
 Eindhoven University of Technology

MASTER

Semantic Explainable Navigation in Structured Environments (SENSE)

Hobma, Rinse

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/0a6752c6-7662-40e2-baab-d52d6855906c

Department of Mechanical Engineering
Control Systems Technology

Semantic Explainable Navigation in Structured Environments
(SENSE)

Master thesis

Author R. Hobma (1022328)
Academic supervisor dr. MSc. C.A. López Martínez

Mentor dr. ir. M.J.G. van de Molengraft
CST report number CST2022.064

Graduation committee
Chairman dr. ir. M.J.G. van de Molengraft

member dr. MSc. C.A. López Martínez
member dr. O. Arslan

December 5, 2022

This report was made in accordance with the TU/e Code of Scientific Conduct for the Master thesis

Semantic Explainable Navigation in Structured
Environments (SENSE)

R. Hobma C.A. Lopez Martinez M.J.G. van de Molengraft

Abstract—When a mobile robot needs to autonomously move
from one place to another, a navigation strategy is required.
One of the most common strategies for mobile robot navigation
is defining this task as a numerical optimization problem with
constraints. Such methods come with drawbacks like the robot
getting stuck in local minima, and not being able to give a
specific reasoning for the actions of the robot. In this thesis
a different approach is explored, which determines the con-
trol input using semantic information about environment. The
structured environment is provided as a semantic map to the
robot, consisting of connected polygons indicating hallways and
junctions. As this thesis focuses on a dynamic environment which
the robot shares with humans some simple traffic rules behavior
is desired like driving on the right-hand side of hallways as much
as possible, and not blocking junctions, areas around doors and
emergency exits. To represent this behavior polygons with certain
semantic behavioral labels such as ’do not enter this area’ and
’do not stop in this area’ attached to them can be placed in the
environment at a specific location. The semantic and geometrical
information of these polygons are used in combination with
predictions to determine a locally sufficient velocity and steering
angle to make progress towards the goal, whilst complying with
the semantic behavior described by the polygons. Deriving the
control input based on the local geometry and semantics allows
to provide clear explanations of the robot actions. Furthermore,
the behavior can be tailored to specific situations, as moving
through a hallway can require different behavior than crossing
a junction. Simulations and experiments demonstrate that this
navigation strategy approach is capable of determining control
input that complies with the desired semantic behavior without
using standard optimization methods, resulting in explainable
actions of the robot.

Index Terms—Mobile, robotics, navigation, semantic, explain-
able

I. INTRODUCTION

Mobile robots are robots which can move around in a
certain environment. Over the years robots have evolved from
static robots like robotic arms on assembly lines, to mobile
robots that can drive around autonomously. Where traditionally
mobile robots operate in controlled environments, sharing an
environment with humans forms new challenges to overcome.
Over the years there has been an increase in demand for
mobile robotics in environments like warehouses, hospitals,
nursing homes, etc. The layout of these buildings is known,
but people can walk around and place, move, and remove ob-
jects, resulting in a semi-structured environment. For example,
the growing e-commerce sector demands the use of mobile
robots in a warehouse environment for fast and efficient order
picking[1] alongside human employees. The Covid pandemic
provides an interesting perspective where mobile robots could

be used to perform logistical tasks in healthcare facilities
to reduce the risk for medical personnel who would need
to suit up in protective gear and risk getting infected. This
event has also shown that personnel shortage is a large issue
for upscaling the intensive care in the Netherlands. [2] As
the population grows older this also causes an increase in
demand for healthcare personnel [3]. This goes to show that
these industries could profit from using mobile robotics for
automatable logistical tasks such that the time of the available
personnel can be spent as effectively as possible and reduce
their physical effort.

A. Environment

A semi-structured environment with dynamic obstacles like
warehouses or nursing homes brings many challenges for the
navigation strategy. For example when it shares the environ-
ment with humans who tend to follow basic traffic rules in
indoor environments the robot also needs to follow these rules
to disrupt the natural flow in the environment as little as
possible. The physical environment in which the robot operates
thus consists of: (i) known obstacles, e.g. the layout of the
walls, (ii) unknown static obstacles, e.g. things that have been
placed in the environment which are not on the provided map
like chairs or plant pots, (iii) unknown dynamic obstacles, e.g.
people walking around. The physical measurable environment
is however not the only thing that describes an environment.
Often these physical things or specific areas have semantic
information attached to them that can further help describe the
desired behavior of a mobile robot. For example, a door has not
only the property of ’being a door’, but has additional meaning
attached to it. People can can for example come through the
door without seeing what is on the other side, so the area
around the door must not be blocked. Being able to use this
kind of semantic information about the environment can help
specify the desired robot behavior.

B. Navigation

An autonomous mobile robot is often equipped with a set
of sensors to obtain information about its environment and
deduce its pose with respect to that environment. The robot
can often be given an assignment in the form of ’move from
location A to location B’ which introduces a big challenge:
navigation. Given an assignment the robot needs to deduce
what its control input must be to complete the assignment.
The environment described in I-A results in a challenge for
the navigation. The navigation must be able to interpret a

1

representation of this semantic information and corresponding
desired behavior, and provide a control input which satisfies
the specified behavior while executing the assignment.

C. Explainability

This project will focus on explainable navigation of an
autonomous robot transporting a cart through a semi structured
environment from area A to area B. The term explainable
can have several meanings depending on whom it concerns.
For people who work alongside the robot in a warehouse for
example explainability can result from the robot following
basic traffic rules such that a person working in the same
environment can make a broad estimate of what the behavior
of the robot will be in a certain situation. From a engineering
point of view explainability can be that every action of the
robot can be traced back to a specific function or reasoning
within the software. In this project the focus will be on the
latter.

D. Background

Motion planning for mobile robots has been around
for quite a while and many different strategies have been
explored. This section will go through some existing methods.

Many navigation strategies rely on a finding a global path.
This global path can be defined as a series of waypoints
which the navigation strategy then uses to determine the
control input. To plan this path the robot needs a map,
and it needs to know where it is on that map. One of the
most popular representations for a map is an occupancy grid
map [4]. Each node of this grid can be assigned a value to
represent its accessibility. These nodes can then be connected
through edges which also hold a certain value describing the
’cost’ of moving from one node to another. There are several
path finding algorithms available like dynamic programming,
Dijkstra’s algorithm, or A-star, that can then determine the
path from node A to node B with the lowest total cost [5].
These algorithms do however not consider the kinematics
and dynamics of the robot, and do not consider semantic
information about the environment. Therefore, outcomes of
these algorithms can not directly be used to actuate the robot.
Some of the following motion planning strategies do however
rely on a predefined path like this.

• A potential field algorithm consists of several force
vectors working on the robot. The robot first needs
to generate a global path defined as waypoints. This
then allows the robot to obtain a certain attraction force
vector in the direction it should move. The robot is also
subjected to repulsive force vectors from walls and other
obstacles. The resulting vector could want the robot to
move in any direction, but this is not always possible
due to kinematic constraints. [6]

• Timed Elastic Band (TEB) is developed as a plugin for
the ROS navigation package [7]. TEB can determine local
trajectories for a non-holonomic platform. It converts an
initial global path which is made up of a sequence of

waypoints to a trajectory. The method will search for a
shortest or fastest path based on an objective function
which requires a number of parameters which the user
will have to tune, resulting in a non-linear optimization
problem. This results in a lack of explainability of the
results, which is undesired.

• The DWA plugin for the ROS navigation package can
handle non-holonomic platforms. It requires a global path
or goal and will then locally around the robot create a
grid map based on a cost function. It simulates a set of
kinematically feasible trajectories to check the feasibility
of the trajectories. After that the trajectory with the lowest
cost and thus the optimal trajectory is chosen, and thus the
control input for the robot is found. This method thus also
results in some form of non-linear optimization problem
due to the used cost function representation around the
robot, which is undesired. [8]

• The motion planning algorithm of OMG-tools [9] is
based on small dimensional optimization problems using
a spline parameterization of the motion trajectory. It uses
a series of waypoints as initial path. Splines consisting of
a series of polynomial functions which can form nearly
any shaped trajectory are generated on the convex hull
of the initial path to define the trajectory. The method
does however not consider semantic information about
the environment.

• The control input for a robot can be obtained by ex-
pressing the task of the robot as an objective function
subjected to a set of constraints. When this objective is
then optimized the outcome theoretically is the optimal
solution. This method requires a predefined path, or
some form of goal, as this usually is incorporated in
the objective function. As mentioned, many navigation
strategies use some form of this optimization. However
due to the non-linear nature of the problem this can
lead to unexplainable results, and solutions going towards
local minima.

• As opposed to trying to find an optimal solution for the
control input one could put the focus on the constraints
of the problem. Constraint satisfaction problems (CSP’s)
generally consist of a set of variables to which you
want to find a feasible solution, the domains of these
variables, and a set of constraints that bounds these
variables [10]. Compared to optimization strategies the
objective function is thus discarded. This also means that
the solution does not necessarily depend on a goal or
predefined path.

• In an effort to create a navigation strategy based on a
semantic map allowing for the implementation of basic
traffic rules Napoleon navigation [11] was created. The
strategy is based on using a semantic map that indicates
hallways, intersection, and turns. Depending on the loca-
tion of the robot it will follow a specific set of rules.

Many of the above mentioned strategies focus on optimizing
an objective function. As this project focuses on an environ-

2

ment where the main structure is known along with seman-
tic information about this structure optimizing an objective
function might be unnecessary. The robot does not need to
follow an optimal path, but rather move in a sufficiently good
manner, complying with the imposed task and constraints.
Optimization methods can also result in the robot getting stuck
around obstacles in local minima. When the robot takes actions
which the user might not expect, the exact reason behind this
action is hard to trace back when a standard optimization
method is used. Furthermore, if the user desires to express
the intentions of the robot to its environment it is also useful
to be able to have specific reasoning behind the taken actions.
CSP’s form an interesting solution which do not require non-
linear optimization. Conventional CSP solvers are however not
suitable for using semantic information. Napoleon Navigation
provides an interesting basis for the proposed new strategy in
this thesis. Using the map indicating hallways and junctions
with polygons provides valuable information that can help
with the reasoning why a specific control input is applied in a
certain situation. The way the control input is then determined
by Napoleon navigation based on this information is however
lacking robustness and depends on many tuning parameters.

E. Project goal

Determine the control input for a mobile robot in a semi-
structured environment, while being able to take a seman-
tic behavior representation as input to represent the desired
behavior of the robot. The navigation method must provide
clear explainability and reasoning of why a control input is
chosen. The navigation must also be able to deal with different
footprints of the robot such that the method can be used on
different types of mobile robots.

F. Requirements

To achieve the project goal, the following requirements must
be met.

• The navigation strategy must be able to deal with se-
mantic information about its environment. This way the
behavior of the robot can be adapted to the local situ-
ation, and the robot has a broader understanding of its
environment than only knowing if a space is occupied or
not.

• When determining the control input the footprint of the
robot has to be considered. This allows the method to be
used on platforms with different footprints and kinemat-
ics, and allows for the robot to dock to carts which can
also result in a different footprint and kinematics.

• The control input must be determined in a way such that
the reasoning behind a control input can always be traced
back and explained. Having this knowledge about the
reasoning can help with expressing the intentions of the
robot to its environment.

• The robot must make progress towards its goal whenever
possible, whilst complying with the specified behavior
and imposed constraints.

• For safe navigation the robot must never collide with
obstacles.

G. Outline

The structure of this thesis is as follows. Section II provides
an alternative strategy, Section III contains the results of the
proposed alternative strategy, and the conclusion and recom-
mendations for further research will be provided in Section
IV.

II. PROPOSED NAVIGATION STRATEGY

A new navigation strategy is proposed based on a non-
holonomic platform. This is to allow the strategy to work
on as many platforms as possible, where holonomic robots
can behave in a non-holonomic matter but not the other way
around. Also, combinations of a holonomic robot docked
to non-holonomic carts result in a non-holonomic platform.
The vehicle model is introduced, after which the structured
environment semantic map is explained. Next, a method
to represent parts of the world and desired behavior of the
robot in semantic areas is provided. Then the strategy of
SENSE is explained and applied on this provided world model.

A. Vehicle model

The vehicle model used for SENSE is a tricycle model as
shown in 1.

Fig. 1. Tricycle vehicle model. X and Y represent the inertial frame, Xr

and Y r the robot frame, θt the orientation of the vehicle, vt the front wheel
velocity, δt the front wheel steering angle.

The vehicle velocity vt and steering angle δt are the control
input and can be used to describe the motion of the center of
the rear axle as:ẋt

ẏt
θ̇t

 = vt ·

cos(δt)cos(θt)cos(δt)sin(θt)
1
lax

sin(δt)

 (1)

where ẋt and ẏt are the x- and y-velocities of the vehicle
with respect to the inertial frame and θ̇t the rotational velocity

3

around the rear axle. θt represents the orientation of the robot
in the inertial frame and lax is the distance between the front
wheel and rear axle of the vehicle as indicated in Figure 1.

B. Structured environment semantic map

The robot operates in an environment of which the main
structure is known. As with the Napoleon navigation strategy,
the route that the user wants the robot to take is described
as a set of connected polygons with semantic labels ’hallway’
and ’junction’. These types of polygons will from hereon be
referred to as route polygons. A task for the robot is defined
as moving from route polygon A to route polygon B, where
polygon A is the current polygon that the robot is in. A
network of these polygons can be created to describe the
complete environment, and routes could be determined using a
simple a-star algorithm to find the consecutive route polygons.
This global route planning is however not part of this thesis.
Specifics on the conventions of the construction of the route
polygons can be found in Appendix ??.

Fig. 2. Route polygons example. Black lines indicate physical structure, black
dots represent polygon nodes.

Figure 2 shows a schematic example of the placement
of route polygons with labels ’hallway’ and ’junction’ in a
structured environment.

C. Elemental areas

Besides the route polygons a method is needed to make
the robot follow the desired behavior based on semantic
information about the environment. In the Napoleon navi-
gation strategy this was done by defining tubes within the
route polygons in which the robot has to stay and explicitly
incorporate the desired rules in the navigation strategy. This is
not a scalable way of representing desired behavior, as every
new behavior that might be required has to be programmed
into the navigation software. A much more scalable way of
representing semantic behavior for a mobile robot is presented
in [12]. It presents a method where the environment and
desired semantic behavior is represented by placing polygons
with semantic behavior labels attached to them in the world
model. This method boils down desired semantic behavior
into ’elemental areas’ which indicate ’no-enter’ and ’avoid’

behavior. For this thesis areas with a ’no-stop’ label are also
introduced to prevent congestion of traffic and creating unsafe
situations. Figure 3 shows a a simplified example of placing
these elemental areas.

Fig. 3. Elemental areas. Red polygons indicate ’no-enter’ areas, orange
indicates ’avoid’ areas and yellow indicates ’no-stop’ areas.

If the navigation algorithm is able to deal with these
elemental areas, new types of behavior can be constructed by
expressing them with placement of combinations of these areas
without needing to change the navigation strategy.

D. Main strategy

The main idea to determine the control input based on the
route polygons and elemental areas is to make use of the
information locally around the robot. Based on a physical
horizon it is determined which polygons are taken into account
by the navigation strategy. The goal then becomes to find
a trajectory such that within this physical horizon the robot
does not collide with no-enter elemental areas or exceeds
the boundaries of the route polygons. In order to be able
use the geometry of the environment and to say something
about theoretical future poses of the robot without performing
predictions this navigation strategy looks at trajectories with
constant steering angles. When a steering angle for a tricycle
model is constant the robot will follow a circular trajectory,
independent of the velocity (assuming no slip). This circular
trajectory allows us to have some information about theoretical
future robot poses. Based on the local environment a set of
steering ranges can be determined for which the robot will
avoid a collision within the given horizon. Essentially this
thus becomes its own specific form of CSP where a lower

4

and upper bound for the steering angle is found. A schematic
representation of the strategy is shown in 4.

Fig. 4. Main strategy example. Blue polygon represents hallway route
polygon. Red polygon represents an obstacle. Physical horizon is indicated in
green. The highlighted yellow part indicates the set of safe trajectories within
the physical horizon with constant steering angle.

To determine the set of steering angle ranges there are a
couple of core functions that are used.

• The first one being a function to avoid a point on the
concave side of a circular trajectory. Based on the width
of the robot it is determined what the radius of the
trajectory of the robot must be to avoid a specific point
using 2 where r is the radius of the trajectory of the robot
frame origin, rc the distance from the trajectory center C
to point P1, and dax is half the width of the robot.

r = rc(r) + dax (2)

rc can be determined as:

rc(r) =
√
(P1x − Cx(r))2 + P1y − Cy(r))2 (3)

where the position of C can be determined as:

C(r) = (r ∗ cos(θ ± π/2), r ∗ sin(θ ± π/2)) (4)

and the sign of ±π/2 depends on which direction the
trajectory is curved.

• The second function is to avoid a point on the convex
side of a circular trajectory as shown in 6. Again, the
radius of the trajectory can be determined knowing what
the most outer radius of any point on the robot will be
for a given trajectory. When the radius r of a trajectory
is given the outer radius router can be determined as:

router(r) = max(
√

(r + dax)2 + (lf)2,√
(r + dax)2 + (lr)2)

(5)

The steering angle can then be found by solving for r
when router equals rc.

Fig. 5. Circular trajectory passing point p1 on the concave side of the
trajectory. Solid yellow line indicates the trajectory of the origin of the robot
frame. Dashed yellow line represents the trajectory of the most inner point of
the robot footprint

Fig. 6. Circular trajectory passing point p1 on the convex side of the trajectory.
Solid yellow line represents the trajectory of the origin of the robot frame.
Dashed yellow line represents the trajectory of the most outer point of the
robot footprint.

5

• The third function is to avoid a line on the convex side
of a circular trajectory. Avoiding a point on the convex
side of a trajectory is not always enough as the robot is
not allowed to cross some lines, like the edges of the
route polygons. The trajectory can be determined in the
same manner as avoiding a point on the convex side of
the trajectory, but instead taking rc as the distance from
C to the line spanned by points P1 and P2, as shown in
7.

Fig. 7. Circular trajectory avoiding the line spanned by points p1 and p2.
Solid yellow line represents the trajectory of the origin of the robot frame.
Dashed yellow line represents the trajectory of the most outer point of the
robot footprint.

Based on the position of the robot with respect to the route
polygons there are three situations that are recognized and
acted upon. The first situation is where both the front wheel
and center of the rear axle are in a hallway polygon. The
second situation is when the front wheel is in a junction
polygon. The third situation is when the front wheel is in
a hallway polygon, while the center of the rear axle is in a
junction polygon. Each of these situations and the application
of the three core functions are explained next.

E. Cases

1) Hallway: Based on the size of the physical horizon
intersection points with the edges of the route polygon can
be determined. Based on the orientation of the robot with
respect to those points there are several situations that can be
distinguished. (i) Both points can be passed on the concave
side of the trajectories. This gives the robot a range of
steering angles between the steering angles corresponding with
the two determined trajectories for which the robot will not
collide with the edges of the hallway polygon. The steering
angle in the middle of this range is then chosen as desired
input. (ii) One point can be passed on the concave side of a
trajectory, while the other one can not. Therefore the function

to determine the steering angle that avoids the line of the
hallway wall is used. If there is still a range of steering angles
available the steering angle corresponding to the trajectory that
steers around the concave point is used as desired input. (iii) If
the same situation as in (ii) occurs, but the determined steering
angles are such that no range is formed, the one corresponding
with the avoiding of the line on the convex side of its trajectory
is used. The reasoning behind this is that the robot is heading
towards that line segment so it gets priority.

Fig. 8. Hallway situation 1. Trajectory range based on passing both P1
and P2 on concave side. The solid orange circle indicating the trajectory of
the robot origin for the minimum desired steering angle. The solid red line
indicates the robot origin trajectory for the maximum desired steering angle.

Fig. 9. Hallway situation 2. Trajectory range based on passing P1 on the
concave side, and P2 on the convex side of the trajectories.

2) Junction entry: When the front wheel of the robot enters
a junction route polygon the navigation strategy starts with
the junction strategy. From the interpretation of the route
polygons it is known which direction a turn is headed, and thus
what the inner and outer edges of the turn are. Determining
the trajectory that avoids colliding with the outer edges the
function to avoid a line is used. This is done for the outer
edges of the junction, but also the connecting edges of the
previous and following hallway polygon as shown in 10, to
get a smooth corner exit.

6

Fig. 10. Trajectory corresponding to minimum required steering angle to
avoid the junction outer wall lines shown in red.

For avoiding the inner edges the inner corner point is
used in the function to avoid this point on the concave side
of the trajectory. The intersection point of the horizon with
the following hallway route polygon is also used with this
function. Whenever the latter generates a steering range with
the steering angle avoiding the outer edges the steering angle in
the center of this range is chosen for a smooth junction exit. If
this does not provide a steering angle range, but the trajectory
based on avoiding the inner corner point does, then this range
is used and the steering angle in the center of this range is
chosen again. Another possibility is that both situations do not
provide a steering angle range. In this case the steering angle
corresponding to avoiding the inner corner point is used, as
the steering angle based on the outer edges is more prone to
conservatism. Predictions provide answers in whether there is
a feasible path for the robot.

3) Junction exit: The case where the front wheel is in a
hallway polygon, but the center of the rear axle is in a junction
polygon requires a slightly different strategy than the other two
cases. As the robot is still partially in the junction polygon the
robot might still require a turning motion to smoothly fully
enter the hallway polygon. For the hallway edge connecting
to the outer edges of the corner the normal hallway approach
of case I is used. To avoid the inner corner and connected
hallway edge the average steering angle of both the junction
as in case II and hallway as in case I will be taken. This is,
until the trajectory based on the hallway edge connected to
the outer wall passes the intersection point with the horizon
on the concave side, then the normal hallway approach of case
I will be used regardless if the center of the rear axle is still
in the junction polygon.

Fig. 11. Trajectory corresponding to the steering angle avoiding inner corner
point P1.

Fig. 12. Using the intersection point of the physical horizon and hallway
edge connecting to the outer wall of the junction polygon for junction exit
strategy.

F. Elemental areas

1) No-enter: The most important elemental area in this
project is the no-enter area. This area indicates places where
the robot may not go. They can be placed by the user
to indicate off-limit places for the robot, and can indicate
obstacles on its route. When a no-enter area enters the horizon
it is determined first if it is within the route polygons. If this is
not the case they are deemed not relevant and will be ignored.

If the no-enter area is within the route polygons it will
roughly determine if it is physically possible for the robot
to pass on either the right or the left side of the area, based
on the width of the robot and the minimal clearance around
the no-enter area. It will do so by first checking the minimum
distance between the edges of the route polygons and each
relevant no-enter area. Next, the minimum distance between

7

Fig. 13. Using the intersection point of the physical horizon and hallway edge
connecting to the inner wall corner point to determine to compose intermediate
maximum steering trajectory shown in purple.

Fig. 14. No-enter areas filtered based on being inside the route polygon and
physical horizon.

no-enter areas is checked to see if areas are too close together.
Next, the points of interest for the areas that are still passable
on either the left or right side are determined. These points
consist of the corner points of the polygon, and the points
at which the polygon intersects with the horizon. With the
knowledge about which side the robot could pass the area and
the points of interest, the core functions can be used again.
Based on the orientation of the robot with respect to the points
of interest and knowing whether to pass the area on the left
or the right, the corresponding steering angles for avoiding
these points can be determined. This in combination with the
steering angles determined based on the route polygon then
can provide a new range of steering angles to pass the no-
enter area while staying in the route polygons.

2) No-stop: No-stop areas are areas in which the robot
may not stand still, or may no longer reside than a certain
amount of time. This can apply in several situations. For

Fig. 15. Trajectory ranges with no-enter area in horizon. Trajectory corre-
sponding with minimum steering angle based on ’no-enter’ area.

example, blocking areas around doors or emergency exits is
undesired. A solution would thus be to place a no-stop areas
in the provided map along with the route polygons. Another
option could be to retrieve this information at runtime from
a perception module, such that no-stop areas can be placed
in the environment at runtime. Also, the robot should not
block junctions to avoid congestion of traffic. The approach
for dealing with this area is fairly simple. When a prediction
detects that the robot goes into a no-stop area a timer will start.
The prediction will be extended until the prediction exits the
no-stop area and determines that there is enough free space
after this area, or the timer indicates that the robot is spending
too long in the no-stop area, and thus is likely to cause too
much congestion. When the latter is the case, the robot will
come to a halt before entering the no-stop area. Predictions
will keep being performed. When the predictions show that the
robot can pass through the no-stop area within the prescribed
time, the robot will start moving again. This area thus only
affects the velocity of the robot, and does not influence the
steering angle. There are however situations where altering the
steering might be necessary. When a no-stop area is so large
that the robot can never actually pass it within the prescribed
time perhaps another strategy should be chosen. Perhaps its
steering angle should be changed to guide it around the area,
or it checks whether its velocity remains above a certain value
such that it keeps making progress through the area, and it is
thus not blocking the area. Ideally when the robot comes to a
halt before a no-stop area it would also do so in a strategical
way, where for example it will move closer to a wall to avoid
congestion by blocking the way before a no-enter area. These
alternative approaches are however not taken in to account in
this project.

3) Avoid: The ’avoid’ type elemental area is an a soft
constraint. It is not prohibited to enter this area like a ’no-
enter’ area, but it is preferred to not enter this area. It is
one of the building blocks of specifying higher order semantic
behavior. When the traffic rule ’drive on the right hand side’

8

Fig. 16. Example situation with ’no-stop’ area such that the robot can not
pass the area due to the ’no-enter’ area.

must be expressed in elemental areas this would mean placing
an ’avoid’ area on the left hand side. It is not forbidden to drive
on the left, but it is preferred to drive on the right whenever
possible. Due to time limitations the ’avoid’ type elemental
area is not available in the current implementation. Further
details on a proposed strategy for the ’avoid’ area can be found
in Appendix V-A.

G. Horizon

Up until now we have assumed the physical horizon size
to be a given. However, if for some reason a situation causes
there to be no available steering range, it might be necessary
to reduce the horizon as a shorter view could provide a
feasible steering angle range. The physical horizon size goes
hand in hand with the velocity of the robot. Intuitively, the
faster the robot goes the further it should look ahead when
determining its control input. The question then becomes
how to determine this size. There are a couple of factors that
contribute to the answer. We can start off by providing some
lower and upper bounds. First, the absolute minimum size
of the horizon is such that it covers the entire footprint of
the robot. This is to ensure that the robot always considers
the local information to be able to determine if it can
rotate around its rigid axle without collisions. Secondly,
as mentioned the velocity and horizon size are connected.
However if the velocity is zero that must not mean that the
horizon is also zero. Therefore, the desired minimum horizon
size is defined as the horizon size covering the footprint, plus
the distance it takes for the robot to get to its desired cruising

velocity from a stand still. This makes sure that the robot can
determine a steering angle that would theoretically guide onto
a trajectory at which it can reach its desired velocity. Another
absolute lower bound is covering the front end of the robot
plus the distance it takes the robot to stop in an emergency
situation. the robot should never determine a steering angle
of which it is not sure if that steering angle results in an
inevitable collision. A desired upper bound is defined by
the distance it takes the robot to come to a halt with a
user specified nominal deceleration. For smooth motion of
the robot it should not make use of its full deceleration
capabilities at all times when it slows down.

1) Scaling horizon: Some situations might require the
physical horizon to be scaled down from its desired size. An
example of this situation is given in 17 and 18. Figure 17
shows that the trajectories corresponding with the minimum
steering angle based on P3 and maximum steering angle
based on P1 do not form a safe range of trajectories in that
situation. However, 18 shows that with a scaled down horizon
there is a feasible range of steering angles. The scaling thus
happens based on the no-enter areas in the horizon. It looks
for the closest point on a no-enter area as reference for its new
horizon, such that the no-enter area is still considered, but the
reduced horizon possibly allows for a larger trajectory range.
When multiple no-enter areas are in the horizon this scaling
happens based on the furthest no-enter area, and can consist of
multiple iterations until a suitable horizon size is determined,
or it is determined that there is no suitable horizon size at
all. When this scaling of the horizon occurs the velocity also
should be adjusted accordingly. The velocity should decrease
such that it matches to the desired horizon size.

Fig. 17. Example situation. Physical horizon does not provide a feasible
steering angle range based on points P1 and P3.

H. Predictions

As mentioned, the proposed strategy makes use of predic-
tions. It does so to determine its velocity in a safe manner. The-
oretically, by design the method would not require predictions
in certain situations as the determined steering angle range
would imply a set of safe trajectories for the distance specified

9

Fig. 18. Example situation. A scaled down horizon does provide a feasible
steering angle range based on points P1 and P3.

by the physical horizon. However due to some situations
requiring some compromise on the guarantee of no collisions
within the physical horizon it is beneficial to use predictions
to check if the determined control input actually leads to a
safe trajectory. Each iteration of the navigation algorithm a
new prediction is performed.
Each time step of the prediction the new robot pose is
simulated. Based on this new pose the steering angle ranges
are determined again and a desired steering angle is chosen. A
check is performed if the robot is exiting the route polygons,
colliding with no-enter areas, and if it has entered a no-stop
area. The time horizon of this prediction should always be at
least equal to the time it would take for the robot to come
to a full stop using its maximum deceleration. This way it
can be avoided that the robot comes in a situation where
even with full deceleration it is unable to avoid a collision
with a static obstacle. Longer time horizons could be used to
be able to anticipate earlier on possible collisions, or based
on a desired deceleration instead of maximum deceleration.
This can result in more smooth driving of the robot. Another
application of the predictions is predicting if a no-stop area
is entered, as mentioned in the previous section. This allows
the robot to come to a halt before actually entering the
no-stop area. Finally, when a prediction is performed, the
predicted control input can also be stored and reused in
the next time step. This way the navigation only needs to
check if with that predetermined control input it still complies
with the specified constraints, which can reduce the required
computational effort.

III. RESULTS

The proposed method has been implemented as a ROS
package, written in C++. Experiments have been performed
on the Cura platform. First the result with respect to the
requirements will be discussed. Next, the simulations will be
validated through experiments. Finally the issues that have
come up throughout this process will be discussed.

A. Requirements

Several scenarios have been tested in simulation to check
whether the requirements stated in the introduction are met.

1) Dealing with semantic information: The first
requirement is that the navigation strategy must be able
to deal with semantic information. The representation of this
information in the form of route polygons and elemental areas
has been tested. Figure 19 shows a test scenario in which
the robot finishes the route formed by the route polygons
without elemental areas. The ’hallway’ and ’junction’ types
are distinguished and acted upon in a logical fashion, where
in junction polygons the trajectories are determined in the
direction the route is headed after the junction polygon. No
elemental areas are present and the horizon is static. A link
to the GIF of the simulation can be found in Appendix V-B.
It shows that the navigation strategy maneuvers the robot
around the course.

Fig. 19. Simulation scenario testing route polygons. Link to GIF in Appendix
V-B

Next, the application of the elemental areas is simulated.
The scenario in 20 shows placement of no-enter areas and a
no-stop areas. It is expected that the robot should stop before
the no-stop area as the no-enter area behind it blocks the way
and thus leaves the robot no space. Once the blocking obstacle
is removed the robot should start moving again. A GIF of
the simulation shows that the strategy correctly identifies the
points on no-enter areas that it needs to consider to determine
the control input. The scenario shows the capability to pass
a no-enter area on the left, and pass in between two no-enter
areas. It also shows that the robot does indeed extend its
predictions once it encounters the no-stop area, and stops
before the area until the blocking obstacle is removed. The
horizon is static.

2) Changing footprint: The second requirement is that the
method must work for different footprints. As the strategy is
based on the parameters of the robot it does work for different
footprints. Therefore the method is suitable for different type
of platforms, and the footprint can be changed whenever the

10

Fig. 20. Simulation scenario with yellow ’no-stop’ area and red ’no-enter’
areas. Link to GIF in Appendix V-B

robot docks to a cart. GIFS listed in Appendix V-B show the
scenario of 19 for several footprints. the horizon is static.

3) Explainability of robot actions: As a result of the
method, each action of the robot can be traced back to
a specific function or decision. The visualization in rviz
provides visualization of the perceived environment, route
polygons, elemental areas, and determined steering angle
range. Relevant features on which the robot bases its actions
can also be visualized to make it clear what the current action
of the robot is based on. The output to the console can be
modified such that the user can receive desired information
about what the current intent is or possible future intent of
the robot will be. This also allows for further expressing of
the intentions via audio or visual clues from the robot.

4) Making progress towards goal: By defining the route
polygons in which the robot has to stay some conservatism
is introduced. Also, as the method does not use a standard
optimization strategy, but rather calculates the control input
in a deterministic manner based on the geometry and se-
mantics of the environment some additional conservatism is
introduced. In order to make progress towards the goal in as
many situations as possible the scaling of the physical horizon
is of importance, as a certain static horizon does not always
provide a solution. Figure 21 shows a situation in which the
initial desired horizon does not provide a solution, however

Fig. 21. Initial horizon highlighted as green circle found no feasible trajectory
range. Re-scaled horizon represented as dark grey circle does find a solution.
A Gif in Appendix V-B shows the simulation of this situation.

when the physical horizon is scaled appropriately it is able to
find a solution.

5) Do not collide with obstacles: The obstacle collision part
goes hand in hand with the elemental area part. An algorithm
is used to convert laser scan data into polygons which receive
the ’no-enter’ label. Therefore, as the robot is able to avoid
and/or stop in time before these no-enter elemental areas it is
also capable of avoiding collisions on its route.

B. Simulation validation through experiments

To validate the simulations with experiments the scenario
of 22 has been tested on the Cura platform. The experiment
was successful in the sense that the robot manages to execute
the task. When the trajectory of the real robot is compared
versus the simulated trajectory there is a difference. In the
experiment the robot seems to start steering at a lower rate
when entering a junction polygon, and overshoot its steering
compared to the simulation. Reasons for this could be that the
steering rate in the kinematic model differs from the actual
steering rate of the robot. Another issue that could contribute
to this difference is that the robot requires some threshold
value for the wheels to start moving. Also a slight difference
in starting position could lead to differences in the trajectory.

11

The GIF of the rviz visualization of the experiment is listed
in Appendix V-B, along with a video of the real life situation.

Fig. 22. Trajectories of simulation and experiment for a testing scenario.
Structured environment is represented as solid black dots. The task for the
robot consists of two halves of a route, indicated as a series of polygons
represented with the dashed lines.

C. Alternative prediction usage

The basic implementation of the strategy runs the prediction
every iteration of the navigation algorithm. In order to reduce
the computational effort, and go more towards a ’lazy’ naviga-
tion strategy it might be beneficial to use the prediction data of
the previous iteration. The control input during each prediction
step is stored. Then, next iteration of the navigation algorithm
this set of previously determined control input is used in
a prediction to see whether the prediction still satisfies the
imposed constraints. If so, the next control from the prediction
of the previous iteration can be applied without without
redetermining this control input. The comparison is done in
simulation without elemental areas. The behavior in both cases
is the same as the kinematics model used in the prediction
is the same as to model the actual robot. The prediction
time horizon is 2 seconds. The maximum velocity is set to
0.5m/s and acceleration/deceleration is limited to 0.5m/s2,
meaning the robot requires at most 1 second of prediction info
to avoid collisions. The navigation algorithm and predictions
run at 10 hz. This means that each prediction contains 20
time steps and control inputs, of which theoretically 10 can
be applied before needing to recalculate the prediction. Table I
shows the average computation time for different usages of the
predictions in simulations of the scenario shown in 22. This
shows that the required computational effort is roughly 6 times
lower when reusing the prediction data. The computational
benefit depends on velocity and acceleration limits, as well as
the prediction time horizon and disturbances on the system.
A more meaningful test would be to compare the average
calculation time and behavior on the Cura platform such that
the predictions are not perfect, and real world disturbances can
be applied. Unfortunately due to time constraints this has not
been done yet.

Strategy Average calculation time [s]
Predict each iteration.
Time horizon = 2s 3.39e-03
Only make new prediction
when necessary.
Time horizon = 2s 5.76e-04

TABLE I
AVERAGE CALCULATION TIME FOR DIFFERENT USAGES OF THE

PREDICTION DATA ON ’HP ZBOOK STUDIO G3’ RUNNING UBUNTU 20.04.

D. Comparison Napoleon navigation

As mentioned in Section I-D the Napoleon navigation
strategy was build on roughly the same intentions, however
the actual strategy lacked robustness. This also shows in the
case of a route without obstacles as in 22. The parameters and
settings are as much as possible the same. Napoleon navigation
does however not succeed to complete the assignment. It goes
outside of the route polygons and gets stuck.

E. Encountered issues

There are also some drawbacks with the current
implementation of the strategy. One example is that in
hallway situations where the robot is really close to or just
overlapping with a route polygon edge the core function based
on a line does not provide a feasible solution. In that case it
determines the steering angle based on the intersection point
of the horizon and route polygon edge. This does however
result in a lower or upper bound trajectory that goes slightly
outside of the route polygon. Thus the current implementation
is not able to guarantee that the robot does not go partially
outside of the route polygons. This creates a safety issue as
it does not consider obstacles outside of the route polygons
in its collision prediction. Also considering those no-enter
areas outside of the route polygons can however provide a
solution. The approach of certain situations should perhaps be
reconsidered in order to increase the safety guarantee based
on the determined trajectory range.

Another issue with the current implementation is when the
horizon does not intersect with a hallway edge. The behavior
in this situation is not defined correctly yet. Theoretically
the steering range would go to its maximum as no collisions
are foreseen, but from a navigation perspective this is not a
great solution, as you want some way to know if you are
making progress towards the goal. In this case the horizon
could be enlarged to get intersections with the route polygon
edges. When the horizon is scaled down due to no-enter
areas perhaps some kind of directional information can be
extracted from the orientation of the route polygon.

Also, the behavior when encountering a ’no-stop’ area needs
to be defined further. Once the robot enters the area, but
predicts a collision in its extended prediction it will come to
a halt in the area. There are several factors that can contribute
to this decision making process, for example the percentage
of the footprint of the robot that is in the area, or if there is a

12

more strategic way to decide which stopping position inside
the area is more preferable.

IV. DISCUSSION AND CONCLUSION

This section will provide the conclusion of the thesis, along
with a discussion and recommendations for future work.

A. Discussion

Simulations and experiments have shown that the proposed
strategy is capable of moving a robot through a specified route.
The method relies on identifying several situations that the
robot can be in, and apply the core functions in an appropri-
ate manner. There are however many situations that can be
distinguished, and certain situations could be dealt with by
considering different elements of the environment. Due to the
time constraint on the project not all situations are dealt with
such that safety is guaranteed by the determined trajectories,
but some rely on predictions to check this safety. Ideally the
safety would already be guaranteed by the determined steering
angles as much as possible to reduce the need of predictions.
Since the chosen method is constructed around a set of core
functions which determine the control input, the method is
also limited by the properties these functions. Some situations
might cause the method to not find a suitable control input,
resulting in the robot getting stuck, while other methods like
MPC might be able to find a suitable control input for the
robot to progress further towards its goal. Furthermore, if the
robot goes outside of the route polygons for any reason it will
predict that it is colliding and therefore get stuck, even though
there might not be a physical wall or obstacle near the robot.
As long as the route polygons are placed with the intention
of not overlapping with walls or obstacles this introduces a
degree of conservatism.
In experiments the robot is more likely to collide with the
inner corner point of a junction route polygon. This could be
caused by the localization not being perfect, especially when
making a rotating motion. The proposed strategy often guides
the robot fairly close by this inner corner point which can thus
cause issues.

B. Conclusion

This thesis proposed a new navigation strategy which uses
elemental areas as building blocks for higher order semantic
behavior, and an assignment provided in the form of route
polygons. The current implementation is capable of dealing
with ’no-enter’ and ’no-stop’ areas.
The developed navigation strategy is capable of determining
the control input in an explainable way. Due to the chosen
method and usage of semantic information about the envi-
ronment the strategy can distinguish many different situations
and provide clear output for the user to see on why a certain
control input is chosen.
The method is intended to get the robot from a starting area to
a finish area, and thus not to a specific point or pose. U-turn
maneuvers to obtain the correct initial heading are also not
included.

The navigation strategy is developed for (semi-)structured
environments where the robot is able to determine its pose.
Simulations and experiments have shown promising results of
applying this method in those environments.

C. Recommendations for further work

The proposed strategy has shown its first signs of success,
however there is still plenty of work to be done. Some of the
possible future work is provided in this section.

1) One of the major parts that should be added to the
strategy is dealing with the ’avoid’ elemental area type. This
is crucial in being able to let the robot follow certain desired
behavior like driving on the right by placing an avoid area on
the left side of a hallway. This elemental area type along with
the no-enter area type forms the building blocks of describing
higher order semantic behavior.
2) Overall the method still requires refinement. Solutions to
situations where within the horizon there are no clear points
to base the control input on, or situations where the robot has
to make a u-turn have to be defined. Also, additional decision
making and possible reverse motion when the robot gets stuck
or comes to a halt in a no-stop area is not incorporated yet.
3) Further research can be done into the effect of placing route
polygons in such a way that it overlaps with the physical
structure. This way the physical structure can be treated as
no-enter polygons. This approach might reduce conservatism
with respect to placing the route polygons to not overlap the
physical structure.
4) Further work can also be done on making this navigation
method compatible with the work of [12]. This requires the
interfacing between the world model representations to be
matched.
5) Finally, research can be done into expressing new desired
behaviors in elemental areas, and if perhaps new types of areas
are required for certain behaviors which then would need to
be added to the navigation strategy.

REFERENCES

[1] A. Sharma. “The mobile robot market in 2022 – our
predictions.” (), [Online]. Available: https : / / www .
interactanalysis.com/the-mobile-robot-market-in-2022-
our-predictions/.

[2] S. v. O. Martijn Driessen. “Verpleegkundigen bezorgd
over tekort ic-personeel na anderhalf jaar pandemie: ’je
bent bang dat de patiënt je door de vingers glipt’.” (),
[Online]. Available: https://eenvandaag.avrotros.nl/item/
verpleegkundigen- bezorgd- over- tekort - ic - personeel -
na - anderhalf - jaar - pandemie - je - bent - bang - dat - de -
patient-je-door-de-vingers-glipt/.

[3] NOS. “Onderzoek: Tekort aan zorgpersoneel op lange
termijn alleen maar groters.” (), [Online]. Available:
https://nos.nl/artikel/2413851- onderzoek- tekort- aan-
zorgpersoneel-op-lange-termijn-alleen-maar-groter.

[4] N. Correll, Introduction to Autonomous Robots, v1.9.
Magellan Scientific, 2020, ISBN: 978-0692700877.

13

[5] A. Elfes, “Using occupancy grids for mobile robot
perception and navigation,” Computer, vol. 22, no. 6,
pp. 46–57, 1989. DOI: 10.1109/2.30720.

[6] Y. Koren and J. Borenstein, “Potential field methods and
their inherent limitations for mobile robot navigation,”
in Proceedings. 1991 IEEE International Conference on
Robotics and Automation, 1991, 1398–1404 vol.2. DOI:
10.1109/ROBOT.1991.131810.

[7] “Timed elastic band.” (), [Online]. Available: http : / /
wiki.ros.org/teb local planner.

[8] D. Fox, W. Burgard, and S. Thrun, “The dynamic
window approach to collision avoidance,” Robotics Au-
tomation Magazine, IEEE, vol. 4, pp. 23–33, Apr. 1997.
DOI: 10.1109/100.580977.

[9] T. Mercy, W. Van Loock, and G. Pipeleers, “Real-time
motion planning in the presence of moving obstacles,”
in 2016 European Control Conference (ECC), 2016,
pp. 1586–1591. DOI: 10.1109/ECC.2016.7810517.

[10] S. C. Brailsford, C. N. Potts, and B. M. Smith,
“Constraint satisfaction problems: Algorithms and ap-
plications,” European journal of operational research,
vol. 119, no. 3, pp. 557–581, 1999.

[11] M. de Wildt, Tube driving mobile robot navigation
using semantic features, Master thesis, Eindhoven Uni-
versity of Technology, 2019.

[12] H. L. Chen, B. Hendrikx, H. Bruyninckx, and R.
van de Molengraft, “Behavior adaptation for mobile
robots via semantic map compositions of constraint-
based controllers,” Frontiers in Robotics and AI, 2022.

14

V. APPENDIX

A. Elemental area ’avoid’

the same principles as with the no enter areas can be used
when encountering avoid areas. One of the differences will
be that it is no hard constraint. Also, a different situation
might occur where the robot is actually inside an avoid area,
unlike no enter areas where the robot by design should never
be. This thus requires an additional method of determining
the control input in that specific situation.
Also, key part of decision making when encountering avoid
areas is being able to determine how long the robot spends
in avoid areas, as the robot might have several options for
the control input, and this can play an important role in the
decision-making which control input is preferred.
A method for this can be to discretize the circular trajectory.
Knowing the radius corresponding with a certain trajectory,
the pose of the robot, and thus the center point of the circular
trajectory can be used. Determining for a certain number of
points inside the horizon in which type of areas these points
reside can provide the information needed for the decision
making.
Another possibly better option is to determine exactly the
intersection points of the trajectory with the edges of the
avoid polygon (if there are any) to determine the distance in
each region in a more precise way, avoiding discretization
and thus a tuning parameter for the discretization size.
When the robot is moving slowly and the horizon might
be relatively small it might make the wrong decision when
needing to enter an avoid area if there are for example two
ways to go, but one way would lead the robot through a
much larger avoid area, which it is unaware of due to the size
of the horizon. Predictions might offer a solution here, as the
robot moves forward in the predictions, and thus the horizon
also goes further than at the current situation. Considering
the total time/distance spent in avoid areas during prediction
could thus offer useful information for the decision making.

When the robot is not inside an avoid area the same
strategy as with no-enter areas can be used to determine a
steering angle range which would possibly avoid the avoid
area completely. If this additional restriction of the steering
angle range causes the base steering angle range from the
route polygons and no-enter areas to disappear this forms
a challenge. One could perform the same strategy with the
reduction of the horizon, but there are situations where going
through avoid areas is unavoidable, so this would not be a
generalized working strategy.

Possible solution
As avoid areas are basically ‘soft constraints’ it might be an
option to just take the steering angle ranges from the route
polygons and no-enter areas as absolutes and based on the
time/distance those trajectories/predictions spend in avoid
areas shift the actual desired steering input towards one of

Fig. 23. ’Avoid’ area example 1

the bounds, instead of going somewhat through the middle.

Fig. 24. ’Avoid’ area for driving on the right hand side. The situation shows
why it has to be treated as a soft constraint

Figure 25 shows an example of a situation where the
trajectory corresponding with min is preferred, as this has the
largest portion of the trajectory within the horizon outside of
the avoid area. This approach on its own would however not
change the horizon/steering angle range based on the fact that
it is inside this avoid area, while this might be preferable to
exit the area more quickly.

Another solution could be to perform somewhat the same
strategy as with no-enter areas, even when the robot is actually
inside an avoid area. Figure 26 shows such a case. ′

max is
placed in such a way that the robot would be guided out of the
avoid area. Of course the clearance circle around the p.o.i. now
does not hold as much meaning as no actual collision needs

15

Fig. 25. Robot being inside ’avoid’ area. The trajectory to the right has the
least distance inside the ’avoid’ area.

to be avoided. This does however provide a more generalized
working method, as when the robot is outside of the avoid
area the clearance circle does hold a meaning again.

Fig. 26. Determining points of interest on the ’avoid’ area for more knowledge
about exiting the area.

Figure 27 shows a case where there is no intersection of
the avoid area with the horizon, so a point on the avoid area
polygon has been taken as p.o.i.. This would guide the robot
to the right of the avoid area. However, in some cases it might
be more beneficial to just keep driving forward, as the robot
will exit the avoid area there as well, perhaps even quicker,
and with less disruption of the trajectory.

B. GIF links

Link to media:
https://tuenl-my.sharepoint.com/personal/c a lopez
martinez tue nl/ layouts/15/onedrive.aspx?id=%2Fpersonal%
2Fc%5Fa%5Flopez%5Fmartinez%5Ftue%5Fnl%
2FDocuments%2FStudents%2F2022%2FRinse%20H%
2FRinse%27s%20thesis%20media&ga=1

Fig. 27. Same situation as Figure 26 but with different horizon. Importance
of points of interest change.

Description of media:
• route polygon result speedx2.gif : GIF of simulation sce-

nario shown in Figure 19. Replay speed of the GIF is 2x
the original speed.

• elemental areas result.gif : GIF of simulation scenario
shown in Figure 20.

• route polygon result lwb speedx2.gif : GIF of simula-
tion scenario show in Figure 19 with enlarged robot
footprint. Replay speed of the GIF is 2x the original
speed.

• route polygon result swb speedx2.gif : GIF of simula-
tion scenario show in Figure 19 with short robot footprint.
Replay speed of the GIF is 2x the original speed.

• result horizon.gif : GIF of simulation scenario shown in
Figure 21.

• impulse demo rviz.mp4: MP4 screen recording of rviz
while performing an experiment on the Cura platform in
the environment of the scenario of Figure 22.

• impulse demo video.MP4: Video footage corresponding
with the rviz visuzlization of impulse demo rviz.mp4.

16

