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Abstract

To reduce dependency on oil and fossil fuels the automotive industry is transitioning towards
electrification. Battery electric vehicles are getting more attention as they are seen as a good path
towards a future with zero local emissions for driving. As Battery electric vehicles are relatively
new on the consumer market there are still a lot of opportunities for further development of their
technology. To gain a better insight in these opportunities the dynamics and control group of
the technical university of Eindhoven developed a battery powered electric vehicle as a research
platform. A lot of attention was given to data acquisition in the development of this vehicle.
Therefore, the vehicle is equipped with an extensive sensor set that covers the powertrain, vehicle
dynamics and other aspect of the vehicle. Many test have been executed over the year and tens
of gigabytes of measurement data have been collected.
The goal of this project is to streamline the processing of the all the collected measurements. Based
on exciting software a MATLAB script is developed that processes the collected measurements
into a usable format in MATLAB. The existing software is made more robust so it can handle
processing of large amount of measurement files at once. Also functions have been added to cover
exceptions such as missing GPS data by using data from a secondary data acquisition system,
an Android tablet. Metrics have been developed to characterize the processed measurement files,
such that it is more easy to identify what data is available in a certain file. These metrics are based
on driving scenario’s recognized in the measurement data. To give further insight into what data
is available in a certain measurement file a fingerprint tool is developed. This tool presents key
numbers of all trips in a table. Alongside this table the route of the trip is plotted on an interactive
map. By clicking on a key number of a trip the plotted route will indicate the magnitude of the
key number throughout the trip.
This report also includes analysis of the vehicle dynamics of the Lupo EL. A model for wheelspeeds
is derived and verified with measurement data. Furthermore, a single track vehicle model is derived
and verified with measurement data.
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Chapter 1

Introduction

The automotive industry is shifting towards a more sustainable way of transportation. In particu-
lar the battery powered electrical vehicle (BEV) has seen a major increase in popularity. Because
BEV’s are reasonably new on the consumer market, there are still a lot of opportunities for further
development. To get a better insight in these opportunities in the development of battery powered
electric vehicles, the Dynamics and Control group of the Eindhoven University of Technology has
developed the Lupo EL electric vehicle as a research platform for electric mobility. This research
platform gives future engineers a great opportunity to learn about the development of a battery
powered electric vehicle in their study and gain knowledge and interest, so they can built a greener
future later on in their career. Data collected during the development and testing of the vehicle
can be used as lecture material therefor special attention is given to data acquisition features.
This thesis gives an overview how data acquisition is done in the TU/e Lupo EL. Furthermore the
analysis of the acquired data is streamlined.

1.1 Project Goals

The project goals are as follows:

• Streamline the processing of the CAN logger measurement files to a usable format in MAT-
LAB. Existing software can be used as a starting point, but must be made more robust to
cover exceptions (e.g. missing GPS data) and able to handle all available measurement files.

• Develop a method/metrics to characterize a trip, such that it is more easy to identify what
data is available within a certain measurement file.

• Develop a simple vehicle model that is able to reproduce the relations between various
measurement signals that uses at least vehicle speed and steering wheel as inputs.

1.2 Structure of the Report

This report is organized as follows. Chapter 2 provides a summary of the CAN bus and data
acquisition system. Furthermore, it explains in detail how the acquired data is processed into a
usable format in MATLAB. Chapter 3 explains how trip data is characterized and elaborates on
a tool developed to easily identify what data is available within the different measurement files.
Chapter 4 elaborates on the steering system of the vehicle and derivation of simple vehicle models.
These vehicle dynamics models are validated using measurement data.
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Chapter 2

Data acquisition and processing
flow

The design of the CAN bus and data acquisition systems of the TU/e Lupo El are thoroughly
researched. Full reports on this subject can be found in the reports [6], [3]. This chapter will give
an overview of the CAN bus systems and the data acquisition procces. Furthermore, it will give
an overview of how the acquired data is processed into a usable format in MATLAB, for more
convenient and clear post-processing of the data collected during various trips.

2.1 CAN bus

The VW Lupo El is equipped with two separate CAN buses for the various components to com-
municate with each other with minimal interference and maximum redundancy. One CAN bus is
used for the original VW Lupo 3L components to exchange and monitor signals such as dashboard
indicators, gear lever, airbag, and ABS signals. Various components of the electric power train
such as the inverter, charger, and BMS are linked with each other through a second CAN bus.
The built-in Android tablet can connect via an OBD port. The Android tablet has the application
”Torque” installed, this software allows to display and log signals from the CAN bus through the
OBD connection. A central programmable logic controller (PLC) is connected to the CAN buses
and is used as the main controller. Figure 2.1, gives an overview of the electrical systems layout
in the vehicle with the two CAN buses indicated.

Figure 2.1: Overview system lay-out VW Lupo EL
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2.2 Data acquisition

In the aforementioned CAN-bus system lay-out and the rest of the vehicle design, special attention
is given to data acquisition. Figure 2.2, shows the layout of the electric power train, including
all components connected to the high voltage battery system. The circled U, I, or T symbols
are measurement points of respectively voltage, current, and torque measured by the new CAN
bus. Next to measurements on the High voltage system also, the majority of the low voltage 12 V
system components are instrumented for a more detailed insight into the energy consumption of
the vehicle. Besides measurements on the electrical components, the vehicle monitors sensors of
the original Lupo 3L CAN bus, for example sensors considering the chassis. These sensors include
accelerations, yaw rate, and steering angle. A more detailed overview of signal ID’s can be found
in Appendix A. The VMS-CAN stand-alone CAN-bus data acquisition system, manufactured by
Venamics, is installed for high-speed and reliable logging of CAN-bus data of both the CAN
bus connecting all the original VW Lupo components and the CAN bus connecting the electric
drive train components. The VMS-CAN CAN-bus data acquisition system uses a memory card
containing a configuration file, defining what signals should be logged and stored on the memory
card. The configuration file can be created using the VMS-tool for Windows. In the VMS-tool
DBC files containing CAN databases can be loaded. The CAN databases contain the different
message ID’s with subsequent data on the signals and other data, like time frame etc. In the
VMS-tool the message ID’s and data that is desired to be logged can be selected and stored as
the config file. The CAN database of the original VW systems was reversed engineered. Certain
signals on CAN bus for the built-in Android tablet are also logged. The ”Torque” software running
on the Android tablet logs data through the OBD connection. The software also logs data from
the tablet itself for example GPS data from the GPS sensor on board of the tablet. The ”Torque”
application stores the log files as .csv files called Tracklogs.

Figure 2.2: High Voltage system layout and measurement points

2.3 Data processing

Data acquired by the VMS data acquisition system of the two main CAN buses is stored as .bin
files on a memory card. For convenient post-processing of this data it is preferred to load the
data in MATLAB, so a reliable way to export the data in MATLAB is needed. The bin files
from the CAN-bus acquisition system contain data from separate CAN buses both, with a variety
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of different sensors all working at different sample frequency’s. Therefore all signals need to be
resampled and aligned to one generic time base after it is loaded into to MATLAB, so signals can
be compared and relevant relations can be found between signals.
The built-in Android tablet also acquires GPS data, as in 2013 and 2014 the GPS signals from
the vehicle are not recorded by the VMS CAN-bus acquisition system yet. The GPS data from
the tablet can be used to compensate for the missing location data in those years. Again it is
important that the right GPS data from the tablet is resampled and aligned with the generic time
base of the other signals. Because the data from the Tablet is recorded by a separate system
than the other data, the start and stop times of these signals do not necessarily correspond to
that of the signals logged by the VMS CAN-bus acquisition system. So not only a reliable way
to resample the data needs to be found, but also the right GPS data needs be to macthed and
aligned with the VMS data. To streamline the process of going through all these step the MATLAB
script Data conversionv2, which is displayed in Appendix B, has been developed. The script goes
through the steps:

• Loading data into Matlab.

• Resampling VMS data.

• Combining VMS data and GPS data built-in tablet (if GPS data VMS is not available).

• Adding SRTM elevation data.

The steps will be explained in detail next.

2.3.1 Loading data into MATLAB

The data recorded by the VMS CAN-bus system can be loaded into MATLAB with software
provided by the manufacturer of the VMS-CAN system, Venamics. The executable ”VMS2MAT.exe”
can be called from within MATLAB. This executable will convert the data from the bin files and
create a .mat file named VMSlog YYYYMMDD HHMMSS.mat, containing a MATLAB struc-
ture called ”data”. An overview of this structure is show in Figure 2.3 for one message ID as an
example.

Figure 2.3: Overview of the MATLAB ”data” struct created by VMS2MAT.exe
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As can be seen in this overview the total structure ”data” contains the substructure ”can”,
in which two substructures for each of the CAN buses can be found. ”ch1”, channel 1 which
correlates to the logged data on the the CAN bus containing the original VW Lupo 3L components.
”ch2”, channel 2 correlates to the data from the CAN bus containing the electrical power train
components. The structures ch1 and ch2 are made up of substructures for each message ID logged
as instructed by the config file loaded on the memory card of the VMS CAN-bus system. For an
overview of message ID’s that are logged see Appendix A. The substructure for a certain message
ID contains the time base of all signals present for that message ID as well as the values for the
different signals.

2.3.2 Resampling

For convenient post-procession of the exported data with ”VMS2MAT.exe” the exported data is
resampled, so all signals are aligned with a generic time base and are restructured in a clearer way.
This is done by using a combination of the MATLAB functions VMSconvMAT and VMSresample.
The function VMSconvMAT first takes a dummy signal to determine the time range of the recorded
signals. The dummy is taken by loading the time instances for signal nr1 of message ID 1184
containing ABS data on the front left wheel speed, the min and max of the time recordings are
taken to determine the start and stop time of of the recorded signal, these will be used to create a
generic time base for all signals. Then the function VMSconvMAT analyses the measurements to
determine whether the car was driving or charging during the recording. This is done by analysing
the front left wheel speed and AC current measurements for a time frame determined with the
dummy. If the mean front left wheelspeed is zero and the mean AC current is larger than one
for that time frame, the function concludes that the vehicle was charging otherwise the function
concludes that the vehicle was driving. This distinction between driving or charging determines
the sample frequency used to resample the data. For driving all data will be resampled to a sample
frequency of 25 [Hz] and for charging a sample frequency of 5[Hz] is used. This has been done
to reduce the datafile size of the charge cycle. The conversion script finally calls the resampling
using interpolation the function VMSresample resamples each signal using the following options:

• The sampling frequency, 25 [Hz] for a drive cycle and 5[Hz] for a charge cycle.

• Signal Name and Unit.

• Scaling factor, some signals require a certain multiplication in order to be valid. This can
be caused by a reverse in direction (-1) or for example the gravitational constant (g = 9.81).

• Interpolation Method, for most signals a linear interpolation is used. However, for signals
that are either on or off, a ’nearest’ interpolation is used.

The resampled signals are stored in structure ”m”, for driving this structure contains the
signals listed in Table 2.1.
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Table 2.1: overview ”m” struct

Group Signal Unit Group Signal Unit
Chassis Wheelspeed FL [km/h] HV voltage [V]

Wheelspeed FR [km/h] current [A]
Wheelspeed RL [km/h] power [W]
Wheelspeed RR [km/h] DCDC [A]
s [km] cell Vmin [V]
a x [m/sˆ2] cell Vmin nr -
a y [m/sˆ2] cell Vmax [V]
yawrate [deg/s] cell Vmax nr -

Charger DC voltage [V] SOC [%]
Dashboard Odometer [km] DOD [%]
Motor rpm [rpm] nrg discharge [kWh]

torque [Nm] nrg regen [kWh]
inverter struct LV voltage [V]

Controls steerangle [deg] current [A]
throttle struct Temp chargeplug [deg.C]
brake struct coolant [deg.C]
ecomode - PLC [deg.C]
gearlever - Charger [deg.C]
regenbraking - pack1 [deg.C]
steerangle raw [deg] pack2 [deg.C]
accelerator struct pack3 [deg.C]
OPD struct cell low [deg.C]
CC struct cell high [deg.C]

Time time [s] cell avg [deg.C]

2.3.3 Combining VMS data and GPS data built-in tablet

Having GPS location data combined with measured signals of the vehicle can help interpret the
data. GPS data from the Lupo was logged from mid 2014 and on but, for the VMS data of 2013
and the beginning of 2014 there is no GPS data present. A method is developed to combine GPS
data from the built-in Android tablet and the VMS data. GPS data and other data recorded by
the Android tablet are saved in .csv files named trackLog-YYYY-mmm-DD HH-MM-SS.csv. The
first step in combining VMS data with GPS data from the tablet is to read the .csv files in to
MATLAB in a reliable way. The MATLAB function TorqueconvMAT reads the .csv files line by
line and determines whether the line contains values or column titles, as the Torque application
repeats the titles randomly in the log files, which can cause problems when loading the data.
Finally the Function TorqueconvMAT creates a MATLAB structure ”T” containing all signals
logged by the tablet.
The resampled VMS trip data needs to be matched with GPS data from the tablet so, the .csv
file containing signals of the same trip needs to found. This is done done in MATLAB by taking
the date from the title of the resampled VMS .mat file as a string and converting it to same
format as used in the trackLog files. This converted string is used to find all .csv trackLog files
recorded on the same day as the VMS file. This narrows down the possible .csv trackLog files that
can contain signals of the same trip. Then all trackLog files matching that date are loaded into
MATLAB using TorqueconvMAT. For the date matching trackLog files the signals SpeedOBD,
longitude and latitude are resampled using the interp1 function to the same sample frequency
as the VMS data so, 25 [Hz]. Then the signal of the wheelspeeds of the VMS data is compared
to the SpeedOBD signal of the tablet data using the MATLAB function finddelay of the Signal
Processing Toolbox toolbox [5]. The finddelay function uses the xcorr function to determine
the cross-correlation between each pair of signals at all possible lags specified by the user. The
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normalized cross-correlation between each pair of signals is then calculated. The estimated delay
is given by the negative value of the lag, for which the normalized cross-correlation has the largest
absolute value. If a delay is found between the measured velocity based on the wheelspeed signals
from the VMS data and velocity signal SpeedOBD from the tablet data, the signals SpeedOBD,
longitude and latitude are shifted with that delay and stored in the struct m as m.TorqueData.
Figure 2.4, shows the steps of resampling and shifting the SpeedOBD signal from the tracklog
data and the wheelspeed signal from the VMS data. If no or multiple delays are found by the
function finddelay a string containing that information is stored as m.TorqueData.

Figure 2.4: Steps aligning speed signals using finddelay

The method of matching signals with finddelay proved to only be reliable if both the tracklog data
and VMS data contained data in roughly the same time frame and still resulted in some wrong
matches. So, in the data conversion the validity of the alignment of the velocity based on the
measured wheelspeed signals from the VMS data and the SpeedOBD signal is checked using the
function Matchcheck. This function calculates the difference between the signals and if the mean
of the difference is within -2 and 2 km/h it is concluded the match is correct.
If it is determined that the match is not correct or no match was found, the function rematch is
used. This functions tries to match the signals by using the MATLAB function findsignal from
Signal Processing Toolbox toolbox, The function findsignal returns the start and stop indices of a
segment of the resampled SpeedOBD tracklog data array, that best matches the VMS wheelspeed
data array, signal. The best-matching segment is such that the MATLAB function dist, the
squared Euclidean distance between the segment and the search array, returns the smallest value.
A visual representation of the execution of the function findsignal is given in figure 2.5.
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Figure 2.5: aligning speed signals using findsignal

This function is better suited for cases where the tracklog contains data of a larger time frame than
the VMS log, but it still may result in false positive matches. So, again the function Matchcheck
is used to determine if the match is valid. If the match is correct the signals SpeedOBD, latitude
and longitude are stored in the substructure m.TorqueData .

2.3.4 Adding SRTM elevation data

As the elevation data of the both the GPS signal from the vehicle and the tablet is not reliable,
a different method to add elevation data to the trip logs is used. The MATLAB function get-
SRTMelevation of the MEC pro toolbox [1] is used to get SRTM elevation data based on the
trips recorded latitude and longitude. The function queries and downloads relevant sections of
the digital elevation map. The resulting elevation, as function of travelled distance, is filtered by
a 3rd order Butterworth low-pass filter with cut-off spatial frequency λc = 1/2000 l

m . This data
is either stored in trip struct m under m.gps.SRTMelevation if gps signals from the vehicle were
available otherwise it is stored under m.Torquedata.SRTMelevation.

8 Data analysis and modeling of the TU/e Lupo EL



Chapter 3

Trip characterization

When dealing with a large database of vehicle trip logs, it is desirable to gain information about
the context in which this data was acquired. A basic piece of context, that is not directly contained
in the recorded data, is for example whether a trip was recorded in a urban environment or not,
that is, if the vehicle was driving on a regular street or on a highway. This chapter presents
different possibilities to differentiate driving contexts based on vehicle and location data.
Furthermore, all data recorded is analysed to provide an understanding of the different conditions
the vehicle was operated during data acquisition. When reviewing the collection of measurement
files there is no simple/quick way to identify what type of test was executed, where it was done,
how long it lasted, how much energy was used. This section will elaborate on a method developed
to give quick overview of key numbers of a certain log file, combined with visual representation on
an interactive map to see where the vehicle is driving.

3.1 Data analysis of all data recorded

Before analyzing data from on a trip level, it is insightful to first analyze all data recorded together.
By analyzing all recorded data, an understanding can be gained under what conditions the vehicle
was operating, also it gives an insight in how the vehicle typically operated, so special cases where
atypical behaviour occurs can be identified.
Using the trip data considered to be valid after the data processing process, some statistics are
calculated, see Table 3.1.

Table 3.1: Statistical data valid logs

description value
number of trips 265
total distance 6036.78 [km]
total amount of electricity (DC) 758.01 [kWh]
average energy usage (DC) 188.4 [Wh/km]
shortest trip 0.00 [km]
longest trip 228.08 [km]
average trip length 22.78 [km]
highest velocity 127.67 [km/h]
average velocity 29.31 [km/h]
highest longitudinal acceleration 6.74 [m/s2]
highest lateral acceleration 7.65 [m/s2]
maximum elevation change 85.00 [m]

Considering that this data was gathered over a period of 9 years and the total distance driven
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is only around 6000 km it can be concluded that the vehicle was not used intensively or data was
not logged consistently.

3.1.1 Drive Style

Plotting the longitudinal acceleration as a function of the forward velocity provides a way recognize
the aggressiveness of the driver. A binned scatterplot for all the collected for the lupo EL is shown
in figure 3.1. As is shown in this figure for the most part the vehicle is driven normally as the
bins with the largest amount of data points are further way from the motor power and braking
limit. But there are instances where the vehicle was pushed to its limits. This was problably done
during acceleration and braking tests.

Figure 3.1: Measured acceleration and deceleration on the TU/e Lupo EL

Maximum longitudinal and lateral acceleration cannot occur at the same time, since the tire
forces are limited by a friction circle or ellipse. Plotting the maximum achievable combined
longitudinal and lateral acceleration results in a so called g-g diagram, shown in Figure 3.2. The
g-g diagram can be used to assess driver performance. The graph also shows the physical limits
of the vehicle. An “ordinary driver” g-g diagram typically has a cross shape, as also seen in figure
3.2. Furthermore it shows that a higher lateral acceleration was achieved when cornering to the
left, this could be because cornering test have been done where was driven on a trajectory with
only or mainly left hand turns.
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Figure 3.2: Measured acceleration with the TU/e LUpo EL

3.2 Defining metrics trip characteristics

Based on visual evaluation of location data, three distinct driving scenario’s can be recognized:
Urban trips, Highway trips and trips solely driven on the TU/e campus. By manually selecting a
number of trip logs of each of these categories and comparing the vehicle signals of the selected trip
notable differences between the categories are sought that can be used as metrics to characterize
collected vehicle data.

Based on the values presented 3.2, it is noticeable that there are clear distinctions in the aver-
age distance of trips between the three category’s. Campus trips are obviously the shortest as the
campus has quite limited space to drive around. Furthermore Highway trips are longer, which is
also logical as highways are designed to efficiently travel great distances. Energy use is different
in the three scenario’s. Campus trips have the highest energy consumption, this can attributed to
the fact that the roads on the campus are not that long so a lot of accelerating and decelerating
has to occur. Urban have a lower energy consumption than highway trips, this is can be attributed
to the fact that the average velocity of urban trips is lower, therefore there is less drag from the
air.
Another way to distinguish a campus drive is simply by looking at the coordinates as the co-
ordinates of the TU/e campus are known. It is concluded that the best way to distinguish Urban
trips from Highway trips is by evaluating the top speed and average speed, in edge cases the trip
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Table 3.2: Comparison data distinct driving scenario’s

description Urban Highway Campus
Average distance trip [km] 39.26 69.41 1.49
Average energy use [Wh/km] 110 135 185
Average max velocity trips [km/h] 56.5 113.2 15.3
Average velocity trips [km/h] 17.41 64.20 15.28
Max longitudinal acceleration [m/s2] 4.20 3.36 3.03
Average longitudinal acceleration [m/s2] -0.0865 -0.0680 -0.0222
Max absolute Lateral acceleration [m/s2] 3.76 3.76 2.85
Average Lateral acceleration [m/s2] 0.0493 0.0808 0.22

distance can be the deciding factor. The best way to distinguish campus trips is by location data
if available otherwise by by low average distance and high average energy use.

3.2.1 implementation of classifications

From the comparison of the different driving scenario’s a final method to characterise the trip
measurement files has been developed. First if location data is present it is determined if the
maximum latitude and longitude are below the north east boundary conditions for the campus
which are set at 51.45 and 5.50 respectively and the minimum latitude and longitude are over 51.4
and 5.8. Then the average and top speed of the trip are determined. If the average speed is above
50 km/h and the top speed above 95 km/h the trip will be classified as highway. If the average
speed is under 50 km/h and the top speed under 95 km/h the trip is classified as Urban. The
characterization is implemented in the naming system of the VMS files. The fourth until sixth
characters in a files name form its classification, for example ”VMScty yyyymmdd hhmmss.mat”
. The characters ’cty’ are used for urban trips, ’hgw’ for highway and ’cmp’ for campus trips.

3.3 Trip characterization based on Location data

Based on the metrics found in Section 3.2 a little more insight is given into the driving scenario
of a trip. However there still is no information on the different road types that was driven on
during one trip. Therefor, an attempt was made to use a link to OpenStreetMap based on the
recorded location data to acquire more detailed information on the roads that have been driven
on during a trip. OpenStreetMap is a geographic database, that includes classification of most
roads, streets and paths. It should be able to be used to identify the kinds of roads that have
been driven on. For the implementation of identifying road types for a trip log a MATLAB
function is developed. This function is derived from a vehicle velocity predicting algorithm, see
report [1]. The MATLAB function queries relevant road information from OpenStreetMap. This
includes road type, the local speed legislation, traffic sign location and more. This information
is queried for an area within the maximum and minimum latitude an longitude recorded in a
trip. The information from Openstreetmap is available for specific points in space defined by its
latitude, longitude these points are called nodes and have a specific node id. After downloading
the OpensStreetMap data the MATLAB script finds the closed nodes to the coordinates from the
trip log. However, because the nearest node is not always on the same road as the coordinates of
the trip log the route driven gets distorted, this is shown in figure 3.3. Because of this distortion
the wrong road data is collected. As of now there is no solotion found to this problem so the trip
characterization based on location data still needs be improved further to make it reliable before
it can be used.
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(a) Input route for characterization using Open-
StreetMap

(b) Output route based on nodes OpenStreetMap

Figure 3.3: difference input and output route OpenStreetMap

3.4 Fingerprint

Even with the addition of the three driving scenario’s, urban, highway and campus, finding a trip
log with specific characteristics, for example a high lateral acceleration in a long list of log files is is
difficult. Therefor a method is developed for presenting key numbers of the available data in a way
that gives more information about the characteristics of a trip at a glance. The MATLAB function
TripCharesteristics automatically generates a table containing all trips logged and presents key
figures for these logs for easy recognition of trips. An interactive map is generated along side the
table, where the route driven is plotted when a trip is selected in the table. Figure 3.4, shows
what this application looks like. A color system is integrated in the plotted route to link the key
figures displayed in the table to a location. If a certain key figure is selected in the table for a
trip, for example max lateral acceleration, the plotted route will show the magnitude of the lateral
acceleration categorized in three level low, medium and high displayed as the colors green, yellow
and red respectively. The function TripCharesteristics requires a fingerprint MATLAB table as
an input so, the function does not have to load all trip logs one by one every time the function is
used to determine the key figures.

3.4.1 Creating the fingerprint table

The fingerprint table required for the trip charesteristics tool can be created with the MATLAB
function create fingerprint. The creates a table with key metrics of trips for the years specified by
the user. For the key figures the following metrics are selected:

• Trip code, based on the trips file name containing the trip classification date and time

• Total distance driven

• Total energy consumed

• Average energy consumed

• Max velocity

• Average velocity

• Max longitudinal acceleration

• Max lateral acceleration
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Figure 3.4: Impression Trip overview Tool
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Chapter 4

Vehicle dynamics analysis

4.1 Wheelspeeds

The Lupo 3L steering system is shown in figure 4.1. This steering system is a rack pinion type
system. The steering ratio is, is the ratio between the rotation of the steering wheel δsw and the
steering angle of the front wheels δw.

Figure 4.1: Steering system Lupo 3L

This steering ratio is is was validated by experiment performed in report [4]. In this experiment,
the wheel angles were measured by placing the front wheels on two frictionless plates, which are
able to measure the angle. The signal for the rotation of the steering wheel was logged by the
VMS-CAN data acquisition system, this signal may include a certain offset with respect to the
actual steering wheel position. Therefore it was also manually noted when the steering wheel was
at a position of 90; 180 or 270 degrees and compared to the measured, to find the offset. The
measured angles at the left and right wheel are plotted as a function of the steering wheel angle,
shown in Figure 4.2. This figure shows that relation is linear for small steering wheel angles and
shows different behaviour for larger angles. This behaviour for larger angles is a result of the
Ackermann steering geometry. With Ackermann steering geometry the inner wheel has a larger
steering angle than the outer wheel. When a vehicle is making a turn, the inside wheel must follow
a tighter curve than the outside wheel. To achieve this, the geometry of the steering system must
be arranged to turn the inside wheel with a larger angle than the outside wheel.
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Figure 4.2: Steer angle as a function of the steering wheel angle

The Ackermann steering geometry, is validated by deriving a model for the different wheelspeeds
with as input a velocity trajectory and steering wheel inputs and comparing this to measured
wheelspeeds. Figure 4.3 shows kinematic model used.

Figure 4.3: Ackerman steering angles of the front wheels of a passenger car

For an object traveling in a circular motion its speed v can be calculated by multiplying the
vehicle’s angular velocity ωz around the centre of a corner, point C in Figure 4.3, with the radius
of the corner R2:

v = ωzR2 (4.1)

Using this relation the angular velocity ωz of the vehicle can be calculated using the steerangle
and the longitudinal velocity. First the distance from rotation point C to the centre line of the
car can be found with trigonometric functions:

R2 =
l

tan δ
(4.2)
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Where l equals the wheelbase of the vehicle and δ the steerangle of the centre line of the vehicle
which equals δsw

is
. Then according to (4.1) it holds that:

ωz =
v

R2
(4.3)

Using this angular velocity and trigonometric functions to determine the distance from point C
the following models for each wheel speed was derived:

v2l = (R2 − w
2 ) ∗ ωz

v2R = (R2 +
w
2 ) ∗ ωz

v1L =
√
(R2 − w

2 )
2 + l2 ∗ ωz

v1R =
√

(R2 − w
2 )

2 + l2 ∗ ωz

(4.4)

This model is evaluated by plotting recorded steerangles for trip ”VMScty 20130604 141201”,
between t= 3650 and t= 3695 [s] as well as the corresponding measured wheelspeeds and modeled
wheelspeeds. The plots are shown in Figure 4.4. As can be seen from this figure the model tracks
the measured wheelspeeds quite well confirming Ackermann steer geometry. The error of the
model is quantified by taking the mean of the absolute difference between the measured wheel
speed and modeled wheel speed for each wheel. For the front left wheel the error is 0.11 [km/h],
for the front right wheel 0.13 [km/h], for the rear left wheel 0.12 [km/h] and for the rear right
wheel 0.11 [km/h].
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(a) input steerangle

(b) modeled wheelspeeds

(c) Measured wheel speeds

Figure 4.4: Comparison Ackermann steering model and measured data
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4.2 Single track vehicle model

The single track vehicle model is physically plausible representation of the cornering behaviour
of vehicles without, major modeling and parameterization effort. The cornering behavior of the
Lupo EL will be analyzed using this model, as depicted in figure 4.5.

Figure 4.5: Single Track vehicle model

For steady-state cornering given a corner radius R and vehicle speed V the required steering
angle is given by relation (4.5), derivation of this relation can be found in [2].

δ =
l

R
− mV 2

Rl
(
a

C2
− b

C1
) (4.5)

Where l equals the wheelbase of the vehicle and R the corner radius. Furthermore, m equals the
mass of the vehicle, V velocity and C1,2 the cornering stiffness. this relation has two contributions:

• l
R , ”kinematic” part (Ackermann steer)

• mV 2

Rl ( a
C2

− b
C1

), speed (or lateral acceleration ) dependent part

Expression (4.5) can be simplified by introducing the understeer coefficient or understeer gradient
η:

η =
mg

l
(
b

C1
− a

C2
) (4.6)

and using the the relation between the lateral acceleration ay, velocity V and cornering radius R:

ay =
V 2

R
(4.7)

The steerangle for a given corner radius and lateral acceleration is given by:

δ =
l

R
+

ay
g
η (4.8)

4.2.1 Determination of the understeer coefficient

In (4.6), the understeer coefficient is introduced. This coeffcient is dependant on certain vehicle
parameters such as mass, wheelbase and cornering stiffness, of which the cornering stiffness is
unknown. The understeer coefficient can be determined by plotting the steering angle as a func-
tion of the lateral acceleration for a constant corner radius. Using the fingerprint tool, a trip

Data analysis and modeling of the TU/e Lupo EL 19



was selected with a circular trajectory, where the corner radius R is constant. The trip ’VM-
Scmp 20141124 124722’, shown in Figure 4.10a, is used to determine the understeer coefficient.
Using Google Maps the Diameter of the circular trajectory between the coordinates (51.44847
5.49726) and (51.44847 5.49805) was determined to be 54.87 m, see Figure 4.10b.

(a) trip ’VMScmp 20141124 124722’
(b) Trajectory diameter Google Maps

The signal m.controls.steersangle of the trip-log was plotted as a function of the signal m.chassis.ay,
this is shown in Figure 4.7. The signal m.controls.steerangle was first converted to the steer angle
of the front wheels using the steering ratio is, as described in subsection 4.1. Furthermore, only
data points for which the longitudinal acceleration is small (between -0.5 [ms2 ] and 0.5 [ms2 ]) and
for which the speed average speed of the real wheels is above 7 [ms ] are included. Along with the

measured data the line l
R is plotted in red and the linear regression model, found by the backslash

operator in MATLAB between the data points, is plotted in yellow. The backslash operator in
MATLAB uses a least-squares linear regression fit to derive a data model for supplied data. The
linear regression model has a slope of 0.0059 and an initial value almost exactly the same as the
value of l

R . Therefore, it can be concluded that term η
g is equal to 0.0059 and that the understeer

coefficient η is 0.058 [rad]. A positive value for the understeer coefficient η means that the Lupo EL
is a understeered vehicle meaning that to maintain a constant radius R while increasing forward
speed V , the steering angle must increase.

Figure 4.7: Understeer coefficient η as determined from drivecycle’VMScmp 20141124 124722’
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4.2.2 Validation single track model

The single track vehicle model, with an understeer coefficient of 0.058[rad], is subjected to vehicle
data recorded throughout the years. The single track model 4.8 assumes that the vehicle is driven
in a circle with fixed radius R. The data recorded contains a lot of trips with varying, corners. So,
simply plotting the steerangle as a function of lateral acceleration for the recorded data wont give
the desired correlation as there is no fixed radius. To compensate for the fixed radius constraint
the following relations can be used:

R =
V

z
≈ u

ωz
(4.9)

and
l

R
=

lωz

u
(4.10)

These relations allow the single track vehicle model to be rewritten into the form independent of
the Corner radius R:

δ − ωz

u
l =

η

g
ay (4.11)

Figure 4.8, shows how the single track model with an understeer coefficient of 0.058[rad] com-
pares to the measured data. The measured data only considers the data point with the following
conditions:

• longitudinal accelerations between -0.5[ms2 ] and 0.5[ms2 ].

• average wheel speed of the real wheels above 7.5 [ms ]

For a more clear comparison the data was divided in sections corresponding to a stepsize in lateral
acceleration of 1 [ms2 ] then for each section a linear regression model was made using the backslash
operator in Matlab. The signals used for the linear regression models are displayed in Table 4.1

Signal name Unit
m.controls.steerangle deg

m.chassis.wheelspeed RL km/h
m.chassis.wheelspeed RR km/h

m.chasssis.yawrate deg/s

Table 4.1: Logged signals used for comparison single track model

The signal m.controls.steerangle was first converted to the steerangle of the front wheels using
steering ratio is=22. For the lateral acceleration the average speed of the rear wheels and the
yawrate are used as the sensors used for these signals contain less noise than the lateral acceleration
sensor (m.chassis.ay). The y-intercept points and the slopes of the linear regression models are
used to represent the data in Figure 4.8, see Appendix C for the full data set. The data for the
left-hand turn is mirrored for easy comparison with the right turn.
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Figure 4.8: Comparisson single track model and linear regression fits measured data

As can be seen, the regression data models confirm that the Lupo EL is an understeered vehicle
as the slope is positive, indicating that the understeer coefficient must be positive. Furthermore,
the single track model correlates quite well to the data regression models up to a lateral acceleration
of 4 [ms2 ]. After that point the regression models have a different slope meaning that there is non-
linear behaviour for lateral accelerations above 4 [ms2 ].

4.2.3 Yaw velocity gain

Yaw velocity gain can also be used to validate understeer behaviour without the need for the
vehicle data to be measured for a fixed corner radius R. The yaw velocity gain can be determined
in the following way:

r

δ
=

V/l

1 + η
glV

2
(4.12)

Plotting this equation with understeer coefficient η = 0.058 over the measured data, where again
linear regreassion models have been taken for the data per velocity intervals of 3 [ms ], the full data
set can be found in Appendix C. Figure 4.9, shows the plot of the model along with the linear
regression fit for right and left turn data and the yaw velocity gain of a neutral steered vehicle.
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Figure 4.9: Comparison single track model and linear regression fits measured data yaw velocity

Figure 4.9 shows that the measurements and the model agree well up until 15 [ms ]. After that
the deviation between the model and measurements get significantly larger. Also especially for
the measurements of the left turn after 15 [ms ] the linear regression models don’t overlap well and
the slope of the models changes significantly so, there is no clear correlation in the data there.
This can probably be attributed to the fact that there just is not much data recorded for velocities
higher than 15 [ms ]. This is demonstrated by binscatterplots presented in figure??. As can be seen
the density of of data points after 15 [ms ] is significantly lower than below 15 [ms ].

(a) binned scatterplot yaw velocity gain data
(b) binned scatterplot yaw velocity gain data
log color scale
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Chapter 5

Conclusions & recommendations

In this chapter, the project goals from subsection 1.1 are revisited and the study results will be
evaluated with the use of these goals.

5.1 Conclusions

The first goal of this project was to streamline the processing of the CAN logger measurement
files to a usable format in MATLAB. It had to made robust to cover exceptions (e.g. missing GPS
data) and able to handle all available measurement files. This goal is met with the development
of a conversion script in MATLAB. This script converts all measurement files logged by the VMS-
CAN data acquisition system into well structured MATLAB files. All signals present in these files
have been resampled to the same sample frequency. Missing GPS data in VMS measurement files
has been accounted for by adding GPS data acquired by the built-in tablet using the ”Torque”
application. SRTM elevation data has been added to the final MATLAB measurement files to
compensate for inaccuracies in elevation data acquired by both the GPS sensor of the vehicle
aswell as from the tablet.
The goal to develop a method/metric to characterize a trip is achieved by comparing data from
three distinct driving scenario’s: Urban, Highway, Campus. Based on that comparison it was
concluded that the best way to characterize a trip is by first evaluation the location data to
determine if the trip was on the TU/e campus. The distance of the trip and the average velocity
are analyzed to make a distinction between urban and highway trips. To make it more easy to
identify what data is available within a certain measurement file a fingerprint tool was developed
that displays certain key numbers of a trip along with an interactive map for visualization of the
trip. This tool is described in detail in this report.
Finally, to analyze vehicle dynamics a model was derived that models the wheelspeed for all four
wheel separately based on Ackermann steering geometry. The model takes a velocity profile and
steering wheel angles as input. The model was validated using measurement data and confirmed
that the Lupo EL has Ackermann steering geometry. A single track vehicle model was derived to
analyze cornering behaviour. This single track vehicle model was compared to measurement data.
From the comparison of the single track vehicle model and measured steerangle data plotted as a
function of lateral acceleration it was concluded that the model is correlates well to the data up
to a lateral acceleration of 4 [m/s2]. The understeer behaviour of the vehicle was also analyzed
using a model for yaw velocity gain, this model was validated with measurement data. From this
validation it was concluded that the model correlates well with measured data up to a forward
velocity of 25[m/s] above that non-linear behaviour occurs in the measurement data.
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5.2 recommendations

• In chapter 3.2 metrics are defined to categorize driving scenario’s of a trip. However there still
is no information of the different road types that was driven on during one trip. A method
is developed to use OpenStreetMap to retrieve this information. The method developed was
concluded not reliable, so future research needs to be done to further improve the method
before it can be used.

• In chapter 4.2 a single track vehicle model is derived to analyse the cornering behaviour of
the vehicle. This model is evaluated using available measurement data. It was concluded
that the model does not take non-linear behaviour into account for high lateral accelerations
and high forward velocities. Therefore the model needs to be improved accounting for this
non-linear behaviour.
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Appendix A

Overview message ID’s CAN
systems

CH ID Active Message Description Converted? Converted name
1 80 no Receive Airbag
1 112 yes Cruise Control yes controls.CC.p,controls.CC.I,controls.CC.D
1 113 yes Inverter inputs yes motor.inverter.PWM
1 114 yes Cruise Control 2 yes controls.CC.CruiseSpeedDown,

Speedup,Speed,PID Output
1 128 yes OPD 1
1 129 yes OPD 2 yes controls.OPD.brakelight,controls.OPD.tau
1 144 yes Transmit error gear yes controls.gearlever
1 273 yes Transmit Chargplug yes temp.chargeplug
1 277 yes Transmit HV1 yes HV.voltage/current/power/DCDC
1 278 yes Transmit HV 2 yes HV.nrg discharge/nrg regen
1 288 yes Transmit DCDC 1 yes LV.current.DCDC
1 289 no Transmit DCDC 2
1 304 yes ESP YAW lat acc yes chassis.ay
1 305 yes ESP Long acc yes chassis.ax,chassis.yawrate
1 321 no Transmit Isometer
1 337 yes Transmit Lupo 1 yes controls.steerangle
1 338 yes Transmit Lupo 2 yes temp.coolant
1 352 yes Transmit LV 1 yes LV.current.battery/heater
1 353 yes Transmit LV 2
1 368 yes Transmit PLC 1 yes LV.voltage.PLC/temp.PLC
1 369 yes Transmit PLC 2
1 370 yes Transmit PLC 3
1 371 yes Transmit PLC 4
1 384 yes Transmit Brake 1 controls.brake.pos/controls.brake.pres
1 385 yes Transmit Brake 2 yes controls.throttle.pos,controls.accelerator.rawpos
1 386 yes Transmit Brake 3
1 387 yes Transmit Brake 4 yes controls.throttle.released,

controls.throttle.kickdown,controls.brake.switch
1 388 yes Transmit Brake 5
1 400 yes Transmit Power 1 yes LV.current/fan/pump/dtrlights/tablet
1 401 yes Transmit Power 2 yes LV.current.gearlever/inverter/charger
1 402 yes Transmit Power 3 yes LV.current.BMX/vacpump
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CH ID Active Message Description Converted? Converted name
1 403 yes Transmit Power 4
1 416 no Receive ABS 1
1 640 no ECU280H
1 648 no ECU288H
1 800 no Receive Dash 1
1 896 no ECU380H
1 904 no ECU388H
1 1056 no Receive Dash 2
1 1088 no TCM440H
1 1096 no Receive Poke
1 1152 no ECU480H
1 1160 no ECU488H
1 1184 no Receive ABS 2 yes chassis.whellspeed FL,FR,RL,RR,chassis.s
1 1312 yes Receive Dash 3
1 1344 yes TCM540H yes controls.ecomode
1 1352 no TCM548H
1 1408 no ECU580H
1 1440 yes Receive ABS 3
1 1488 no Receive Dash 4
1 1496 no Receive Dash 5
1 419358425 no GPS Time Date
1 419358937 no GPS Direction Speed
1 419361753 no GPS Position
1 419412441 no GPS Status
2 1568 yes Recieve BMS 1
2 1569 yes Recieve BMS 2
2 1570 yes Recieve BMS 3
2 1571 yes Recieve BMS 4 yes HV.cell Vmi/Vmin nr/Vmax/Vmax nrn
2 1572 yes Recieve BMS 5
2 1573 yes Recieve BMS 6
2 1574 yes Recieve BMS 7 yes HV.soc/DOD
2 1575 yes Recieve BMS 8 yes temp.cell low/low nr/high/high nr
2 1576 yes Recieve BMS 9
2 1552 yes Receive Charger status
2 1553 yes Receive Charger 1 yes charger.DC voltage,DC current,DC energy,

AC voltage,AC current/AC,energy
2 1554 yes Receive Charger 2
2 1555 yes Receive Charger temp yes temp.charger/pack1/pack2/pack3
2 1556 yes Receive Charger error
2 301 yes Receive Inverter data yes motor.rpm/torque
2 1607 yes Receive Inverter status yes controls.regenbraking
2 1577 yes Receive BMS 10

Table A.1: Overview Message ID’s CAN bus
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Appendix B

Data conversion script

1 c l e a r
2 c l c
3 %% Add paths f o r VMS Matlab func t i on s and SRTM e l va t i on data f i l e s
4

5 addpath ( genpath ( 'VMS MatlabTools\ ' ) )
6 %Add f o l d e r with other f un c t i on s
7 addpath ( ' . / VMS MatlabTools/getSRTMelevation/Functions ' ) ;
8 %Add Readhgt by Franco i s Beauducel :
9 addpath ( ' . / VMS MatlabTools/getSRTMelevation/Functions /Readhgt ' )

10 %Add FilterM by Jan Simon ( r e p l a c e s s i g n a l p r o c e s s i n g too lbox )
11 addpath ( ' . / VMS MatlabTools/getSRTMelevation/Functions /Fi lterM ' ) ;
12

13 %Def ine f o l d e r where SRTM maps are s t o r e d :
14 f o l d e r s .SRTM = ' . / VMS MatlabTools/getSRTMelevation/Data/SRTM ' ;
15

16 makePlots= f a l s e ;
17

18 %% Set l o c a t i o n s where data should be loaded from and saved to
19

20

21 % Set l o c a t i o n where converted f i l e s should be s to r ed ( Ei ther by pas t ing the ...
l o c a t i o n manually or by Matlab ui , command out the not d e s i r ed opt ion )

22

23 Se lectLocDataStore = 'C:\Users \matth\OneDrive − TU Eindhoven\Documents\TUe\...
BEP2\Data ' ;

24 % SelectLocDataStore = u i g e t d i r ( ”C:\” , ' s e l e c t f o l d e r where the data should be...
s to r ed ' ) ;

25

26 %Se l e c t bin f i l e s that w i l l be conveted to matlab s t r u c t u r e s
27 [ S e l e c t edB inF i l e s , p a t hS e l e c t e dB i n f i l e s ] = u i g e t f i l e ( ' ∗ . bin ' , ' Se l e c t one or ...

More BIN F i l e s that should be converted ' , ' Mul t iSe l e c t ' , ' on ' ) ;
28

29 %Set Locat ion where Torque l o g s are saved ( Ei ther by pas t ing the l o c a t i o n ...
manually or by Matlab ui , command out the not d e s i r ed opt ion )

30

31 Se l e c tLo cTo rque f i l e s = 'C:\Users \matth\OneDrive − TU Eindhoven\Documents\TUe\...
BEP\TorqueToMat\2015 ' ;

32 % Se l e c tLo cTo rque f i l e s = u i g e t d i r ( ”C:\” , ' s e l e c t f o l d e r where the Torque f i l e s ...
are s to r ed ' ) ;

33

34 i f i s e q u a l ( c l a s s ( S e l e c t edB inF i l e s ) , ' char ' )
35 Se l e c t edB inF i l e s=c e l l s t r ( S e l e c t edB inF i l e s ) ;
36 end
37 LocB in f i l e s = s t r c a t ( pa thS e l e c t edB in f i l e s , S e l e c t edB inF i l e s ) ;
38 addpath ( p a t hS e l e c t e dB i n f i l e s ) ;
39

40 %% I n i t i a l i z e e r r o r d e t e c t i on
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41 %cr e a t e s v a r i a b l e to t rack wheter VMSconv Functions i s run s u c c e s f u l l
42 VMSconvFail=0;
43

44 %cr e a t e s v a r i a b l e to t rack wheter VMS2Mat Functions i s run s u c c e s f u l l
45 VMS2MATFail=0;
46

47 %remove s c r a t c hd i r to prevent e r r o r s with VMS2MAT
48 i f i s f o l d e r ( ' s c ra t chDi r ' )
49 rmdir ( ” s c ra t chDi r \” , ” s ” ) ;
50 end
51

52

53

54 %% Convert Bin f i l e s to . mat and resample
55

56 %Loop over a l l Bin f i l e s
57 f o r i=1 : l e n g t h ( Lo cB in f i l e s )
58

59 %Open txt f i l e to l og e r r o r s
60 f i l e ID = fopen ( ' Errors . txt ' , 'w ' ) ;
61

62 c o p y f i l e ( Lo cB i n f i l e s { i } ,pwd) ;
63 c op i edF i l e = s t r c a t (pwd , ' \ ' , S e l e c t edB inF i l e s { i }) ;
64

65 % Setup VMS2MAT. exe VMS−t o o l by venamics to load data bin f i l e s i n to ...
MATLAB

66 arg0 = s t r c a t ( ' ”VMS2MAT. exe” ' , 32 , ' ” ' , c op i edF i l e , ' ” ' ) ;
67

68 % Try VMS2MAT. exe VMS−t o o l by venamics to load data bin f i l e s i n to
69 % MATLAB, catch i f an e r r o r occurs
70 t ry
71 system ( arg0 ) ;
72 catch ME
73 %Check i f s c ra t chDi r f o l d e r i s pre sent and remove , as the
74 %scra tchDi r f o l d e r o f t en g i v e s e r r o s
75 i f i s f o l d e r ( ' s c ra t chDi r ' )
76 rmdir ( ” s c ra t chDi r \” , ” s ” ) ;
77 % Try again wiht s c ra t chDi r removed
78 t ry
79 system ( arg0 )
80 catch ME2
81 % I f s t i l l f a i l s move bin f i l e to corrupted Bin f i l e s
82 % f o l d e r and wr i t e e r r o r in the e r r o r . txt f i l e
83 move f i l e ( CopiedFi le , ”Corrupted F i l e s \Bin\” ) ;
84 f p r i n t f ( f i l e ID , s t r c a t ( 'Bin f i l e ' , c op i edF i l e , ' Fai l ed to ...

convert us ing VMS2MAT. exe , e r r o r : ' ,ME2. message , ' | | ' , '...
\n ' ) ) ;

85

86 VMS2MATFail=1;
87 c l e a r ME2
88 end
89

90 e l s e
91 % I f the re i s no s c r a t c h f i r f o l d e rp r e s en t , move bin f i l e to ...

corrupted Bin f i l e s
92 % f o l d e r and wr i t e e r r o r in the e r r o r . txt f i l e
93 move f i l e ( CopiedFi le , ”Corrupted F i l e s \Bin\” ) ;
94 f p r i n t f ( f i l e ID , s t r c a t ( 'Bin f i l e ' , c op i edF i l e , ' Fai l ed to convert ...

us ing VMS2MAT. exe , e r r o r : ' ,ME. message , ' | | ' , ' \n ' ) ) ;
95

96 VMS2MATFail=1;
97 c l e a r ME
98 end
99

100 end
101

102 %check again wheter a s c ra t chDi r f o l d e r i s l e f t behind and remove i f
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103 %neces sa ry
104 i f i s f o l d e r ( ' s c ra t chDi r ' )
105 t ry
106 rmdir ( ” s c ra t chDi r \” , ” s ” ) ;
107 catch
108 end
109

110 end
111

112 %check wheter a .mat f i l e was c rea ted by VMS2MAT. exe , i f not s e t
113 %Fa i l boo l to 1 and move bin f i l e that should have been converted to
114 %Corrupted Bin f i l e s f o l d e r
115 d = d i r ( 'VMSlog ∗ .mat ' ) ;
116 i f isempty (d)
117 VMS2MATFail=1;
118 move f i l e ( cop i edF i l e , ”Corrupted F i l e s \Bin\” ) ;
119

120 e l s e
121 %I f the copied f i l e i s s u c c e s f u l l y converted , the copied Bin f i l e
122 %can be removed f o r t h i s d i r e c t o r y
123 de l e t e ( c op i edF i l e ) ;
124 end
125

126 % I f the conver s i on o f the bin f i l e to Matlab was s u c c e s f u l l i t the
127 % data w i l l be resampled us ing the func t i on VMSconvMATv2
128 i f VMS2MATFail̸=1
129 t ry
130 VMSconvMATv2(d . name) ;
131 % I f VMSconvMATv2 r e s u l t s in an e r r o r the e r r o r w i l l be logged
132 % in the e r r o r . txt f i l e and the .mat f i l e w i l l be moved to the
133 % corrupted MAT f i l e s f o r manual check
134 catch ME3
135 move f i l e (d . name , ”Corrupted F i l e s \Mat\” ) ;
136 f p r i n t f ( f i l e ID , s t r c a t ( 'Mat f i l e ' , d . name , ' Fai l ed to resample us ing...

VMSconvMATv2, e r r o r : ' ,ME3. message , ' ' , ' \n ' ) ) ;
137

138 VMSconvFail=1;
139 c l e a r ME3, c l e a r d
140 end
141

142 end
143

144 i f VMSconvFail ̸= 1 && VMS2MATFail ̸=1
145 de l e t e (d . name)
146 c l e a r d
147 d =[ d i r ( 'VMSchg∗ .mat ' ) ; d i r ( 'VMScty∗ .mat ' ) ; d i r ( 'VMShgw∗ .mat ' ) ; d i r ( '...

VMScmp∗ .mat ' ) ] ;
148 i f ¬ i s f o l d e r ( s t r c a t ( Se lectLocDataStore , ' \ ' , d . name(8 :11 ) ) )
149 mkdir ( s t r c a t ( Se lectLocDataStore , ' \ ' , d . name(8 :11 ) ) ) ;
150 end
151

152 %% Move charge to i t s own f o l d e r
153

154

155

156

157 %% Find and add Torque data
158 load (d . name)
159 i f d . name(4 : 6 ) ̸= convertCharsToStr ings ( ' chg ' ) && ¬ i s f i e l d (m, ' gps ' )
160 dateVMSfi le = d . name(8 :15 ) ;
161 dateVMSfi le = da t e s t r ( datet ime ( dateVMSfile , ' InputFormat ' , 'yyyyMMdd ' ) ) ;
162 dateVMSfi le = s t r c a t ( dateVMSfi le (8 : 11 ) , dateVMSfi le (3 : 7 ) , dateVMSfi le (1 : 2 )...

) ;
163 timeVMSfile = d . name(17 :22 ) ;
164

165 Torquedir = d i r ( f u l l f i l e ( S e l e c tLocTorque f i l e s , s t r c a t ( ' ∗ ' , dateVMSfile , ' ∗ '...
) ) ) ;
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166

167 i f isempty ( Torquedir )
168 dateVMSfi le=append ( dateVMSfi le (1 : 8 ) , ' . ' , dateVMSfi le (9 : 11 ) ) ;
169 Torquedir = d i r ( f u l l f i l e ( S e l e c tLocTorque f i l e s , s t r c a t ( ' ∗ ' , dateVMSfile ...

, ' ∗ ' ) ) ) ;
170 end
171

172

173 i f s i z e ( Torquedir , 1 ) == 1
174 load (d . name) ;
175 c o p y f i l e ( f u l l f i l e ( Torquedir . f o l d e r , Torquedir . name) ) ;
176 t ry
177 [ TorqueData , t12 ,ME4]=TorqueconvMAT( Torquedir . name , d . name , f o l d e r s ,...

makePlots ) ;
178 catch
179 TorqueData= 'No torque Match found ' ;
180 t12=0;
181 end
182 m. TorqueData=TorqueData ;
183 save (d . name , 'm ' ) ;
184 e l s e i f s i z e ( Torquedir , 1 ) > 1
185 load (d . name) ;
186 di sp ( 'many t r i p s that day ' )
187 f o r j=1 : s i z e ( Torquedir , 1 )
188 c o p y f i l e ( f u l l f i l e ( Torquedir ( j ) . f o l d e r , Torquedir ( j ) . name) ) ;
189 t ry
190 [¬ , t12 ( j ) ,¬ ] = TorqueconvMAT( Torquedir ( j ) . name , d . name , f o l d e r s ,...

makePlots ) ;
191 catch
192 t12 ( j )=0;
193 end
194 end
195 idx = f i nd ( t12 ̸= 0) ;
196 i f isempty ( idx ) == 0
197 t ry
198 [ TorqueData , t12 ,ME4]=TorqueconvMAT( Torquedir ( idx ) . name , d . name ,...

f o l d e r s , makePlots ) ;
199 catch
200 TorqueData= ' Mult ip l e Torque matches found check by hand ' ;
201 end
202 m. TorqueData=TorqueData ;
203 save (d . name , 'm ' ) ;
204 e l s e
205 m. TorqueData = 'No torque Match found ' ;
206 save (d . name , 'm ' ) ;
207 end
208

209 e l s e i f isempty ( Torquedir )
210

211 load (d . name) ;
212 m. TorqueData = 'No torque Match found ' ;
213 save (d . name , 'm ' ) ;
214

215 end
216

217 i f c l a s s (m. TorqueData ) == ” s t r u c t ”
218 TorqueCheck = Matchcheck (m) ;
219 e l s e
220 TorqueCheck = 'NoMatch ' ;
221

222

223 end
224

225

226 i f ( TorqueCheck == ”WrongMatch” | | c l a s s (m. TorqueData ) ̸= ” s t r u c t ” ) && ¬...
isempty ( Torquedir )

227 Torquedata=rematch ( Torquedir , d . name , f o l d e r s , makePlots ) ;
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228 m. TorqueData=Torquedata ;
229 save (d . name , 'm ' ) ;
230 end
231

232 i f c l a s s (m. TorqueData ) == ” s t r u c t ”
233 TorqueCheck = Matchcheck (m) ;
234 end
235

236 i f TorqueCheck== ”GoodMatch”
237 move f i l e (d . name , s t r c a t ( Se lectLocDataStore , ' \ ' , d . name(8 :11 ) ) , ' f ' ) ;
238 end
239

240 i f TorqueCheck== ”WrongMatch”
241 i f ¬ i s f o l d e r ( s t r c a t ( Se lectLocDataStore , ' \ ' , d . name(8 :11 ) , ' \ ' , '...

wrongmatch ' ) )
242 mkdir ( s t r c a t ( Se lectLocDataStore , ' \ ' , d . name(8 :11 ) , ' \ ' , 'wrongmatch '...

) )
243 end
244 move f i l e (d . name , s t r c a t ( Se lectLocDataStore , ' \ ' , d . name(8 :11 ) , ' \ ' , '...

wrongmatch ' ) , ' f ' ) ;
245 end
246

247 i f TorqueCheck== ”Timesh i f t ”
248 i f ¬ i s f o l d e r ( s t r c a t ( Se lectLocDataStore , ' \ ' , d . name(8 :11 ) , ' \ ' , '...

t ime s h i f t ' ) )
249 mkdir ( s t r c a t ( Se lectLocDataStore , ' \ ' , d . name(8 :11 ) , ' \ ' , ' t ime s h i f t ' )...

)
250 end
251 move f i l e (d . name , s t r c a t ( Se lectLocDataStore , ' \ ' , d . name(8 :11 ) , ' \ ' , ' t ime s h i f t...

' ) , ' f ' ) ;
252 end
253

254 i f TorqueCheck== ”CheckbyHand”
255 i f ¬ i s f o l d e r ( s t r c a t ( Se lectLocDataStore , ' \ ' , d . name(8 :11 ) , ' \ ' , ' check ' ) )
256 mkdir ( s t r c a t ( Se lectLocDataStore , ' \ ' , d . name(8 :11 ) , ' \ ' , ' check ' ) )
257 end
258 move f i l e (d . name , s t r c a t ( Se lectLocDataStore , ' \ ' , d . name(8 :11 ) , ' \ ' , ' check ' ) , '...

f ' ) ;
259 end
260

261 i f c l a s s (m. TorqueData ) ̸= ” s t r u c t ”
262 i f ¬ i s f o l d e r ( s t r c a t ( Se lectLocDataStore , ' \ ' , d . name(8 :11 ) , ' \ ' , 'noMatch '...

) )
263 mkdir ( s t r c a t ( Se lectLocDataStore , ' \ ' , d . name(8 :11 ) , ' \ ' , 'noMatch ' ) )
264 end
265 move f i l e (d . name , s t r c a t ( Se lectLocDataStore , ' \ ' , d . name(8 :11 ) , ' \ ' , 'noMatch ' )...

, ' f ' ) ;
266 end
267

268

269 e l s e i f i s f i e l d (m, ' gps ' )
270 t rk . lon = m. gps . l ong i tude . ' ;
271 t rk . l a t = m. gps . l a t i t u d e . ' ;
272 t rk . d i s = ge tHa lve r s ineD i s tance ( t rk . l a t , t rk . lon ) ;
273 t ry
274 [ t rk . e lev , ¬ , ¬ , ¬ ] = getSRTMelevation ( trk , f o l d e r s .SRTM, makePlots ) ;
275 m. gps . e levat ionMecpro=trk . e l e v ;
276 save (d . name , 'm ' ) ;
277 catch
278 m. gps . e l e t ionMecpro= ' e r r o r us ing Mecpro ' ;
279 end
280

281 move f i l e (d . name , s t r c a t ( Se lectLocDataStore , ' \ ' , d . name(8 :11 ) ) , ' f ' ) ;
282

283 e l s e i f d . name(4 : 6 ) == convertCharsToStr ings ( ' chg ' )
284 i f ¬ i s f o l d e r ( s t r c a t ( Se lectLocDataStore , ' \ ' , d . name(8 :11 ) , ' \ ' , 'Charge '...

) )
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285 mkdir ( s t r c a t ( Se lectLocDataStore , ' \ ' , d . name(8 :11 ) , ' \ ' , 'Charge ' ) )
286 end
287 move f i l e (d . name , s t r c a t ( Se lectLocDataStore , ' \ ' , d . name(8 :11 ) , ' \ ' , '...

Charge ' ) , ' f ' ) ;
288

289

290

291 end
292

293

294

295

296 c l e a r d
297 c l e a r m
298 c l e a r TorqueCheck
299

300 end
301 VMSconvFail=0;
302 VMS2MATFail=0;
303 save ( ” Errors . txt ” ) ;
304 f c l o s e ( ' a l l ' ) ;
305 end
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Appendix C

Linear regression fitting of
cornering data

Data analysis and modeling of the TU/e Lupo EL 35



Figure C.1: Linear regression fit steerangle as a function of lateral acceleration
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Figure C.2: Linear regression fit Yaw Velocity gain
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