution from
the mid-level controller is used as a set point for the LLC, where the yaw rate and acceleration
are used to determine the required motor torque and steering input. Computing the required
torque per wheel provides a performance boost to the autonomous vehicle, with the potential to
outperform an expert racing driver. Since the system can determine the optimal torque trajectory
over the horizon, the controller distinguishes itself from the typical torque vectoring controller
used in non-autonomous racing vehicles, where the driver’s command is directly mapped to the
total torque demand [22]. After equally distributing the desired torque between the left and
right motors, the normal force is used to scale the torque, accounting for the gravitational and
downforce working on the tires. Since a bicycle model without an elevated center of gravity is
used, the considered normal force on the tire does not account for any load transfer due to vehicle
roll or pitch. To increase the vehicle’s performance, it is desirable to include all motions that affect
the normal force since the available grip directly depends on the normal force acting on the tire
[23].

Using nonlinear vehicle models for online optimization is computationally expensive and often
does not allow for real-time implementation. Therefore, simplified models are required to reduce
computation time. For example, the hierarchy control strategy presented in [9] and [21] both rely
on offline trajectory planning since it is computationally not possible to rely on online trajectory
planning. In [24] a linear parameter varying (LPV) model is introduced to implement online path
planning, reducing the computation time by a factor of 50 compared to the nonlinear model.
To implement the LPV, [24] assumed linear tire dynamics and excluded any torque vectoring,
reducing the vehicle’s overall performance.

LPV systems also can be used to reduce the computation time of the nonlinear reference tracking
controller. For example, in [25], a similar control strategy as [9] is implemented, but using an
LPV vehicle model. To discretize the system, [25] used an Euler approach, where [9] applied
a fourth-order Runge-Kutta discretization to increase accuracy, resulting in longer computation
times. Due to the LPV model, running the system with a sampling frequency of 33 Hz is possible
while using Python 2.7 as the computer programming language. The nonlinear approach only
allows for a sampling frequency of 20 Hz, while the algorithm is programmed in the more efficient
computer language C++ [26].

All previous MPC formulations using the curvilinear approach use a hierarchical approach, where
the trajectory is optimized separately from the tracking control due to the computational bene-
fits this provides. However, due to the increasing computational power available nowadays, [27]
introduced a single-layer control strategy to optimize path planning and tracking based on a cur-
vilinear bicycle model. By using a quadratic cost and a centerline reference that is slightly out
of reach, it is possible to maximize the progress on track resulting in a time-optimal racing line.
Furthermore, the quadratic cost function makes it possible to solve the optimization problem with
computationally efficient Gauss-Newton algorithms. Nevertheless, a bicycle model without slip is
introduced, and no lateral motion is considered to make this possible. The controller in [27] is
verified via an experiment with 1:43 scaled RC cars. This experiment is performed at low vehicle
velocities, where the assumption of no occurring vehicle slip holds, but this is not the case when
considering full-scale racing cars.
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This single-layer control structure, where path planning and reference tracking is solved in one
control problem, is also considered in [28]. The main challenge with online NMPC is the required
horizon length to guarantee safe driving and stability of the system. This problem is solved by using
a cascaded vehicle model, where the bicycle model’s prediction horizon, including slip, is extended
with a point mass that does not require a small step size to guarantee stability. The controller
concept is proven to work on full-scale racing cars by performing tests with a Volkswagen golf
racing car. However, offline velocity optimization is required to determine the safe set of velocities
on track to guarantee safety. Secondly, the controller is developed for a fixed drive distribution
between the front and rear axle, where the future challenges lay at all-wheel drive racing cars
using torque vectoring to maximize its performance.

Model Predictive Contouring Control

Model Predictive Contouring Control (MPCC) is introduced for multi-axis contouring systems.
The control object is to maximize the system’s accuracy and minimize the traversal time while
the system is subject to constraints. The trade-off between productivity and accuracy can be
determined by adjusting the weights in the cost function [29].

In [30], the framework from [29] is adapted to obtain a high-performance MPCC for autonomous
racing applications, which can maximize performance along the centerline within the prediction
horizon. By considering the nonlinear projection of the vehicle’s position onto the centerline and
selecting low weights on the tracking error, the MPCC determines the optimal progress path. The
controller can plan and follow the optimal trajectory, resulting in a similar path to a time-optimal
path driven by an expert driver. The resulting controller is compared with a hierarchical NMPC by
implementing both types of controllers on 1:43 scaled radio-controlled cars. The MPCC resulted in
an additional computation time of around a factor of five compared with the hierarchical approach
since both planning and following are computed in the same control layer. Since MPCC is a single-
layer control strategy, it is more sensitive to external disturbances and infeasible trajectories, as
hierarchical model predictive control provides more robustness due to a hierarchical multi-layered
control strategy.

The lack of robustness in [30] was mainly caused by using an LPV system to linearise the system.
In [31], the MPCC is adapted for it to be solved with nonlinear dynamics. Instead of maximizing
the progress along the centerline, the controller’s objective is to follow a reference path and velo-
city given to the MPCC. The adjustments of the cost functions allow for a quadratic programming
problem, improving solving time and result in a real-time implementation with a sample rate of
20Hz, which is similar to [9] comparing computation time. The same algorithm is also used for a
kinematic bicycle model in [32], which increases the complexity of the control model. The MPCC
with a kinematic bicycle model still allows for a real-time implementation with a sample rate of
25Hz, but also has more computation power available to solve the optimization problem. Con-
sequently, using kinematic models allows accuracy for low velocities and is, therefore, not suitable
for racing applications. Furthermore, the transformation to a QP problem provides computational
advantages but does not allow for online optimization of the reference trajectory.

Observations and Conclusions

In this chapter the state of the art motion planning systems are discussed, with the focus on using
MPC, where the distinction is made between the contouring and the curvilinear formulation. Real-
time application using a curvilinear system have been proven to work on an autonomous formula
student racing car [9] [21], by using a hierarchical control strategy and relying on offline trajectory
optimisation. Single-layer control strategies, such as the contouring formulation in [33] [32], but
also the curvilinear approach in [27], have not yet been proven to work on a full scale autonomous
racing car due to the computational challenges and the use of slip free models.
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Most systems use a bicycle model to model the vehicle motion, due to a good balance between
accuracy and computational efficiency. However, due to the electrification of the vehicles these
days, especially when considering autonomous driving vehicles, new opportunities arise where a
racing car is equipped with four in-wheel motors rather than a single motor providing power to
one or two axles. Therefore, using a two track model, where every wheel is considered a separate
input, can fully exploit the torque vectoring possibilities of all-wheel drive racing cars. Using a
two track model in autonomous racing is already used in velocity control [34], but not yet used in
order to follow a reference path on a racing track. As a result, state of the art motion planners
do not fully utilize the potential of all wheel drive in autonomous applications.

Therefore, this project investigates online optimisation based motion planning systems for all-
wheel drive autonomous racing vehicles. In the next section the research goal is introduced with
the required sub-goals to achieve this.

1.3 Research Goal

Based on the state-of-the-art solutions presented in the previous chapter, the main goal of this
research is defined as:

”Develop an online optimization-based motion planning
system for all-wheel drive autonomous race cars.”

From this goal, several subgoals can be determined, outlying the requirements and challenges of
an online motion planner for autonomous race cars. First of all, the considered vehicle is the
autonomous racing car from formula student team URE. The race car has four electric in-wheel
motors, capable of both braking and accelerating. Also, the car is front-wheel steered, excluding
rear-wheel steering from the vehicle model. Therefore, the motion planning should provide the
desired longitudinal force at each wheel and the desired steering rate.

Secondly, the motion planner is designed to minimize the lap time, using the centerline as a
reference path while fully utilizing the available track width. A two-track model can be used
to determine the optimal control input over the prediction horizon, providing a safe but fast
trajectory over the track. Including tire dynamics is essential when driving at the limits of the
car, which requires a vehicle model including slip. A single-layer controller is considered, solving
the optimization problem to maximize the performance on track by performing both path planning
and reference tracking along the centerline. Since the formula student competition does not use
obstacles, nor does it allow for head-to-head racing, obstacle avoidance is not inside the scope of
this thesis.

Finally, the controller is designed to operate online and therefore the localization of the vehicle with
respect to the centerline should be considered. Computing the centerline and track width is done
via the simultaneous localization and mapping (SLAM) system of URE and is assumed to be known
during the development of the controller. The control input from the localization system should
be smooth to enhance stability for various look-ahead distances and ensure continuous inputs for
both control and drivetrain durability. Furthermore, to account for the variety in race cars, the
controller should be adjustable, and preferably tunable, for different vehicle configurations.

This chapter introduced the research goal, which specified the requirements and preferences for
developing an online motion planner for autonomous racing applications. In short, this thesis aims
to extend and improve existing motion planning systems by exploring optimization-based motion
planning for all-wheel drive autonomous racing vehicles. It should consider different track layouts
to guarantee robustness, and satisfying dynamic and actuator constraints.

6 Online Motion Planning for All-Wheel Drive Autonomous Race Cars.



1.4 Thesis Outline

Based on the literature review, this thesis proposes an online optimization based motion planning
algorithm for all-wheel drive autonomous racing cars. First, in Chapter 2 the preliminaries are
introduced which are used as mathematical foundation for some theoretical results. The chapter
also contains all the vehicle models used throughout the thesis and different discretization meth-
ods. In Chapter 3 the localization algorithm is introduced, where an Extended Kalman Filter is
developed to mitigate any external disturbances. Consequently, in Chapter 4 the optimization
problem to solve the minimum time problem is proposed, which is then used in Chapter 5 to ana-
lyse the performance for different prediction horizon lengths. At last, the conclusions of this thesis
are drawn in Chapter 6, where additionally some recommendations for future work are given.
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Chapter 2

Preliminaries

In this chapter, the theory and vehicle models are introduced which are used in this thesis.

2.1 Theories

Let us consider the smooth affine control system with an output map

ẋ = f(x) +

m∑
j=1

gj(x)uj , u = (u1, ..., um) ∈ U ⊂ Rm,

yi = hi(x), i ∈ {p, p ∈ N},
(2.1)

where x = (x1, ..., xn) represent the coordinates for a smooth state-space manifold M , and
h = (h1, ..., hp)

T :M → Y = Rp is the smooth output map of the system.

Definition 2.1.1 Lie Derivative. The first order Lie derivative of output h(x) along vector field
f(x) is given by

Lfh(x) =
∂h(x)

∂x
f(x) ∈ Rp, (2.2)

where h(x) ∈ Rp and x ∈ Rn. The nth order Lie derivative is subsequently

Lnfh(x) =
∂Ln−1

f h(x)

∂x
f(x) ∈ Rp, (2.3)

with the zero order Lie derivative L0
fh(x) = h(x).

Definition 2.1.2. Observation space [35]. Consider the system (2.1). The observation space
Θ of (2.1) is the linear space (over R) of functions on M containing h1, ..., hp and all repeated
Lie derivatives.

Theorem 2.1.3. Observability rank condition [35]. Consider the system (2.1) with dimM =
n. Assume that

dim dΘ(x0) = n, (2.4)

then the system is locally observable at x0.
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2.2 Dynamics

This section introduces all the vehicle models that are used in this thesis. To distinguish the
different vehicle models, a different notation is applied for each model. When the point-mass is
used, all the associated states and inputs are denoted with (̄·), the states and inputs from the

single track model are denoted with (̃·), and the two-track model uses the plain notation.

Point Mass Model

A planar point-mass model is schematically represented in Figure 2.1. The point-mass model
is used as a simple representation of the Center of Gravity (CG), avoiding stiff dynamics by
considering only one velocity state and the forces acting at the CG as inputs of the system. In this
project, a larger discretization step can be applied due to the reduced model stiffness compared
with a single or two-track model.

The model consists of one velocity state, the total horizontal velocity V̄ ∈ R, given by [28]

˙̄V =
F̄x − F̄loss

m
, (2.5)

with m the vehicle mass, F̄x the longitudinal force input, and F̄loss the combined drag and rolling
resistance force.

Furthermore, the point-mass model considers three position states in the curvilinear reference
frame T̄ , describing its position concerning the reference path. Reference frame T̄ is obtained
by rotating Cartesian frame R about the angle θ(s̄), as is depicted in Figure 2.1. This frame
T̄ describes the position of the vehicle about the centerline, where the progress made along the
reference path is denoted by s̄ ∈ R, the lateral distance to the path by ēy ∈ R, and the difference
in the direction of the velocity vector and the reference frame T̄ by ēψ ∈ R. The motion of the
three position states can be described by [28]

˙̄s =
V̄ cos (ēψ)

1− κ(s̄)ēy
, (2.6a)

˙̄ey = V̄ sin (ēψ), (2.6b)

˙̄eψ =
F̄y
mV̄

− κ(s̄)
V̄ cos (ēψ)

1− κ(s̄)ēy
, (2.6c)

where κ(s̄) denotes the curvature of the reference path and F̄y the lateral force input.

R

x

y

z

T

s

θ(s)
O

F x VF y

eψ

F loss

ey

Figure 2.1: Planar point-mass model.

Single Track model

The single-track model represents a rigid two-axle vehicle body model, including longitudinal,
lateral, and yaw motion. Such a vehicle model results in a physically plausible description of the
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driving behavior.

The model has three velocity states associated with its CG: longitudinal and lateral velocity
ṽx, ṽy ∈ R, respectively, and yaw velocity ω̃ ∈ R. Similarly to the point-mass model is the position
of the CG described in the curvilinear reference frame. However, instead of defining heading error
as the error between the velocity vector and frame T̃ , the heading error represents the difference
in the chassis heading with respect to the heading of T̃ . The resulting vehicle model is displayed
in Figure 2.2, where the motion of the vehicle is described as

˙̃vx =
1

m
(F̃x − F̃y,f sin (δ̃)− F̃D − F̃R +mṽyω̃), (2.7a)

˙̃vy =
1

m
(F̃y,f cos (δ̃) + F̃y,r −mṽxω̃), (2.7b)

˙̃ω =
1

Izz
(lf F̃y,f cos (δ̃)− lrF̃y,r), (2.7c)

˙̃s =
ṽx cos (ẽψ)− ṽy sin (ẽψ)

1− κ(s̃)ẽy
, (2.7d)

˙̃ey = ṽx sin (ẽψ) + ṽy cos (ẽψ), (2.7e)

˙̃eψ = ω̃ − κ(s̃)
ṽx cos (ẽψ)− ṽy sin (ẽψ)

1− κ(s̃)ẽy
, (2.7f)

˙̃
δ =

˙̃
δin, (2.7g)

where m and Izz represent the mass and moment of inertia of the vehicle, respectively, F̃x is the

longitudinal force input from the motors,
˙̃
δin is the steering rate input from the steering actuator,

F̃D and F̃R are the drag and rolling resistance force losses, respectively, and κ(s̃) represents the
curvature of the path at s̃. The distance from the CG to the front and rear axle are denoted by
lf and lr, respectively, summing up to the wheelbase L.

The lateral tire forces F̃y,l can be approximated via a simplified Pacejka tire model [23]:

F̃y,l = D̃y,l sin (Cy,l arctan (By,lα̃l)), (2.8)

where l ∈ {f, r} representing the front and rear axle, respectively. The stiffness factor By,l, the

shape factor Cy,l and the peak factor D̃y,l are all lateral tire parameters, which are determined
via experiments.

The tire side slip angles are defined as

α̃f = δ̃ − arctan

Å
ṽy + lf ω̃

ṽx

ã
, (2.9a)

α̃r = − arctan

Å
ṽy − lrω̃

ṽx

ã
, (2.9b)

and the force losses as

F̃D =
1

2
ρairṽ

2
xCDAs, (2.10a)

F̃R = frFz, (2.10b)

where ρair is the density of air, Cd is the drag coefficient, As the frontal surface of the vehicle, fr
the rolling friction and Fz the total vertical load of the car.

Two Track Model

The model has three velocity states associated with its CG: longitudinal and lateral velocity
ṽx, ṽy ∈ R, respectively, and yaw velocity ω̃ ∈ R. In addition, the position of the vehicle is defined
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T̃

δ̃

s̃

θ(s̃)

ẽψ

ṽy
ṽx

ω̃

O

lr

lf

R

y

x

F̃y,r

F̃y,f

F̃x
ẽy

z

Figure 2.2: Single-track vehicle model.

likewise as the single track model, which is displayed in Figure 2.3, also yielding the same dynamics
as (2.7d) - (2.7f).

The resulting vehicle model is displayed in Figure 2.4, where the motion of the vehicle is described
as

mv̇x = Fx,1 cos (δ1)− Fy,1 sin (δ1) + Fx,4 cos (δ2)− Fy,4 sin (δ2) + Fx,2 + Fx,3 + ...

mvyω − Floss,
(2.11a)

mv̇y = Fx,1 sin (δ1) + Fy,1 cos (δ1) + Fx,4 sin (δ2) + Fy,4 cos (δ2) + Fy,2 + Fy,3 −mvxω, (2.11b)

Izzω̇ = (Fy,1 cos (δ1) + Fx,1 sin (δ1) + Fy,4 cos (δ2) + Fx,4 sin (δ2))lf ...
wf
2
(Fy,1 sin (δ1)− Fx,1 cos (δ1)− Fy,4 sin (δ2) + Fx,4 cos (δ2))...

− (Fy,2 + Fy,3)lr +
wr
2
(Fx,3 − Fx,2),

(2.11c)

ṡ =
vx cos (eψ)− vy sin (eψ)

1− eyκ(s)
, (2.11d)

ėy = vx sin (eψ) + vy cos (eψ), (2.11e)

ėψ = r − κ(s)
vx cos (eψ)− vy sin (eψ)

1− eyκ(s)
(2.11f)

δ̇ = δ̇in. (2.11g)

where the longitudinal tire forces Fx,l, l ∈ {1, 2, 3, 4} are considered inputs, as well as the front

steering rate δ̇in. Notice that a different steering angle for the left δ1 and right δ2 wheel is
considered, to account for toe, where δ1 = δ − δtoe and δ2 = δ + δtoe. Furthermore, m and Izz
represent the vehicle’s mass and moment of inertia, wf and wr denote the track width at the front
and rear, respectively.

Similarly to the single track model, the lateral tire forces are modeled via the simplified Pacejka
tire model as given in (2.8). However, each tire has a different side slip angle, depending on the
longitudinal and lateral wheel velocity vx,l, vy,l, respectively. These wheel velocities are calculated
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via

vx,1 = vx −
wf
2
ω, vy,1 = vy + lfω, (2.12a)

vx,2 = vx −
wr
2
ω, vy,2 = vy − lrω, (2.12b)

vx,3 = vx +
wr
2
ω, vy,3 = vy − lrω, (2.12c)

vx,4 = vx +
wf
2
ω, vy,4 = vy + lfω. (2.12d)

The wheel velocities can then be used to determine the resulting tire slip angles via

α1 = δ1 − arctan

Å
vy,1
vx,1

ã
, (2.13a)

α2 = − arctan

Å
vy,2
vx,2

ã
, (2.13b)

α3 = − arctan

Å
vy,3
vx,3

ã
, (2.13c)

α4 = δ2 − arctan

Å
vy,4
vx,4

ã
. (2.13d)

The force losses FD and FR represent the drag and rolling resistance force losses, respectively,
similarly defined as (2.10).

T

s

θ(s)

eψ

O

ey

Figure 2.3: The position states of the two-track model.
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Figure 2.4: Two-Track vehicle model.

2.3 Discretization Methods

In this thesis, different discretization methods are applied. In this section, all used methods are
briefly introduced.

Forward Euler

In many cases, the integration of a dynamical system must be performed numerically. A system
simulator can be constructed by breaking time t into smaller intervals h and computing numerical
solutions to differential equations. The Euler discretization is one method for computing such a
numerical system simulator. Consider a general system formulation

ẋ = f(x(tk), u(tk)), (2.14a)

x(tk) = xk. (2.14b)

Suppose that x(tk) and u(tk) are known. By performing integration over time step h, the state
x(tk + h) can be determined as [36]:

x(tk + h) = x(tk) +

∫ tk+h

tk

f(x(tk), u(tk))dt. (2.15)

The issue arises that the integral cannot be evaluated directly due to x(tk) being in the integrand.
Using the fact that the integrand can be approximated as

f(x(tk), u(tk)) ≈
x(tk + h)− x(tk)

h
, (2.16)

solving (2.15) for x(tk + h) and the given approximation of f(x(tk), u(tk)) provides the Forward
Euler discretization method [36]:

x(tk + h) ≈ x(tk) + hk1, (2.17)

where
k1 = f(x(tk), u(tk)). (2.18)

In Figure 2.5, the forward Euler discretization is graphically displayed.
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xtk

Figure 2.5: Forward Euler discretization.

Second Order Runge-Kutta

The general formulation of a Runge-Kutta discretization method of order s is written as

x(tk + h) = x(tk) + h

s∑
i=1

aiki +O(hs+1), (2.19)

where

ki = x(tk) + h

s∑
j=1

βijf (x(tk) + αihkj , u(tk + αih)) , (2.20)

are the slopes which are obtained evaluating the derivatives of x(tk) at the i-th order. For the
second order Runge-Kutta (RK2) discretization s = 2, which provides that

x(tk + h) = x(tk) + hx′(tk) +
h2

2
x′′(t) +O(h3). (2.21)

One can observe that the forward Euler discretization is simply the first-order term of the Runge-
Kutta discretization. The numerical method can be obtained via Taylor expansion, resulting in

x(tk + h) = x(tk) + h

Å
1

2
k1 +

1

2
k2

ã
, (2.22)

where

k1 = f(x(tk), u(tk)), (2.23)

k2 = f(x(tk) + hk1, u(tk)). (2.24)

RK2 is also known as Heun’s method or the improved Euler method [37]. The output at tk+1 =
tk +h is approximated by determining the slope at two different times: tk and tk+1, which can be
observed in Figure 2.6.
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Figure 2.6: Second-order Runge-Kutta discretization.

Fourth Order Runge-Kutta

The fourth order Runge-Kutta (RK4) method can be obtained by evaluating (2.19) and (2.20) for
s = 4, resulting in

x(tk + h) = x(tk) + hx′(tk) +
h2

2!
x′′(tk) +

h3

3!
x(3)(tk) +

h4

4!
x(4)(tk) +O(h5). (2.25)

Evaluating this with the Taylor series of x(tk + h) around tk results in the numerical method [38]

x(tk + h) ≈ x(tk) +
h

6
(k1 + 2k2 + 2k3 + k4), (2.26)

in which

k1 = f(x(tk), u(tk)),

k2 = f(x(tk) +
h

2
k1, u(tk)),

k3 = f(x(tk) +
h

2
k2, u(tk)),

k4 = f(x(tk) + hk3, u(tk)).

(2.27)

The output at tk+1 = tk + h is approximated by determining the slope at three different times:
tk, tk +

h
2 and tk+1, which can be observed inFigure 2.7.

Online Motion Planning for All-Wheel Drive Autonomous Race Cars. 15



t

x(t)

k1

k2

k3

k4

tk tk + h/2 tk + h

x(tk) + 0.5hk2

x(tk) + 0.5hk1

x(tk) + hk3

x(t)

xtk+h

xtk

Figure 2.7: Fourth order Runge-Kutta discretization.

2.4 Observations and Conclusion

In this chapter, the required theorems used in this thesis have been introduced. Additionally,
different representations of the dynamic behavior of an autonomous racing car have been presented,
which are the basis for the optimization problem. The various vehicle models are transformed into
the Frenet coordinate system. The single-track model is used in Chapter 3 to solve the localization
problem. In Chapter 4, the different vehicle models are used to solve the path planning and
reference tracking problem. Notice that all vehicle models are denoted using other notations to
distinguish between the states, inputs, and parameters. At last, three different discretization
methods are introduced, which are fundamental in the implementation of the Extended Kalman
Filter in section 3.2 and the discretization of the prediction horizon in Chapter 4.
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Chapter 3

Localization

One challenge in online implementation is determining the vehicle’s position with respect to the
reference path. Instead of relying on offline path planning, this thesis considers both path planning
and reference tracking online. Moreover, A Simultaneous Localization and Mapping (SLAM) log-
arithm provides the reference points and the car’s location, which combined provides the footpoint
of the vehicle. This chapter discusses the calculation of the footpoint and the implementation of
an Extended Kalman Filter (EKF), dealing with the non-smoothness, which is a result of discon-
tinuous look-ahead distance and interpolation of the reference points, both side-effects of online
path finding. Smoothing the coordinates in the Frenet coordinate frame directly smoothness the
input of the NMPC, potentially avoiding infeasibility or undesired behavior in the NMPC output.

3.1 Footpoint

The path and vehicle pose are updated as the car drives on the track. Since motion planning is
working with the reference frame T , and the path is defined in the Cartesian frame R, the location
of frame T has to be determined, which is called the footpoint. This point is determined via linear
interpolation between the reference point in front of the car (xr,f , yr,f ) and the reference point
behind the car (xr,r, yr,r), which is graphically displayed with the green dot in Figure 3.1, where
pf and pr denote the distance from the CG to the front and rear reference point, respectively.

(x, y)

(xr,f , yr,f )

pf

pr

(xr,r, yr,r)

ey

R

x

y

z

Figure 3.1: Footpoint trajectory w.r.t. reference path.
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The footpoint assumes a straight line between the reference points and tries to find the footpoint,
which is the projection of the altitude of the triangle on the track using simple geometry. Using
the semi-perimeter of the triangle, calculated via

S =
Pr,f + pf + pr

2
, (3.1)

the altitude of the triangle can be determined. The altitude of the triangle represents the error
between the CG and the Frenet coordinate frame T , hence ey, and can be calculated via

ey = 2

√
S(S − Pr,f )(S − pf )(S − pr)

Pr,f
, (3.2)

where Pr,f represents the distance between the front and rear waypoint, calculated via

Pr,f = ||(xr,r, yr,r)− (xr,f , yr,f )||2. (3.3)

At last, the heading of the path θ can be determined based on the two reference points via

θ = arctan

Å
xr,f − xr,r
yr,f − yr,r

ã
, (3.4)

from which the heading error eψ can be determined via

eψ = ψ − θ. (3.5)

The implementation of this localization strategy comes with two challenges. First, since the
footpoint is determined via interpolating two reference points, the output can shift when switching
to two new reference points, which can be observed when analyzing Figure 3.1. Also, as the car is
driving, the reference points are updated, which can result in different path trajectories between
time samples, as seen in Figure 3.2. For example, the figure shows three consecutive time samples,
where SLAM shifts the reference points from the black path towards the blue path. As a result,
the footpoint is shifting from a rather large positive error towards a small negative error.

Both these challenges cause the input for motion planning to be non-smooth, resulting in longer
computation times since the new vehicle position moved away from the previous optimal solutions,
which can even result in an infeasible control problem. Therefore, in the following section, the
footpoint is observed with an Extended Kalman Filter, providing a more smooth estimation.
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Figure 3.2: SLAM provides two different paths between consecutive sample timings. Black path
for k = 1, blue path for k ∈ 2, 3. Footpoint is shifting accordingly.

3.2 Extended Kalman Filter

The goal of the EKF is to observe the vehicle states described by the nonlinear single track model
in section 2.2, with the main focus on estimating the error states ẽy and ẽψ. Observing these
states result in a smoother controller input, excluding any external disturbances that might occur
in the calculation of the footpoint its location.

Prediction Step

At first, an approximation of the state x̂k|k−1 and covariance Pk|k−1 is made based on the previous
estimation via

x̂k|k−1 = fpred(x̂k−1|k−1, uk), (3.6a)

Pk|k−1 = FkPk−1|k−1F
⊺
k +Qk, (3.6b)

where the notation x̂n|m and Pn|m represents the estimate of x and P at time n given the es-
timations up to and including at time m ≤ n. The diagonal matrix Qk represents the process
noise covariance matrix, and Fk is the state transition matrix. The function fpred(x̂k−1|k−1, uk)
represents the model that is used for the prediction of the states, but in discrete time. Therefore,
the single-track model is discretized with a fourth-order Runge-Kutta discretization, for which the
reader is referred to section 2.3 regarding the details of the implementation.

The single track model in section 2.2 also includes the progress that is made along the reference
path, indicated by s. However, the reference points provided by SLAM are a fixed number of
points behind and in front of the car. As a result, s is increasing and decreasing, depending on
the position of reference points combined with the vehicle pose. For that reason, observing s is
not possible as there is no dynamic model which can predict such behavior. Therefore, due to s
being redundant, a model reduction is applied to the six states [ṽx, ṽy, ω̃, ẽy, ẽψ, δ̃]. The location
of the footpoint directly provides the position of the vehicle w.r.t. the reference path using s.
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The state transition matrix Fk is obtained via

Fk =
∂fFk
∂x

∣∣∣∣
x̂k−1|k−1,uk

, (3.7)

where fFk(x̂k−1|k−1, uk) is the discretized single track model. However, due the non-linear nature
of the model two assumptions are made to simplify fFk(x̂k−1|k−1, uk). The first assumption regards
a small angle approximation. The second assumption is that the tire dynamics are linear, and
therefore can be described as

Fy,f = Cfαf , (3.8a)

Fy,r = Crαr, (3.8b)

where Cf and Cr are the cornering stiffness of the front and rear axle, respectively, and

αf = δ̃ − ṽy + lf ω̃

ṽx
, (3.9a)

αr = − ṽy − lrω̃

ṽx
. (3.9b)

Based on these assumptions, the vehicle model described in (2.7) can be reformulated as

˙̃vx =
1

m
(F̃x − Cf

Å
δ̃ − ṽy + lf ω̃

ṽx

ã
δ̃ +mṽyω̃), (3.10a)

˙̃vy =
1

m
(Cf

Å
δ̃ − ṽy + lf ω̃

ṽx

ã
− Cr

Å
ṽy − lrω̃

ṽx

ã
−mṽxω̃), (3.10b)

˙̃ω =
1

J
(lfCf

Å
δ̃ − ṽy + lf ω̃

ṽx

ã
− lrCr

Å
ṽy − lrω̃

ṽx

ã
), (3.10c)

˙̃s =
ṽx − ṽy(ẽψ)

1− κ(s̃)ẽy
, (3.10d)

˙̃ey = ṽxẽψ + ṽy, (3.10e)

˙̃eψ = ω̃ − κ(s̃)
ṽx − ṽy ẽψ
1− ẽyκ(s̃)

, (3.10f)

˙̃
δ =

˙̃
δin. (3.10g)

The function fFk(x̂k−1|k−1, uk) is obtained via a Forward Euler discretization of the simplified
vehicle model in (3.10). For the implementation of the forward Euler discretization, the reader is
referred to section 2.3. Based on the discretized model, the state transition matrix can be derived
via (3.7), resulting in

Fk =



Fk,1.1 h ω̃ +
Cf δ̃ h
m ṽx

h ṽy − Cf lf δ̃ h
m ṽx

0 0 Fk,1.6

Fk,2.1 1− h (Cf+Cr)
m ṽx

h (Cr lr−Cf lf )
m ṽx

− h ṽx 0 0
Cf h
m

Fk,3.1 −h (Cf lf−Cr lr)
J ṽx

1− h
Cf l

2
f−Crl

2
r

J ṽx
0 0

Cf lf h
J

ẽψ h h 0 1 h ṽx 0
hκ

ẽy κ−1 − ẽψ hκ
ẽy κ−1 h Fk,5.4 Fk,5.5 0

0 0 0 0 0 1


, (3.11)
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where

Fk,1.1 = 1− h
Cf δ̃ (ṽy + lf ω̃)

mṽ2x
, (3.12a)

Fk,1.6 = −h
Cf
Ä
2 δ̃ ṽx − lf ω̃ − ṽy

ä
mṽx

, (3.12b)

Fk,2.1 = h
Cf (ṽy + lf ω̃) + Cr (ṽy − lr ω̃)

mṽ2x
− hω̃, (3.12c)

Fk,3.1 =
h

J

Å
Cf lf (ṽy + lf ω̃)− Cr lr (ṽy − lr ω̃)

ṽ2x

ã
, (3.12d)

Fk,5.4 = −hκ
2 (ṽx − ẽψ ṽy)

(ẽy κ− 1)
2 , (3.12e)

Fk,5.5 = 1− hκ ṽy
ẽy κ− 1

. (3.12f)

Update Step

The state and covariance estimation from (3.6) are updated based on the available sensor data at
time k, providing a more accurate state estimate via

x̂k|k = x̂k|k−1 +Kkek, (3.13)

where ek represents the error between the measured output yk and the predicated state estimate,
Kk is the Kalman gain, calculated via

ek = yk −Hkx̂k|k−1, (3.14a)

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1, (3.14b)

where Rk represents the observation noise covariance, and Hk is the observation matrix. To
determine Hk, an output mapping h(x) is defined based on the available sensor data at URE.

The footpoint calculation in section 3.1 provides the measurement model for both ey and eψ. Ad-
ditionally, the wheel-speed encoders provide the longitudinal velocity, the yaw velocity is estimated
based on the inertial measurement unit, and the steering angle is measured via the steering rack
sensor. This provides the output mapping to be

h(x) = [vx, ω, ey, eψ, δ]. (3.15)

From this output mapping, the observation matrix can be determined

Hk =
∂h

∂x

∣∣∣∣
x̂k|k−1,uk

, (3.16)

resulting in

Hk =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (3.17)

Also the covariance matrix Pk|k−1 has to be updated to obtain Pk|k, which is calculated via

Pk|k = (I −KkHk)Pk|k−1. (3.18)

Once the covariance matrix is updated, the model starts consecutively with the prediction step.
Therefore, updating the covariance matrix is considered the last step of the EKF.
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Observability

To determine if the vehicle behavior can be described with the selected output map, an analysis
is required to determine the observability of the vehicle states. A system is said to be observable
if the states of the system can be determined from the system’s output. However, determining
the observability of a non-linear system is often hard and can only be determined locally. A tool
for checking local observability for a nonlinear system in the form of (2.1), is the rank condition
(Theorem 2.1.2) of the so-called observation space Θ (Definition 2.1.1).

An observation space is obtained via its definition

Θ =


h(x)
Lfh(x)
L2
fh(x)
...

 , (3.19)

where h(x) ∈ Rp, x ∈ Rn, Θ ∈ Rp n and Lfh(x) refers to the Lie derivative (Definition 2.1.3). The
states are considered locally observable at x0 if the observability contribution, denoted as Φ(x), is
full rank. The observability contribution is calculated via

Φ(x) =
∂Θ

∂x
. (3.20)

The rank condition states that when

dimΦ(x0) = n, (3.21)

there is local observability at x0. This condition can only be achieved when Φ(x) ∈ Rq×n, where
q ≥ n. Since the considered system is a multi-output system, an observation map Θ̂ can be
determined, which proves local observability if

dim
∂Θ̂(x0)

∂x
= n (3.22)

where the observation map can be determined via a smart selection of the output mapping h(x)
and its Lie derivatives.

When analyzing h(x) it can be concluded that ẽy and eψ must always be provided as measurement.
Missing these states indicate that SLAM has not managed to construct a reference path for motion
planning, which is a situation when the car is not allowed to drive. Therefore, the states ẽy and
ẽψ are assumed to always be available when driving. Also, the dynamics for ẽy are singular when
driving at the origin of the corner radius. This kinematic singularity occurs when ẽy = R, which
in practical applications does not happen due to track limits.

Furthermore, the EKF experiences a singularity at ṽx = 0 due to the tire model. The accuracy
of the EKF is affected while operating near this singularity, and the states are not observable
when operating at this singularity. As a solution to this singularity, the EKF is not enabled
when the velocity is below a certain threshold ṽx,switch, for which the EKF will pass through raw
measurement data to the controller, without updating the Kalman gain Kk and covariance matrix
Pk|k. This threshold ṽx,switch is determined via simulation in Section 3.3, showing the performance
for different ṽx,switch.

To determine the observability of the system, the output mapping is adjusted to

h(x) = [ṽx, ẽy, ẽψ]. (3.23)
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If observability around x0 can be found for (3.23), the same can be said for the original output
mapping in (3.15). The observation map Θ̂ is set as

Θ̂ =


ṽx
ẽy
Lf ẽy
L2
f ẽy
ẽψ
Lf ẽψ

 , (3.24)

where the observability contribution yields

Φ(x) =



1 0 0 0 0 0
0 0 0 1 0 0
ẽψ 1 0 0 ṽx 0
Φ4.1 Φ4.2 Φ4.3 Φ4.4 Φ4.5 Φ4.6

0 0 0 0 1 0
κ

ẽy κ−1 − ẽψ κ
ẽy κ−1 1 −κ2 (ṽx−ẽψ ṽy)

(ẽy κ−1)2
− κ ṽy
ẽy κ−1 0

 , (3.25)

where

Φ4.1 =
Cf (ṽy + lf ω̃)

mṽx
2 +

Cr (ṽy − lr ω̃)

mṽx
2 +

κ (2 ṽx − ẽψ ṽy)

ẽy κ− 1
− Cf δ̃ ẽψ (ṽy + lf ω̃)

mṽ2x
, (3.26a)

Φ4.2 =
ẽψ
Ä
Cf δ̃ +mω̃ ṽx

ä
mṽx

− Cf + Cr
mṽx

− ẽψ κ ṽx
ẽy κ− 1

, (3.26b)

Φ4.3 = ẽψ ṽy +
Cr lr − Cf lf + Cf lf δ̃ ẽψ

mṽx
, (3.26c)

Φ4.4 = −κ
2 ṽx (ṽx − ẽψ ṽy)

(ẽy κ− 1)
2 , (3.26d)

Φ4.5 =
F̃x − Cf δ̃

Ä
δ̃ − ṽy+lf ω̃

ṽx

ä
+mω̃ ṽy

m
− κ ṽx ṽy
ẽy κ− 1

, (3.26e)

Φ4.6 =
Cf ẽψ (ṽy + lf ω̃)

mṽx
−
Cf
Ä
2 δ̃ ẽψ − 1

ä
m

. (3.26f)

Since (3.25) is a square matrix it is possible to determine its determinant. If the determinant is
non-zero, it indicates that the matrix is full rank and satisfies the condition for local observability.
The resulting determinant equals

detΦ(x) =
Cf (2 δ̃ ẽψ − 1)

m
− Cf ẽψ (ṽy + lf ω̃)

mṽx
, (3.27)

which can be rewritten as

detΦ(x) =
Cf (2 δ̃ ẽψ − 1)

m
+
Cf ẽψ
m

(αf − δ̃),

=
Cf
m

Ä
2 δ̃ ẽψ − 1 + ẽψ (αf − δ̃)

ä
,

=
Cf
m

Ä
ẽψ (αf + δ̃)− 1

ä
,

(3.28)

by using the definition of the front tire side slip angle in (3.9). From the determinant, it can be
concluded that the system is not locally observable when

(ẽψ (αf + δ̃)− 1) = 0 ⇐⇒ αf + δ̃ =
1

ẽψ
. (3.29)
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The condition to obtain local observability is dependent on five states and therefore it is difficult
to derive a general expression. However, by using testing data, empirical analyses can be done to
determine if (3.29) occurs during online implementation. This analysis provides a visual indication
of the system’s observability.

In Figure 3.3, δ̃ + αf is plotted versus ẽ−1
ψ , which are both derived from testing data which will

be referred to as Data Set 1. The left figure show that the system is not locally observable as a
few data points tend towards αf + δ̃ ≈ ẽ−1

ψ . However, these particular points are a result of the
singularity at ṽx = 0, where these particular points are being observed near this singularity. The
right figure shows the results when ṽx for the EKF is lower-bounded by ṽx,switch, which in this

case equals 1m s−1. This figure indicates that αf + δ̃ ̸= ẽ−1
ψ , resulting in local observability of the

EKF when ṽx ≥ ṽx,switch. As this approach is purely pragmatic, it can not be guaranteed that
the system is locally observable for all conditions, but it does indicate that the system is locally
observable for a specific domain.

Figure 3.3: Left: result for (δ̃ + αf ) excluding lower-bound ṽx,switch. Right: result for (δ̃ + αf )
including lower-bound ṽx,switch = 1ms−1.

3.3 Results

To validate the EKF, the observer is tested on the formula student racing car of University Racing
Eindhoven. The observer is implemented in Simulink, which University Racing Eindhoven uses
to run the autonomous system at 100Hz. In Appendix B the implementation of the EKF is
graphically shown, notice that additional steps were required based on the system’s driving state,
which is required by the Formula Student Rulebook, for which the reader is referred to [39]. The
corresponding vehicle parameters are found in Table 3.1.

First, it is important to determine the accuracy of the prediction step in the EKF, which is analyzed
by using different Data Sets and comparing the prediction with the resulting measurement. The
results of the model validation give insight into the model’s accuracy and the covariance of the
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model prediction. Afterward, the covariance matrices Qk and Rk are tuned to determine the
desired behavior. Tuning these matrices is performed using the same data sets as the model
validation, showing the difference in the accuracy of the model estimation. Last, since the EKF
has a singularity at ṽx = 0, simulations are performed for varying lower bounds on the velocity to
determine the minimum required lower bound to guarantee enough accuracy for lower velocities.

Table 3.1: Vehicle parameters.

Parameter Symbol Value Unit
Vehicle Mass m 192 kg
Yaw moment of inertia J 82 kgm2

Distance front axle to CG lf 0.88 m
Distance rear axle to CG lr 0.64 m
Rolling friction coefficient fr 0.072 -
Aerodynamic drag coefficient Cd 1.23 N (m/s)−2

Cornering stiffness front axle Cf 32000 N rad−1

Cornering stiffness rear axle Cr 45000 N rad−1

Model validation

To validate the prediction model and its parameters, the EKF is used while it mainly relies on
the prediction step and assumes that the measurement data has a high covariance, resulting in
Qk << Rk. The results from this model validation provide insight into the prediction step accuracy
compared to the measured states. Inaccurate model parameters, such as cornering stiffness, result
in a model mismatch and therefore an inaccurate prediction.

Let us define the matrices

Qk = diag(1e−4, 1e−3, 1e−4, 5e−4, 3e−3, 4e−3), (3.30a)

Rk = diag(0.1e4, 0.1e4, 0.5e4, 0.15e4, 0.08e4), (3.30b)

where the results of this validation, using Data Set 2, are displayed in Figure 3.4. It is observed
that the prediction model is deviating from the measurement, indicating a model mismatch. In
Figure 3.5, the state estimation for ṽy and ω̃ is plotted with the respective measurement data, where
ṽy is excluded for now since there is no measurement data available to validate the estimation.

It can be concluded from Figure 3.5 that the model estimation for both ṽx and ω̃ provides a
reasonable estimate of what the vehicle states are. However, the estimation for ṽx shows a slight
offset compared with its measurement, and the estimation of ω̃ mimics the measurement data
except for the peaks around t = 28[s] and t = 33[s]. Therefore, the cause for the model mismatch
in the error estimates is likely caused by the estimation of ṽy, and especially the tire model
parameters Cf and Cr. Furthermore, the error in the tire dynamics accumulates for the lateral
dynamics since the lateral tire forces act in the same direction, where the yaw dynamics is a ratio
between the front and rear tire forces based on the weight distribution. Since this is a ratio, the
error in dynamics cancels each other out, resulting in a better estimation for ω̃ than ṽy.

The influence of ṽy on the model mismatch in the error estimation is further examined by adjusting
the prediction model dynamics for ẽy and ẽψ, where ṽy is excluded

˙̃ey = ṽx sin (ẽψ), (3.31a)

˙̃eψ = ω̃ − κ(s̃)
ṽx cos (ẽψ)

1− κ(s̃)ẽy
. (3.31b)

In Figure 3.6, the same data as Figure 3.4 is used, but the prediction step is modeled with the
error dynamics as described in (3.31). As a comparison, the Root Mean Square Error (RMSE) is
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Figure 3.4: Error states estimation for Qk << Rk, using Data Set 2.

computed between the measurement ŷk|k and the estimate x̂k|k, providing the results in Table 3.2.
As can be seen, the estimation when excluding the lateral velocity is much better, decreasing the
RMSE by 57.0% and 47.2%. In conclusion, the state covariance on both error states is increased,
and the EKF relies more on the input from the measurement.

The model can be improved by performing more tests while measuring the lateral velocity ṽy,
to validate the lateral dynamics model and give more insight into the performance of the EKF.
Additionally, tire testing is required to better estimate the cornering stiffness of both the front
and rear tires. However, the model is fixed for this thesis work, and the covariance matrices are
tuned to get the desired performance.

Table 3.2: Root Mean Square Error data set 1.

RMSE Including ṽy Excluding ṽy Difference
ẽy[m] 0.3525 0.1839 −57.0%
ẽψ[rad] 0.0913 0.0393 −47.2%

Covariance Matrices

Thus far, the results considered that Qk << Rk, but tuning these provide the desired behavior
between the state prediction and measurement. Data Set 1 is used since the car drove much faster
and a longer distance than Data Set 2.

To make a fair comparison with the model validation, the output is first analyzed for Qk << Rk
and is displayed in Figure 3.8 and Figure 3.7. The model output is much worse for higher velocities,
as the system excites more dynamic behavior. Furthermore, due to a decreased performance in
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Figure 3.5: ṽx and ω̃ state estimation for Qk << Rk using Data Set 2.

ṽx, the estimation for ẽy and ẽψ has worsened when comparing it with the results in Figure 3.6
where ṽy is excluded from the error dynamics.

Let us define the matrices

Qk = diag(1e−4, 1e−3, 1e−4, 5e−4, 3e−3, 4e−3), (3.32a)

Rk = diag(0.1, 0.1, 0.5e4, 0.15e4, 0.08), (3.32b)

where the covariance for the measurements of ẽy and ẽψ is still high, but all other states rely
now on both the model estimation and the measurement. As a result, the velocity estimates
in Figure 3.9 show the improvement made by adjusting the covariance matrices. Analyzing the
estimation of ṽx shows the trade-off between Qk and Rk, as the estimation for t ∈ [62.5, 65] shows
an overshoot, where the estimation of ṽx might benefit from relying more on the measurement.
However, in t ∈ [66.5, 70], the wheel encoder measurement indicates that the wheels are locking.
In contrast, the EKF provides a more realistic vehicle velocity by mitigating the locking wheels
and relying more on the prediction. The error estimation in Figure 3.10 also improved due to a
better state estimation of both ṽx and ω̃. This highlights the importance of the model validation
for ṽy.

At last, the covariance on the measurement of ẽy and ẽψ is defined, resulting in the final Qk and
Rk matrices

Qk = diag(1e−4, 1e−3, 1e−4, 5e−4, 3e−3, 4e−3), (3.33a)

Rk = diag(0.1, 0.1, 0.5, 0.15, 0.08). (3.33b)

In contrary with (3.32) is the EKF output now updated based on the footpoint calculation. Due
to the reduced covariance, the influence of the model mismatch is reduced since it now relies
more on the measurement data than the prediction model. The result of the updated covariance
matrix can be observed in Figure 3.11, where the results show a more reactive behavior towards
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Figure 3.6: Error states estimation for Qk << Rk, using (3.31) excluding ṽy and using Data Set
2.

the inputs of ẽy and ẽψ. Due to the more significant dependency on the measurement, its state
estimation changes for every measurement. However, the state estimation does mitigate the issue
that is presented initially in section 3.1, as the results show several instantaneous changes in the
error measurement in the interval t ∈ [35, 40], where the EKF does react to the rapid changes but
reduces the change in amplitude significantly.

Lower Bound ṽx

The EKF is based on a single-track model, including linear tire dynamics. When implementing
a tire model into the EKF, a singularity is introduced at ṽx = 0. This singularity affects the
accuracy of the EKF output for lower velocities and results in a non-observable system at ṽx = 0.
To mitigate the influence of this singularity, a lower bound ṽx,switch is determined for which the
EKF turns off and on. Via simulations the lower bound ṽx,switch is determined, by analyzing the
EKF output for varying ṽx,switch using Data Set 1 and Data Set 2.

The implementation of the lower bound is based on the measurement yk for ṽx, where the output
of the EKF is selected via

x̂k|k =

®
yk if ṽx ≤ ṽx,switch,

x̂k|k if ṽx > ṽx,switch.
(3.34)

When the vehicle velocity is beyond ṽx,switch, it will pass through the unfiltered measurement
data, additionally, when passing through the measurement data, the covariance matrix Pk|k and
the Kalman gain Kk are not updated. Not updating the covariance matrix and Kalman gain is
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Figure 3.7: Velocity estimation for Qk << Rk using Data Set 1.

implemented via

Pk|k =

®
Pk−1|k−1 if ṽx ≤ ṽx,switch,

Pk|k if ṽx > ṽx,switch.
(3.35a)

Kk =

®
Kk−1 if ṽx ≤ ṽx,switch,

Kk if ṽx > ṽx,switch.
(3.35b)

The results of this application can be observed in the figures below. As expected, the effect is
mainly observed in the yaw velocity estimation, as Figure 3.12 shows that the model’s prediction
deviates for t ∈ [8.6, 9.2] before merging to the same trend. Similar behavior can be observed in
Figure 3.13 for t ∈ [13.4, 13.8] where the results for ṽx,switch ∈ {0.1, 0.5} show a more significant
deviation before merging to the general solution of the EKF.

In Figure 3.14 and Figure 3.15, the effect on the error estimation can be observed. Where it was
expected that the estimation of ẽψ would be affected by the lower bound due to the appearing
yaw velocity in its dynamics, it is ẽy which shows the more significant difference in output. As is
seen in the model validation, are the error dynamics sensitive to a model mismatch in the velocity
states. Due to the later transition towards the EKF output, the estimation of the velocity states
improves for lower velocities. Therefore a better error estimation is found for increasing ṽx,switch.
The reason that this mainly occurs for ẽy is the choice of covariance matrices Qk and Rk, which
are defined in (3.33), where the output for ẽy relies more on the model than ẽψ, which relies more
on the measurement.

Note that for the prediction step a RK4 discretization is used, which provides a better estimate
at low speeds and lower frequencies. When applying the EKF with a RK2, or even forward
Euler discretization, one should apply a higher ṽx,switch than is presented in this thesis. Also, the
transition towards a kinematic model at low speed provides a better outcome since a kinematic
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Figure 3.8: Error states estimation for Qk << Rk using Data Set 1.

model does not suffer from such singularities. Showing the difference in discretization methods
and the transition towards a kinematic model for the EKF is beyond the scope of this thesis work.
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Figure 3.9: Velocity estimation for (3.32), using Data Set 2.

Figure 3.10: Error states estimation Velocity estimation for (3.32), using Data Set 2.
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Figure 3.11: Error states estimation (3.33), using Data Set 1.

Figure 3.12: Velocity estimation for different ṽx,switch using Data Set 1.
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Figure 3.13: Velocity estimation for different ṽx,switch using Data Set 2.

Figure 3.14: Error states estimation for different ṽx,switch using Data Set 1.
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Figure 3.15: Error states estimation using Data Set 2.
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3.4 Observation and Conclusion

This chapter discussed the localization of the vehicle with respect to a reference path. First, the
principle of the footpoint is introduced, representing the location of the Frenet Coordinate frame
T . Then, based on the footpoint, the error states ey and eψ are derived, which then can be used
for the MPC.

SLAM provides the reference path, and it is observed that this path can shift, resulting in instant-
aneous and non-smooth error states. Therefore, an EKF is introduced and applied to solve this
problem. A simplified bicycle model is obtained assuming linear tire dynamics and using a small
angle approximation. Based on a simplified output mapping, local observability is obtained based
on a pragmatic approach where it is shown to be sufficient that αf + δ̃ ̸= ẽ−1

ψ . However, as the
results are based on a pragmatic approach, not all scenarios can be included, implying that local
observability can not be guaranteed.

Several simulations are performed using two data sets provided by URE. At first, the model and
its parameters are validated. These results showed that the error states are sensitive to a model
mismatch, and due to lacking the measurement on ṽy, no good model estimation could be made.
Finally, via tuning the covariance matrices Qk and Rk, a reasonable estimate of ṽx and ω̃ is found,
capable of filtering out disturbances, such as wheel slip.

To improve the overall model, the measurement of ṽy must be obtained to validate the last velocity
state. Also, more testing is required to find a better estimation of the cornering stiffnesses Cf and
Cr as including the estimation of ṽy in the error dynamics caused the RMSE to increase by 50%.

The next chapter will discuss the optimization problem to solve the minimum time problem.
As this optimization problem is formulated in the Frenet coordinate frame, this chapter worked
towards a smoother control input, potentially avoiding infeasibility or undesired behavior in the
MPC output.
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Chapter 4

Optimization Problem

This chapter discusses Nonlinear Programming (NLP) to solve the online optimization problem.
The applied control strategy is MPC, an advanced control technique used to compute control
inputs while satisfying a set of constraints. Since MPC is a more advanced control technique, the
models used in MPC generally describe the motion of complex dynamic systems. Where a typical
optimization problem solves the problem only once, MPC solves the problem repeatedly over a
prediction horizon N . The problem formulation for NLP using MPC is formulated as

min
Xk,Uk

J(xi|k, ui|k), (4.1a)

subject to xi+1|k = f(xi|k, ui|k), (4.1b)

x0|k = x(k), (4.1c)

xmin ≤ xi|k ≤ xmax, (4.1d)

umin ≤ ui|k ≤ umax, (4.1e)

xi|k ∈ X , (4.1f)

ui|k ∈ U , (4.1g)

where Xk = [x1|k, ..., xN+1|k] and Uk = [u1|k, ..., uN |k] represent the predicted states and inputs,
respectively, for each step k over the prediction horizon i ∈ {1, ..., N}.

MPC requires a model describing the dynamics of the real-time system, which is the two-track
model discussed in section 2.2. However, a compromise often must be made between model
complexity and computation time to solve the optimization problem. Therefore, in section 4.1,
the principle of cascaded vehicle models is used, exploiting the advantages of the single track
and point-mass model from section 2.2, resulting in faster computation without decreasing the
performance significantly.

The objective function of an optimization problem can be configured to achieve various goals. For
this thesis, the main goal of the optimization problem is to minimize lap time for an all-wheel
drive autonomous race car while using a finite planning horizon. While pushing the vehicle to
the limits, the controller is responsible for making trade-offs in lateral and longitudinal control
to stabilize the car. The problem formulation in section 4.2 discusses how the objective function
J(xi|k, ui|k) is formulated to achieve these control goals.

For the optimal solution to be feasible, it should satisfy a set of constraints in the form of (4.1d)
- (4.1g). These constraints are discussed in section 4.1, where the lower and upper bounds from
both the states and inputs are defined, and the set of feasible states X and inputs U are restricted
via several equality and inequality constraints.
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4.1 Cascaded Vehicle Model

One of the control objectives of motion planning is stabilizing the car, while in autonomous racing,
the car also has to be pushed toward the limits of its performance. A highly non-linear model is
required to achieve these goals, describing the longitudinal, stiff lateral, and stiff yaw dynamics.
Another control objective is trajectory planning to ensure a safe velocity profile along the reference
path and avoid road departure.

As suggested in [28], these control objectives do not necessarily have a constant level of relevance
or criticality throughout the planning horizon. Where different motion planning controllers use a
hierarchical approach with multiple loops, potentially causing infeasible reference signals between
controllers or using conservative reference signals that do not plan to use the system to its full
potential, the principle of cascaded vehicle models in a single planning horizon is introduced.

The model for the MPC in this thesis is based on the principle of cascading vehicle models
[28]. At first, a two-track model is used to utilize the input from four electric in-wheel motors
fully. Where classic control strategies rely on a separate torque vectoring controller, this MPC
uses a high-fidelity plant model in the first part of the planning horizon to maximize the vehicle
performance without relying on external controllers. However, as the two-track model has a
significant computational burden, its prediction horizon should be kept to a minimum while still
a feasible and smooth control input can be obtained. To ensure vehicle stability, the second
part of the horizon is based on the single-track model, providing high-quality control input and
utilizing the system to its full potential. Finally, the last part of the planning horizon is extended
with a lower fidelity model, namely a point mass, providing a larger look-ahead distance at a low
computational burden. The overall concept is displayed in Figure 4.1, where the total look-ahead
distance consists of the three vehicle models combined, yielding that st = s+ s̃+ s̄.

sN |k

sM |k

T

T

R

x

y

O

z

T̃

s̃H|k

V

s0|k

Figure 4.1: Cascaded vehicle model horizon.

The first step in serially cascading different vehicle models is carefully defining a mapping where the
final state of one vehicle model propagates towards the initial state of the following vehicle model.
Since the same states describe the two-track model and the single-track model, the mapping can
be defined relatively simple, where the two-track states at prediction i = N define the initial state
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of the single-track model for z = 0, yielding

ṽx,0|k = vx,N |k, (4.2a)

ṽy,0|k = vy,N |k, (4.2b)

ω̃0|k = ωN |k, (4.2c)

s̃0|k = sN |k, (4.2d)

ẽy,0|k = ey,N |k, (4.2e)

ẽψ,0|k = eψ,N |k, (4.2f)

δ̃0|k = δN |k. (4.2g)

The mapping between the single track and point-mass model is defined differently, as the point-
mass does not consider yaw dynamics and only a single velocity vector. Since V̄ represents the
resulting velocity vector, the mapping can be defined by determining the resultant velocity vector
from the two vectors ṽx and ṽy at z = H.

For the mapping between ẽψ and ēψ, it has to be taken into account that both represent a
different angle. Where ẽψ represents the error between the path heading and the vehicle chassis, ēψ
represents the error between the heading of the path and the resulting velocity vector. Therefore,
the vehicle side slip angle from the single-track model has to be determined to compensate for this
difference, resulting in the mapping [28]

V̄0,k =
»
ṽ2x,H|k + ṽ2y,H|k, (4.3a)

ēy,0|k = ẽy,H|k, (4.3b)

ēψ,0|k = arctan

Ç
ṽy,H|k

ṽx,H|k

å
+ ẽψ,H|k, (4.3c)

s̄0|k = s̃H|k, (4.3d)

where the mapping for the position states ēy and s̄ can be set equal to the states of the single
track model at z = H since these represent the same position.

The transition of the tire forces between the different vehicle models also has to be considered,
but this is done via a penalty in the cost function, which is discussed in the following section.
In addition, when developing an MPC with a cascaded model, it is essential to have consistency
between state and input mapping, as well as the constraints and cost function. This is also
considered in the following sections, where these topics are further discussed.

4.2 Problem Formulation

The goal of the MPC is to minimize the objective function,

min
Xk Uk

t̄M + JM + JU + J∆U + Je + Jtr + Jβ , (4.4)

which is the sum of seven different terms. At first, the primary objective is to minimize the lap
time, hence minimizing the required time for the point-mass to reach the end of the planning
horizon, denoted by t̄M .

Space Domain

As time becomes an optimization variable, a transformation from the time to space domain is sug-
gested. Formulating the equations of motion are naturally done as a function of time, especially
when designing controllers where the sampling frequency determines when the input is applied.
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However, time becomes an optimization variable when the goal is to minimize lap time. A trans-
formation from time to space domain is performed, such that the dynamics evolve with respect to
space rather than time. The transformation can be obtained by applying

ẋ =
dx

dt
=
dx

ds

ds

dt
, (4.5)

which can be rewritten to find the expression

dx

ds
= ẋ

Å
ds

dt

ã−1

= ẋ
1

ṡ
, (4.6)

where ṡ is the vehicle’s velocity along the reference path. When performing this transformation,
the state s becomes redundant since it is linearly increasing with the discretization step in the
space domain. Therefore, the state s is replaced with state time t, where the equation of motion
in the time domain is formulated as

ṫ = 1, (4.7)

which is in the time domain linearly increasing, similarly to s in the spatial domain. However, the
dynamics of time in the spatial domain are described as

ṫ =
1

ṡ
. (4.8)

As a result, time can now be formulated as a function of the vehicle states by solving

t =

∫ ∆s

0

ṫ ds, (4.9)

where ∆s is the discretization step size in the spatial domain. This integral is approximated based
on the selected discretization method.

Terminal State

The five remaining terms in (4.4) enhance the optimization problem’s feasibility and guarantee
safe driving conditions. First, let us define the terminal cost JM , which represents the cost on the
final stage in the finite horizon problem. Terminal cost is used to enhance feasibility, where the
terminal state is forced towards a state vector which is considered a safe set. When considering
autonomous racing with online path planning, being on the centerline of the explored track is set
to be a safe position. Therefore, the lateral error ēy and the heading error ēψ at the end of the
planning horizon is penalized, resulting in

JM =Wēy,M ē
2
y,M |k +Wēψ,M ē

2
ψ,M |k +WV̄M V̄

2
M |k, (4.10)

where Wēy,M and Wēψ,M are the corresponding weights. The last term in the penalty JM affects
the velocity at the terminal state V̄M |k. This cost should only apply if the velocity at the end of
the horizon exceeds a feasible set of velocities, guaranteeing that the vehicle can stop in time for
any corner on the track.

Since the track is unknown at the start of the race, it is also impossible to determine a safe bound
V̄M,max which depends on the progress made along the centerline. Therefore, a general bound is
required which guarantees that the NMPC can slow down soon enough to respect the track limits
still. The bound V̄M,max of the feasible set is defined by assuming steady-state cornering, where
the lateral acceleration is defined as

ay =
V̄ 2

R
. (4.11)
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From (4.11), it can be observed that the maximum horizon velocity depends on the smallest radius
on the track and the maximum lateral acceleration. The maximum lateral acceleration can be
derived from the tire characteristics and the lateral dynamics of the point mass, defined as

may = F̄y, (4.12)

substituting (4.11) yields

V̄ =

 
F̄yR

m
. (4.13)

From (4.13), it can be concluded that the maximum velocity can be achieved by assuming F̄y = D̄y.
However, this assumption does not provide a feasible solution, as the required tire forces to achieve
this steady-state condition exceed the friction ellipse. Assuming F̄y,max = D̄y excludes the need
of any longitudinal force F̄x. However, to drive at a constant velocity, F̄x must compensate for
the occurring drag and rolling resistance forces.

Therefore, the required longitudinal force is estimated to drive the steady-state velocity. Assuming
that the tires only generate lateral force, the maximum steady-state velocity can be obtained via

V̄ss =

 
D̄yR

m
. (4.14)

Based on this assumption, the required longitudinal force can be determined via

F̄x,ss = 0.5ρairCDAsV̄
2
ss + frFz. (4.15)

The corrected F̄y,max to ensure a feasible set for V̄M can be determined based on the tire friction
ellipse Å

F̄y
D̄y

ã2
+

Å
F̄x
D̄x

ã2
= 1 ⇒ F̄y,max = D̄y

√Ç
1−
Å
F̄x,ss
D̄x

ã2å
. (4.16)

Substituting F̄y,max from (4.16) in (4.13) to determine VM,max provides a safe set for V̄ , due to

F̄y,max < D̄y ⇒ VM,max < Vss ⇒ F̄x < F̄x,ss, (4.17)

providing that the upper-bound VM,max provides a feasible set. This set guarantees that all corners
on the track can be driven while staying within the friction ellipse of the tires and without road
departures. This directly implies that an increased look-ahead distance will directly increase the
performance on the track due to the increased braking distance over the prediction horizon.

The weight on exceeding the feasible set is implemented via

WV̄M =

®
WV̄M0

, if V̄M |k ≥ V̄M,max.

0, Otherwise.
, (4.18)

which ensures that the penalty is only applied when V̄M |k exceeds the bound, resulting in a safe
trajectory over the prediction horizon.

Input and Input Rate

Using the principle of cascaded vehicle models, where each model has a different control goal, it
is essential to scale the objective function accordingly. Since each model can be discretized with
different step sizes, the weights W in the cost function are weighted by their respective model
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step size ∆s. Scaling the objective function with its respective step size enhances the principle of
different control objectives over the prediction horizon. Using the product between the step size
and the respective weight puts the focus more on the point-mass model due to its significant step
size compared to the step size of the two-track and single-track models. The opposite can be said
when the weight is divided by its respective step size.

For the cost on input JU and change of input J∆U , the scaling is performed by dividing its weight
W by the respective step size ∆s. Since the complex vehicle models are responsible for stabilizing
the vehicle, changing its input and using input are penalized more. Moreover, it allows the point
mass to explore varying inputs further away from the car. All three vehicle models combined
consist of different inputs, separated into seven different terms for the input cost JU

JU = Jδ̇ + J ˙̃
δ
+ JM̃tv

+ JFx + JF̃x + JF̄x + JF̄y , (4.19)

to promote the smoothness of the different control inputs. The costs Jδ̇ and J ˙̃
δ
penalizes steering

rate input for the single and two-track model, respectively, JM̃tv
penalizes the torque vectoring

moment input in the single track model, JFx , JF̃x and JF̄x penalizes the total longitudinal input
for the two-track, single track and point-mass model, respectively, and JF̄y penalizes the lateral
force input in the point-mass model. All the different costs are defined as

Jδ̇ =
Wδ̇0

∆s

N−1∑
i=0

δ̇2i|k, (4.20a)

J ˙̃
δ
=
Wδ̇0

∆s̃

H−1∑
z=0

˙̃
δ2z|k, (4.20b)

JM̃tv
=
WM̃tv

∆s̃

H−1∑
z=0

M̃2
tv,z|k, (4.20c)

JFx =
WFx0

∆s

N−1∑
i=0

4∑
l=1

F 2
x,l,i|k, (4.20d)

JF̃x =
WFx0

∆s̃

(
H−1∑
z=0

F̃ 2
x,f,z|k +

H−1∑
z=0

F̃ 2
x,r,z|k

)
, (4.20e)

JF̄x =
WFx0

∆s̄

M−1∑
j=0

F̄ 2
x,j|k, (4.20f)

JF̄y =
WF̄y

∆s̄

M−1∑
j=0

F̄ 2
x,j|k, (4.20g)

where for the steering rate and longitudinal force input the same weight is used for the different
models, namely Wδ̇0

and WFx0 respectively, to enhance a smooth input trajectory between the
cascaded models.

The cost J∆U is similarly defined as JU , namely

J∆U = J∆δ̇ + J
∆

˙̃
δ
+ J∆M̃tv

+ J∆Fx + J∆F̃x + J∆F̄x + J∆F̄y , (4.21)
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where

J∆δ̇ =
W∆δ̇0

∆s

(
N−2∑
i=0

(δ̇i+1|k − δ̇i|k)
2

)
, (4.22a)

J
∆

˙̃
δ
=
W∆δ̇0

∆s̃

(
H−2∑
z=0

(
˙̃
δz+1|k − ˙̃

δz|k)
2

)
, (4.22b)

J∆M̃tv
=
W∆M̃tv

∆s̃

(
H−2∑
z=0

(M̃tv,z+1|k − M̃tv,z|k)
2

)
, (4.22c)

J∆Fx =
W∆Fx0

∆s

(
N−2∑
i=0

4∑
l=1

(Fx,l,i+1|k − Fx,l,i|k)
2

)
, (4.22d)

J∆F̃x =
W∆Fx0

∆s̃

(
H−2∑
z=0

(F̃x,f,z+1|k − F̃x,f,z|k)
2 +

H−2∑
z=0

(F̃x,r,z+1|k − F̃x,r,z|k)
2

)
, (4.22e)

J∆F̄x =
W∆Fx0

∆s̄

Ñ
M−2∑
j=0

(F̄x,j+1|k − F̄x,j|k)
2

é
, (4.22f)

J∆F̄y =
W∆F̄y

∆s̄

Ñ
M−2∑
j=0

(F̄y,j+1|k − F̄y,j|k)
2

é
, (4.22g)

where the change in longitudinal force and steering rate also is penalized with the same weights
W∆Fx0 and W∆δ̇0, respectively.

Error States

Since the vehicle models are formulated in the Frenet reference frame it allows the application of
a quadratic cost on the error states. The position errors over the planning horizon are penalized
via Je, where tuning its weight can obtain the desired reference tracking behavior. The penalty
on the error states is defined via two terms

Je = Jey + Jeψ , (4.23)

where

Jey =Wey

Ñ
∆s

N∑
i=0

e2y,i|k +∆s̃

H∑
z=0

ẽ2y,z|k +∆s̄

M−1∑
j=0

ē2y,j|k+

é
, (4.24a)

Jeψ =Weψ

Ñ
∆s

N∑
i=0

e2ψ,i|k +∆s̃

H∑
z=0

ẽ2ψ,z|k +∆s̄

M−1∑
j=0

(ē2ψ,j|k

é
. (4.24b)

The weights Wey and Weψ are the common weights for all three vehicle models, which are scaled
by multiplying the weight with the respective step size. Using the point mass to explore the
trajectory has two risks. First, it is a lower-fidelity model with an increased distance between the
solutions, resulting in a less accurate prediction. Second, since the point-mass model is responsible
for path planning, where the reference trajectory can shift due to external disturbances, the risk
of exceeding the track limits increases. Therefore, deviating from the reference path for the point
mass is only possible at a higher cost, enforcing the NMPC to find a solution closer to the reference
path the further it gets from the vehicle’s position.
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Vehicle Side Slip Angle

As the car is pushed towards the limits, there is a chance that the MPC tends towards a drifting
solution, which is beyond the limits of vehicle handling as the tires operate in the fully saturated
region. Since one of the control objectives is stabilizing the vehicle, a penalty on excessive vehicle
side slip angle β is applied, stabilizing the car [40]. This cost is only applied when exceeding the
point where gripping can not be guaranteed

Jβ =Wβ0

N∑
i=0

®
(|βi|k| − βmax)

2, if |βi|k| ≥ βmax

0, otherwise.

+Wβ0

H∑
z=0

®
(|β̃z|k| − βmax)

2, if |β̃z|k| ≥ βmax

0, otherwise.
,

(4.25)

where βmax depends on many non-linear terms and usually is hard to predict, but a well-educated
guess based on the results in [40] indicates that it is between 5◦ ∼ 7.5◦. The vehicle side slip angle
is determined via

βi|k = arctan

Ç
vy,i|k

vx,i|k

å
≈
vy,i|k

vx,i|k
, (4.26a)

β̃z|k = arctan

Ç
ṽy,z|k

ṽx,z|k

å
≈
ṽy,z|k

ṽx,z|k
, (4.26b)

where it is assumed that the vehicle side slip angle remains small.

Force Transition

The last cost term is the penalty on the transition of tire force between the different vehicle models.
Due to the cascaded planning horizon, the dynamics change, where Jtr penalizes a non-smooth
transition when the model changes. This penalty is defined as

Jtr = JF |F̃ + JF̃ |F̄ , (4.27)

where JF |F̃ is the penalty on the transition between the two-track and single-track vehicle model,
and JF̃ |F̄ the penalty on the transition between the single-track and point-mass model. This
penalty term is an additional cost on the tire forces to enforce a smooth transition in tire forces,
where JFx , JF̃x , JF̄x , and JF̄y only penalize the input of a tire force and not the transition between
them. The cost terms are defined as

JF |F̃ =WF |F̃

(
(F̃x,0|k −

4∑
l=1

Fx,l,N−1|k)
2 + (F̃y,f,0|k + F̃y,r,0|k −

4∑
l=1

Fy,l,N |k)
2

)
, (4.28a)

JF̃ |F̄ =WF̃ |F̄

Ä
(F̄x,0|k − F̃x,H−1|k)

2 + (F̄y,0|k − (F̃y,f,H|k + F̃y,r,H|k))
2
ä
, (4.28b)

where WF |F̃ and WF̃ |F̄ are the weights on the transition of tire forces between the two-track and
single-track mode, and the single track model and the point mass model, respectively.

4.3 Constraints

After formulating all the different costs, the feasible domain of the NMPC is defined via a set of
constraints. The constraints are formulated to enhance both practical and numerical feasibility.
First, optimization along the centerline allows the NMPC to explore the track, but the vehicle
should always stay on the track. To enforce safe driving on the track, the lateral error is constrained
via the track’s width so that the optimal solution always lies within track limits. Additionally, the
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vehicle’s limited steering capabilities should be considered when exploring the track. Therefore,
both the steering angle and steering rate are constrained. Second, reverse driving should always be
avoided to prevent numerical infeasibility. Therefore, the minimum longitudinal velocity and the
heading error are constrained. These constraints provide that the optimal path ensures forward
driving. Last, since a dynamic vehicle model is used in the NMPC, the feasible domain is also
defined by nonlinear tire dynamics. In the single-track model, a torque vectoring moment is con-
sidered system input. The maximum torque vectoring moment the vehicle can produce is limited
via the longitudinal peak tire force and is therefore constrained via tire and vehicle parameters.
Furthermore, all the vehicle models use longitudinal force as system input, and the point-mass
model also considers lateral force as a system input. To ensure that all forces acting on the system
as a result of tire forces are within the friction ellipse of the tire, each model is constrained via
tire constraints. In the remainder of this section, the formulation of the constraints is discussed
in more detail.

State constraints

A constraint is set on the maximum and minimum lateral error to ensure that the vehicle remains
on track. As the track width can differ, the constraint is a function of the progress made along
the reference path, resulting in

ey,i|k,min(si|k) ≤ ey,i|k ≤ ey,i|k,max(si|k) ∀i ∈ {0, ..., N}, (4.29a)

ẽy,z|k,min(s̃z|k) ≤ ẽy,z|k ≤ ẽy,z|k,max(s̃z|k) ∀z ∈ {0, ...,H}, (4.29b)

ēy,j|k,min(s̄j|k) ≤ ēy,j|k ≤ ēy,j|k,max(s̄j|k) ∀j ∈ {0, ...,M}, (4.29c)

where the lateral error’s lower and upper bound is defined by the track width, which is provided
with the reference path by SLAM.

The heading error constraint is defined to avoid uncontrollable vehicle poses and infeasible op-
timization problems. Allowing for an extensive heading error results in more aggressive corner
cutting when encountering a small cornering radius; therefore, it should not be restricted too
much. However, an issue occurs when encountering a heading error of 90◦, which indicates that
the vehicle is perpendicular to the reference path. As the car is perpendicular to the path, the
longitudinal velocity and the rear tires do not contribute to the minimization problem. Once the
car surpasses the 90◦, the vehicle is driving in reverse, and the rear tires want to generate an op-
posing longitudinal force. Notice that the front tires can still generate a longitudinal force in the
path heading if the vehicle heading error does not surpass the limit eψ,max + δmax. This situation
has to be avoided since reverse driving is not allowed on the track. Therefore, the heading error
is constrained via

−80
π

180
≤ eψ,i|k ≤ 80

π

180
∀i ∈ {0, ..., N}, (4.30a)

−80
π

180
≤ ẽψ,z|k ≤ 80

π

180
∀z ∈ {0, ...,H}, (4.30b)

−80
π

180
≤ ēψ,j|k ≤ 80

π

180
∀j ∈ {0, ...,M}, (4.30c)

where the limit is set on 80◦ to also account for any measurement error that can occur during
the position estimation, as discussed in Chapter 3. Additionally, as mentioned above, to prevent
reverse driving, a lower bound is set on the longitudinal velocity

0.1 ≤ vx,i|k ∀i ∈ {0, ..., N}, (4.31a)

0.1 ≤ ṽx,z|k ∀z ∈ {0, ...,H}, (4.31b)

0.1 ≤ V̄j|k ∀j ∈ {0, ...,M}. (4.31c)

The constraint on the longitudinal velocity also prevents the vehicle from reaching the model
singularity at vx = 0.
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The last constrained state is the steering angle, which is limited via mechanical constraints due
to the limited steering capacity of the vehicle,

δmin ≤ δi|k ≤ δmax ∀i ∈ {0, ..., N}, (4.32a)

δ̃min ≤ δ̃z|k ≤ δ̃max ∀z ∈ {0, ...,H}. (4.32b)

Input constraints

The two-track and single-track model use steering rate as input, which is limited by the steering
actuator. Therefore, the steering rate is constrained via

δ̇min ≤ δ̇i|k ≤ δ̇max ∀i ∈ {0, ..., N − 1}, (4.33a)

˙̃
δmin ≤ ˙̃

δz|k ≤ ˙̃
δmax ∀z ∈ {0, ...,H − 1}. (4.33b)

This constraint depends on the steering actuator that is being used. As the specification of the
steering actuator does not always provide the required information, and the steering rate relies on
highly nonlinear tire dynamics, the maximum steering rate is determined based on testing data
from University Racing Eindhoven.

To model the torque vectoring moment on a single-track model, an additional moment Mtv about
the CG is implemented, which should not exceed the maximum moment a two-track model can
generate via torque vectoring. Therefore,Mtv must be constrained based on the maximum moment
the tires in a two-track model can generate. To estimate the maximum moment, the sum of the
moments about the CG has to be derived, assuming that the tires do not generate any lateral
force. This assumption is made since the same lateral tire forces can be generated in both vehicle
models, where Mtv purely focuses on the additional moment due to braking and accelerating the
four tires. The most extreme case is displayed in Figure 4.2, where the vehicle is rotating counter-
clockwise, purely relying on torque vectoring. Deriving the sum of all moments about the CG
results in ∑

Mz =
wf
2
(Fx,1 + Fx,4) +

wr
2
(Fx,2 + Fx,3). (4.34)

The resulting moment can be maximized when all four tires are operating at the limits, in which
the longitudinal tire force equals

Fx,l,max = µxFz,l, (4.35)

substituting this into (4.34) results in

Mz,max =
wf
2
(Fx,1,max + Fx,4,max) +

wr
2
(Fx,2,max + Fx,3,max),

=
wf
2
(µxFz,1 + µxFz,4) +

wr
2
(µxFz,2 + µxFz,3).

(4.36)

This expression can be further simplified when only static weight distribution is considered, res-
ulting in

Mz,max =
µxFz
2

(wfwdis + wr(1− wdis)), (4.37)

where wdis is the weight distribution of the vehicle, and Fz is the gravitational force acting on
the CG. Deriving the minimum moment Mz,min yields the same result as Mz,max, resulting in a
clockwise rotation of the vehicle. The resulting constraint is formulated as

M̃tv,min ≤ M̃tv,z|k ≤ M̃tv,max ∀z ∈ {0, ...,H − 1}, (4.38)

where

M̃tv,min = −µxFz
2

(wfwdis + wr(1− wdis)) , (4.39a)

M̃tv,max =
µxFz
2

(wfwdis + wr(1− wdis)) . (4.39b)
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Figure 4.2: Maximum moment Mz,Fx due to Fx,l.

Tire constraints

All the vehicle models presented in Section 2.2 use the simplified Pacejka tire model

Fy = Dy sin (Cy arctan (Byα)), (4.40)

to describe the lateral tire dynamics. The longitudinal tire force Fx is used as model input. Since
the tire forces are incorporated in such a manner, the forces are decoupled. However, for the
optimal solution to be feasible, the tire forces must be within the tire friction ellipse, which can
be formulated as Å

Fx
Dx

ã2
+

Å
Fy
Dy

ã2
≤ 1. (4.41)

The friction ellipse is applied as a constraint to couple the lateral and longitudinal tire force, where
the constraints for the two-track model are defined asÅ

Fx,1
Dx,1

ã2
+

Å
Fy,1
Dy,1

ã2
− 1 ≤ 0, (4.42a)Å

Fx,2
Dx,2

ã2
+

Å
Fy,2
Dy,2

ã2
− 1 ≤ 0, (4.42b)Å

Fx,3
Dx,3

ã2
+

Å
Fy,3
Dy,3

ã2
− 1 ≤ 0, (4.42c)Å

Fx,4
Dx,4

ã2
+

Å
Fy,4
Dy,4

ã2
− 1 ≤ 0, (4.42d)

whereDx,l = µxFz,l andDy,l = µyFz,l, l ∈ {1, 2, 3, 4} and Fz,l representing the vertical load acting
on the respective tire. However, the friction ellipse is a nonlinear constraint, resulting in a long
computation time, especially when considering four tires. Therefore, to reduce the computation
time, the nonlinear inequality constraints in (4.42) are replaced with several linear inequality
constraints.

The goal is to estimate an ellipse with several linear functions, which in the case of the friction
ellipse is defined as

Fy,l = aFx,l + b, (4.43)

where a and b represent the linear function’s slope and intercept, respectively. Tires are considered
highly nonlinear, where the ellipse of a tire can have varying eccentricity. Depending on the tire
characteristics, the required number of linear functions can vary to get a good estimate. The
number of linear functions to approximate the ellipse can be selected based on the number of
intersection points. An intersection point represents the coordinates where the linear function
intersects with the friction ellipse.
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The minimum number of linear functions to estimate the friction ellipse is four since each quadrant
requires to be constrained for the optimization problem to be well-constrained. These four linear
functions are defined based on the maximum tire force in both lateral and longitudinal direction,
resulting in the intersection points {(Dx,l, 0), (−Dx,l, 0), (0, Dy,l), (0,−Dy,l)}, l ∈ {1, 2, 3, 4}. Fig-
ure 4.3 shows the estimation based on these four points. These linear functions can be reformulated
as linear inequality constraints, depending on which quadrant the constraint is active, resulting in

hi(Fx,l, Fy,l) =

®
−Fy,l + (aFx,l + b) ≤ 0 if (Fx,l, Fy,l) ∈ {I, II},
Fy,l − (aFx,l + b) ≤ 0 if (Fx,l, Fy,l) ∈ {III, IV },

(4.44)

where i ∈ {1, ..., in} and
in = 4(1 + Pn), (4.45)

is the total number of inequality constraints to approximate (4.41), and Pn is the added number
of intersection points per quadrant. The coordinates of the intersection points are determined by
dividing each quadrant into Pn+1 equal-sized segments, where the intersection point is located on
the line splitting two segments and intersecting with the ellipse. Increasing Pn provides a better
estimate, increasing the car’s performance since it enlarges the feasible area of the tire constraints,
resulting in larger tire forces. In Figure 4.4, the estimation for Pn = 2 is shown, which shows
the enlarged feasible domain for both Fx and Fy, comparing it with the feasible domain shown
in Figure 4.3. The results are compared in Chapter 5 based on computation time and vehicle
performance.

The tire constraints are also applicable to the single track and point-mass model. So similarly to
(4.42) can the friction ellipse for each tire of the single track be determined, now considering the
friction ellipse of the axle instead of the tireÇ

F̃x,f

D̃x,f

å2

+

Ç
F̃y,f

D̃y,f

å2

− 1 ≤ 0, (4.46a)Ç
F̃x,r

D̃x,r

å2

+

Ç
F̃y,r

D̃y,r

å2

− 1 ≤ 0. (4.46b)

Since the single-track model only considers a single force at the CG, the distribution between the
front and rear axle has to be defined. The grip of the axle scales with the vertical load acting on
the axle since the maximum possible grip is defined as D̃y = µyF̃z,l, l ∈ {f, r}, similarly for D̃x.
Therefore, the fixed longitudinal force distribution between the front and rear axle is defined by
the weight distribution, resulting in

F̃x,f = wdisF̃x, (4.47a)

F̃x,r = (1− wdis)F̃x. (4.47b)

By substituting (4.47) into (4.46) the tire constraints for the single track model are obtainedÇ
wdisF̃x

D̃x,f

å2

+

Ç
F̃y,f

D̃y,f

å2

− 1 ≤ 0, (4.48a)Ç
(1− wdis)F̃x

D̃x,r

å2

+

Ç
F̃y,r

D̃y,r

å2

− 1 ≤ 0. (4.48b)

These two ellipses are also approximated via several linear constraints, where the four default
intersection points are defined as {(D̃x,l, 0), (−D̃x,l, 0), (0, D̃y,l), (0,−D̃y,l)}, l ∈ {f, r}.

At last, the friction ellipse of the point mass is a constraint. Since the point-mass model uses both
the lateral and longitudinal forces as system inputs, the ellipse can be determined as relatively
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straightforward as Å
F̄x
D̄x

ã2
+

Å
F̄y
D̄y

ã2
− 1 ≤ 0, (4.49)

which also is approximated via linear constraints. The default intersection points for the linear
approximation are defined as {(D̄x, 0), (−D̄x, 0), (0, D̄y), (0,−D̄y)}.

Figure 4.3: The friction ellipse of the front tire with linear tire constraints, based on Pn = 0.
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Figure 4.4: The friction ellipse of the front tire with linear tire constraints, based on Pn = 2.

4.4 Variable Step Size

The overall problem formulation, the cost to be minimized, and the required set of constraints
are all defined in the previous sections. These three sections describe the overall control structure
to achieve an online optimization-based motion planning system. However, before solving the
NMPC, the different vehicle models are discretized in the spatial domain using the curvilinear
approach. Therefore, this section focuses on the discretization of the different vehicle models.

Discretization of the different vehicle models can be done by applying a fixed step size defined in
the spatial domain, providing a constant path geometry for each stage in the planning horizon.
However, a disadvantage of discretization in the spatial domain is the increased stiffness of the
vehicle dynamics with lower vehicle speed, which require a smaller step size to prevent numerical
instability. Therefore, a sufficiently small step size is required to guarantee the feasibility of the
control problem, with the disadvantage of reducing the look-ahead distance for the same horizon
length. Finding the balance between numerical stability and a sufficiently large look-ahead distance
is proven difficult due to the difficulty in formulating model stiffness. Therefore, a simulation study
is done to determine the accuracy of the discretized vehicle model for different step sizes.

Instead of using a fixed step discretization in the spatial domain, the system’s step size is determ-
ined based on the current vehicle speed and a fixed time constant h. The resulting step size in the
spatial domain is then determined via

∆sk = h ṡ0|k, (4.50a)

∆s̃k = h̃ ˙̃s0|k, (4.50b)

∆s̄k = h̄ ˙̄s0|k. (4.50c)

An advantage of applying a variable step size is numerical stability at low vehicle speeds due
to a smaller step size but an increased look-ahead distance once the vehicle velocity increases.
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The disadvantage of such an application is that by planning further ahead over the horizon, the
model will accelerate and decelerate, resulting in a velocity profile that is not representative of
the velocity at the start of the respective horizon. This disadvantage is mainly applicable to the
point-mass model, as these dynamics are less-stiff, it allows for larger discretization step sizes and
therefore aggravates this effect.

The two-track model described in section 2.2 is used to analyze the two-track and single-track
models. Since the single-track consists of the same system dynamics as the two-track model but
considering fewer system inputs, the stiffness is assumed to be equally stiff.

As a reference, the same input is used while simulating the model response with an ODE45 solver
from MATLAB. The ODE45 solver from MATLAB is chosen as a reference since it applies variable
step sizes to increase model accuracy when states are changing rapidly. ODE45 is selected over the
implicit ODE15s, which is considered better for solving stiff dynamics. However, ODE45 provides
higher accuracy with the cost of slow computational performance, which is not considered an issue
during this analysis [41].

To determine the accuracy of the discretized vehicle model, which is discretized with the RK2
discretization, the error between the RK2 discretization and the output from the ODE45 solver is
determined via

e =

Ã
L∑
k=0

(xRK2,k − xODE45,k)
2
, (4.51)

where xRK2,k and xODE45,k represent the state output from the RK2 and ODE45 solver output
at time k, respectively, and L = send

∆s . Note that the absolute values of the states are used since
numerical instability also evolves in oscillations around the true solution. These oscillations cause
the errors to cancel each other out, resulting in an inaccurate estimation of the error.

At first, the simulation is performed for zero steering input to examine the influence of different
time constants h and initial velocities vx|0 while driving a straight line of 30 meters. The force
input at the four tires remains constant, where the front tires combined deliver 130N and the
rear tires combined 200N, resulting in a force distribution that is approximately equal to the
weight distribution of the vehicle. The results in Figure 4.5 show the resulting error for an
h ∈ {0.001, 0.002, ..., 0.04} and vx|0 ∈ {1.0, 1.1, ..., 10.0}, where the error for each state can be
evaluated in detail in Appendix A.

The results clearly show the model’s stiffness for low vehicle velocities, indicating that the discrete
model does not model the dynamics well for vx|0 below 2 m/s for any h. On the other hand,
for all the velocities above 2 m/s, there is an h which does provide an equally good estimate as
the ODE45 solver. However, this error does not incorporate the model’s fast yaw dynamics and
requires an additional simulation study.

The second comparison does consider steering input to excite the fast yaw dynamics. As steering
rate input, we use

δ̇in = 0.15 sin

Å
sk

2π

15

ã
, (4.52)

resulting in a left-hand turn where the steering angle is zero at the start and the beginning.

In Figure 4.6 the result of this simulation is shown, indicating that the error increased for an
increased step size h at lower velocities. This is in line with the expectations, as the fast yaw
dynamics excite the singularity in the tire dynamics model for α. When considering both results,
it can be concluded that the accuracy of the discretization for the region h ∈ {0.01, ..., 0.02} and
vx|0 ∈ {3, ..., 5} shows small to no error compared with the ODE45 solver. Therefore, the initial
longitudinal velocity for the NMPC is set to at least 3 m/s when the vehicle is driving more slowly,
which is only expected at the start and finish. A time constant of h = 0.02s can be applied for a
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Figure 4.5: The error between RK2 and ODE45 for straight-line behavior using a two-track
model.

minimum velocity of 3 m/s, maximizing the look-ahead distance while maintaining the required
accuracy.

Figure 4.6: The error between RK2 and ODE45 for left turn behavior using a two-track model.

The same simulation study is performed for the point-mass model, where the output is compared
for an h̄ ∈ {0.001, 0.002, ..., 0.3} and V̄0 ∈ {1.0, 1.1, ..., 10.0}. The same force as the two-track
model simulations is applied for the longitudinal force input, namely F̄x = 330 N. The lateral force
input is set to zero for the first simulation to analyze the straight-line behavior, after which the
lateral force is defined via a sinusoidal input, but now with a force amplitude rather than steering
rate amplitude, resulting in

F̄y = 300 sin (s̄k
2π

15
). (4.53)

In Figure 4.7 and Figure 4.8, the results for the point mass are shown. The straight line behavior
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shows a minimal error and only shows a peak for low velocity and small step sizes. The increase
in error for small step sizes is also observed in the other simulations and is caused by a round-off
error. In Figure 4.9, the round-off and discretization errors are plotted as a function of the step
size h. Choosing a small step size increases accuracy due to a decreasing discretization error, but
selecting a small step size will excite a round-off error. Based on all the results, the round-off error
occurs for h < 0.002 and decreases with increasing velocity.

Concluding from the point-mass results, and considering that the initial vehicle velocity for the
two-track model is lower bounded by 3 m/s, a time constant of h̄ = 0.2s is chosen to have good
accuracy and enlarge the look-ahead distance significantly.

Figure 4.7: The error between RK2 and ODE45 for straight-line behavior using a point mass.

Figure 4.8: The error between RK2 and ODE45 for the zig-zag maneuver using a point mass.
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Figure 4.9: The discretization and round-off error as a function of the step size h [42].

4.5 Observations and Conclusions

In this chapter, the NLP to solve the online optimization problem has been proposed. The principle
of a cascaded vehicle model is introduced to find the compromise between model complexity and
computation time. To this end, the vehicle models are formulated using the curvilinear reference
frame, allowing to formulate time as a function of the vehicle states and the reference path. A
mapping is found between a two-track, single-track, and point-mass model, each serving its own
purpose. The two-track and single-track model stabilize the vehicle, while the point-mass model
explores the track at a low computational cost.

The resulting cascaded model is used in an NMPC formulation, where the primary objective is to
minimize time at the end of the point-mass horizon. To enhance the feasibility of the optimization
problem, the horizon is said to be on the reference path, while the vehicle’s velocity is below a so-
called horizon velocity which ensures that steady-state cornering can be achieved for the smallest
turn on the track. This horizon velocity limits the potential of the NMPC by limiting the velocity
but avoids the dependency on offline tools to determine a safe velocity at each point on the track.
It is crucial to not depend on pre-knowledge of the track layout, as formula student requires the
autonomous system to determine the track layout while driving.

Additionally to minimizing time, several costs are introduced to ensure the durability of the
actuators, increase the smoothness between the cascaded model, and penalize undesired vehicle
behavior. The different costs are scaled based on the respective discretization step, while the weight
on the costs is the same for the different vehicle models. Furthermore, various hard constraints are
proposed, guaranteeing that mechanical constraints, such as the steering bounds, are respected and
avoiding potential damage to the car. The tire constraints are also modeled via hard constraints,
where each friction ellipse is scaled with the respective mass acting on the CG, axle, or tire. Using
the non-linear tire model requires access to detailed tire parameters, which can not always be
guaranteed. However, the non-linear friction ellipse is essential to push the car to the limits since
linear tire dynamics are inaccurate when undergoing excessive tire side slip angles.

The influence on computation time and performance using several linear constraints to estimate
the friction ellipse is explored. Due to the quadratic nature of the friction ellipse, long computation
times might occur, especially when considering a two-track model, which requires a hard constraint
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for each tire. The approximation of the friction ellipse is made via several linear constraints, which
potentially are computationally more efficient to solve. To get a reasonable estimate of the ellipse,
several constraints are required, which is considered a disadvantage, as the required number of
linear constraints might cause an increase in computation time.

At last, a simulation study is performed to determine the maximum discretization step size, which
is required to construct an accurate prediction horizon. Applying a variable step size in the spatial
domain increases numerical stability for low velocities, while an increased look-ahead distance can
be achieved when driving faster, directly resulting in a reduction in lap time.

The proposed controller, including all costs and constraints, is validated in the next chapter via
simulation.
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Chapter 5

Results

The performance of the NMPC, presented in the previous chapter, is tested via different simu-
lations. This chapter discusses various results that are obtained due to these simulations. All
the simulations are performed in MATLAB 2021b [43], using a computer with an AMD Ryzen 9
5900x processor. Also, the NLP is programmed via the open-source tool for nonlinear optimization
CasADi [44].

Obtaining results with the suggested problem formulation from Chapter 4 was not possible due
an infeasible control problem. Therefore, based on these infeasible results adjustments are made
to the original NMPC, increasing the robustness of the system and avoiding infeasible control
problems. Consequently, with the suggested adjustments a simulation study is done to compare the
performance of a cascaded vehicle model with a single two-track model. Finally, the application of
linear tire constraints is explored via simulations. These results are then compared with quadratic
tire constraints via lap time and computation time.

5.1 Feasibility

As mentioned in the control challenges, NLP’s feasibility is a challenge to achieve for complex
problems. For example, the NMPC in Chapter 4 introduced several hard inequality constraints,
such as the steering system limits, tire friction ellipse, and heading and lateral error constraints.
Hard inequality constraints should be implemented carefully since these limit the numerical feas-
ibility of the NLP. Not only can hard constraints result in infeasible control problems, but also
poorly defined terminal states and undesired behavior that is not penalized.

Different simulations are performed with the cascaded vehicle model while driving the Formula
Student German (FSG) Driverless track of 2019, shown in Figure 5.1. This race track includes
nine corners and has a centerline length of 382.7m. The NLP is solved for the vehicle parameters
in Table 5.1 and the optimization variables in Table 5.2. However, due to a poorly formulated
NMPC no feasible solution could be found for different horizon configurations. These problems
were due to three different reasons, namely the formulation of the tire constraints, saturation
of the tires and numerical inaccuracy in the lateral error. This section suggests adjustments to
the originally formulated NMPC with the main focus on achieving feasibility, which is crucial to
provide control input to the vehicle persistently.

Tire Constraints

The cascaded vehicle model provides an increased look-ahead distance due to the simplified dy-
namics of a point mass with a significantly larger discretization. Therefore, as the terminal state
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Figure 5.1: Layout FSG driverless track.

is further ahead, the NMPC allows for increased vehicle velocity and also anticipates better on
the track’s layout. However, the cascaded vehicle model introduces an infeasible control problem
caused by each model’s difference in potential grip.

The cause of this problem can be seen in Figure 5.2, where the resulting longitudinal and lateral
force, acting at the CG, are shown over a cascaded prediction horizon. It is observed that the
longitudinal and lateral forces act against each other for the different vehicle models, where for
example the point mass wants to accelerate while the two-track model is still heavily braking.
These results indicate that the difference in potential grip between the cascaded vehicle model is
too large. Moreover, the two-track and single-track models are incapable of following the optimal
trajectory of the point mass model.

In Section 4.3 the tire constraints are formulated, only considering the weight of the respective
vehicle model to scale the friction ellipses. However, when cascading different vehicle models,
each model should consider the constraints of the model it is cascaded with to enhance feasibility.
Therefore, are the tire constraints from Section 4.3 reformulated to reduce the difference in po-
tential grip between the cascaded vehicle models. At first, the point-mass longitudinal and lateral
force inputs are distributed between the front and rear axle via the vehicle’s weight distribution.
Based on these assumptions, (4.49) is reformulated asÇ

wdisF̄y

D̃y,f

å2

+

Ç
wdisF̄x

D̃x,f

å2

− 1 ≤ 0, (5.1a)Ç
(1− wdis)F̄y

D̃y,r

å2

+

Ç
(1− wdis)F̄x

D̃x,r

å2

− 1 ≤ 0, (5.1b)

Similarly is done for the single-track model, where the forces acting on the system are assumed to
be generated by four tires. An equal distribution between the left and rear tires can be assumed
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Table 5.1: Vehicle parameters.

Parameter Symbol Value Unit
Vehicle Mass m 192 kg
Yaw moment of inertia J 82 kgm2

Distance front axle to CG lf 0.88 m
Distance rear axle to CG lr 0.64 m
Track width front wf 1.18 m
Track width rear wr 1.39 m
Weight Distribution wdis 0.4220 -
Rolling friction coefficient fr 0.072 -
Aerodynamic drag coefficient Cd 1.23 N (m/s)−2

Lateral tire friction coefficient µy 1.4471 -
Longitudinal tire friction coefficient µx 1.5930 -
Steering angle limits δmin,max ±24 deg

Steering rate limits δ̇min,max ±22.1 deg s−1

for the longitudinal forces based on the force acting on each axle. As a result, (4.48) is replaced
with Ç

0.5F̃x,f
Dx,1

å2

+

Ç
F̃y,1
Dy,1

å2

− 1 ≤ 0, (5.2a)Ç
0.5F̃x,f
Dx,2

å2

+

Ç
F̃y,1
Dy,2

å2

− 1 ≤ 0, (5.2b)Ç
0.5F̃x,r
Dx,3

å2

+

Ç
F̃y,3
Dy,3

å2

− 1 ≤ 0, (5.2c)Ç
0.5F̃x,r
Dx,4

å2

+

Ç
F̃y,4
Dy,4

å2

− 1 ≤ 0. (5.2d)

Notice that the friction constraints are now scaled via the corresponding tire peak forceDx,i, Dy,i ∀ i ∈
{1, 2, 3, 4}.

When assuming that the single-track model has four tires, the lateral tire force is also affected
by the rotational velocity of the vehicle. Therefore, the lateral tire forces in (5.2) are determined
via the tire side slip angle calculation for two-track models, which can be calculated based on the
vehicle states of the single-track model via

α̃1 = δ̃ − arctan

Å
ṽy,1
ṽx,1

ã
, (5.3a)

α̃2 = − arctan

Å
ṽy,2
ṽx,2

ã
, (5.3b)

α̃3 = − arctan

Å
ṽy,3
ṽx,3

ã
, (5.3c)

α̃4 = δ̃ − arctan

Å
ṽy,4
ṽx,4

ã
, (5.3d)
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Table 5.2: Optimization parameters.

Parameter Symbol Value Unit
Horizon length TTM N 10 −
Horizon length STM H 10 −
Horizon length PMM M 40 −
Terminal lateral error Wēy,M 0.35 −
Terminal heading error Wēψ,M 0.85 −
Terminal velocity WV̄M0

0.3 −
Lateral error Wey 0.001 −
Heading error Weψ 0.05 −
Steering rate Wδ̇0

0.015 −
Slew rate steering rate W∆δ̇0

0.005 −
Longitudinal force WFx0 0.01 −
Slew rate longitudinal force W∆Fx0 0.01 −
Vehicle side slip angle Wβ0

0.09 −
Torque vectoring moment STM WM̃tv

0.04 −
Slew rate TV moment STM W∆M̃tv

0.02 −
Lateral force PPM WF̄y 0.006 −
Slew rate lateral force PMM W∆F̄y 0.01 −
Force transition TTM to STM WF |F̃ 0.001 −
Force transition STM to PMM WF̃ |F̄ 0.001 −

where

ṽx,1 = ṽx −
wf
2
ω̃, ṽy,1 = ṽy + lf ω̃, (5.4a)

ṽx,2 = ṽx −
wr
2
ω̃, ṽy,2 = ṽy − lrω̃, (5.4b)

ṽx,3 = ṽx +
wr
2
ω̃, ṽy,3 = ṽy − lrω̃, (5.4c)

ṽx,4 = ṽx +
wf
2
ω̃, ṽy,4 = ṽy + lf ω̃. (5.4d)

The resulting lateral tire forces F̃y,l can be calculated with the tire side slip angles in (5.3) via

F̃y,l = Dy,l sin (Cy,l arctan (By,lα̃l)∀l ∈ {1, 2, 3, 4}. (5.5)

In Figure 5.3, the same trajectory as shown in Figure 5.2 is shown to show the influence of the
newly formulated tire constraints. It can be observed that a much smoother trajectory is obtained,
comparing it with the results in Figure 5.2. That the difference in grip caused the infeasible control
problem can be concluded based on the resulting vehicle velocities shown in Figure 5.4. Where
the infeasible trajectory still has to slow down, the new tire constraints already slowed the vehicle
down to the required velocity to make the turn. Due to the early braking with the new tire
constraints, the horizon velocity outperforms the old trajectory by means of top speed, essentially
resulting in lower lap time.

Tire Saturation

Additionally to the adjusted tire constraints, a penalty is applied on excessive slip angle to prevent
tire saturation beyond the peak slip angle αpeak. Surpassing the peak slip angle results in unstable
vehicle behavior, as the increasing slip reduces tire grip. The lack of grip causes the vehicle to
slide away from the desired trajectory, which it wants to correct by increasing the steering input.
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Figure 5.2: Force transition between the vehicle models for the infeasible model.

However, an increase in steering directly increases the slip angle, which reduces the grip further
and results in an uncontrollable vehicle.

In Figure 5.5, the lateral tire forces are plotted against the corresponding side slip angle, where
the saturation of the front tires is visible.

The penalty for operating beyond the peak slip angle αpeak is defined as

Jα =Wα

N∑
i=0

(
4∑
l=1

(αl,i|k − αpeak)
2

)
+Wα̃

H∑
z=0

(
4∑
l=1

(α̃l,z|k − αpeak)
2

)
, (5.6)

where

Wα =

®
Wα0

, if |αl,i|k| ≥ αpeak

0, otherwise,
, (5.7a)

Wα̃ =

®
Wα0

, if |α̃l,z|k| ≥ αpeak

0, otherwise,
, (5.7b)

and the weight Wα0
is the generalized weight for excessive tire slip angles for both the two-track

and single-track model. In Figure 5.6, the result of this penalty can be observed, where all the
tire slip angles for a single lap remain under the peak slip angle.

Lateral Error

It was found that the hard constraint on the lateral error caused infeasibility of the NLP. Minim-
izing lap timings provide an optimal trajectory close to the track limits and therefore gets close
to ey,max. However, when driving close to the set bound, disturbances such as model mismatch,
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Figure 5.3: Force transition between the cascaded models with the new tire constraints.

numerical errors, and sensor drift can cause the NMPC input to be outside the track limits and
yield an infeasible control problem.

Softening the hard constraint potentially causes dangerous situations, considering that there might
be walls as track limits. Therefore, driving near the track limit is penalized via Jeb

Jeb =Web∆s

N∑
i=0

(|ey,i|k| − ey,max)
2 +Wẽb ∆s̃

H∑
z=0

(|ẽy,z|k| − ey,max)
2

+Wēb ∆s̄

M−1∑
j=0

(|ēy,j|k| − ey,max)
2,

(5.8)
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Figure 5.4: Vehicle velocity over the horizon for the infeasible and feasible trajectory.

where the weights are determined via

Web =

®
Web,0 , if |ey,i|k| ≥ eb

0, otherwise,
(5.9a)

Wẽb =

®
Web,0 , if |ẽy,z|k| ≥ eb

0, otherwise,
(5.9b)

Wēb =

®
Web,0 , if |ēy,j|k| ≥ eb

0, otherwise,
(5.9c)

where Web,0 represents the generalized cost for all vehicle models, and eb is the set bound until
the NLP is not receiving an additional cost.

The results in Figure 5.7 show the solution for ey,max = 0.9 and the bound eb = 0.675, leaving a
conservative minimum distance of 0.225m between the track limits and eb. The left plot shows the
original result, where the optimal trajectory lays on the track limits of 0.9m, causing infeasibility
once the simulation model reaches this optimal solution. Applying (5.8) results in a more conser-
vative trajectory, shown in the right plot. Note that the new trajectory does exceed eb, showing it
still uses the entire track width if necessary but provides a margin for any external disturbances
on the NMPC’s input.
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Figure 5.5: Tire forces beyond the peak slip angle αpeak.

Figure 5.6: The optimal solution when excessive tire usage is penalized.
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Figure 5.7: Left: Optimal horizon without (5.8), resulting in infeasibility. Right: Optimal
horizon including (5.8), resulting in a feasible solution.
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5.2 Model Comparison

This thesis aims to develop an online optimization-based motion planning system for all-wheel
drive autonomous race cars. For online implementation, the required computation time to solve
an NMPC is often proven to be a bottleneck and therefore is considered one of the key perform-
ance indicators when comparing the different horizon configurations. Also, since we aim towards
autonomous racing, the resulting lap time is also a key performance indicator. Moreover, the
resulting lap time is a direct performance indicator of the optimization algorithm since its main
goal is the minimization of the resulting time at the end of the prediction horizon.

A simulation study is performed for varying prediction horizon lengths of the cascaded model. The
results of these simulations give an indication of the influence of different horizon configurations
on computation time and lap time. This simulation study includes all the changes described in
Section 5.1 to the original NMPC from Chapter 4. In addition, the optimization is performed
on the FSG Driverless track in Figure 5.1, as this track length allows for more simulations in the
given time span of this project.

The prediction horizons for the single-track and two-track models are chosen to analyze the in-
fluence on lap time and computation time when both N and H are increasing, and what the
difference is when N > H or N < H. Therefore, the respective horizons are chosen such that
N ∈ {10, 20} and H ∈ {1020}. Additionally, the point mass model horizon is at first increasing
with smaller steps, to highlight the significant benefit of using a point mass and consequently
increased with larger steps to analyze the results of large prediction horizons. Therefore, the point
mass horizon is chosen such that M ∈ {5, 10, 15, 20, 30, 40, 50}.

All different model configurations are compared with the performance of an NMPC only using
the two-track model and for N ∈ {10, 20, ..., 150}. In Figure 5.8, the resulting lap time and
computation times for all different configurations are displayed. A quick observation already
answers the question of what the influence is of using a cascaded vehicle model when comparing
the two key performance indicators. When comparing the results of the most complex model with
N = 150 with the results of a more simple cascaded NMPC, i.e. N = 10, H = 10,M = 40, a lap
time of 22.2 s can be achieved while reducing the computation time from 3.71 s to 0.49 s, which
is a reduction of 86.8%. This performance increase is a result of the simplified dynamics and
significant discretization step of the point mass.

However, a more detailed analysis is required to determine the difference in vehicle behavior when
using a cascaded prediction horizon. To do so, each cascaded configuration that matches the lap
time similar to the complex model with N = 150 is chosen to analyze the difference in vehicle
behavior while achieving overall similar track performance. Based on the results in Figure 5.8, the
five selected cases with their respective lap time are

case 1: N = 150, H = 0, M = 0, t = 22.20s

case 2: N = 10, H = 10, M = 50, t = 21.80s

case 3: N = 10, H = 20, M = 30, t = 22.25s

case 4: N = 20, H = 10, M = 30, t = 22.25s

case 5: N = 20, H = 20, M = 30, t = 21.86s

Note that for case 2 and 3, where N and H differ but the overall horizon length is the same, yield
the exact same lap time. A similar trend is observed in Figure 5.8, where the resulting lap times
for N = 10, H = 20 and N = 20, H = 10 for each M is approximately the same and only result in
an additional computation time for larger N .
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Figure 5.8: Computation time vs lap time for different horizon lengths.

Minimizing lap time is highly dependent on the resulting vehicle velocity. Therefore, in Figure 5.9,
the resulting velocity of the simulation is displayed for the five cases mentioned above. To determ-
ine where each model distinguishes itself regarding minimization of time, the difference in time ∆t
with respect to case 2, which has the lowest lap time of the five cases, is shown. These results are
obtained via simulating for two consecutive laps, where the results of the second lap are used to
compare the different cases, excluding the effects due to initialization.

Analyzing the results in Figure 5.9 indicate that the point-mass model mainly benefits the optim-
ization problem for s ∈ {382.7, ..., 482.8} and s ∈ {622.6, ..., 697}, which is the start/finish straight
till turn one, and the long straight between turn seven and turn eight. On the other hand, a more
complex vehicle model proves to be faster in the remainder of the track, which consists mainly of
corners.

The improved vehicle velocity for increasing M at s ∈ {382.7, ..., 482.8} and s ∈ {622.6, ..., 697}
is the result of an increased look-ahead distance of the NMPC. By putting the terminal velocity
VM,max further away from the vehicle, the controller can exploit the prediction horizon to achieve
a higher top speed. This results in a maximum velocity of 22.20m s−1 for case 2, which is the
least complex model, where case 1 only achieves a top-speed of 19.13m s−1, which uses the most
complex model. Cases 3, 4, and 5 follow a similar trend, where the increasing point-mass horizon
directly translates into increasing vehicle velocity.

Furthermore, the results of ∆t in Figure 5.9 show that the more complex vehicle models improve
their lap time during cornering. This increased performance is related to the use of an increased
prediction horizon of the complex vehicle models, gaining advantages due to corner cutting and
exceeding the bound eb. In (5.8), surpassing the bound is weighted for increasing step sizes,
allowing the two-track and single-track model to use the track more extensively. The lateral error,
displayed in Figure 5.10, shows the difference in track usage, indicating that case 1 has a maximum
lateral error of 1.15m, where case 2 achieves only 0.71m.
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Figure 5.9: Resulting vehicle velocity after an out-lap, and the resulting ∆t with respect to the
fastest lap time.

The hypothesis that the complex models utilize the track more is observed in Figure 5.11, where the
resulting racing line is shown from the entry of corner five till the exit of corner seven. Furthermore,
using the width of the track more effectively allows the car to carry more speed through the turns,
which is also illustrated in Figure 5.12, where the velocity while cornering of case 1 is higher than
all other cases, decreasing the ∆t by 0.0845 s from entry corner five till exit corner seven. The same
observation is made for case 5, which increases the cornering performance due to the two-track
and single-track model while maximizing its top speed due to the point-mass horizon.

Not only is velocity important to minimize lap time, but also the vehicle behavior and stability
during cornering. The different steering inputs in Figure 5.13 show that a decreasing model
complexity requires more steering, as its path planning is more conservative and not exploring
the full track width. As a result, at s = 601 case 2 achieves the highest steering amplitude while
driving the slowest, explaining the time loss compared to all other cases when looking at Figure 5.9.
Moreover, a smoother steering trajectory is obtained by increasing the model complexity. The
results in Figure 5.13 show that cascaded vehicle models are correcting their steering behavior
while cornering, potentially causing unbalance in a real-time application.

Such behavior can be further analyzed by comparing the resulting yaw-moment, which is graphic-
ally shown in Figure 5.14, where a distinction is made in the yaw-moment due to steering, namely
Fy, and due to torque vectoring, namely Fx. For visibility reasons, only case 1 and case 2 are
shown, but the two cases also clearly distinguish the difference in model complexity and their re-
spective cornering behavior. Case 2 uses torque vectoring more extensively while case 1 relies more
on its steering. This behavior can be observed for s ∈ {400, ..., 450}, which is from entry turn one
till exit turn two. Case 1 shows a smooth trajectory for the resulting yaw-moment through this
corner combination, requiring a maximum yaw-moment of approximately −300Nm at the exit of
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Figure 5.10: Lateral error ey comparison for the 2nd lap.

turn two to stabilize the vehicle, which is at s = 436. Comparing these results with case 2 show
that the car requires much more torque vectoring to stabilize the vehicle during cornering, causing
the resulting yaw-moment to fluctuate. At the exit of turn 2, it also requires a yaw-moment of
−885Nm for a short duration to stabilize the vehicle. This prominent peak for case 2 is where case
1 requires approximately the same amount of yaw moment but achieves this via less aggressive
steering.

The final comparison between the different cases is based on the g-g diagram in Figure 5.15. The
longitudinal and lateral acceleration show the amount of grip utilized in a single lap. These results
confirm the hypothesis that the point-mass model is mainly responsible for pushing the vehicle
toward the limits when looking at longitudinal behavior since it achieves the highest acceleration
and deceleration. Also, it shows that the two-track model and single-track exploit the track
more such that it can carry more speed through turns, where the mean value of the absolute
accelerations are given in Table 5.3, showing an increase in |ay| for increasing N and H. Notice
that these results indicate that case 1 is the slowest during cornering. However, case 1 is mainly
limited due to the short look-ahead distance and is still close to the performance of the cascaded
vehicle models. Moreover, case 1 is driving almost as fast during cornering as case 2 while using
46.4% less longitudinal acceleration.

Table 5.3: Mean longitudinal and lateral acceleration.

|ax| [g] |ay| [g]
Case 1 0.1561 0.0548
Case 2 0.2911 0.0568
Case 3 0.2382 0.0557
Case 4 0.2351 0.0588
Case 5 0.2467 0.0620

Not only is lap time critical, but the required computation time to solve the NLP is of utmost
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Figure 5.11: The racing line for entry corner five till exit corner seven according to Figure 5.1,
where the green and black line indicate the start and end point of the evaluation in Figure 5.12,
respectively.

importance. However, the computation time needed in Figure 5.9 indicates that online implement-
ation for such an NMPC application is complex. Different coding languages can significantly boost
the required computation time to solve the NLP, but this is not considered within the time span
of this project. Nonetheless, the cascaded model substantially improves the needed computation
time compared to a single two-track model, reducing the computation time up to 80%. This
result is mainly achieved due to the simplified vehicle dynamics and the reduced number of states,
reducing the required time to solve the Hessian of the Lagrangian and the constraint Jacobian. In
Figure 5.16, the average computation times can be observed, showing the increase in computation
for increasing model complexity.
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Figure 5.12: Resulting vehicle velocity and ∆t for entry corner 5 till exit corner 7 according
Figure 5.1.

Figure 5.13: Steering behavior for the 2nd lap for case 1 till 5.
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Figure 5.14: The resulting moment due to Fx, Fy, and the sum of both moments combined for
cases 1 and 2.

Figure 5.15: g-g Diagram, indicating overall vehicle performance for all five cases.
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Figure 5.16: Average computation time for solving the Hessian of the Lagrangian and the
constraint Jacobian.
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5.3 Linear Tyre Constraints

In this section, the hypothesis from Section 4.3 is investigated, where the use of linear tire con-
straints to approximate the friction ellipse can be used to reduce the computation time of the NLP.
Furthermore, several model configurations are used to investigate the influence on the different
vehicle models where the number of linear constraints per quadrant varies from one to four.

The different cases considered in this section are

case 1: N = 10, H = 10, M = 20, No. Points ∈ {1, 2, 3, 4},

case 2: N = 10, H = 10, M = 30, No. Points ∈ {1, 2, 3, 4},

case 3: N = 10, H = 20, M = 20, No. Points ∈ {1, 2, 3, 4},

case 4: N = 10, H = 20, M = 30, No. Points ∈ {1, 2, 3, 4},

case 5: N = 20, H = 10, M = 20, No. Points ∈ {1, 2, 3, 4},

case 6: N = 20, H = 10, M = 30, No. Points ∈ {1, 2, 3, 4},

case 7: N = 20, H = 20, M = 20, No. Points ∈ {1, 2, 3, 4},

case 8: N = 20, H = 20, M = 30, No. Points ∈ {1, 2, 3, 4},

while using the parameters from Section 5.2 and simulating the vehicle driving on the FSG Driver-
less track from Figure 5.1.

At first sight, the results Figure 5.17 show that the system’s performance decreases while using
linear tire constraints, where it was expected to increase since the tire forces are coupled linearly
and not quadratically. Nonetheless, the simulation results indicate that using (4.41) is compu-
tationally more efficient, where the results from Figure 5.8 for the same model configuration are
shown in Figure 5.17 via the diamonds in the same color.

The required number of linear constraints can explain the decrease in performance for a well-
constrained optimization problem. At least four linear constraints per friction ellipse are required,
increasing the total number of constraints from four to sixteen for Pn = 1. While improving the
accuracy of the approximation by increasing Pn, the number of linear constraints increases linearly
with a slope of 4 times the number of friction ellipses.

The increasing number of constraints increases the required computation time to solve the Hes-
sian of the Lagrangian, graphically shown in Figure 5.18, and calculate the constraint Jacobian,
displayed Figure 5.19. Concluding from these results, it is not beneficial to use linear tire con-
straints, as both the computation and lap timings decrease compared to a quadratic coupling of
the longitudinal and lateral tire forces.
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Figure 5.17: Laptime vs computation time comparison for linear tire constraints, where the
diamonds indicate the respective nonlinear solution from Section 5.2.

Figure 5.18: Required computation time to solve the Hessian of the Lagrangian with linear tire
constraints.
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Figure 5.19: Required computation time to solve the constraint Jacobian with linear tire con-
straints.
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5.4 Convergence

In non-convex optimization, there are multiple control challenges. One is the proof of stability,
which is often hard due to the complexity of the optimization problem. Second, due to the non-
convex optimization problem, local rather than global minima are usually found. In this chapter,
a simulation study is performed to analyze the output from the NMPC on its convergence over
consecutive laps using a cascaded vehicle model. The convergence of a solution indicates that the
NMPC finds the same system input for a reference path for the same controller input. Moreover,
driving multiple laps suggests that the controller can drive the car safely around the track while
maintaining vehicle and computational stability.

For the simulation study, two different control configurations are selected. The first configuration,
case 6, is the configuration achieving the lowest computation time in the simulation study of
Section 5.2, where the results are given Figure 5.8. This model configuration is also the most
simple configuration, having the smallest prediction horizons of all cascaded vehicle models. The
second configuration, case 7, is the most complex model configuration from the results in Figure 5.8,
using the largest prediction horizon but achieving the best lap time. For convenience, the model
configuration given here

case 6: N = 10, H = 10, M = 5

case 7: N = 20, H = 20, M = 50

The first comparison between the consecutive laps is made based on the resulting lap time and
computation time, with the results for both cases 6 and 7 presented in Table 5.4. Both model
configurations show a different lap time in the first lap due to the initial state of the vehicle at the
start of the simulation. Based on the resulting lap times, it could be said that both cases 6 and 7
converge to the same solution after lap 1. The same conclusion can be drawn by looking at the
results in Figure 5.20 and Figure 5.21. Notice that for these results, the modulo operation is used
on s to plot the results from start to finish for each lap. These results compare the velocity V ,
steering input δ, and lateral error ey for the consecutive laps. The three states describe the overall
vehicle behavior since the velocity and steering angle combined describe the longitudinal, lateral
and rotational vehicle motion. The lateral error describes the vehicle’s position, which, combined
with the vehicle motions, can be used to determine if convergence is achieved.

The results in Figure 5.20 and Figure 5.21 show that for all three vehicle states the same solution
is found, indicating that the solution converged to a periodic solution for this particular track.
Moreover, the NMPC provides stable vehicle behavior and numerical stability is shown for multiple
consecutive laps. Comparing the average computation time per lap in Table 5.4 show that required
computation time for case 6 deviates slightly between laps, but nothing out of the ordinary.
However, case 7 show a decline in required computation time after the first two laps, but no
difference is observed between the output of lap 2 and 3. Therefore, it is assumed that other
operations consumed the computer’s computational power during the simulations.

Table 5.4: Lap time and computation time per lap for case 6 and case 7.

tlap [s] Case 6 tcomp [s] Case 6 tlap [s] Case 7 tcomp [s] Case 7
Lap 1 30.8821 0.2990 21.9941 1.0785
Lap 2 30.2869 0.2958 21.1660 1.0716
Lap 3 30.2871 0.2958 21.1665 1.0519
Lap 4 30.2871 0.3074 21.1669 1.0524
Lap 5 30.2869 0.2960 21.1659 1.0514
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Figure 5.20: Convergence check of the velocity V , steering angle δ and lateral error ey. Controller
configuration: N = 10, H = 10, M = 5.

Figure 5.21: Convergence check of the velocity V , steering angle δ and lateral error ey. Controller
configuration: N = 20, H = 20, M = 50.
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5.5 Conclusions and Observations

In this chapter, the proposed NMPC from Chapter 4 is tested using the driverless track from FSG
2019, as it is a good representation of a real-time application for URE. The proposed framework
from Chapter 4 is adjusted to solve several feasibility issues.

First, the difference in grip between the cascaded vehicle models caused an infeasible prediction
horizon. Each vehicle model’s friction ellipse is scaled based on its weight, not considering the
other vehicle models. Solving the optimization problem resulted in a poor force transition due
to the optimal trajectory of the point mass being too optimistic, causing the tire forces of the
two-track model to saturate. To bridge the gap between the different vehicle models, the tire
constraints are formulated to consider the maximum grip of the vehicle model it is cascaded with.
Also, an additional cost is applied when operating beyond the peak slip angle to prevent excessive
slip.

Second, the optimal solution is pushed toward the track bounds when the track layout is fully
utilized. However, numerical inaccuracy caused the simulation model to surpass the track bounds,
causing an infeasible control problem. When an online implementation is considered, disturbances
such as sensor drift or external disturbances should be accounted for. Therefore, an additional
penalty is applied, resulting in a more conservative racing line, but providing robustness to the
motion planning algorithm.

The resulting controller is tested for varying horizon lengths and is compared with a single two-
track model based on two key performance indicators, computation time and lap time. Analysis
shows that using a cascaded vehicle model is capable of minimizing lap time while stabilizing
the vehicle at the same time. An increased point-mass horizon directly translates into better
longitudinal vehicle behavior, but a high-fidelity model is required to achieve the desired cornering
behavior. However, the simulation results indicate that no reduction in lap time is obtained by
choosing a longer prediction horizon for the two-track model over a longer prediction horizon for
the single-track model. Moreover, the same lap time is obtained while an increase in computation
time is observed.

Implementing linear tire constraints to decrease the computation time is tested via several simula-
tions. However, where it was excepted to increase, the system’s performance decreased significantly
compared with the quadratic tire constraints. Furthermore, the analysis showed that the lap time
and computation time increased; therefore, the linear tire constraints are not included in the
proposed controller.

One drawback of the proposed controller is the required computation time. Using a two-track
model to utilize all four in-wheel motors fully requires complex constraints and vehicle models
with many states. Using a cascaded vehicle model reduced the overall computation time by 80%
compared to a single two-track model. Unfortunately, solving a cascaded model’s computation
time is still too high to consider real-time experiments. This thesis did not consider using a
different programming language, which should boost the overall performance, but one could say
that even considering another computer language will not suffice.
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Chapter 6

Conclusion and Recommendations

The automotive industry has evolved in the past few years, trying to achieve the ultimate goal
of fully self-driving vehicles. Many future challenges lay within the scope of motion planning to
bridge the gap between autonomous driving and achieving the performance of an expert driver.
This thesis aims to contribute by developing a motion planning algorithm for all-wheel drive
autonomous racing cars to participate in a formula student race. These competitions do not
consider head-to-head racing, providing a safe environment to bring online motion planning a step
closer to the performance of an actual racing driver. In this chapter, a summary of the thesis and
its primary conclusions and recommendations for future research are stated.

6.1 Conclusion

Several dynamic models have been derived to describe all-wheel-driven vehicles’ motion and dy-
namic behavior. These vehicle models describe the behavior concerning a reference path, which
SLAM provides. The vehicle’s position is then determined via the footpoint, representing the
location of the Frenet coordinate frame. Based on the location of the Frenet coordinate frame, a
measurement for the lateral and heading error of the vehicle is obtained. An Extended Kalman
Filter is proposed to mitigate external disturbances on the controller input using a single-track
model with linear tire dynamics. Local observability of the Extended Kalman Filter is proven via
a pragmatic approach, which means that it is not proven reliable for all conditions. The localiz-
ation algorithm is validated on the autonomous racing car of University Racing Eindhoven. The
results indicated that the observer is very sensitive to a model mismatch, especially the lateral and
heading error prediction. Moreover, the prediction step was inaccurate due to incorrect tire para-
meters, causing a significant error in estimating the lateral dynamics. The lateral dynamics of the
model could not be validated since the tests were performed without the possibility of measuring
the lateral velocity. Nonetheless, the desired output is obtained by tuning the covariance matrices
such that the observer output depends more on the footpoint measurement.

Based on the vehicle’s position and the track’s layout, a desired input for the car is determined. An
online optimization algorithm is proposed, using nonlinear model predictive control to determine
the desired longitudinal force at each of the four wheels and the desired steering rate. The
primary objective of the optimization problem is to minimize the time at the end of the prediction
horizon, where time is an optimization variable due to the transformation to the spatial domain.
While pushing the vehicle to the limits of performance, several costs are introduced to ensure
the durability of the actuators, increase the smoothness over the prediction horizon and penalize
undesired vehicle behavior. Using a nonlinear two-track model to solve a nonlinear optimization
problem requires significant computational power. Therefore, the principle of cascading vehicle
models is introduced to find a balance between model complexity and computation time. The
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resulting controller is a single-layer nonlinear model predictive controller responsible for path
planning and reference tracking. This controller is tested via simulations, showing that a cascaded
vehicle model achieves similar lap timings while reducing the computation time up to 80% when
comparing the cascaded horizon configuration with a long two-track model horizon. A high-fidelity
model is required to stabilize the vehicle and maximize its cornering behavior. The point mass
is allowed to maximize the longitudinal performance by increasing the look-ahead distance of the
controller. The convergence of the solution is analyzed by performing an additional simulation
study on the most simple and most complex model configuration while using a cascaded prediction
horizon. It is observed that the NMPC finds periodic convergence for the considered racing track,
resulting in the same stable vehicle behavior after lap 1.

An attempt is made to approximate the friction ellipse via several linear constraints, primarily to
decrease the required computation time. However, the implementation of linear tire constraints
resulted in a significant decrease in overall controller performance, increasing both the lap time
and computation time. Unfortunately, the hypothesis is not valid, and one is therefore limited to
the quadratic friction ellipse.

In conclusion, a motion planning system that respects general state, input, track, and tire con-
straints have been developed. It employs a two-track model, fully utilizing the torque vectoring
possibilities for all-wheel drive vehicles. However, the computational and numerical complexity of
the controller prevents real-time applications. Using the cascaded vehicle model reduces the com-
putational complexity of the optimization problem, but unfortunately, not enough. The objective
function can maximize the performance on track while preventing undesired vehicle behavior. In-
corporating a nonlinear tire model allows the control to push the vehicle, but access to the required
parameters can not always be guaranteed.

6.2 Recommendations

The proposed motion planning system showed promising results in both localization and optimiz-
ation. However, various improvements and topics for the future are provided based on the results
obtained in this thesis.

• Observer Validation
Predicting future states with the Extended Kalman Filter depends on accurate tire para-
meters. Unfortunately, a model mismatch was observed, which could not be validated since
no lateral velocity measurement was available. Therefore, further implementation of the
proposed localization system in Chapter 3 should start with validating the lateral dynamics
and a more accurate tire model.

• Vehicle Dimensions
The proposed cost function includes a penalty on the lateral error, tuning the weight on
the lateral error can achieve the desired reference tracking behavior. However, the lateral
error is defined with respect to the center of gravity of the vehicle and therefore excludes the
vehicle’s dimensions. During racing, the entire track is used, resulting in the tires exceeding
the track limits. Therefore, a penalty should be included, which accounts for the heading of
the vehicle and dimensions of the vehicle. In [9] a hard constraint is used to account for the
vehicle’s dimensions, which can be used as inspiration.

• Linear Parameter Varying System
The work in [24] and [25] showed the computational advantages that can be gained by
implementing a linear parameter-varying system. Therefore, it should be considered to
implement the proposed control structure from this thesis using a linear parameter-varying
system, potentially bridging the gap toward real-time implementation.
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• Robustness
In chapter 3, it is observed that the reference trajectory can shift, potentially causing in-
feasible control problems. An Extended Kalman Filter is used to solve non-smooth control
inputs, but the NMPC is not validated including arbitrary errors and time-varying reference
trajectories. Therefore, the robustness of the optimization problem should be investigated
by using testing data as input to the controller rather than a predefined track with a limited
look-ahead distance.

• Powertrain Constraints
In [28] the power limit of the engine is considered a hard constraint. This thesis does not
consider the power limits of the electric motors, potentially resulting in an infeasible solution
for low-level powertrain control. The first step towards implementation of the powertrain
constraints could be similar to [28], but then defined for all four electric motors.

• Discontinuous look-ahead distance
Online implementation has the difficulty of a discontinuous look-ahead distance, which res-
ults from driving on a track unknown to SLAM. During the first lap, the look-ahead distance
can shift due to the track layout still being constructed, shifting the terminal state and caus-
ing a change in desired vehicle input. Simulations should be performed to measure the impact
of such discontinuous control input and to define the minimum required horizon length to
maintain feasibility.

• Model Mismatch
The results are obtained using a simulation model with vehicle parameters similar to the
proposed controller. While performing real-life experiments will cause a model mismatch
between the controller and the vehicle. Good track performance is obtained in this thesis,
but how the proposed controller reacts to such behavior is not yet examined.
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[9] J. Vázquez, M. Brühlmeier, A. Liniger, A. Rupenyan and J. Lygeros, ‘Optimization-based
hierarchical motion planning for autonomous racing,’ 2020. [Online]. Available: https://
arxiv.org/abs/2003.04882.

[10] D. Mayne, ‘Nonlinear model predictive control: Challenges and opportunities,’ Nonlinear
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Appendix A

Variable Step Size

In Section 4.4 a simulation study is performed to determine the total error between a RK2 dis-
cretization and an ODE45 MatLab solver. In this appendix the error for each state is given, which
sums up to the overall error which is given Section 4.4. In Figure A.1 and Figure A.2 the results
for the vehicle states of the two-track model are given. In Figure A.3 and Figure A.4 the results
for the vehicle states of the point-mass model are given.

Figure A.1: Error between RK2 and ODE45 for a straight line using a two-track model.

Online Motion Planning for All-Wheel Drive Autonomous Race Cars. I



Figure A.2: Error between RK2 and ODE45 for a left turn using a two-track model.

Figure A.3: Error between RK2 and ODE45 for a straight line using a point-mass.
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Figure A.4: Error between RK2 and ODE45 for zig-zag manoeuvre using a point-mass.
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Appendix B

Extended Kalman Filter
Implementation

The Extended Kalman Filter from Chapter 3 is tested via online implementation on the autonom-
ous racing car of University Racing Eindhoven. To provide an idea of how this is implemented,
Figure B.1 shows the structure of how the EKF is implemented. The system runs at 100Hz.

Figure B.1: Extended Kalman Filter implementation in Simulink MatLab 2021b.
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