
 Eindhoven University of Technology

MASTER

Physics-Guided Neural Networks for Inversion-Based Feedforward Control of a Hybrid
Stepper Motor

Fan, Daiwei

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/461b4e87-5688-4fcc-954d-7231ccfe90dd

Department of Electrical Engineering

Physics-Guided Neural Networks for Inversion-Based
Feedforward Control of a Hybrid Stepper Motor

by

D. Fan

MSC THESIS

Assessment committee
Chair: Prof. dr. S. Weiland
Member 1: Dr. M. Curti
Member 2: Dr. M. Lazar
Advisory member 1: Dr. S. Koekebakker
Advisory member 2: MSc. M. Bolderman

Graduation
Program: Electrical Engineering
Capacity group: Control Systems Group
Supervisor 1: Dr. M. Lazar
Supervisor 2: MSc. M. Bolderman
Date of defense: December 1, 2022
Student ID: 1594516
Study load (ECTS): 45

This thesis is public and Open Access.

This thesis has been realized in accordance with the regulations as stated in the TU/e Code of Scientific
Conduct.

Disclaimer: the Department of Electrical Engineering of the Eindhoven University of Technology accepts
no responsibility for the contents of MSc theses or practical training reports.

February 21, 2020

Declaration concerning the TU/e Code of Scientific Conduct
for the Master’s thesis
I have read the TU/e Code of Scientific Conducti.

I hereby declare that my Master’s thesis has been carried out in accordance with the rules of the TU/e Code of Scientific
Conduct

Date

November 22 2022…………………………………………………..

Name

Daiwei Fan…………………………………………………..……….

ID-number

1594516…………………………………………………..…………..

Signature

…………………………………………………..…………..

Submit the signed declaration to the student administration of your department.

i See: https://www.tue.nl/en/our-university/about-the-university/organization/integrity/scientific-integrity/
The Netherlands Code of Conduct for Scientific Integrity, endorsed by 6 umbrella organizations, including the VSNU, can be found
here also. More information about scientific integrity is published on the websites of TU/e and VSNU

https://www.tue.nl/universiteit/over-de-universiteit/integriteit/wetenschappelijke-integriteit/
https://www.tue.nl/universiteit/over-de-universiteit/integriteit/wetenschappelijke-integriteit/

1

Physics-Guided Neural Networks for
Inversion-Based Feedforward Control of a Hybrid

Stepper Motor
Daiwei Fan

Eindhoven University of Technology
Department of Electrical Engineering

Control Systems Group

Abstract—Rotary motors such as hybrid stepper motors are
widely used for different tasks. With the increasing require-
ment for accurate motion, providing a simple and feasible
method to improve performance becomes a goal in industrial
and commercial applications. One such tool is inversion-based
feedforward control, its performance is limited by the accuracy
of the inverse model. Typically, a model is derived from first-
principle models based on physical knowledge. However, these
models are unable to describe complex nonlinear phenomena that
are omnipresent in practical applications. With the aim to also
include these phenomena, a model based on the black-box neural
network becomes popular due to its universal approximation
capabilities. But it is difficult to train the neural network
to capture the real dynamics. To address these issues, this
paper investigates the design of physics-guided neural networks
(PGNN) for nonlinear system identification and thereby combines
physical knowledge in parallel with a neural network. The PGNN
framework is validated on a real-life industrial hybrid stepper
motor. Moreover, the PGNN feedforward controller does not
require any modifications of the motors. In comparison with
the physical model-based feedforward, the results show that the
PGNN feedforward controller achieves significant improvements
in tracking performance.

Index Terms—Feedforward control, Machine learning, Stepper
motor, System identification

I. INTRODUCTION

With the increasing need for productivity and efficiency,
there is a tendency to refine the automatic industrial process.
Stepper motors generally have a simple structure and are man-
ufactured at a low cost [1]. Ascribed to this, many automated
applications such as printers, robotics, and automotive widely
use stepper motors as actuators to handle different tasks [2],
[3].

However, although stepper motors are easy to implement
in open-loop by controlling the pulse amount and pulse
frequency, they are prone to mechanical resonances due to
the ripple generated in the electromagnetic torque [4], [3].
Additionally, some stepper motors have a step response with
significant overshoot and a long settling time [5].

In order to improve performance, control algorithms such
as micro-stepping achieve improvements by increasing the
step resolution [4], [6]. There are still position-tracking errors
when operating the stepper motor on a constant velocity
reference [6], [7]. Moreover, there is a lack of ability to
reject the load disturbance [3], [6]. These factors restrict the

performance of the stepper motor with open-loop in high-
precision positioning applications. Attempts have been made
in the past decades to use closed-loop control for enhancing
the tracking performance of stepper motors. Among these
closed-loop control techniques, is field-oriented control (FOC)
with proportional-integral (PI) feedback control [6]. In FOC,
the stator current vector is generally controlled by the PI
controller such that it is orthogonal to the rotor magnetic field
[8]. Consequently, electromagnetic torque retains maximum
value constantly, which reduces torque ripples and leads to a
smoother operation of the motor [3]. However, the traditional
linear PI controller cannot efficiently compensate for the
effects of back electromotive force (EMF) and inductance [9].
Furthermore, this method requires coordinate transformation
to linearize the dynamics [10]. In [11], it is mentioned that a
closed-loop commutation delay may result in unusual changes
in the behavior of stepper motors.

To improve the tracking performance of motion systems
further, feedforward control is a technique, which is inde-
pendent of feedback control. In comparison with model-free
feedforward, the inversion-based feedforward signal is gener-
ated by passing the reference through a model of the inverse
system dynamics [12], [13]. Tracking performance achieved
by the inversion-based feedforward controller is limited by the
accuracy of the model describing the inverse system dynamics
[12]. This method also has robustness against different refer-
ences. Therefore, the inversion-based feedforward controller is
appealing but its performance is determined by the quality of
the inverse model.

An inverse system model can be obtained based on physical
knowledge, for example, the first principle modelling, see, e.g.,
[14]. However, there exist some uncertainties and unknown dy-
namics such as the parasitic torques caused by manufacturing
tolerances, and ripple torques caused by detent torque and back
electromotive force (back EMF). Therefore, it is a challenge
to identify the complete dynamics only based on physical
knowledge due to its limited approximation capabilities.

To solve this problem, increasing attention has been paid to
the use of black-box neural networks (NN) to approximate the
complete system dynamics, which is explained by their uni-
versal approximation capability [15], see also [16]. However,
during the process of training, the black-box NN could learn a
pseudo relation, especially when the training data set is small.

2

In spite of using cross-validation or Bayesian regularization,
this phenomenon still exists [17]. As a consequence, the output
of the black-box NN lacks compliance with respect to the
known laws of physics [18]. The identified NN model can
perform well on the training data, even when it has learned
spurious relationships. Under these circumstances, the feedfor-
ward signal generated by the incorrect model can yield unsafe
behavior. Therefore, the lack of physical interpretability and
unsafety impedes applying NN-based controllers in industrial
applications.

Many strategies have been proposed to overcome these
undesirable effects. In [19], it is mentioned that a linear
model can be inserted additively in parallel to a nonlinear
model. An advanced method called physics-guided neural
networks (PGNN) feedforward controller is proposed in [17].
The PGNN embeds an a priori known physical model within
a black box neural network structure. A different approach
called physics-informed neural networks (PINN) penalizes
deviations of the NN output with respect to the physical model
output in the training loss function, see [12], [18].

The above articles demonstrated that these advanced meth-
ods outperform physics-based methods on a coreless linear
motor. However, applying these advanced methods to a rotary
motor is not considered yet. In this paper, we investigate the
design of PGNN to identify the inverse system of a two-phase
hybrid stepper motor in discrete–time domain. Notice that,
compared to a linear motor, besides the different parameters
and dynamics, the rotor position of a hybrid stepper motor has
recurring behaviour due to its rotary motion. Consequently,
this paper also discusses how to solve this issue. The feedfor-
ward controller based on a PGNN is validated in the real-life
device and works with typical FOC control. The experimental
results show that PGNN feedforward outperforms the bench-
marks, which are the physics-based and black-box NN-based
feedforward. Overall, this paper enhances the work in [17] by
demonstrating a new practical application: a hybrid stepper
motor.

The remainder of this paper is structured as follows: Sec-
tion 2 presents a mathematical model of a hybrid stepper
motor, FOC control with dq transformation, inverse system
identification, and feedforward design. The problem statement,
motivation, and goal are described successively in Section 3.
Section 4 demonstrates the advanced methodology for dis-
crete–time inverse system identification, which is used to de-
sign the feedforward controller. In Section 5, the performance
of advanced methodology is validated. Finally, the conclusions
are summarized in Section 6.

II. PRELIMINARIES

A. System description and modelling

In this work, we consider a two-phase hybrid stepper motor
that is provided by Canon Production Printing, see Fig. 1.
Typically, the modelling of a hybrid stepper motor can be
divided into two independent parts, the mechanical part and
the electromagnetic part.

Fig. 1. Hybrid stepper motor FL57STH51-2804A manufactured by FULLING
MOTOR.

The electromagnetic part is modelled in the stationary
reference frame (ab-frame) as[

dia
dt
dib
dt

]
=

1

L

([
va
vb

]
−R

[
ia
ib

]
−

[
Femfa

Femfb

])
, (1)

where L is phase inductance and R is resistance. The currents
in coils are represented by ia,ib and va,vb are terminal voltages
respectively. Additionally, Femfa and Femfb are self-induced
voltage, also known as the back electromotive force (back
EMF), which is modelled as

Femfa = −Kmω sin (Ny)

Femfb = Kmω cos (Ny) ,
(2)

where Km is the motor constant and N is the number of
rotor teeth. The mechanical rotor angle and the mechanical
angular velocity are y and ω, respectively. The electromagnetic
part uses the current ia,b in the coil windings to produce
an electromagnetic torque Te. The resulting torque acts on
the mechanical part and generates the motion of the rotor
[2]. These ordinary differential equations show that the elec-
tromagnetic part not only contains nonlinearities but is also
influenced by the rotor position from the mechanical part.

The model of mechanical part can be described as

dy

dt
= ω (3a)

dω

dt
=

1

J
(Te − Tf − Td − Tl) , (3b)

where J is the moment of inertia of the rotor. The electro-
magnetic torque Te is the input from the electromagnetic part
in the driving direction, which can be modelled as

Te = Km (−ia sin (Ny) + ib cos (Ny)) . (4)

The total mechanical friction torque Tf is usually modelled
as

Tf = Bω, (5)

where B is the viscous friction coefficient. The detent torque
Td is generated due to the permanent magnetic rotor attracting
the salient iron teeth of the stator. Note that this torque is

3

always present, even if the motor is de-energized [2]. The
detent torque is expected to repeat with every stator phase
and every rotor pole which determines the steady states of the
rotor. The detent torque can be modelled by Fourier-approach
that accounts for multiple spectral components [2] as

Td =

n∑
k=1

ak · sin(kNy), (6)

where ak is the amplitude of the k-th component and n is
the total number of modelled spectral components. The load
torque Tl depends on the different applications, which could
be time-varying.

However, modelling based on existing knowledge can not
describe the inherent dynamics without any deviations. For
example, in practice, there are parasitic effects due to manu-
facturing tolerances such as the variation of coil dimensions,
the variation of magnet properties and dimensions, and the
variation of assembly. These tolerances generate parasitic
Lorentz torques and parasitic reluctance torques in multiple
directions [20].

Additionally, there is the ripple torque caused by the vari-
ation of the phase inductance with rotor position and the
harmonics from the back EMF. From [3], it is mentioned
that salient Hybrid Stepper Motor has some similar behaviors
to Permanent Magnet Synchronous Motor due to the variable
reluctance. Therefore, the inductance L is nonlinear with the
rotor position y rather than a constant

L = L0

[
1 0
0 1

]
+∆L

[
cos (2Ny) sin (2Ny)
sin (2Ny) cos (2Ny)

]
, (7)

where L0 is the nominal inductance and ∆L is the variation
of inductance. Therefore, the electromagnetic dynamics (1) is
rewritten in matrix notation as[

dia
dt
dib
dt

]
= L−1

([
va
vb

]
−R

[
ia
ib

]
−d(Ny)

dt

∂L

∂(Ny)

[
ia
ib

]
−
[

Femfa

Femfb

])
.

(8)
The performance of controllers is degraded when the con-

troller design ignores the presence of these mentioned parasitic
torques, electromagnetic disturbances, and other unknown
dynamics.

B. Traditional control design

As shown in Fig. 2, in the outer loop, a linear proportional-
integral-derivative (PID) position feedback controller to track
the desired position y∗ is designed as

ufb = kP (y∗ − y) + kI

∫ t

0

(y∗ − y) dt+ kD

(
dy

dt

∗
− dy

dt

)
.

(9)
The feedforward uff is designed to improve the tracking
performance. Therefore, the complete control law is denoted
as

T ∗
e = ufb + uff , (10)

where T ∗
e is the desired torque.

In fact, the stator current ia,b is the actual input in a hybrid
stepper motor. The inner loop formed by the red dashed line
in Fig. 2 is FOC control with DQ transformation, which aims
to maximize the torque to improve performance. As shown in
Fig. 3, the original sinewave reference signal is avoided by
using FOC with DQ transformation. The current ia, ib in the
stationary reference frame are converted into d-axis and q-axis
components as id, iq by DQ transformation [6][

id
iq

]
=

[
cos (Ny) sin (Ny)
− sin (Ny) cos (Ny)

] [
ia
ib

]
. (11)

The inverse DQ transformation reverts voltage vd, vq from dq
coordinate to ab coordinate as winding voltages va, vb as[

va
vb

]
=

[
cos (Ny) − sin (Ny)
sin (Ny) cos (Ny)

] [
vd
vq

]
. (12)

Applying (11) and (12) on the electromagnetic part (1) results
in a linear model as

[did
dt
diq
dt

]
=

1

L

([
vd
vq

]
−

[
R −LNω

LNω R

] [
id
iq

]
−
[

0
Kmω

])
.

(13)

Therefore, the nonlinear control problem is converted to a
linear control problem. Typically the PI controllers are used
to generate voltage input by minimizing the error between the
desired current and the actual current. The current id is forced
to zero, then the total stator current is equal to q-axis stator
current iq since

I⃗dq =
√
i2d + i2q = iq for id = 0. (14)

To couple the inner loop with the outer loop, the desired
current i∗q is calculated based on (4) as

i∗q =
1

Km
T ∗
e . (15)

In the remainder of the paper, for ease of analysis, the torque
T ∗
e regarded as input of the system is denoted as u(t). The

mechanical rotor angle as the system output is still denoted as
y(t).

C. System identification and feedforward control design

To control the hybrid stepper motor in real life, the feedback
controllers should be discretized. Likewise, in order to imple-
ment the feedforward design, the inverse dynamical system in
the discrete-time domain can be written as

u(t) = ξ
(
ϕ(t)

)
,

(16)

where ξ(·) is a nonlinear function that describes the dynamics
with the regressor ϕ(t) = [y(t + na), ..., y(t − nb), u(t −
1), ..., u(t−nc)]

T that corresponds to a nonlinear ARX model.
The parameters na, nb, and nc describe the order of the
system.

4

Fig. 2. The total control scheme of the hybrid stepper motor. The area in the red dashed line is the schematic control loop of the electromagnetic part.

Fig. 3. The illustration of Field Oriented Control. The black line is current
in the stationary reference frame and the red line is current in the rotating
reference frame.

We aim to approximate an inverse system with the model
for inversion-based feedforward controller synthesis with the
following steps

1) Data generation.
2) Model structure.
3) Train Model.
4) Performance testing.

The training data set ZN = {u(0), . . . , u(N −
1), y(0), . . . , y(N − 1)} is generated on the system, which
satisfies the inverse dynamics (16).

Definition II.1. A physics–based model is defined as

û
(
θphy, ϕ(t)

)
= f

(
θphy, ϕ(t)

)
, (17)

where f(·) is a function that describes the known dynamics
with the parameter θphy .

Therefore, (16) can be rewritten with (17) as

u(t) = f
(
θphy, ϕ(t)

)
+ g

(
ϕ(t)

)
, (18)

where g
(
ϕ(t)

)
:= ξ

(
ϕ(t)

)
− f

(
θphy, ϕ(t)

)
is a nonlinear

function that describes all unmodelled dynamics, such as the
aforementioned parasitic effects, electromagnetic disturbances,
etc.

Fig. 4. Black-box neural network structure.

Definition II.2. To identify the inverse dynamics (16) by a
nonlinear model, another method as shown in Fig. 4, the black
box NN model is defined as

û
(
θnn, ϕ(t)

)
= Wj+1ai

(
· · · a1(W1ϕ(t) + b1)

)
+ bj+1, (19)

where the parameter θnn contains all the weights W and biases
b. Additionally, ai denotes the nonlinear activation functions
used in the i-th hidden layer and j is the number of hidden
layers.

In order to fit the model, e.g., (17) or (19), we choose the
parameters theta according to an identification criterion. Typi-
cally, the identification criterion is chosen as the minimization
of a cost function

θ̂ = argmin
θ

V
(
θ, ZN

)
, (20)

where the cost function is often the quadratic function

V
(
θ, ZN

)
=

1

N

N−1∑
t=0

(
û(θ, ϕ(t))− u(t)

)2
. (21)

After the system identification procedure, the inver-
sion–based feedforward is generated by passing the desired
reference r(t) through the estimated model as

uff (t) = û
(
θ̂, ϕff (t)

)
, (22)

5

where estimated parameter θ̂ is obtained by (20) and ϕff (t) :=
[r(t+ na), ..., r(t− nb), uff (t− 1), ..., uff (t− nc)]

T .

Remark. 2.1:

For simplicity, we consider a physical model with Td = 0
and Tl = 0. In addition, electrical dynamics is much faster
than mechanical dynamics by using PWM drivers assembled
with PI current controller [7], [21], thus it is possible to only
consider the mechanical dynamics [22]. Thereby, we derive
a physics-based model that is linear in the parameters as an
example of (17), which is given as

û
(
θlipphy, ϕ(t)

)
= θlipphyT

(
ϕ(t)

)
=

[
J
B

]T [
δ2y(t)
δy(t)

]
,

(23)

where T (·) is a set of functions that reshape the regressor
ϕ(t) := [y(t), y(t−1), y(t−2)]T based on physical knowledge,
and δ := 1−q−1

Ts
denotes the backward Euler discretization

with backward shift operator q−1 and sampling time Ts. After
identification of û

(
θlipphy, ϕ(t)

)
that is obtained by using a least

squares solver ′′/′′ in Matlab, the physics-based feedforward
controller is given as

uff (t) = θ̂lipphyT
(
ϕff (t)

)
=

[
Ĵ

B̂

]T [
δ2r(t)
δr(t)

]
.

(24)

III. PROBLEM STATEMENT

The performance of the inversion-based feedforward de-
pends on the accuracy of the model. A linear physics-based
model usually is considered because it is easy to design and
implement. In some circumstances, we are not satisfied with
the linear model. The physics-based model (23) is unable
to capture the complete inverse system dynamics due to
its limited approximation capabilities. It cannot describe the
g
(
ϕ(t)

)
in (18). On the other hand, the black-box NN model

(19) is theoretically able to approximate any dynamical system
satisfying (16) [12]. But it is generally difficult to learn and
respect underlying physical laws.

As shown in Fig. 5, results from the simulation revealed
that although the position tracking error is reduced by the
traditional physics-based feedforward, there are still imper-
fections, especially at changing acceleration. Additionally, the
feedforward control signals generated by the black box NN
model have some peaks and different magnitudes. However, it
performs worse than the physics-based model. There are many
possible reasons to explain it. For example, even though the
training data set ZN is generated on the system (16), it is still
possible that the data set does not cover the domain of interest,
or that training is not enough convergence.

Therefore, the goal of this paper is to improve the tracking
performance of a hybrid stepper motor by designing a PGNN
inversion–based feedforward controller. Motivated by the men-
tioned limitations of traditional methods, the following issues
are considered:

• How to use the benefits of physical models and NN to
design an advanced model with higher accuracy?

0.5 1 1.5 2 2.5 3

0

10

20

-20

0

20

0.5 1 1.5 2 2.5 3

-0.1

0

0.1

0.5 1 1.5 2 2.5 3

-0.2

0

0.2

Fig. 5. The tracking error and feedforward signal by using traditional methods
in the simulation: the physics-based model (23) and the NN-based model (19).
The parameters Ĵ and B̂ are identified by equations (20).

Fig. 6. Physics-Guided Neural Network (PGNN) schematic illustration.

• Without any modifications of the motor structure, how
to design an implementable feedforward controller? The
developed method should work with existing feedback
controllers in FOC.

IV. PHYSICS-GUIDED NEURAL NETWORK

This section will elaborate on the procedures to obtain
a PGNN feedforward controller by following the steps in
Section 1. II-C.

Data generation:
In this paper, the training data set ZN is generated by

collecting the input u(t) and output y(t) with sampling
time Ts = 6.25 × 10−4s. As mentioned in [17], closed-
loop identification requires exciting the system persistently.
A third-order exciting reference signal is designed, where
position r(t) ∈ {−3 · 2π, 3 · 2π} radians. The maximum of
velocity, acceleration, and jerk are chosen as | ddtr(t)| < 15
rad
s , | d

2

dt2 r(t)| < 80 rad
s2 , and | d

3

dt3 r(t)| < 1000 rad
s3 , respec-

tively. Moreover, a zero–mean white noise with a variance of
2× 10−4N ·m is added to dither the input u(t) to allow the
system to explore the various possible positions and velocities.

Define PGNN structure:

6

As shown in Fig. 6, the PGNN combines the predicted
output of the NN and the output of the physical model as
a single output, which is defined as

û
(
θpgnn, Z

N
)
= û

(
θnn, T (ϕ(t))

)
+ û(θ, ϕ(t)). (25)

In this paper, the NN model û(θnn, ϕ(t)) has one hidden layer
and eight neurons. The sigmoid function is selected as the
activation function

a1(x) =
1

1 + e−x
. (26)

The simulation results show that increasing the dimensions
of NN such as increasing the number of hidden layers or
the number of neurons does not improve the performance of
feedforward. Other activation functions such as tanh and Relu
are worse than the sigmoid function when using the same NN
dimension. To improve the PGNN, we design another physical
model based on exploiting the known dynamics further, thus
the physics-based model (23) is rewritten as

û
(
θlipphy, ϕ(t)

)
= θlipphyT

(
ϕ(t)

)
=

 J
B
0

T δ2y(t)
δy(t)
y(t)

 ,
(27)

which represents that we know some parasitic effects are
related to the motor position y(t). In fact, g

(
ϕ(t)

)
is impos-

sible to model by position y(t), thus its parameter in θlipphy is
defined as zero. The PGNN only allows the black box NN to
explore the parasitic effects based on the training data set ZN .
Therefore the total PGNN model (25) is given by

û
(
θpgnn, Z

N
)
=W2

(
a1(W1T

(
ϕ(t)

)
+ b1)

)
+ b2

+ θlipphyT
(
ϕ(t)

)
.

(28)

The experimental results show that the PGNN (28) improves
the performance in comparison to PGNN using a standard
physics-based model (23).

Train PGNN:
The PGNN model is trained based on (20) to find the

parameters θ̂. The loss function (21) can be rewritten as

Vpgnn

(
θ, ZN

)
=

1

N

N∑
t∈ZN

(
û(θnn, ϕ(t))+

û(θphy, ϕ(t))− u(t)
)2
.

(29)

There are two alternative options to identify the nonlinear
system:
(a) Simultaneous: train the nonlinear θnn and the linear

model θphy together.
(b) Sequential: first identify θ̂phy in (27) using (20), (21),

then identify θ̂nn using (29) with θphy = θ̂phy fixed.
Option (a) generally will yield a higher model accuracy at
least on the training data set because more parameters are
available to be trained in comparison with option (b). But it
can result in overparameterization because NN also identifies
the physical model. After training PGNN with θnn and θphy
together, the estimated value of rotor inertia Ĵ and friction
coefficient B̂ can be identified as negative values, which is

Fig. 7. The PGNN feedforward controller in Simulink.

physically inconsistent. In fact, option (b) can put constraints
by fixing θphy . Therefore, in the remainder of this paper,
we select option (b). The training environment is Python 3.8
with the Adam optimization algorithm which is improved
stochastic gradient descent. By utilizing the Nvidia Cuda to
increase the training speed, the average time consumption is
90 seconds, which does not require expensive GPU cards. In
order to reduce the risk of converging into a local minima
during training (but not prevented), each network is trained ten
times with random weight initialization. Then the best model
is determined by choosing the lowest training loss.

Performance testing:
The performance of the PGNN will be evaluated on a

real-life device. As shown in Fig. 7, the PGNN feedforward
controller (28) is implemented by Simulink block with Matlab
function, which is compiled by dSpace. The tracking error
e(t) := r(t) − y(t) is defined by the difference between the
reference r(t) and the actual position y(t). The numerical
assessments of the tracking performance in this paper are the
mean absolute value and the maximum absolute value of e(t),
which are

MAE(e(t)) =
1

Ns

Ns−1∑
t=0

|e(t)|, (30)

with N the number of samples of the reference and

MAX(e(t)) = max(|e(t)|). (31)

Remark. 4.1:

The rotor position of a hybrid stepper motor has recurring
behaviour due to its rotary motion, that is y(t) = y(t) + 2nπ
with n ∈ {0, 1, 2, 3 · · · }. Therefore, we reshape the physics-
based model from (27) by limiting the motor position y(t)
between {0, 2π} as

û
(
θlipphy, ϕ(t)

)
= θlipphyT

(
ϕ(t)

)
=

 J
B
0

T δ2y(t)
δy(t)

mod
(
y(t)

)
 ,

(32)

where modulo operation mod
(
y(t)

)
takes the remainder after

division y(t)
2π .

7

Fig. 8. Physics-Informed Neural Network (PINN) schematic illustration.

Remark. 4.2:

In comparison with improving the physical model, another
approach is to modify the structure of NN. Therefore, the
recurrent neural network (RNN) is considered in this paper.
The black box NN model (19) can be changed by simple
Elman RNN as

h(t) = ai(Whhh(t− 1) + bhh +WihT
(
ϕ(t)

)
+ bih), (33a)

û
(
θrnn, ϕ(t)

)
= Woh(t) + bo, (33b)

where h(t) is the hidden state and h(t − 1) is the hidden
state of the previous layer or the initial hidden state. In (33),
the RNN has an internal memory hidden state h that enables
it to remember historical input. In another word, the previous
output of the hidden state is fed as input to the current step.
Therefore, the RNN is able to make decisions by considering
current input alongside learning from previous input. Addi-
tionally, a complicated RNN long short-term memory (LSTM)
is used in to test the performance. The LSTM uses gates to
regulate the flow of information as

ils(t) = σ
(
WiiT

(
ϕ(t)

)
+ bii +Whihls(t− 1) + bhi

)
(34a)

fls(t) = σ
(
WifT

(
ϕ(t)

)
+ bif +Whfhls(t− 1) + bhf

)
(34b)

gls(t) = tanh
(
WigT

(
ϕ(t)

)
+ big +Whghls(t− 1) + bhg

)
(34c)

ols(t) = σ
(
WioT

(
ϕ(t)

)
+ bio +Whohls(t− 1) + bho

)
(34d)

cls(t) = ft ⊙ cls(t− 1) + ils(t)⊙ gls(t) (34e)
hls(t) = ols(t)⊙ tanh (cls(t)) , (34f)

where ils fls gls ols are the input, forget, cell, and output
gates, respectively. σ is the sigmoid function in (26) and ⊙ is
the Hadamard product.

Remark. 4.3:

The PGNN introduces physical knowledge into the model
set by combining the linear model in parallel with the NN
model. In comparison with PGNN, another advanced model,
e.g. see [12], physics-informed neural network (PINN) intro-
duces physical knowledge in the loss function. As shown in

Fig. 9. The hybrid stepper motor in the Simulink.

Fig. 8, the loss function of PINN is given as

Vpinn

(
θ, ZN

)
= VD + αVphy

=
1

N

N∑
t∈ZN

(û(θnn, ϕ(t))− u(t))2+

α
1

N

N∑
t∈ZN

(û(θnn, ϕ(t))− û(θphy, ϕ(t)))
2
.

(35)

where hyperparameter α is tuned to determine the relative
weight of physical model compliance with respect to the data
fit.

V. SIMULATION AND EXPERIMENT

A. Simulation results

TABLE I
THE MOTOR PARAMETERS USED IN THE SIMULATION.

Parameters Values
Moment of Inertial J [kg ·m2] 2.8× 10−5

Friction Coefficient B[N ·m · s/rad] 8.0 ×10−3

Resistance R[Ω] 0.83
Inductance L[H] 2.2× 10−3

Motor Constant Km[N ·m/A] 0.36
Number of Poles N 50

Before proceeding to the real-life stepper motor, the hybrid
stepper motor and controller design should be validated in the
simulation. As shown in Fig. 9, the structure of a simulated
motor by the Matlab Simulink is based on the equations
explained in Section II-A. The mechanical part (3b) and
electromagnetic part (1) are coupled by (4). The harmonic
of the detent torque with k = 4 is typically dominant, such
that (6) is simplified in the simulation as

Td = ad sin(4Ny). (36)

The detent torque and back-EMF are simulated by following
(36) and (2), respectively. The values of motor parameters are
listed in Table I.

Fig. 10 is the control scheme in the simulation by following
the design of Fig. 2. The continuous-time position feedback
controller is designed as

Cfb(s) = CgainClead/lagCintegratorClpf

=
6.013× 10−3s2 + 0.5907s+ 7.54

1.179× 10−5s3 + 7.626× 10−3s2 + s
,

(37)

8

Fig. 10. Control scheme with the position feedback controller and feedforward controller in the simulation.

which is designed by using the loop–shaping technique for the
linear mechanical dynamics (3a) and (3b)

Pme(s) =
1

Js2 +Bs
. (38)

This gives a 12.1 Hz open–loop bandwidth, a modulus margin
of 2.3 dB, a phase margin of 74.4◦ and a gain margin of 18.5
dB. The controller Cfb(s) is discretized by zero–order–hold
with sampling time as

Cfb(z) =
0.2693z2 − 0.5224z + 0.2532

z3 − 2.64z2 + 2.308z − 0.6676
. (39)

In the traditional current loop design, only the linear dynamics
of the electromagnetic part is considered. The open-loop
transfer function based on (1) is

Pcurrent(s) =
1

Ls+R
. (40)

In order to avoid the impact on electronic devices caused by
the large overshoot, the current loop is often designed as an
overdamped system. In the cascade control, the bandwidth of
the inner loop should be much faster than the outer loop [3].
Therefore, the PI controller is designed as

Ccurrent(s) = Kp +
Ki

s

= 30
(
12.1 · 2π

)
L+

30
(
12.1 · 2π

)
R

s
,

(41)

which gives a 363.7 Hz open–loop bandwidth that is a factor
of thirty larger than the bandwidth of the mechanical part Pme.

TABLE II
THE TRACKING RESULTS OBTAINED BY DIFFERENT FEEDFORWARD

CONTROLLERS IN THE SIMULATION.

Cases
Evaluation Loss MAE[rad] MAX[rad]

No FF 5.06× 10−2 8.99× 10−2 5.024× 10−1

Physics 2.90× 10−3 1.6× 10−2 1.02× 10−1

NN 5.04× 10−4 1.6× 10−2 9.08× 10−2

PGNN 4.54× 10−4 8.7× 10−3 7.3× 10−2

PINN 6.05× 10−4 9.8× 10−3 6.7× 10−2

PG-RNN 4.52× 10−4 8.5× 10−3 5.87× 10−2

PI-RNN 4.82× 10−4 9.3× 10−3 8.03× 10−2

PG-LSTM 3.91× 10−4 6.6× 10−3 8.18× 10−2

PI-LSTM 4.06× 10−4 8.3× 10−3 7.8× 10−2

Fig. 11. The experimental device.

From Table II, PGNN and PINN all outperform the tradi-
tional feedforward methods. However, the structure of RNN
and LSTM just improves the performance slightly. The stepper
motor in simulation still can not present all behaviours of the
motor in reality. The RNN and LSTM are expected to have
an impressive performance in a complex environment. In this
paper, the load Tl that can be time-varying is unavailable to
implement in the real-life motor due to the time. Therefore,
we still focus on the PGNN in the experimental results.
Additionally, typical L1 or L2 regularization can also be
implemented with PGNN, see appendix.

B. Experimental results

As shown in Fig. 11, the experimental device contains
the hybrid stepper motor with a position encoder, the power
supply, the current sensors, the H bridge, the motor PCB, the
filter, and the dSpace 1104 connected to the computer. The
dSpace MicrolabBox is able to run the files generated from
Simulink. However, since the noise that originated from the
MicrolabBox can not be reduced, the signal is amplified using
an external analog filter [23].

Focusing on one example of a realistic application, the
hybrid stepper motor starts from a standstill (0 RPM) to 15 rad

s
(approximately 143 RPM), then decelerates to the standstill.
Note that reference r(t) is a part of the reference in data

9

8.5581 9.4956 10.4331 11.3706

-20

-10

0

10

20

0

5

10

15

20

8.5581 9.4956 10.4331 11.3706

-5

0

5

10
10

-3

8.5581 9.4956 10.4331 11.3706

0

0.1

0.2

0.3

Fig. 12. The tracking results from the real-life hybrid stepper motor. The top
subfigure is the reference r(t); the middle subfigure is the tracking error e(t);
the bottom subfigure is the feedforward signal by using the regressor in (27).

generation. As shown in Fig. 12, in comparison with the
physics-based controller, the transient peak error of PGNN
at the beginning is reduced significantly. The mean absolute
error of PGNN keeps sticking on the zero line.

TABLE III
THE TRACKING RESULTS BY USING THE REGRESSOR IN (27) IN THE

REAL-LIFE DEVICE.

Cases
Evaluation Loss MAE[rad] MAX[rad]

No FF 4.16× 10−2 5.2× 10−2 6.1× 10−2

Physics 1.70× 10−4 1.3× 10−3 8.2× 10−3

NN 9.07× 10−5 1.1× 10−3 8.3× 10−3

PGNN 8.64× 10−5 6.4× 10−4 2.9× 10−3

PINN(α = 0.00001) 8.89× 10−5 7.6× 10−4 3.3× 10−3

In some particular cases, engineers focus on the electrical
angle ye[

◦], which is ye = yN ·180
π . By applying this met-

ric to the tracking evaluation Table III, PGNN feedforward
can reduce the peak error from 23.5◦ to 8.3◦ and mean
absolute error from 3.7◦ to 1.8◦. Nevertheless, the regressor
in (27) only considers the mechanical dynamics without the
electromagnetic dynamics, where mechanical dynamics are
still not incomplete. The results show that PGNN improves
performance and enhances approximation capabilities.

Notice that, in contrast to identifying θlipphy in (23), finding
a solution of PGNN (28) based on (20) is a non–convex
optimization problem. Despite the fact that PGNN could be

0 5 10 15 20 25 30

0

0.005

0.01

0.015

0 5 10 15 20 25 30

0

0.01

0.02

0.03

Fig. 13. MAE and MAX for the different feedforward controllers when used
on a reference with varying maximum velocities. The maximum velocity in
data generation is 15 rad

s
.

0 2 4 6 8 10

0.5

1

1.5

2

2.5
10

-3

0 2 4 6 8 10

2

4

6

8

10
10

-3

Fig. 14. MAE and MAX for the different feedforward controllers when used
on a reference with varying maximum positions. The maximum position in
data generation is 6π.

stuck in the local minimum, the training loss is still less than
the physics-based model.

Moreover, only θnn is updated based on the data set ZN

by fixing the physics-based model θlipphy , which reduces the
approximation ability of the PGNN. In comparison with the
black box neural network, PGNN still achieves improvements
in tracking performance with a factor of approximately three.

To test the robustness of the PGNN feedforward controller,
validation references are designed with different maximum
velocities | ddtr(t)| ≠ 15 rad

s . Fig. 13 shows the robustness
of the PGNN. When the maximum velocity does not exceed
the value in data generation, the PGNN improves tracking
performance with respect to the physics-based feedforward
both in MAX(e(t)) and MAE(e(t)). However, the PGNN
is sensitive to the velocities that are not shown in the training

10

data set. In particular, if the dynamics contained within the NN
are mostly velocity-dependent, PGNN has poor extrapolation
for velocities. Similarly, in [24], the friction is mostly position-
dependent in the coreless linear motor, which explains the
sensitivity for positions.

As shown in Fig. 14, the PGNN with the modulo operation
on position y(t) imposes a form of graceful degradation,
however, it is more robust to different positions. For example,
in the paper-handling system of a printer, hybrid stepper
motors typically transport paper sheets constantly in one di-
rection. The PGNN with modulo operation can reduce energy
consumption.

VI. CONCLUSION

In this paper, we investigate the design of physics-guided
neural networks to identify the inverse system dynamics in the
discrete-time domain on a hybrid stepper motor. Based on the
estimated inverse model, the feedforward controller is imple-
mented in the real device that also works with FOC control.
From the perspective of system identification, it provides a
generalized approach to improve the accuracy of an estimated
model. Therefore, as shown in the results, it outperforms
two traditional feedforward controllers even though using
an incomplete physical model. Stepper motors have a huge
market. The physics-guided neural network method is simple
and easy to implement. Consequentially, in the foreseeable
future, it has the potential to be employed in varying industries.
As a next step, in a more complex environment, we will
exploit different physics-based models and structures of neural
networks to improve performance.

REFERENCES

[1] S. Derammelaere, B. Vervisch, F. De Belie, B. Vanwalleghem, J. Cottyn,
P. Cox, G. Van den Abeele, K. Stockman, and L. Vandevelde, “The
efficiency of hybrid stepping motors: Analyzing the impact of control
algorithms,” IEEE Industry Applications Magazine, vol. 20, no. 4, pp.
50–60, 2014.

[2] B. Henke, O. Sawodny, S. Schmidt, and R. Neumann, “Modeling of
hybrid stepper motors for closed loop operation,” IFAC Proceedings
Volumes, vol. 46, no. 5, pp. 177–183, 2013, 6th IFAC Symposium on
Mechatronic Systems.

[3] T. Hoang, A. Das, S. Koekebakker, and S. Weiland, “Sensorless field-
oriented estimation of hybrid stepper motors in high-performance paper
handling,” in CCTA 2019 - 3rd IEEE Conference on Control Technology
and Applications. United States: Institute of Electrical and Electronics
Engineers, Aug. 2019, pp. 252–257.

[4] T. Kenjo and A. Sugawara, “Stepping motors and their microprocessor
controls, Second Edition,1994 Oxford, Oxford University Press ISBN
0 19 859385 6,” European Journal of Engineering Education, vol. 20,
no. 3, pp. 386–386, 1995.

[5] G. Feng, “Position control of a pm stepper motor using neural networks,”
in Proceedings of the 39th IEEE Conference on Decision and Control
(Cat. No.00CH37187), vol. 2, 2000, pp. 1766–1769 vol.2.

[6] C. Wang and D. Cao, “New sensorless speed control of a hybrid stepper
motor based on fuzzy sliding mode observer,” Energies, vol. 13, no. 18,
2020.

[7] W. Kim, C. Yang, and C. C. Chung, “Design and implementation
of simple field-oriented control for permanent magnet stepper motors
without DQ transformation,” IEEE Transactions on Magnetics, vol. 47,
no. 10, pp. 4231–4234, 2011.

[8] C. Obermeier, H. Kellermann, and G. Brandenburg, “Sensorless field
oriented speed control of a hybrid and a permanent magnet disk stepper
motor using an extended kalman filter,” in 1997 IEEE International
Electric Machines and Drives Conference Record, 1997, pp. MC3/5.1–
MC3/5.3.

[9] W. Kim, D. Shin, and C. C. Chung, “Microstepping with nonlinear
torque modulation for position tracking control in permanent magnet
stepper motors,” in 2011 50th IEEE Conference on Decision and Control
and European Control Conference, 2011, pp. 915–921.

[10] R. H. Park, “Two-reaction theory of synchronous machines generalized
method of analysis-part I,” Transactions of the American Institute of
Electrical Engineers, vol. 48, no. 3, pp. 716–727, 1929.

[11] P. Krishnamurthy and F. Khorrami, “An analysis of the effects of closed-
loop commutation delay on stepper motor control and application to pa-
rameter estimation,” IEEE Transactions on Control Systems Technology,
vol. 16, no. 1, pp. 70–77, 2008.

[12] M. Bolderman, D. Fan, M. Lazar, and H. Butler, “Generalized feed-
forward control using physics—informed neural networks,” IFAC-
PapersOnLine, vol. 55, no. 16, pp. 148–153, 2022, 18th IFAC Workshop
on Control Applications of Optimization CAO 2022.

[13] S. Devasia, “Should model-based inverse inputs be used as feedforward
under plant uncertainty?” IEEE Transactions on Automatic Control,
vol. 47, no. 11, pp. 1865–1871, 2002.

[14] Y.H.Yuen, “Data-driven neural feedforward controller design for in-
dustrial linear motors,” Master thesis, 2019, eindhoven University of
Technology.

[15] M. B. S. K. Hornik and H. White, “Multilayer feedforward networks are
universal approximators,” Neural Networks, vol. 2, no. 5, p. 359–366,
1989.

[16] O. Sørensen, “Additive feedforward control with neural networks,” IFAC
Proceedings Volumes, vol. 32, no. 2, pp. 1378–1383, 1999, 14th IFAC
World Congress 1999, Beijing, China, 5-9 July.

[17] M. Bolderman, M. Lazar, and H. Butler, “Physics-guided neural net-
works for inversion-based feedforward control applied to linear motors,”
in 2021 IEEE Conference on Control Technology and Applications
(CCTA), 2021.

[18] A. Karpatne, W. Watkins, J. S. Read, and V. Kumar, “Physics-
guided neural networks (PGNN): an application in lake temperature
modeling,” CoRR, vol. abs/1710.11431, 2017. [Online]. Available:
http://arxiv.org/abs/1710.11431

[19] O. Nelles, Nonlinear System Identification: From Classical Approaches
to Neural Networks and Fuzzy Models, ser. Engineering online library.
Springer, 2001.

[20] T. Nguyen, “Identification and compensation of parasitic effects in
coreless linear motors,” Ph.D. dissertation, Electrical Engineering, Oct.
2018, proefschrift.

[21] G. Baluta, “Microstepping mode for stepper motor control,” IEEE Int.
Symp. Signals, Circuits Syst., vol. 2, pp. 1–4, 2007.

[22] D. Chen and B. Paden, “Adaptive linearization of hybrid step motors:
stability analysis,” IEEE Transactions on Automatic Control, vol. 38,
no. 6, pp. 874–887, 1993.

[23] S. van Schalm, “Advanced stepper motor control: Design of the test
set-up for feed-forward control,” Bachelor thesis, 2022.

[24] M. Bolderman, M. Lazar, and H. Butler, “Physics-guided neural
networks for feedforward control: From consistent identification
to feedforward controller design,” 2022. [Online]. Available:
https://arxiv.org/abs/2204.00431

11

APPENDIX A

TABLE IV
THE EXACT MOTOR PARAMETERS AND IDENTIFIED PARAMETERS ON

REAL-LIFE MOTOR.

Parameters Exact values Identified values
Moment of Inertial J [kg ·m2] 2.8× 10−5 2.7498× 10−5

Friction Coefficient B[N ·m · s/rad] − 0.019949
Resistance R[Ω] 0.83 −
Inductance L[H] 2.2× 10−3 −
Motor Constant Km[N ·m/A] − −
Number of Poles N 50 −

0 0.9375 1.8750 2.8125

-10

-5

0

5

10

0 0.9375 1.8750 2.8125

-5

0

5

10
10

-3

0 0.9375 1.8750 2.8125

0

0.1

0.2

Fig. 15. The tracking results from the validation reference. The top subfigure
is the validation reference r1(t); the middle subfigure is the tracking error
e(t); the bottom subfigure is the feedforward signal by using the regressor in
(27).

0 1.8750 3.7500 5.6250 7.5000

-20

-10

0

10

20

0 1.8750 3.7500 5.6250 7.5000

-0.01

-0.005

0

0.005

0.01

0 1.8750 3.7500 5.6250 7.5000

-0.05

0

0.05

0.1

0.15

Fig. 16. The tracking results from the validation reference. The top subfigure
is the validation reference r2(t); the middle subfigure is the tracking error
e(t); the bottom subfigure is the feedforward signal by using the regressor in
(27).

TABLE V
THE TRACKING RESULTS OF FIG. 15 AND FIG. 16

r1

Cases
Evaluation

MAE[rad] MAX[rad]

No FF 3.7×10−2 4.3×10−2

Physics 1.7× 10−3 8.2× 10−3

PGNN 7.4× 10−4 2.9× 10−3

r2

Cases
Evaluation

MAE[rad] MAX[rad]

No FF 2.3×10−2 2.7×10−2

Physics 3.9× 10−3 8.1× 10−3

PGNN 1.1× 10−3 4.9× 10−3

TABLE VI
THE CONVERGED LOSS VALUE AND THE MEAN ABSOLUTE ERROR OF

PGNN(ϕ1) WITH REGULARIZATION L2

L2 Regularization
- Losstrain MAX(e(t)) MAE(e(t))

λ = 1× 10−1 0.000970 0.0190 0.1324
λ = 1× 10−3 0.000543 0.0177 0.1002
λ = 1× 10−5 0.000462 0.0130 0.0934
λ = 1× 10−7 0.000457 0.0094 0.0729

λ = 0 0.000454 0.0087 0.0727

	Title_page_EE_graduation_report
	Declaration TUe Code of Scientific Conduct MSc thesis 2020
	Thesis_PGNN_DAIWEIFAN

