
 Eindhoven University of Technology

BACHELOR

Dynamic Traffic Control of the Hovenring

Nomura, Satoshi

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/e6d51c89-07ee-4916-97c1-9db4ed965a62

Department of Mechanical Engineering
Dynamics and Control Group

Dynamic Traffic Control of the Hovenring

4WC00 - Bachelor End Project
3rd and 4th Quartile 2021-2022

Report Number: DC 2022.068

Satoshi Nomura
1428152

Project Supervisor:
Dr.ir. A.A.J. Lefeber

Eindhoven, July 10, 2022

ABSTRACT
The main objective of this project is to develop a dynamic controller for the traffic in Hovenring. The
controller is designed to be capable of serving traffic in a steady state while adapting to the change in
the traffic intensity. This allows the traffic to be served with maximum efficiently with a single controller
rather than having to switch between multiple controllers. The optimal cycle for a given situation of
traffic intensity situation is created using the previous work [2]. Each intensity data of the day is used
to create the optimal cycle and by identifying the differences between each optimal cycles, the dynamic
controller was designed. For a given intensity level, the dynamic controller adapts by changing the service
length for a given direction. It is capable of adjusting to any intensity level if the utilization of certain
directions are below a certain value. The performance of the dynamic controller was measured by the
average waiting time and was tested by comparing to the optimal cycle for the same intensity level. The
created dynamic controller enables the intersection to be served at any time of the day with any intensity
level, if the utilization conditions are met, eliminating the need to design numerous number of optimal
controllers and switching between them to meet the service requirement.

Contents
Page

List of symbols

1 Introduction 1

2 Intersection Analysis 2
2.1 Numbering the directions . 2
2.2 Identifying conflicting directions . 2
2.3 Conflict matrix . 3

3 Optimised Cycle 5
3.1 Creating the Hourly Optimal Cycle . 5
3.2 Analysis of the optimal cycle . 5
3.3 Optimised cycle overview . 8

4 Defining the Policy 10
4.1 Simplification of the policy of the optimal cycle . 10
4.2 Policy definition . 10

5 Analysis of the Policy 14
5.1 Simulation . 14
5.2 Mathematical analysis . 16
5.3 Analysis conclusion . 19

6 Conclusion 20
6.1 Conclusion . 20
6.2 Recommendation . 20

Bibliography 22

Appendices 23
A Intersection Data . 23
B Simulation Code . 24
C Simulation Results . 30

List of symbols
Symbol Definition Symbol Unit
v Velocity m/s
s Distance m
a Acceleration m/s2

λ Arrival rate cars/s
µ Service rate cars/s
mingreen Minimum green time s
T Period s
σ Setup time s
X Buffer of all directions cars
x Buffer of one direction cars

Chapter 1. Introduction

Chapter 1

Introduction

Traffic controllers are one of the most familiar controllers people encounter in their daily lives. A
badly designed traffic controller can result in not only frustration but also can result in accidents and
endangers the public. Every intersection is different as it is made to fit the location and designing an
optimal controller is a challenge. In order to create the best use experience, optimization of intersection
control has been a big topic. An optimised controller should minimise the waiting times and avoiding
spillbacks without sacrificing the safety of the users.

Time based traffic controller is the conventional method to control a intersection. An optimal cycle is
created based on the intersection data and used to serve the intersection. However, the way traffic reacts
to a given controller is dependent on multiple factors that are constantly changing, such as the weather,
drivers, and traffic intensity. With a slight change in one of the factors, the time based controller will no
longer be able to operate with the highest efficiency. To combat this, multiple optimal controllers can be
designed and switched depending on the situation. However, designing a controller suited for each and
every situation is not only time consuming but is almost impossible.

Dynamic controller enables the adaptation to different situation to occur automatically. It will not only
eliminate the need to create multiple controllers but also be able to keep serving the intersection with
high efficiency every small change in the situation. In this project, one of the most important varying
factor, the changing traffic intensity throughout the day is investigated. Using tooling developed in
earlier work [2] the optimal periodic behaviour for a given traffic intensity is determined. From these
optimal cycles, the controller is converted to a dynamic controller enabling it to adapt to different times
of the day based on the work of [1]. Finally the controller is simplified and adapted in order to suite the
changes in traffic intensity throughout the entire day. The created controller is tested and validated in
order to assess its performance compared to the optimal periodic behaviour.

In this project, the Hovenring, a landmark intersection situated between Eindhoven and Veldhoven is
investigated. The Hovenring is a major intersection with multilane traffic entering the intersection from
all 4 sides. Moreover, it has completely separated the motor vehicles from the pedestrian and cyclists
posing a unique setup of solely car oriented intersection. This project aims to create a dynamic traffic
controller that is capable of adapting to the changes in the traffic intensity is created with the goal of
reducing the average waiting time for each driver as much as possible while maintaining the safety of the
drivers.

1

Chapter 2. Intersection Analysis

Chapter 2

Intersection Analysis

In order to design a controller suited for the Hovenring intersection, analysis of the intersection is crucial.
It is necessary to calculate and outline the key variables such as conflicting directions and time required
to clear the intersection. In this chapter, the key values are calculated through the use of data of inflow
rate of cars for each direction provided by the city of Eindhoven and measurements made on Google
maps.

2.1 Numbering the directions
The first step in this analysis was to identify and number the directions of the in flowing traffic. The
numbering was done following the standard system of numbering which can be found in the Appendix
A.2. The numbered direction along with the corresponding traffic paths can be seen in the Figure 2.1.

Figure 2.1: Annotated Hovenring Intersection

2.2 Identifying conflicting directions
One of the most important features of the traffic controller is to avoid accidents. These accidents occur
between cars that are travelling in a conflicting directions. By not serving the set of conflicting directions
simultaneously, accidents can be avoided. Furthermore, when switching from one of the conflicting
directions to the other, it is necessary to make sure that the car that was being served has passed the
point of possible collision before the car served by the second direction arrives at the same point. The
necessary time interval between these two service is known as clearance times or setup time σ and in
this report it is referred to the latter. In this step, the possible combination of conflicting directions are
identified and the setup time required to avoid an accident is calculated.

Using the map of the Hovenring, all of the possible combination of conflicts were identified. These
were mapped in a plot as shown in Figure 2.2 where nodes represent the different directions and the
connecting lines connect the possible collision combination between two directions. As seen by the arrows,

2

Chapter 2. Intersection Analysis

each combinations conflicts in transitions in both directions and there are in total 28 conflicting pairs
resulting in 56 conflicting transitions in service.

Figure 2.2: Conflict Graph Hovenring

2.3 Conflict matrix
After finding the combinations of the conflicting directions, the points of intersection between the two
path were marked on the map and the distance from the stop line to the point of collision were measured
for both direction. It was assumed that the acceleration of the car is estimated as 4m/s and the velocity
of the car to be 40km/h. Using (2.1) the required setup time for transition from direction i to j were
calculated. This formula subtracts the time it takes for the car from direction j to reach the point of
conflict from the time it takes for the car in the direction i to clear the intersection.

σij =
si

vi
− 1

2
·

(√
2 · sj

aj
+

sj

vj

)
+ 1 (2.1)

The time for direction j has been calculated as the average time between the car that accelerates from
stationary state to the intersection point and the car approaching at speed to the intersection point as
the car was assumed to have slowed down approaching the intersection but it may not be completely
stationary when the light turns green. Therefore, the average time between the completely stationary
and approaching at high speed was assumed to be a good estimate. In addition to this, additional 1
second was added and the time for direction i was rounded up and j was rounded down for extra safety
margins. After the calculations, if the negative value were obtained, the setup time for that conflict pair
was assumed to be 0 seconds. Due to the extra margins the error that may exist in the measurements
or the assumptions are accounted for and therefore the controller designed according to this calculation
is very unlikely to cause any accidents.

The calculated results has been formed into a matrix as shown in the Table 2.1. The position on the
matrix represent the pair of conflicting directions and the values represent the required setup time. The
conflict only occurs in the combination that has been coloured in green. The number of conflicts on the
left hand side of the matrix must be equal to that of the right hand side as the conflict exists in switching
in either order. Typically the sum of setup times on the left hand side and the right hand side is equal.
However, for the Hovenring it is not exactly identical. This difference is possibly due to the rounding
that has been done in the process of calculation.

3

Chapter 2. Intersection Analysis

Table 2.1: Conflict matrix of Hovenring

From
To 1 2 3 4 5 6 7 8 9 10 11 12

1 0 0
2 0 2 2 5 3 2
3 2 3 5 3 2 1
4 0 0
5 4 4 2 0 2 1
6 2 0 2 3 5 3
7 0 0
8 1 5 3 2 0 3
9 5 3 3 1 2 3
10 0 0
11 0 2 1 4 4 2
12 2 3 5 3 2 0

In this chapter, the Hovenring intersection was analysed and the traffic paths and the possible collision
locations were identified. The required setup time for transition of service between two directions were
calculated which is a vital information in the creation of the traffic controller. The calculated setup time
along with some information about the intersection are fed into the code from the past work [2] in the
next step to create the optimal cycles.

4

Chapter 3. Optimised Cycle

Chapter 3

Optimised Cycle

The analysis of the intersection provided the information necessary to shift towards the next step. In
this chapter, using the conflict matrix created, the optimal cycle for every times of the day are created
which is then used as a template to the steps of developing the dynamic controller.

3.1 Creating the Hourly Optimal Cycle
In order to develop and assess the performance of a controller, capable of serving the entire day with
fluctuating inflow of traffic, it is necessary to have an optimal cycle for different traffic inflow to use as
a development base and to compare the performance to. A code developed by S.T.G. Fleuren [2], along
with the hourly traffic intensity data provided by the city of Eindhoven (Appendix A.1), and the created
conflict matrix were used in order to create optimal traffic cycle for the intersection for each hour of the
day. Furthermore, the minimum green time was assumed to be 4 seconds, requiring the green light to be
at least 4 seconds long. The resulting cycle for the different times of the day were analysed as explained
in the following.

3.2 Analysis of the optimal cycle
The code produces a list of directions and their corresponding start and stop time of serving. The results
were utilised to outline multiple characteristics of the optimal cycle, which determines the formation
of the final controller. Furthermore, the results were represented in either green or red light state for
each given direction. The amber or yellow light was considered as a part of green light period and the
combination of green and amber light periods is known as the effective green time. In this report, the
term green light time is used to represent the effective green time. A plot was outputted by the code
which was then annotated to visualize and facilitate the analysis done as shown in the Figure 3.1.

3.2.1 Relation between the served directions

The analysis of served directions were done next. This step aims to analyse and identify the pattern
in the order of the served traffic directions and the relationship between each directions served. The
conflict matrix created in subsection 2.3 was used in this analysis. The conflicting directions cannot be
served simultaneously and when switching from one to the other it is required to have a set up time.
These factors act as a constraint when optimal cycles were produced. However, not all of the conflicting
combinations were utilized as constraints. The ones that had been used has been identified as active
constraints. The active constraints determines the order and relates the service of multiple directions.

In order to identify the active constraints, the time interval between the services of a pair of conflicting
directions were calculated using the end of service time for one direction and the start of service time
of the other. The value is then compared to the setup time stated in the conflict matrix and if they
are similar, then the conflicting pair can be considered as an active constraint. The identified active
constraints can be represented on the plot of the period as shown by the purple and blue lines on the
Figure 3.1. By following the lines of active constraints and green light period of different directions, it
should be able to make a loop around the cycle. Furthermore, every start and end of green period should
be connected to an active constraint. In another words, starting from service of any direction, following
the active constraints and the green light period should make a loop back to the starting point.

5

Chapter 3. Optimised Cycle

Figure 3.1: Hovenring optimal cycle between 12h and 13h

The created plots such as the Figure 3.1, confirms that all of the starts and ends of the green period
are connected to an active constraint. It is also possible to identify two sets of independent constraints
system present at certain points of the cycle. Two colours, purple and blue lines are used to visualise
these two paths. Due to these two sets of simultaneous transitions being independent from each other,
at certain time of the day, the transition of services shifts independent to each other. An example of this
shifting can be seen in the Figure 3.2.

Figure 3.2: Hovenring optimal cycle between 17h and 18h

Investigating all of the different time slots it was identified that most of them had the same number of
active constraints. However due to some shifts mentioned above, there were certain places where the
active constraints changed depending on the time of the day. Furthermore, the period of the cycle also
varied between 24 seconds and 26 seconds. Even though those cycles have slight differences in the active
constraints, the overall pattern of the paths stayed the same connecting the same directions.

3.2.2 Identifying modes

Now that the relation between the served direction is found, the next step is to identify modes. Modes
are period of time when multiple transitions occur, followed by service of those directions. In other
words, modes are time intervals between groups of transitions that occur simultaneously. It forms a
building block that make up the entire traffic cycle. Within a cycle, multiple modes exist and the size
and complexity of the intersection determines the total number of modes required. By identifying the
modes during different times of the day, it is possible to identify similarities and discover opportunities
to simplify the traffic controller. In the example plots (Figure 3.1 and Figure 3.2), the modes were
represented by orange lines.

The modes were easily located when the transition of service direction occurs simultaneously. For example
for the direction 6 and 12 transitioning to directions 2 and 8 always initiated at the same time. However,
this is not always the case and in some cases, not all of the transitions may occur at the same time. In
this situation the active constraint at that point; representing the transition, may share a starting or
ending node with another constraint. A group is created by the occurring transitions sharing the nodes
and the earliest transitions starting time of that group was taken to be the point mode transition. By
dividing the entire cycle using this rule, the modes are created as shown on the Figure 3.1 and Figure 3.2
in orange.

6

Chapter 3. Optimised Cycle

3.2.3 Switching conditions

The length of the mode is determined by the length of service for a given direction. Each mode has
a key direction that determines the length of the mode. In order to determine the conditions for the
switching to occur, it is necessary to confirm that the ideal cycle is operating under a clearing policy
(each direction served until the buffer is empty).

In order to confirm this, a graph of the evolution of buffer throughout the cycle was created (Figure 3.3)
with the assumption that the cycle operates with the clearing policy. When operating, the buffer is
required to be stable. From the graph it was observed that the buffer count at the start and end of the
period is identical indicating that the cycle is stable and therefore it can be confirmed that the optimal
cycle operates with the clearing policy.

Figure 3.3: Hovenring Buffer evolution (12h and 13h)

As the traffic controller operates under a clearing policy, the buffer has to be emptied for the serviced
direction before the traffic light switches to red. However, when the traffic intensity is low, this results
in the traffic light switching immediately after starting service. This is avoided by the minimum green
time set during the formation of the optimal cycle. So there are two possibilities in order to determine
the duration of the service.

• The duration will be equal to the time it takes to empty the buffer, if it takes longer than the
minimum green time

• The duration will be equal to the minimum green time, if the buffer empties before the minimum
green time is reached.

The key directions for each mode can be determined by checking the length of green period for each
direction that is turning red at the end of the mode. If the length is equal to the minimum green time,
then that direction can be identified as the key direction. Detecting the other condition for the triggering
of transmission is more difficult. In order to detect the correct key direction, the buffer just before the
end of the mode has to be analysed. A direction that empties shortly before the switching must be
identified. The clearing policy operates in a way where the traffic light for a given direction turns red
shortly after the buffer empties. So, if all of the directions that is turning red at a given mode has
duration longer than minimum green time, the direction with the least time of empty buffer at the end
becomes the key direction.

With the above knowledge, key direction for a given mode can be identified and the switching condition
for the key direction can be determined. The optimal cycle throughout the day can be analysed in this
way and if the key direction for a given direction remains equal throughout the day, then and only then
can the mode characteristic for that period be considered uniform through out the day.

7

Chapter 3. Optimised Cycle

3.2.4 Average waiting time

From the optimal time cycles, the average waiting times for each direction were also calculated. The
average waiting time for the all of the direction for a given cycle was provided as an output along with
the optimal cycle but the individual waiting time was not. The average time was computed using the
knowledge of inflow of cars to each direction, rate of outflow of cars exiting the intersection and the
service time provided by the optimal cycle. The average time for each directions were weight by the
intensity and the average of the outcome has been confirmed to be identical to that outputted by the
code. Example of the calculated average data can be found in the Table 3.1. As expected, the increase in
traffic intensity results in longer waiting time as seen in the difference in waiting time between mid-day
and around the afternoon rush hour.

The waiting time is a good criteria to be used to determine the quality of the controller as, controller
with the shortest waiting time has the highest efficiency. The optimal cycle for a given traffic intensity
should have the lowest average waiting time possible. The average waiting time of the optimal cycle
is compared to that of the designed controller and it is possible to assess the quality of the designed
controller.

Table 3.1: Average waiting time for a given direction

Hour of the day
12.00-13.00 17.00-18.00

1 5.644967 5.17816
2 8.679274 10.34696
3 8.647547 10.11834
4 6.026059 7.419499
5 9.179252 10.28393
6 8.586766 10.06104
7 5.508106 7.128322
8 9.182003 10.82275
9 8.980945 10.04919
10 5.062901 4.904842
11 8.184787 8.796361

Se
rv

ic
e

di
re

ct
io

n

12 9.66963 10.00221
Mean waiting time 7.798597 8.685955
Mean waiting time
(Code) 7.798665 8.685994

3.3 Optimised cycle overview

Figure 3.4: Hovenring Mode and direction mapping

The hourly optimal cycle were analysed in this chapter. Looking at all of the different times of the
day, the modes and the served directions can be expressed as shown in the Figure 3.4. The mapping
represents the possible directions served in each mode and the arrows represents the possible transition
from one mode to another. Most of the time slots experienced only the 4 long modes bypassing all of
the short modes. In some cases where the traffic intensity were higher, such as during the rush hours,

8

Chapter 3. Optimised Cycle

a mode lasting a short time appeared. These short modes perform as a transition phase from one long
mode to another.

The mapping also represents the number of changes in the served direction. Where there exist a solid red
line between the mode transition, the long modes transitions into another long mode. During transition of
mode occurring through the dotted orange lines, the short modes are involved and therefore it represents
that the mode can also be skipped. In this intersection every mode services 4 directions and each mode
may have either 2 or 4 transitioning directions depending on if the short mode is skipped or not.

There was one exception to the mapping represented. During the hour 17h-18h another additional mode
appears in between long mode 2 and 3 (represented as mode 3 on Figure 3.2). This is an exception as
in this optimal cycle, the service towards the direction 3 is prioritised over the service to the direction
11. This resulted in a transition from direction 3 to 11 to maximise the service to direction 3. This
transition is independent to the state of the buffer and results in the optimal cycle at the hour 17h-18h
to not fit that of the concluded mapping.

The conclusions and findings obtained from the optimal cycle is used in the following chapter to develop
the dynamic controller for the Hovenring.

9

Chapter 4. Defining the Policy

Chapter 4

Defining the Policy

The analysis of the optimal cycle has revealed some of the characteristics of the Hovering intersection.
In this chapter a controller policy for the Hovering intersection with the capability of controlling the
fluctuating traffic inflow, is developed utilizing the findings. The defined policy is compared to each
optimal cycles and its performance is analysed. The policy aims to simplify and minimise the number of
different controllers required in order to adapt to the changing situation throughout the day as possible
without sacrificing the performance.

4.1 Simplification of the policy of the optimal cycle
The first step in defining the policy is to investigate the possibilities of simplification in the policy of the
optimised cycle. Simplified policy is then be used as a foundation for defining a universal policy.

The findings from subsection 3.3 identified 6 possible modes, each serving different sets of direction.
Furthermore, an exception to the mapping was also stated. First simplification to the policy is to ignore
this exception. As it was only present in one hour through out the entire day it is assumed that the
occurrence is less likely to have a significant effect on the overall performance of the controller.

The next simplification is to disregard the short modes. There were mainly two types of modes in the
stated policy, the long modes and the short modes. As the short modes were often times less than 1
second, neglecting it is expected to only results in a minor impact on the performance.

The short modes were the product of shifts in the ending timing of the direction in the long modes.
There were two pairs of served direction that transitioned during these short modes and the two pairs
interchanged in the shifting order. Following this, the two pairs transition is assumed to occur at once
when the service of both directions exceeds the minimum green time and the buffer has been emptied.
This should be the optimal solution as it results in a reduction of waiting time in the ending service
direction and increase the one or two direction served in the next mode. The net additional waiting time
should be insignificant and the increase in the overall average waiting time at the intersection is only
minor.

4.2 Policy definition
Following the assumption a policy was created.

Mode 1:
The direction 1 and 7 are already being served from the prior mode. The mode starts with the setup
time prior to starting the services for directions 2 and 8. At the time when the direction 2 and 8 are both
empty the switching condition is met. Service to directions 2 and 8 are stopped and the mode moves on
to the second mode while keeping the service towards direction 1 and 7. In the second mode, when the
service for directions 1 and 7 are stopped, the buffer contents in the direction has to empty. In order to
confirm this situation, additional requirement is set. In addition to both buffers for direction 2 and 8
being empty, the buffer for directions 1 and 7 has to have contain less than the amount clear-able in the
mode 2.

Serves directions 1,2,7,8

10

Chapter 4. Defining the Policy

• Setup duration

– σ6,2 = σ12,8 while serving direction 1 and 7 at maximum rate or arrival rate.

• Serve x2 and x8 at maximum rate for:

– If x1 < σ2,9 · (µ1 − λ1) and x7 < σ8,3 · (µ7 − λ7):

Serve for mingreen if mingreen >
x2+λ2·σ6,2

µ2−λ2
or x8+λ8·σ12,8

µ8−λ8

Serve for x2+λ2·σ6,2

µ2−λ2
if x2+λ2·σ6,2

µ2−λ2
> mingreen or x8+λ8·σ12,8

µ8−λ8

Serve for x8+λ8·σ12,8

µ8−λ8
if x8+λ8·σ12,8

µ8−λ8
> mingreen or x2+λ2·σ6,2

µ2−λ2

– If x1 > σ2,9 · (µ1 − λ1) when x2 = 0 and x8 = 0 and x7 < σ8,3 · (µ7 − λ7):

Serve for x1−σ2,9·(µ1−λ1)
µ1−λ1

– If x7 < σ8,3 · (µ7 − λ7) when x2 = 0 and x8 = 0 and x1 < σ2,9 · (µ1 − λ1):

Serve for x7−σ8,3·(µ7−λ7)
µ7−λ7

• Switch to Mode 2

Mode 2:
In this mode, the mode initiate with the setup time for directions 3 and 9. At the start of the mode,
direction 1 and 7 are still being served. Due to the additional requirement in mode 1, the directions are
capable of being emptied within the setup time for direction 3 and 9. When the directions being service,
the service to directions 1 and 7 are stopped and service for directions 3 and 9 are initiated. Later in the
mode, after the setup time, directions 4 and 10 are started. These directions are served continuously into
the next mode. The mode 2 transitions to mode 3 when buffers in both directions 3 and 9 are emptied.

Served directions 1,3,4,7,9,10
Start serves directions 3,4,9,10

• Setup duration

– σ8,4 and σ2,10 followed by serving x4 and x10 at maximum rate or arrival rate

– σ2,9 while serving direction 1 at maximum rate or at arrival rate

– σ8,3 while serving direction 7 at maximum rate or at arrival rate

• Serve x3 and x9

– If mingreen >
x9+λ9·σ2,9

µ9−λ9
or
(

x3+λ3·σ8,3

µ3−λ3
+ σ8,3 − σ2,9

)
Serve x9 for mingreen

Serve x3 for mingreen −σ8,3 + σ2,9

– If x9+λ9·σ2,9

µ9−λ9
> mingreen or

(
x3+λ3·σ8,3

µ3−λ3
+ σ8,3 − σ2,9

)
Serve x9 for x9+λ9·σ2,9

µ9−λ9

Serve x3 for x9+λ9·σ2,9

µ9−λ9
− σ8,3 + σ2,9

– If x3+λ3·σ8,3

µ3−λ3
>
(
mingreen orx9+λ9·σ2,9

µ9−λ9

)
− σ8,3 + σ2,9

Serve x9 for x3+λ3·σ8,3

µ3−λ3
+ σ8,3 − σ2,9

Serve x3 for x3+λ3·σ8,3

µ3−λ3

• Switch to Mode 3

11

Chapter 4. Defining the Policy

Mode 3:
Prior to this mode, the directions 4 and 10 already begins their service. The mode starts serving direction
5 and 11 until empty after the setup time. Directions 5 and 11 becomes the key in switching to mode
4. Additional constraints similar to the one in mode 1 also is applied to direction 4 and 10 as the buffer
must be emptied in the following mode.

Serves directions 4,5,10,11

• Setup duration

– σ3,11 and σ9,5 while serving direction 4 and 10 at maximum rate or arrival rate

• Serve x5 and x11

– If x4 < σ11,6 · (µ4 − λ4) and x10 < σ5,12 · (µ10 − λ10)

∗ If mingreen >
x5+λ5·σ9,5

µ5−λ5
or
(

x11+λ11·σ3,11

µ11−λ11
+ σ3,11 − σ9,5

)
Serve x9 for mingreen

Serve x11 for mingreen −σ3,11 + σ9,5

∗ x5+λ5·σ9,5

µ5−λ5
> mingreen or

(
x11+λ11·σ3,11

µ11−λ11
+ σ3,11 − σ9,5

)
Serve x9 for x5+λ5·σ9,5

µ5−λ5

Serve x11 for x5+λ5·σ9,5

µ5−λ5
− σ3,11 + σ9,5

∗ x11+λ11·σ3,11

µ11−λ11
>
(
mingreen orx5+λ5·σ9,5

µ5−λ5

)
− σ3,11 + σ9,5

Serve x9 for x11+λ11·σ3,11

µ11−λ11
+ σ3,11 − σ9,5

Serve x11 for x11+λ11·σ3,11

µ11−λ11

– If x10 < σ5,12 · (µ10 − λ10) when x9 = 0 and x11 = 0 and x4 < σ11,6 · (µ4 − λ4):

Serve for x10−σ5,12·(µ10−λ10)
µ10−λ10

– If x4 < σ11,6 · (µ4 − λ4) when x9 = 0 and x11 = 0 and x10 < σ5,12 · (µ10 − λ10):

Serve for x4−σ11,6·(µ4−λ4)
µ4−λ4

• Switch to Mode 4

Mode 4:
The mode start with direction 4 and 10 already in service. The service is terminated after the setup
time for directions 6 and 12 and is replaced by the service towards these directions. During the mode,
direction 1 and 7 initiates service and the mode transitions back to mode 1 when the directions 6 and
12 are both empty.

Serves directions 1,6,7,12

• Setup duration

– σ5,1 and σ11,7 followed by serving x1 and x7 at maximum rate or arrival rate

– σ5,12 = σ11,6, while serving direction 4 and 10 at maximum rate or at arrival rate

• Serve x6 and x12

– If mingreen >
x6+λ6·σ11,6

µ6−λ6
or x12+λ12·σ4,12

µ12−λ12

Serve x6 for mingreen

Serve x12 for mingreen

– If x6+λ6·σ11,6

µ6−λ6
> mingreen or x12+λ12·σ4,12

µ12−λ12

12

Chapter 4. Defining the Policy

Serve x6 for x6+λ6·σ11,6

µ6−λ6

Serve x12 for x6+λ6·σ11,6

µ6−λ6

– If x12+λ12·σ4,12

µ12−λ12
> mingreen or x6+λ6·σ11,6

µ6−λ6

Serve x6 for x12+λ12·σ4,12

µ12−λ12

Serve x12 for x12+λ12·σ4,12

µ12−λ12

• Switch to Mode 1

In this chapter the policy for the dynamic traffic controller was defined from the optimal hourly cycles.
Key aspects of the optimal cycles were identified and utilised in the dynamic controller. Number of
assumptions were made during this process and in the next chapter the created policy is analysed and
vilified to operate with similar performance to the optimal cycle.

13

Chapter 5. Analysis of the Policy

Chapter 5

Analysis of the Policy

In the chapters above, the policy for the dynamic controller of the Hovenring was defined according to
the findings from the analysis of the optimal fixed time controller. In this chapter the policy created
is analysed and validated. The defined policy requires to be capable of serving every direction under a
stable condition, meaning that the buffer count at the end of the cycle should be equal or smaller than
the buffer count at the start of the cycle. By the means of simulation and mathematical theory based on
the paper by V. Feoktistova [1], the stability is confirmed and the limitations of the designed controller
are outlined.

5.1 Simulation
With the purpose of confirming the assumptions made during the creation of the policy, a code was
created according to the policy. Different conditions were coded using the If statements and loops to
loop for a given time period. The loop was done so that at every time interval, the buffer contents for all
the directions were calculated and recorded. Each directions were assigned either green or red situation
and depending on the modes, the directions defined as green were changed. The buffer contents were
monitored and when a switching condition defined by if statement was met, the mode were switched to
the next mode. The code can be found in Appendix B.

It is assumed that the policy establishes stability after a certain cycles. Therefore, the created code
simulates multiple periods and uses the last cycle of traffic to compute the average waiting time. For each
of the different traffic intensity during the different times of the day, calculation for the average waiting
times for individual directions were performed. Furthermore, using the method in subsubsection 3.2.4,
the different directions were weighed and the overall average waiting times were calculated.

5.1.1 Simulation results

As expected, the simulation showed that the controller were stable under each of the provided intensity
data for Hovenring. Furthermore, the outcome cycle closely resemble that of the optimal cycle. This
was expected as the dynamic controller was designed based on the optimal cycles.

The simulation has successfully validated the controller stability and its capability to recreate a similar
cycle to the optimal cycle. The stability can be spotted by the either ends of the buffer evolution graph
shown in Figure 5.2. The dotted vertical lines represents where the cycle begins and ends. Looking
at different directions denoted by the different colours, it is able to see that the buffer contents at the
location of the first dotted line is identical to the second. Moreover the Figure 5.1 validates the capability
of the dynamic controller to recreate the optimal cycle. The cycle represented here is identical to one
of the solutions provided as an optimal cycle. One key difference is that the dynamic controller always
creates the cycle to be exactly 24 seconds while the optimal cycle varied in between 24 to 26 seconds.

14

Chapter 5. Analysis of the Policy

Figure 5.1: Hovenring simulated buffer evolution

Figure 5.2: Hovenring simulated cycle

Another important simulation was to assess the controller’s capability in adapting to changing traffic
intensity. With this simulation the result was predicted to have a transition period where the buffer
count is in between the two states. After the transition phase the buffer count is expected to become
stable at the new intensity rate.

As shown in Figure 5.3, the controller is capable of adapting to changes in traffic intensity and after a
cycle or two, it reaches a stable point. The simulation changed the traffic intensity from the hour of 17h
to 18h to the hour of 18h to 19h at the time 150 seconds after the simulation started. This represents the
real life situation when the traffic intensity shifts after the service period reaching stability. By proving
that the stability point is reached automatically, the controller is confirmed to be performing the way it
was designed to do.

Figure 5.3: Hovenring simulated change in traffic intensity

Average waiting times are a good criteria to analyse the performance of the controller. Compared to
the optimal cycle, simulated results performed very similar in terms of average waiting times. Some of

15

Chapter 5. Analysis of the Policy

the hours had exactly the same average waiting time as the optimal cycle. These directions, the service
period for each directions were identical to the optimal cycle. This confirms the performance of the
dynamic controller as it was able to recreate the optimal cycle with only the information of the traffic
intensity. The time of the day with the largest increase in average waiting time was from 17h to 18h.
The Table 5.1 compares the average waiting times of the optimal cycle to the simulated dynamic cycle.
For a given direction, the Optimal column represents the average waiting time of the optimal cycle and
the Simulated column represents the average waiting time of the dynamic controller. The difference is
calculated by taking away the optimal value from the simulated value.

Though the overall difference in average waiting time is longer in the simulated dynamic cycle, there
are certain direction where the dynamic controller results in a lower waiting time. These directions can
be spotted by difference column being a negative value. The optimal cycle aims to reduce the overall
waiting time, therefore the dynamic controller is some times able to outperform it. However due to
these negative values, the dynamic controller is able to gain back some of the lost waiting times in other
directions to result in the over all average waiting time to decrease. Looking at the results, overall the
controller is performing very well. However, its is having to sacrifice performance of some directions over
others and it cannot be said that the controller makes the best choice on which directions to prioritise.
For some sets of traffic intensity there may be modes that should be prioritised over others to maximise
the performance by reducing waiting time. A controller with a feature to determine the priorities of the
modes may be possible to be created as it only relies on the traffic intensity data to make the decision.
However it is out of scope for this project.

Table 5.1: Hovenring Average waiting time between 17h-18h

17.00-18.00
Direction Optimal Simulated Difference
1 5.17816 5.798564 0.620404
2 10.34696 11.36311 1.016146
3 10.11834 10.8432 0.724861
4 7.419499 7.291515 -0.12798
5 10.28393 11.29458 1.010641
6 10.06104 8.721351 -1.33969
7 7.128322 6.075878 -1.05244
8 10.82275 11.88148 1.058729
9 10.04919 9.756401 -0.29279
10 4.904842 6.362004 1.457162
11 8.796361 10.97346 2.177095
12 10.00221 10.71787 0.715665
Overall Average 8.685994 9.454078 0.768084

5.2 Mathematical analysis
The performance of the controller under the conditions provided has been confirmed to work. However
it is apparent that the controller is not capable of dealing with any traffic intensity. There is a limiting
point where the designed policy starts face difficulty dealing with the inflow of cars. With a high
traffic intensity situation, the dynamic controller becomes unable to maintain stability. In this section,
mathematical theory is applied in order to answer the question “Under what conditions will the controller
be functional?”. The conditions of traffic intensity which the controller is capable of handling is identified
by applying the theory by V. Feoktistova[1]. In this section, the calculation for mode 1, with direction
2 being the switching key direction is used as an example of the calculation.

5.2.1 Operator calculation

The calculation is done to each different modes as defined in the policy definition and then combined in
the later stages to obtain the final results. The first step of the mathematical variation is to investigate
the individual modes and to define the possible length of the mode. The length of the mode is determined
by the service length of the direction that takes the longest to empty. This results in multiple possible

16

Chapter 5. Analysis of the Policy

length for each modes. For the example mode 1, possible mode lengths are as shown below. The (5.4)
is the length that is used in the following example.

T1 = σ12,8 or 6,2 +mingreen (5.2)

T1 = σ12,8 +
x8 + λ8 · σ12,8

µ8 − λ8
(5.3)

T1 = σ6,2 +
x2 + λ2 · σ6,2

µ2 − λ2
(5.4)

Following the defined length of the mode, the next step is to create a mode operator. Mode operator is
a mapping for the buffer contents at the start to the end of the mode. The mapping forms a form of
Ax+ b. Consisting of a square matrix A, with size the number of service directions and it is multiplied
by the existing buffer x at the beginning of the mode. The vector b also with inputs of the number of
service direction. For the case of the Hovenring, the A is a 12 × 12 matrix and b is a 12 × 1 vector.
The mapping of the mode 1 when the length of the mode is defined by (5.4) is as shown in the (5.6).
The buffer mapping for a given direction that is not served during the mode forms the (5.5). Where i
represents the direction and n represents the direction that determines the length of the mode. xi is the
buffer at the start of the mode and it is only multiplied to the first term making the first term to be
represented by the A matrix and the second term to be inserted into the b vector.

λi

µn − λn
xi +

λi · σn

1− ρn
(5.5)

For the directions that are emptied at the end of the mode, the contents in A matrix and b vector are
0. Lastly, in some modes, there are directions that are served at the beginning but then finishes the
service during the mode or directions that start serving but continues service through onto the next
mode. These directions can all be expressed using the format



1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 λ3

µ2−λ2
1 0 0 0 0 0 0 0 0 0

0 λ4

µ2−λ2
0 1 0 0 0 0 0 0 0 0

0 λ5

µ2−λ2
0 0 1 0 0 0 0 0 0 0

0 λ6

µ2−λ2
0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 λ9

λ9−λ2
0 0 0 0 0 0 1 0 0 0

0 λ10

µ2−λ2
0 0 0 0 0 0 0 1 0 0

0 λ11

µ2−λ2
0 0 0 0 0 0 0 0 1 0

0 λ12

µ2−λ2
0 0 0 0 0 0 0 0 0 1



X1 +



(λ1 − µ1)
(
σ6,2 +

x2+λ2·σ6,2

µ2−λ2

)
0

λ3·σ6,2

1−ρ2
λ4·σ6,2

1−ρ2
λ5·σ6,2

1−ρ2
λ6·σ6,2

1−ρ2

(λ7 − µ7)
(
σ6,2 +

x2+λ2·σ6,2

µ2−λ2

)
0

λ9·σ6,2

1−ρ2
λ10·σ6,2

1−ρ2
λ11·σ6,2

1−ρ2
λ12·σ6,2

1−ρ2



(5.6)

The formed mapping can be simplified further by removing the 0 terms and also simplifying the A
matrix that is multiplied by buffer terms X that are empty at the beginning of the mode. In this case
the direction 2 and 8 are emptied therefore can be removed due to the 0 values and the directions 6 and
12 are empty at the beginning so all the terms that are multiplied by x6 and x12 in the buffer vector X1

can be removed.

17

Chapter 5. Analysis of the Policy



1 0 0 0 0 0 0 0 0 0

0 λ3

µ2−λ2
1 0 0 0 0 0 0 0

0 λ4

µ2−λ2
0 1 0 0 0 0 0 0

0 λ5

µ2−λ2
0 0 1 0 0 0 0 0

0 λ6

µ2−λ2
0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 λ9

λ9−λ2
0 0 0 0 0 1 0 0

0 λ10

µ2−λ2
0 0 0 0 0 0 1 0

0 λ11

µ2−λ2
0 0 0 0 0 0 0 1

0 λ12

µ2−λ2
0 0 0 0 0 0 0 0


X1 +



(λ1 − µ1)
(
σ6,2 +

x2+λ2·σ6,2

µ2−λ2

)
λ3·σ6,2

1−ρ2
λ4·σ6,2

1−ρ2
λ5·σ6,2

1−ρ2
λ6·σ6,2

1−ρ2

(λ7 − µ7)
(
σ6,2 +

x2+λ2·σ6,2

µ2−λ2

)
λ9·σ6,2

1−ρ2
λ10·σ6,2

1−ρ2
λ11·σ6,2

1−ρ2
λ12·σ6,2

1−ρ2



(5.7)

The simplified mode operator, is checked against the conditions defined by the paper [1], required in
order to have a unique fixed point and attract all solutions. These conditions have to be met in order to
have a stable traffic controller. The mode operator has to be:

1. Piecewise affine
i.e. T (x) = Aix+ bi for x ∈ {Pix ≤ qi}

2. Continuous
Meaning that there exist a operator for any situations, which can be confirmed already in the phase
of defining the policy.

3. Monotone
Ai ≥ 0, All values in the A matrix has to be 0 or positive.

4. Strictly dominated
bi > 0, All values in the b vector has to be a positive value not including 0.

5. Have a fixed point Cannot be confirmed using the mode operator.

Looking at the example operator (5.7), all of the conditions can be confirmed to be met except the last
one. At this point, if a operator is not able to meet some of the conditions, multiple operators can be
combined into one mapping and the combined operator has to be confirmed to meet the conditions. The
next step is to confirm that the controller has a fixed point.

5.2.2 Fixed point confirmation

In order to confirm that fix point, the calculation is started by assuming the controller is stable. Using
the knowledge that the controller operates with the clearing policy, at end of each modes, there exists
some buffer directions that are empty. Following the buffer around once, it is possible to define the buffer
count in terms of different mode length. For the mode 1, buffer 2 and 8 are emptied at the end, therefore
it is possible to formulate the formula for the buffer contents for these directions at the start of mode 1
in terms of mode length of mode 2, 3 and 4. The buffer contents at the start of mode 1 is shown in (5.8)
and (5.9).

x2 = λ2 (T2 + T3 + T4) (5.8)

x8 = λ8 (T2 + T3 + T4) (5.9)

The formula for the buffer x can be substitute into the (5.4) creating an equation consisting of only the
unknown mode lengths and the known inflow λ and outflow rates µ.

T1 = σ6,2 +
λ2 (T2 + T3 + T4) + λ2 · σ6,2

µ2 − λ2
(5.10)

From the different possible choices of key directions for each mode, a combination can be created and
in total four formulas similar to (5.10) can be created for each of the modes. For the Hovenring, it was

18

Chapter 5. Analysis of the Policy

required to create over 100 combinations due to the large number of possible combinations. Often times
the inflow and outflow values can be replaced by the utilization, further simplifying the equation.

Finally using the created four formulas, the equations for the mode length Tn can be created. Since the
mode length has to be a none negative value, a equation including the utilization which has to be larger
than zero can be formed. Creating a formula for which the requirements for utilization can be calculated
from.

5.2.3 Service Limitation

From the calculations, the limitation of the maximum inflow for the created controller were created. The
requirements limit the maximum utilization for the combinations of directions of services.

• ρ2 or 8 + ρ3 or 9 + ρ5 or 11 + ρ6 or 12 < 1
This conditions requires the services for the directions that are serviced only within a single mode
to be limited in terms of utilization represented by the blue highlights on the Figure 5.4. There
are 4 modes in total therefore if one of the combinations of the utilization combinations exceeds
1, the inflow of cars is larger than the maximum service rate and therefore results in backlash and
pileup of buffer or even worse, a complete failure.

• ρ3 + ρ7 + ρ11 < 1
ρ9 + ρ1 + ρ5 < 1
ρ2 + ρ4 + ρ6 < 1
ρ8 + ρ10 + ρ12 < 1
These condition requires the direction that is served across multiple modes to be combined with
two of the directions served for a single mode. One of these sets are shown in the Figure 5.4 as
orange highlights which represents the case ρ3 + ρ7 + ρ11 < 1.

• ρ1 or 7 + ρ4 or 10 < 1 This is a condition between the pair of two directions that are both served for
the duration of multiple modes. A example is represented as the yellow highlight on the Figure 5.4.

Figure 5.4: Hovenring simulated cycle

5.3 Analysis conclusion
The dynamic policy was analysed by both the simulation and the mathematical analysis. The simulation
has proved that the controller is well within the operational limits for a given intensity data from different
times of the day of the Hovenring intersection. The mathematical analysis has managed to outline
the limitation in the maximum utilization for a number of combinations of directions. Checking the
limitations, it was also confirmed that the traffic intensity data from Hovenring is well within this limit
therefore validating the controller to be used in the intersection in order to control the twelve different
directions.

19

Chapter 6. Conclusion

Chapter 6

Conclusion

6.1 Conclusion
In conclusion, the aim to create a dynamic controller for The Hovenring, capable of adapting to different
traffic intensity situation has been achieved successfully. The intersection was analysed with large margins
of safety avoiding the possibility for the controller to cause any accidents. The optimized cycles for each
of the different hours of the day were created and analysed to be used as the guidance in the process of
creating the dynamic controller. Finally, the dynamic controller was developed and validated using two
methods which both concluded that the controller is stable and therefore should operate with similar
performance to the optimal fixed time controller. Furthermore, the conditions that the controller remains
in stable operation has been met by the traffic intensity data of Hovenring. Therefore, the developed
controller is ready to be deployed in real life.

6.2 Recommendation
The dynamic controller development for Hovenring has been successful. However this project was con-
ducted under a very specific situation, working specifically for the Hovenring intersection especially after
Chapter 4. Moreover the controller was created under the assumption that the traffic intensity for every
hour is a known factor and is a perfect representation of the real world.

Under these assumptions, the created dynamic controller has the best performance. However, not many
alternative options were considered in this project and there is still room for more investigation. For
instance, there may be some performance to be gained by the introduction of another mode. This is not
too likely as the introduction of an additional mode results in increase of cycle time which in turn may
increase the average waiting time.

Another possible way to improve the performance is to make adjustment in the intersection layout in
it self. Currently, there are multiple lanes for certain direction but not for others. By looking at the
allocations additional lanes to the different directions, there may be some performance to be gained
without having to make major adjustment to the overall intersection footprint. Though it may confuse
the drivers, it may be possible to create adaptable lanes that changes in service direction depending on
the time of the day to fully maximise the service rate of the intersection.

In order to apply this project to other intersections, the codes used for simulations and analysis can
be adapted. However, it may be better for a new generic code to be created using the current code as
a guidance as there are multiple points that are experimental with the code. In addition to this, by
improving the simulations, it will be possible to simulate more complex variations in the traffic intensity
such as situation with random varying inflow rate throughout the simulation run.

Faster and optimised code enable the possibility of creating a dynamic controller capable of adjusting
to real life data feed from the sensors at the intersection. Current dynamic controller utilises the data
gathered in advance and predicts the traffic intensity in the future. By having multiple sensors, it should
be able to measure the traffic intensity and adapt instantly resulting in even less waiting time.

The mathematical validation was the section where most number of problems and difficulties were en-
countered in this project. This was due to the numerous possible combinations and the limitation in the
MATLAB symbolic calculation skills, it was unable to fully automate the process. There may have been

20

Chapter 6. Conclusion

a method that was missed which may help in automating the calculation process but with the current
setup it is not recommended for any intersection more complex than the Hovenring to be approached.
For a complex intersection, running multiple simulations with different combinations of traffic intensity
will probably be faster and more efficient than the mathematical approach.

Overall, there are still multiple possibilities for an improvement available and further research is crucial
in improving the waiting times at the intersection. These research will not only improve the driver
experience at an intersection but can may be applied to other situations with multi input from different
direction with changing inflow rates.

21

Bibliography

Bibliography
[1] Varvara Feoktistova et al. “Designs of optimal switching feedback decentralized control policies for

fluid queueing networks”. In: Mathematics of Control, Signals, and Systems 24.4 (2012), pp. 477–
503.

[2] STG Fleuren. “Optimizing pre-timed control at isolated intersections”. Master’s thesis. Eindhoven
University of Technology, 2015.

22

Appendix

Appendices
A Intersection Data
A.1 Traffic intensity data provided by city of Eindhoven

Figure A.1: Hovenring Traffic Intensities

A.2 Numbering of Traffic Directions

Figure A.2: Traffic direction Numbering Method

23

Appendix

B Simulation Code

1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4 # from matplotlib.figure import Figure
5 import sys # used to output error message
6 from cycler import cycler # used to control the colours of the plot
7 import networkx as nx # for the network analysis Graphb
8 import statistics
9

10

11 ### Name of the intersection
12 intersection = 'Hovenring '
13

14

15 ### Time range of the data
16 t_range_list = ['01.00 -02.00 ', '02.00 -03.00 ', '03.00 -04.00 ', ...

'04.00 -05.00 ', '05.00 -06.00 ',
17 '06.00 -07.00 ', '07.00 -08.00 ', '08.00 -09.00 ', ...

'09.00 -10.00 ', '10.00 -11.00 ',
18 '11.00 -12.00 ', '12.00 -13.00 ', '13.00 -14.00 ', ...

'14.00 -15.00 ', '15.00 -16.00 ',
19 '16.00 -17.00 ', '17.00 -18.00 ', '18.00 -19.00 ', ...

'19.00 -20.00 ', '20.00 -21.00 ',
20 '21.00 -22.00 ', '22.00 -23.00 ', '23.00 -00.00 ']
21

22

23 # Name of the sheet the data is stored in
24 lightschedule_data = '0 extra groen , Nr 1 (Geen)'
25

26 ##
27 # simulation start
28 data = {}
29 waitingfromdata = {}
30

31

32 for n_timerange in np.arange(0, len(t_range_list)):
33 t_range = t_range_list[n_timerange]
34 lights_data = pd.ExcelFile('./'+intersection+' - '+t_range+'.xlsm')
35

36

37

38 # not necessary
39 # # Period info (lists when traffic turns green and red for each ...

direction)
40 # df_tcont = pd.read_excel (lights_data , ...

sheet_name=lightschedule_data , index_col =0, usecols =[0, 1, 2, 3])
41 # # list of direction that is served (for the traffic)
42 # traffic_distribution_direction = df_tcont.index # dtype='object '
43

44

45 # conflict matrix (list of where confricts may occur and the gap ...

required to avoid it)
46 # 1st column is loaded as a string as it will be set to index in ...

the following steps
47 df_conflict = pd.read_excel (lights_data , sheet_name="Conflicten", ...

skiprows=3, dtype ={0: str})
48 # index is not correctly set therefore 1st the coloumn that will ...

be used for index is named
49 df_conflict.rename(columns ={ df_conflict.columns [0]: "From\To" }, ...

24

Appendix

inplace = True)
50 # The index is changed to the correct column
51 df_conflict = df_conflict.set_index('From\To')
52

53

54 # stoplight info. data about how many cars are incoming into
55 df_stopinfo = pd.read_excel (lights_data , sheet_name="Stoplicht ...

info", skiprows=0, index_col=0, usecols =[0, 1, 2,4])
56

57 # converting the inflow info to cars per second instead of hours ...

(adds two coloums)
58 df_stopinfo['Intensiteit \n\n(pae/s)'] = df_stopinfo['Intensiteit ...

\n\n(pae/u)']/3600
59 df_stopinfo['Capaciteit \n\n(pae/s)'] = df_stopinfo['Capaciteit ...

\n\n(pae/u)']/3600
60

61 Min_green = df_stopinfo.to_dict ()['Minimaal \nGroen\n(s)']
62

63 # Making list of in and out flow rate
64 OUT_flow_rate = df_stopinfo.to_dict ()['Capaciteit \n\n(pae/s)']
65 IN_flow_rate = df_stopinfo.to_dict ()['Intensiteit \n\n(pae/s)']
66

67

68 # might be used
69 # getting period and average waiting time for the given intersection
70 cycleinfo = pd.read_excel (lights_data , ...

sheet_name=lightschedule_data , index_col=0, usecols =[5 ,6])
71 period = float(cycleinfo.loc['Periodetijd:'])
72 Avg_waiting_t = float(cycleinfo.loc['Gemiddelde wachttijd:'])
73

74

75 # Creating the list of traffic directions in the intersection (in ...

numbers) from stopinfo
76 traffic_direction = df_stopinfo.index # dtype='float64 '
77

78

79 ##
80

81 t_lenght = 100 #second
82 t_step = 0.01
83

84 buffer = {}
85 light_green = {}
86 start_green = {}
87 start_red = {}
88 red_green_check ={}
89

90 # buffer [1] = IN_flow_rate
91 # buffer
92

93 def_green_start = -100
94 def_red_start = 9999999
95

96 # making the buffer for all directions
97 for n_traffic in np.arange(0, len(traffic_direction)):
98 buffer[traffic_direction[n_traffic]] = [0]
99

100 for n_traffic in np.arange(0, len(traffic_direction)):
101 light_green[traffic_direction[n_traffic]] = False
102

103 for n_traffic in np.arange(0, len(traffic_direction)):
104 start_green[traffic_direction[n_traffic]] = def_green_start

25

Appendix

105

106 for n_traffic in np.arange(0, len(traffic_direction)):
107 start_red[traffic_direction[n_traffic]] = def_red_start
108

109 graph_loc_red_green ={1: 12, 2: 11, 3: 10, 4: 9, 5: 8, 6: 7, 7: ...

6, 8: 5, 9: 4, 10: 3, 11: 2, 12: 1,}
110

111 for n_traffic in np.arange(0, len(traffic_direction)):
112 red_green_check[traffic_direction[n_traffic]] = [0]
113

114

115

116 # setting up time to base the graph on. (y axis) set to interval of ...

0.01s for the lenght of simulation time.
117 # t_lenght = 1000 #second
118 # t_step = 0.01
119

120 t_graph = np.arange(0, (t_lenght), t_step)
121

122 t = np.arange(0, (t_lenght -t_step), t_step)
123 Switch_condition = {} # dictionary to insert the switching directions
124

125 # computation function to facilitate this step
126 # calculates the buffer for the direction with red
127 def red_buffer(traffic_id , n): # insert direction and t value.
128 # the next value in the buffer is equal to the step t times by ...

the arrival rate
129 buffer[traffic_id]. append(buffer[traffic_id][n]+ ...

(t_step*IN_flow_rate[traffic_id]))
130

131 # calculates the buffer for the direction with green
132 def green_buffer(traffic_id , n): # insert direction and t value.
133 # The buffer count decreases by the in flow rate - out flow rate.
134 # calculation calculates the new buffer value
135 calculation = buffer[traffic_id][n]+ (t_step * ...

(IN_flow_rate[traffic_id]-OUT_flow_rate[traffic_id]))
136

137 # Addition is the value that will be updated as the new value.
138 # This makes sure that the buffer never becomes negative value
139 addition = calculation if calculation > 0 else 0
140

141 # appending the calculated buffer value and updating the list
142 buffer[traffic_id]. append(addition)
143

144 def emp_mg(traffic_id):
145 empty_and_mg = buffer[traffic_id][n_sim] == 0 and t[n_sim] - ...

start_green[traffic_id] ≥ Min_green[traffic_id]
146 return empty_and_mg
147

148 def switch_green(traffic_id):
149 if light_green[traffic_id] != True:
150 light_green[traffic_id] = True
151 start_green[traffic_id] = t[n_sim]
152 start_red[traffic_id] = def_red_start
153

154 def switch_red(traffic_id):
155 if light_green[traffic_id] != False:
156 light_green[traffic_id] = False
157 start_green[traffic_id] = def_green_start
158 start_red[traffic_id] = t[n_sim]
159

160

26

Appendix

161 sim_time = 0
162 sim_mode = 1
163 t_startmode = 0
164 start = True
165 cyclecount = 1
166 cycledata = {}
167

168

169 slowdown = [0]
170 for n_sim in np.arange(0, len(t)): #slowdown:
171

172 if start == True:
173 switch_green (1)
174 switch_green (2)
175 switch_green (7)
176 switch_green (8)
177 start = False
178

179

180 # MODE 1
181 if sim_mode == 1:
182

183 if t[n_sim] - start_red [6] ≥ df_conflict.loc['6','2'] and ...

t[n_sim] - start_red [6] ≥ df_conflict.loc['6','8'] and ...

t[n_sim] - start_red [12] ≥ df_conflict.loc['12','2'] and t[n_sim] - ...

start_red [12] ≥ df_conflict.loc['12','8']:
184 switch_green (2)
185 switch_green (8)
186

187

188

189

190

191 # switching
192 # case where the 1,2 switches to 9,10
193 if emp_mg (1) and emp_mg (2):
194 switch_red (2)
195

196 t_startmode = t[n_sim]
197 sim_mode = 2
198

199 # case where the 7,8 switches to 3,4
200 elif emp_mg (7) and emp_mg (8):
201 switch_red (8)
202

203 t_startmode = t[n_sim]
204 sim_mode = 2
205

206 # case where the 1,2,7,8 switches to 3,4,9,10
207 elif emp_mg (1) and emp_mg (2) and emp_mg (7) and emp_mg (8):
208 switch_red (2)
209 switch_red (8)
210

211 t_startmode = t[n_sim]
212 sim_mode = 2
213

214 # else: sim_mode == 1
215

216

217

218

219

27

Appendix

220 # MODE 2
221 elif sim_mode == 2:
222 if t[n_sim] - start_red [2] ≥ df_conflict.loc['2','9']:
223 switch_red (1)
224 switch_green (9)
225 if t[n_sim] - start_red [8] ≥ df_conflict.loc['8','3']:
226 switch_red (7)
227 switch_green (3)
228

229 if t[n_sim] - start_red [2] ≥ df_conflict.loc['2','10']:
230 switch_green (10)
231

232 if t[n_sim] - start_red [8] ≥ df_conflict.loc['8','4']:
233 switch_green (4)
234

235 #else: sim_mode == 2
236

237 if emp_mg (7) and emp_mg (8):
238 switch_red (8)
239

240 if emp_mg (1) and emp_mg (2):
241 switch_red (2)
242

243 # switching to mode 3
244 if emp_mg (3) and emp_mg (9):
245 switch_red (3)
246 switch_red (9)
247 sim_mode = 3
248

249

250

251

252

253

254 # MODE 3
255 elif sim_mode == 3:
256 if t[n_sim] - start_red [3] ≥ df_conflict.loc['3','11'] and ...

t[n_sim] - start_red [9] ≥ df_conflict.loc['9','11'] :
257 switch_green (11)
258 if t[n_sim] - start_red [9] ≥ df_conflict.loc['9','5'] :
259 switch_green (5)
260

261 if t[n_sim] - start_red [2] ≥ df_conflict.loc['2','10']:
262 switch_green (10)
263

264 if t[n_sim] - start_red [8] ≥ df_conflict.loc['8','4']:
265 switch_green (4)
266

267 # switching
268 if emp_mg (4) and emp_mg (10) and emp_mg (5) and emp_mg (11):
269 switch_red (5)
270 switch_red (11)
271 sim_mode = 4
272

273 elif emp_mg (10) and emp_mg (11):
274 switch_red (11)
275 sim_mode = 4
276

277 elif emp_mg (4) and emp_mg (5):
278 switch_red (5)
279 sim_mode = 4
280

28

Appendix

281

282

283

284 # MODE 4
285 elif sim_mode == 4:
286 if emp_mg (10) and emp_mg (11):
287 switch_red (11)
288 if emp_mg (4) and emp_mg (5):
289 switch_red (5)
290

291 if t[n_sim] - start_red [5] ≥ df_conflict.loc['5','12'] :
292 switch_red (4)
293 switch_green (12)
294

295 if t[n_sim] - start_red [11] ≥ df_conflict.loc['11','6'] :
296 switch_red (10)
297 switch_green (6)
298

299 if t[n_sim] - start_red [5] ≥ df_conflict.loc['5','1'] :
300 switch_green (1)
301

302 if t[n_sim] - start_red [11] ≥ df_conflict.loc['11','7'] :
303 switch_green (7)
304

305 # Switching
306 if emp_mg (6) and emp_mg (12):
307 switch_red (12)
308 switch_red (6)
309 sim_mode = 1
310

311 cyclecount = cyclecount + 1
312 cycledata[cyclecount] = [cyclecount , t[n_sim], n_sim]
313

314

315

316 # updating the next value
317 green_direction = []
318 red_direction = []
319 for direction_sort in np.arange(0, len(traffic_direction)):
320 if light_green[traffic_direction[direction_sort]] == True :
321 green_direction.append(traffic_direction[direction_sort])
322 elif light_green[traffic_direction[direction_sort]] == False:
323 red_direction.append(traffic_direction[direction_sort])
324

325

326 for n_green in np.arange(0, len(green_direction)):
327 green_buffer(green_direction[n_green], n_sim)
328 ...

red_green_check[green_direction[n_green]]. append(graph_loc_red_green[green_direction[n_green]])
329

330 for n_red in np.arange(0, len(red_direction)):
331 red_buffer(red_direction[n_red], n_sim)
332 red_green_check[red_direction[n_red]]. append (0)
333

334

335

336 ##
337

338

339 start_point = cyclecount -1
340

341 p_Start = cycledata[start_point][2]

29

Appendix

342 p_end = cycledata[start_point +1][2]
343

344 mean_buffer ={}
345

346 t_mean_wait_weighted= np.zeros(len(traffic_direction))
347 arrive_rate = np.zeros(len(traffic_direction))
348 t_mean_wait = np.zeros(len(traffic_direction))
349 waitingfromdata[t_range]= float(cycleinfo.loc['Gemiddelde wachttijd:'])
350

351 for n_buff_stat in np.arange(0, len(traffic_direction)):
352 mean_buffer[traffic_direction[n_buff_stat]] = ...

statistics.mean(buffer[traffic_direction[n_buff_stat]][p_Start:p_end])
353 arrive_rate[n_buff_stat] = ...

df_stopinfo.loc[traffic_direction[n_buff_stat], 'Intensiteit ...

\n\n(pae/s)']
354

355 t_mean_wait[n_buff_stat] = ...

(mean_buffer[traffic_direction[n_buff_stat]])/arrive_rate[n_buff_stat]
356

357 t_mean_wait_weighted[n_buff_stat] = ...

t_mean_wait[n_buff_stat]* arrive_rate[n_buff_stat]
358

359

360 mw_alldirection = sum(t_mean_wait_weighted)/sum(arrive_rate)
361

362 data[(t_range)] = np.append(t_mean_wait , mw_alldirection)
363

364

365 ##
366

367 avg_ind = traffic_direction.union(['Simulated Mean'])
368

369 average = pd.DataFrame(data , index =avg_ind)
370

371 #average.loc['Mean '] = average.mean()
372 average.loc['From optimization '] = waitingfromdata
373

374 average.loc['Difference '] = average.loc['Simulated Mean'] - ...

average.loc['From optimization ']
375

376 average.loc['cycle length (s)'] = cycledata[start_point +1][1] - ...

cycledata[start_point][1]
377

378 average

C Simulation Results

30

Appendix

Figure C.1: Hovenring simulated buffer evolution

Figure C.2: Hovenring simulated cycle

Figure C.3: Hovenring simulated buffer evolution

31

Appendix

Figure C.4: Hovenring simulated cycle

Figure C.5: Hovenring simulated buffer evolution

Figure C.6: Hovenring simulated cycle

Figure C.7: Hovenring simulated buffer evolution

32

Appendix

Figure C.8: Hovenring simulated cycle

Figure C.9: Hovenring simulated buffer evolution

Figure C.10: Hovenring simulated cycle

Figure C.11: Hovenring simulated buffer evolution

33

Appendix

Figure C.12: Hovenring simulated cycle

Figure C.13: Hovenring simulated buffer evolution

Figure C.14: Hovenring simulated cycle

Figure C.15: Hovenring simulated buffer evolution

34

Appendix

Figure C.16: Hovenring simulated cycle

Figure C.17: Hovenring simulated buffer evolution

Figure C.18: Hovenring simulated cycle

Figure C.19: Hovenring simulated buffer evolution

35

Appendix

Figure C.20: Hovenring simulated cycle

Figure C.21: Hovenring simulated buffer evolution

Figure C.22: Hovenring simulated cycle

Figure C.23: Hovenring simulated buffer evolution

36

Appendix

Figure C.24: Hovenring simulated cycle

Figure C.25: Hovenring simulated buffer evolution

Figure C.26: Hovenring simulated cycle

Figure C.27: Hovenring simulated buffer evolution

37

Appendix

Figure C.28: Hovenring simulated cycle

Figure C.29: Hovenring simulated buffer evolution

Figure C.30: Hovenring simulated cycle

Figure C.31: Hovenring simulated buffer evolution

38

Appendix

Figure C.32: Hovenring simulated cycle

Figure C.33: Hovenring simulated buffer evolution

Figure C.34: Hovenring simulated cycle

Figure C.35: Hovenring simulated buffer evolution

39

Appendix

Figure C.36: Hovenring simulated cycle

Figure C.37: Hovenring simulated buffer evolution

Figure C.38: Hovenring simulated cycle

Figure C.39: Hovenring simulated buffer evolution

40

Appendix

Figure C.40: Hovenring simulated cycle

Figure C.41: Hovenring simulated buffer evolution

Figure C.42: Hovenring simulated cycle

Figure C.43: Hovenring simulated buffer evolution

41

Appendix

Figure C.44: Hovenring simulated cycle

Figure C.45: Hovenring simulated buffer evolution

Figure C.46: Hovenring simulated cycle

42

	List of symbols
	Introduction
	Intersection Analysis
	Numbering the directions
	Identifying conflicting directions
	Conflict matrix

	Optimised Cycle
	Creating the Hourly Optimal Cycle
	Analysis of the optimal cycle
	Optimised cycle overview

	Defining the Policy
	Simplification of the policy of the optimal cycle
	Policy definition

	Analysis of the Policy
	Simulation
	Mathematical analysis
	Analysis conclusion

	Conclusion
	Conclusion
	Recommendation

	Bibliography
	Appendices
	Intersection Data
	Simulation Code
	Simulation Results

