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Stabilization of the inverted pendulum

Abstract

A regular pendulum has two equilibrium positions; its bottom position and its top position. When its
pivot is fixated, only the bottom equilibrium position is regarded stable. This changes when the pen-
dulum’s pivot is being vertically oscillated with appropriate amplitude and frequency. The pendulum
might become stable in top equilibrium position and unstable in bottom equilibrium position. In this
report, this phenomenon is investigated. First, a stability analysis is performed and a model is developed
describing the pendulum’s (in)stability. This model is successfully validated by conducting an experi-
ment. Afterwards, the pendulum is simulated using an ODE solver in Matlab. The results from both the
developed model and the computer simulation are then used to design and build an experimental setup
in which an inverted pendulum is being stabilized. Lastly, an experiment is conducted using the created
setup and the results are being compared to both the model and the simulation.
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Stabilization of the inverted pendulum

Introduction

Dynamic stability of an ordinary pendulum can be approached in an intuitive manner. The pendulum
has two equilibrium positions; one at its bottom and one at its top position, where generally only one of
them is stable. Under standard conditions, that is when rotating around a fixated pivot point, the bottom
position is stable and the top position is unstable. However, when the pivot point is vertically oscillated
with appropriate amplitude and frequency, the stability position can shift from bottom to top equilibrium
position.

This phenomenon has already been studied for over a decade. In 1908, Andrew Stephenson was the first
to publish an article about the stabilization of an inverted pendulum. He found that if the pendulum is
being oscillated, its top vertical position might stabilize when its oscillation frequency is fast enough
[1]. This article turned out to be the starting point of several more studies to the behaviour of an inverted
pendulum. It then took until 1951 for a first real explanation for this phenomenon; Pyotr Kapitza was
the first to develop a theory to support inverted pendulum stability [2].

This project aims to achieve three fundamental objectives. First of all, the behaviour of an inverted
pendulum should be modelled and a validation experiment has to confirm the theoretical conclusions
(objective 1). Second of all, a computer simulation should be developed that mimics the pendulum
with a reasonable accuracy (objective 2). Lastly, based on theoretical results from the model and the
simulation, an experimental setup should be designed and built which demonstrates the investigated
phenomenon (objective 3).

The report will begin by setting up the pendulum’s equation of motion using the Euler-Lagrange equa-
tions. This equation of motion can be linearized, after which it is simplified by applying time dependent
switching to the pivot’s acceleration. With these equations set up and its resulting solution, stability
criteria are established and an experiment is conducted to validate the model. Afterwards, the report
will elaborate on a computer simulation of the inverted pendulum and a comparison will be made to
the earlier developed model. The combination of resulting data from both the model and the computer
simulation will ultimately be used to develop an experimental setup stabilizing an inverted pendulum.
Finally, the report concludes with a comparison between the observed results from this setup and the
theoretical results from model and simulation, after which a final conclusion will be drawn.
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1 Develop inverted pendulum model

In order to be able to understand the behaviour of a vertically oscillated inverted pendulum, a stability
analysis is performed. After the situation has been introduced, the pendulum equation of motion is being
set up using the Euler-Lagrange equation. Afterwards, by utilizing this equation of motion and assuming
time-dependent switching for the vertical oscillation one can derive conditions for potential pendulum
instability in lower position.

1.1 Situation description

For this theoretical stability analysis, the inverted pendulum consists of a point mass M connected to a
rod of length L and negligible mass. The rod rotates around a pivot point which is vertically oscillated.
This oscillation behaviour is defined by the function s(t), which is a function of time. The exact shape
of this function is yet undefined. The clockwise-positive angle the pendulum makes with the vertical
is defined as φ, which is set zero at the top position. The situation is sketched in Figure 1.1.1 with
corresponding 2D coordinate system.

Figure 1.1.1: Situation sketch vertically oscillated inverted pendulum

1.2 Equation of motion

Continuing from Figure 1.1.1, the pendulum’s equations of motion can be derived. This is done in
several sub steps, which will all be elaborated in this section.

Point mass position and its time derivative

To start off the stability analysis, the x and y position of the point mass is expressed in known quantities.
To do so, first an origin is defined; this is the pivot point in initial position. From here it can be derived
that

x = sin(φ)L (1.1)

y = cos(φ)L+ s(t) (1.2)

2 W.J.A. Maas
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from which it directly follows that the time derivative of this position is defined as

ẋ = φ̇ cos(φ)L (1.3)

ẏ = −φ̇ sin(φ)L+ ṡ(t) (1.4)

Kinetic and potential energy and the Euler-Lagrange equation

Now the pendulum’s x and y positions and their time derivatives have been expressed in known quanti-
ties, the pendulum’s kinetic and potential energy can be derived. This is done using the regular equations
for kinetic and potential energy.

Ek =
1

2
M(ẋ2 + ẏ2) =

1

2
M(φ̇2L2 − 2φ̇ sin(φ)Lṡ+ ṡ2) (1.5)

Ep = Mgy = Mg(cos(φ)L+ s) (1.6)

In order to come to the equation of motion according the Euler-Lagrange equation, the Lagrangian (L) is
a necessary quantity. This Lagrangian is defined as the difference between kinetic and potential energy,
previously computed in Equation 1.5 and Equation 1.6. This means the Lagrangian can be expressed as

L = Ek − Ep =
1

2
M(φ̇2L2 − 2φ̇ sin(φ)Lṡ+ ṡ2)−Mg(cos(φ)L+ s) (1.7)

after which the Euler-Lagrange equation displayed in Equation 1.8 can be applied.

d

dt

(
∂L
∂q̇

)
− ∂L

∂q
= Fnc (1.8)

This results in the equation of motion presented in Equation 1.9, where λ represents a damping constant.
A full derivation can be found in section A.1.

φ̈+ λφ̇− 1

L
(g + s̈) sin(φ) = 0 (1.9)

Equilibrium positions and linearization

The nonlinear differential equation displayed in Equation 1.9 is challenging to solve analytically. The
equation can be linearized around an equilibrium point to create a linear differential equation, which
is more straight-forward to solve. In order to do so, first the pendulum’s equilibrium points have to be
obtained. This is done using the known fact that potential energy is constant at equilibrium positions.
Alternatively stated, at equilibrium positions:

dEp

dφ
= 0 (1.10)

Using Equation 1.6, the two equilibrium positions logically are found to be φ = 0 + k · 2π and φ =
π + k · 2π, corresponding to the top and bottom position of the pendulum respectively. The calculation
can be found in section A.2.

3 W.J.A. Maas



Stabilization of the inverted pendulum

This stability analysis will focus on the instability of the pendulum’s bottom position because this
matches with the experimental setup which will be used later to validate the model. Therefore, Equa-
tion 1.9 will be linearized around this bottom equilibrium position to get the linear equation of motion.
The worked out linearization process is shown in section A.3. This results in the following differential
equation, describing the linearized pendulum’s equation of motion around the bottom position:

θ̈ + λθ̇ +
1

L
(g + s̈)θ = 0 (1.11)

1.3 Stability Analysis

As the pendulum’s linearized equation of motion is now obtained, the intended stability analysis can be
conducted. This analysis is described in this section.

Second order to first order and definition of s(t)

In order to simplify stability analysis criteria, the second order differential equation seen in Equation 1.11
is converted to a first order differential equation. This results in the following differential equation:

d

dt

[
θ

θ̇

]
=

[
0 1

− 1
L(g + s̈) −λ

] [
θ

θ̇

]
(1.12)

This equation can now be used to perform a stability analysis. To do so, first the exact behaviour of the
pivot oscillation function s(t) should be defined. For practical reasons, the function is set to be equal to
s(t) = A sin(ωt). Equation 1.12 then becomes:

d

dt

[
θ

θ̇

]
=

[
0 1

− 1
L(g − ω2A sin(ωt)) −λ

] [
θ

θ̇

]
(1.13)

To reference in the upcoming sections, this two by two matrix will be named as B(t). This means
Equation 1.13 has the general form

ẋ = B(t)x with x =

[
θ

θ̇

]
and B(t) =

[
0 1

− 1
L(g − ω2A sin(ωt)) −λ

]

Time dependent switching

For this theoretical stability analysis, however, the acceleration of the pivot is going to be approximated
as a piece-wise constant function of time. Using this method results in a time-dependent switching
system, for which clear stability criteria can be set. To do so, a period T = ω

2π of one full sine wave is
defined. During this period, sin(ωt) is approximated as:

sin(ωt) =

{
1, i = 1

−1, i = 2
with i =

{
1, 0 ≤ t < T

2

2, T
2 ≤ t < T

(1.14)

This means matrix B(t) can now be split into two separate cases which both incorporate Equation 1.14:

4 W.J.A. Maas



Stabilization of the inverted pendulum

Bi(t) =



[
0 1

− 1
L(g − ω2A) −λ

]
, i = 1[

0 1

− 1
L(g + ω2A) −λ

]
, i = 2

(1.15)

Differential equation solution and stability criterion

Now, to apply a stability criterion the general solution of this differential equation is worked out and
analyzed. Assume an initial condition for the system: x(0) = x0. The system starts in the first time
period 0 ≤ t < T

2 (or i = 1), which means matrix B1(t) can be applied. The system’s solution in this
mode is given by

x(t) = eB1tx0 (1.16)

after which the second mode (i = 2) is reached with new solution

x(t) = eB2tx
(T
2

)
= eB2teB1

T
2 x0 (1.17)

which can be rewritten to a general solution applicable for any integer k

x(kT ) = (eB2
T
2 eB1

T
2 )kx0 (1.18)

For t = kT , this solution shown in Equation 1.18 satisfies the conditions of a linear time-invariant
equation of discrete time:

α(k + 1) = βα(k) with α(k) = x(kT ) and β = (eB2
T
2 eB1

T
2 ) (1.19)

Now, using Equation 1.19 and the appropriate stability criterion one can tell if a vertically oscillated
pendulum with length L, oscillation frequency ω and amplitude A is behaving stable or unstable. A
linear time-invariant equation of discrete time is known to be asymptotically stable if and only if matrix
β is Schur. This means it has eigenvalues in the open unit disc on the complex plane.

It can thus be concluded that this time dependent switched system, which forms an approximation of the
real situation, is stable if and only if all absolute eigenvalues of matrix β are smaller than 1.

Analysis results

The theory described above is implemented in Matlab to visualize pendulum stability for varying condi-
tions. The full code used for this can be observed in section C.1. For this analysis, several assumptions
are made. The pendulum length L is set to 0.25 m, 0.50 m and 0.75 m for three different simulations.
The damping coefficient λ is set to 0.1. These values have been chosen arbitrary. As mentioned before,
this analysis solely focuses on the instability of an oscillated pendulum in bottom position (i.e. φ0 ≈ π).
The result for this analysis can be seen in Figure 1.3.1, where the dark area represents an unstable be-
haviour of the pendulum. On the x-axis, the normalized angular frequency is plotted. This implies a

5 W.J.A. Maas
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division of the excited angular frequency by the pendulum’s eigenfrequency (w0 =
√

g
l ). On the y-axis

the excitation amplitude is graphed.

(a) L = 0.25 m (b) L = 0.50 m (c) L = 0.75 m

Figure 1.3.1: Pendulum (in)stability for varying oscillation amplitude and frequency

As can be observed in Figure 1.3.1, the described pendulum can both be stable and unstable for various
combinations of length, oscillation frequency and amplitude. In general, the shorter the pendulum length
the lower the required excitation amplitude in order to become unstable at relatively higher frequencies.
Nevertheless, all three different pendulum lengths show similar behaviour in terms of parametric reso-
nance. The largest peak in resonance is invariably located at ω

ω0
≈ 2, with several smaller resonance

peaks to its left at ω
ω0

≈ 1 and ω
ω0

≈ 0.67. The right side of this largest peak does not show any
resonance. This observation is in line with existing articles about this subject [3]. The results of this the-
oretical approach on the (in)stability of a vertically oscillated pendulum will be validated by performing
an experiment, which is elaborated in chapter 2.

6 W.J.A. Maas
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2 Validation experiment

In chapter 1, a model has been developed to analyze the stability of an oscillated pendulum. Although the
results at first side may look realistic and are in line with existing articles about the subject, they can only
be verified by performing an experiment representing the actual situation. This is done using an existing
setup in the Motion laboratory at Eindhoven University of Technology. By comparing experimental
results to the theoretical results obtained in chapter 1, one can tell if the stability analysis was conducted
correctly.

2.1 The setup

The setup consists of a mass M connected to a rope. This rope is guided to a driving wheel via a crane-
like construction. The wheel drives the mass up and down via the rope. A simplified situation sketch of
the setup can be seen in Figure 2.1.1 and a picture of the actual setup can be found in Figure B.0.1.

Figure 2.1.1: Simplified situation sketch experimental setup

The setup has a fixed oscillation amplitude of 0.05 m, which is equal to the radius of the driving wheel.
The shortening effect of the rope as a result of the angle it makes with the line of actuation is neglected.
The setup allows for oscillation frequencies from 0 rad/s to approximately 12 rad/s, which can be reg-
ulated by changing the supplied voltage to the driving wheel. Note that the pendulum’s length is not a
constant; it varies over time because the rope functions both as mass oscillator and as part of the pen-
dulum. The pendulum’s length can be regulated by tying knots in the rope. In this way, the length in
zero-amplitude position can be varied from 0 m to approximately 0.73 m.

2.2 Pre-experimental actions

Before conducting the intended experiments with the above described setup, first several other actions
are taken. This is done to get a better understanding of the setup and to interpret the results obtained
later correctly. These actions include a conversion from voltage to angular frequency and determining
the damping coefficient of the pendulum.

Voltage to frequency

As explained in section 2.1, the excitation frequency in the experiment can be regulated by adjusting
the supplied voltage to the driving wheel. The setup includes a display which shows the voltage; this
is the only output provided. This means in order to know at what frequency the pendulum is excited,
the displayed voltage should be converted to an angular frequency. This is done by fixating the supplied
voltage and filming the driving wheel in 60 frames per second. This action is then iterated for several

7 W.J.A. Maas
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different voltages and the results are frame by frame analysed in video editing software [4]. By deter-
mining the duration of and averaging over tens of rotations of the driving wheel, the angular frequency
can be accurately calculated. This results in the relation which can be observed in Figure 2.2.1a.

In the figure, the measured data points are plotted together with a linear curve fitted to the data points.
It can be concluded that the resulting angular frequency behaves approximately linear with the supplied
voltage. The following function, describing the red line, can now be used to convert a voltage to an
angular frequency: ω = 1.035 · V − 0.5059.

Damping coefficient

Another yet unknown parameter in the experimental setup is the damping coefficient of the pendulum.
In this setup, it is expected that largest contributor to damping will be drag. In order to find out its
value, the pendulum is given an initial amplitude, after which it is released. During this operation, its
pivot is not oscillated. This process is again filmed at 60 frames per second to monitor its behaviour.
After the pendulum has significantly decreased amplitude, the results are analyzed and compared to an
analytical solution to tune the damping coefficient. This can be seen in Figure 2.2.1b, where a damping
coefficient λ = 0.0079 has been applied to the analytical solution. As can be seen, the measured data
and the numerical solution approach each other closely. This means the damping coefficient for this
experimental setup can now be regarded as approximately known and it can be used in the upcoming
validation experiments.
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(b) Measured vs analytical amplitude for λ = 0.0079

Figure 2.2.1: Pre-experimental actions results

2.3 Experimental results and discussion

After the above described preparations have been made, the validation experiment can be carried out.
The goal of the experiment is to check within which frequency domain the pendulum behaves unsta-
ble. This includes a lower limit, at which the pendulum becomes unstable when raising the frequency.
Besides, if present and reachable, an upper limit is determined at which the pendulum stabilizes again
when raising the frequency even further. Instability is judged by means of visual interpretation; when
the mass starts shaking the pendulum is classified as unstable.
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Experimental results

The experiment is conducted for six different pendulum lengths. This is done to validate if the effect of
length change in the stability analysis model developed in chapter 1 coincides with the observed effect in
reality. An example can be observed in Figure 2.3.1a, where the obtained pre-experimental parameters
described in section 2.2 have been implemented in the stability analysis model. The pendulum length
has been set to 0.5 m because this is well within the to be experimented range of lengths. The fixed
amplitude of 0.05 m has been highlighted by a red horizontal line. The dark area represents the unstable
pendulum area. As can be seen, for this combination of amplitude and pendulum length, there exists
both an upper and a lower frequency limit. Roughly speaking, this range is from 8 to 10 rad/s in this
case. This model is ran for the six different pendulum lengths at which the experiment is also conducted,
after which the results form the red curves in Figure 2.3.1b.

(a) Frequency instability range example (b) Expected vs observed results for instability region

Figure 2.3.1: Model and experimental results

The lower curve in Figure 2.3.1b represents the lower boundary, while the upper curve represents the
upper boundary. After the experiment is conducted on the setup, these results are visualized in the same
figure by the blue data points. These follow the same procedure regarding lower and upper boundary. As
can be seen, for the shortest pendulum lengths there is no upper boundary present. The reason for this
is that the upper frequency corresponding to these lengths is above the maximum frequency reachable
with the setup.

Discussion

The expected and the observed results seen in Figure 2.3.1b generally behave similar for different pen-
dulum lengths. However, for essentially all cases the observed instability domain is narrower than the
expected instability domain. This difference can have several causes.

First of all a simplification has been made in the stability analysis model. As explained in section 1.3,
pivot acceleration has been reduced to a piecewise constant function. In practice, however, this is not
the case; the acceleration is defined by an approximate sinusoidal function.
Next to that, the pendulum is modelled to have a constant length. However, for this setup the rope
functions both as mass oscillator and as part of the pendulum. This means the difference between
minimum and maximum pendulum length is equal to the diameter of the driving wheel, which is 0.10
m. This difference can play a significant role in the analysis.

9 W.J.A. Maas
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Besides that has the pendulum been modelled as completely rigid. This means all motion from the driv-
ing wheel is assumed to be perfectly transferred to the mass. In practice, however, the rope is not fully
rigid, meaning the modelled ideal situation cannot be achieved.
Also, the length change of the rope as a result of the angle it makes with the line of actuation is being
disregarded in the theoretical analysis, while in practice it does occur. As a result, the applied oscillation
in the experiment is not a perfect sinusoidal function with amplitude 0.05 m. This may also stimulate a
difference between the modelled and observed results.
Lastly, there is possible inconsistency in the human interpretation which can negatively influence ex-
perimental results. Because this setup does not include high-end equipment to measure instability or
regulate frequency, this is done by simple visualization. It may be the case that the pendulum became
unstable slightly earlier or later than was observed. Or, that the supplied voltage to the driving wheel
was a tenth lower or higher; this value fluctuates slightly in time.

The above imperfections presumably act together to ultimately create a difference between expected
and observed results in Figure 2.3.1b. Only one of them, however, is related to the model developed
in the stability analysis. The others are all related to either the simple experimental setup or human
interference. Also, the difference is relatively small; in general the expected and observed results display
a similar behaviour. It can therefore be concluded that by using this simplified experiment the stability
analysis model has been verified and can be used for future actions.

10 W.J.A. Maas
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3 Pendulum simulation

Besides a stability analysis based on linear system stability conditions, one can also simulate the be-
haviour of an inverted pendulum. This can for example be done using an Ordinary Differential Equation
(ODE) solver in Matlab to solve the differential equations representing the state space model. A possi-
ble advantage of this approach compared to the previously used method is that it does not necessarily
require simplifications such as a piecewise constant acceleration. Instead, a pure sinusoidal input can be
used if desired. Also, by later generating a basin of attraction, one can estimate the probability that a
theoretically stable inverted pendulum actually stabilizes in practice.

3.1 Deriving the state space model

In order to simulate the pendulum behaviour in Matlab, its state space model is required. In order to
derive this model, as starting point Equation 1.9 is taken. Then, variables x1 and x2 and their time
derivatives are defined as

x1 = φ and x2 = φ̇ (3.1)

ẋ1 = φ̇ and ẋ2 = φ̈ (3.2)

Now, by combining these definitions of x1 and x2 with Equation 1.9, one can obtain the following
expressions for ẋ1 and ẋ2:

ẋ1 = x2 (3.3)

ẋ2 =
1

L
(g + s̈) sin(x1)− λx2 (3.4)

where s̈(t) = −Aω2sin(ωt). The differential equations presented in Equation 3.3 and Equation 3.4
form the state space model, which in the next section are going to be solved using an ODE solver in
Matlab.

3.2 Solving ordinary differential equations using Matlab

In Matlab, the ode45 solver is being used to solve the differential equations forming the state space
model. The full code used for this can be observed in section C.2. Besides a function in which the state
space model is defined, the ODE solver also requires a time range and initial conditions as simulation
input. The time duration is chosen to be 50 seconds, which is found to be more than enough for all
kinds of simulations with varying parameters. Step size is chosen to be 0.01 second, which allows for
sufficient detail in the simulation. The required initial conditions relate to x1 and x2, or in other words
initial amplitude and angular velocity are defined. For an arbitrarily chosen set of parameters A = 0.04
m, L = 0.10 m and ω = 30 rad/s and 50 rad/s with initial conditions [x1 x2]

T = [0.1 0]T , the
pendulum behaviour has been simulated. This can be observed in Figure 3.2.1. In Figure 3.2.1a, an
angular frequency ω of 30 rad/s has been applied. The amplitude clearly keeps decreasing in time,
implying an unstable behaviour. The amplitude in Figure 3.2.1b, on the other hand, converges to zero in
time. This means the pendulum is stable for this parameter combination. Here, an angular frequency ω
of 50 rad/s has been applied. It can be concluded that 30 rad/s is below the stable threshold frequency
and 50 rad/s is above the stable threshold frequency for this specific chosen set of parameters and initial
conditions.
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(b) Stable simulation

Figure 3.2.1: Pendulum simulations for A = 0.04 m, L = 0.10 m and varying ω

3.3 Comparison to stability analysis model

In order to execute a simple model verification, the results of the pendulum simulation can be compared
to the results of the previously built stability analysis model. This can be done by comparing the stability
threshold frequencies from the two models to each other. However, to compare these to each other, first
two minor modifications should be made. The stability analysis model is based on a piecewise constant
acceleration, so this should also be incorporated in the state space model. This happens in lines 29
to 41 in the Matlab script displayed in section C.2. Besides that should the stability analysis model,
which was focusing on instability earlier, be adapted to determine stability instead. This is done by
repeating the steps from section 1.2 and section 1.3 to obtain the correct matrix B(t) for stability in
the top position. Continuing with the previously chosen parameters, a new stability analysis is then
performed. Its resulting visualization can be seen in Figure 3.3.1.
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Figure 3.3.1: Pendulum top position (in)stability for varying oscillation amplitude and frequency

For this comparison, only the in red highlighted amplitude of 0.04 m is taken into account. As can
be seen, there is a turnover frequency where the pendulum changes from unstable (white) to stable
(black). This frequency is at 28.9 rad/s for this specific situation. Now, with the same parameters
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the pendulum is simulated using the ODE solver in Matlab. This method should result in a turnover
frequency which is somewhat related to already obtained turnover frequency. The pendulum is given
a small initial amplitude of 0.01 radians. The resulting response slightly below and slightly above the
turnover frequency can be observed in Figure 3.3.2.
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(a) Unstable simulation (ω = 29.1 rad/s)
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(b) Stable simulation (ω = 29.2 rad/s)

Figure 3.3.2: Pendulum simulations below and above the stability threshold frequency

As can be seen, by using this method the turnover frequency is somewhere between 29.1 rad/s and 29.2
rad/s. This is close to the previously obtained frequency of 28.9 rad/s. From Figure 3.3.1 it can also
be concluded that there is a maximum frequency threshold at which the inverted pendulum becomes
unstable again. This value is being compared in a similar manner as for the minimum frequency thresh-
old. The stability analysis model generates an angular frequency of 54.2 rad/s, while simulation of the
pendulum leads to a frequency in between 49.8 rad/s and 49.9 rad/s. The difference between the two
methods here is slightly larger than for the minimum threshold frequency. However, as can be seen in
Figure 3.3.1, the maximum threshold frequency position is also more vulnerable to small differences
than the minimum position. At the maximum threshold frequency, and amplitude marked in red, the
slope of the top side of the black stability area is low. This means a slight difference between the models
can cause big changes in the intersection frequency of the red line and the top side of the black area. The
minimum threshold frequency location is less vulnerable to differences because it has a steeper slope,
and so small differences do not have major effects.

From these comparison results it can be concluded that the pendulum simulation using an ODE forms
a valid approximation of the real situation, since it coincides with the previously validated model. The
method is now, together with the stability analysis model, going to be used to design an experimental
setup. To strive for results which are as close as possible to reality, the pivot acceleration behaviour is
changed back to purely sinusoidal instead of a piecewise constant function. The full process is described
in the next section.
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4 Inverted pendulum stabilization experimental setup

In the previous chapters, a model and a simulation have been developed which describe the theoretical
stability of an inverted pendulum. In this chapter, this knowledge is going to be used to design and
build an experimental setup driving an inverted pendulum. Then, the theoretical expectations from the
model and simulation are being compared to the stability results obtained in practice by means of an
experiment.

4.1 Investigate practical setup parameters

The first step in the design process of an inverted pendulum setup is to determine appropriate setup
parameters. These parameters should be chosen in such a way that the stabilization phenomenon can be
visualized with a low-budget setup. This is done using the previously developed models and simulation.

In this phase, the aim is to obtain practical values for pendulum length and oscillation amplitude. To
maintain the dimensions within a practical range, a constraint is made up for the pendulum length; it
can be 0.10 m at minimum and 0.30 m at maximum. In the setup, the pendulum will not be a point
mass. Instead, it is going to be a rigid bar with an equal mass distribution along its length. This means
its center of mass will be equal to the geometric center of the pendulum, which is halfway its length.
Therefore, a pendulum of e.g. 0.30 m will be modelled as a point mass of 0.15 m.

For the range of lengths available, Figure 4.1.1 can be used to make a rough estimate of which oscillation
amplitudes could result in stability. The figure follows from the stability analysis model which has been
developed as first. As can be seen, in the figure amplitudes 0.02 m and 0.04 m have been highlighted in
red. According to Figure 4.1.1a, a pendulum with minimum length (0.10 m) can become stable when
oscillating the pivot sufficiently fast at amplitude 0.02 m. Figure 4.1.1b implies that also a pendulum
with maximum length (0.30 m) can become stable when oscillating its pivot sufficiently fast at amplitude
0.04 m. It is therefore expected that when the setup allows for these two amplitudes, all pendulum
lengths between 0.10 m and 0.30 m can be stabilized in inverted position. This expectation goes with
the assumption that the setup can create sufficient angular velocity to reach the stability region. For this
first and rough simulation, the damping coefficient has been estimated to a value λ = 0.5. Once the
setup has been realized, the coefficient will be determined more accurately. According to the theoretical
models, an inverted pendulum of length 0.10 m, oscillated with amplitude 0.02 m should become stable
somewhere in a range from 40.8 rad/s (first model, piecewise acceleration) to 51.3 rad/s (simulation,
sinusoidal acceleration). At first glance, these values seem achievable in practice. It is therefore decided
to continue with the discussed dimensions to design an experimental setup.
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(a) 0.1 m (in)stability (b) 0.3 m (in)stability

Figure 4.1.1: Pendulum (in)stability for minimum and maximum pendulum length

14 W.J.A. Maas



Stabilization of the inverted pendulum

4.2 Design, manufacture and assemble the setup

After the most important design parameters are known, the experimental setup can be designed in detail.
The final assembly CAD drawing can be observed in Figure 4.2.2 and the realized assembly can be seen
in Figure B.0.2. The process towards this assembly will be explained part by part in this section.

Power unit and angular velocity

An important condition provided in section 4.1 is that the setup should be able to generate sufficient an-
gular velocity to achieve stability. Therefore, the first design step is to look at the power units available
for the low-budget setup. A 24V DC motor [5] is available at no cost, together with a power supply
which can provide up to 20V. At no load, if this maximum voltage is supplied to the motor it spins at
approximately 27 rad/s. As explained in section 4.1, it may be the case that a frequency of at least 51.3
rad/s is required for the smallest pendulum size to stabilize. Because the motor will be loaded due of
inertia and friction, it is decided to implement a safety margin in the maximum achievable frequency.
Therefore, a transmission ratio of 1:3 is implemented, which theoretically means the pivot can be oscil-
lated with an angular frequency of 81 rad/s. This will likely not be achievable in practice. For practical
reasons, the transmission ratio is going to be implemented by using two gears with gear ratio 1:3. More
specific, the two gears will have 75 and 25 teeth, respectively, with modulus 1.25 mm. The gears will be
actuated by a D-shaped shaft.

Driving mechanism

In order to transfer rotational movement of the motor into translational movement of the pendulum, a
crank mechanism is going to be used. However, an ordinary crank mechanism does not have a pure
sinusoidal amplitude because of rod angularity. The connecting rod makes an angle with the line of
actuation and, as a result, it is slightly shorter when it is at an angle than when it is perfectly aligned
with the line of actuation. One possible way of compensating this effect is by making the connecting
rod extremely long, which decreases the angle significantly. However, for this setup the available space
is limited, so this option is disregarded.

Instead, the crank wheel is being separated into two wheels; one purely for rotation and one for defining
the amplitude. In this way, the crank wheel can have a variable radius, and so a variable amplitude,
depending on the angular position of the wheel. This allows to compensate for length change of the
connecting rod, which ensures a pure sinusoidal amplitude. This outer wheel is fixed to the outside
world and contains two different slots, which correspond to an amplitude of 0.02 m (inner slot) and 0.04
m (outer slot). One can switch between the two amplitudes by changing the slot to which the connecting
rod is attached. The inner wheel is rotating at the desired angular velocity and contains one straight slot
to push the connecting rod around. Similar to the gears, it is actuated using a D-shaft. Both wheels can
be observed in Figure 4.2.1.

(a) Outer wheel, defining radius (b) Inner wheel attached, providing rotation

Figure 4.2.1: Two separate wheels, together forming a variable radius crank wheel
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Guiding mechanism and supporting construction

The pendulum’s pivot requires a linear guiding mechanism. This can be provided in several ways. For
this setup, it is decided to use flexures to fulfill this task. Similar to the gears and the double crank
wheel, they are easily 3D-printable. This significantly reduces production costs. Besides, flexures lack
the presence of friction or play. This can be advantageous for the experimental setup because it can
bring the practical situation closer to the theoretical modelled and simulated situation.

Lastly, to connect all designed parts a main frame is designed. This main frame is screwed to a wooden
base plate, which together with the main frame forms the supporting construction. The wooden base
plate is fixed to the outside world via two F-clamps. All parts, except for the wooden base plate and DC
motor, are being 3D printed from PLA material. The pendulum itself is being produced in five different
sizes: 0.10 m, 0.15 m, 0.20 m, 0.25 m and 0.30 m. The design has been made symmetric, so the parts
are not subjected to bending or torsional forces. This can be seen more clearly in the front view shown
in Figure 4.2.2b.

(a) All parts labeled with colours (b) Front view

Figure 4.2.2: Final assembly CAD drawing

4.3 Experimental results and discussion

Once the experimental setup has been fully built, it can be verified to what extend the setup behaves
as expected. In order to do so, first a similar preparation as for the earlier conducted experiment is
necessary. The damping coefficient of each pendulum size is required, which will be obtained in a
similar manner as explained in section 2.2. The setup shown in Figure 4.2.2 is turned upside down to
create a free path for the pendulum, which is then given an initial amplitude, after which it is released
and monitored until it stabilizes at its bottom position. The obtained data is analyzed and compared
with an analytical solution resulting from a chosen damping coefficient. This results in similar graphs
as visualized in Figure 2.2.1b. The resulting damping coefficients have, together with the approximate
swing durations, been put in Table A.1.

Experimental results

The damping coefficients obtained earlier can now be implemented in the previously created model
and simulation. In that way, a theoretical stabilization frequency can be obtained for several inverted
pendulums with different lengths. An experiment is then conducted in which the supplied voltage to the
motor is increased until the inverted pendulum in the setup stabilizes. This action is performed separately
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for every different pendulum length. Length 0.10 m has been stabilized using an amplitude of 0.02 m,
length 0.15 m once using amplitude 0.02 m and once using amplitude 0.04 m and lengths 0.20 m, 0.25
m and 0.30 have been stabilized using an amplitude of 0.04 m. The resulting stabilization frequency can,
together with the theoretically expected values, be observed in Figure 4.3.1. As explained, length 0.15 m
contains two different sets of frequencies since this length was stabilized using two different amplitudes.

Figure 4.3.1: Experimental results

Discussion

Based on Figure 4.3.1, various conclusions can be drawn. First of all, it may be concluded that both
the model and the simulation proved to be an adequate tool to design an inverted pendulum setup.
The parameters which resulted from both theoretical results led to an experimental setup which was
able to visualize inverted pendulum stability. Secondly, it may be concluded that both the model and the
simulation react approximately similar to pendulum length and oscillation amplitude changes as happens
in reality. With increasing length, the required frequency for inverted pendulum stability gradually
increases if the amplitude remains equal. When the amplitude increases (0.02 m to 0.04 m at length 0.15
m), the desired frequency for stabilization significantly drops.

Besides, it may be concluded that the simulation provides a better representation of reality than the
model. A possible reason for this is that the model uses a piecewise constant function for pivot acceler-
ation, while the simulation uses a pure sinusoidal function. The latter forms a closer representation to
what happens in practice. Despite a close theoretical correlation between model and reality, the simula-
tion and the observed results still show a relatively large deviation. A reason for this can be all kinds of
disturbances which play a role in reality, but are not incorporated in the ideal simulation.

The sensitivity to these disturbances can be explained using a basin of attraction. In such a visualization,
(in)stability is graphed as a function of the initial conditions. On the x-axis, an array of possible initial
conditions xo is given and on the y-axis an array of conditions ẋ0 is given. These combinations of initial
conditions are then provided to the ODE solver in the simulation. If the provided initial conditions lead
to a theoretically stable inverted pendulum, the combination is marked with a black dot in the graph.
This means if the black, stable area is small the pendulum is sensitive to disturbances; the chance that it
will be stable in practice is limited. When the black area is relatively large, this means the pendulum is
more likely to be stable in practice.
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For pendulum length 0.30 m, three approximations to basins of attraction have been made. In reality,
all stable black points should connect to each other, since isolated stable ’islands’ are not possible.
However, these ideal basins of attraction require large computational power, which to such extend is not
available for this project. Therefore, only approximations of a basin of attraction have been created, in
which isolated stable points are visible. For this specific pendulum length, the simulation predicts the
stabilization frequency to be ω = 43.8 rad/s. In the experiment, the frequency was observed to be ω =
55.8 rad/s. An approximation of a basin of attraction is made for these two frequencies, together with
frequency ω = 49.8 rad/s, which is exactly in the middle. The graphs can be observed in Figure 4.3.2.
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Figure 4.3.2: Approximation of a basin of attraction for different oscillation frequencies

The general trend which can be observed from the basin of attraction approximations is that the stable
area increases with increasing frequency within this frequency range. When looking at Figure 4.3.2a, it
can be concluded that this frequency is mainly stable in an ideal situation, as the black area is only lim-
ited. This means the configuration is sensitive to disturbances, which supports the instability in practice.
This is in contrast with the practically stable frequency, of which the basin of attraction approximation
is shown in Figure 4.3.2c. The dark area is relatively large, which means the configuration is less sen-
sitive to disturbances and the chance of practical stability is high. Figure 4.3.2b, which is based on the
frequency half-way between theoretically and practically stable, also shows a relatively large stability
area. However, the experiment turned out that this area does not suffice to overcome the disturbances
present in practice.

With this known, a last comment can be made on Figure 4.3.1. If the initial conditions of the simu-
lation were chosen such that they match a stable point in Figure 4.3.2c but not in Figure 4.3.2a and
Figure 4.3.2b, the data point would have been substantially closer to the observed point as it is right
now. Since these exact initial conditions, together with the disturbances, are unknown, the absolute
difference between modelled, simulated and observed results in Figure 4.3.1 should be interpreted with
caution.
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Conclusion

This project set out three main objectives: to create and validate a model that captures the inverted
pendulum stability phenomenon, to develop a simulation that mimics an inverted pendulum and to design
and realize a working experimental setup based on the theoretical results.

The results documented in chapter 1 and chapter 2 have shown that the first objective has been accom-
plished. Although the created model uses a simplification in the form of a piecewise constant accelera-
tion, the validation experiment, based on instability of a pendulum in bottom position, showed that the
model approximates reality reasonably well. It could therefore be used to first validate the simulation
results and later develop the experimental setup.

Besides the created model, also the computer simulation developed in chapter 3 has proven to be rea-
sonably accurate. To validate the simulation model, first a piecewise constant acceleration was applied
and resulting stabilization frequencies were compared to those of the earlier verified model. After it be-
came clear that the simulation provided similar results as the model, the second objective had also been
achieved. Then, time dependent acceleration in the simulation was changed for sinusoidal acceleration
because the intended experimental setup also used sinusoidal acceleration.

In order to accomplish the project’s third objective, appropriate experimental setup parameters were
determined within the imposed size constraints using the results from the stability analysis model and
simulation. These parameters formed the starting point to create a full CAD design of the experimental
setup, after which it was mostly 3D printed and assembled. It turned out that the various pendulum
sizes could, just as predicted, all be stabilized using the two chosen amplitudes of 0.02 m and 0.04
m and the chosen transmission ratio for angular velocity. This completes the project’s third objective,
but although modelled, simulated and experimental results showed the same behaviour, there was a
significant difference between. Unknown disturbances and exact initial conditions were given as main
reason for this observation.

All in all, it may be concluded that all three objectives set for this project are met and that the stability
phenomenon of an inverted pendulum has been investigated, described and demonstrated successfully.
For a future project, a possible next step is to improve the experimental setup so the amount of dis-
turbances is reduced. In this way, model, simulation and experiments should not only show similar
behaviour, but also closely show similar results.
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A Main text elaboration

A.1 Equation of motion full derivation

The starting point for this derivation of the pendulum’s equation of motion is Equation 1.8. In this
situation, the only relevant generalized coordinate is φ. Also, the non conservative force factor Fnc can
be reduced to only a damping factor d, which is linearly dependent on and works in opposite direction
of angular velocity φ̇. This means Equation 1.8 can be rewritten to:

d

dt

(
∂L
∂φ̇

)
− ∂L

∂φ
= −dφ̇ (A.1)

All parts in this equation will now be treated separately in order to derive the equation of motion in
a structured manner. For clarification purposes, the Lagrangian given in Equation 1.7 is repeated here
once again. So:

L =
1

2
M(φ̇2L2 − 2φ̇ sin(φ)Lṡ+ ṡ2)−Mg(cos(φ)L+ s) (A.2)

First, the Lagrangian is differentiated with respect to φ̇:

∂L
∂φ̇

= M(L2φ̇− sin(φ)Lṡ) (A.3)

Subsequent, to obtain the first term of Equation A.1, this derivative is differentiated with respect to time:

d

dt

(
∂L
∂φ̇

)
= M(L2φ̈− sin(φ)Ls̈− φ̇ cos(φ)Lṡ) (A.4)

In order to get the second term of Equation A.1, the Lagrangian shown in Equation A.2 is differentiated
with respect to φ:

∂L
∂φ

= M(−φ̇ cos(φ)Lṡ)−Mg(− sin(φ)L) = M(−φ̇ cos(φ)Lṡ+ g sin(φ)L) (A.5)

Now, Equation A.4 and Equation A.5 can be substituted in Equation A.1 to get:

M(L2φ̈− sin(φ)Ls̈− φ̇ cos(φ)Lṡ)−M(−φ̇ cos(φ)Lṡ+ g sin(φ)L) = −dφ̇

which can be rewritten to the final equation of motion:

φ̈+ λφ̇− 1

L
(g + s̈) sin(φ) = 0 (A.6)

where the new damping factor λ is defined as:

λ =
d

ML2
(A.7)
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A.2 Equilibrium positions derivation

To find the pendulum’s equilibrium positions, Equation 1.10 is being used.

dEp

dφ
= −Mg sin(φ) = 0 (A.8)

Solving this equation leads to equilibrium positions φ = 0 + k · 2π and φ = π + k · 2π

A.3 Linearization around bottom position

As a starting point for the linearization process, the equation of motion presented in Equation A.6 is
taken. Now, to linearize this equation, the angle the pendulum makes is regarded as a constant angle
plus a small time dependent perturbation. This implies φ = θ0 + θ1(t), where in this case θ0 = π
because the equation is linearized around the bottom equilibrium position. This definition of φ can now
be substituted into Equation A.6 to get:

θ̈1 + λθ̇1 −
1

L
(g + s̈) sin(π + θ1) = 0

By applying the sum formula for a sine, this can be rewritten to:

θ̈1 + λθ̇1 −
1

L
(g + s̈)(sin(π) cos(θ1) + cos(π) sin(θ1)) = 0

Since the perturbation θ1(t) is very small, sin(θ1) ≈ θ1. This means the final linearized equation of
motion is equal to:

θ̈1 + λθ̇1 +
1

L
(g + s̈)θ1 = 0 (A.9)

A.4 Damping coefficient per pendulum length

Table A.1: Swing duration and resulting damping coefficient per pendulum length

Pendulum length [m] Swing duration [s] Damping coefficient
0.10 4.0 2.20
0.15 5.5 1.70
0.20 21.0 0.38
0.25 19.0 0.45
0.30 18.5 0.50
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B Supporting pictures

Figure B.0.1: Experimental setup Motion laboratory

Figure B.0.2: Realized experimental setup
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C Matlab

C.1 Stability analysis script

1 c l e a r a l l ; c l o s e a l l ; c l c ;
2 %% C o n s t a n t s
3 n = 1000 ; % c a l c u l a t i o n s t e p s i z e , [ - ]
4 m = 1 ; % t o c r e a t e a r r a y l a t e r , [ - ]
5 g = 9 . 8 1 ; % grav a c c e l e r a t i o n , [m/ s ^2 ]
6 d = 0 . 1 ; % damping c o e f f i c i e n t [ - ]
7

8 %% V a r i a b l e s o s c i l l a t i o n
9 w_min = 0 . 0 1 ; % minimum w, [ r a d / s ]

10 w_max = 5 0 ; % maximum w, [ r a d / s ]
11

12 a_min = 0 ; % minimum a , [m]
13 a_max = 0 . 3 ; % maximum a , [m]
14

15 %% V a r i a b l e s pendulum
16 L = 0 . 5 ; % l e n g t h , [m]
17

18 %% R e s u l t i n g v a r i a b l e s
19 w = w_min : ( w_max - w_min ) / n : w_max ; % a r r a y o f w
20 a = a_min : ( a_max - a_min ) / n : a_max ; % a r r a y o f a
21 w_n = w / ( s q r t ( g / L ) ) ; % n o r m a l i z e d w
22 T = (2* p i ) . /w; % p e r i o d , [ s ]
23

24 %% C a l c u l a t i o n s
25 f o r i = 1 : n+1
26 f o r j = 1 : n+1
27 B1 = [0 1 ; - ( 1 / L ) * ( g -w( j ) ^2* a ( i ) ) - d ] ; % m a t r i x B1
28 B2 = [0 1 ; - ( 1 / L ) * ( g+w( j ) ^2* a ( i ) ) - d ] ; % m a t r i x B2
29

30 i f max ( abs ( e i g ( expm ( B2*T ( j ) / 2 ) *expm ( B1*T ( j ) / 2 ) ) ) ) > 1 % i n s t a b l e
31 d a t a ( 1 ,m) = w_n ( j ) ; % f r a c t i o n o f e i g e n f r e q u e n c y
32 d a t a ( 2 ,m) = a ( i ) ; % a m p l i t u d e
33 m=m+1;
34 end
35 end
36 end
37

38 f i g u r e ( 1 )
39 p l o t ( d a t a ( 1 , : ) , d a t a ( 2 , : ) , ' . k ' , ' Marke rS ize ' , 1 )
40 x l a b e l ( ' $ \ omega / \ omega_0 \ ; \ t e x t r m { [ - ] } $ ' , ' i n t e r p r e t e r ' , ' l a t e x ' )
41 y l a b e l ( ' $A \ ; \ t e x t r m { [m] } $ ' , ' i n t e r p r e t e r ' , ' l a t e x ' )
42 t i t l e ( ' Pendulum ( i n ) s t a b i l t y v i s u a l i z a t i o n f o r L = 0 . 5 m ' )
43 l e g e n d ( ' I n s t a b i l i t y ' )
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C.2 Pendulum simulation script

1 c l e a r a l l ; c l o s e a l l ; c l c ;
2

3 o p t s = o d e s e t ( ' MaxStep ' ,1 e - 2 ) ;
4 %% C o n s t a n t s
5 t = [ 0 : 0 . 0 1 : 5 0 0 ] ; % t ime v e c t o r
6 x0 = [0 . 1 ; 0 ] ; % i n i t i a l c o n d i t i o n s
7

8 %% Solve u s i n g ode
9 [ t2 , s o l _ 4 5 ] = ode45 ( @pendulum_dyn , t , x0 , o p t s ) ;

10

11 %% Graph
12 f i g u r e ( 1 )
13 p l o t ( t2 , s o l _ 4 5 ( : , 1 ) )
14 g r i d
15 x l a b e l ( ' Time [ s ] ' )
16 y l a b e l ( ' Ampl t iude [ r a d ] ' )
17 t i t l e ( ' S i m u l a t e d pendulum b e h a v i o u r ' )
18

19 %% D ef in e f u n c t i o n f o r pendulum dynamics
20 f u n c t i o n dx = pendulum_dyn ( t , x )
21

22 %% C o n s t a n t s
23 l = 0 . 1 ; % l e n g t h p i v o t t o pendulum c e n t e r o f mass
24 A = 0 . 0 4 ; % e x i t a t i o n a m p l i t u d e
25 w = 5 0 ; % e x i t a t i o n a n g u l a r f r e q u e n c y
26 d = 0 . 4 ; % damping c o e f f i c i e n t
27 g = 9 . 8 1 ; % g r a v i t a t i o n a l c o n s t a n t
28

29 T = 2* p i /w; % p e r i o d of t h e o s c i l l a t i o n
30 t _ n = t / T ; % n o r m a l i z e d t ime by d i v i d i n g by T
31 t _ i n t = f l o o r ( t _ n ) ; % f l o o r t h e n o r m a l i z e d t ime
32 t _n2 = t_n - t _ i n t ; % s u b t r a c t i n t e g e r t o g e t a v a l u e <1
33

34 %% D ef in e o s c i l l a t i o n b e h a v i o u r
35 s = A* s i n (w* t ) ; % s f u n c t i o n , n o t used i n f u n c t i o n
36

37 i f t _n2 < 0 . 5 % i f p i e c e w i s e a p p r o x i m a t i o n
38 s i n _ a p p r o x = 1 ; % i s used , t h i s happens h e r e .
39 e l s e % 0<= t_n2 <0 . 5 means 0<= t <T / 2
40 s i n _ a p p r o x = - 1 ;% 0 .5 <= t_n2 <1 means T/2 <= t <T
41 end
42

43 s _ d o u b l e d o t = -A*w^2* s i n (w* t ) ; % a p p l y f o r s i n u s o i d a l i n p u t
44 % s _ d o u b l e d o t = -A*w^2* s i n _ a p p r o x ; % a p p l y f o r p i e c e w i s e i n p u t
45

46 %% Pendulum b e h a v i o u r
47 dx = [ x ( 2 , 1 ) ; ( s i n ( x ( 1 , 1 ) ) / l ) * ( g+ s _ d o u b l e d o t ) - d*x ( 2 , 1 ) ] ;
48

49 end
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