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Abstract

The demands for continuous improvement of the alignment accuracy, in order to keep up with Moore’s
law, drive the development in wafer alignment metrology within ASML. Measuring more alignment marks
is one possibility to realize the desired improvement of the alignment accuracy. This can be achieved by
the photonic integrated circuit (PIC) alignment sensor, of which the feasibility is currently investigated
within ASML. Focusing large area grating couplers are crucial elements of this PIC alignment sensor.
Due to the large required size of these grating couplers there is a strong demand for alternatives to the
computationally expensive rigorous simulation methods. Therefore, a novel analytic model, called the
Born Approximation applied to computation of Grating Coupler Emission (BA-GCE) model, for simu-
lating normalized radiation profiles of grating couplers of any size has been developed in this research
project. The BA-GCE model is transparent and intuitive as it reveals the underlying physics. It is
extensively benchmarked by comparing it with rigorous finite difference time domain (FDTD) simula-
tions. The results seem promising as they show that the BA-GCE model is in good agreement with
the theoretical expectations and the FDTD results, within its region of validity, which is limited by the
Born approximation and the far field approximation that are applied in the derivation. Hence, with some
further development, this model may ultimately result in an accurate analytic model which can be used
in the design process of large area (focusing) grating couplers, for which rigorous simulation methods are
too computationally expensive. In addition, an experimental setup has been rebuilt, re-calibrated and
extensively prepared for the future measurements on the PIC alignment sensor. Therefore, calculations
to obtain maximum light incoupling with this experimental setup are provided in this work. Lastly,
the beam profile measurement capabilities of the setup have been demonstrated through experimental
verification measurements on large grating couplers.

i



Acknowledgements

In the first place I would like to thank Irwan Setija for the daily supervision and guidance during my
graduation project. With his expertise he was able to provide me with the necessary advices and dis-
cussions to shape and develop my graduation project, resulting in this thesis as end product. Moreover,
I would also like to thank him for the opportunity to perform my graduation project at ASML, within
the integrated optics research group. I am grateful that I was given the opportunity to contribute to
their interesting project and I hope that it will eventually result in the desired improvement in wafer
alignment. Another word of gratitude to the complete integrated optics research group at ASML for
making me feel welcome as a member of their team and for making my time at ASML a real pleasure.
A special mention to Jorn van Engelen, to whom I am grateful for helping me with all his expertise on
Lumerical simulations. Furthermore, I would like to thank my TU/e supervisor Andrea Fiore for his
guidance during the graduation project, but even more for his help in the process of finding this perfect
internship opportunity. Finally, a word of gratitude to all other interns and employees at ASML who
helped me in some way or another during my year at the company. It has been an honor and a pleasure
to perform my graduation project within the integrated optics research group at ASML. I wish them
good luck with their research and hopefully someday the promising potential of the PIC alignment sensor
will be realized, resulting in the integration of this sensor into the ASML lithography machines.

ii



Contents

Abstract i

Acknowledgements ii

1 Introduction 1
1.1 Wafer metrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Alignment sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research goal and approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theory and PIC design 6
2.1 PIC alignment sensor prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Working principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 PIC design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Grating couplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Phase matching condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Light coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Focusing grating couplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Grating couplers on the PICs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Born Approximation applied to computation of Grating Coupler Emission (BA-GCE)
model 15
3.1 Flory model [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Adaptations and extensions to Flory model . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Exponential decay of light intensity in the waveguide . . . . . . . . . . . . . . . . . 19
3.2.2 Period apodization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 Asymmetric waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.4 Radiated electric field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 BA-GCE model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Approximations and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Simulation results and analysis 25
4.1 Benchmarking the BA-GCE model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Region of validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Benchmarking BA-GCE adaptations . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.3 Benchmarking BA-GCE extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 BA-GCE model results for experimental grating couplers . . . . . . . . . . . . . . . . . . 33
4.3 Standard IMOS grating couplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Experimental setup 37
5.1 Experimental setup description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Experimental measurement procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.1 Angle polished fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.2 Beam profile measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.3 Alignment scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

iii



6 Experimental results and analysis 44
6.1 Angle polished fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 Grating coupler beam profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Conclusions and outlook 51

List of abbreviations 53

Bibliography 56

Appendices 57
Appendix A: Mathematica script BA-GCE model . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Appendix B: Equivalent structure calculation large grating couplers . . . . . . . . . . . . . . . 61
Appendix C: Angle polished fiber calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

iv



Chapter 1

Introduction

Integrated circuits (ICs), or more commonly known as chips, have taken up a vital role in our day-to-day
existence over the past decades. They empowered the technological revolution that led to our modern
digital society, as ICs have developed into the core element of nearly all electronic devices. The destruc-
tive impact of the recent global chip shortage on our modern society has demonstrated the enormous
reliance on this technology. This vital role of the ICs in our society drives continuous developments in
this field. The foundation for these rapid developments is laid by the continuous reduction of feature
sizes on the ICs, known as the famous ”Moore’s law” [2]. Smaller device features obviously allow for
more functionality in a smaller volume [3]. In addition, it also leads to an increase in processing speed
and a reduction of the power consumption [3].

ICs are fabricated in a repetitive layer by layer process. After a layer is grown on the wafer, the pattern
with the desired features is created in this layer through photolithography, after which the next layer is
grown and patterned. The photolithography process starts by covering the wafer with a thin layer of
photo-resist, which is a light sensitive chemical. Subsequently, a complex machine is used to project an
image, including parts of the IC features, onto the wafer. In this machine, a light source and a complex
collection of high quality optical elements is used to shrink and project the image from a mask (reticle),
shaped with the desired pattern, onto the wafer. The parts of the photo-resist that are then exposed to
the light will either harden or soften and thereby a contrast, containing the desired features, is created
on the wafer. In order to convert this into a patterned layer, the wafer is developed after light exposure.
This means that the soft resist is removed and only the harder photo-resist areas remain on top of the
wafer. The photo-resist that remains on top of the wafer protects the material underneath from being
etched away in the next step. Hence, in the selective etching step only unprotected areas are etched away.
Afterwards, the remaining photo-resist layer is also removed. Finally, the etched parts can be filled with
materials with specific properties to create functionality into the patterned layer. This process for single
layer patterning is repeated multiple times to create the ICs. The most critical step in this complex IC
manufacturing process is the light exposure step in which the image from the reticle is projected onto the
wafer. ASML is, by far, the world leading company in the fabrication of the photolithography machines
that are able to perform the exposure step. Since these machines are responsible for the most critical
step, their improvements are key for enabling further development of ICs, thereby giving ASML a vital
position in the world IC industry.

As ICs consist of multiple layers on top of each other, it is crucial for its performance that the features in
each of these layers are accurately positioned relative to the underlying pattern. Small misalignments of a
few nanometers can cause serious problems in the functionality of the ICs. Hence, accurate metrology is
required to position the wafers in the lithography machine such that the features in each layer are aligned
on top of each other with the highest possible accuracy. Yet, as features sizes of ICs continue to decrease
in order to keep up with Moore’s law, the requirements on alignment accuracy increase, resulting into a
continuous development in wafer alignment metrology within ASML.

1.1 Wafer metrology

In general, wafer metrology can be divided into a part before exposure to the light image and after
exposure. After exposure of the photo-resist layer to the light pattern, it is important to measure and
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monitor the quality of the created pattern before it is processed into a product layer. The quality is
measured in terms of two parameters: the overlay and the critical dimension uniformity (CDU) [3]. The
overlay quantifies the misalignment between the top layer and the underlying pattern. The CDU, as the
name suggests, quantifies the uniformity of the critical dimension (CD), which is the minimum feature
size, over the wafer. Large CD variations and large overlay values both have a destructive impact on the
IC performance [3]. Therefore, the metrology of these two parameters and the immediate correction of the
photolithography machine through the metrology feedback will minimize the CD variations and overlay
values, thereby securing a high quality of the machine output. Even more important than metrology
after exposure is the metrology before light exposure. By accurately measuring the wafer position and
height variations before exposure, the initial overlay values and CD variations can be minimized. These
measurements are currently performed by two bulk optical sensor systems, illustrated in figure 1.1, where
the middle module is the alignment sensor and the two outer modules are part of the level sensor. The
level sensor is used to construct an accurate height map of the wafer. It is crucial to determine this
height map, since height variations across the wafer will lead to small focus offsets, which will lead to
significant CD variations [3]. Hence, by accurately measuring the height map of the wafer with the level
sensor, the modules in the machine can be adjusted such that the focus offsets are counteracted and CD
variations are minimized. In addition, the alignment sensor is used to accurately measure the position
of the (deformed) wafer grid. It is called a wafer grid because the wafer generally consists of multiple
rectangular dies (fields), with an IC in each of these dies. The accurate position measurement is critical
in order to obtain the required low overlay values of just a few nanometers, since the wafer is initially
positioned onto the wafer stage in the lithography machine through a robotic arm, with a relatively coarse
accuracy of a few micrometers [3]. The focus of this research project is on the alignment sensor, therefore
it is beyond the scope of this project to provide further details on the other metrology tools. Hence, the
remainder of this thesis will be devoted to the alignment sensor.

Figure 1.1: Illustration of the current bulk optical sensor systems for wafer metrology before exposure
in the ASML photolithography machines. The two outer modules are part of the level sensor, which is
used for measuring the wafer height map and the middle module is the alignment sensor, which is used

to measure the position of the (deformed) wafer grid. Adapted from: [4]

1.2 Alignment sensor

As mentioned before, the alignment sensor measures the exact wafer grid position before light exposure
in order to obtain good overlay performance. The wafer grid position is determined by measuring the
position of a number of alignment marks located on the wafer, with respect to a certain reference position.
For an ideal non-deformed wafer grid (figure 1.2), two alignment marks in each of the two in-plane
directions (x and y) would be sufficient to determine the complete two-dimensional (2D) wafer grid,
defined by the four parameters: x-translation, y-translation, magnification and rotation. However, in
reality the wafer grids are often deformed, which complicates the alignment sensor measurement. Certain
wafer processing steps, as well as the clamping of curved wafers on flat wafer tables can cause large
in-plane wafer distortions [3]. Consequently, as illustrated in figure 1.2, deformed wafer grids cannot be
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accurately measured by only four alignment marks anymore. ASML is working in multiple different areas
to mitigate this deformation challenge in alignment. For example, there is an ongoing research into the
wafer table and clamping technique to minimize the deformations introduced by this. Furthermore, the
model for determining the wafer grid from the alignment marker positions is constantly reviewed and
improved. Yet, there are still tens of alignment marks needed to be able to accurately measure the local
deformations of the wafer grid, instead of the four marks in the ideal case of a non-deformed wafer.

Figure 1.2: Schematic illustration of an ideal non-deformed wafer grid (left) and a deformed wafer grid
(right), for which more alignment marks are required to determine the local deformations. Adapted

from: [4]

The alignment sensor system thus accurately measures the position of alignment marks on the wafer.
These alignment marks are phase gratings with a certain period. The working principle behind the
position measurement of the alignment marker grating is illustrated in figure 1.3. A laser beam is
incident on the alignment marker grating, where the light will be diffracted. A lateral displacement, δx,
of either the sensor or the grating will induce a phase shift of the diffracted order according to [5]

∆Φm =
2πm

Λ
δx, (1.1)

where m is the diffraction order and Λ is the period of the grating. Consequently, the phase shift of
the positive and negative order will differ in sign and by interfering both orders this phase shift can
be measured. Hence, the positive and negative diffracted orders are captured and interfered with each
other by a lens system, resulting in a sinusoidal signal. Subsequently, by passing this interference signal
through a reference grating, as illustrated in figure 1.3, a sinusoidal intensity signal as a function of the
alignment marker position can be measured at the detector [6]. Through a fitting procedure, the phase
shift, and thereby the lateral displacement δx, can then be determined from this signal at the detector.

As features sizes on ICs continue to decrease in order to uphold Moore’s law, the maximum allowed
values for the overlay and the CDU become smaller and smaller. Hence, the alignment measurements
also require continuous improvement of its accuracy in order to keep up with the demands resulting from
Moore’s law. Thus, in order to decrease the overlay error and CD variations, to be able to cope with
decreased feature sizes, IC manufacturers are demanding more alignment marks on the wafer grid so that
the local deformations can be determined more accurately. The demand for more alignment marks leads
to the positioning of additional alignment marks intra-die, besides the marks in the scribe lines of this
wafer. Therefore, this also requires smaller alignment marks. Furthermore, if the same sensor needs to
measure more marks, the measurement time will increase. Consequently, an increase of the alignment
measurement time will decrease the throughput of the lithography machine, which is intolerable for
ASML. Hence, there is an ongoing research at ASML to solve the challenge of more and smaller alignment
marks. In this project, the focus is on solving the challenge of measuring more alignment marks while
not effecting the machine throughput negatively. There are multiple paths one can follow to solve this
challenge. One possibility is to make the sensor perform the alignment measurements faster. Another
possibility is to shrink the size of the sensors, such that it allows for parallel alignment measurements,
meaning that multiple alignment marks can be measured at the same time. Moreover, another option is
to investigate if a change in the structure of the alignment mark can help to make measurements faster or
more accurate, in order to decrease the required amount of alignment marks to achieve a certain accuracy.
Thus, at this moment multiple possible solutions to solve this challenge are investigated within ASML.
One of these possible solution is based on the use of integrated optics (photonics). Integrated optics paves
the way towards much smaller sensors than the bulk optical alignment sensors, which allows for parallel
measurement of alignment marks. Hence, a dedicated project group within ASML is investigating if
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integrated optics is one of the possible solutions to increase the alignment accuracy without decreasing
the machine throughput.

Figure 1.3: Schematic illustration of the working principle behind the alignment marker grating
position measurement: A laser beam is incident on the alignment marker grating, where the light will
be diffracted. The positive and negative first diffracted orders are then captured and interfered by a

lens system. The interfered signal is then passed through a reference grating, after which the resulting
signal is measured by the detector. Adapted from: [7]

1.3 Research goal and approach

In the process of investigating the potential of integrated optics in alignment sensors, the first step is
to conduct a feasibility study. For this purpose, a photonic integrated circuit (PIC) alignment sensor
prototype has been designed by J.P. de Graaf in a collaboration between Eindhoven University of Tech-
nology (TU/e) and ASML [8]. The initial plan for this graduation project was to measure and analyze
the complete PIC alignment sensor prototype in order to investigate the feasibility of such an alignment
sensor. Therefore, an experimental setup, capable of characterizing the performance of the PIC align-
ment sensor and its individual photonic components, has been made. However, due to serious problems
with the (external) fabrication of this PIC alignment sensor prototype, the PIC was not delivered before
the end of this project. Consequently, the focus of this graduation project has changed during the in-
ternship period. The comprehensive research goal of this project is still to contribute to the feasibility
study of PIC alignment sensors. As will be explained extensively in the next chapter, grating couplers
are the crucial photonic elements in the PIC alignment sensor prototype design. Grating couplers are
used to emit a focusing Gaussian beam incident on the alignment mark and other grating couplers are
used to capture the diffracted orders and convert them into waveguide modes on the PIC. In order to
achieve the required functionality of these grating couplers, they need to be large area focusing grating
couplers. There is one main challenge in the design process of such large area focusing grating couplers,
which is that they cannot be simulated in full scale through conventional rigorous simulation methods,
such as Lumerical finite difference time domain (FDTD) [9]. These rigorous simulation methods are too
computationally expensive for large structures. This significantly complicates the design process of the
large grating couplers for the PIC alignment sensor. Therefore, alternative ways of simulating radiation
patterns of large area grating couplers are demanded. Hence, an analytic model which can be used to
simulate radiation patterns of grating couplers of any size, is developed and extensively benchmarked in
this research project. The model is based on solving Maxwell’s equations in the first order Born approx-
imation, as proposed in a paper of C.A. Flory [1]. The final model that is developed in this research
project is an improved version of Flory’s model, and it is also extended to include more design freedom.
With some further developments, the model may ultimately be used in the design optimization process
of the large area grating couplers required for the PIC alignment sensor. In addition to the development
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of the analytic model, the experimental setup is prepared for the measurements on the actual PIC align-
ment sensor prototype. In order to demonstrate the capabilities of the experimental setup, measurements
are performed on other large grating couplers from a test PIC that was provided by the TU/e. Besides
the demonstration of the experimental setup, these measurements also provide results for experimental
comparison of the developed analytic model. Thus, the research goal of this project is twofold. The first
part of the research goal is to develop and benchmark an analytic model for large area grating couplers.
The second part is to prepare the experimental setup for the measurements on the actual PIC alignment
sensor once it is delivered, and to demonstrate its capabilities by performing and analyzing measurements
on large grating couplers. With these two goals, this research project will contribute to the main objective
of the project group to investigate the feasibility of PIC alignment sensors in ASML’s metrology systems.

The design of the first PIC alignment sensor prototype is extensively discussed in chapter 2. Furthermore,
this chapter will elaborate on the theory behind grating couplers. In chapter 3, the analytic model for
simulating radiation patterns of grating couplers, called the “Born Approximation applied to computation
of Grating Coupler Emission” (BA-GCE) model, will be developed. Starting from the underlying physics
of solving the Maxwell’s equations in the first order Born approximation, the first section will cover the
basics behind the BA-GCE model, which is the Flory model [1]. Furthermore, this chapter will elaborate
on the adaptations and extensions that have been made to the Flory model to create a novel model for
simulation of grating couplers. The chapter will end with a description of the final BA-GCE model, also
mentioning the approximations and limitations behind this model. It is then benchmarked in chapter 4,
where the results will be compared with Lumerical FDTD [9] results and with the Flory model [1] results.
Moreover, this chapter will present the results of the BA-GCE model for the large grating couplers that
are measured in this research project for the experimental comparison. Additionally, this simulation
chapter includes the results of the standard IMOS grating couplers on the PIC alignment sensor, which
are useful for maximizing the fiber-to-chip coupling in the experimental measurements. The experimental
setup that is used to perform the measurements will be explained in chapter 5, including a description of
the associated measurement procedures. Chapter 6 will present the results of the experimental measure-
ments performed in this research project. Besides the verification measurements of the optical fibers, this
chapter will present the results of the large grating couplers from the test PIC provided by the TU/e.
Finally, the conclusions and outlook of this study will be elaborated in chapter 7.

In conclusion, this research project will present the development and experimental verification of an
analytic model for simulating large area grating couplers in PIC alignment sensors. The experimental
verification will also demonstrate the capabilities of the experimental setup, which has been fully prepared
for the experimental characterization of the actual PIC alignment sensor prototype in the near future.
Hence, this research project will contribute in two ways to the feasibility study of the PIC alignment
sensors, which should ultimately result in a PIC alignment sensor design complying with ASML’s demands
and restrictions.
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Chapter 2

Theory and PIC design

As introduced in the previous chapter, a PIC alignment sensor prototype has been designed in order to
investigate the feasibility of integrated optics alignment sensors. The working principle and important
design characteristics of this prototype are elaborated in section 2.1. However, due to confidentiality
issues, not all the details of the prototype design will be included in this thesis. Nevertheless, this thesis is
structured in such a way that the absence of these design details has no influence on the comprehensibility
of this study. As will be explained in this section, grating couplers are the essential element of the
prototype design. Therefore, section 2.2 contains the theory behind these photonic components and how
they are used in the PIC alignment sensor prototype. Additionally, this section will end with a short
description of the large grating couplers on the TU/e test PIC that will be measured in this research
project.

2.1 PIC alignment sensor prototype

The PIC alignment sensor prototype that is studied in this research project is an adaptation of the
original design of J.P. de Graaf, which resulted from a collaboration between the TU/e and ASML [8].
The prototype design solely consists of passive components. Therefore, light needs to be coupled into the
PIC as well as out of the PIC for external analysis. Before diving into more detail on the specific PIC
design, first the general working principle is discussed in the coming subsection, which will reveal how
the PIC is able to perform an alignment measurement.

2.1.1 Working principle

The working principle of the PIC alignment sensor prototype is still based on the same method as for
the general ASML alignment sensor system, which was introduced in section 1.2. Thus, light is incident
on the alignment marker grating, where the light will be diffracted into diffraction orders according to
the well-known grating equation [10]:

sin (θm)− sin (θi) = m
λ

Λ
. (2.1)

In this equation, θi is the angle of the incident light with respect to the grating normal, θm is the angle
of the diffracted order m with respect to the grating normal, λ is the wavelength and Λ is the grating
period. For the ASML alignment marks the period is defined as Λ = 16

n µm, where n is the order of the
alignment mark. ASML alignment marker gratings operate as phase reflection gratings [11]. Figure 2.1
provides a schematic illustration of an example of diffraction at such a phase reflection grating, according
to equation 2.1. This figure also shows the sign conventions for the angles that are used in equation 2.1.
Equation 2.1 is only satisfied for a limited number of diffraction orders m, thus also for a limited number
of diffraction angles θm. It follows that only diffraction orders, and corresponding diffraction angles, can
exist for order numbers that satisfy the condition of equation 2.2.∣∣∣∣mλ

Λ
+ sin θi

∣∣∣∣ ≤ 1 (2.2)
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Figure 2.1: Example of light diffraction at a phase reflection grating with period Λ. The figure shows
the existing diffraction orders, being the 0th order (reflected light), the positive and negative 1st orders
and the minus 2nd order in this case. The sign convention used in equation 2.1 is also illustrated in the

figure. Adapted from: [12]

As mentioned before, translation of either the wafer or the sensor would introduce a phase shift between
the positive and negative diffraction orders according to equation 1.1. Thus, by interfering both orders,
the phase shift can be determined, from which the lateral translation can be deduced. The main dif-
ference with the current ASML alignment sensor systems is that the capturing and interference of both
diffraction orders is not performed by bulk optical sensors. In the PIC alignment sensor prototype, these
functionalities are all integrated on the small PIC. Furthermore, the light beam incident on the alignment
mark is also produced on the PIC. The total footprint of the PIC alignment sensor prototype is not larger
than 4 mm by 20 mm [8], thereby providing the significant size reduction compared to the current bulk
optical sensors.

Figure 2.2 illustrates the working principle of the PIC alignment sensor prototype. The PIC is placed
10 mm above the alignment mark. A Gaussian beam is produced under an angle by the emitting grat-
ing coupler (indicated by EG) and focused at the position of the alignment marker grating, where the
conventional light diffraction takes place. The positive and negative first diffracted order beams are then
captured by the PIC again through the two capturing grating couplers (indicated by CG). After the
beams are captured by the capturing grating couplers, they are converted into waveguide modes on the
PIC. Subsequently, a beam combiner is used to interfere the positive and negative first diffracted orders,
resulting in a sinusoidal output power signal which depends on the induced phase shift [8]. Based on the
relation between the lateral translation and the induced phase shift (equation 1.1), a fitting procedure
can then be performed to determine the lateral translation from this output signal.

Figure 2.2: Schematic illustration of the working principle of the PIC alignment sensor prototype. The
emitting grating coupler (EG) produces a focused Gaussian spot on the alignment marker grating at 10

mm from the PIC. The diffracted positive and negative first orders are captured by the 2 capturing
grating couplers (CG). The alignment marker grating is moved in the indicated direction to perform the

alignment scan. Adapted from: [7]

7



As previously mentioned, the PIC alignment sensor prototype does not include active components on
the PIC. Therefore, light will need to be coupled into and out of the PIC, which is also done by grating
couplers, the standard IMOS grating couplers. Hence, the importance of the grating couplers in the PIC
alignment sensor must be evident by now. Section 2.2 will elaborate more on this crucial element of the
sensor prototype. First, more relevant information on the specific PIC prototype design will be provided.

2.1.2 PIC design

The PIC alignment sensor prototype is realized in the indium-phosphide-membrane-on-silicon (IMOS)
photonic integration platform. As the name suggests, the structure of this platform consists of an indium-
phosphide (InP) membrane on top of a silicon wafer with a buffer layer in between. After an optimization
process it is found that the optimum buffer layer stack consists of a 1850 nm thick benzocyclobutene
(BCB) layer in between two thin (≈ 50 nm) layers of silicon dioxide (SiO2) [13]. The buffer layer pre-
vents the optical mode in the InP membrane from coupling to the silicon substrate [14, 15]. Due to the
high refractive index contrast that is created in this way, high confinement is achieved which enables
high density PICs and therefore a small PIC footprint [15, 16]. In addition to the high density PICs,
IMOS technology allows for low power consuming PICs [16, 17]. Hence, the IMOS platform combines
the strengths of silicon photonics with the strengths of the generic InP platforms [16]. For this reason,
the IMOS platform is preferred for the PIC alignment sensor, over these alternative platforms. Passive
waveguides in the IMOS platform have a thickness of 300 nm and a width of 400 nm, and support both
the fundamental transverse electric (TE) mode and the fundamental transverse magnetic (TM) mode at
a wavelength of 1550 nm [15]. Although the waveguides support both TE and TM polarization, the PIC
alignment sensor prototype is designed only for TE polarization at the single wavelength of 1550 nm [8].

Since the emitting and capturing grating couplers are both integrated on the PIC, it is important to
carefully align them with respect to each other, by determining their required size and position on the
PIC. The requirement for the emitting grating coupler is that it produces a focusing Gaussian beam with
a beam width of 40 µm at the alignment mark [8]. The beam width is defined by the points with an
intensity equal to 1/e2 of the maximum intensity of the beam. Additionally, it is designed in such a way
that it produces this beam under a positive angle of 6 degrees with respect to the PIC normal, as shown
in figure 2.2. The chosen value for the positive emission angle resulted from a trade-off between ensuring
there is no diffracted angle close to zero degrees in any part of the emitting grating and minimizing the
size of the PIC alignment sensor [18]. A diffracted angle of zero degrees would results in light being
reflected back into the taper and the waveguide, which would be disastrous for the grating efficiency.
The size and positions of the capturing grating couplers are chosen in such a way that it captures at
least the complete beam width of the diffracted orders. conical diffraction calculations. Based on these
requirements, the exact positions and characteristics of the emitting and capturing grating couplers are
determined for the PIC alignment sensor prototype. Consequently, the PIC alignment sensor is explicitly
designed to function for a single diffraction order number (positive and negative) and a single alignment
marker period. If either the targeted diffraction order number or the alignment marker period is changed,
the positions and characteristics of the emitting and capturing grating couplers should be adjusted ac-
cordingly. The specific PIC alignment sensor prototype consists of two sensor systems, both designed
to capture the first diffraction orders. One system is designed to align on a 3th order ASML alignment
marker grating (period of 16

3 µm), and the other one is designed to be aligned on a 5th order ASML
alignment marker grating (period of 16

5 µm).

Figure 2.3 shows a schematic top view of one PIC alignment sensor system. The PIC thus does not
contain any active elements. Hence, the light needs to be coupled into and out of the PIC externally. For
this purpose, an external laser source is connected to a fiber, which will couple light into the PIC by a
fiber-to-chip coupling at the standard IMOS input grating coupler (1). Section 2.2 will elaborate on how
this fiber-to-chip coupling is established. Through this coupling, the light enters the waveguide which is
connected to the emitting grating coupler (2). The emitting grating coupler consists of a taper and an
apodized 2D focusing grating coupler to produce a beam into free space which is focused at the alignment
marker, which is at 10 mm directly below the center of the PIC [18]. The positive and negative first
diffraction orders, diffracted by the alignment marker, are then captured by the two capturing grating
couplers (3a and 3b). These capturing grating couplers consist of two main parts: a free space to slab
mode converter and a slab mode to waveguide mode converter. The diffracted beam, incident at an
angle on the capturing grating coupler, is converted into a guided slab mode by an apodized rectangular
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grating coupler (red part). Subsequently, the guided slab mode of hundreds of microns wide is converted
into a 400 nm wide waveguide mode through a gap coupler (pink part). More details on the emitting
and capturing grating couplers are provided in section 2.2.4. After the capturing and conversion of the
diffracted order beams, both waveguide modes are interfered at the beam combiner (4), after which the
interference signal can be extracted at the standard IMOS output grating coupler (5). The signal can
be extracted again through a chip-to-fiber coupling. The fiber can then be connected to an external
photodetector to measure the interference (alignment) signal. The actual designed PIC contains two of
these systems on one PIC. Besides these two alignment sensor systems, several additional test structures
are integrated on this PIC to analyze their performance.

Figure 2.3: Schematic top view of the PIC alignment sensor system. The grey curves represent
waveguides. Numbers 1 and 5 indicate, respectively, the standard IMOS input and output grating
couplers (blue). Number 2 refers to the emitting grating coupler (red) and 3a and 3b represent the
capturing grating couplers, consisting of the apodized rectangular grating coupler (red) and the gap
coupler (pink). Number 4 indicates the beam combiner, which interferes the waveguide modes from

both diffracted orders. The alignment marker grating is indicated in light grey and is positioned at the
center of the PIC at a distance of 10 mm. Adapted from: [7]

2.2 Grating couplers

As explained in the previous section, grating couplers are the crucial element of the PIC alignment sensor
prototype. The main function of the grating couplers is to provide the coupling between the PIC and
free space. In general, light coupling into or out of a waveguide on a PIC can be achieved through
multiple different methods. Transverse coupling, also called edge coupling or end-fire coupling, is one of
these methods [19, 20]. In this method light is coupled into or out of a waveguide along the propagation
direction. Therefore, this requires high optical quality facets, cleaved through the cross-sections of the
waveguide, at the edges of the PIC [20]. However, in many cases the realization of these waveguide facets
at the edges of the PIC is not possible or impractical. Consequently, vertical coupling, implying that light
is coupled into or out of the waveguide from the top surface, is often required. For the IMOS platform,
grating couplers are the most efficient building block for vertical light coupling. Grating couplers have the
main advantage that their angular pattern of emission can be optimized, and that the coupling efficiency
remains constant once the PIC is fabricated, since they are an integral part of the waveguide structure and
the PIC design [19]. Furthermore, they can be used in high index waveguides, for which it is difficult to
find suitable prism coupler materials, since the prism coupler material must have a larger index than the
waveguide and superstrate [19]. Thus, grating couplers are used in the PIC prototype design to establish
the coupling between the PIC and free space in multiple occasions. Firstly, the emitting grating coupler
is used to produce a free space focusing Gaussian beam out of the PIC. Furthermore, two capturing
grating couplers are used to capture the diffracted beams from free space with a grating coupler and
to convert these captured slab modes into waveguide modes with a gap coupler. Thirdly, there are also
standard IMOS grating couplers on the PIC alignment sensor prototype. These grating couplers are used
to establish the fiber-to-chip (and vice versa) coupling to connect the PIC sensor to the external input and
output. There is an important difference between the standard IMOS grating couplers and the emitting
and capturing grating couplers. The standard IMOS grating couplers are uniform non-focusing grating
couplers, whereas the emitting and capturing grating couplers are designed focusing grating couplers.
Overall, grating couplers are the essential element for light coupling into and out of the PIC prototype
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design, which is why this study focuses on grating couplers. This section will elaborate on the underlying
physics of these photonic components and on their presence on the PIC alignment sensor prototype and
the TU/e test PIC.

2.2.1 Phase matching condition

For vertical light coupling into or out of a waveguide, the wavevector components along the direction of
propagation in the waveguide and in the beam need to be the same [19]. This results from Maxwell’s
boundary condition that the tangential electric field components should be continuous at the interface [21].
This condition is referred to as the general phase matching condition:

β = k0n1 sin (θ) =
2π

λ0
n1 sin (θ). (2.3)

In this equation β is the propagation constant, which is the wavevector component along the propagation
direction, of the guided mode. λ0 is the vacuum wavelength, n1 the refractive index of the medium
around the waveguide and θ is the angle at which the outcoupled beam propagates with respect to the
normal of the waveguide surface. Since the guided mode condition states that β > k0n1, the phase
matching condition (equation 2.3) cannot be satisfied for guided modes. This implies that, conform the
expectation, there is no outcoupling from an unperturbed guided mode. Nevertheless, there are multiple
ways to allow for vertical light coupling into and out of a waveguide. As explained before, in the PIC
prototype design this light outcoupling is initiated by grating couplers.

Grating couplers are defined as (periodic) variations of the refractive index of a waveguide structure. The
refractive index variation is commonly created by partially etching the waveguide structure. Consider a
uniform 2D grating coupler structure with a constant periodicity Λ for simplicity. The grating vector for
such a structure is defined as [22]

~K =
2π

Λ
ẑ, (2.4)

along the direction of periodicity, which is the propagation direction z in this case. As a result of
the refractive index perturbation of the grating coupler structure, infinitely many diffracted orders are
created. However, not all of these diffracted orders are real travelling waves out of the waveguide grating
structure, as will become clear in the remainder of this elaboration. As mentioned before, for vertical
light coupling to occur the wavevector components along the direction of propagation in the waveguide
and in the beam need to be the same, which resulted in the phase matching condition of equation 2.3.
Due to the perturbation induced by the grating structure, the phase matching condition for a grating
coupler changes to equation 2.5 [20].

km,z = β −mK m = 0,±1,±2, ... (2.5)

In this equation km,z is the propagation constant of the diffracted orders m, where m = 0,±1,±2, ... is
again the diffraction order number. β is the propagation constant of the guided mode in the waveguide
grating section and K is the grating vector, defined by equation 2.4. Equation 2.5 results in an infinite
set of propagation constants for the diffracted waves due to the infinite number of diffracted orders m.
However, similar as for the phase reflection grating of figure 2.1 only certain orders of this infinite set of
spatial harmonics, also called Floquet-Bloch waves, are real travelling waves [22]. This is illustrated in
the wave vector diagram of figure 2.4. The propagation constant of the guided mode in the waveguide
grating section is defined by

β = neffk0 =
2πneff
λ0

, (2.6)

where λ0 and k0 are respectively the vacuum wavelength and the vacuum wavevector. neff is the effective
refractive index of the waveguide grating structure, which depends on multiple grating characteristics,
such as period, groove width and etch depth [20]. The propagation constant of a diffracted wave travelling
under an angle θ with respect to the x-axis is given by

kz = k1 sin (θ) =
2πn1

λ0
sin (θ), (2.7)

where n1 is the refractive index of the medium where the diffracted wave travels in. This equation implies
that for real travelling diffracted waves, it must satisfy the condition that

|kz| ≤
2π

λ0
n1. (2.8)
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Therefore, only the diffraction orders that satisfy both equations 2.5 and 2.8 are real travelling waves.
It is even possible that the grating period Λ is so small, leading to a large grating vector (equation
2.4), that there is no diffraction order diffracted out of the waveguide. This phenomena is physically
expected, since for very small grating periods, the grating merely acts as a perturbation of the refractive
index [18]. Furthermore, this theoretical description shows that by increasing the grating period, and
thereby decreasing the grating vector K, more diffracted orders will lead to outward travelling waves,
meaning that the light is outcoupled under multiple different angles. Moreover, from this elaboration it
also follows that if the grating period Λ is too small, no diffracted orders are coupled out of the waveguide,
since the grating vector K is too large to fulfill the restriction of equation 2.8.

Figure 2.4: Wavevector diagram for a grating coupler. The wavevector of the diffracted orders is defined
by equation 2.5. Only diffracted orders that have a wavevector within green half circle, defined by the

refractive index of the surrounding medium n1, result in real travelling waves out of the waveguide.
Adapted from: [23]

Overall, substitution of equations 2.4, 2.6 and 2.7 into the phase matching condition (equation 2.5 finally
results in:

2π

λ0
n1 sin (θm) =

2π

λ0
neff −m

2π

Λ
. (2.9)

This equation can be simplified into the general phase matching condition between a free space beam
travelling under an angle θm and the guided mode inside the grating, which is presented in equation 2.10.

n1 sin (θm) = neff −m
λ0

Λ
(2.10)

Most diffraction grating couplers are limited to only the first diffraction order being coupled out of the
waveguide, as that will generally provide the highest coupling efficiency [24, 25]. Having more diffracted
orders would result in a loss of power. Moreover, equation 2.10 illustrates that the outcoupled angle θ
of each grating line can be adjusted by changing its period Λ. Hence, by altering the period of each
grating line in a certain manner, which is called apodization, the grating coupler can produce a diffracted
beam that is focused into one point in free space. However, it has to be taken into account that the
effective refractive index (neff ) of the waveguide grating structure also changes when the grating period
is altered [26]. This effect is often counteracted by simultaneously adapting the grating groove width of
each grating element such that the effective refractive index remains constant. Hence, combining period
apodization with a changing groove width significantly simplifies the design process of focusing grating
couplers. Focusing grating couplers will be discussed in more detail in section 2.2.3.

2.2.2 Light coupling

The coupling between a free space beam and the waveguide mode inside the grating structure can be
established if the phase matching condition for grating couplers, equation 2.10, is satisfied. Light in the
waveguide will then be coupled out into the sub- and superstrate as diffracted orders, as illustrated in
the left schematic diagram of figure 2.5. The angle at which the light is coupled out of a uniform grating
structure, for each diffraction order m follows from equation 2.10 and is given by

θm = sin−1

(
neff −mλ0

Λ

n1

)
. (2.11)
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Again this equation implies that the diffraction orders are only real travelling waves under certain cri-
teria, in this case the argument of the inverse sine function needs to be between -1 and +1. Equation
2.11 shows that the outcouple angle also depends on the refractive index of the medium the diffracted
order is travelling in, given by n1. Hence, when the sub- and superstrate have different refractive indices,
the outcouple angles of the diffracted orders will be different. Furthermore, it depends on the grating
period, the order number, the wavelength and the effective refractive index of the waveguide grating
mode. Although the outcouple angles of the diffracted orders can be determined from the simple ex-
pression of equation 2.11, it does not provide enough information to construct the complete radiation
pattern of a grating coupler. Moreover, this equation only holds for uniform grating couplers and as
mentioned before, there is a specific interest in focusing grating couplers, which are apodized. For this
reason radiation patterns of grating couplers, and especially focusing grating couplers, are conventionally
determined through rigorous simulation methods.

Although the preceding elaboration focused on grating couplers as outcoupling devices, they can also be
used as incoupling devices. The principles of light incoupling and outcoupling by grating couplers are
illustrated in figure 2.5. The working principle of light incoupling is exactly equivalent to the outcoupling
of light, because the grating coupler system is a reciprocal system [22, 27]. Thus, if the outcoupled
diffracted beam is reversed to become the incident beam on the grating coupler structure, the light
is coupled into the same waveguide mode, only travelling in the opposite direction compared to the
outcoupler device. Moreover, because of this reciprocity the coupling efficiencies between two modes are
the same for both incoupling and outcoupling if the wavefronts are identical. Another consequence of the
reciprocity of the grating coupler device is that the ideal incouple angle, to obtain the highest coupling
efficiency, can be determined from the outcoupled profile of a grating coupler. For this reason, simulations
will be performed on the standard IMOS grating couplers in order to find the ideal incouple angle which
is needed to couple a maximum amount of light into the PIC. This will be discussed in section 4.3.

Figure 2.5: Uniform grating couplers as an outcoupler (a) and incoupler device (b). The black arrows
indicate the directions of the light, θ refers to the respective angles and Λ refers to the constant grating

period. Adapted from: [7]

2.2.3 Focusing grating couplers

As discussed before, for the application in the PIC alignment sensor, there is a specific interest in focusing
grating couplers. The design process of 2D focusing grating couplers starts with a one-dimensional (1D)
apodized focusing grating coupler. A Gaussian output beam can be achieved by varying the leakage
factor (coupling strength) of the grating α along the direction of propagation (z), according to [28]

2α(z) =
G2(z)

1−
� z

0
G2(z′) dz′

, (2.12)

where G(z) is a normalized Gaussian profile with the required beam diameter. It should be mentioned
that equation 2.12 is only exact for long grating couplers with small leakage factors α. Consequently, the
resulting design should be used as a starting point and further numerical optimization is required [28].
The α(z) profile can be tuned by adjusting the ratio between the length of the unetched part and the
grating period, which is defined as the fill factor (FF). Therefore, focusing can be achieved by varying
the grating period or the grating groove width. There are multiple methods to determine the required
variation profile of the FF to achieve a certain α profile. Most design processes from the literature
determine this relation between α and FF through numerical optimization methods based on multiple
uniform gratings with different values for the FF [8, 29, 30]. However, the rigorous simulation methods
that are used in this optimization process are computationally expensive for large area grating couplers,
such as the ones on the PIC alignment sensor. The grating couplers on the PIC alignment sensor have
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such large dimensions due to the relatively large required focusing distance of 10 mm, as mentioned in
section 2.1. Still, there are a few (quasi) analytic models that provide an approximate expression for
this relation, such as the works of Tamir and Peng [31] and Ogawa et al. [32] [8]. These expressions are
used to determine the required apodization profile of the large area grating couplers on the current PIC
alignment sensor prototype. However, for these specific large area capturing and emitting grating cou-
plers Ogawa’s method might result in functionality errors, since the method is based on single material
gratings, whereas the capturing and emitting grating couplers are compound gratings [18]. Moreover, the
Tamir method also has its deficiency, since this model is based on the assumption that the maximum α
factor is always achieved at a FF of 0.5, which is not always the case [18]. Thus, it is rather questionable
if these approximate expressions will result in correct functionality of the capturing and emitting grating
couplers and experimental measurements should verify this. Hence, the numerical optimization methods
are still desired for these large area grating couplers.

Yet, grating apodization will only result in focusing of the beam in one direction. In order to achieve
focusing in the transverse direction, the apodized grating grooves should be curved [20]. The required
curvature of the grating grooves can be calculated through interferometric approaches in which the desired
phase profile on the surface of the grating coupler is interfered with the guided mode propagating in the
waveguide grating section [18]. There are multiple methods available in the literature to determine the
desired phase profile on the surface of the grating coupler. For example, Oton [33] calculates the phase
profile at the surface by taking the desired focus point as a diverging Gaussian beam with the focus
at the defined location in space, whereas in the work of Chen et al. [34] the focus is taken as a point
source radiating into all directions [18]. The disadvantages of these interferometric approaches is that
they do not allow for modifications of the field profiles while propagating through the grating waveguide
section and that it does not account for high index contrast effects [29]. The resulting curved apodized
grating coupler structures, for which an example is provided in figure 2.6, still rely on further numerical
optimization as also mentioned before [26,28]. Hence, numerical optimization is used in multiple steps of
the design process, hereby highlighting the importance of this process. The rigorous FDTD method is the
conventional method to perform this numerical parameter optimization. Although FDTD simulations
are accurate, their main drawback is their computational burden, especially for these large area grating
couplers that are required in the PIC alignment sensor application. Other more efficient alternatives to
perform the parameter optimization are coupled mode theory (CMT) and the mode matching method
(MMM) [35]. Also these methods have their limitations, as the CMT method is unsuitable for large
refractive index contrast problems and the MMM is only applicable to weak radiation structures [35].
Therefore, there is a strong demand for analytic models that are able to accurately determine radiation
profiles of such large area grating couplers, so that they can be used in the design optimization process
of the grating couplers. The recent developments from Xu et al. [35], who showed promising results for
designing focusing grating couplers with an efficient complex mode matching method (CMMM), are a
confirmation of the ongoing research in this area.

2.2.4 Grating couplers on the PICs

PIC alignment sensor prototype

As described before, grating couplers are the essential elements in the PIC alignment sensor prototype
design. The standard IMOS grating couplers are simple uniform rectangular grating couplers, since there
is no focusing required to achieve the coupling between free space and PIC. For the emitting grating
coupler, which is schematically illustrated on a small scale in figure 2.6, the 2D focusing is achieved by
curving the grating lines of a 1D apodized grating. The taper underneath the emitting grating coupler
expands with such a large angle that the mode out of the waveguide is freely expanding into the taper.
The required curvature of the grating grooves is calculated with the interferometric approach discussed
in the previous subsection. For more details on the design of the emitting grating coupler a reference is
made to the thesis of A.E.C. van den Bosch [18] in which this is extensively discussed. As mentioned
before, the capturing grating couplers consist of an apodized rectangular grating coupler to convert the
free space beam to a slab mode and a gap coupler to convert the slab mode into a waveguide mode.
This configuration is schematically illustrated in figure 2.3, indicated by the numbers 3a and 3b. In this
schematic, the red part refers to the apodized rectangular grating coupler, the pink part refers to the gap
coupler and the grey curve is the waveguide. The apodized rectangular grating has period adjustments
in one direction, therefore it also provides focusing in one direction. Hence, this part of the capturing
grating coupler produces a guided slab mode. The guided slab mode is converted into a 400 nm wide
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waveguide mode by a so called gap coupler. The gap coupler is based on frustrated total internal reflection
(FTIR) and couples light from the slab mode to the waveguide by terminating the slab as a triangle and
positioning a waveguide close to the edge of the slab [8]. The slab mode is reflected at the edge of the slab,
where the evanescent field will penetrate and couple into the waveguide. The slab mode to waveguide
mode conversion could also be achieved with tapers. However, a width conversion from hundreds of
micron to 400 nm would require a taper length of multiple millimeters, which results in undesirable large
footprint. Therefore, a gap coupler is used to provide this conversion from slab mode to waveguide mode.
In order to have this conversion as efficient as possible, gap distance and waveguide width variations are
applied to the gap coupler. This is extensively discussed in the thesis of J.P. de Graaf [8]. Thus, by
combining the gap coupler with the 1D focusing grating coupler the conversion of the free space beam to
a waveguide mode is made in both directions.

Figure 2.6: Small scale schematic illustration of the design of the 2D focusing emitting grating coupler.
The arrow indicates the incoming guided mode and the darker blue lines in the light blue area indicate

the curved apodized grating lines to create the 2D focusing beam. The light blue area indicates the
wide-angled taper in which the guided mode expands freely. Adapted from: [18]

TU/e test PIC

As mentioned in chapter 1, a test PIC is provided by the TU/e to experimentally measure the beam profiles
out of large grating couplers. This will not only demonstrate correct operation of the experimental setup,
it will also provide data for experimental comparison of the analytic model. The test PIC of the TU/e
contains the design of Y. Wang, in which multiple long grating couplers (antennas) are designed [36].
These structures are actually used as optical beam steerers as explained in the paper [36]. However, for
the purpose of this research project the sole interest is in the measurement of the far field beam profiles
of these large grating couplers. Hence, it is out of the scope of this project to discuss all the details of
the designs and functionalities of these large grating couplers, and the reader is referred to the paper of
Y. Wang for this [36]. Figure 2.7 provides a schematic illustration of the large grating coupler structures.
The light is coupled in at the standard IMOS grating coupler (blue), travels through the waveguide (light
grey) and is converted from a 400 nm wide waveguide mode into a 15 µm wide waveguide mode by a
taper (dark grey). Although the standard IMOS grating couplers on this test PIC are different from
the ones on the PIC alignment sensor prototype (curved versus straight grating lines respectively), they
have the same purpose of providing coupling between the PIC and free space. The waveguide mode then
enters the large uniform grating coupler (red). There are multiple different variations of the large grating
couplers fabricated, more details on the measured large grating couplers are included with the results
in chapter 6. The light that is not coupled out by the large grating coupler is again tapered down and
coupled out of the PIC by a standard IMOS grating coupler.

Figure 2.7: Schematic illustration of the large grating coupler structures on the TU/e test PIC. It
consists of two standard IMOS grating couplers at the input and output (blue), which are connected to
waveguides (light grey). The guided mode is expanded into the large grating coupler (red) through a

taper (dark grey).
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Chapter 3

Born Approximation applied to
computation of Grating Coupler
Emission (BA-GCE) model

The importance of the grating coupler components for the PIC alignment sensor design has been discussed
in the previous chapter. Due to the large footprints of the emitting and capturing grating couplers,
conventional rigorous simulation methods like Lumerical FDTD [9] are too computationally expensive to
simulate these structures on full scale. However, an accurate simulation method is desired for in the design
optimization process of these components. Thus, alternative ways of simulating radiation profiles of large
area grating couplers are demanded. For this reason, an analytic model has been developed, which is able
to accurately determine electric fields and radiation profiles of grating couplers of any size. The developed
grating coupler model is based on a paper of C.A. Flory [1]. The physical principles of this “Flory model”
will be elaborated in section 3.1. Subsequently, multiple adaptations and extensions have been made to
this model in order to improve it and to extend its application range and options. These adaptations and
extensions will be discussed individually in section 3.2. Finally, all the adaptations and extensions to the
model will be combined to develop the novel BA-GCE model which can be used to accurately determine
emission profiles of grating couplers of any size. This section will also highlight the approximations that
are made in this model, as well as the limitations that arise from these approximations.

3.1 Flory model [1]

The physical reasoning behind the Flory model, which is a 2D model, is illustrated in figure 3.1. The
grating coupler is modelled as an unperturbed homogeneous slab waveguide plus the dielectric constant
(or refractive index) perturbation introduced by the grating structure. A perturbative technique, called
the volume current method (VCM), is then used to calculate the scattered radiation due to this refractive
index perturbation of the grating grooves. In this technique the scattering effect of each grating groove is
modelled by a collection of point sources. Hence, each grating groove will radiate light from the waveguide
mode into the sub- and superstrate as if it were a collection of point sources. The radiation that is emitted
from each point source is described by the Green’s function. All these point sources together make up the
radiated Poynting vector. In order to end up with an analytic expression for the radiated Poynting vector
in terms of the waveguide and grating parameters, two approximations are applied: the first order Born
approximation and the far field approximation. As a consequence of these approximations, the model
is only accurate in a limited range of grating parameters. Section 3.3 will provide more details on the
limitations of the final model. First, the mathematical derivation of the model will be elaborated, based
on the physics described above. Since not all the mathematical calculations will be provided, a reference
is made to the paper for the complete derivation [1].
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Figure 3.1: Schematic summary of the physical reasoning behind the Flory model [1]. The grating
coupler is modelled as an unperturbed waveguide plus the dielectric constant perturbation introduced
by the grating structure. Then, each grating groove perturbation is modelled as a collection of point

sources that emit radiation described by the Green’s function.

In order to calculate the emitted field from a grating coupler, the famous Maxwell equations have to be
solved. For fields with a harmonic time dependence of eiωt, and no externally applied currents, the two
Maxwell curl equations can be simplified into equations 3.1 and 3.2 [21].

~∇× ~E = iω ~B (3.1)

~∇× ~H = −iωε0εr (~r) ~E (3.2)

In these equations ~E and ~H are respectively the electric and magnetic fields, ω is the field angular
frequency and εr(~r) is the position dependent dielectric constant. If it is then assumed that the waveg-
uide grating structure is embedded into a background medium with dielectric constant ε2, the position
dependent dielectric constant can be defined by

εr (~r) = ε2 + δεr (~r) , (3.3)

where the dielectric perturbation induced by the grating structure is defined as δεr (~r). In the VCM
method, the effect of this dielectric perturbation is represented by an equivalent volume polarization
current density which acts as a source for the radiated field [1, 37]. The equivalent polarization current

density ( ~JP ) is defined in terms of the dielectric perturbation δεr (~r) by equation 3.4.

~JP = iωε0δεr (~r) ~E (3.4)

Substitution of equations 3.3 and 3.4 into equation 3.2 then results in

~∇× ~H + iωε0ε2 ~E = − ~JP . (3.5)

Subsequently, the vector and scalar potentials, respectively φ and ~A, are introduced through their relations
with the fields, which are given by equations 3.6 and 3.7.

~E = −~∇φ+ iω ~A (3.6)

~B = ~∇× ~A (3.7)

Then, if it is assumed that the medium is nonmagnetic ( ~B = µ0
~H), substitution of equations 3.6 and 3.7

into equation 3.5 leads to

~∇×
(
~∇× ~A

)
+ iωµ0ε0ε2

(
−~∇φ− ∂ ~A

∂t

)
= −µ0

~JP . (3.8)

After using the vector identity ~∇ ×
(
~∇× ~A

)
= ~∇

(
~∇ · ~A

)
− ∇2 ~A and applying the definition of the

Lorenz gauge [38,39], equation 3.8 results in the Helmholtz equation for the vector potential:(
∇2 + ω2µ0ε0ε2

)
~A = µ0

~JP . (3.9)

Equation 3.9 thus describes the vector potential of the radiated field due to the grating perturbation
(δεr (~r)), which is hidden in the polarization current density ~JP . The general solution for this equation
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consists of a homogeneous solution and a particular solution. This general solution for the vector potential
~A can be expressed in integral form in terms of a Green’s function, leading to equation 3.10.

~A (~r) = µ0

�
G (~r − ~r ′) ~JP (~r ′) d3~r ′ (3.10)

In this equation G (~r − ~r ′) is the appropriate Green’s function for the Helmholtz equation 3.9. The
appropriate Green’s function is found by solving the homogeneous equation of equation 3.9 with a point
source as source term. For the 2D Helmholtz equation, the Green’s function in free space is given by [40]

G (~r − ~r ′) = − i
4
H

(1)
0 (k|~r − ~r ′|) . (3.11)

In this equation H
(1)
0 is the zeroth order Hankel function of the first kind, ~r is the distance vector in the

propagation direction with respect to the origin and k =
√
ε2k0 is the wavenumber. As indicated in figure

3.2, the origin is defined at the center of the waveguide (x = 0) and at −z0 from the start of the first
grating groove. In order to simplify the expression for the Green’s function, the far field approximation
is applied. The next chapter will provide an analysis of the distance at which this far field approximation
is applicable. In the far field limit, the leading term of equation 3.11 takes the form [40]

G (~r − ~r ′)→ − i
4
e−i

π
4

√
2

πkr
eikre−ikr̂·~r

′
. (3.12)

Moreover, the effective dielectric perturbation that is induced by the grating coupler in figure 3.2 is
described by

δε (~r) = − (ε1 − ε2) f (~r) , (3.13)

where f(~r) is 1 in the area of the grating grooves and 0 everywhere else. Substitution of this dielectric
perturbation in equation 3.4 yields the induced equivalent polarization current density:

~JP = −iωε0 (ε1 − ε2) f (~r) ~E (~r) . (3.14)

In this equation ~E refers to the electric field in the waveguide grating region. However, in order to
circumvent the complex problem of determining the electric field in the waveguide grating region, the first
order Born approximation is applied. Therefore, the electric field is approximated by the expression of the
electric field of the lowest order TE mode in the unperturbed symmetric slab waveguide. This electric field
expression for lowest order TE mode in the unperturbed symmetric slab waveguide is straightforwardly
calculated in photonics books, like [41], resulting in:

Ey = E0
cos (κx)

cos
(
κh
2

)eiβz. (3.15)

In this equation E0 is the electric field amplitude at the dielectric interfaces of the waveguide, κ is the
wavevector in the waveguide layer and β is the propagation constant of the waveguide mode. Eventually
substitution of this expression for the electric field into equation 3.14 and afterwards substituting this
equation, as well as equation 3.12, into equation 3.10, results in:

Ay (~r) = −µ0ωε0 (ε1 − ε2)E0

4 cos
(
κh
2

) √
2

πkr
e−

iπ
4 eikr

�
grooves

cos (κx ′)e−ikr̂·~r
′
eiβz

′
d2~r ′. (3.16)

Equation 3.16 is the integral form of the general solution for the radiated vector potential resulting
from the grating perturbation. This expression is calculated for the system configuration illustrated in
figure 3.2, which also includes the definitions of the parameters. ε1 refers to the dielectric constant of
the waveguide material and ε2 refers to the dielectric constant of the medium in the grating grooves,
in this case the superstrate. The other symbols in equation 3.16 are either the conventional physical
constants or refer to the same parameters as introduced before. The x and z components of the radiated
vector potential are both zero, because the electric field of the lowest order TE mode in the unperturbed
waveguide only has a y component. Furthermore, since there is only a dielectric perturbation in the
grating groove regions, the integral in equation 3.16 is only over the 2D cross-sectional areas of these
grooves.
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Figure 3.2: Configuration of the Flory model, with the unperturbed planar slab waveguide on the left
and the grating coupler with symbol definitions on the right. The red dot refers to the origin of the

coordinate system that is used in the Flory calculation. Adapted from: [1]

The integral in equation 3.16, over the cross-sectional areas of the grating grooves, can then be solved by
introducing the angle θ defined as in figure 3.2. The dot product in the exponential can then be evaluated
as r̂ ·~r ′ = x ′ cos (θ)+z ′ sin (θ). Therefore, the integration over the 2D cross-sectional areas of the grating
grooves can be factored out into an x-dependent part and a z-dependent part. For a constant etch depth
d1, the x-integral over the grooves runs from h

2 –d1 to h
2 . Thus, the integration of equation 3.16 can be

rewritten into equation 3.17.

�
grooves

cos (κx ′)e−ikr̂·~r
′
eiβz

′
d2~r ′ =

� h
2

h
2 –d1

cos (κx ′)e−ikx
′ cos (θ)dx ′

�
grooves

eiz
′(β–k sin (θ))dz ′ (3.17)

The integration over the height direction (x) and the length direction (z) can be calculated separately.
More details behind this mathematical calculation are provided in the paper of Flory [1]. The integration
over the height direction depends on the height of the waveguide h and the depth of the grating grooves
d1 and results in the factor D. The integration over the length direction is split into two terms: the
grating element factor E considering one single grating groove and the grating array factor A considering
the periodicity of the grating structure. The element factor depends on the width of the grating grooves
w1, whereas the array factor depends on the grating period Λ and the number of grating elements N .
Finally, this extensive mathematical derivation, explained in the paper of Flory [1], results in the following
solution for the radiated vector potential:

Ay (~r) = −µ0ωε0 (ε1 − ε2)E0

4 cos
(
κh
2

) √
2

πkr
e−

iπ
4 eikreiz0(β–k sin (θ))ADE . (3.18)

The solution of the height integral for this case is

D =
d1

2

(
ei

(h–d1)
2 (κ–k cos (θ)) sin

(
d1
2 (κ–k cos (θ))

)(
d1
2 (κ–k cos (θ))

) + e−i
(h–d1)

2 (κ+k cos (θ)) sin
(
d1
2 (κ+ k cos (θ))

)(
d1
2 (κ+ k cos (θ))

) )
. (3.19)

The grating element factor is evaluated as

E = w1e
i
w1
2 (β–k sin (θ))sinc

(w1

2
(β–k sin (θ))

)
. (3.20)

Lastly, the grating array factor for this case is given by

A = ei
(N–1)

2 Λ(β–k sin (θ)) sin
(
N Λ

2 (β–k sin (θ))
)

sin
(

Λ
2 (β–k sin (θ))

) . (3.21)

The final step is to compute an expression for the radiated Poynting vector ~S. As calculated by C.A.
Flory [1], the far field limits of the radiated fields in terms of the radiated vector potential ~A are given
by equations 3.22 and 3.23, where r̂ refers to the unit vector in the direction of the radiated field.

~E = −iωr̂ ×
(
r̂ × ~A

)
(3.22)

~H = iω

√
ε2
µ0

(
r̂ × ~A

)
(3.23)
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Substitution of these far field limits into the definition of the time-averaged Poynting vector (~S =
1
2Re

[
~E × ~H∗

]
) and working out the cross-products by using vector identities eventually yields

~S =
ω2

2

√
ε2
µ0

∣∣∣r̂ × ~A
∣∣∣2 r̂. (3.24)

Note that in this thesis, the radiated Poynting vector actually refers to the time-averaged radiated
Poynting vector. Finally, equation 3.18 for the radiated vector potential can be substituted into equation
3.24 to arrive at the expression for the radiated Poynting vector in the far field limit:

~S =
µ0ω

3ε20 (ε1 − ε2)
2
E2

0

16π cos2
(
κh
2

)
r
|A|2|D|2|E|2r̂. (3.25)

This Flory model serves as the foundation for the novel BA-GCA model, which is developed by improving
and extending the Flory model. These applied adaptations and extensions are discussed in the next
section.

3.2 Adaptations and extensions to Flory model

The Flory model that is explained in the previous section is constructed for uniform grating couplers in
symmetric waveguide structures. Therefore, in this section the model will be extended to grating couplers
with apodized periods and for asymmetric waveguide structures. As explained in the previous chapter
the emitting and capturing grating couplers are apodized grating couplers to achieve the focusing of
light. Hence, it is in the interest of this research project to include these extension options in the model.
Furthermore, the Flory model assumes that the electric field amplitude in the waveguide E0 remains
constant over the complete grating structure. However, since light is outcoupled from the waveguide
mode into the sub- and superstrate, the light intensity, and thereby the electric field amplitude, decreases
over distance in the waveguide structure. Hence, the model can be improved by taking into account this
decrease in light intensity in the waveguide. In this section, these adaptations and extensions to the Flory
model will be discussed individually.

3.2.1 Exponential decay of light intensity in the waveguide

Due to the outcoupling of light by the grating coupler, the electric field amplitude will decrease over
distance along the propagation direction. In the Flory model, a constant electric field amplitude E0

is used over the complete grating coupler structure. In reality the power loss per unit length of the
waveguide mode scales with the radiated power. It follows from equation 3.25 that this radiated power
is proportional to E2

0 , therefore it is also proportional to the power in the waveguide mode. Thus, since
the power loss per unit length is proportional to the power in the waveguide mode itself, it directly
implies an exponential decrease of the light intensity (power) in the waveguide over distance along the
propagation direction (z). This exponential relation is also supported by the literature [20]. Hence, in
this section an expression is derived for the light intensity loss per grating element in order to incorporate
the exponential decay of the light intensity in the waveguide into the model.

The expected exponential decay of light can be calculated by applying the Poynting theorem to the
grating coupler. Poynting’s theorem states that for a certain volume:

∂U

∂t
+∇ · ~S = − ~J · ~E. (3.26)

In this equation ∂U
∂t refers to the energy density as function of time, which is equal to zero, since a stable

situation is considered in this case. Moreover, there is no macroscopic current in the grating coupler, so
~J = 0. Thus, if a slice of the grating coupler is considered, the volume integral over the divergence of
the Poynting vector ~S should be equal to 0. By using the divergence theorem, the volume integral can
be converted into a surface integral, leading to

�
slice

(
∇ · ~S

)
d3~r =

�
slice surface

~S · d2~r = 0. (3.27)
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Then, if equation 3.27 is applied to the integration surface illustrated in figure 3.3, it results in
�
slice surface

~S · d2~r = −
� h

2

−h2
Sin dx+

� h
2

−h2
Sout dx+

�
top

Ssup · rdθ +

�
bottom

Ssub · rdθ = 0. (3.28)

As can be seen from the dimensions of both sides of the equation, the third dimension (width) is ignored
in this step, since it is a 2D model. The incoming Poynting vector can be calculated from the electric
and magnetic fields for the unperturbed waveguide structure as

~Sin =
1

2
Re
[
~Ewaveguide × ~H∗waveguide

]
. (3.29)

Substitution of the final expression for ~Sin into the integral of equation 3.28 leads to a closed expression
from which a numerical value can be obtained for specific grating coupler parameters. The result of this
integral is referred to as ISin . Integration over the half circular top and bottom sides of the integration
surface will also result in a closed expression from which a numerical value can be obtained, which is
referred to as ISsup and ISsub for respectively the radiated intensity into the super- and substrate. For this
calculation the radiated Poynting vector for a single grating element is used, which is given by equation
3.25 with an array factor A of 1. Hence, the assumption is made that all the light that is outcoupled
from the grating coupler will reach the far field.

Figure 3.3: Integration surface of the grating coupler to which the Poynting theorem is applied.
Adapted from: [1]

Since numerical values can be obtained for three of the four integrals of equation 3.28, the integrated
outgoing Poynting vector can be calculated. By comparing this with the integrated intensity of the
incoming Poynting vector, the exponential loss factor of the light intensity over one grating element can
be determined. The expression for this Floss factor is provided in equation 3.30.

Floss ≡
ISsub + ISsup

ISin
(3.30)

Grating grooves with the same width therefore result in the same loss factor. As a result of this exponential
decay factor, the electric field amplitude is not constant anymore but has changed according to:

E0 → (1–Floss)
z

2w1 E0 (3.31)

In this expression, z refers to the distance along the grating when the non-radiating (unetched) parts are
ignored. The additional factor of 2 is introduced due to the proportionality relation between the intensity
and the squared electric field. Furthermore, this calculation assumes a constant width of the grating
grooves and ignores the unetched parts of the grating coupler structure. Conclusively, by correcting this
change of the electric field amplitude for the unetched parts it can be readily implemented into the Flory
model calculations, to include the exponential decay of the light intensity in the waveguide due to light
outcoupling.
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3.2.2 Period apodization

As discussed before, when focusing grating couplers are desired, the FF has to be adjusted. This can
be achieved by period apodization of the grating coupler structure. This period apodization can also
be included in the Flory model, as will be shown in this section. It is important to mention that this
extension option for period apodization assumes a constant width of the grating grooves w1. It should
be possible to extend this option to allow for apodized grating groove widths as well, however that would
change the complete calculation. It would make the calculations for A, E , and especially the calculation
of the Floss factor, significantly more complex, thereby complicating the process of finding analytic and
intuitive formulas for these terms. For this reason, only the period of each grating element Λ is varied in
this extension option for now.

The grating array factor A is the only factor in the expression for the radiated Poynting vector that
is influenced by a varying grating period Λ. It can be derived that a varying period will result in the
following expression for the grating array factor:

A =

(N–1)∑
n=0

(
n∏

m=1

eiΛm(β–k sin (θ))

)
. (3.32)

In this equation Λm is the period of the mth grating element. As elaborated in section 3.1, the z-integral
of equation 3.17 is an integral over phase factors depending on the position along the grating coupler (z).
This integral is then split into an array factor A and an element factor E . Since the width is assumed
to be constant, E remains unchanged. However, a change in the period of an individual grating element
will change the z-position of all the grating elements at larger z-positions. Therefore, the A factor is a
sum of products, since the z-position of each individual grating element depends on the periods of all the
grating elements before that. In case the grating periods are constant, equation 3.32 simplifies to the
grating array factor defined by Flory (equation 3.21). In case that the grating periods vary linearly over
distance along the grating coupler (Λm = Λ1 + ∆Λ · z), the expression for the grating array factor can be
simplified into

A =

(N−1)∑
n=0

ei(β–k sin (θ))(n·Λ1+ 1
2n(n−1)·∆Λ). (3.33)

3.2.3 Asymmetric waveguide

The Flory model is not applicable to grating couplers that have different materials as substrate and
superstrate, since the Flory model is based on an unperturbed symmetric waveguide. By converting
the calculations of Flory to an asymmetric waveguide, the model can be generalized to be applicable to
asymmetric as well as to symmetric waveguide structures.

As a result of the change from a symmetric to an asymmetric waveguide structure, the electric field
in the waveguide is changed. The field calculations have to be performed on an asymmetric planar
slab waveguides instead. Hence, the field expression used in the first order Born approximation will
change to this field expression for the asymmetric planar slab waveguide. The electric field expression for
the asymmetric planar slab waveguide can be obtained from textbook calculations, such as in Photonic
Devices by J.M. Liu [42]. The final result for the electric field of the first order TE mode in such an
unperturbed asymmetric planar slab waveguide is

Ey =


E0 cos

(
κh
2 − φ

)
e−γ2(x−

h
2 )eiβz x ≥ h

2

E0 cos (κx− φ)eiβz −h2 ≤ x ≤
h
2

E0 cos
(
κh
2 + φ

)
eγ3(x+h

2 )eiβz x ≤ −h2

. (3.34)

In these expressions E0 now is the maximum electric field amplitude, whereas it referred to the electric
field amplitude at the dielectric interfaces in Flory’s calculation for the symmetric planar slab waveguide.
Furthermore, κ is again the transverse wavevector component in the waveguide layer and γ2 and γ3 are the
decay constants in respectively the super- and substrate. The values of the phase factor φ and the other
three constants can be calculated by a numerical root calculations with their mathematical definitions,
also including the propagation constant β, and the two eigenvalue equations 3.35 and 3.36.

tan (κh) =
κ (γ2 + γ3)

κ2 + γ2γ3
(3.35)
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tan (2φ) =
κ (γ3 + γ2)

κ2 + γ2γ3
(3.36)

Thus, as a result of this change to an asymmetric structure the calculation of the values for the constants
κ and β will change, which are both prominently present in the expressions for the radiated Poynting
vector and its script factors. In addition, the change in electric field expression influences the results of
the x-integral D. Recalculation of this integral with the new electric field expression results in

D =
d1

2

(
ei

(h–d1)
2 (κ–k cos (θ))−iφ sin

(
d1
2 (κ–k cos (θ))

)
d1
2 (κ–k cos (θ))

+ e−i
(h–d1)

2 (κ+k cos (θ))+iφ sin
(
d1
2 (κ+ k cos (θ))

)
d1
2 (κ+ k cos (θ))

)
.

(3.37)
In this equation the symbols refer to the same properties as introduced before.

Besides the two changes discussed above, another consequence of the change to an asymmetric structure is
that the calculations for the radiated light into the substrate and into the superstrate need to be seperated,
because the wavevector k has different values in these two regions. Furthermore, as mentioned above, the
definition of the constant E0 has also changed in the new electric field calculation for the asymmetric slab
waveguide. This definition of E0, as the maximum electric field amplitude coincides, with the definition
for the electric field amplitude in the Lumerical FDTD [9] simulations later on. Since the asymmetric
field calculation is also applicable to the symmetric slab waveguide structure, this calculation is also
used for the Flory results later on, in order to correct for the difference in scaling factor of the electric
field amplitude compared to Lumerical FDTD. More importantly, this extension allows for an additional
option to calculate radiated fields of grating couplers with asymmetric waveguide structures, which is not
possible with Flory’s model.

3.2.4 Radiated electric field

The final extension of the Flory model is the most straightforward, because a large part of the derivation
is already provided in the paper of Flory [1]. This extension finally leads to a formula to determine
the radiated electric field at a certain distance above the grating coupler. It is important in the PIC
alignment sensor application to determine the electric field profiles of the grating couplers at the align-
ment mark, which is at 10 mm from the PIC. Hence, this extension is particularly useful for that purpose.

Flory already provides the expression for the radiated electric field ~E in the far field approximation as
function of the vector potential ~A, as shown in equation 3.38.

~E = −iωr̂ ×
(
r̂ × ~A

)
(3.38)

Calculation of the cross products in the 2D configuration leads to the simple relation

~E = iωAy ŷ. (3.39)

Thus, the radiated electric field at a certain position can be directly determined from the expression
for the vector potential ~A according to equation 3.39. After a standard transformation from spherical
coordinates to cartesian coordinates the radiated electric field can be determined along the grating coupler
axis z, at a certain distance above the grating coupler x . This extension option is included in the final
BA-GCE model.

3.3 BA-GCE model

3.3.1 Model description

Finally, all the adaptations and expansions discussed in section 3.2 are combined to convert Flory’s
model into the novel analytic BA-GCE model. The core calculation of the BA-GCE model is provided
in the Mathematica [43] script of appendix A. The scripts for analyzing the results of the model are not
presented in the appendix, because of two reasons: firstly, it depends on the properties of interest and
secondly, these are just conventional function analysis procedures.

The first step in the conversion of Flory’s model to the novel BA-GCE model is to change the electric
field calculation to the case of the asymmetric planar slab waveguide. As mentioned in section 3.2.3,
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the impact of this adaptation is that the calculation for the β and κ values will be changed, as well as
the expression for the D factor. Furthermore, the asymmetric structure induces the separation of the
calculation into a superstrate part and a substrate part. The next step is to implement the decay of light
intensity in the waveguide as a result of light outcoupling. The calculation of section 3.2.1 results in a
loss factor of the light intensity per grating element Floss. Besides several grating parameters and the D
factor, this Floss factor depends on the element factor E . However, as the E factor depends on the Floss
factor in the grating element, the calculation ends up in a vicious circle. In order to break this vicious
circle an iteration process is applied. The iteration process starts by calculating Floss based on the E
factor for a grating element without loss of light intensity, meaning a constant electric field amplitude E0,
which is essentially the expression for E of Flory’s model. Subsequently, an iteration loop is entered in
which the adjusted E factor is calculated based on the previous Floss factor and with this new E factor, the
new value for Floss is determined. This iteration loop continues until the new value of Floss has changed
by less than a factor of 10−10 compared to its value at the previous iteration step. The final Floss value
from this iteration process is then used to determine the final E factor. Due to this iteration process, the
BA-GCE model does not only include the decay of light intensity per grating element, it also takes into
account the decay of the light intensity inside each grating element. Thereafter, the array factors can
be determined with the general equation for grating couplers with period apodization (equation 3.32).
Section 3.2.2 also showed that for a linearly varying grating period, the array factor expression can be
simplified into equation 3.33. Due to this simplification the product factor is worked out of the general
equation, thereby significantly reducing the computational complexity of the A function. For uniform
grating couplers, even the sum term can be worked out to result in equation 3.21. Hence, these three dif-
ferent cases all have a different level of computational complexity in its expression for A. For this reason
the array factor is calculated separately for each case. In the final model calculations, only the functions
for the correct period apodization case should be run. The last step in the calculations of the BA-GCE
model prior to the analysis is to calculate the radiated Poynting vector and the radiated electric field at
a certain position (section 3.2.4). The expression for the radiated Poynting vector is slightly different
from the expression in the Flory model (equation 3.25) as a result of the difference in the electric field
expressions for an asymmetric and a symmetric slab waveguide structure. Thereafter the analysis of the
radiated fields can be carried out. In appendix A only the script for computing the figure of the radiated
Poynting vector at a radius of 1 meter is provided, because of the reasons mentioned at the start of this
section. Nonetheless, it is important to mention that conventional function analysis procedures are used
to compute the results presented in the next chapter, such as peak position, peak value and the full width
at half maximum (FWHM).

The main advantage of this model is that it clearly illustrates the underlying physics as explained in
section 3.1. The model is transparent in revealing the mechanisms leading to the radiated light. The
effects of the two dimensions are separated into the height factor D and the width factor consisting of
the element factor E and the array factor A. Since these three factors all depend on different grating
parameters, intuition can be gained about the effect of one of these parameters. Furthermore, another
advantage of this model is the low level of computational complexity of this model. Therefore, the analytic
BA-GCE model is capable of calculating the radiated fields of grating couplers of any size in a matter
of seconds, contrary to the conventional rigorous simulation methods. For these rigorous simulation
methods, simulation of large grating couplers would be too computationally expensive. Thus, the BA-
GCE model can be of use in the design optimization process of the large grating couplers used in the
PIC alignment sensor. The novelty of the BA-GCE model compared to the Flory model, which also has
the aforementioned advantages, is in the adaptations and extensions discussed in the previous section.
By combining these adaptations and extensions into the final model, the model is improved and the
applicability is extended. Yet, there are still some limitations to the model, which will be discussed in
the coming subsection. Obviously, there is still room for improvement of the BA-GCE model, therefore
suggestions for improvements and extensions to the current model will be made in chapter 7.

3.3.2 Approximations and limitations

As previously explained in this chapter, there are two important approximations made in the derivation
of the analytic BA-GCE model: the Born approximation and the far field approximation. These ap-
proximations lead to limitations to the validity and applicability of this model. Before the implications
of these two approximations will be discussed, it is important to discuss the other limitations and ap-
proximations of the BA-GCE model. One assumption that is made in the calculation of section 3.1 is
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that the expression for the Green’s function in free space is used. Therefore, this assumes that all the
scattered energy will reach the far field. In reality, this is obviously not the case, since a fraction of the
light will reflect back and remain in the waveguide. Furthermore, the BA-GCE model is developed for
grating couplers with a constant groove width w1 and only for grating couplers that are etched into the
waveguide layer. It is possible to extend the model beyond these two applicability limitations. However,
as that requires a completely new and more complex recalculation, it is not yet included in this variant
of the model.

Born approximation

The first order Born approximation is applied in the derivation to replace the complicated electric field
expression in the waveguide grating region with the electric field expression of the unperturbed waveguide.
Obviously, this approximation significantly simplifies the calculations of the BA-GCE model. In order for
the Born approximation to be applicable, the electric field in the waveguide grating region must closely
resemble the field of the unperturbed waveguide. Therefore, the grating must be a weak perturbation,
meaning that it is only applicable to weak grating couplers. In the BA-GCE model, the strength of the
grating coupler is quantified by the loss factor of the light intensity per grating element Floss. In order
to also incorporate the effect of the grating period Λ, the loss factor can be converted into a fractional
energy loss factor per period of the propagating mode, as introduced by Flory [1]. When this fractional
energy loss is low enough, the Born approximation can be applied. Hence, the limitation arising from
this approximation is that the BA-GCE model cannot be applied to strong grating couplers. In the next
chapter, more details will be provided on the fractional energy loss factor and the region of validity arising
from the Born approximation will be discussed.

Far field approximation

The far field approximation is applied in order to significantly simplify the expression for the Green’s
function, since the derivation of a transparent and intuitive analytic model is not possible if the exact
Green’s function (equation 3.11) would be used. Besides the simplification of the Green’s function, the
far field approximation also has an effect on the calculation of the relations between the radiated electric
field and Poynting vector, and the vector potential. The limitation that arises from this approximation is
evident, namely that the BA-GCE model is only valid in the far field regime. A procedure to quantify the
far field regime is provided in the next chapter, where the BA-GCE model is extensively benchmarked.
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Chapter 4

Simulation results and analysis

In order to assess the performance of the BA-GCE model that is developed in the previous chapter,
it is important to carefully benchmark this model. The first step in benchmarking the model is to
determine its region of validity. As explained in section 3.3, the applied Born approximation and far
field approximation lead to limitations to the validity and applicability of the model. Therefore, the first
subsection will elaborate on this region of validity. After that, the adaptations and extensions of the
novel BA-GCE model will be benchmarked by comparing it with the results from the Flory model and
from the rigorous simulation method Lumerical FDTD [9]. The results from this benchmark process will
be discussed in the remainder of section 4.1. Yet, the main advantage of the BA-GCE model is that
it is able to simulate radiated fields for large grating couplers, for which rigorous simulation methods
would be too computationally expensive. Therefore, an experimental verification of the model will be
performed by comparing its results with the experimental measurement results on large grating couplers.
As mentioned before, due to serious fabrication problems, the measurements are conducted on a test PIC
from the TU/e instead of the actual PIC alignment sensor. Nevertheless, the measured far field profiles
of these large grating couplers, which are presented in chapter 6, can be compared with the results of the
BA-GCE model, which will be presented in section 4.2. In addition to the benchmarking process, this
chapter will present the results obtained with Lumerical FDTD for the standard IMOS grating couplers in
section 4.3. These results are used to determine the ideal incouple (and outcouple) angle for the standard
IMOS grating couplers. This will be useful in the experimental measurements to maximize the coupling
efficiency, as will be explained in more detail in the next chapter. An important remark is that all the
results in this chapter are computed for an electric field amplitude (E0) of 1.

4.1 Benchmarking the BA-GCE model

4.1.1 Region of validity

As discussed before, the two approximations that are made in the derivation of the BA-GCE model limit
the region of validity of the model. In the coming two subsections the region of validity resulting from
both approximations will be discussed individually.

Born approximation

In section 3.3 it was elaborated that the first order Born approximation is only valid for weak grating
couplers and that the strength of the grating couplers can be quantified by the fractional energy loss
factor. In the BA-GCE model, the exact value of the Floss factor is calculated, which is defined as the
fractional loss of light intensity per grating element. Hence, the fractional loss of light intensity per unit
length is defined as Floss

Λ . Since Flory defines the fractional energy loss per period of the propagating
mode, it is more convenient to convert the Floss factor into this Floss,prop.mode factor. Therefore, the
fractional loss per unit length needs to be multiplied with the period of the propagating mode ( 2π

β ),
leading to equation 4.1, where β refers to the propagation constant of the waveguide mode.

Floss,prop.mode = Floss ·
2π

Λβ
(4.1)
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In order for the Born approximation to be valid, this fractional energy loss per propagating mode should
be smaller than some limit value ζ:

Floss,prop.mode < ζ. (4.2)

After an extensive analysis, it turned out that this value for ζ for which the Born approximation is valid
is very application-specific. This is also illustrated in the paper of Flory [1] as it provides a formula for
the upper limit of the Floss,prop.mode factor, given by equation 4.3 in which the symbols refer to the same
properties as before.

Floss,prop.mode <

(
2π2 (ε1 − εback)

2

ε1

)(
d2

1w
2
1

Λhλ2
0

)
(4.3)

It was found that the exact value for the Floss,prop.mode factor, calculated in the BA-GCE model, indeed
remained below this upper limit and showed similar dependencies. As an illustrative example for the other
grating parameters, figure 4.1 shows the dependency of Floss,prop.mode on the grating period Λ for the
grating coupler parameters from example in the paper of Flory, which is shown in the top right. It shows
that the dependency of Floss,prop.mode on Λ is indeed as suggested by equation 4.3, and that the exact
value of Floss,prop.mode remains below the upper limit. All the other grating parameters resulted in the
same two conclusions, that Floss,prop.mode remains below Flory’s upper limit and that the dependencies
are indeed as suggested by equation 4.3, except for the vacuum wavelength λ0. The BA-GCE model
has no clear dependency of Floss,prop.mode on λ0, contrary to what equation 4.3 suggests. Nonetheless,
it can be concluded that equation 4.3 can be used as upper limit for Floss,prop.mode, except for extreme
values of λ0. Again the values of λ0 at which the upper limit cannot be used, depends on the application.
Furthermore, it can be concluded that Floss,prop.mode indeed depends on many grating parameters. This
means that the region of validity for one grating parameter strongly depends on the values of all the
other grating parameters. Therefore, a value for ζ is application-specific and should be found after
careful investigation of the specific grating coupler that is to be designed. Moreover, the value of ζ also
depends on the required level of accuracy that is demanded for the application.

Figure 4.1: Fractional energy loss per period of the propagating mode (Floss,prop.mode) from the
BA-GCE model (black points) and the upper limit of equation 4.3 (blue line), versus the grating period

Λ for the parameter values provided in the top right of this figure.

Overall, the conclusion is that the region of validity of the Born approximation can be quantified by
equation 4.2, although an exact value of ζ should be determined per application. It can be deter-
mined by comparing the BA-GCE model results with Lumerical FDTD results and finding the value of
Floss,prop.mode for which the model results deviate by more than the required accuracy from the Lumerical
results. However, since it is very application-specific this is not quantified in more detail in this project.

Far field approximation

Since the far field approximation is applied in the derivation of the BA-GCE model, it is only valid in
the far field regime. In order to quantify the far field regime, it will be investigated at which distance
from the grating coupler the field profiles of the BA-GGE model will be similar to the field profiles from
Lumerical FDTD. The extension of the BA-GCE model to calculate the electric field at a certain position
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from the grating coupler is used in this investigation for the comparison with Lumerical. In addition also
the phase fronts of the electric fields were compared with Lumerical. Although the phase fronts from
both methods also showed similar results, it is less suitable for comparison due to fast oscillations of the
phase front over distance that were found in both the BA-GCE model and Lumerical. The electric field
intensities were found to be more suitable for profile comparison.

Consider again the grating coupler example of the paper of Flory, shown in figure 4.2a. Note that the
number of grating lines is reduced to 25 instead of 100 in order to reduce the size of the simulation,
thereby allowing for field monitors at larger distances in Lumerical FDTD. A first investigation proved
that for this example the electric field profiles of the monitors are equal to the electric field profiles
obtained with the far field extension tool in Lumerical FDTD at a distance from the grating coupler of
10 µm or higher. Hence, for larger distances the far field extension tool is used to determine the electric
field profile at the specific distance. Figure 4.2a provides an example for the actual electric field profile
determined from Lumerical FDTD (orange curve) and the field profile determined by the BA-GCE model
(blue curve) at a distance of 20 µm. This figure clearly illustrates that the far field regime has not been
reached at 20 µm. Figure 4.2b shows this comparison at a distance of 200 µm. In this figure the profile
of the BA-GCE model resembles the shape of the Lumerical profile more, although the position of the
peak is still off. Furthermore, there is a certain scaling factor present between both curves. The cause of
this scaling factor will be discussed in more detail in the next section. Therefore, for this investigation
the peak position and width, of the electric field profiles are the comparison material and the peak value
is not considered for now, since the same scaling factor will always be present. The comparison made
in figure 4.2 was extended to other distance values. From this investigation it could be concluded that
starting from a distance of 200 µm, the two profiles both have one clear peak in the electric field.

(a) x = 20 µm (b) x = 200 µm

Figure 4.2: |E|2 profiles as a function of distance along the grating axis (z) at x-distances of 20 µm (left)
and 200 µm (right) above the grating coupler, for the grating parameter values shown in figure a. The
orange curve represents the Lumerical result and the blue curve represents the BA-GCE model results.

Obviously, due to the divergence of the beam the FWHM increases for larger distances. The difference
between the FWHM of the BA-GCE model and Lumerical, normalized by the Lumerical FWHM value,
remained constant over distance. Hence, this cannot serve as a measure for the far field regime. An
interesting observation that is obtained from this investigation is that the difference in peak positions
between the model and Lumerical normalized by the absolute peak position, decreased over distance
above the grating. Therefore, this property can serve as a measure for the far field regime. The results
are shown in figure 4.3.

Depending on the desired level of accuracy of the peak position, the minimum distance of the far field
regime can be determined from figure 4.3. This way, the region of validity of the far field approximation
can be determined. For example for this specific case, the relative deviation in peak position of the BA-
GCE model compared to Lumerical FDTD is below 1% at distances larger than 5 mm. It is important
to perform this validity investigation for each specific application before starting any design optimization
process.
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Figure 4.3: Relative difference in peak positions of the |E|2 profiles between the Lumerical results and
the BA-GCE results for the grating parameter values in the top right corner, as a function of distance

above the grating x.

4.1.2 Benchmarking BA-GCE adaptations

As the region of validity of the BA-GCE model has been discussed in the previous subsection, the next step
is to start benchmarking the BA-GCE model. In this subsection the results of the BA-GCE model will
be compared to the results of the Flory model, and in addition Lumerical FDTD results will be computed
to serve as the benchmark. Since the comparison is made with the Flory model, only the adaptation
of including the exponential decrease of light intensity in the waveguide will be benchmarked in this
section. In the next subsection, the extension options of the BA-GCE model will be benchmarked with
Lumerical, since these extension options are not included in Flory’s model. After an extensive analysis,
two interesting cases were discovered: the behaviour of the radiation profile under different values for
the grating period Λ and under a different number of grating elements N . The main advantage of these
two cases is that the expected behaviour is already described in section 2.2. As discussed in this section,
it is expected that more diffraction orders will become visible in the radiation spectrum if the grating
period is increased. Furthermore, if the grating period is below a certain value, no diffracted orders will
be coupled out of the waveguide. Moreover, it is expected that for a larger number of grating lines, more
light will be coupled out of the waveguide, while the angle in the far field will remain unaltered. The
results for these two cases will now be discussed individually.

Variation of the grating period (Λ)

This investigation starts again with the grating coupler parameter values from Flory’s example, which
are indicated in the top left corner of figure 4.5. The profiles of the radiated Poynting vector into the su-
perstrate are calculated with the BA-GCE model, the Flory model and computed with Lumerical FDTD,
for various values of the grating period Λ. Figure 4.4 shows these results for a grating period value of
420 nm. The black curve represents the BA-GCE model results, the red curve represents the Lumerical
FDTD results and the blue curve represents the results from the corrected Flory model. As mentioned
in section 3.2.3, the corrected Flory model, in which the scaling difference in E0 is negated, is used for
the comparison.

This figure illustrates that the spectra for all three models are very similar in terms of peak position and
peak width, as the difference in peak positions is only 0.07◦ at maximum. However, as mentioned in the
previous subsection, there is a certain scaling factor present between the BA-GCE model results (and
Flory model) and the Lumerical results. This will be discussed in more detail in the next investigation,
where the number of grating elements is varied. For this purpose, there is a specific interest in the
number of diffraction peaks and their positions and widths, since it is expected from theory that the
number of diffraction peaks will increase with an increase in the grating period. The final results of this
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investigation are shown in figure 4.5, where the position of all the diffraction peaks for various values of
the grating period are illustrated. Similarly, the FWHM of all these peaks was compared for the three
different models and the resulting values for each peak were within 0.2% of each other.

Figure 4.4: Radiated Poynting vector (Srad) for a grating period of 420 nm (a) and zoom of one peak
(b), for the BA-GCE model (black curve), Lumerical FDTD (red curve) and the corrected Flory model

(blue curve).

Figure 4.5: Peak positions of the radiated Poynting vector (Srad) spectra for various values of the
grating period (Λ). The figure includes results from the BA-GCE model (black dots), Lumerical FDTD

(red asteriks) and the corrected Flory model (blue triangles).

First of all, from this investigation it can be concluded that the inclusion of the exponential decay of the
light intensity in the waveguide has no effect on the peak position, since the peak position resulting from
the BA-GCE model is exactly the same as from the corrected Flory model. Furthermore, except from
the peak value, the BA-GCE model are in good agreement with the Lumerical FDTD results. The peak
positions are off by 0.07◦ at maximum and the FWHM of these peaks are within 0.2% of the Lumerical
results. The BA-GCE model results are also conform the expectations from theory, since the amount
of diffraction orders present in the radiation spectra increases with an increase in the grating period.
In addition, the BA-GCE model also correctly simulates the behaviour at small grating periods. As
explained in section 2.2, below a certain grating period, no diffraction peaks will be radiated out of the
waveguide and that is indeed observed.
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Variation of the number of grating elements (N)

This investigation is again performed with the parameter values of the grating coupler example of Flory
(figure 4.6), whereas the number of grating elements (N) is now varied. As shown in figure 4.5, there
is only one diffraction peak at a grating period of 210 nm. The characteristics of this diffraction peak
are compared for various number of grating elements. As concluded from the previous investigation,
the inclusion of the exponential decay of light intensity in the waveguide, which is currently the only
adaptation to the Flory model, has no effect on the position of the diffraction peak and that was indeed
verified in this investigation too. The inclusion of the exponential decay does have an effect on the peak
value and the peak shape, and thereby the FWHM. The peak values of the radiated Poynting vector at
a radius of 1 meter for various values of N are shown in figure 4.6.

Figure 4.6: Peak value of the radiated Poynting vector (Srad) spectra at a radius of 1 meter for various
number of grating elements N . The left figure is on a linear scale, whereas the right figure is on a
logarithmic scale with an extended x-axis. Again the results of the BA-GCE model (black dots),

Lumerical FDTD (red asterisks) and the corrected Flory model (blue triangles) are included.

The first observation that follows from the left figure of figure 4.6 is that the scaling factor difference
between the BA-GCE model results and the Lumerical FDTD results scales with the number of grating
elements. This is an interesting observation which gives an indication for the physical explanation behind
the existence of this scaling factor. This scaling factor means that according to the BA-GCE model more
light is radiated out of the grating coupler than according to Lumerical, which serves as a benchmark
for the reality. The most probable explanation is that in the BA-GCE model, all the emitted radiation
in each grating groove reaches the far field. In reality (Lumerical), part of the radiation will be reflected
at the grating substrate interface. This is an effect which will scale with the number of grating elements
and therefore it can be an explanation for this observation. Another optional cause for this scaling factor
is an incorrect fractional loss factor, since that would also lead to a scaling factor that scales with the
number of grating elements. However, this can never be the sole explanation for the scaling factor, since
a correction of the BA-GCE model for the difference in peak value would require a fractional loss factor
which is much larger than Flory’s upper limit (equation 4.3). Though, it is possible that this difference
in the fractional loss factor in combination with the fact that in the BA-GCE model all emitted radiation
reaches the far field, provides the physical explanation behind this scaling factor. Although, these two
explanations are provided, it cannot be ruled out that there are other effects also contributing to the
scaling factor. Nonetheless, the two mentioned explanations are plausible explanations, since these effects
would indeed lead to a larger peak value in the BA-GCE model and would indeed scale with the number
of grating elements.

The effect of the inclusion of the exponential decay of the light intensity in the waveguide becomes appar-
ent from the right figure of figure 4.6. Whereas the peak value of the Flory model results keep increasing
for a higher number of grating elements, the results from the BA-GCE model show asymptotic behaviour
towards a maximum. Similar behaviour was found for the shape of the diffraction peak. For smaller
values of N this was still very similar for all three results. However, for larger values of N (which could
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not be simulated with Lumerical) the FWHM of the peak according to the Flory model kept decreasing,
whereas it approached a minimum value in the BA-GCE model. Intuitively, this asymptotic behaviour is
indeed expected, since the intensity of the light is decreased throughout the grating coupler as a result of
the outcoupling of light. Therefore, less and less light remains in the waveguide, available to be coupled
out. Hence, it is indeed expected that the peak value of the radiated Poynting vector asymptotically
approaches its maximum, which corresponds to the point when all the light in the waveguide has been
coupled out. Moreover, it is expected that the FWHM of the diffraction peak does not keep decreasing,
because at a certain point the grating elements do not radiate sufficient light intensity to have a noticeable
impact on the diffraction peak. Thus, the improvement resulting from the inclusion of the exponential
decay becomes apparent for large grating couplers. Unfortunately, Lumerical FDTD results cannot be
computed for such large numbers of grating elements, since that is too computationally expensive. So,
although the BA-GCE model indeed simulates the expected behaviour correctly, contrary to the Flory
model, the exact asymptotic behaviour cannot be compared with Lumerical. Multiple other examples
of grating coupler parameters, especially for stronger grating couplers, have been investigated to try to
find certain parameters for which the asymptotic behaviour already occurs at smaller number of grating
elements. Indeed it was found that (as expected) for stronger grating couplers, this asymptotic behaviour
was observed at smaller number of grating lines. However, since the BA-GCE model is only valid in
the Born approximation regime, the grating coupler could not be made too strong. Eventually, it was
concluded that the asymptotic behaviour did not start at a smaller number of grating lines than 1000, in
the validity regime of the Born approximation (where a ζ value of 10−2 suggested by Flory was used as
indication). Even for this number of grating lines, the Lumerical simulations were too computationally
expensive, which at the same time underlines the desire for an analytic model that is able simulate large
grating couplers.

Since the scaling factor between the BA-GCE model results and the Lumerical FDTD results has been
extensively discussed, and probable explanations have been proposed, the remainder of this thesis will
work with the radiation spectra normalized to 1, to provide a more intuitive comparison.

4.1.3 Benchmarking BA-GCE extensions

The last step in the benchmarking process of the BA-GCE model is to compare the results of this model
including the extensions options, to Lumerical FDTD. First, the extension of the asymmetric waveguide
structure is benchmarked. Therefore, the asymmetric grating coupler structure, of which the values are
displayed in the results of figures 4.7 and 4.8, is simulated with the BA-GCE model (black curves) and
Lumerical FDTD (red curves). The normalized radiated Poynting vector spectra are computed for the
radiation into the superstrate (figure 4.7) and into the substrate (figure 4.8).

Figure 4.7: Normalized spectra for the radiated Poynting vector (Srad) into the superstrate (left) and a
zoom of the peak with relevant characteristic values (right) following from the two models: BA-GCE

(black) and Lumerical FDTD (red).
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Figure 4.8: Normalized spectra for the radiated Poynting vector (Srad) into the substrate (left) and a
zoom of the peak with relevant characteristic values (right) following from the two models: BA-GCE

(black) and Lumerical FDTD (red).

From these figures it can be concluded that the BA-GCE model is in good agreement with the Lumerical
FDTD results, also for grating couplers with an asymmetric waveguide structure. The values of the peak
position and FWHM are also included in these figures and show that the difference in peak position
normalized to the FWHM is only around 2% for both the substrate and the superstrate. Therefore, this
proves that the asymmetric waveguide extension functions properly.

The second and final step is to assess the performance of the grating period apodization extension,
together with the other adaptations and extensions of the BA-GCE model. Therefore, the grating coupler
structure of the previous investigation is simulated for 51 grating elements with a linearly increasing
grating period from 487.5 nm to 512.5 nm. The results for the normalized radiated Poynting vectors into
the substrate (a) and into the superstrate (b) are shown in figure 4.9. These figures are zoomed in on
the nonzero parts of the normalized radiation spectra.

Figure 4.9: Normalized spectra for the radiated Poynting vector (Srad) into the superstrate (left) and
into the substrate (right) following from the two models: BA-GCE (black) and Lumerical FDTD (red).

The period of the grating coupler is linearly varied from 487.5 nm to 512.5 nm over the 51 elements.

From figure 4.9 it can be concluded that the BA-GCE model is able to correctly simulate radiation
profiles of apodized grating couplers, since the radiation profile from the BA-GCE model is similar in
shape to the Lumerical results. Furthermore, the difference in peak position between the two results
normalized to the FWHM is still below 8%. Hence, the BA-GCE model is within reasonable accuracy for
apodized grating couplers. However, an important remark to be made is that the approximations made
in the BA-GCE model also result in limited validity ranges for apodized grating couplers. The results of
the BA-GCE model deviate more and more from the Lumerical results when the strength of the period
apodization (referring to the difference in period between the grating elements) is increased. This effect is
exemplified by figure 4.10, which presents the simulated results for the same grating coupler as in figure
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4.9 except that the grating period is linearly increased with steps of 1 nm (from 475 nm to 525 nm)
instead of steps of 0.5 nm. The figure indeed illustrates that the results of the BA-GCE model for this
apodization significantly deviate from the Lumerical results. This behaviour can be explained by first
order Born approximation that is applied in the derivation of the BA-GCE model. Since an increase of
the grating period difference will increase the effective refractive index variation between each subsequent
grating element, the fields from the waveguide mode start to deviate more and more between subsequent
elements. Consequently, the error introduced by the first order Born approximation increases, since the
approximation replaces the exact fields in the waveguide grating region (for each element) by the constant
electric field of the unperturbed waveguide. Thus, it is important to take into account that the BA-GCE
model is only valid for limited grating apodization strengths. The quantification of the validity range is
again application-specific and depends on the desired accuracy.

Figure 4.10: Normalized spectra for the radiated Poynting vector (Srad) into the superstrate (left) and
into the substrate (right) following from the two models: BA-GCE (black) and Lumerical FDTD (red).

The period of the grating coupler is linearly varied from 475 nm to 525 nm over the 51 elements.

As mentioned in section 2.2, period apodization can be used to create focusing grating couplers, as
illustrated by equation 2.10. However, a change in the period of the grating coupler also changes the
effective refractive index of the waveguide grating structure, which significantly complicates the design
process of focusing grating couplers with only period apodization. For this reason the above investigation
is not performed on a focusing grating coupler. As also mentioned in section 2.2, the common approach
is that the grating groove width is also adapted to counteract the change in effective refractive index
resulting from the period apodization. Thus, an important step for further improvement of the BA-
GCE model is to allow for varying grating groove widths, such that both period and width apodization
can be used to simplify the focusing grating coupler design process. Period apodization is thus already
incorporated in the current BA-GCE model.

4.2 BA-GCE model results for experimental grating couplers

Besides the theoretical benchmarking of the BA-GCE model, it is also interesting to perform experimental
verification of the model. Therefore, experimental measurements are performed on large grating couplers
TU/e test PIC (discussed in section 2.2.4), and the results are presented in chapter 6. For comparison,
the BA-GCE model results for these experimentally measured large grating couplers will be presented
in this section. However, there is a difficulty in this comparison. The BA-GCE model is developed for
grating couplers that are etched into the waveguide layer, whereas the experimentally measured large
grating couplers are etched into the superstrate. Conversion of the BA-GCE model to a model in which
the grating coupler is etched into the superstrate is theoretically possible, however it would require a
completely renewed derivation. Hence, it is left open for the future to redevelop the BA-GCE model
into a model in which the grating coupler is etched into the superstrate. In this thesis, this difficulty is
circumvented in the best way possible by identifying the equivalent structure where the grating is etched
into the waveguide layer, that results in a similar output profile. This investigation is performed with
Lumerical and the results are provided in appendix B. Thereafter, the equivalent structure is used to com-
pute the radiated spectra of the experimentally measured large grating couplers with the BA-GCE model.
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For the comparison, the normalized radiated electric field intensity is computed with the BA-GCE model
for the three equivalent structures. The three measured grating coupler structures differ in their value for
the FF. The three variants of the large grating couplers have FFs of 0.5, 0.65 and 0.8. The measurements
are performed on the 200 µm long grating couplers, consisting of 333 grating elements (N). In these
measurements the output beam is measured at two distances: 17 mm and 20 mm above the PIC. Hence,
also the BA-GCE model results for the normalized electric field intensity profiles are computed for these
large grating coupler structures at 17 mm and 20 mm. The resulting normalized electric field intensities
for the large grating coupler with FF = 0.65 are shown in figure 4.11. This result is illustrative for the
results of the other large grating couplers with different FF values. They all have a single peak with a
similar shape as in figure 4.11. There are only some minor differences in the positions and FWHM of the
electric field intensity peaks. The values for these peak characteristics for the three different variants at
the two different heights are provided in table 4.1. They will be compared with the experimental results
in section 6.2.

Figure 4.11: Normalized electric field intensities for the equivalent structure of the large grating coupler
with FF = 0.65 at 17 mm (blue curve) and 20 mm (orange curve) above the grating coupler, computed

with the BA-GCE model.

Equivalent grating coupler structure for FF: x (mm)
Peak characteristics

Position z (µm) FWHM (µm)

0.5
17 2516.78 120.701
20 2960.91 142.001

0.65
17 2544.12 120.788
20 2993.07 142.104

0.8
17 2572.14 120.873
20 3026.05 142.203

Table 4.1: Position and FWHM values of the electric field intensity peak for the three different large
grating coupler variants (different FF values) at 17 and 20 mm above the grating coupler (x). The

results are computed with the BA-GCE model applied to the equivalent structures discussed in
appendix B.

4.3 Standard IMOS grating couplers

The standard IMOS grating couplers are used to couple light into and out of the PIC by using angle
polished fibers, as will be explained in more detail in the next chapter. In order to achieve maximum
incoupling and outcoupling efficiencies, the ideal coupling angle of these grating couplers needs to be de-
termined. Hence, in this section the ideal coupling angles of the standard IMOS grating coupler structures
will be determined through accurate Lumerical FDTD simulations. Contrary to the large area grating
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couplers, the standard IMOS grating couplers can be simulated in full scale with Lumerical FDTD sim-
ulations due to their relatively small footprint of 16.5 µm by 15 µm.

The standard IMOS grating couplers are general building blocks of the IMOS platform of the TU/e.
Extensive research has been conducted to find the layer stack for maximum coupling efficiency. This
resulted in the optimum layer stack that is shown in figure 4.12. The layer stack consists of a 300 nm
thick InP waveguide layer on top of the silicon wafer, with a buffer layer in between. This buffer layer
consists of a 1850 nm thick BCB layer (n = 1.54 [13]) in between two 50 nm thick SiO2 layers. Due to
some additional required processing steps for the PIC alignment sensor prototype, the final layer stack will
have a 100 nm thick layer of SiO2 on top of the InP membrane (J.P. van Engelen, private communication,
April 2022). Near the grating groove edges this will result in 70 nm thick SiO2 sidewalls, as shown in
figure 4.12 (J.P. van Engelen, private communication, April 2022). The standard IMOS grating coupler
system consists of a grating coupler and a linear taper. The grating coupler has a uniform period of 660
nm, and 330 nm wide and 120 nm deep grooves. There are 25 grating elements leading to a total length
of 16.5 µm. The width of the grating coupler structure in the third dimension is 15 µm. In order to
convert the standard 400 nm wide waveguide mode into the 15 µm wide mode that enters the grating
coupler, a 250 µm long linear taper is used.

Figure 4.12: Layer stack of the standard IMOS grating coupler on the PIC alignment sensor prototype.
There is a buffer layer of 1850 nm thick BCB, sandwiched between two 50 nm thick SiO2 layers,

between the silicon substrate and the 300 nm thick InP layer. On top of the InP layer is an additional
100 nm thick SiO22 layer which leads to 70 nm wide sidewalls in the grating grooves.

In order to determine the ideal coupling angle for the standard IMOS grating coupler system, the far field
radiation pattern is computed through Lumerical FDTD simulations. The angle at which the radiation
pattern has maximum intensity then provides the best prediction for the ideal coupling angle. Moreover,
since the grating coupler is a reciprocal system, as mentioned in section 2.2, the ideal coupling angle will
be the same for both incoupling and outcoupling.

The standard IMOS grating coupler system can be divided into two parts: the linear taper and the
grating coupler itself. The linear taper is used to convert the 400 nm wide waveguide mode into a 15 µm
wide mode going into the grating coupler structure. Therefore, the linear taper is simulated separately
in a Lumerical MODE simulation [44]. The eigenmode expansion solver tool is used to propagate the
initial waveguide mode, through the linear taper, to the start of the grating coupler. As expected for
the linear taper, the simulations show that most of the light is simply converted into the fundamental
mode for a 15 µm wide waveguide. Therefore, for the purpose of finding the ideal coupling angle of
the system, the assumption can be made that the grating coupler has a perfect fundamental waveguide
mode as input. With this fundamental waveguide mode as input, Lumerical FDTD simulations [9] are
performed to compute the far field radiation pattern of the grating coupler structure. The normalized far
field electric field intensity profile of the three-dimensional (3D) Lumerical FDTD simulation is shown
as a polar plot in figure 4.13. The red arrow indicates the propagation direction of the light through the
waveguide-grating structure and the values refer to the angles of the polar plot in degrees.

The far field intensity profile of figure 4.13 clearly shows an intensity peak at one specific location,
corresponding to the ideal coupling angle. As expected for the symmetric grating coupler structure,
the far field radiation pattern is perfectly symmetric in the y = 0 plane. Moreover, the maximum field
intensity point is also at y = 0, corresponding to an angle of 0◦ with respect to the y-axis, again due to
its symmetry. Consequently, the 3D simulation can be changed into a 2D simulation without losing any
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Figure 4.13: Polar plot of the normalized far field |E|2 profile of the standard IMOS grating coupler,
obtained through 3D Lumerical FDTD simulations [9]. The propagation direction of the waveguide

mode is indicated by the red arrow. The numerical values in the polar plot refer to the angles in degrees.

relevant information on the angle of maximum output intensity, since that is at 0◦ for the y-axis. This
dimensionality reduction will significantly decrease the computational burden of the simulation, thereby
allowing for finer mesh grids, leading to more accurate simulation results. For this reason, the exact
value of the angle with maximum field intensity is determined through 2D Lumerical FDTD simulations
of the standard IMOS grating coupler. Besides the other standard convergence tests, it is important to
compute the angle corresponding to the maximum field intensity for various levels of mesh accuracy, in
order to check if the simulation has converged and to find the final angle value. Figure 4.14 shows the
resulting angle at which the far field has maximum intensity for various levels of mesh accuracy. These
levels of mesh accuracy are defined on the x-axis by the number of mesh cells per wavelength.

Figure 4.14: The angle (in degrees) corresponding to the point of maximum far field intensity, obtained
from 2D Lumerical FDTD simulations [9], versus the number of mesh cells per wavelength.

From figure 4.14 it can be concluded that the simulations have certainly converged for 40 mesh cells per
wavelength and higher. By calculating the mean and standard deviation of the resulting output angles
for this minimum required mesh accuracy, the angle corresponding to the maximum field intensity of the
standard IMOS grating coupler can be determined. This results in:

θmax = (10.19± 0.03)◦. (4.4)

Thus, the ideal coupling angle for the simulated standard IMOS grating coupler structure will be equal
to (10.19 ± 0.03)◦ in the plane perpendicular to the grating lines, and 0◦ in the plane parallel to the
grating lines, due to the symmetry of the structure.
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Chapter 5

Experimental setup

5.1 Experimental setup description

Another important part of this research project is to completely prepare the experimental setup for
the upcoming measurements on the PIC alignment sensor prototype. In addition, its the beam profile
measurement capabilities are demonstrated by the calibration measurements on the angle polished fibers
and by the measurements on the large grating couplers, which will be presented in chapter 6. First,
the experimental setup will be discussed in more detail in this chapter. The experimental setup was
designed, initially built and calibrated by M.R. Otto. Due to a scheduled movement to a new location,
it was disassembled and built up again in this research project. Furthermore, some small adjustments
(fiber rotator and motorized goniometer under wafer sample stage) are made to the setup, which clarifies
the small differences between this experimental setup description and the thesis of M.R. Otto [7]. Due to
the reconstruction of the experimental setup, some additional calibrations are performed, which will be
discussed in this section. In addition, an extensive procedure to receive the so-called ”green label” for the
experimental setup has been followed. This green label indicates that the experimental setup fulfills all
the requirements for safe operation, according to the general European and ASML safety standards. The
green label approval process starts with a risk assessment of the setup. Afterwards, a detailed operation
manual and electric scheme have to be made. Lastly, the experimental setup needs to pass the electrical in-
spection, after which the safety of the experimental setup can be approved and the green label is received.

The experimental setup that is used in this research project is shown in figures 5.1 and 5.2. The proce-
dures of the measurements that can be performed with this setup will be explained in the next section,
first the setup will be described. The experimental setup is build on top of an optical table and inside a
cleanroom area to operate in a vibration free and clean environment. Figure 5.1 shows the front view of
the experimental setup. The tunable laser source is a Santec TSL-550 with tunable wavelengths in the
infrared (IR) range (1480-1630 nm), and it is indicated with number 1. Number 2 refers the photode-
tector, also in the IR wavelength range, and the photodiode amplifier. The photodetector is a Thorlabs
DET10C2 and the amplifier is a Thorlabs PDA200C. Close up pictures of the breadboard setup, which
is in the middle of figure 5.1, are shown in figure 5.2. In this figure, number 1 again indicates the tunable
laser source. The visible light camera system is indicated with number 3 and consists of the Basler
acA4112-8gm camera connected to a 12x zoom lens on top of mutually orthogonal manually adjustable
stages. Number 4 indicates the IR camera system, consisting of the IR camera (Raptor Photonics NX1.7-
VS-CL-640) with a microscope unit and a near IR objective. This objective has a 50x magnification,
a focal length of 200 mm and a depth of field of 0.65 µm. The field of view (FoV) of this camera sys-
tem is 192 µm by 154 µm. The IR camera system is attached to a vertical motorized stage (Newport
TRB25CC), to accurately control the height of the camera. This assembly is screwed on top of a manual
dual axis stage, which is then attached to a vertical breadboard. The fiber rotator stage is indicated by
number 5 and consists of a Newport optical fiber rotator (466A-717), which clamps the fiber, on top of a
manual goniometer (Thorlabs GN05/M), both providing one rotational degree of freedom. This assembly
is put on top of a triple axis manual stage to control the three translation degrees of freedom. There
is a fiber rotator stage on either side of the setup, one to couple light into the PIC and the other one
to couple light out of the PIC. For the incoupling of light, the fiber is connected to the tunable laser
source (1). The light that is coupled out of the PIC can be connected to the photodetector and amplifier
(2) to measure the output signal. Number 6 indicates the wafer sample stage consisting of a motorized
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vertical lift stage (Zaber X-VSR20A), with a motorized double goniometer (Thorlbas GNL20/M-Z8) and
a SmarAct piezo element assembly on top. The piezo element assembly consists of two translational piezo
elements, with an absolute accuracy of 30 nm and a resolution of 1 nm, and one rotational piezo element
with a resolution of 1 µrad [7]. This way, all six degrees of freedom (translational and rotational) of the
wafer sample stage are motorized. The wafer sample is eventually glued onto a glass scale plate (Thorlabs
R1L3S1P), which is clamped between the two cylinders of the piezo element assembly, as shown in figure
5.2. Furthermore, an additional white light source, indicated by number 7, is integrated in the setup to
aid in the alignment procedure. Lastly, the small blue star in figure 5.2 indicates the custom-made chuck
for holding the PIC. It is connected to a vacuum source to suck the PIC to the bottom of the chuck. The
PIC chuck is placed on top of a manual dual axis translation stage to extend the range over which the
PIC can be measured. For more details on all the individual components a reference is made to the thesis
of M. R. Otto [7], since this thesis is completely devoted to the design, construction and calibration of
the experimental setup.

After construction of the experimental setup, it is crucial that the elements of the setup are accurately
aligned with respect to each other. As described in his thesis [7], multiple setup calibrations are already
executed by M.R. Otto. Still, some additional calibrations are performed in this research project. For the
purpose of this project, it is crucial to accurately align the plane of the IR camera system to the plane of
the PIC chuck and to align the translational travelling directions of the IR camera to the plane of the PIC
chuck. Firstly, the translational travelling directions are accurately aligned by using a spirit level and
inserting thin slices of aluminium shim stock at specific positions underneath the two manual stages of the
IR camera system, to make it level in both directions. Since the PIC chuck was already level, its position
and orientation remains unaltered. Secondly, the planes of the IR camera and the PIC chuck are aligned
by bringing the complete FoV of the IR camera into focus. This is achieved by inserting shim stock
underneath the three bolt locations where the 90 degrees bracket of the IR camera system is attached
to the two manual translation stages. After completion of this time consuming alignment process, it is
ready to be used in measurements. Yet, before the actual measurements are performed, it is important
to perform the fiber calibration measurements. The results of these fiber calibration measurements
are presented and discussed in section 6.1. They are used to determine the desired orientation of the
fiber rotator stages for maximum light coupling, as will be explained in the next section. Furthermore,
in the fiber calibration measurement the absolute rotation angle is calibrated to the scale of the fiber
rotator. This is simply achieved by determining the value of the fiber rotator scale corresponding a 0◦

or 180◦ rotation angle of the fiber, with the use of the visible light camera system. Additionally, the
experimental setup has been completely prepared for the measurements on the PIC alignment sensor that
were part of the initial plan for this research project. Therefore, all the individual components of the
setup are connected to their power supplies and control equipment. The associated software programs
are downloaded and a correct operation of the individual components, through the software, has been
achieved and verified. Detailed instructions on how to operate the experimental setup, including the
software programs, have been written and shared with the future users of the setup. This will allow for
immediate performance of the characterization measurements on the PIC alignment sensor prototype,
once it is delivered. After these additional calibrations and preparations of the experimental setup, the
actual measurements can be performed. The next section will elaborate on these measurement procedures
and how the setup is used to perform them.
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Figure 5.1: Front view of the experimental setup. In the middle of the figure the breadboard setup, for
which close up images are shown in figure 5.2. On the sides of the breadboard setup are the tunable

laser source (1) and the photodetector and amplifier (2).

Figure 5.2: Side views of the experimental setup, where the numbers refer to the following components:
tunable laser source (1), visible light camera system (3), IR camera system (4), fiber rotator stage (5),
wafer sample stage (6) and white light source (7). The blue star marks the vacuum sucked PIC chuck.
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5.2 Experimental measurement procedure

The experimental setup is designed to perform two main types of measurements: beam profile measure-
ments and alignment scans. As mentioned before, the initial plan was to perform measurements on the
PIC alignment sensor prototype, which would also include alignment scans. However, since measure-
ments could only be conducted on the large grating couplers of the TU/e test PIC, only the beam profile
measurements are actually performed in this research project. Hence, the beam profile measurement
procedure will be extensively described in this section, whereas the alignment scan procedure is only
briefly mentioned to illustrate the capabilities of the setup. Before these two measurement procedures
are discussed, some additional information is provided on the fibers used to couple light into and out of
the PIC.

5.2.1 Angle polished fibers

Since the IR camera system takes up the space above the PIC chuck, the light from the fibers should
be coupled into the PIC horizontally. Therefore, angle polished fibers are used. Due to total internal
reflection (TIR) of the light travelling in the core of the fiber at the cleaved facet, an output beam is
produced from these angle polished fibers. In order to achieve the required TE polarization, the angle
polished fiber should be coupled to the standard IMOS grating coupler according to the configuration
in figure 5.3a. In this figure ω is defined as the tilt angle of the fiber rotator stage. Furthermore, the
relative rotation angle of the fiber is referred to as the angle of incidence (AoI). The value for AoI is
determined by the Lumerical FDTD simulations of section 4.3, corresponding to the ideal coupling angle
of the standard IMOS grating coupler. Thus, in order to achieve maximum coupling, the relative rota-
tion angle of the fiber rotator stage is set to this value of AoI. The angle θout in figure 5.3a refers to the
output angle of the fiber, which is determined from the measurements in section 6.1. In summary, the
value for AoI is determined from the simulations in section 4.3 and the value for θout is determined from
the measurements in section 6.1, meaning that only the tilt angle ω still needs to be determined. The
required value for this angle can be determined from its relation with the other two angles.

Consider figure 5.3b in which the configuration of figure 5.3a has been converted into vector notations.
The angle θout can be determined from the dot product of the two vectors ~a and ~b, as illustrated in figure
5.3b. For simplicity, the length of both vectors are set to 1, yielding

~a ·~b = |~a|
∣∣∣~b∣∣∣ cos (θout) = cos (θout). (5.1)

The dot product is defined as the sum of the multiplication of the respective components:

~a ·~b = axbx + ayby + azbz. (5.2)

The vector components can be determined from the two right figures in figure 5.3b, while using the fact
that the length of the vectors is equal to 1. Simple trigonometric calculations then lead to equations 5.3
and 5.4 for the vector components.

~a =

axay
az

 =

 sin (AoI)
0

− cos (AoI)

 (5.3)

~b =

bxby
bz

 =

 0
− cos (ω)
sin (ω)

 (5.4)

After substitution of these vector components into equation 5.2, the dot product can be simplified into:

~a ·~b = − cos (AoI) sin (ω). (5.5)

Finally, from equations 5.1 and 5.5, the relations between the three different angles can be determined:

cos (θout) = − cos (AoI) sin (ω). (5.6)

This leads to the following expression for the undetermined tilt angle ω:

ω = arcsin

(
−cos (θout)

cos (AoI)

)
(5.7)
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Thus, this equation is used to determine the value for ω corresponding to the values for AoI (determined
in section 4.3) and θout (determined in section 6.1).

(a) Configuration of the angle polished fiber with
output beam incident on the standard IMOS grating

coupler, including the definitions of the various angles.
Adapted from: [7]

(b) Vector notation of the angle polished fiber
configuration.

Figure 5.3: Angle polished fiber configuration

5.2.2 Beam profile measurements

In general, the first step in beam profile measurements of grating couplers is to couple light into the
waveguide of the grating coupler structure that is to be measured. Therefore, one of the angle polished
fibers is connected to the tunable laser and the fiber is aligned to the relevant input standard IMOS
grating coupler on the PIC. As mentioned in the previous section, the rotation angle of the fiber is set
to the value of AoI determined from the simulations of section 4.3. Subsequently, the tilt angle of the
fiber ω is set to the value calculated with equation 5.7, which also requires the results from the fiber
measurements (section 6.1). When these angles are set to their specific values, the rotational degrees of
freedom of the fiber rotator stage are fixed and the next step is to align the fiber to the standard IMOS
input grating coupler in the three translational degrees of freedom. Therefore, the visible light camera
system is used. With the additional white light source on, the visible camera system provides a view of
the PIC and the fiber under an angle of 45◦. Hence, by bringing the fiber close to its reflection, it can
be positioned just above the standard IMOS input grating coupler. An example of this configuration
is shown in figure 5.4. The subsequent step is the positioning of the IR camera system above the large
grating coupler that is to be measured. By using the two manual stages and the motorized height stage
of the IR camera system, the PIC plane with the large grating coupler can be brought into focus. After
that, the additional white light source is switched off. If the tunable laser source is then switched on at
the right wavelength, the output beam of the large grating coupler is captured by the IR camera system.
By slightly adjusting the in plane positions of the fiber rotator stages, the fiber-to-chip coupling can
be optimized to obtain maximum signal. If maximum signal is obtained, the output beam of the large
grating coupler is measured in the PIC plane, which is the starting point of the measurement, defined as
x = 0. Subsequently, the height of the IR camera system (x) is increased in small steps (typically 5 µm),
with the motorized height stage. After each small increment, the image of the IR camera is captured and
saved for analysis. In the analysis beam profile images can be made, from which the beam characteristics,
such as the output angle, can be determined.
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Figure 5.4: An image, captured by the visible light camera system, of the optical fiber in the aligned
position. The fiber (top) is brought close to its reflection (bottom), above the standard IMOS grating

coupler (red square).

In addition to the measurements on the large grating couplers, beam profile measurements are also
performed on the angle polished fibers in order to determine their output angles. The output angles are
needed in the calculations for the ideal fiber rotator angles that maximize the coupling. The procedure
for beam profile measurement on the fibers is almost identical to the procedure described above, except
for the first part. The beam profile measurements of the angle polished fibers start by a reconfiguration
of the visible light camera system. The position and orientation of the visible light camera is temporarily
changed to align the camera in the horizontal plane, for which a spirit level is used. The tilt angle of the
fibers are then adjusted to have the fibers positioned completely horizontal, as accurate as possible. The
minimal tilt angle that might still be present in the end can be estimated by simple pixel counting of the
camera image, and the measurement results can be corrected for this. After the tilt angle is fixed to have
the fiber as horizontal as possible, the fiber is rotated until the tip of the angle polished fiber is exactly at
the top side, such that the output beam is directed straight up to the IR camera system. Subsequently,
the IR camera system is focused on the tip of the angle polished fiber, which is the starting point of the
measurement in this case (x = 0). The remainder of the beam profile measurement is then similar as
for the measurement on the grating couplers, meaning stepwise increasing the height of the IR camera
system and capturing the images for analysis. It can be verified that the rotation angle is set correctly,
by checking if the output beam is not moving sideways while increasing the height.

5.2.3 Alignment scan

As mentioned before, the initial plan of performing alignment scan measurements on the PIC alignment
sensor prototype could not be executed. For this reason the alignment scan procedure is only briefly
discussed, although the complete procedure is complex and extensive. For a description of the complete
procedure a reference is made to the thesis of M.R. Otto [7].

In the alignment scan measurement, the tunable laser source is connected to one of the angle polished
fibers. This fiber then couples light into the waveguide connected to the emitting grating coupler. As a
result, a focused Gaussian beam is emitted from the emitting grating coupler on the PIC towards the IR
camera system. Hence, the IR camera system can be used to check the characteristics of the output beam
of the emitting grating coupler. Moreover, the tunable laser source can also be connected to the output
fiber that is coupled to the output of the beam combiner. This way, both capturing grating couplers will
emit a focused Gaussian beam. By blocking the output beam from one of the capturing grating couplers,
the characteristics of the output beam of one capturing grating coupler can be determined. Then the
characteristics of both the emitting and capturing grating couplers can be compared with the design to
verify if they comply with the designed characteristics. Thereafter, the wafer sample with the alignment
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marks, which is glued to the bottom of a transparent glass plate, is slid above the PIC at the correct
location. However, in order to determine the required position of the alignment marks, an additional
calibration step needs to be performed first. Therefore, the glass plate is mounted in reverse position,
such that the alignment marks face the IR camera. The position of the alignment marks with respect to
certain scale marks on the transparent glass plate are then determined with the IR camera. After this
calibration measurement the glass plate position is reversed again, such that the alignment marks face
the PIC. This calibration measurement is used to determine the exact position of the alignment marks
relative to the scale marks on the glass plate, which are visible from either side.

Subsequently, the IR camera is focused on the center of the PIC and moved up by 10 mm. Then, with
the calibration measurement the alignment marks can be positioned in focus of the IR camera. This way,
the alignment marks are exactly at the right position, such that it diffracts the Gaussian beam from the
emitting grating coupler onto the capturing grating couplers. The diffracted orders are captured by the
capturing grating couplers on the PIC. As described in section 2.1, both diffracted orders are interfered
on the PIC, resulting in the output signal at the output standard IMOS grating coupler. This signal
is coupled to the other angle polished fiber. The signal of the fiber is then measured by connecting it
to the photodetector, which is connected to the amplifier. In order to determine the alignment signal,
the output signal of the amplifier needs to be stored over time. To enable this data storage over time,
an additional compact oscilloscope is arranged. By connecting the amplifier output to this PicoScope
2205A oscilloscope, the alignment signal can be recorded over time, with the associated PicoScope 6
software [45]. This way, the alignment signal can be measured while translating (scanning) the wafer
sample in one direction. Finally, if the PIC alignment sensor works as expected, the alignment marker
position can be determined from analysis of the alignment scan signal. As elaborated by M.R. Otto, the
performance of the PIC alignment sensor is quantified by the repeatability of the distance measurement
between two alignment marks that are 10 mm apart [7]. With the current experimental setup the expected
repeatability of this distance measurement is ± 4.3 nm at maximum. This value arises from possible errors
in marker position and orientation. For example, the accuracy in the height of the IR camera is verified to
be 18.8 µm at maximum [7], which can translate into errors in the height position of the alignment marks
of this order. Furthermore, the tilt accuracy of the wafer sample holder is 2 mrad, which also translates
into an uncertainty in the orientation of the alignment marks with respect to the PIC. All possible error
sources and their effects on the repeatability of the alignment scan are extensively discussed in the thesis
of M.R. Otto [7]. It is beyond the scope of this research project to provide more details about the
alignment scan measurement, since it could not be performed in this project. As mentioned at the start
of this section, for all the information on the alignment scan measurement, a reference is made to the
thesis of M.R. Otto [7].
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Chapter 6

Experimental results and analysis

In this research project, two different beam profile measurements are performed with the experimental
setup discussed in the previous chapter. Beam profile measurements are performed on the angle polished
fibers which are used to couple light in and out of the PIC. Additionally, radiation profiles of the large
grating couplers on the test PIC from the TU/e, introduced in section 2.2.4, are measured. The results
of these two measurements are presented and analyzed individually in the two sections of this chapter.

6.1 Angle polished fibers

In order to couple light into and out of the PIC with the highest possible efficiency, the fibers need to be
optimally aligned to the standard IMOS grating couplers. Therefore, it is important to accurately measure
the output beam profiles of the angle polished fibers. Since there are two fibers needed to simultaneously
couple light into and out of the PIC, both of them need to be characterized. In the remainder of this
thesis, the input fiber refers to the fiber clamped in the right rotator (seen from figure 5.1) and the output
fiber refers to the fiber clamped in the left rotator. The procedure for the characterization measurements
is described in section 5.2.2. The images of the fibers, captured by the visible light camera system, for
this measurement configuration, are shown in figure 6.1.

(a) Input fiber (b) Output fiber

Figure 6.1: Images of the angles polished fibers in their characterization measurement position,
captured with the visible light camera system.

Since the visible light camera system is horizontally leveled for this measurement by using a spirit level,
it can be concluded from figure 6.1 that the fiber still has a minimal tilt angle. This tilt angle can be
determined from primitive pixel counting of the edges of the fibers in these images. Therefore, the pixel
coordinates of numerous points on both edges of the fibers are determined. This can be done within an
uncertainty of approximately 2 pixels with the particular zoom factor of figure 6.1. Thereafter, a linear
fit is made through these coordinates to determine the slope of the edge, from which the tilt angle can
be determined. The results of both edges are then combined to obtain the final value for the tilt angle
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with its associated uncertainty, resulting in:

Input fiber: ω = (0.41± 0.03)◦ (6.1)

Output fiber: ω = (−0.32± 0.03)◦ (6.2)

The used sign convention in this case is that the tilt angle ω is defined positive when the fiber tip is tilted
upwards with respect to the perfect horizontal position. Furthermore, it is important to mention that in
these results it is assumed that the visible light camera system is perfectly horizontally leveled.

For the next step in the accurate characterization of the fiber output beams, the IR camera system is
used to perform the beam profile measurements, for which the results are shown in figure 6.2. This figure
shows the beam widths at each measured height location of the IR camera (x). The beam width is again
defined as the points with an intensity higher than 1/e2 of the maximum intensity of that height slice.
In this figure, the red arrows indicate the propagation direction of the light inside the fiber.

(a) Input fiber (b) Output fiber

Figure 6.2: Fiber beam widths at different heights (x) above the fiber tip. The red arrows indicate the
direction of light propagation inside the fiber.

Figure 6.2 thus provides an accurate representation of the beam propagation out of both fibers. Yet, the
results are still discretized (sliced) in the height direction. In order to provide a more intuitive representa-
tion of the beam propagation, the discretized height measurements can be interpolated to show the beam
propagation in the x-z plane in figure 6.3. Since the fibers are positioned in such a way that the output
beam goes straight up, the movement of the beam in the y-direction should be negligible. This is indeed
found to be the case when the effects of vibrations and air flows are minimized by reducing the length of
the unsupported part of the fiber, which is simply achieved by repositioning the fiber in the fiber rotator.
The 2D beam propagation images of figure 6.3 are obtained by interpolating the slices at the y-position of
the beam center. Again the red arrows in this figure indicate the direction of light propagation in the fiber.

These beam characterization measurements can be used to accurately determine the beam output angles
of both fibers. Figure 6.3 already provides the visualization of this output angle. However, to determine
this angle in the most accurate way, the measured intensity profiles of the height slices (figure 6.2) are
used. A 2D Gaussian function is used to fit the beam width profiles in order to determine the center
position of the beam for all the slices. The final results of this fit procedure are shown in figure 6.4.
These figures show the height of the IR camera system focus point above the fiber tip (x) versus the
center position in the z-direction resulting from the fit procedure. Subsequently, by fitting a simple linear
equation to both figures, the following fit results are obtained:

Input fiber: x = (417.6± 0.5) µm− (3.956± 0.006) µm · z (6.3)

Output fiber: x = (−137.6± 0.4) µm + (3.368± 0.008) µm · z (6.4)
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(a) Input fiber (b) Output fiber

Figure 6.3: Beam propagation out of the fibers in the x-z plane at the center position in the y-direction.
The red arrows indicate the direction of light propagation inside the fiber.

(a) Input fiber (b) Output fiber

Figure 6.4: Height of the focus point of the IR camera system above the fiber tips (x) versus the center
position of the beam in the z-direction resulting from the slice measurement fits. Although the

uncertainties in both directions are included in the figure, they are not visible due to their small sizes. A
linear fit is made through the data points, with the resulting formulas provided in equations 6.3 and 6.4.

The gradient of the linear fits through figure 6.4 can be converted into the beam output angle, which is
defined as the angle between the fiber axis and the output beam, as illustrated in figure 5.3a by θout.
Hence, the output angle is equal to 90 ◦ plus the angle that the output beam makes with the normal
to the fiber axis. However, as mentioned before, the fibers still have a minimal tilt angle, which is also
visible in figure 6.1. Consequently, the measured output angles are corrected for these tilt angles to
find the actual value for θout. The final values for the output angles of both fibers resulting from these
measurements are:

Input fiber: θout = (104.59± 0.05)◦ (6.5)

Output fiber: θout = (106.21± 0.07)◦ (6.6)

These values are then used to maximize the coupling efficiency of light into and out of the PIC with these
specific fibers. As elaborated in section 5.2.1, this beam output angle result are used in combination with
the results for the AoI of section 4.3 to determine the determine the exact values for all rotational degrees
of freedom of the fibers. The rotation angle of the fiber rotator stages needs to be fixed to the value of
equation 4.4. Substitution of this value of AoI and the values for θout from equations 6.5 and 6.6 into
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equation 5.7, then yields a tilt angle of the fiber rotator stages for maximum light coupling of:

Input fiber: ω = (14.83± 0.08)◦ (6.7)

Output fiber: ω = (16.5± 0.1)◦ (6.8)

Additionally, the beam output angle values can be converted into a value for the polished angle of the
fibers. The calculation behind this conversion is provided in appendix C and it eventually leads to the
following values for the polished angles of both fibers:

Input fiber: θfiber = (39.98± 0.02)◦ (6.9)

Output fiber: θfiber = (39.43± 0.02)◦ (6.10)

These values for the polished angles of the fibers are in agreement with the specifications of the manu-
facturer: that the fibers have a polished angle of (40.5± 1.5)◦.

6.2 Grating coupler beam profiles

The procedure for the beam profile measurements ,discussed in section 5.2.2, is also applied to the large
grating couplers on the TU/e test PIC. The purpose of this measurement is twofold: it will demonstrate
the capability of the experimental setup to perform beam profile measurements on large grating couplers
and the measured profiles can be compared with the results of the BA-GCE model presented in section
4.2. The beam profile measurements are performed on the 200 µm long uniform grating couplers with
FFs of 0.8, 0.65 and 0.5. The input fiber is aligned to the standard IMOS input grating coupler by
maximizing the signal out of the standard IMOS output grating coupler, as discussed in section 5.2.2.
In this step, the IR camera is focused on the standard IMOS output grating coupler and this position is
taken as the starting point in y and z for the beam profile measurement. In addition, the beam that is
coming out of the standard IMOS output grating coupler is blocked by a piece of black paper attached
to the bottom of a micropositioner in order to prevent this signal from interfering with the output beam
of the large grating coupler. Thereafter, the IR camera is moved up by the motorized actuator by 17 or
20 mm for the two different measurements. Through translation of the manual IR camera stage and by
combining all the images, the final beam profiles at a certain height above the PIC can be determined.
Accurate alignment of the FoV plane and the translation plane of the IR camera system to the PIC, as
discussed in section 5.1, is crucial. The experimental results for the large grating coupler with FF = 0.65
are shown in figure 6.5.

Figure 6.5: Experimentally measured beam profiles of the large grating coupler with N = 333 and
FF = 0.65, at 17 mm (left) and 20 mm (right) above the PIC. The red arrow refers to the propagation
direction of the light in the waveguide and in the large grating coupler. The small red line indicates the

landmark point: the transition from waveguide to standard IMOS output grating coupler (see figure
2.7).
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The axes values in figure 6.5 are with respect to the origin, which is defined at start of the first grating
groove. These values are determined from the landmark point, which is the transition point from the
waveguide to the standard IMOS output grating coupler, which is indicated by the small red line in
figure 6.5. The position of this landmark point is determined from the IR camera image captured at
the starting position. From the PIC layout it is known that the distance between the start of the first
grating groove and the landmark point is 1854.7 µm. This way, the axes values with respect to the
origin can be determined, which makes the coordinate system identical to the one in the BA-GCE model
(with z0 = 0), thereby simplifying the comparison between both results. The resulting beam profiles
for the large grating couplers with the other two FF values are similar, as was the case in section 4.2.
The measured beams all have a wide peak width in the y-direction and only a limited peak width in the
z-direction. This is as expected from the paper of Y. Wang et al. [36], since this is the purpose of the
designed beam steerer devices. Moreover, the z-direction is also the direction of interest for the model
comparison due to the 2D nature of the BA-GCE model.

The output beams from the large grating couplers can be fit with a Gaussian function according to the
paper of Y. Wang et al. [36], for which the test PIC was specifically designed and characterized. The
fit of this Gaussian function to the center slice of the beam profile measurements results in the peak
characteristic values that are presented in table 6.1. For comparison, this table also includes the results
from the BA-GCE model of section 4.2. From table 6.1 it can be concluded that significant differences
exist between the measured intensity profiles and the BA-GCE model intensity profiles.

Grating coupler FF x (mm)
Peak characteristics

Experimental measurements BA-GCE model
Position z (µm) FWHM (µm) Position z (µm) FWHM (µm)

0.5
17 2160 ± 2 196 ± 4 2516.78 120.701
20 2544 ± 2 187 ± 3 2960.91 142.001

0.65
17 2192 ± 1 145 ± 3 2544.12 120.788
20 2573 ± 2 161 ± 5 2993.07 142.104

0.8
17 2214 ± 2 134 ± 3 2572.14 120.873
20 2609 ± 2 201 ± 5 3026.05 142.203

Table 6.1: Values for the peak position and FWHM of the field intensity profiles at 17 and 20 mm
above the PIC for the three different large grating coupler variants (different in FF). The table includes

the experimental results and the results from the BA-GCE model as introduced in section 4.2.

The experimental measurement results are computed by assuming that the captured images are precisely
aligned. However, since the minimum scale reading of the manual translation stage of the IR camera
system is only 10 µm, it is expected that this will not be the case. The resolution of the translation stage
could easily be improved by controlling it with a high resolution motorized actuator. Nonetheless, the
manual translation of the current stages would only result in additional inaccuracies of a few µm, thus
it does not explain the large differences observed in table 6.1. Another issue which reduces the quality
and accuracy of the measurements, is the presence of interference features in the beam profiles. It can
be seen in figure 6.5 that there are multiple interference patterns visible in the measured beam profiles.
Similar interference effects are also visible in the measured beam profiles of the large grating couplers
with the other two FF values. There are two different types of interference patterns which also have
different causes. In figure 6.5, interference rings and interference lines can be identified. Although the
interference rings appear to have an elliptical shape in figure 6.5, they are circular, as the ellipticity is
simply caused by the difference in aspect ratio of the two axes. The interference rings should be caused
by the IR camera system, because they always appear at the exact same position in the IR camera image.
Therefore, there are two probable causes for these interference rings. Firstly, interference rings can be
caused by the presence of dust particles on the objective of the IR camera system. Even though the setup
is in the cleanroom environment, dust particles can enter the room through humans or it might have
happened during the movement of the experimental setup. Secondly, the interference rings can be caused
by the interaction of the light with the cover glass of the IR camera sensor. Thus, in order to minimize, or
ideally completely eliminate these interference rings, the IR camera objective should be cleaned to remove
dust particles. This requires dedicated cleaning equipment, which was unfortunately not yet available or
operational during this project. If this objective cleaning does not eliminate all the interference rings,
the cover glass of the IR camera sensor should be removed. However, this is a challenging operation with
high risk of damage. Another obvious solution would then be to arrange a new IR camera system.
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Besides these interference rings, the beam profile measurements also show straight interference lines.
These interference lines are caused by the interference of the output beam of the large grating coupler
with another beam. As mentioned before, the beam out of the standard IMOS output grating coupler
is blocked, so that cannot cause the interference lines. Instead, the interference lines are caused by the
reflected light of the input fiber. Since a different standard IMOS input grating coupler is used in the
TU/e test PIC compared to the one on the PIC alignment sensor, the calculations for ideal light coupling
into the PIC (which are made in the previous section) are not valid for the test PIC. Furthermore, due to
the 45◦ orientation of the visible light camera system, it is difficult to determine the exact height of the
fiber above the standard IMOS input grating coupler. For these reasons, the established coupling between
the input fiber and the standard IMOS input grating coupler will not be ideal. Hence, reflection of the
light from the input fiber on the standard IMOS input grating coupler will occur. These reflected beams
will then interfere with the output beam of the large grating couplers, causing interference lines in the
measured IR camera images. The fact that the interference line pattern changes when the position of the
input fiber is adjusted, supports this explanation. Evidently, this effect can be minimized by maximizing
the coupling between the fiber and the standard IMOS input grating coupler. Therefore, the outcouple
angle of this specific standard IMOS input grating coupler should be accurately measured, as well as
the output angle of the specific fiber, as in section 6.1. Then, the calculations in this thesis can be used
to achieve maximum coupling efficiency. However, due to an insufficient amount of time, and since the
PIC alignment sensor will have different standard IMOS grating couplers, this advanced investigation is
not performed in this research project. The limited resolution of the manual translation stage and the
presence of the interference patterns both reduce the quality and accuracy of the final results. Yet, it is
still important to analyze these results in more detail.

From the peak positions of table 6.1, the beam output angles of the grating couplers can be determined.
Simple trigonometric calculations lead to the beam output angles provided in table 6.2. The table includes
two different values for the beam output angle of the experimental measurements: one value is calculated
from the peak positions at 17 mm and the other value is calculated from the peak positions at 20 mm.
For the BA-GCE model only one value is provided, since every position results in the same angle in that
case.

Grating coupler FF
Beam output angle (◦)

Experimental measurements
BA-GCE model

From position at x=17 mm From position at x=20 mm
0.5 7.241 ± 0.007 7.249 ± 0.006 8.421
0.65 7.347 ± 0.004 7.331 ± 0.006 8.511
0.8 7.420 ± 0.007 7.432 ± 0.006 8.604

Table 6.2: Beam output angles from the large grating couplers determined from the results of table 6.1.
The beam output angles resulting from the experimental measurements are calculated from the

measured positions at the two different distances (17 and 20 mm) and only a single output angle results
from the BA-GCE model.

The two values for the output angle following from the experimental measurements are consistent, consid-
ering that the small differences between them can be caused by the two effects discussed in the previous
paragraph. Since both experimental measurements (at 17 and 20 mm) are independent of each other, it
can be concluded from the consistency of the results that the large differences in peak position values
in table 6.1 are caused by a difference in the output angle between the experiment and the model. The
most probable explanation for this observed difference in the output angle is that there are deviations
of the actual fabricated structure from the initial design. The equivalent structure that is inserted in
the BA-GCE model is based on this design and according to the grating equation for uniform grating
(equation 2.11), the initial design indeed has an output angle close to 8.5◦. Therefore, the measured
structure must deviate from the initial design to result in a different output angle. According to the
grating equation, the observed difference in output angle of table 6.2 can, for example, already be caused
by a deviation of the grating period of less than 5 nm from the designed period of 600 nm. Indeed, it
is possible that fabrication and processing steps lead to deviations of the grating parameters compared
to the initial design, thereby changing the effective refractive index, which will also change the output
angle according to equation 2.11. Another observation in support of this explanation is obtained from the
results of Y. Wang et al. [36]. In this paper, which measured the same large grating coupler structures,
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the intensity peak of the 2000 µm long grating coupler with FF = 0.8 is measured at approximately
10.9◦, for a wavelength of 1550 nm. Since the number of grating lines only has a negligible effect on the
peak position, a similar output angle would be expected for the 200 µm long variant. However, both
the experimental results as well as the BA-GCE model results lead to a significantly different output
angle. This proves that there are variations within the large grating coupler structures over the PIC
cells. Furthermore, another finding in support of this explanation is that the experimentally determined
output angles increase for grating couplers with higher FF values, with a similar fraction as according to
the BA-GCE model. This hints at the existence of structural deviations from the initial design, since all
three grating coupler variants have a similar difference in output angle with the model.

Moreover, a diverging beam is expected to be emitted from uniform grating couplers, meaning that the
FWHM should increase with the height, as in the BA-GCE model results. However, this is not the case
in the experimental results for the grating coupler with FF = 0.5, which is therefore unexpected. Since
it is a rather small difference, it can still be caused by the reduced quality of the results due to the
limited resolution of the IR camera translation stage and especially due to the interference effects. The
unexpected large relative spread in the FWHM values compared to the model results also indicated a
reduced quality of these parameter values, since such a spread is not present in the peak position results.
Furthermore, also for this parameter, a deviation of the fabricated structure from the initial design can
cause these differences.

Another weakness of this experimental verification is that the BA-GCE model results are calculated in-
directly, by first finding an equivalent structure with Lumerical, as explained in section 4.2 and appendix
B. This is currently the best available alternative to circumvent the problem that the model is developed
for grating couplers that are etched into the waveguide layer only. Although this is the best alternative, it
makes the assessment of the model in this way rather questionable. Since the equivalent structure is based
on the results of Lumerical simulations, it can be argued that this assessment is more about comparing
Lumerical simulations with experimental results. Thus, the found differences in the peak characteristics
indicate a difference between Lumerical results and the experimental results. Probable explanations for
these observed differences are already provided in the discussion above.

Overall, it is hard to draw explicit conclusions about the performance of the BA-GCE model based on
this experimental verification, neither positive nor negative assessments. There are two main reasons
for this conclusion. Firstly, the results indicate differences between the actual measured large grating
coupler structures and the simulated ones. Secondly, the comparison with the model is indirect, since it
is based on Lumerical results. Fortunately, besides the aforementioned ways to improve the accuracy of
the translation stages and to minimize the interference effects, there are alternative ways to improve the
reliability of experimental comparisons to the BA-GCE model in the future. For example, an extensive
inspection of the measured large grating couplers can be performed to verify grating parameter values.
This would require high resolution microscopy equipment, such as electron microscopes. This way, the
model can be made to simulate exactly the same structure as the one which is measured. In addition,
large grating couplers with their gratings etched into the waveguide layer can be fabricated to avoid the
additional complicating step of finding equivalent structures for the BA-GCE model. Then, the model
could be used to simulate the measured structure directly. Lastly, it is surely a recommendation for further
improvement of the BA-GCE model to develop a variant which is able to simulate radiation patterns of
grating couplers etched into the superstrate layer. This would also avoid the equivalent structure step
and thereby provide direct comparison with the experimental results. It is strongly recommended to
follow one or more of these suggestions for improvement, such that a reliable experimental verification of
the BA-GCE model can take place.
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Chapter 7

Conclusions and outlook

BA-GCE model

In this research project, the novel analytic BA-GCE model has been developed. It is derived by improv-
ing and extending Flory’s model [1], which models the grating coupler as an unperturbed homogeneous
waveguide plus the refractive index perturbation introduced by the grating structure. The scattered field
as a result of the refractive index perturbation of each grating groove is modelled as a collection of point
sources, which all emit radiation according to the Green’s function. The novelty of the BA-GCE model
is created by the applied adaptations and extensions. The model is adapted to include the exponential
decay of the light intensity in the waveguide due to the light outcoupling. In addition, the range of appli-
cability of the model is extended to grating couplers with asymmetric waveguide structures and period
apodization. The main advantage of this model is that it enables fast computation of radiation profiles
for grating couplers of any size. Besides that, another vital advantage of the model is its transparency
and intuitiveness, hereby clearly reflecting the underlying physics.

After an extensive benchmarking procedure, it was concluded that the BA-GCE model has a limited
region of validity due to the two approximations that are applied in the derivation: the first order Born
approximation and the far field approximation. The Born approximation is only valid for weak grating
couplers which have a fractional energy loss factor smaller than ζ. However, the exact value for ζ is
application-specific and depends on the required level of accuracy. Similarly, the distance at which the
far field approximation is valid also depends on the application and the desired level of accuracy. The
benchmarking procedure seems to show promising results, since the BA-GCE model results are in good
agreement with both the theoretical expectations and the Lumerical FDTD [9] results. After the inclusion
of the exponential decay adaptation and the asymmetric structure extension, the relative differences in
the peak positions of the radiated spectra between the model and Lumerical, normalized by the FWHM,
are still within 2.5%. In addition, it was found that the deviation of the BA-GCE model results from the
Lumerical results increased when the steps in the period apodization are increased. This is caused by
the fact that an increase of the period apodization steps increases the error induced by the Born approx-
imation. Nevertheless, it can be concluded that the BA-GCE model shows promising results, as it is able
to accurately determine normalized radiation profiles within its region of validity. Another deficiency of
the model, besides the limited region of validity, is the inaccuracy that is present in the absolute values,
which is why normalized radiation profiles are used. This inaccuracy can be explained by the absence of
reflections in the model. Therefore, a suggestion for improvement of the model is to perform additional
research in order to find a correction method for this absolute value inaccuracy.

The importance of continuing the development of the BA-GCE model built on the foundation of the
current model is non-negligible. Hence, focusing on further improvements and extensions of the BA-GCE
model is strongly recommended. Since the main purpose of the BA-GCE model, within the PIC align-
ment sensor project, is to aid in the design optimization process of the large area grating couplers, a
valuable extension would be to develop optimization scripts for focusing grating couplers. However, in
order to simplify the design process of focusing grating couplers, the model has to be extended to allow
for grating groove apodization alongside the period apodization which is already included in the current
model. Furthermore, the third recommended extension option is to develop a variant of the BA-GCE
model for grating couplers that are etched into the superstrate layer. Together with the extension for
grating groove width apodization, this would then enable direct computation of the normalized radiation
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profiles from the large area grating couplers of the PIC alignment sensor. Lastly, another extension option
would be to convert the current 2D model into a 3D model.

In addition, experimental verification of the BA-GCE model was performed. Unfortunately, no explicit
conclusions could be drawn from this, due to the indirectness of the comparison and the deviation of
the experimentally measured grating coupler structures from their initial design. Therefore, reliable ex-
perimental verification can only be achieved if the variant of the BA-GCE model with grating couplers
etched into the superstrate layer would be developed, and if an extensive inspection of the actual fabri-
cated structure is performed.

Experimental setup

Besides the development and verification of the BA-GCE model, the other focus point of this study
is the preparation of the experimental setup for the measurements on the PIC alignment sensor. The
experimental setup has been disassembled, rebuilt and re-calibrated and is now completely prepared to
perform the measurements. The procedure to receive the required safety label for the setup has been suc-
cessfully finished and extensive operation manuals have been passed to the future users, hereby allowing
for immediate characterization measurements once the PIC alignment sensor is delivered. Furthermore,
fiber measurements resulted in output angles of (104.59 ± 0.05)◦ and (106.21 ± 0.07)◦ for respectively
the input and output fibers. These fiber measurements can be used together with the simulations and
trigonometric calculations that are performed in this project, to predetermine the required fiber angles
in order to achieve maximum coupling efficiency in the experimental measurements.

Although the experimental verification of the BA-GCE model has not yet led to valuable conclusions, it
has demonstrated the capability of the experimental setup to perform beam profile measurements. The
results show multiple interference features, which are not beneficial for the quality of the experimental
measurements. In order to reduce these interference effects, it is strongly recommended to clean the
IR camera objective with dedicated cleaning equipment and to use this study to maximize the light
incoupling, hereby minimizing reflections that can cause these interference effects. Furthermore, as the
experimental verification results indicate that the fabricated PIC structures can deviate from the initial
design, it is recommended to conduct additional inspections with high resolution microscopy equipment
to verify the structure parameters of the PIC alignment sensor.

Final recommendations

Overall, the current BA-GCE model shows promising results for the simulation of normalized radiation
profiles from grating couplers within its region of validity. With some further improvements and exten-
sions, this model may ultimately result in an accurate analytic model which can be used in the design
process of focusing grating couplers. There is a strong demand for such an analytic model that is able
to simulate large grating couplers, for which conventional rigorous simulation methods are too computa-
tionally expensive. The application range for this model will not be limited to the PIC alignment sensor,
as it will be valuable in the design process of any PIC that requires large area focusing grating couplers.
Apart from the continuation of the development of the BA-GCE model, the other important follow-up
action of this research project is to perform the measurements on the PIC alignment sensor prototype
with the experimental setup, once the PIC is delivered, taking into account the recommendations that
are proposed in this chapter.
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List of abbreviations

1D - One-Dimensional

2D - Two-Dimensional

3D - Three-Dimensional

BA-GCE - Born Approximation applied to computation of Grating Coupler Emission

BCB - Benzocyclobutene

CD - Critical Dimension

CDU - Critical Dimension Uniformity

CMMM - Complex Mode Matching Method

CMT - Coupled Mode Theory

FDTD - Finite Difference Time Domain

FF - Fill Factor

FoV - Field of View

FTIR - Frustrated Total Internal Reflection

FWHM - Full Width at Half Maximum

IC - Integrated Circuit

IMOS - Indium-phosphide-Membrane-On-Silicon

InP - Indium-Phosphide

IR - Infrared

MMM - Mode Matching Method

PIC - Photonic Integrated Circuit

SiO2 - Silicon dioxide

TE - Transverse Electric

TIR - Total Internal Reflection

TM - Transverse Magnetic

TU/e - Eindhoven University of Technology

VCM - Volume Current Method
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Appendix A: Mathematica script BA-GCE model

This appendix includes the Mathematica [43] script with the main calculations behind the BA-GCE
model, which is explained in chapter 3.
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Figure A.1: Mathematica script of the BA-GCE model.
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Appendix B: Equivalent structure calculation large grating cou-
plers

As mentioned in section 4.2, the equivalent structure of the experimentally measured large grating couplers
has to be determined in order to compute the radiated fields with the BA-GCE model. The large grating
couplers have the grating etched into the superstrate layer, as indicated in the left layer stack of figure
B.1. In order to compute the radiated fields with the BA-GCE model, the equivalent structure with
the layer stack on the right of figure B.1 has to be determined, since the grating must be etched into
the waveguide layer in this model. Hence, the additional SiO2 superstrate layer has to be completely
removed and the grating needs to be etched into the InP waveguide layer. In the search for the equivalent
structure, the thickness of the InP layer in the etched grooves remains 300 nm. In addition, also the
grating period Λ and the FF are the same as in the real structure. The only variable that is adjusted
to find the equivalent structure is the thickness of the additional blocks of InP on top of the waveguide
which constitute the grating. This is indicated by ? in figure B.1.

Figure B.1: Real layer stack of the large grating couplers (left) and the equivalent layer stack for in the
BA-GCE model (right). For the equivalent layer stack the thickness of the additional blocks of InP on

top of the waveguide (?) needs to be determined. Adapted from: [36]

The real structures that are simulated are identical to the grating coupler structures that are measured,
except that the number of grating elements (N) has been reduced in order to decrease the computational
burden of the Lumerical simulations. The real structures have a grating period (Λ) of 600 nm, a waveguide
height (h) of 300 nm, an etch depth of 100 nm into the superstrate and the material properties of the
layer stack of figure B.1. There are three different variations of this grating coupler structure measured:
FF = 0.5, FF = 0.65 and FF = 0.8. Thus, the equivalent structure is also determined for all these three
variants. The final results after an extensive investigation are shown in figures B.2, B.3 and B.4. In these
figures the red curves show the Lumerical results when the real grating coupler structure is simulated and
the black curves show the results of the BA-GCE model with the equivalent structure. The red curve is
almost invisible because it is exactly below the black curve, which is also confirmed by the values of the
peak characteristics. The equivalent structures have the following parameter values:

FF = 0.5 : ? = 2.933nm (1)

FF = 0.65 : ? = 3.772nm (2)

FF = 0.8 : ? = 4.635nm (3)

The question mark refers to the thickness of the additional blocks of InP on top of the waveguide that
constitute the grating, as defined in figure B.1. Since a similar level of agreement was found between
the real and equivalent structures for different numbers of grating elements, it is concluded that these
equivalent structures can indeed be used in the BA-GCE model to replicate the radiation from the real
structures. Hence, the values in equations 1, 2 and 3 are used to compute the fields of the experimentally
measured large grating couplers with the BA-GCE model, for which the results are provided in section
4.2. A remark must be made that this investigation focused only on the normalized radiation profiles,
since the profiles in section 4.2 are also normalized. Hence, the peak values of the radiation patterns of
both structures are not made equivalent.
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Figure B.2: Normalized spectrum for the radiated Poynting vector (Srad) into the superstrate and a
zoom of the peak with relevant characteristic values (right) for the real structure (red) and the

equivalent structure in the BA-GCE model with additional InP blocks of 2.933 nm thick (black), for
FF = 0.5.

Figure B.3: Normalized spectrum for the radiated Poynting vector (Srad) into the superstrate and a
zoom of the peak with relevant characteristic values (right) for the real structure (red) and the

equivalent structure in the BA-GCE model with additional InP blocks of 3.772 nm thick (black), for
FF = 0.65.

Figure B.4: Normalized spectrum for the radiated Poynting vector (Srad) into the superstrate and a
zoom of the peak with relevant characteristic values (right) for the real structure (red) and the

equivalent structure in the BA-GCE model with additional InP blocks of 4.635 nm thick (black), for
FF = 0.8.
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Appendix C: Angle polished fiber calculation

This section will provide the calculation that is used to convert the beam output angle of the fibers, as
obtained from the measurements in section 6.1, into a value for its polished angle, in order to compare it
with the specifications of the manufacturer.

Consider the angle polished fiber configuration as illustrated in figure C.1, including the definitions of
the angles θair, θcladding and θfiber. The light travelling through the core of the fiber will undergo TIR
at the cleaved facet if it satisfies the condition for this. The condition for TIR is that the incoming angle
(with respect to the cleaved facet normal) needs to be larger than the critical angle for TIR. The critical
angle for TIR at the cleaved facet interface is given by:

θcritical = arcsin

(
nair
ncore

)
(4)

From geometrical considerations it follows that the angle θcladding after this total internal reflection is
defined by equation 5.

θcladding = 90◦ − 2θfiber (5)

The exact values of the refractive indices of the optical fibers used in the experimental setup are not
provided by the manufacturer. Nevertheless, fibers of this type typically have a refractive index of the
core and the cladding of approximately 1.444 at the wavelength of 1550 nm [46]. Obviously, the core will
have a slightly higher refractive index than the cladding in order to confine and guide the light through
the core. Since this difference is usually very small, both refractive indices can be taken equal to 1.444
in good approximation. For this reason, the refraction at the core-cladding interface can be neglected.
Hence, refraction happens at the air-cladding interface with an incident angle given by θcladding. Snell’s
law describing refraction at interfaces then results in an output angle given by:

θair = arcsin

(
ncladding
nair

sin (θcladding)

)
. (6)

Substitution of equation 5 into equation 6 and rewriting, results in the following expression for the
polished angle (θfiber) as a function of the output angle (θair):

θfiber =
1

2
arccos

(
nair

ncladding
sin (θair)

)
(7)

Equation 7 is used in section 6.1 to convert the measured output angle to a value for the polished angle
to compare it with the manufacturer specifications.

Figure C.1: Configuration of the angle polished fiber incident on the grating couplers, including the
definitions of the various angles. Adapted from: [7]
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