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Abstract

Companies have considerable deficits in achieving their logistic performance goals. The main
reason is that companies often lack an understanding of the manifold and multi-causal interactions
in logistics. This can lead to unsystematic data analysis and unfounded interpretation of key
performance indicators. Nowadays, the development of the modern logistics industry is supported
by information technology in the form of Warehouse Management Systems (WMSs). From WMSs
large volumes of data can be collected, and used for supporting further decision-making. However,
existing approaches with the aim of extracting knowledge from warehouse management data are
very limited. Therefore, the Approach for Internal Logistics Subgroup Discovery (AIL-SD) is
developed in this master thesis. The AIL-SD combines the concepts of subgroup discovery and
root cause analysis to support logistics companies in extracting knowledge in the form of root
causes from WMS data. After the development of the AIL-SD, its use is demonstrated in the
form of a case study at the Internal Logistics (IL) department of Prodrive Technologies (PT) to
identify the root causes of long order lead times. The approach incorporates the development of
a root-cause relation diagram visualizing to identify first, second, third, and fourth level causes
that attribute to long order pick times. Subsequently, the relative strength of causes is estimated.
Applying this approach to Prodrive Technologies, it was found that the most important root
causes of long order pick time are the lack of short-term storage capacity, and bottlenecks created
by the internal transport of components. The approach developed in this master thesis is likely to
be widely applicable for the root cause analysis of other variables in the operational IL domain,
as its phases are designed agnostic to the problem context at PT.
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Executive Summary

This master thesis was carried out in the internal logistics department of a Prodrive Technologies,
a large high-tech manufacturing company. The internal logistics department is responsible for the
timely fulfillment of internal material transfer requirements.

Motivation

The development of the modern logistics industry is nowadays supported by information technol-
ogy in the form of Warehouse Management Systems (WMSs). A WMS is a database-driven com-
puter application to control and optimize complex distribution processes by directing cut-aways
and maintaining accurate inventory by recording warehouse transactions. The rise of WMSs in
the internal logistics domain inspires a data-driven approach to warehouse management. Specif-
ically, because data resulting from the execution of logistics operations can retrospectively be
retrieved in the form of event logs, which is a collection of time-stamped event records produced
by the execution of a logistics processes. The internal logistics workflow of a company involves
numerous combinations of variable settings that influence logistics process performance. However,
approaches with the aim of extracting knowledge from WMS data to find important variables are
very limited. PT has been growing significantly in the past decade and the (internal) logistics
process has not been managed accordingly. Company managers have noticed that a significant
amount production orders are not being delivered on time to the manufacturing facility. Produc-
tion orders not starting in time alter production planning schedules, decrease production output,
cause avoidable machine changeovers and prolonged downtimes, and eventually lead to increased
production costs for the company. Therefore, it is most important that PT understands the causes
that affect internal logistics operations to improve performance. Hence, an approach capable of
finding root causes from WMS data is designed. The development of such an approach contributes
to the improved ability of decision-makers to find and act upon an appropriate set of measures to
enhance internal logistics performance.

Design

To analyze the objectives of the solution and to take into account the internal logistics context,
a literature review in the field of internal logistics was conducted. This provided insight into
operational processes, methods of performance measurement, and the use of WMS data to be
used for data analysis. This information was supplemented with stakeholder interviews to infer
the objectives of the approach to be designed.

The designed artifact consists of four phases and a knowledge base. These phases, accompanied
with crucial steps to be performed during the phase are depicted in Figure 2. The knowledge
base consists of quantitative data retrieved from a WMS and domain knowledge. The initial
phase, data preprocessing, focuses on collecting and describing the data required to perform the
analysis, transposing relevant data points from the knowledge base such that they can be used for
subgroup discovery, and to ensure data quality. To apply subgroup discovery methods, WMS data
was mapped to physical logistics activities (e.g. picking, buffering) with a standardized mapping
method. Furthermore, the mapped logistics activities were transformed into event logs such that
subgroup discovery methods could be applied. In the second, subgroup discovery phase, subgroup
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discovery methods are applied. In the third phase, the root cause analysis phase, root causes for
the problem at hand are to be induced from the subgroup analysis. The discovered subgroups are
further analyzed in the root cause analysis phase. Causal relations are visualized by constructing
a cause-effect relation tree and Pareto charts. Last, in the knowledge extraction phase, we are
interested how the outcomes of the RCA phase can be insightful to practitioners. Final results are
interpreted and recommendations to improve process performance are formulated. Furthermore,
one can extend and/or tune the applied background knowledge during the knowledge extraction
step: Then, the knowledge base can be updated in an incremental fashion by including further
background knowledge, based on the SD results.

Figure 2: Approach for Internal Logistics Subgroup Discovery (AIL-SD).

Demonstration

Subsequently, the approach has been demonstrated in a case study at the internal logistics depart-
ment of PT. By demonstrating, the approach could be further refined to suit business needs in
an iterative process. First, SD was applied and interesting subgroups were found. The obtained
subgroups were interpreted by the researcher and domain experts, to construct a cause-effect re-
lation tree to visually depict the causal framework in relation to order pick time (Figure 3). From
this RCA, the second cause levels found were lack of short-term storage capacity, many order
operations, labor problems, and equipment failure.

Subsequently, the relative strength of root causes is estimated by visualizing their importance
by using Pareto charts. The demonstration resulted in insights that support the data-driven
decision capabilities of the department. Three key insights contributing to long order pick times
are, 1) the lack of short term-storage locations, especially at pick & pack areas, 2) long internal
transport times between buildings, 3) the high fluctuation of workload for logistics handlers,
and 4) the lack of training of logistics handlers. Therefore, it is recommended to 1) reduce the
number of warehouse tasks in the queue at the pick & pack areas which reduces the amount
of parallel processed production orders, reducing the utilization of the pick & pack areas, and
thus, decreasing order picking times. Furthermore, 2) it is recommended that PT comes up with
inventive ways to attract new personnel and attain the existing workforce, especially to solve the
driver shortage as it was found as the most important bottleneck in the IL process. Moreover, 3)
it is recommended to align the logistics planning with the expected logistics workload to be able
to anticipate the expected daily workload. And, 4) it recommended that the training of logistics
handlers should focus on: increasing flexibility, decreasing stock-outs and the scrap-rate, and on
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Figure 3: Cause-effect relation tree of long order pick time.

the proper scanning of RFID tags. Lastly, the outcomes of this study support the construction of
a new centralized warehouse that would combine the warehouse functions of existing warehouses.

Evaluation

The approach is validated on its efficacy, efficiency, and effectiveness. It became clear that the
efficacy of the model is high, and the efficiency and effectiveness of the model are moderate.
The granular insights that it can provide support custom process improvements and the visual
depiction of the root causes aids decision making. However, the approach requires a solid data
architecture to enable the efficient retrieval of relevant variables from a WMS. It is recognized that
the various complex preprocessing steps can reduce the effectiveness of the model for practitioners.

The output and evaluation of the case study and the designed approach indicate that its ap-
plication is useful for finding the root causes of production orders in time, and can be used to
improve internal logistics performance. Thus, it was concluded that the master thesis achieves its
objective, although it should be noted that improvements can be made.
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1 Introduction

The development of the modern logistics industry needs the support of information technology.
Such technology includes a WMS, which has revolutionized the ways to schedule, plan and fulfill
orders, track inventories and ensure the on-time delivery of the right products (Atieh et al., 2016).
The rise of WMSs inspires a new approach to warehouse management. Specifically, because
data resulting from the execution of logistics operations can retrospectively be retrieved in the
form of event logs, a collection of time-stamped event records produced by the execution of
a logistics processes (Knoll, Reinhart, & Prüglmeier, 2019). The IL workflow of a company
involves numerous logistics processes which can generate several million combinations of variable
settings. For example, the allocation of resources and equipment, or the capacity requirements
of processing areas. Companies have considerable deficits in achieving their logistic performance
goals (Wiendahl, Cieminski, & Wiendahl, 2005). The main reason is that companies often lack
an understanding of the manifold and multi-causal interactions in logistics which can lead to
unsystematic data analysis and unfounded interpretation of key performance indicators. Detailed
and systematic RCA based on quantitative approaches is required to effectively improve logistics
performance (Schmidt, Tatjana, & Hartel, 2019). However, existing approaches with the aim of
extracting knowledge from warehouse management data to find important process variables are
very limited (Wang, Caron, Vanthienen, Huang, & Guo, 2014; Olson, 2020). In this master thesis
a novel approach, the AIL-SD, is developed that can be used for the identification of root causes
in operational IL processes. The AIL-SD combines the concepts of subgroup discovery and root
cause analysis to support logistics companies in extracting knowledge in the form of root causes
from warehouse management system data. Using a case study, we investigated the potential of
finding root causes with the designed approach in an IL context at PT.

1.1 Company Profile

This master thesis was conducted at PT. The company is a global manufacturer of high-tech prod-
ucts with its headquarters located in Son, the Netherlands. The company reported a turnover
of 278 million euros in 2020, employs the full-time equivalent of 1547 employees located in six
countries, and reports an average annual growth of 20% over the last decade. The core business
of PT involves products that range from integrated electronics to software & mechanical solu-
tions which serve Industrial, Medical, Automotive, Semiconductor, and Infrastructural markets
(Prodrive Technologies, 2020).

PT is structured as a non-traditional company with a flat organizational structure. The company
evaluates and structures its operations around business processes. An overview of these business
processes is provided in Figure 1. In the leadership & planning process, the organizational di-
rection is controlled and the performance of products is monitored. The resource management
process includes support activities such as human resources, finance, information technology, and
intellectual property control. The product realization process contains the primary activities of the
company and includes product life cycle management, product development, product manufactur-
ing, manufacturing process development, and Supply Chain Management (SCM). The evaluation
process is in place to manage incidents, perform audits, and monitor business performance and
customer satisfaction. This master thesis addresses one of the business processes within the SCM
domain of PT which will be elaborated on in the remainder of this section.
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Figure 1: Business Process Landscape Prodrive Technologies.

Within the SCM department planning is responsible for constructing a demand forecast, a pro-
duction planning that matches available resources with demand for production, and a shop floor
planning determining the logistical operations necessary for production. Inbound logistics registers
received goods in accordance with the conditions of the delivery, internal logistics manages the
timely fulfillment of internal material transfer requirements, and outbound logistics is responsible
for the timely delivery of goods ordered by the customer. The combination of the inbound, inter-
nal and outbound logistics processes is collectively referred to as the logistics process. Within the
logistics process, the warehouse-related work is performed by material handlers. For example, the
picking of components. Operational decisions are made by team leaders, for example, deciding
how many forklift trucks to order or making a work schedule planning. The logistics process is
governed by a process owner who is responsible for tactical and strategic decisions, e.g. the expan-
sion or release of resource capacity or warehouse layout decisions. The process owner reports to
the chief operations officer, who is part of the board of directors. In general, the chief operations
officer has to approve tactical or strategic decisions before they can materialize. Furthermore,
data engineers from the data analytics department provide quantitative insights where strategic
decisions can be based upon.

To ensure the efficient movement of goods and materials through the warehouses and to produc-
tion, a WMS was implemented. The WMS consists of software and processes that control and
administrate warehouse operations from the time goods or materials enter the warehouse to the
moment they are moved out. At PT the WMSs in use are from SAP. Essentially, the SAP system
supports the entire warehouse logistics including the processing of all goods movements and the
efficient management of inventory.

This master thesis has been conducted at IL operations. IL receives information when components
are needed for the planned production run by the planning department. Subsequently, IL is
responsible for the picking, preparation, transfer, and delivery of goods to the orders collect area
of the manufacturing facility. A general rule used for transferring components to the orders collect
area, is that this process should take a maximum of two days to be completed. Meaning that if
the processing of components takes longer than this predefined time, it is considered not being
delivered in time. Hence, IL tries to structure its processes in such a way that this target can be
reached for all processes. A complete overview of the IL process can be found in Appendix A.
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1.2 Problem Statement

PT has been growing significantly in the past decade and the (internal) logistics process has
not been managed accordingly. Company managers have noticed that a significant amount pro-
duction orders have not been delivered on time to the manufacturing facility. This means that
components belonging to this production order are not being processed in the predefined two
days by the IL department, and transferred to the assembly line in time for the planned produc-
tion start. Production orders not starting in time alter production planning schedules, decrease
production output, cause avoidable machine changeovers, prolonged down-times, and eventually
lead to increased production costs for the company. Therefore, it is critical that PT understands
the causes that affect IL operations to improve performance. In the period from March 2021 to
October 2021, the relative amount of production orders not being delivered in time averages 57,1%.

In the past years, strategic and tactical decisions in the IL domain have been made in an ad-hoc
manner. For example, storage capacity issues arose, and subsequently, the storage capacity was
increased. To gain clear insight into all possible reasons for the production orders not starting
in time, a cause-and-effect diagram was derived by interviewing important stakeholders. Prob-
lems have been found in material handling, people, information, storage, and the environment of
IL operations. The diagram is depicted in Figure 2. From the cause-and-effect analysis, it was
concluded that the ambition to grow the company has resulted in insufficient attention, and there-
fore inadequate strategic decision-making insight of the IL processes. Accordingly, the problem
statement is formulated as:

The root causes of production orders not being delivered in time are not clear to the management
of PT and this prevents the implementation of performance improvements

Supply chain managers aim to switch to a data-driven decision-making approach, enabling more
quantitative insight into current business practices. By obtaining more insight into current busi-
ness practices the company’s managers want to be in control of the business, meaning that com-
pany management can make informed strategic decisions. The WMS that PT has in place registers
all operational movements and can potentially provide the data needed for data-driven decision-
making.

1.3 Scope

The SCO department considers the interplay between purchasing, planning, and logistics. These
processes are complex and require and involve a multitude of data sources, products, and stake-
holders. For this master thesis, company managers have pointed out that specifically the per-
formance of the IL process, responsible for the timely fulfillment of internal material transfer
requirements, should be investigated in more detail. The operational tasks performed within this
process are creating performance problems (marked in bold). A cause-and-effect analysis has been
performed among the process owner of IL, team leaders and data engineers with affinity to the
logistics process. Following the cause-and-effect analysis, the scope of this master thesis includes
all operational root causes of production orders not being delivered in time, translating to material
handling, people, and storage factors, and aims to improve the lack of process insight. The scope
is illustrated in Figure 2.
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Figure 2: Cause-and-effect diagram and scope.

The decision of scoping the master thesis to operational aspects of logistics operations also has a
practical element. The WMS that PT has in place registers all these operational movements. As
company managers have pointed out that decision-making should be based on more data-centric
approaches, the master thesis aims to primarily use information retrieved from the WMS. More-
over, only information processed by the PTs WMS named SAP Extended Warehouse Management
(EWM), including 90% of all products, is included in this master thesis due to practical reasons,
excluding one product group. Consultation with data engineers has pointed out that this is not
likely to influence outcomes. Furthermore, in consultation with the process owner of the IL do-
main, it was decided that the process of moving components from material storage to the orders
collect area of the manufacturing plant was to be investigated. This subset of activities performed
by IL was chosen to omit factors that could be directly related to production factors, e.g. lengthy
changeover times, product defects, or manufacturing disruptions. Lastly, the master thesis will
solely investigate IL processes in the Netherlands.

1.4 State of the Art

Following the problem statement, the state of art section is presented to provide the reader with
a general understanding of the relevant concepts.

1.4.1 Root Cause Analysis

As the management of PT is not able to find the root causes of production orders not starting
in time Root Cause Analysis (RCA) literature is reviewed. With RCA, one aims to understand
the causal mechanism underlying the transition from the desirable to undesirable condition and
to identify the root cause of the problem to keep the problem from recurring (Sabet, Moniri, &
Mohebbi, 2017; Kamsu-Foguem, Rigal, & Mauget, 2013). RCA is a collective term used to de-
scribe a wide range of approaches, tools, and techniques used to uncover the causes of problems.
The overarching goals of RCA differ although most of them can be categorized by: 1) problem
solving, 2) business process re-engineering or improvement, 3) benchmarking, or 4) continuous
improvement (Andersen & Fagerhaug, 2006). RCA has been applied widely in organizations and
many techniques have been developed, including the use of Ishikawa diagrams, Pareto diagrams,
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Fault Tree Analysis, Current Reality Trees, Barrier analysis, brainstorming, etc (Ershadi, Aiasi, &
Kazemi, 2018; Sabet et al., 2017). Traditionally, RCA has been a qualitative method of perform-
ing research. These traditional qualitative RCA methods have been applied to complex (internal)
supply chain contexts in the past, however, these use too many assumptions that render them
unsuitable for many products or processes (Schmidt et al., 2019; S. Kumar & Schmitz, 2011).
However, nowadays many events are recorded in logs and one can exploit this data for the pur-
pose of RCA, with the added advantage that the data reflects reality, and not a perception of
reality (Suriadi, Ouyang, Aalst, & Hofstede, 2012).

In the described problem context the overarching goal of RCA is business process re-engineering
or improvement. The possibility to retrieve relevant log data from the WMS in combination with
the vision of company managers to switch to a more data-centric decision-making approach, di-
rects the master thesis to quantitative methods of analysis. RCA tools that are used for analyzing
data about a problem are referred to as problem cause data analysis. Common tools available
to analyze the data are: 1) histograms, used to display the distribution and variation of a data
set, 2) Pareto charts, aiming to graphically display a skewed distribution with the notion that
often 80% of the effects result from 20% of the causes, 3) scatter charts, used for identifying links
between two causes or other variables, 4) problem concentration diagrams, helpful in connecting
registered problems to physical locations and to identify patterns in problem occurrences, and
5) relations diagrams, used to identify logical relationships in complex and confusing problem
situations (Andersen & Fagerhaug, 2006).

In more recent research, due to development in intelligence science, some researchers have used
data mining methods to analyze issues in, for example, manufacturing and supply chain processes
(Sabet et al., 2017). Data mining efforts in the context of logistics controlling, aim for the
identification of weak points, and therefore the continuous improvement and adaption of the
internal supply chain. In many applications, stakeholders prefer to analyze and know more about
a subset of cases rather than all cases, e.g. cases with high or low performance or cases that
pertain to user complaints. The discovery of these subsets will help process analysts to find what
are distinctive attributes in a subgroup of cases, assisting further investigations like root cause
analysis (Fani Sani, Van der Aalst, Bolt, & García-Algarra, 2017). The technique that can be
used to obtain these subsets is referred to as SD and is elaborated upon in the Subgroup Discovery
section.

1.4.2 Subgroup Discovery

SD is a descriptive induction technique that extracts interesting relations among different variables
with respect to a special property of interest known as the target variable (Helal, 2016). In other
words, SD techniques try to find common characteristics in a subset of cases that occur less
frequently in the other cases. For example, discovering cases that are delayed, caused by particular
resources. Prominent applications of SD include knowledge discovery in medical, technical, and
marketing domains (Fani Sani et al., 2017; Atzmueller, 2015). These relations found by applying
SD techniques can be represented in the form of rules:

Condition → Target
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Where Target is a value for the property of interest and Condition is a combination of attribute-
value pairs representing relations characterized by the value of Target (Helal, 2016). Literature
found on the application of data mining techniques in supply chains focuses on quality manage-
ment, risk analysis, inventory management, supply chain networks, and supplier selection (Olson,
2020). There are fewer papers directly related to logistics, although this is clearly an important
field in supply chain management. This could be due to the complexity of the integrated work-
flow nowadays. In real industrial applications, most of the settings of process variables in any
individual process are determined by a skilled operator or by using a trial and error approach
(Ho et al., 2008). The IL workflow of a company involves numerous logistics processes which
can generate various combinations of variable settings. For example, the allocation of material
handlers, the capacity of storage areas or the number of forklift trucks used in a. SD aims at
identifying descriptions of subsets of a dataset that show an interesting behavior with respect to
certain interestingness criteria, potentially being able to find these important process variables
(Atzmueller, 2015). Therefore, it could be useful to design an approach incorporating SD to find
important process variables and generate a set of combinations to improve process performance.

1.5 Research Questions

By combining the problem statement formulated in section 1.2 and the state of art in 1.4 the main
research question of this study is aggregated:

How can an approach based on Subgroup Discovery and Root Cause Analysis techniques be
developed to identify the root causes of production orders not starting in time in internal logistics

operations at Prodrive Technologies, to improve process performance?

It main research question is composed of six sub-research questions.

1. How does a general internal logistics process function from a data perspective?

2. How can subgroup discovery methods be applied in an internal logistics context?

3. What are the requirements of the approach to be designed?

4. How would a novel approach suitable for finding root causes in the IL domain and applying
subgroup discovery and root cause analysis techniques be designed?

5. How can the designed approach derive root causes and consequently improve the operational
logistics process at Prodrive Technologies?

6 How are internal logistics performance improvements supported by the designed approach?

1.6 Scientific Relevance

Another objective of the study is to contribute to scientific knowledge. First of all, there is a lack
of comprehensive methodologies and frameworks in literature to support logistics companies in
adopting, implementing, and sustaining operational excellence (Wang et al., 2014; Trakulsunti,
Antony, & Douglas, 2021; Olson, 2020). The (side) position of this master thesis is to extend
research on methodology design for the IL domain. Furthermore, companies have considerable
deficits in achieving their logistic performance goals (Wiendahl et al., 2005). The main reason
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is that companies often lack an understanding of the manifold and multi-causal interactions in
logistics which can lead to unsystematic data analysis and unfounded interpretation of key per-
formance indicators. Detailed and systematic RCA based on quantitative approaches is required
to effectively improve logistics performance (Schmidt et al., 2019). This research improves oper-
ational logistics performance by developing an approach based on quantitative techniques (SD),
that supports the discovery of root causes. Furthermore, SD methods in the manufacturing do-
main have been studied extensively, and supply chain-wide SD methods have been proposed as
well (Atzmueller & Lemmerich, 2009). However, an SD approach combined with RCA techniques,
tailed to operational logistics processes has not yet been studied to the best of the author’s knowl-
edge which could be due to the complexity of logistics workflows nowadays (Ho et al., 2008). Last,
general supply chain data can consider database records related to order flows, mode of trans-
portation, type of product, etc. (Ting, Tse, Ho, Chung, & Pang, 2014; Lau, Ho, Zhao, & Chung,
2009). Within IL data, every physical material movement within the material flow is controlled
by a unique event captured by a WMS (Knoll et al., 2019). Research on the use of WMS data for
a data analysis application is very limited, and this master thesis adds to that body of knowledge.

1.7 Outline

This study is organized into 10 chapters. In chapter 2 the relevant state-of-the-art literature for
the IL context and SD is outlined. In chapter 3 the research environment at PT is described in
more detail. In chapter 4 the applied design science methodology is elaborated upon. In chapter
5 information related to the design and development of the approach can be found. Thereafter
a case study is performed at PT. In chapters 6, 7, and 8, the data used for the case study
is preprocessed, subgroup discovery is performed, and root causes of problems are derived. In
chapter 9 the findings from the case study are evaluated and the designed approach is evaluated
upon. Lastly, in chapter 10 conclusions and future recommendations are given.
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2 Theoretical Background

This chapter explains the theoretical background of the master thesis. First, internal logistics
operations are outlined (section 2.1) and then, SD is elaborated upon (section 2.2).

2.1 Internal Logistics

The field of Production Logistics (PL) encompasses all operations necessary for the delivery of
any product to the customer, except those directly associated with the conception of the product.
It refers to logistics processes that directly serve production processes, ranging from raw materi-
als purchasing to shop-floor manufacturing, as well as the circulation of semi-finished or finished
products (Qu et al., 2017). In a broader perspective, PL is part of a supply chain, a system of
interconnected people, activities, information, and resources, with the goal of creating a product
that has to be delivered to a customer.

The core process steps of PL can be subdivided into the (traditional) forward and the reverse chain.
PL can be further categorized into External Logistics (EL) and Internal Logistics (IL) according
to their functional scope (Boysen, Emde, Hoeck, & Kauderer, 2015). EL are logistics operations
among several individual manufacturers, for example, the collection of production material or
the distribution of finished goods. IL is directly related to a manufacturer’s internal production
processes, e.g. materials being transported to/from warehouses or circulated in/between workshops
in the form of Work-in-Process. EL and IL operations are often executed independently (Qu et
al., 2017). Reverse logistics is responsible for moving goods back to the sellers or manufacturers.
Processes such as returns or recycling require reverse logistics (Boysen et al., 2015). IL, as one of
the links in a supply chain, plays a critical role in achieving excellent supply chain performance
(Dewa, Pujawan, & Vanany, 2017), and its functions are be elaborated on in this chapter.

2.1.1 Process Overview

The typical IL process is depicted in Figure 3. The process starts with taking components in
charge from the supplier or carrier into the responsibility of the company and performing quality
inspections. Then, if stock is not directly delivered to the production line, parts need to be inter-
mediately stored in a warehouse in a process referred to as putaway. Stock is stored in pallets or
later on sorted into bins. If an order is ready to be collected, parts are picked from storage loca-
tions. An order consists of order lines, each line for a unique product or stock-keeping unit, in a
certain quantity. Order lines are split, based on quantity and product carrier of the stock-keeping
unit. In pallet picks, the case picks, and broken case (unit) picks are aggregated. Subsequently,
orders have to be grouped by order in a consolidation process. Upon completion of the picking
process orders often have to be packed and stacked on the right unit load, e.g. a pallet in a process
referred to as sortation. Finally, orders are shipped to the production line. Orders are unloaded
by placing bins on a rack directly accessible to an assembly worker (Boysen et al., 2015; Ramaa,
Subramanya, & Rangaswamy, 2012).
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Figure 3: Overview warehouse functions and flows (De Koster et al., 2007)

Typical functional areas and flows within IL are and include: receiving, inspection, transfer and
put away, order picking, accumulation/sortation, cross-docking and shipping (De Koster, Le-Duc,
& Roodbergen, 2007; Staudt, Alpan, Di Mascolo, & Rodriguez, 2015; Knoll et al., 2019). The
definitions relevant to this thesis are:

(1) Transport, moving components from one processing (activity) area to another. (2) Buffer,
storing components in a processing area for a short period of time (< 1 day). (3) Store, storing
components in a processing area for a long period of time (>= 1 day). (4) Pick, involves the process
of obtaining the right amount of the right components. Picking is performed on a single component
group. (5) Distribute, is breaking down a shipment consisting of the same component into several
smaller shipments. For example, distributing a six-pack of shampoo bottles into partitions of 4
and 2 bottles. (6) Consolidate, the process of combining several smaller shipments into one full
container. (7) Deconsolidate, breaking down a shipment consisting of different components into
several smaller shipments.

2.1.2 Warehouse Management Systems

Warehouses are an essential component of any supply chain and take up to 5% of the cost of
sales of a corporation (Ramaa et al., 2012). Market competition requires continuous improvement
in the design and operation of production-distribution networks, which in turn requires higher
performance from warehouses. Additionally, companies have set up centralized production and
warehouse facilities over the last decades, which has resulted in larger warehouses further increas-
ing the complexity of IL processes.

The adoption of management philosophies such as Just-In-Time and Lean manufacturing also
brings new challenges for warehouse systems, including tighter inventory control, shorter response
times, and a greater product variety (Gu, Goetschalckx, & McGennis, 2005). As a consequence,
managing complex warehouses effectively and efficiently has become a challenging task (Faber,
De Koster, & Smidts, 2013). This has led to the increased adaptation of warehouse management.
Warehouse management controls and optimize complex distribution processes and is in most ware-
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houses supported by a WMS (Faber et al., 2013). A WMS primarily aims to control the movement
and storage of materials within a warehouse and process the associated transactions, including
shipping, receiving, put-away and picking. A WMS is a database-driven computer application,
to improve the efficiency of the warehouse by directing cutaways and to maintain accurate inven-
tory by recording warehouse transactions. The systems also directs and optimize stock based on
real-time information about the status of bin utilization. It often utilizes Auto-ID Data Capture
technology, such as barcode scanners, mobile computers, and radio-frequency identification to effi-
ciently monitor the flow of products. Once data has been collected, there is batch synchronization
with or a real-time wireless transmission to a central database. The database can then provide
useful reports about the status of goods in the warehouse. WMSs can be stand-alone systems or
modules of an enterprise resource planning system, or supply chain execution suite (Ramaa et al.,
2012).

While a lot of companies have a WMS in place, these often do not record high-quality event logs
explicitly. In this context, an event log is a collection of time-stamped event records produced
by the execution of a logistics processes. Instead, every physical material movement within the
material flow is controlled by a Warehouse Task (WT). A WT is created by a material require-
ment system to supply the production with the right amount of material. Each WT is stored in
the information system and holds various information about the logistics process (Knoll et al.,
2019). Specifically, 1) component information (e.g. type of component, quantity and production
order), 2) the location (source and destination), and 3) the time of occurrence are recorded. De-
pending on the quality of the data this can include the timestamp of start and/or completion.
Additionally, a WT can contain multiple components (e.g. mixed unit load) and can be linked
using a unique identifier to the previous WT. A standardized mapping method for automatically
mapping functional flows to WTs is proposed by Knoll et al. (2019). Furthermore, they describe
a method of transforming WTs into event logs.

2.1.3 Performance Indicators

Measuring warehouse metrics is critical for providing managers with a comprehensive overview
of potential opportunities and issues for improvements. Metrics are tied directly to the business
strategy and operation’s success, driving the financial results of the organization. If warehouses
are going to contribute to be a source for adding value to the supply chain then performance needs
to measured with perfect metrics (Ramaa et al., 2012). Traditional logistics performance indica-
tors include quantitative measures such as order cycle time, fill rates and costs; novel indicators
deal with qualitative measures like manager’s perceptions of customer satisfaction and customer
loyalty (Staudt et al., 2015). In this section, qualitative measures are elaborated upon.

Quantitative indicators of warehouse performance are classified according to four evaluation di-
mensions (Staudt et al., 2015): Time, quality, costs, and flexibility. The combination of these
four evaluation dimensions resembles the so-called ’Devil’s quadrangle’ framework by Brand and
Van der Kolk (1995). In the quadrangle, the four dimensions are in a trade-off. However, in
the context of the IL domain flexibility may be intangible and difficult to measure directly. This
dimension resembles the ability to respond to a changing environment and is preferably measured
indirectly (Staudt et al., 2015). Consequently, productivity is used instead as a dimension for
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direct warehouse performance indicators instead. This study will investigate the root causes of
production orders not being delivered in time. Therefore the time dimension is of interest. The
performance measure aligned with production orders not being delivered in time is order pick
time, which is defined as the lead time to pick an order line. An overview of the most important
quantitative performance measures in relation to the four dimensions is provided in Appendix B.

2.2 Subgroup Discovery Methods

SD is a descriptive induction technique that extracts interesting relations among different variables
with respect to a special property of interest known as the target variable (Helal, 2016). The
patterns extracted are normally represented in the form of rules and are called subgroups. First of
all, the target variable of the SD analysis has to be determined. In general, industrial applications
of SD often require the utilization of continuous parameters, for example, certain measurements of
machines or production conditions. In that case, a numeric target concept should be applied, since
the discretization of the variables causes a loss of information (Atzmueller & Lemmerich, 2009).
However, two alternative types of target variables exist, being binary and nominal. In binary
analysis, the variables only have two values (true or false) and the task is focused on providing
interesting subgroups for each of the possible values. When conducting nominal analysis, the
target variable can take an undetermined number of (discrete) values, however, the philosophy
for the analysis is similar to the binary one, to find subgroups for each value (Herrera, Carmona,
González, & del Jesus, 2011).

2.2.1 Methodology for Subgroup Discovery

A methodology for SD consists of three major phases for extracting subgroups (Helal, 2016):
candidate subgroup generation, pruning and post-processing and is depicted in Figure 4. These
elements will be described in more detail in this section.

Figure 4: Methodology for subgroup discovery (Helal, 2016).

Generating Candidates
In the candidate subgroup generation phase, a strategy is determined for searching candidate
subgroups. The determination of a strategy is important as the volume of the search space is
exponential with respect to the number of attributes and their values. Thus, the computational
time increases exponentially with the size of the search space. Hence, candidate generating tech-
niques have been developed for traversing the search space. The most widely used strategies are
(Helal, 2016; Atzmueller, 2015):

1) Exhaustive search, generating all possible candidates and verifying whether each candidate
satisfies some specific constraints. As this strategy generates all candidates from a dataset, this
method is restricted to the computational power of the used machine. 2) When exhaustive search
is not possible, beam search is the commonly used heuristic. This strategy implements a level-wise
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top-down approach for extracting subgroups. The search starts with a list of subgroup hypotheses
of size w corresponding to the beam width. The w subgroup contained in the beam are then ex-
panded iteratively, and only the best w subgroups are kept. Beam search traverses the search space
non-exhaustively and thus does not guarantee to discover the complete set of the top-k subgroups.

Pruning
In the (second) pruning phase, a SD algorithm needs to employ a pruning scheme selecting only the
significant candidates. A number of pruning strategies are used by different methods. The major
types include minimum support or coverage pruning, optimistic estimate pruning, and constraint
pruning. Minimum support pruning allows a SD method to select only those candidates that have
a minimum occurrence frequency in the dataset. Coverage pruning allows for the selection of a
percentage of subgroups covered on average. An optimistic estimate is a function that, given a
subgroup, provides a bound for the quality of every subgroup that is a refinement of the subgroup.
Constraint pruning allows for the reduction of the search space by defining constraints. This is
especially important when considering large datasets (Atzmueller, 2015; Helal, 2016; Herrera et
al., 2011; Grosskreutz, Rüping, & Wrobel, 2008).

Post-Processing
Lastly, in the post-processing phase, the SD algorithm implements a quality measure with the
purpose of ranking subgroups. These measures are important for evaluating subgroups as the
level of interest attained directly relies on them (Helal, 2016). In general, quality measures can
be grouped into two categories: objective and subjective measures (Atzmueller, 2015). Typically,
combinations of objective and subjective measures are considered for finding subgroups. Common
subjective quality measures are understandability, unexpectedness (new knowledge or knowledge
contradicting existing knowledge), interestingness templates (describing classes of interesting pat-
terns), and actionability (patterns which can be applied by the user to his or her advantage)
(Atzmueller, 2015).

Objective measures are data-driven and are derived using the structure and properties data. The
result of an SD task is the set of k subgroup descriptions with the highest quality according to
the selected quality function(s). Many quality functions make the trade-off between the size of a
subgroup and the deviation to the target concept in the subgroup. In the binary, nominal and
numeric settings a large number of quality functions have been proposed. The most used quality
functions for binary and nominal target concepts are Weighted Relative Accuracy (WRAcc),
Added Value, Lift, and Relative Gain. However, other quality measures for SD can be applied
like, the false alarm rate, specificity, sensitivity, or Odds Ratio function (see Herrera et al. (2011)
for a broad overview of quality functions). For measuring the statistical significance between target
and subgroup the t-test and the chi-squared test are used (Lavrac, Kavsek, Flack, & Todorovski,
2004; Duivesteijn & Knobber, 2011). The t-test is a statistical test that is used to compare the
means of two groups for numeric target variables, the chi-squared test is used in a setting with a
binary or nominal target. For numeric target concepts Mean Gain, adjusted WRAcc, and quality
functions based on statistical tests are often used (Atzmueller, 2015). Additionally, the applied
SD algorithm can return a result set containing those subgroups above a certain minimum quality
threshold, or only the top-k user-specified subgroups. Furthermore, the number of attribute-value
pairs of a subgroup can be user-specified to determine the complexity of the output (Helal, 2016).
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Because the WRAcc quality measure combines the concepts of generality, precision, and interest,
it is well-known in SD and therefore it is elaborated upon in more detail. The WRAcc is predom-
inantly used for binary target variables, but also for nominal targets. The WRAcc, also known
as unusualness, takes into account the improvement of the accuracy relative to the default rule
(i.e. the rule stating that the same class should be assigned to all examples), and also explicitly
incorporates the generality of a rule (i.e. the number of examples covered). Secondly, it can be
seen as a single measure trading off several accuracy-like measures such as precision and recall
in information retrieval, or sensitivity and specificity (Todorovski, Flach, & Lavrač, 2000). It
provides a good trade-off between the coverage of the subgroup and the accuracy of the target of
interest, avoiding subgroups with small coverage or low accuracy and in this way maximizing the
generality of the subgroup with high accuracy (Herrera et al., 2011). The Numeric Weighted Rel-
ative Accuracy (NWRAcc) is an often-used translation of the regular WRAcc for numeric target
variables (Van Leeuwen & Knobbe, 2012).

As the exhaustive approaches usually prohibit application for larger search spaces, efficient ex-
haustive algorithms have been developed. Well-known efficient exhaustive algorithms examples
are the BSD and SD-Map which allow for efficient handling of binary and nominal targets. Both
algorithms apply optimistic estimate pruning, however, utilize different core data structures. SD-
Map uses frequent pattern trees that discovers large volumes of frequent itemsets efficiently using
an extended prefix-tree structure (Yildirim, Birant, & Alpyildiz, 2017). A prefix tree is an ordered
tree to store ordered itemsets, e.g. if the rule “college graduate → high salary” holds, then we know
that both male college graduates and female college graduates enjoy high salaries (Li et al., 2015).
BSD uses a vertical data layout utilizing bitsets (vectors of bits) for the input data, reflecting
the current subgroup hypothesis and an additional array for the (numeric) values of the target
variable. Then, the search, of subgroup patterns can be efficiently implemented using logical
AND operations on the respective bitsets, such that the target values can be directly retrieved
(Atzmueller, 2015). BSD can be used also be used for numeric targets, an adjusted version of
SD-Map referred to as SD-Map* is also suited for numeric target concepts.

Well-known Beam search algorithms include Apriori-SD which is an Apriori-based algorithm
(Atzmueller, 2015). These algorithms extract rules from frequent item-set combinations and filters
the given confidence and support threshold values. The key idea is that if an item-set does not
satisfy the user-specified minimum support then its super sets cannot be pruned (Sariyer, Mangla,
Kazancoglu, Ocal Tasar, & Luthra, 2021; Chen, Tseng, & Wang, 2005). Other well-known Beam
search algorithms based on classification rule learners are SD and SubgroupMiner (Herrera et al.,
2011).

2.2.2 Subgroup Discovery Applications

SD is a proven powerful and broadly applicable data mining approach, in particular, for descriptive
data mining tasks (Atzmueller, 2015). It is typically applied in order to obtain an overview of
the data for automatic hypothesis generation. Practical applications of SD include knowledge
discovery in the medical domain, technical fault analysis, and mining social data (Atzmueller,
2015). From a tool perspective, several software packages exist for SD. Known open source options
are Orange (Demšar et al., 2013), Rapidminer (Nopparoot, Sasithorn, Reenapat, & Tiranee,
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2013), Cortana (Meng & Knobbe, 2011), pysubgroup (Lemmerich & Becker, 2018) and Vikamine
(Atzmueller & Lemmerich, 2012). The latter has been used for a number of successful real-world
SD applications.

2.2.3 An Approach to Subgroup Discovery

Knowledge discovery can be described as the process of seeking new knowledge about a certain
domain (Mariscal, Marban, & Fernandez, 2010). To support organizations and researchers with
knowledge discovery, several methodologies have been developed. Methodologies for knowledge
discovery provide a road-map for the organization in planning and executing knowledge discov-
ery projects. Moreover, having a structured approach to knowledge discovery projects creates a
better acceptance and understanding of these projects (Kurgan & Musilek, 2006). Furthermore,
a structured approach will safeguard that the end results will be useful to the user (Fayyad,
Piatetsky-Shapiro, & Smyth, 1996). Knowledge discovery projects require iterations and reviews
of multiple steps. To ensure that technologies are used appropriately in solving business problems
there is a need for standardization of knowledge discovery processes. The CRISP-DM (Cross
Industry Standard for Data Mining) is an example of a process model that has been developed as
a standardization effort for conducting knowledge discovery. It is the most widely used process
model for knowledge discovery projects and is industry and tool neutral (Wirth & Hipp, 2000).
However, this method is criticized by the industry because it only describes six phases, what
should be done, instead of how it should be done. Although, this is the purpose of a process
model, the critique shows that there is a need for specific approaches among practitioners.

While models like CRISP-DM provide a high-level description on how to approach knowledge dis-
covery, they provide little guidance for activities that are specific to a certain knowledge discovery
technique. In the IL domain there is a lack of comprehensive methodologies and frameworks to
support logistics with, e.g., knowledge discovery and data mining projects (Wang et al., 2014;
Trakulsunti et al., 2021). However, one approach fit to the described problem context was found,
combining SD and causality. It is the process model for Knowledge-Intensive Causal Subgroup
Analysis (KIC-SA) by Atzmueller and Puppe (2007), depicted in Figure 5. The process model
for KIC-SA is an approach for finding interesting subgroups and uses causal inference techniques
to obtain a statistically sound causal (Bayesian) subgroup network. The model is composed of
four phases: 1) Subgroup Discovery, where standard subgroup analysis techniques are applied
and optionally, background knowledge contained in the knowledge base can be applied, 2) causal
analysis, using background knowledge a (partial) causal subgroup network is constructed, 3) eval-
uation and validation, assessing the causal network and obtaining final results, and 4), knowledge
extraction, updating the knowledge base incrementally to improve and extend available back-
ground knowledge.

Other relevant publications analyze WMS data in the areas of supply chain management and
internal logistics. Zhong et al. (2015) propose a holistic approach to processing logistics radio-
frequency identification data within warehouses and manufacturing operations to create a logistics
trajectory. Brito, Soares, Almeida, Monte, and Byvoet (2015) have applied SD methods from a
diverse dataset including highly customizable products with varying customer preferences. How-
ever these papers do not provide specific guidance for incorporating event log data to be used for
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Figure 5: Process Model for Knowledge-Intensive Causal Subgroup Analysis (Atzmueller & Pupper, 2007).

knowledge discovery. They merely focus on the improvement of logistical movements. Wang et al.
(2014) proposes a comprehensive methodology for applying process mining in logistics, covering
the event log extraction and preprocessing as well as the execution of exploratory, performance
and conformance analyses. However, they emphasize on the analysis of data from a process mining
perspective, not incorporating other knowledge extraction methods like SD.

2.3 Conclusion

The literature review was conducted to gain a deep understanding on the topics of IL operations
and SD. The literature review on IL operations was performed to answer the first sub-research
question ’How does a general internal logistics process function from a data perspective?’. WMS
are a database-driven computer application, to improve the efficiency of the warehouse by directing
cutaways and to maintain accurate inventory by recording warehouse transactions. It was found
that the physical material movement within the material flow is controlled by a Warehouse Task
(WT). These can be retrieved to perform data mining or knowledge extraction. The drawback
of retrieving data from a WMS were also highlighted, not capturing high-quality data points.
Furthermore, methods of mapping WMS data to functional logistics flows and event logs were
found. Additionally, for the production orders in time, the time dimension containing order pick
time as a performance measure was found as the most important in relation to production orders
not being delivered in time.

Subsequently, a literature review on IL operations was performed to answer the second sub-
research question ’How can subgroup discovery methods be applied in an internal logistics con-
text?’. First a methodology for SD was found and the candidate generation, pruning, and post-
processing phases were identified and elaborated upon. Minimum support, coverage, and con-
straint pruning were identified to prune SD output. In the post-processing step the WRAcc
quality measure was identified as most applicable. Furthermore, SD algorithms were evaluated
and SD-Map was found as most efficient exhaustive algorithm for binary and nominal target con-
cepts, SD-MAP* for a numeric target when dealing with large data volumes of data. Moreover,
Vikamine was found as the most promising SD tool as it is already applied in some practical
applications. Lastly, it was concluded that the IL domain lacks a specific comprehensive approach
that supports knowledge discovery from WMS systems. However, a related approach, the process
model for knowledge-intensive causal subgroup analysis (KIC-SA) was identified. In the next
chapter, the environment of the thesis will be described in detail, including the WMS system PT
uses for daily logistics operations.
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3 Research Environment

Previous chapters introduced the problem statement, research scope, and the theoretical back-
ground. This chapter elaborates on the environment in which this thesis took place, briefly intro-
duced in the introduction chapter. First, the material flow of components in the IL department
is outlined (section 3.1). Then, the WMS system used at the IL department of PT is elaborated
upon (section 3.2). The insights are obtained based on interviews with data engineers and internal
PT documentation.

3.1 Internal Logistics Material Flow

Components required for the conception of products at PT, are processed from one of eight
warehouse locations before they arrive at the orders collect area of the manufacturing area. An
overview of the movement of components through warehouse areas is depicted in Figure 6. Note
that various deviations from this overview are possible and that only a general overview of the
process is described.

Figure 6: General overview of internal logistics material flow.

The process starts at the material storage area. Material storage refers to the long-term storage
of components where shelf, rack storage and Kardex1 are the most common. Pallets are stored
on racks and cases or storage bins on shelves. From the material storage location components
are moved to either the pick point or the pick & pack area. At the pick point area, pallets are
temporally stored such that individual components can be distributed from them. At this location,
the right quantity will be picked. For example, a storage pallet containing 100 items is first
transported to the pick point area where 2 items are picked from the pallet. Picked components
will be transported to the pick & pack area where they are consolidated with other components
from the same production order. In the case of components being stored in bins, components are
directly transferred to the pick & pack area. In the pick & pack area components are consolidated
based on production order on pallets such that they can be transported to the production facility.
The pick & drop areas are locations where pallets that are ready to be transported are temporarily
stored before they are transferred to another warehouse. The consolidated components (on pallets)
are moved to the manufacturing facility in a process referred to as internal transport. This process

1The Kardex system is an automated storage and retrieval system for small components located at the assembly
line, but operated by logistics handlers.
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is referring to transport between warehouses or the manufacturing facility and is performed with
trucks. After the components have arrived at the manufacturing facility they are deconsolidated
in the deconsolidation area and subsequently brought to the assembly line or production supply.

3.2 Warehouse Management System: SAP EWM

To manage the internal logistics flow, PT has a WMS system in place, which is the enhancement
package SAP EWM. SAP EWM offers flexible and automated support for processing various
goods movements and for managing stocks in warehouses. Furthermore, it supports the planned
and efficient processing of all logistics processes in the eight warehouses and in the manufacturing
facility. EWM can map an entire warehouse complex in detail into the system, down to storage
bin level. The user can always determine where a certain material currently is in the warehouse
complex. Figure 7 depicts the basic EWM warehouse structure used by (internal) logistics.

Figure 7: Warehouse Structure SAP EWM

In EWM it is possible to manage an entire physical warehouse complex using a single warehouse
number. Various storage types are part of the warehouse complex and joined together under the
same warehouse number. A storage type is characterized by its warehouse technologies, space
required, organizational form, or function and consists of one or more storage bins. Examples
are shelf storage, pick & pack area, Kardex, etc. Storage sections are organizational subdivisions
of a storage type, which label together storage bins with similar attributes for the purpose of
putaway. However, PT has not defined these elements in their version of EWM. Storage bins are
the smallest spatial units in a warehouse and represent the exact position where components are
stored in the warehouse. An example of a storage bin is ’F05-05-D-01’, representing aisle F01,
stacking height 05, Level D, and bin 01. Although referred to as storage bins, this term can
refer to various types of storage, e.g., bins, pallets, and boxes. Activity areas are used as logical
subdivisions in a warehouse and as a logical grouping of storage bins. In these areas, the logistics
handlers execute different tasks, for example, putaway and picking. WTs can refer to a storage
bin or can concatenate bins from several storage types. Lastly, a quant is a stock of a specific
product with the same characteristics in one storage bin. However, quants are not relevant for
this research as information on quants is not stored for the long term in the data warehouse.
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EWM tracks the movement of components with the use of earlier mentioned WTs. WTs contain
all the information required to execute the physical transfer of components into the warehouse,
out of the warehouse, or within the warehouse from one storage bin to another storage bin. In
EWM WTs are grouped within warehouse orders based on several characteristics such as weight
and number. Warehouse orders are put in a digital queue that defines the order of movements to
be performed by a resource. Resources are entities representing a user or equipment, which can
execute WTs. Examples of resources in the form of equipment are forklift trucks or electrostatic
discharge (ESD) bins. The latter is specifically used for operations at PT as most products that
PT manufactures are prone to damage caused by ESD. ESD safe bins of various sizes and pallets
are used for safely transporting and stocking electronic components within PT. Examples of ESD
bins are ’Case, Small - Size < 353*273*150MM’. A resource may execute only those WTs that
belong to one of its allowed queues, e.g. the resource ’forklift truck’ can only execute WTs related
to the movement of pallets. Hence, only warehouse orders with the same characteristics are put
into the same queue. In some cases, priority is given to a certain WT. This task is then manually
put in the front of the queue such that it is processed earlier.

AT PT logistics operations are performed WMS data captured by SAP EWM. In SAP EWM
various tables are used to store and maintain the information which is related to warehouse
management and inventories (e.g. containing information about WTs, storage bins, stock, etc.).
SAP EWM is the core enterprise resource planning product and is not designed for the retrieval
of data. Therefore, the separate platform SAP High-performance ANalytic Appliance (HANA) is
used to integrate data from multiple sources within the organization. First, data engineers at PT
have to identify which SAP EWM tables are of interest, then extract them by using SAP HANA,
and transform them such that they can be loaded from the central data warehouse. Information
from the central data warehouse can be retrieved by formulating SQL queries, which in turn, is
used to provide process insights to decision-makers by the use of Microsoft Power BI. However,
this form of reporting is new to the data engineers responsible for the analysis of IL processes
and is therefore used marginally. Furthermore, the metrics that are observed only provide basic
information to decision-makers, for example, the number of WTs to be completed.

3.3 Conclusion

Concluding, this chapter has provided the reader with key concepts in regard to the IL material
flow at PT to gain a general understanding of the logistics processes that are analyzed in this
thesis. Furthermore, the WMS system SAP EWM was introduced. The information obtained
was used to understand the technical aspects of the approach to be designed. Lastly, the data
retrieval practices necessary to obtain data from SAP EWM were outlined to provide insight into
the complexity of retrieving data from the central data warehouse.
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4 Research Design

The previous chapters described (1) what is studied: the operational IL process and subgroup
discovery, and (2) why it is studied: the root causes of production orders not being delivered in
time are not clear to the management of PT and this prevents the implementation of performance
improvements. In this chapter the research design is described which defines how this thesis was
carried out.

It can be induced from the main research question that this thesis has a design problem in which
the research goal is to design and develop an artifact that aims to improve a problem context.
Wieringa (2014) describes that to attain a certain level of scientific rigor in the design and vali-
dation of such artifacts, a design science methodology can be used. These methodologies try to
establish that the research outputs are both theoretically sound and practically relevant. In line
with the research goal to solve the business problem, the Design Science Research Methodology
(DSRM) by Peffers, Tuunanen, Rothenberger, and Chatterjee (2007) was applied. The DSRM
process is a commonly accepted framework for carrying out research based on design science in
information systems. DSRM consists of six basic steps which are visually represented in Fig-
ure 8. The defined sub-questions can all be linked to a step of this methodology and therefore
this research methodology seems a perfect fit. Note that the sequence of the steps is not rigid;
the outcome of each step determines the input of the next step but process iteration is required.
The DSRM process can be entered from different research entry points. In this thesis, a specific
business problem was used as a research entry point, referred to as problem-centered initiation.
Therefore, the process started with the problem identification step.

Figure 8: Research framework (Peffers et al., 2007).

The research relied on multiple interviews with employees of PT. The employees were selected
based on their affinity with operational logistics. Four data engineers, two team leaders, multiple
logistics handlers, and one process owner of the IL department were interviewed. The combina-
tion of these employees allowed for the retrieval of relevant domain knowledge about operational
processes, the IT landscape, the retrieval of data, and the validation of outcomes. The interviews
in this thesis were mainly unstructured because of the complex nature of the problem at hand.

4.1 Identification and Motivation of the Problem

As a part of the problem identification and motivation step, a cause-and-effect diagram (Figure 2)
was constructed by interviewing stakeholders. Based on this analysis it was concluded that an
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approach capable of finding root causes from WMS data should be designed. The development of
such an approach can contribute to the improved ability of decision-makers at PT to find and act
upon an appropriate set of measures to enhance operational logistics performance. Furthermore,
SD, extracting interesting relations among different variables with respect to a special property
of interest was identified as a potential method for extracting knowledge from WMS data.

4.2 Definition of Solution Objectives

The objective of this research is to develop an approach capable of identifying the root causes
of production orders not starting in time by applying SD in the IL domain. To further analyze
the objectives of the solution and to take into account the IL context, a literature review in
the field of IL was conducted (section 2.1), to answer the first sub-research question ’How does
a general IL process function from a data perspective?’. The answer can be found in (section
2.3). This provided insight into operational processes, methods of performance measurement, and
the use of WMSs from a data perspective. This information was supplemented with stakeholder
interviews to infer the objectives of the approach to be designed. Furthermore, a literature review
on SD (section 2.2) gave the researcher insight into the various algorithms, applications, and
approaches that have been developed by scholars. Answering the second sub-research question
’How can subgroup discovery methods be applied in an IL context?’ (section 2.3). Cooperation
with domain experts of PT in the form of interviews has provided the study with additional
insights into the requirements for the approach to be designed, answering the third sub-research
question ’What are the requirements of the approach to be designed?’ (section 5.1).

4.3 Design and Development

After defining the problem and its objectives, the next step of the DSRM approach is devel-
oping the artifact itself. Resources required for this step include knowledge of theory that can
be brought to bear in a solution. To establish the knowledge base required for developing the
dashboard design method, in chapter 2 first, a method of transforming WMS data into a suitable
format for data processing was found. Second, performance measures that related to the problem
at hand were discussed. Third, to incorporate SD in the IL domain, a methodology was found
that structures the extraction of subgroups. Fourth, the KIC-SA process model was found that
structures the discovery of subgroups. The development of the approach is based on a synthesis
of this process model and other knowledge of theory. Further literature on RCA techniques was
conducted to ensure that research contributions were the basis of the design.

After expanding the knowledge base, the actual artifact was developed and crystallized in an
approach, answering the fourth sub-research question (section 5.2). This included determining
the definition of the process phases of the approach. In this development process, key knowledge
identified during the literature review was considered. During the iterative development process,
the solution requirements were taken into account.

4.4 Demonstration

After designing the approach, it was demonstrated by means of a case study for a WMS dataset
from the IL department of PT, to answer the fifth sub-research question ’How can the found
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method derive root causes and consequently improve the operational logistics process at Prodrive
Technologies?". This demonstration is performed in chapters 6, 7, 8, and in section 5.3.5. The
question is answered in 9.2. The case study was supplemented with insights from the IL depart-
ment described in chapter 3. The study has focused on finding the root causes of production
orders to extract generalizable root causes. Because WMS data formed the basis of the approach,
it was important to stay in close contact with the data engineers of PT to ensure the use of high-
quality data. Therefore, multiple interviews were held with data engineers to extract high-quality
data from the central data warehouse. Furthermore, background knowledge can help to improve
SD in several ways (Atzmueller, Puppe, & Buscher, 2004). To interpret the quality of subgroups,
expert domain knowledge was brought to bear during the whole SD phase. Interviews were held
with team leaders, logistics handlers, and the process owner of the IL domain to validate the
results. To structure these interviews a list of subgroups was printed on a large paper and their
interestingness was discussed. A similar method was applied to validate the obtained root-cause
relation tree.

4.5 Evaluation

After applying the approach in a business context, the quality of the approach was evaluated based
on the earlier defined solution requirements and the use of the approach in the demonstration
step, with the aim to answer the sixth sub-research question of this thesis (9.2). Semi-structured
interviews were held for this step. To structure the interviews a slide deck including the approach
and the obtained outcomes was used. Furthermore, the designed approach was evaluated based
on existing literature. To do so the 5Es framework by Checkland and Scholes (1990) was applied
to create a set of criteria that could be evaluated using the interviews. From these criteria, three
were chosen: (1) efficacy, the degree to which an artifact produces desirable effects under ideal
circumstances, (2) efficiency, the degree to which an artifact is effective without wasting time,
effort, or expense, and (3) effectiveness, the degree to which an artifact produces desirable effects
in practice.

4.6 Communication

The last step, as described by Peffers et al. (2007), is communicating the novelty and effectiveness
of the designed approach with its relevant audiences. The results will be of value to practitioners
and businesses affiliated with WMSs, or who are struggling to find root causes in their IL process.
Additionally, the results of this study may be of interest to researchers in the area of performance
measurement, WMS, RCA, or SD. Communication of results will be done by making this thesis
available to the public, including it in the public repository of the Eindhoven University of Tech-
nology. Furthermore, the study is presented during a public presentation and a poster was made
summarizing the thesis process and its outcomes.
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5 Artifact Design

Following the DSRM research framework, this chapter outlines the definitions of the designed
artifact. First, the requirements of the artifact to be designed are discussed (section 5.1), answering
the third sub-research question. Second, the design of the artifact is elaborated upon, answering
the fourth sub-research question (5.2).

5.1 Requirements

In line with the research framework (Figure 8) the requirements of the solution have to be defined.
Based on the findings from the literature review on IL (section 2.1) and in collaboration with logis-
tics handlers, team leaders’, process owners’ and data engineers of PT, requirements were derived
by conducting interviews. The requirements should be considered when designing the artifact to
identify the root causes of production orders not starting in time-based on SD and RCA techniques.

Requirement 1
The artifact to be designed will serve as a basis for making management decisions based on quan-
titative input. To be able to make decisions based on high-quality data and to keep the analysis
transparent, it is required that the data used is presented in such a way that traceability to source
data is high. At PT data is stored in a central data warehouse and to access specific data tables
SQL queries are constructed. Not recording SQL queries can result in the inability to retrospec-
tively retrieve data used during the analysis.

Requirement 2
New data points are created every day by the WMS and this could introduce the concept of drift
in the data. Hence, the artifact should be designed in such a way that updating the source data
is straightforward. Furthermore, it is required that the artifact is capable of not only including
new data points with relative ease but also including new variables should be simple.

Requirement 3
The output (rules) of SD and other rule-based artifacts can be difficult to interpret due to the
complexity of the rules. As the goal of the artifact is to find the most important variables of
the process that relate to a target of interest, it is important that the output is straightforward,
preferably visualized. Furthermore, the output of the artifact should provide the user with insights
that are actionable, reliable, and correct. Conclusions drawn from the artifact should then allow
to be turned into an action or a response.

Requirement 4
The artifact to be designed should minimize the workload needed for generating insightful out-
put. Due to the significant growth of PT, data engineers, logistics handlers, and other potential
stakeholders within the company are likely to have a lot of work on their hands.

5.2 Approach Design

This section presents a novel approach for finding root causes in the IL domain. From a high-level
perspective, the proposed approach combines two process models, KIC-SA and CRISP-DM, and
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the defined requirements. The former process model captures a structured process for finding
causally related sets of subgroups. However, this model does (1) not incorporate the inclusion of
complex WMS data explicitly and (2) does not provide a structure to present causal relationships
supporting decision-making capabilities, and (3) assumes that a causal network based on sub-
groups discovery can be developed. These problems are addressed first, where-after the designed
approach is elaborated upon.

(1) Knoll et al. (2019) has proposed a methodology for recording processes, identifying waste, and
deriving recommendations for action in the IL context. The methodology combines multidimen-
sional process mining techniques with principles of lean production and value stream mapping.
First, physical logistics activities (e.g. transport, store) are automatically mapped to existing event
data extracted from a WMS and are enriched with process information. Second, multidimensional
process mining is used for discovery analysis, performance analysis, and conformance analysis in-
cluding a reference process classification for each individual part and process. The mapping of
physical logistics activities from WMS data can be very beneficial to this research as it provides
structure to the complex WMS data.

(2) To uncover the root causes of problems within businesses, data scientists must capture the
business domain in the model domain in the form of concepts, models, measures, and hypotheses
that are checked for their fit with available data (Viaene, 2013). Any insight uncovered in this
model domain then must find its way back into the hands of the domain experts to be put to
good use (Viaene, 2013). Schmidt et al. (2019) proposes a supply chain-wide analysis applying
cause-effect relation trees that are mapped to key performance indicators. For each performance
indicator, a relation tree is assigned which represents the theoretical relations between a perfor-
mance indicator, and the lower level causes. For example, defining that the second level causes
of the (first level) performance indicator ’low schedule reliability’ are ’input deviation’, ’backlog’,
and ’sequence deviation’. Subsequently, data retrieved from information systems are used to find
the root causes of a poor-performing performance indicator. For example, a histogram is made to
analyze the input deviation and the backlog is investigated over time to find interesting patterns.
Single cause-effect relation trees can be interconnected as deviations from one performance indi-
cator may concurrently influence other performance indicators. Thus, relation trees can (flexibly)
provide a structure to present relationships in the form of a model. The causality of the rela-
tionships can be determined by (subjective) domain expert interpretation, by inducing universal
cause-effect-relationships from scientific literature, or applying data mining techniques. Related
methods that consider the uncovering of root causes are Ishikawa diagrams, Pareto diagrams,
Fault Tree Analysis, Current Reality Trees, and Barrier analysis, among others (Ershadi et al.,
2018; Sabet et al., 2017).

(3) Although a lot of data is captured by a WMS, it does not provide a complete overview of all
processes in the IL domain. The process model for KIC-SA aims at constructing a causal Bayesian
network based on available data. For the creation of a causal network based on subgroups dis-
covery, acausal subgroups, subgroups without causes, and causally related subgroups have to be
present (Atzmueller & Puppe, 2007). However, the inclusion of WMS data does not ensure all
relevant subgroups in relation to a target concept will be found as confounding variables may
not be included in the WMS. To aid the integration of knowledge of the physical material flow
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and the relations between them, the use of domain knowledge should be emphasized upon when
integrating knowledge from the complex IL domain (Wang et al., 2014).

The second process model used is the CRISP-DM by Chapman P. et al. (2000). The reference
model contains six phases: Business Understanding, Data Understanding, Data Preparation, Mod-
elling, Evaluation, and Deployment. The process model is independent of both the industry and
the technology used, and can reliable and efficiently be repeated by different people and adapted
to different situations (Wirth & Hipp, 2000). Because of the in-dependency of CRISP-DM, and
it being a generally accepted comprehensive process model for carrying out data mining, I used
it as a starting point for developing the approach.

To adjust the KIC-SA to the given problem context the identified solutions to the problems (1 -
3) were incorporated into the design of the approach. Furthermore, adjustments were made to the
existing models. First, from the CRISP-DM process model, the business understanding phase has
been omitted because a clear understanding of logistics operations is assumed to be present for
practitioners. Furthermore, the data understanding and data preparation are aggregated into a
single phase referred to as data preprocessing. This is done because data from the WMS cannot be
directly retrieved, meaning that initial data preparation has to be performed before the data can
be analyzed further; information has to be retrieved from the central data warehouse by formulat-
ing SQL queries. Furthermore, the data preprocessing phase is incorporating the earlier described
method by Knoll et al. (2019) to map WMS data to logistics activities. The modelling phase of
CRISP-DM is replaced by distinct SD and Root Cause Analysis phases derived from the KIC-SA,
because each of these phases require different analysis techniques. The SD phase induces insights
from merely the subgroups found, while in the RCA phase the inclusion of domain knowledge is
required to compose a complete root-cause relations tree of a given target variable. Specifically,
the root-cause relations tree used for supply chain wide analysis by Schmidt et al. (2019) was
incorporated to visualize the important relations in respect to the target variable (requirement
3). Furthermore, the evaluation and validation phase was removed, and it was incorporated with
the root cause analysis phase to be able to evaluate and validate the results directly with domain
experts.

Finally, the designed artifact can be applied to obtain root causes for long order pick time. In
the form of an approach, the Approach for Internal Logistics Subgroup Discovery (AIL-SD) is
schematically shown in Figure 9.

Figure 9: Approach for Internal Logistics Subgroup Discovery (AIL-SD).
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5.3 Phases of the Approach

The designed approach uses a knowledge base during the entire process, which is elaborated upon
first (section 5.3.1). Then, the approach is user-initiated at the data preprocessing phase (section
5.3.2), subsequently the subgroup discovery (section 5.3.3), root cause analysis (section 5.3.4), and
knowledge extraction (section 5.3.5) phases follow. In the remainder of this section, the phases
are elaborated upon in further detail. A detailed overview of all sub-tasks to be performed in each
phase is provided in Table 1.

Table 1: Overview of AIL-SD phases and the sub-tasks to be performed.

Phases Subtasks Explanation Actors

Data
Preprocessing

1. Data Preparation Select the data to be analyzed
User &
Domain Experts

2. Activity Mapping
Map WMS data to logistics activities
(Knoll et al., 2019).

User

3. Case Creation
Map WMS data to cases and event logs
(Knoll et al., 2019).

User

4. Data Enrichment Identify variables for data enrichment.
User &
Domain Experts

5. Data Quality Analysis Perform data quality check and perform outlier detection. User

6. Data Transformation
Transform event logs to subgroup discovery format
(Fani Sani et al., 2017).

User

7. Dimensionality Reduction Reduce the dimensionality of the data. User
8. Data Discretization Discretize continuous variables User

Subgroup
Discovery

1. Parameter Definition Define SD parameters (incl. algorithm selection). User

2. Global Knowledge Investigate global subgroups of interest for cases.
User &
Domain Experts

3. Local Knowledge - Event Perspective
Investigate subgroups of interest based on events
for case variables.

User &
Domain Experts

4. Local Knowledge - Case Perspective
Investigate subgroups of interest based on events
for event variables.

User &
Domain Experts

Root Cause
Analysis

1. Cause-Effect Relation Tree Development
Construct root-cause relation diagram based on SD output
(Schmidt et al., 2019).

User &
Domain Experts

2. Identify Relative Importances Identify Relative Importances of causes found.
User &
Domain Experts

Knowledge
Extraction

1. Key Business Issues Define Key Business Issues.
User &
Domain Experts

2. Recommendations for Process Improvement Formulate recommendations for process improvements. User
3. Recommendations for
Updating the Knowledge Base

Formulate recommendations for updating the knowledge base. User

5.3.1 Knowledge Base

The knowledge base consists of two main categories, quantitative data, and domain knowledge.
For quantitative data, data from various sources is integrated into a single, consistent data store
that is loaded into a central data warehouse. Retrieval of data from a central warehouse is often
done by formulating SQL queries. SQL queries should be saved such that data can be retrieved
retrospectively (requirement 1), or be altered in a timely manner (requirement 2). Furthermore,
domain knowledge, from practitioners can be used to interpret the retrieved data and supplement
the knowledge extracted from it.

5.3.2 Data Preprocessing

In the data preprocessing phase, data is collected, described, and quality is validated to perform
the analysis. Furthermore, relevant variables are transposed such that they can be used for SD.
This phase is comparable to the data preparation phase of CRISP-DM.
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Activity Mapping
As mentioned a WMS does not record high-quality event logs explicitly. Instead, every physical
material movement within the material flow is controlled by a WT. A WT is created by a material
requirement system to supply the manufacturing department with the right amount of material.
Each WT is stored in the information system and holds various information about the logistics
process. To induce meaningful information from these event logs an activity model can be used to
map WTs to material flow activities. A method for automatically creating a standardized activity
model using event log data is proposed by Knoll et al. (2019). WTs can be linked using a unique
identifier to the WT which is its predecessor. For the mapping of activities, the algorithm for
creating an activity model by Knoll et al. (2019) can be applied. The information from the WT
is mapped to either, transport, buffer, storing, picking, distribution, consolidation, or deconsoli-
dation activities defined in section 2.1.1 and visually depicted in Figure 10. An overview of the
activity mapping method and algorithm is provided in Appendix C.

Figure 10: Internal logistics activities (based on Knoll et al (2019)).

Case Creation
Subsequently, WTs and their respective activities are mapped to cases to gain a deeper under-
standing of the physical logistics process. A case refers to the transfer of a single component (a
component type with ranging quantities) from the material storage in a warehouse to the supply
area at the manufacturing facility. To map WTs unique identifiers of the source and location
WTs are used to link each WT to a successor. Using these mappings, it is possible to find each
subsequent WT, starting with the WT used for picking the component from the material storage
area. WTs relating to the supply area at manufacturing are used as endpoints. For the mapping
of cases, the algorithm for creating an event log by Knoll et al. (2019) can be applied. An overview
of the case mapping algorithm is provided in Appendix C.
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Data Enrichment
The cases can be enriched with additional data such as basic information about the case, storage
location activities, and other information accessible from the knowledge base. Specifically, data
engineers were consulted to retrieve the various WMS tables. which are used to store and maintain
the information which is related to warehouse management and inventories. An example of data
enrichment is the addition of the stock-out rate of a case.

Data Quality Analysis
Data quality and outlier detection should be performed by the user. Data quality is an essen-
tial characteristic that determines the reliability of data for making decisions (Abdullah, Ismail,
Sophiayati, & Sam, 2015). Outlier detection allows the user to detect and, where appropriate,
remove anomalous observations from data (Hodge & Austin, 2004).

Data Transformation
After the extraction of the enriched event logs the data have to be transposed into a format that
is suitable for applying SD algorithms. Therefore, the next step is to extract properties for all
cases which can be used as potential variables related to the target variable. There are three
types of properties in the data related to (a) cases, (b) events (WTs) and (c) performance indi-
cators (Fani Sani et al., 2017). In general (a) case, properties are the same for all the events of a
specific case. However, for (b) event attributes, the values could be different (or simply missing)
for individual events within a case. Properties of events can be mapped to case properties. This
can be done by mapping each event property to its corresponding case identifier (Fani Sani et
al., 2017). If in any event of a case a value occurs, the n-th corresponding property of the case
equals 1, otherwise, it will be 0. The use of a Boolean indicator for the existence of a property
in a case is called a Boolean existence function (example depicted in Figure 11). Alternative
methods can also be used such as a frequency function or an average time function. The third
type of property, the performance indicators (e.g. sojourn time, lead time, etc.), are obtained by
performing a computation over the events and added to the dataset on case level.

Figure 11: Example of Boolean existence function.
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Dimensionality Reduction
Data sets obtained to solve real-world problems usually have high dimensionality, unusable for
most of the usual SD algorithms (Herrera et al., 2011). There are two typical possibilities when
a data mining algorithm does not work properly with high dimensional data sets: 1) redesigning
the algorithm to run efficiently with huge input data sets, or 2) reducing the size of the data
without changing the result drastically. Sampling is one of the techniques most widely used in
data mining to reduce the size of the data without changing the result drastically. The application
of a sampling technique in the initial database without considering dependencies and relationships
between variables could lead to an important loss of knowledge for the SD task. If it is neces-
sary to apply some technique to scaling down the data set in an SD algorithm, it is especially
important to ensure that no important information for the extraction of interesting subgroups
in the data is lost. Furthermore, feature selection can be used to detect relevant features and
remove irrelevant, redundant, or noisy data (V. Kumar & Minz, 2014). This process speeds up
data mining algorithms, improves predictive accuracy, and increases comprehensibility. Irrelevant
features are those that provide no useful information, and redundant features provide no more
information than the currently selected feature.

Variable Discretization
Lastly, it is common that some of the variables collected in the data set used to apply SD techniques
are continuous variables. Most of the SD algorithms are not able to handle continuous variables.
In this case, discretization can be applied using different mechanisms. Well-known unsupervised
discretization methods are equal width and equal frequency binning. More complex supervised
methods such as the entropy and chi-square methods can also be applied (see Liu, Wang, and Gu
(2009)).

5.3.3 Subgroup Discovery

In the subgroup discovery phase, SD methods are applied to the obtained cases and event logs to
be performed by a tool. From a tool perspective, several software packages exist for SD. In the
tool, first parameters have to be defined, where-after knowledge can be retrieved.

Parameter Definition
First, a target variable has to be specified. A target variable can be either binary, nominal or
numeric. The latter is the most complex because the variable can be divided into ranges with
respect to the average, discretizing the target variable in a number of intervals, or searching for
significant deviations of the mean among others. It should be noted that discretization of the
target variable results in loss of information. Based on the target type the SD algorithm has to
be chosen where a distinction can be made between exhaustive and beam search algorithms. The
use of the beam strategy and efficient exhaustive algorithms is supported by the large data set
extracted from the WMS. Conventional exhaustive strategies are less suitable because of the long
computational time related to them.

Knowledge Retrieval
To structure the subgroup discovery the newly generated knowledge is divided into three main
categories: global knowledge, local knowledge - event perspective, and local knowledge - case perspec-
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tive. Global knowledge is based on an analysis of the whole dataset to find the most important
singular subgroups based on the target variable. From this, local or granular knowledge can
be obtained by further analyzing specific subgroups from the global knowledge category, and
by disabling variables that are not interesting for that particular subgroup. Lastly, background
knowledge can help to improve SD in several ways (Atzmueller et al., 2004). For example, it can
focus the mining algorithm on the relevant patterns according to specific criteria, thus reducing
uninteresting patterns and restricting the search space. This helps to improve the quality of the
discovered set of subgroups, and also increases the efficiency of the search method. To include
background knowledge in the SD phase, expert domain knowledge provided by data engineers and
team leaders can be used during the whole SD process. To interpret the quality of subgroups,
expert domain knowledge is to be applied during the whole Knowledge Retrieval task.

5.3.4 Root Cause Analysis

In the root cause analysis phase, root causes for the problem at hand are to be induced from
the subgroup analysis. The output of the discovered subgroups is analyzed and interpreted by
applying RCA methods.

Cause-Effect Relation Tree Development
Causal relations can be visualized by constructing cause-effect relation trees (Schmidt et al., 2019).
The relation tree in this context can be obtained by first specifying the performance measure that
deviates from its target value (e.g. order pick time). Subsequently, possible causes are then struc-
tured over several levels until the primary root causes are discovered and further subdivision into
universally valid causes is not feasible. The developed relation tree is used to further structure
the obtained subgroups into the larger problem space that is related to the target variable. This
creates a visual overview where actionable results can be based upon (requirement 3). This phase
can reveal that additional data is needed to provide meaningful insights, hence the knowledge
base can be issued. Furthermore, it can be concluded that other subgroups are more relevant to
the problem at hand, and therefore the root cause analysis and SD phases can be moved through
iteratively. To further interpret the SD output the use of domain knowledge, filtering of the ob-
tained subgroups, and visualization of results is necessary. Domain knowledge is to be used in
this phase to evaluate and validate the results.

Identify Relative Importances
To assess the importance of each cause, and the relative importance of each of the logistics
activities on the cases that were not delivered in time, general RCA tools can be applied. RCA
tools that are used for analyzing data about a problem are referred to as problem cause data
analysis. Common tools available to analyze the data are: 1) histograms, used to display the
distribution and variation of a data set, 2) Pareto charts, aiming to graphically display a skewed
distribution with the notion that often 80% of the effects result from 20% of the causes, 3) scatter
charts, used for identifying links between two causes or other variables, 4) problem concentration
diagrams, helpful in connecting registered problems to physical locations and to identify patterns
in problem occurrences, and 5) relations diagrams, used to identify logical relationships in complex
and confusing problem situations (Andersen & Fagerhaug, 2006).
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5.3.5 Knowledge Extraction

In the knowledge extraction phase, we are interested how the outcomes of the RCA phase can be
insightful to practitioners.

Key Business Issues
First, a key objective in this phase is to determine if there is some important business issue that
has not been sufficiently considered (Atzmueller & Puppe, 2007). This information is gathered by
performing interviews.

Recommendations
The output can be evaluated with stakeholders that are involved in strategic, or tactical decision-
making in the IL domain in the form of interviews. The final results are obtained and recom-
mendations to improve process performance can be formulated. Furthermore, the user can extend
and/or tune the applied background knowledge. Therefore, recommendations to update the knowl-
edge base can be made. For example, deciding to incorporate the capacity of trucks in a future
iteration of the approach.

5.4 Conclusion

In this chapter first, the requirements of the approach were defined by conducting interviews
with stakeholders, answering the third sub-research question. Thereafter, the design of the ap-
proach was outlined in detail. The AIL-SD provides guidance to practitioners for the retrieval
of knowledge from WMS data. The design takes into account the preprocessing steps that are
necessary before subgroups can be analyzed and subsequently, provides insight into the actionable
knowledge retrieval of these subgroups supplemented with domain knowledge. The phases of the
approach are designed agnostic to the problem context at PT, allowing for the potential use in
other contexts as well. In the next chapter, the AIL-SD is demonstrated.
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6 Data Preprocessing

In this chapter, the first phase of the AIL-SD is demonstrated in the form of a case study at PT,
following the demonstration phase of the DSRM methodology (chapter 4). The described sub-
tasks of the AIL-SD have structured the demonstration phase chapter. First, the data is prepared
(section 6.1), then, WTs are mapped to material activities (section 6.2), and the creation of
cases (section 6.3). Subsequently, the obtained cases are enriched (section 6.4). Last, the data is
processed including quality analysis (section 6.5), data transformation (section 6.6), dimensionality
reduction (section 6.7), and data discretization (section 6.8). For the preprocessing phase, Python
and its Pandas and Scikit-learn libraries were used. An overview summarizing all preprocessing
steps from a data perspective is provided in Table 2.

Table 2: Overview of the preprocessing phase from a data perspective.

Sub-task Characteristic Dimensions Number of Cases
Data
Preparation

Pre-cutoff (raw data) n.a. x 1.402.394 n.a.
Post-cutoff (incl, 500 most occurring products) n.a. x 927.347 n.a.

Case and Activity
Creation

Applying model by Knoll et al. (2019) n.a. x 927.347 136.941

Data Enrichment Variable selection in consultation with domain experts 29 x 927.347 136.941
Data Quality
Analysis

Removing outliers 29 x 850.372 104.441

Data
Transformation

Applying model by Fani Sani et al (2017) 518 x 104.441 104.441

Dimensionality
Reduction

Applying mutual information criterion with cutoff
(>0.05%)

34 x 104.441 104.441

Removal of variables with high correlation (>0.95) 25 x 104.441 104.441
Applying random sampling 25 x 70.000 70.000

6.1 Data Preparation

The logistics process includes various activities, for example handling deliveries from supply chain
partners at goods receipt, the putaway of components into their respective material storage area,
or movements related to the fulfillment of a production order. For this research solely WT related
to the latter was included. The raw data used for this research consists of 1.402.394 WTs retrieved
from 2021-03-01 to 2021-10-04, corresponding to 31 weeks of data. Consultation with stakeholders
has pointed out that products produced less frequently, could increase the dimensionality of the
dataset drastically while containing little information on the conducted logistical processes. Hence,
we decided to find a cutoff point in the data based on the products that required the most logistical
movements. The cutoff point is based on visualizing the amount of WTs to be performed for each
product (see Appendix E). Together with a data steward and team leader, it was decided to
include 500 products. This resulted in including the 6572 most occurring products or 927.347
WTs.

6.2 Activity Mapping

The WTs were mapped to physical logistics activities by the described method in section Appendix
C proposed by Knoll et al. (2019). In cooperation with data engineers from PT, mappings were
visually validated by randomly selecting a large number of events and determining if mappings were
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made correctly. During the validation it became apparent that the logistics activity transport was
not always registered intuitively. The transport between buildings, in particular, was registered in
a way that the event, containing information about the shipment from one warehouse to another,
also included the last buffer or storage time before the component is transported. For example,
if a component is stored in an outbound location in warehouse L before being transported to the
manufacturing facility. Then the transport time will include both the buffer time on the outbound
location and the transport duration. This could be attributed to the way logistics handlers register
the components and therefore no distinction between the buffer/storage and transport time could
be made from the data. However, this was not seen as a significant problem, as the reason for
components being buffered/stored at an outbound location could be attributed to them waiting
for transport. Hence, they were labeled as transport activities.

6.3 Case Creation

Having gained an understanding of the physical logistics process, the next step was to process the
data in the form of cases. A case refers to the transfer of a single component (a single component
type with ranging quantities) from the material storage in a warehouse to the supply area at the
manufacturing facility. The algorithm (Appendix C) by Knoll et al. (2019) assumes that WTs are
linked using a unique identifier to the previous WT. However, this information was not directly
provided by SAP EWM and therefore an extension of the algorithm was made in collaboration
with a data steward, capable of linking WTs. To be able to link WTs, the handling unit source
and handling unit destination were used. Using these mappings, I could find each subsequent
WT, starting with the WT used for picking the component from the material storage area. For
determining the final event of a case, the storage type description of the event was used. If the
storage type description indicated the event being in the supply point area at manufacturing, we
decided that it to be a final event. This information is used for the creation of event logs. A
unique case identifier was specified, being the combination between the first WT identifier of the
case and the production order the case belongs to. To conclude, from the 927.347 WTs included
a total of 136.941 unique cases were identified. When analyzing the cases in relation to the target
variable order pick time it became apparent that 2,2% of cases cause 57,1% of the production
orders not being delivered on time. This is depicted in Figure 12.

(a) (b)

Figure 12: (a) Production orders and (b) Cases over time (2021-03 - 2021-10).
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6.4 Data Enrichment

In this study, WMS data in the form of cases were the basis of analyzing the IL process at PT.
The combination of all cases is referred to as the event log. The basic event log, containing merely
basic information like storage bin, storage section, event time, logistics activity, etc. for each event,
was enriched with additional data which is elaborated upon in this section. Data enrichment was
performed because in SAP EWM various tables are used to store and maintain the information
which is related to warehouse management and inventories (e.g. containing information about
WTs, storage bins, stock, etc.). The relevant information from these tables had to be manually
added to the event logs in cooperation with a data engineer. The enrichment of the data is divided
into event (section 6.4.1) and case (section 6.4.2) data.

6.4.1 WMS Event Data

As mentioned, event data corresponds to the most granular level of data produced when WTs
are completed by logistics handlers. These consist of variables containing numerical values such
as the quantity moved during the processing of a WT, and categorical values such as the source
storage and destination storage bins of the WT. A description of the included event variables is
provided in Table 3.

Table 3: Description of event variables.

Variables Descriptions
WarehouseTaskID The unique identifier of an event.
CaseID The unique identifier of a single case.
ProductionOrder The production order number where the case is part of.
TimeDelta The total duration of a case in days.
ComponentNumber The number referring to the component moved.
Activity The performed activity (e.g. picking, transporting, etc).

Activity Area
Group storage bins based on their activities and performance
in the warehouse.

Queue
Queues are logical files to which warehouse tasks for processing are
assigned and define the order of movements to be performed by
logistics handlers.

HandlingUnitSource The handling unit at the source location.
HandlingUnitDestination The handling unit at the destination location.
StorageTypeDescription Indicating the location where the component is stored.
StorageBinSourceDescription Indicating the storage bin where the component is stored.
StorageBinDestinationDescription Indicating the storage bin where the component is stored.
ActualQuantity The quantity moved.

6.4.2 WMS Case Data

Subsequently, additional case variables were used to enrich the input dataset in order to measure
their effect on the target variable, again in cooperation with domain experts and following the
literature review on performance measures in the IL domain. These features can be broken down
into two distinct groups. The first group contains additional variables corresponding to the IL
process, for example, the activity areas that the component has been moved through during the
logistics process. The second group contains all variables related to manufacturing, for example,
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the final product to be conceived during manufacturing, the material group the final product is
part of, or the scrap percentage of the final product. These variables are included as IL handlers
have suggested that the manufacturing characteristics of certain products could have an effect on
the internal logistics process. The last group contains parameters that are not directly related
to the manufacturing or logistics process of a case, e.g. the number of WTs to be performed by
logistics on a day of the year or the backlog on a particular day of the year. Descriptions of these
variables and descriptions are provided in Table 4.

Table 4: Description of additional included case variables

Group Variable Description
Internal
Logistics

Stock-out Rate
% of components not immediately available for picking
for a case.

Order Pick Time The lead time to pick a case in days (numeric target).
On-Time Delivery Boolean that indicates if a case is delivered on time (Boolean target).

Category
The category where the case is attributed to either being
Component Request or Regular.

WarehouseMovement-
Type

Movement types which controls process flow in the
warehouse (e.g. Component Request).

WTDailyPicking
The number of warehouse task processed on a
given day.

NrGoodsRecievedBooking
The number of goods received by the internal
logistics department on a given day from third party suppliers.

NrOfWTs The number of warehouse tasks in a case.

Manufacturing FinalProductNumber
The product to be manufactured (consuming components
delivered by internal logistics).

MaterialGroup
Material which are having same characteristics are
grouped together and assign to a material group in
SAP EWM.

SapDepartment Subdivision of final products based on material groups.
TechnologyProgram Subdivision of final products based on end customer.

WorkCenter
Work center is an organization unit where manufacturing
activities are performed.

SupplyArea
Subdivision of final products based on characteristics
based on the assigned workcenter in SAP EWM.

ScrapPercentage
A percentage of failed final products that cannot be
restored or repaired and is discarded.

6.5 Data Quality Analysis

Data quality is an essential characteristic that determines the reliability of data for making deci-
sions (Abdullah et al., 2015). The quality of most of the retrieved variables is considered excellent
since it was computer-generated. However, the order of the queue is manually altered by logistics
handlers in SAP. For example, moving WTs to the end of the queue by giving them the date
’02-03-2026’. The manual alteration of date-time values in unrealistic dates has as a consequence,
that the data is unreliable, and therefore queue order cannot be analyzed in this research.

Outlier detection is used to detect and, where appropriate, remove anomalous observations from
data (Hodge & Austin, 2004). Box plots were used to identify potential outliers. In a box plot, the
whiskers represent the range that includes all data points that are no more than 1.5 times larger
than the interquartile range from the box plot and variables outside these can be potential outliers
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(Steven Walfish, 2006). Analyzing the variables it became apparent that the target variable of
this research (order pick time) and the NrOfWTs (number of WTs) variable contained potential
outliers. Their box plots are depicted in Appendix E. For the order pick time variable outliers
up to 140 days were found. In consultation with logistics handlers, we decided to only include
cases with order pick time shorter than seven days. Logistics handlers indicated that cases with
longer duration were likely to be caused by not logging the IL process correctly. For the NrOfWTs
extreme outliers were found but I concluded that no outliers were present in the data because no
observation seemed to have a pattern out of which it could be concluded that the IL process was
not logged correctly. Additionally, cases with less than four WTs have been removed because they
were detected as potential outliers in the box plot. The data engineer has indicated that these
cases are generally of products that are already present at the manufacturing facility, stored in
temporary locations. Hence, they do not require much processing by logistics. Furthermore, it
became apparent that while PT is operating seven days a week, logistics activities were reduced
significantly on Sundays. This led to biased data towards longer lead times for components that
had not been moved on Sundays. Hence, significantly longer order pick times were noted on
Mondays, while in fact components had not been touched due to reduced logistics operations. We
concluded that activities with long activity times on Mondays (>12 hours) could be considered
outliers. Finally, this resulted in a dataset that contained 104.441 cases, where a total of 32.500
cases have been removed from the dataset.

In addition, cases were analyzed in cooperation with a data steward to validate if the logical
order of the cases were reasonable. Disco, a tool often used in the field of process mining (Dakic,
Sladojevic, Lolic, & Stefanovic, 2019), was used for this validation step. Remarkable is that most
cases start with a buffer activity instead of the expected picking activity. This is because the
first event is logged after the picking activity is performed. Thus a case starts with the picked
components that are stored in an ESD bin. However, picking activities do occur when the same
component type is stored in different locations and is aggregated into a single storage bin, or an
activity is marked as picking when the handling unit is changed. For example, an ESD bin is
moved to a trolley (in the same activity area).

6.6 Data Transformation

To be able to analyze and compare both case and event variables in the data, the event log data
was transposed into a format that is suitable for applying SD on case level by applying the method
from Fani Sani et al. (2017). This method was applied to the event variables in the data, as case
variables already contain information on case level. For transforming the event data to case level,
an average time function was applied, allowing the retrieval of the average occurrence time of
events within a case. E.g. being able to retrieve that a case spent 4000 seconds in transport and
800 seconds in buffering activities on average. Or oven more granular, that the component of a case
has been handled for 1200 seconds with handling unit ’Case, Small - Size < 353*273*150MM’. The
use of the average time function does also prevent cases with a lot of WTs to be over-represented
in the dataset. Transforming the data resulted in a dataset containing 104.441 cases.
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6.7 Dimensionality Reduction

After the exclusion of outliers and transforming the cases to a format suitable for SD, the dataset
consisted of 518 features and 104.411 cases. These dimensions were too large for applying conven-
tional subgroup algorithms in Vikamine (or any other SD tool). Hence, it was decided to apply
feature and sample selection techniques with the aim to find the most important variables that
affect the target variable without compromising the output quality of the analysis.

For this research, I decided to apply multivariate feature selection. Each feature is evaluated con-
sidering how they function as a group, taking into account their dependencies, to find whether a
statistically significant relationship can be found. The k-best feature selection approach selecting
the k-best scoring features on the target variable order pick time based on a regression measure
was used. Specifically, the measure used is based on the concept of mutual information (informa-
tion gain). It measures the dependency between variables and is equal to zero if and only if two
random variables are independent. Higher mutual information values mean higher dependency.
Mutual information is insensitive to the size of the data sets. Whereas a p-value test for strict
independence can be pushed arbitrarily low by taking a large data set if the variables are even
slightly related, mutual information will converge with tight error bounds to a measure of the
relatedness between the variables to be observed (Ross, 2014). Lastly, mutual information can
capture any kind of relationship (e.g. linear, quadratic, and exponential) between variables. This
can provide more insight compared to conventional univariate feature selection methods based on
linear regression. Additionally, this property of the mutual information criterion ensures that no
variables were removed that could correlate with the target variable.

Finally, I decided to include variables that showed an information gain of more than .05%. This
low threshold was chosen such that less frequently occurring features were retained which can
potentially explain rare but interesting behavior of the logistics process. This resulted in the
inclusion of 25 features for the research, applying the earlier described k-best feature selection
approach (k = 25). A comprehensive overview of the included variables can be found in Appendix
F. To further reduce the dimensionality of the dataset a random sampling method was applied.
Random sampling was applied because this method avoids sampling bias (Ebeto & Babat, 2017).
A random sampling query returns a random sample, a randomly selected subset of the results of
a relational retrieval query (Olken & Rotem, 1995). The random sampling reduced the dataset to
70.000 cases to be used for SD of cases.

Additionally, features with high Spearman correlation (> 0.95) were removed from the dataset in
consult with domain experts. The Spearman correlation coefficient is a special case of Pearson’s
coefficient, where the data is converted to ranks before calculating the coefficient. This approach
can measure every monotonic relation, a relation that is exclusively decreasing or increasing but
not necessarily linear (Yue, Pilon, & Cavadias, 2002). Since non-linear relations would also be of
interest to this research, the Spearman correlation is applied and 9 features were removed (Ap-
pendix F.2).

For SD of events, the event log of the 70.000 cases was transformed into events. This resulted in
a dataset containing 521.661 events. For this analysis solely the 14 event variables were included
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(section 6.4.1). However, it turned out, again, that these dimensions were too large for applying
conventional SD in Vikamine. Thus, to reduce the dimensionality of this dataset, random sampling
was applied. This resulted in a dataset containing 284.291 events. In consultation with team
leaders, we decided that an event taking three hours or more would be indicating that a process
would not be processed as planned. Of the included events 32.676 (11,5%) were taking longer
than the predefined time span of three hours.

6.8 Data Discretization

Lastly, some of the variables collected in the data set used are continuous variables. Vikamine
is not able to handle continuous variables directly. Hence, continuous variables were discretized.
These variables were discretized into five intervals by using equal-frequency discretization. An
equal frequency binning procedure with five bins was applied, which could be performed with
the Vikamine software. Because variables were discretized, some subgroups are presented with
a range that corresponds to their respective bin. For example, for case Y the consolidation
time is represented as the Consolidate_T[2406,5;] subgroup. This is interpreted as: the average
consolidation time for case Y is larger than 2406 seconds. It should be noted that for event
variables, the average time function was applied, while for case variables did not have to be
transposed, thus no function was applied. For example, the case variable NrOfWTs[8,5; 10,5]
represents cases with the number of WTs being either 9, or 10.

6.9 Conclusion

The data preprocessing phase of the AIL-SD has revealed that the logistics activity mapping by
Knoll et al. (2019) can be applied with success. The creation of cases from the mapped WTs
required a slight alteration to the original algorithm. When analyzing the cases in relation to the
target variable order pick time it became apparent that 2,2% of cases cause 57,1% of the production
orders not being delivered on time. Subsequently, the dataset was enriched by including event
and case variables. The selection of these variables required a significant understanding of the
structure of the WMS. Furthermore, the complex data architecture at PT did not support the
fast retrieval of data, as SQL queries had to be formulated to retrieve the data. This process
could take a significant time for experienced employees (in some cases two days). Then, the
data quality was checked which was a rather straightforward process. However, in addition to
the designed approach, the data was verified by using Disco, a process mining tool. This analysis
significantly contributed to the understanding of the mapping of WTs to cases, and additionally to
the understanding of event variables. For example, the understanding of how components moved
from one storage area to the next. Subsequently, the case data was successfully transformed to a
format suitable for SD by applying the described method by Fani Sani et al. (2017). Then, the
dimensionality of the dataset was reduced because the dimensions of the dataset were too large for
applying conventional subgroup algorithms. This added significantly to the complexity of the data
preprocessing phase, mainly because of the effort associated with implementing the dimensionality
reduction method. In the next chapter, knowledge is obtained from the preprocessed data by
applying SD techniques.

37



7 Subgroup Discovery

In this chapter, we will report the process of Subgroup Discovery, following the demonstration
phase of the DSRM methodology. First, the parameters used for SD initialization are defined
(section 7.1). Then the newly generated knowledge was divided into three main categories: global
knowledge (section 7.2), local knowledge - event perspective (section 7.3), and local knowledge - case
perspective (section 7.4). Global knowledge is based on an analysis of the whole dataset to find the
most important singular subgroups based on the target variable. From this, the local or granular
knowledge was obtained by further analyzing specific subgroups in the global knowledge cate-
gory, and by disabling variables that were not interesting for that particular subgroup. The aim
of this chapter is to provide the reader with a clear understanding of the subgroup discovery phase.

Vikamine (Atzmueller & Lemmerich, 2012), an integrated rich-client environment for SD and
analytics, was used to perform the subgroup analysis. A general overview of the platform is
provided in Appendix D. SD results were obtained by first, identifying important subgroups based
on their quality values. Subsequently, the list of subgroups was printed on a large paper and these
were discussed with data engineers, team leaders, and the process owner who could identify and
validate their interestingness.

7.1 Parameter Definition

In this phase first, the SD algorithm needed to be selected and the type of target variable had
to be determined. In this problem context, we decided to define two target variables for mea-
suring the target variable. First, it should be noted that the IL defines a production order not
delivered in time if its processing time exceeds two days. Hence a binary target variable was
implemented. However, we found that using a numerical target variable improved the quality of
results greatly. The target variable of the case analysis was therefore chosen as the order pick
time (numeric). Additionally, for analyzing subgroups between events I decided, in consultation
with domain experts, that if a single event would take longer than three hours, an anomaly in the
event would be present. Because of the strict time rule of three hours, a binary target variable
was chosen defined as event duration, representing a binary variable with value False for events
with a duration shorter than three hours, and True for events with a duration exceeding three
hours. For exploratory purposes a numeric target was also applied for event duration, however,
this decreased the quality of the results.

The target variable of the global knowledge analysis was the pick time of a case, and is therefore
numeric. Given the target variable, the model parameters had to be specified. I decided to apply
the efficient exhaustive search strategy SD-Map* suitable for numerical target values and large vol-
umes of data. To improve computational time a pruning strategy was implemented. Specifically, a
minimum subgroup size of 700 (1%) was chosen and the NWRAcc quality measure was specified.
A threshold of 0.01 was chosen for the NWRAcc measure to prune the results. Lastly, a top-100
threshold was chosen such that the output only contained the best 100 subgroups based on the
NWRAcc score. The subgroups found were not only evaluated on their NWRAcc score, but also
on their deviation to the population mean (Mean Gain), a simple but effective approach to score
subgroups. A pattern is considered interesting if the mean of the target values is higher within
the subgroup (Lemmerich, 2014). The mean of the population is 0,351 days, hence subgroups
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with (significantly) higher means were potentially interesting for further analysis. Additionally,
the lift metric was used to increase the interpretability of the results. The lift metric computes
the dependency (or in-dependency) between subgroup and target. If lift equals 1 then they are
independent. However, a value higher than 1 suggests a positive correlation and a value lower
than 1 suggests a negative correlation (Fani Sani et al., 2017). The number of attribute-value
pairs of the subgroups was manually specified starting with one and increased in complexity with
each iteration.

The target variable used in the local knowledge section was the earlier described binary target
Event Duration was used. The beam search strategy SD-MAP, suitable for binary target objects,
was applied. Furthermore, the WRAcc quality measure was applied. For this stage of the research,
we were interested in local subgroups, hence a threshold of 0.00 was chosen for the WRAcc
measure. This means that all subgroups positively correlated to the target variable were included.
A top-150 threshold was chosen such that the output only contained the best 150 subgroups
based on the WRAcc score. The number of attribute-value pairs of the subgroups was manually
specified starting with 1 and increasing complexity with each iteration. Lastly, the subgroup size,
target/subgroup (%), true positive rate, coverage, and lift metrics are provided to improve the
interpretability of the results. All subgroups presented are significant (p < 0.001).

7.2 Global Knowledge

In this section, global knowledge based on an analysis of the complete dataset was performed to
find the most important singular subgroups based on the target variable. The results are divided
into logistic activity, case quantity, and case variable groups for interpretability reasons. First,
logistics activity subgroups are evaluated, which are depicted in Table 5.

Table 5: Overview of logistics activity subgroups.

# Subgroup NWRAcc
Pop
Size

SG
Size

Lift
SG

Mean
Pop

Mean
1 Consolidate_T[2406.5;[ 0,076 70000 13976 2,091 0,734 0,351
2 Transport_T[2317.5;[ 0,076 70000 13915 2,094 0,735 0,351
5 Buffer_T[492.5;[ 0,024 70000 13275 1,364 0,479 0,351
6 Pick_T[0.5;[ 0,014 70000 11016 1,248 0,438 0,351
8 Distribute_T[0.5;[ 0,012 70000 3144 1,785 0,627 0,351

The best logistics activity subgroups found are Consolidate_T [2406,5;] and Transport_T [2317,5;]
(NWRAcc=0,076). This means that if a case is on average being consolidated for more than 41
minutes (2406 seconds) the total order pick time is likely to increase by a factor of 2,091 (lift=2,091
or SG mean=0,734). Cases that have an average transportation time of more than 40 minutes
(2406 seconds), are more likely to increase order pick time by a factor of 2,094 (lift=2,094). Sim-
ilarly, the Buffer_T[492,5;] (NWRAcc=0,024, lift=1,264) is an important variables in relation
to order pick time. Noticeably, is that the Pick_T[0,5;] (NWRAcc=0,014, lift=1,248) and the
Distribute_T[0,5;] (NWRAcc=0,012, lift=1,785) variables are important in relation to the target
variable as well. Picking activities occur when the same component type is stored in different areas
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and is aggregated into a single storage bin. The retrieval of components from different storage
areas instead of one inherently takes more time. For cases with distribution activities, the cause
of long case duration is not immediately clear and this will be analyzed in more detail in the local
knowledge section.

Secondly, the case quantity of subgroups was related to the duration of a case (Table 6). Subgroup
#20 represents case quantities between 35 and 115 items has a lift value of 1,041, subgroup #14
represents case quantities between 116 and 427 items has a lift value of 1,128, and lastly, subgroup
#9 represents case quantities larger than 428 units has a lift value of 1,173. Because the lift value
is increasing with the item quantity, we concluded that the case quantity is correlated with the
duration of a case.

Table 6: Overview of case quantity subgroups.

# Subgroup NWRAcc
Pop
Size

SG
Size

Lift
SG

Mean
Pop

Mean
9 Actual_Quantity_Total[427.5;[ 0,012 70000 13514 1,173 0,412 0,351
14 Actual_Quantity_Total[115.5;427.5[ 0,009 70000 14015 1,128 0,396 0,351
20 Actual_Quantity_Total[34.5;115.5[ 0,003 70000 13960 1,041 0,365 0,351

Furthermore, the subgroups based on case variables in relation to the target variable are elabo-
rated upon (depicted in Table 7). The NrOfWTs[8.5; ] subgroup (NWRAcc=0,026, Lift=1,604,
SG mean=0,563 days) stood out. This subgroup represents the number of WTs to be performed
for a single case. It will be analyzed further in the local knowledge section if more interesting
subgroups based on the NrOfWTs[8.5; ] subgroup can be found.

The Stock-out Rate[0,5;] subgroup (NWRAcc=0,011, Lift=1,744, SG mean=0,612 days), indicat-
ing cases where stock-out has occurred, was also related to the target variable. The stock-out
rate indicates that the quantity to be picked did not match the required quantity, hence a part
is missing or wrongly picked. If this is the case, it has a significant impact on the duration of
a case, as the average order pick time of a case almost increases by 75% for this subgroup (lift
= 1,744). The subgroups NrGoodsReceivedBooking[588,5;727,5] (NWRAcc=0,01, Lift=1,141, SG
mean=0,401 days) and NrGoodsRecievedBooking[800,5;886,5] (NWRAcc=0,002, Lift=1,034, SG
mean=0,363 days), indicate that the number of goods received (shipments) by third party suppli-
ers on a single day is related to the duration of a case. Both subgroups indicate a relatively large
number of goods received on a single day. A large number of goods received increased the work-
load of logistics handlers because the newly received goods needed to be processed. Furthermore,
logistics handlers have pointed out that newly received goods increase the utilization of tempo-
rary storing space. However, because the other discretized number of goods received variables
are not related to the target variable, the effect of this variable is unclear. Lastly, the subgroup
WarehouseTaskCount [;4431] (NWRAcc=0,008, Lift=1,108, SG mean=0,389 days), representing
a low number (less than 4431 tasks) of total WTs to be performed on a single day by IL, is slightly
positively correlated with the target variable. In discussion with logistic handlers, it became ap-
parent that on calm days other tasks would be performed in the warehouse, like reordering stock
or cleaning the warehouse. This results in less time spent on the regular processing of production
orders, and this could explain a minor increase in case duration. Alternatively, the inverse rela-
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tion of the WarehouseTaskCount [;4431] subgroup could be attributed to days of logistic handler
shortage or storage capacity problems creating backlogs in the process. Thus, the small number
of picking lines performed in a single day is a result of another factor. This will be analyzed in
the local knowledge - case perspective section.

Table 7: Overview of case variable subgroups.

# Subgroup NWRAcc
Pop
Size

SG
Size

Lift
SG

Mean
Pop

Mean
4 NrOfWTs[8.5;[ 0,026 70000 8679 1,604 0,563 0,351
11 Stock-Out Rate[0.5;[ 0,011 70000 3017 1,744 0,612 0,351
13 NrGoodsReceiptBooking[588.5;727.5[ 0,01 70000 13994 1,141 0,401 0,351
15 WarehouseTaskCount]-;4431[ 0,008 70000 13997 1,108 0,389 0,351
21 NrGoodsReceiptBooking[800.5;886.5[ 0,002 70000 13851 1,034 0,363 0,351

To conclude the global knowledge section, the logistics activity subgroups based on consolidation,
transportation, buffering, picking and distribution times have been identified as important vari-
ables in relation to order pick time duration. Furthermore, the case quantity, the number of WTs
of a case, the stock-out rate, and the number of goods received in a single day are related to the
target. The subgroup PickingLinesCount [;4431] showed to be negatively related to the target.
The local knowledge sections provide more insights into the relation of these variables with the
target event duration.

7.3 Local Knowledge - Event Perspective

In this section, the logistics activities found in the global knowledge section are analyzed to search
for more granular subgroups. The analysis of the local subgroups is elaborated in part, to gain
a clear understanding of the retrieval of relevant subgroups. The analysis of the consolidation
activity is provided in full detail, in Appendix G additional information about the conception
of local subgroups from the transportation, buffer, pick, and distribute activities can be found,
aimed towards more technical-oriented audiences.

7.3.1 Consolidation

From the global knowledge section the Consolidate_T[2406,5;] was found as most important
and therefore, this subgroup was analyzed first. This subgroup encompasses cases that are being
consolidated for more than 41 minutes (2406 seconds) on average. I decided to condition the results
in this section on the consolidation time being longer than 2406 seconds to prune the results and
only focus on potentially problematic events. When analyzing the relation of consolidation events
on the target variable, it stands out that events with consolidation times longer than three hours
all take place in storage type ’pick & pack area’ and the ’DECON’ queue of buildings L, A, J,
and G (see subgroups 1, 2, 3, 4 in Table 8). Especially consolidation activities in building L are
related to long event duration (WRAcc=0,022). The high coverage value (5,9%) and the relative
number of true positives (45,7%) further illustrate the importance of this subgroup. However, the
consolidation activities in the other three buildings all have a lift score higher than two. Hence,
all four locations were analyzed in more detail.
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Table 8: Subgroups of queues and storage locations with consolidation time > 2406 seconds.

# Subgroup Description Quality Subgroup Size Target/Subgroup TP Rate Coverage Lift

1
Consolidate>2406s AND
Queue=L_DECON AND
StorageTypeDescription=Pick_&_Pack_building_L

0,022 16863 46,70% 26,90% 5,90% 4,541

2
Consolidate>2406s AND
Queue=A_DECON AND
StorageTypeDescription=Pick_&_Pack_building_A

0,004 4981 30,90% 5,30% 1,80% 3,007

3
Consolidate>2406s AND
Queue=J_DECON AND
StorageTypeDescription=Pick_&_Pack_building_J

0,003 2574 44,40% 3,90% 0,90% 4,312

4
Consolidate>2406s AND
Queue=G_DECON AND
StorageTypeDescription=Pick_&_Pack_building_G

0,003 5634 23,40% 4,50% 2,00% 2,275

In Table 9 the source and destination bin of the consolidation activity were added as further
refinements of the subgroups in warehouse L. Most noticeably are the L-PT source locations in
subgroups 16, 17, 18, 21 and 22 and the L-IN destination locations in subgroups 9, 10 and 24.
The L-PT locations refer to cards that are used to temporarily place components on when they
are picked from storage racks. After being stored on a L-PT card, components are moved to the
pick & pack area where components are consolidated onto a OC-L01-XX-XXX location. OC-L01-
XX-XXX locations refer to storage areas where components are temporarily stored after they are
retrieved from the cards. On these locations, components from a single production order are con-
solidated. After an order is fulfilled, the consolidated components from a single order are further
consolidated onto pallets via the L-IN resource. The pallets are used to transport components
efficiently to the manufacturing facility in trucks.

Table 9: Subgroups of storage bins at pick & pack areas at warehouse L with consolidation time > 2406
seconds.

# Subgroup Description Quality
Subgroup
Size

Target
/Subgroup

TP
Rate

Coverage Lift

9
Consolidate>2406s AND Destination ID=L-IN1 AND
Pick & Pack Location

0,005 3110 57,10% 6,10% 1,10% 5,546

10
Consolidate>2406s AND Destination ID=L-IN2 AND
Pick & Pack Location

0,004 2455 52,50% 4,40% 0,90% 5,098

12
Consolidate>2406s AND Pick & Pack Location AND
Source ID=OC_L01-07-A01

0,002 1256 56,70% 2,40% 0,40% 5,509

13
Consolidate>2406s AND Pick & Pack Location AND
Source ID=OC_L01-09-A01

0,002 1009 65,20% 2,30% 0,40% 6,337

16
Consolidate>2406s AND Pick & Pack Location AND
Source ID=L-PT01

0,002 1418 40,50% 2,00% 0,50% 3,934

17
Consolidate>2406s AND Pick & Pack Location AND
Source ID=L-PT02

0,001 1314 41,40% 1,90% 0,50% 4,023

18
Consolidate>2406s AND Pick & Pack Location AND
Source ID=L-PT03

0,001 1376 39,20% 1,80% 0,50% 3,807

21
Consolidate>2406s AND Pick & Pack Location AND
Source ID=L-PT05

0,001 926 46,00% 1,50% 0,30% 4,471

22
Consolidate>2406s AND Pick & Pack Location AND
Source ID=L-PT04

0,001 1393 34,00% 1,60% 0,50% 3,307

24
Consolidate>2406s AND Destination ID=L-IN2 AND
Pick & Pack Location AND Source ID=OC_L01-07-A01

0,001 591 60,20% 1,20% 0,20% 5,854

Logistics handlers have pointed out that lack of storage capacity is the key problem related to
long event duration’s at the pick & pack locations. Picking multiple production orders at once

42



can result in utilizing the full capacity of a L PT card. When this happens, the efficiency of
the picking process is greatly reduced because there is no physical space to temporarily store
components. The consolidation of the components belonging to the same production order from
the various cards is very unorganized during these moments of high utilization. For example,
an order requires logistics handlers to consolidate components from L PT-01 and L PT-03 to
the temporary storage location OC-L01-07-A01. However, because there is no storage space
on any of the temporary storage locations, the component on L PT-03 cannot be consolidated.
Additionally, components are consolidated from the L PT cards sequentially. Because components
are not processed per order, they are distributed among several L PT cards. Therefore, a lot of
other components belonging to other production orders are temporarily stored on the LPT cards
as well. Because the orders are not picked per order, but per card, the process requires a lot of
space and time. Consequently, this leads to components being stored longer on a LPT card than
necessary. Because orders are not fulfilled quickly the duration that partially fulfilled orders are
stored in the temporary storage locations can be high as well. Comparable subgroups were found
for warehouses A, F, and J.

7.3.2 Further Analysis of Logistics Activities

In this section the results of the retrieval of the Transport_T [2317,5;], Buffer[492.5;], Pick_T
[0,5;], and Distribute_T[0.5;] are elaborated upon. In Appendix G technical information about
the conception and analysis of these subgroups can be found.

For the transport activity, we observed that the ’queue’ was the most important variable in relation
to transport time, as it provides this subgroup with the highest WRAcc values. Specifically, the
queues ’INT TRANS’, referring to components being transported between warehouses by truck,
the ’L DECON’, referring to components being handled in the (de-)consolidation area of ware-
house L, and lastly ’A INTERNAL’, referring to components being transported from warehouse
A to warehouse G by card. These three queues were analyzed in more detail.

First, we found that components from the ’INT TRANS’ queue have to wait a significant amount
of times at the outbound locations of warehouses L and J, where they wait to be transported
to the manufacturing facility in building G. The cause of components waiting at this location
could be attributed to the destination location indicated with DRIVER1 and DRIVER2. All
components that need to be transported by truck are delivered by one of these trucks and a lot
of these transport movements are taking longer than three hours. Second, we found that in the
’L DECON’ queue, representing components being temporarily stored on one of the L PT cards,
had long transportation times. These components did not have to be consolidated and were being
moved to temporary storage locations. However, this process was taking rather long. Third, the
’A Internal’ queue was analyzed. We found that components transported from warehouse A were
primarily performed by cards instead of trucks as this warehouse is physically connected to the
manufacturing facility in building G. Some components have to wait for a long amount of time
at the outbound locations of warehouse A. However, the target/subgroup rate was rather low,
thus this does not occur as often compared to components that are transported by truck or in
warehouse L. Additionally, we found that components were being transported for a long time
when stored in either the pick & drop or pick & pack areas. In the pick & drop areas, compo-
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nents need to wait in outbound areas before they are picked up by trucks. Long transport time
in the pick & pack areas could likely to be attributed to a lack of storage capacity in these locations.

For the buffer activity, we observed that buffer times longer than three hours are present in build-
ings G, J, L, and A. Further analysis of these subgroups revealed that buffer times were especially
long for events that have source location Order Delivery G. Manual inspection of these events and
the corresponding cases showed that components in these subgroups were often picked in Kardex
locations. The buffer times for this subgroup of components can be explained by components
that are picked by logistics handlers, and have to be buffered such that they can be consolidated
with other components from their respective production orders (referred to as a ’partial complete’
order). Reasoning that the other components belonging to that production order are stored in
other warehouses and have to be transported before consolidation can be performed.

Picking actions taking longer than three hours are very rare. Subgroups were found that high-
lighted the picking of components from shelf storage sections. Shelf storage sections are used
very commonly in the IL process. In further analysis the handling unit types were investigated.
It was found that the ’Case Small’ and ’Case Medium’ handling units are often used when the
picking process takes longer than three hours. However, these handling units are often used dur-
ing the picking process, hence no specific cause of long duration can be attributed to this subgroup.

For the distribution activities, we found that long event duration could be located to the pick
point area in warehouse J. At the pick point area, where distribution events take place, pallets
with components are temporarily stored such that components can be distributed. However, when
there is no available space to store the pallets, the efficiency of this process is greatly reduced.
When this happens pallets with components are stored here for a long time while they should be
stored only for a short time.

7.4 Local Knowledge - Case Perspective

The numerical target variable for the case perspective has stayed the same as in the global knowl-
edge section. However, in this section of the research the minimum subgroup size was omitted and
subgroups with positive NWRAcc were considered for analysis. From the global knowledge section
the number of WTs (NrOfWTs[8.5;]) and the (Stock-Out Rate[0.5;]) were found as correlating
subgroups with the target variable case duration. Additionally, the low number of picking tasks
performed on a single day (WarehouseTaskCount[;4431]) was found to be related to increased
order picking times. These variables were analyzed in further detail in this section.

From the global analysis we concluded that the relation between the number of WTs per case
and the target variable had to be examined in more detail. Therefore, we decided to investigate
the relation between the number of WTs and the material group, representing the final product
to which the components of a case belonged. Material groups provide unique characteristics of
the components that are processed. Thirteen material groups were found that showed a corre-
lation with the duration of a case. However, material groups only provide information on the
final product to which the component belongs and these can be made up of various components.
Correspondence with domain experts and visual investigation of the data did not provide addi-
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tional information to support the reasons for these material groups having longer case durations.
Subsequently, for the subgroup WarehouseTaskCount [;4431] (NWRAcc=0,008, Lift=1,108, SG
mean=0,389 days), representing a low number of total WTs to be performed on a single day by
IL, was found to be positively correlated with the target variable. In discussion with logistic han-
dlers, it became apparent that on calm days other tasks would be performed in the warehouse, like
reordering stock or cleaning the warehouse and this could explain a slight increase in case duration.

Additionally, for the stock-out rate variable analyzed from the global knowledge section Stock-
out Rate[0.5;], no significant subgroups were found. The cause of stock-outs can be attributed
to logistics handlers picking the wrong component quantity by either making mistakes during
counting, weighing, or not even checking the component quality at all. This results in additional
logistics tasks to be performed in order to fix the stock-out problem. Furthermore, in the global
knowledge section, it was concluded that no significant subgroups were found based on component
groupings (e.g. SAP department or material groups). This could be caused by subgroup sizes
either being too small, hence being pruned out of the analysis, or because of the small effect of the
subgroup on the target variable. Interpreting these results in collaboration with domain experts it
was likely that the product dimensions belonging to the found groups were determining the reasons
for increased case duration. However, information regarding specific component characteristics
(e.g., dimensions, weight, etc.) was not available while conducting the analysis, thus, no definitive
conclusion could be made.

7.5 Summary of Findings

In this chapter, the SD analysis was conducted. In the global knowledge section, a numeric target
variable for the order lead time was used on the case data set, aiming to find potentially interest-
ing subgroups that could be explored in more depth in the local knowledge section for events and
cases, where a binary target variable was used for the event duration. An event was considered
not being in time if the duration exceeded three hours.

In the global knowledge section the logistics activity times for consolidation, transport, buffer,
pick and distribute formed subgroups related to the order lead time of a case. Furthermore, the
number of components of a case was also found to be positively correlated to the target variable,
just as the stock-out rate and the number of WTs in a case. Remarkably, was that for orders where
picking activities needed to be conducted, the order pick time is likely to be increased. Following
these initial subgroups the local knowledge section aimed at finding more granular subgroups.

For the consolidation activity we found that especially consolidation activities in building L were
related to long event duration, although long consolidation events were also found in warehouses
A, J, and G. All consolidation activities take place in pick & pack areas. Combining the SD
output and the expert knowledge of logistics handlers it was concluded that the long event dura-
tion at these locations could be attributed to a lack of storage capacity, the sequential unloading
of storage cards used to temporarily store components, and components getting lost. Similar
problems have been found in warehouses A, J and G. For the transportation activity the most
important locations in relation to the target concept were internal transport between buildings
and the transport between activity areas in warehouse L. Logistics handlers have indicated that
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a lack of truck drivers can be attributed to long transportation times between buildings, and
that storage capacity problems can be attributed to the long activity duration’s in warehouse L.
Components are waiting for internal transport in the pick & drop area, and for internal transport
within warehouses in the pick & pack area. The main cause of long buffer times can be attributed
to problems in the pick & pack area for components that have to wait for other components of
the same production order to be picked (referred to as partially fulfilled orders). For distribution
events, the pick point area was located where the distribution of components can take longer when
too many components of different orders are picked at once.

More granular subgroups from the case variables were not found in the local knowledge analysis.
However, the number of WTs for a case (more than 8) and the stock-out rate are related to the
target variable. Furthermore, component characteristics are likely to influence the duration of a
case (e.g. weight).

7.6 Conclusion

The subgroup discovery phase of the AIL-SD has provided the study with granular insights in
relation to the target variables. Hence, SD can successfully be applied to finding potential root
causes in a complex IL environment. Multiple iterations of interpreting the results and determining
the interestingness of the subgroups were necessary to obtain the output. As the subgroups are
obtained, it was important to understand how these subgroups are related to the entirety of causes
that affect order pick time in the IL domain of PT. Because it is likely that not all causes can be
retrieved from the available data set alone, root cause analysis techniques are applied in the next
chapter.
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8 Root Cause Analysis

In this chapter the root cause analysis phase phase of the AIL-SD is elaborated upon, following
the demonstration phase of the DSRM methodology. A cause-effect relation tree of order pick
time is developed (section 8.1) by synthesizing the found subgroups in chapter 7 with domain
knowledge. Furthermore, the relative importance of root causes is elaborated upon (section 8.2).

8.1 Cause-Effect Relation Tree of Order Pick Time

To reiterate, production orders not being delivered in time is caused by their long order pick time.
In the SD chapter subgroups were obtained that were positively related to long order pick time.
The goal of the application of the AIL-SD is to find the root causes of production orders not
being delivered in time and to improve process performance. To generate business value, insight
obtained from data analysis needs to be connected to that of domain experts. To create this
business value, a method of comprehending and visualizing causal relations was obtained in the
form of a cause-effect relation tree. A cause-effect relation tree structures possible causes into
structured levels until primary root causes are discovered (Schmidt et al., 2019). The tree was
constructed by interpreting the SD output and in cooperation with domain experts.

WMS data used as input for SD was retrieved from the period March 01, 2021, until October 3,
2021. Hence, not all outcomes from this analysis were up-to-date. In particular, the size of the
pick point area of warehouse J was already increased by fourfold when the thesis was written. To
exclude these temporal relations from the relation-tree, and to obtain a solid understanding of
the causes of long order pick time, interviews were held to validate and develop the relation tree.
This was done by printing the cause-effect relation tree on a piece of paper, or depicting it via a
slide show, and then, discussing the output with data engineers and team leaders to iteratively
develop the tree. The relation tree for order pick time from a logistics perspective is depicted in
Figure 13 and visualizes the most important relations discovered. This structure of this section
is based on the first-level causes. The causes that are marked italic were discovered with the SD
analysis. Note that not all identified root causes could be matched to earlier retrieved subgroups,
indicating that the analyzed data set did not include all variables related to the IL domain of PT.

8.1.1 Lack of Short-Term Storage Capacity

The lack of short-term storage capacity is one of the main causes of long order pick time and
is branched into lack of physical space and process mistakes. Regular IL operations cannot be
performed when logistics handlers do not have the required physical space to process components
from the material storage areas to the manufacturing facility. The first step in the IL process is
picking or buffering the components from material storage onto a picking card. Because of the
limited space at the pick & pack area to store these picking cards, a lot of components are being
stored on a single card. The subsequent consolidation process is then hard to perform due to
the limited physical space available. Especially, because of the small size of the pick & pack area
where components are consolidated. This results in a disarranged consolidation process because
components cannot be stored in their predefined locations, or even worse, cannot be processed
because components get lost in the overcrowded area. Furthermore, the storage capacity at the
pick point area, where components get distributed can attribute to the long order pick time. Espe-
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Figure 13: Cause-effect relation tree of long order pick time.

cially, because pallets are temporarily moved to a pick point location in order to be deconsolidated
into smaller unit sizes. However, because of the limited space at the pick point location, pallets
cannot be stored here, thus not distributed. Similarly, the lack of storage space in the pick & drop
can create bottlenecks in the process.

Moreover, process mistakes can be made. Appropriate ESD storage bins, which are needed to
handle the components, are not always available. This results in the logistics process being tem-
porarily stopped because the consolidation activity, which requires empty ESD bins, cannot be
performed. The lack of short-term storage capacity is especially true for warehouse L. Also, queu-
ing mistakes are impacting the short-term storage capacity. The queue determines the order in
which WTs are picked by logistics handlers (section 3.2). It is possible to manually overwrite the
queue order. For example, manufacturing issues a component request, meaning that a certain
component is needed with priority. This request overrules the standard picking process and allows
for the fast retrieval of components. However, this reduces the efficiency of logistics operators
significantly because the regular picking process is disturbed and additional storage space is re-
quired. Moreover, accepting too many orders in a queue at once can result in the utilization of a
lot of temporarily used storage resources, also reducing the efficiency of the IL process.
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8.1.2 Many Order Operations

From the SD analysis, it became apparent that the number of WTs has a positive relation with
long order picking time. The number of WTs to be performed for a production order is determined
by the dimensions of components, the order quantity, and the number of storage locations which
components have to be processed from. Some components have large dimensions and/or are very
heavy. This causes them to be handled by forklift trucks or by more than one material handler,
thus more processes have to be performed in that case. Furthermore, large order quantities can
attribute to the number of operations to be performed. First, components with small dimensions
often come in large numbers and these components often need to undergo a lot of administrative
tasks when being scanned. Second, components with small dimensions have to be counted which
can take a lot of time. Additionally, PT operates its IL operations from 8 warehouses containing
many storage locations. Often components from a single production order are located in more than
one warehouse. This results in partially completed WTs; components that have been processed
in one warehouse while other components from that order (in another warehouse) have not been
processed yet. The components that are partially completed are buffered until a complete order
can be fulfilled. Additionally, we found that for cases where the picking activity needed to be
performed, the same component was stored on different locations. Consolidating these components
into a single storage bin takes time.

8.1.3 Labor Problems

Domain experts have indicated that problems related to labor problems attribute significantly to
the long order pick times. Problems related to shifting issues are mentioned as the main cause
of employee problems. A lack of material handlers and drivers to operate the trucks used for in-
ternal transport is an important factor in regard to shifting issues. Especially, the lack of drivers
was found as a cause of long transportation time between warehouses. Furthermore, the lack of
drivers attributes to long buffer times, as components are buffered for a long time before they
are transported. Second, the lack of communication between shifts attributes a lot to the unor-
ganized consolidation processes at the pick & pack areas. There is little to no communication
between shifts, and this results in components getting lost or logistics handlers not knowing which
components should be processed first. Last, the workload of logistics handlers fluctuates greatly.
However, the employee planning is not aligned with the workload. Sometimes the number of tasks
to be performed exceed the capacity of the available logistics handlers as a result of infeasible
planning.

Moreover, problems related to training issues are mentioned as causes of labor problems. Domain
experts have indicated that especially inexperienced employees make avoidable mistakes that
add to increased order pick time. In the SD phase, we found that stock-outs result in longer
case duration. The cause of stock-outs can be attributed to logistics handlers picking the wrong
component quantity by either making mistakes during counting, weighing, or not even checking
the component quality at all. This results in additional logistics tasks to be performed in order
to solve the stock-out problem. Other problems related to unskilled logistics handlers are the
improper scanning of the RFID tags on the ESD bins, mishandling of components such that they
break or get lost, or consolidating components into the improper bins. Furthermore, the tasks
that logistics handlers perform in each IL material flow area vary and differ from warehouse to
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warehouse. However, due to the lack of training employees cannot be used flexibly in the various
logistics areas. And if logistics handlers are used flexibly, they cannot be used effectively because
their lack of training makes them more prone to making errors, not providing any additional value
to the process at all. Thus, employee inflexibility adds to longer order pick times than needed.

8.1.4 Equipment Failure

Domain experts have noted that equipment failure is causing long order pick times. Although
rarely occurring, scanners used for processing and registering components break down or have a
poor connection with the intranet such that they cannot be used properly. Similarly, uncommon
breakdowns of transport trucks, Kardex storage locations, forklift trucks, and other equipment
failures can cause long order pick times.

8.2 Relative Importance of Root Causes

Following the cause-effect relation tree of long order pick time (Figure 13), the second level causes
(1) lack of short-term storage capacity, (2) many order operations, (3) labor problems, and (4)
equipment failures were identified. To examine the relationship between a set of one or more in-
dependent variables Structural Equation Modeling (SEM) is an often-used multivariate statistical
analysis technique (Vinodh & Joy, 2012). SEM is the combination of factor analysis and multiple
regression analysis and is used to analyze the structural relationship between measured variables
and latent constructs. To perform SEM additional data from the knowledge base was needed to
provide meaningful insights. However, as not all causes found were directly measured and were
inferred by applying domain knowledge it was not possible to perform SEM. Hence, additional use
of domain knowledge, filtering of the obtained subgroups, and visualization were used to estimate
the relative importance of causal factors.

To assess the importance of each cause and the relative importance of each of the logistics ac-
tivities on the cases that were not delivered in time, a Pareto chart was used. A Pareto chart is
a bar chart of frequencies sorted by frequency and commonly used in RCA in combination with
data analysis (Andersen & Fagerhaug, 2006). The left vertical axis represents the duration in
seconds for each logistics category. The right vertical axis represents cumulative counts expressed
as percentages of the total count. The cumulative line makes it easier to judge Pareto’s ’80/20’
rule, which is based on the observation that in most scenarios 80% of problems are caused by
20% of the causes (Wilkinson, 2012). The Pareto chart can be used to obtain a clearer picture of
the set of causes and understand which causes need further investigation (Andersen & Fagerhaug,
2006). In Figure 14 the relevant logistics activities are conditioned on cases that are not delivered
in time. Reiterating: cases that are in time are processed within 2 days, the cases that are not in
time have a duration exceeding 2 days.

From Figure 14 we concluded that cases not in time spend most time being consolidated (43%)
and at transport activities (29%). Less, but still important activities are picking (13%), buffering
(9%), and distributing (7%). Noticeably, is that 72% of time can be attributed to the consolida-
tion and transport activities alone, roughly confirming Pareto’s ’80/20’ rule. The causes of long
logistics activity duration are elaborated upon in this section.
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Figure 14: Pareto chart of the relative impact of logistics activities conditioned on cases that have not
been delivered in time.

The Pareto chart of the consolidation activities and storage types for cases not in time (Fig-
ure 15) clearly indicates that most long event times take place in the pick & pack area of building
L (61%). Moreover, cases that are not in time spend 92% of their consolidation time in the pick
& pack areas of warehouses L, A, J, and G. These warehouse locations are in line with the ear-
lier obtained results from the SD phase (section 7.3.1). Problems in these areas can be related
to all four first cause levels found in the cause-effect relation tree, however, interviews with do-
main experts have indicated that the lack of storage capacity in the pick & pack area and shift
issues are the main causes of long event duration of the consolidation activity. From the shift
issues, especially the shift issues related to employee shortage and infeasible planning, not being
able to assess the amount of work to be performed on a single day, are likely to have a high impact.

The Pareto chart of the transport activities and their respective storage types for cases not in time
(Figure 15), clearly indicates that most long event times for transportation activities take place in

Figure 15: Pareto chart of the consolidation activity and storage areas.
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the internal transport queue (74%). This indicates that the transportation in-between buildings is
the main cause of long transport duration. It should be noted, that transportation time between
buildings also includes the time that components are buffered before they are transported, due
to the way WTs are logged at PT. However, this buffer time can be attributed to a lack of
transportation in-between buildings. Furthermore, the WTs in the (de-)consolidation queue of
warehouse L, was also found as an area where long transportation times occur. Interviews have
indicated that problems in this area can mainly be attributed to the low storage capacity at the
pick & pack areas. These findings are in line with the earlier obtained subgroups in the SD phase.

Figure 16: Pareto chart of the transport activity and queues.

Cases with picking activities inherently take more time to be processed, as picking activities
indicate the retrieval of components from different storage areas. Although long buffer times
can be attributed to various causes, the predominant cause of buffering found were the partially
complete WTs and driver shortages creating backlogs at the pick & drop areas, resulting in
components being buffered longer than needed. Lastly, the cause of long distribution times can
predominantly be attributed to the lack of storage capacity at the pick point area.

8.3 Conclusion

Concluding, in this chapter first the cause-effect relation tree was outlined where the first level
causes ’lack of short-term storage capacity’, ’many order operations’, ’labor problems, and ’equip-
ment failure’ were identified. Subsequently, second, third, and fourth-level causes were elaborated
upon. Pareto charts revealed that 72% of time spent by cases that were not delivered in time
could be attributed to consolidation and transportation activities. The main cause for long con-
solidation times found was the lack of storage capacity in the pick & pack areas of warehouses L,
J, G, and A, with L being most important. The main cause for long activity times found was the
internal transport between buildings. Not all identified root causes could be matched with the
earlier retrieved subgroups. Therefore, future iterations of the AIL-SD should focus on including
variables that can measure the unmatched root causes. This, among recommendations for process
improvement, will be elaborated on in the first section of the next chapter.
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9 Evaluation

In this chapter, first the knowledge extraction phase of the AIL-SD is demonstrated (section 9.1),
where recommendations were formulated based on the case study, answering the fifth sub-research
question. Subsequently, this chapter includes the evaluation phase of the DSRM methodology
(section 9.2), including the evaluation of the approach by domain experts, and therefore answering
the sixth sub-research question of this research.

9.1 Knowledge Extraction

In line with the knowledge extraction phase of the AIL-SD, first, important issues are outlined
that provide key business issues that have to be taken into account before formulating recommen-
dations. Subsequently, recommendations are formulated. Lastly, an extension of the knowledge
base, based on quantitative warehouse performance indicators by Staudt et al. (2015) and data
engineers is elaborated upon.

9.1.1 Key Business Issues

Three key business issues were identified by interviewing domain experts at PT:

1) The long-term aim of PT is to grow its operations significantly in the future. The company
aims to further diversify its products and increase production volumes. Hence, business processes
have to be defined in an extensible way to allow for operation expansion.
2) The rapid growth of PT in the past has created problems on its own. One of those problems
is the forgotten significance of the internal logistics process by company managers. One of the
challenges of the SCM department is the slow managerial decision-making ability to respond
to conditions in the logistics department. However, the company’s managers have decided that
centralizing logistics activities will solve a lot of problems in regard to the operational IL process.
Hence, company managers have decided to construct a warehouse that centralizes most logistics
activities.
3) The business environment where PT operates in is facing significant labor shortages. The
logistics sector has not escaped these labor shortages, which makes it difficult to attract and
attain experienced personnel.

9.1.2 Reduction of Order Pick Time

From the RCA chapter (5.3.4) it became apparent that long order pick times are caused by lack
of storage capacity, many order operations, labor problems, and equipment failure. Among these
factors, it is concluded that the lack of short-term storage and the long internal transport time
have the strongest relation with order pick time.

First, the lack of short term-storage locations is discussed. The low storage capacity at the pick
& pack areas in warehouses L, J, G, and A showed to be most strongly related to long order
pick times, in particular in warehouse L. Because of the lack of storage space logistics actions are
performed in a disarranged manner, especially during busy moments. From the growth ambition
of PT, it is induced that the number of orders to be processed by IL is not likely to decrease.
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Hence, the throughput at these locations will not decrease. Events processed in the pick & pack
areas are already problematic in terms of processing time. To facilitate the growth ambitions
of the company, the current situation has to change. To do this, the physical space used for
consolidating components in the pick & pack areas should be increased. However, due the lack
of long-term storage locations also utilizing storage space in the warehouses, this will be hard to
perform. Therefore, it is recommended to increase the productivity in the existing storing areas.
It is indicated that the number of WTs that are put in the digital queue can be altered manually.
Currently, a lot of orders are consolidated at the same time because a lot of production orders are
processed at the same time. Therefore, it is recommended that the number of warehouse tasks in
the queue should be reduced. This will reduce the amount of parallel processed production orders,
and therefore reduce the utilization of the pick & pack areas and thus, decrease order picking times.

Second, long internal transport times are a major cause of long order pick times. The long internal
transport times are predominantly caused by a lack of drivers. A lack of material handlers was
also found as a cause for long order pick times, as at some moments the labor force was not large
enough to align with the expected workload. Raj, Mukherjee, de Sousa Jabbour, and Srivastava
(2022) even suggests that scarcity of labor is perhaps the biggest barrier to the functioning of a
supply chain during and after the COVID-19 pandemic. Thus, it is recommended that PT comes
up with inventive ways to attract new personnel and attain the existing workforce. It should be
highlighted that in relation to long order pick times the driver shortage is most important to solve
as a lack of drivers can create significant bottlenecks in the IL process.

Third, the workload of logistics handlers fluctuates greatly. However, the employee planning is
not aligned to the workload. Sometimes the number of tasks to be performed exceed the capacity
of the available logistics handlers as a result of infeasible planning. Currently, the alignment of
(internal) logistics processes with the purchasing and planning processes of the SCM department is
poor. Where purchasing and planning cooperate, (internal) logistics are not directly incorporated
in planning activities. Most importantly, the planning department is responsible for constructing
a work planning for logistics. However, the actual workload is often misaligned with the work
schedule planning that is used in the logistics department. Hence, planners at logistics cannot
anticipate the workload for material handlers, especially if the work planning is released late or
altered at the last moment. Thus, it is recommended to align the logistics planning with the
expected logistics workload. In addition, the communication between shifts could be increased by
planning shifts in a way that shift times overlap (slightly), such that effective communication is
promoted.

Last, it is recommended to increase the training of the logistics handlers. Training logistics
handlers such that they can work flexibly in various warehouses and at various functional areas
will increase the flexibility of the workforce. Which will, in turn, result in lower-order pick times,
especially during busy moments. Moreover, training should focus on the reduction of stock-outs,
as the order pick time of cases where stock-out occurs is likely to increase by 75%. And, training
should also incorporate the reduction of the scrap-rate and focus on the proper scanning of RFID
tags.

54



9.1.3 Future Outlook

Although the above recommendations are based on relationships found from the cause-effect re-
lation tree, it became apparent that an integral method of solving the root causes of long order
pick times should be investigated in the future as well. Especially, because PT has started con-
struction on a new centralized warehouse that would combine the warehouse functions of existing
warehouses. This study provides support for that strategic decision. First, a large warehouse will
increase both long and short-term storage capacity. Second, because of centralization, trucks do
not have to pick up components at various locations, therefore, reducing transportation time sig-
nificantly. Third, because of the centralized warehouse partially complete orders will be reduced.
Picked components from the same production order do not have to be buffered among warehouses
as a result of operations in other warehouses not being completed yet. Fourth, centralization of
labor will reduce the misalignment between expected and actual workload to be performed by
material handlers because inventory and orders can be pooled. Lastly, it is likely that managerial
decision-making ability to respond to conditions in the logistics department will increase because
centralization allows for a more focused vision on logistics operations. The continuous monitoring
of important variables related to order pick time by extending the demonstrated AIL-SD will
support managerial decision-making and potentially provide new insights into the operational
performance of the IL processes.

9.1.4 Extension of the Knowledge Base

In this section, the extension of the knowledge base, based on quantitative warehouse performance
indicators by Staudt et al. (2015) and domain insight is elaborated upon. This follows the knowl-
edge extraction phase of the AIL-SD, such that the knowledge base can be updated in a future
iteration of the approach. Because of time limitations of the research, not all variables could be
included in the current study.

In this study, WMS data in the form of event logs were enriched and this formed the basis of ana-
lyzing the IL process at PT (section 6.4). However, the WMS did not en-capture all performance
measures and therefore domain knowledge was used to supplement the SD output. The aim of ap-
plying the AIL-SD was to find interesting subgroups among the numerous process parameters and
variables that determine the performance of the IL process. In the SD phase, physical locations,
in particular, were found as interesting subgroups. The relation between the obtained locations
and long order pick time could primarily be attributed to the lack of storage capacity and the lack
of transport trucks. However, the obtained cause-effect relation tree in (5.3.4) shows that other
operational factors also affect order pick time. Hence, in future iterations of the AIL-SD data
should be included that en-captures these factors such that relevant subgroups can be found and
data-driven decision-making can be improved. Data engineers have to identify the SAP EWM
tables that can contribute to the retrieval of these variables. Subsequently, SAP HANA can be
used to transform this information into the central data warehouse.

Discussions with logistic handlers and process owners have pointed out that the following variables
could be incorporated in the future: (1) the queuing time, the time that products wait on hold to
be handled is related to the problem at hand, (2) the physical inventory accuracy, the accuracy of
the physical inventory compared to the reported inventory, (3) the scrap rate, the rate of product
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loss and damage, (4) the transport utilization, the vehicle fill rate, (5) the warehouse utilization,
the average amount of warehouse capacity used for a specific amount of time, and (6) the inventory
space utilization, the rate of space occupied by storage, could be influential indicators to finding
root causes in the process. However, the underlying data of these performance indicators are
currently not indirectly measured by the WMS.

9.2 Evaluation of the Artifact

This section includes the evaluation phase of the DSRM methodology. Five semi-structured
interviews were conducted with people familiar with the internal logistic domain and who have
played a role in working with a WMS and/or the related data. Including, a support engineer,
team leader, two data engineers, and the process owner of the IL process. People were interviewed
using Microsoft Teams. To aid the interviews a slide deck was used to illustrate the AIL-SD, its
phases, and the outcomes of the demonstration. The approach was evaluated on: its efficacy,
efficiency, and effectiveness. These evaluation concepts were retrieved from the 5Es framework by
Checkland and Scholes (1990). Furthermore, the earlier defined requirements were evaluated.

9.2.1 Efficacy

From the interviews, it became clear that the efficacy of the AIL-SD is high as it is able to retrieve
the root causes of operational logistics problems. Interviewees were positive about the granular
insights that the output can provide and thus, the custom process improvements can be made.
Especially, the fact that problems can be attributed to specific areas supports the continuous im-
provement and monitoring of logistics processes. Furthermore, the visual depiction of root causes
can aid decision making compared to ’gut feeling’ and ad-hoc decision making which is currently
standard practice for solving (operational) problems related to the IL process.

Interviewees mentioned that data-driven decision-making methods are already applied in current
business practices. However, these analysis methods often require the preliminary identification
of root causes in the process, such that e.g. a Microsoft Power BI overview can be made to moni-
tor, for example, the throughput rate of a warehouse that is performing poorly. In contrast, the
AIL-SD structures data-driven problem discovery. Using the AIL-SD specific root causes can be
identified, highlighting the added value of this approach. The root causes found by using the AIL-
SD can subsequently be monitored. Moreover, current data-driven decision-making tools often
capture process variables on a high level, not including granular insights needed for operational
process improvement. Applying AIL-SD can provide these granular insights (e.g., the identifica-
tion of problematic storage areas).

However, the subgroup discovery technique applied is a descriptive data analysis method. This
limits the approach to analyzing historic events. At best, the approach can support the analysis
of real-time event log data to support decision-making. To be able to assess which variables are
likely to negatively influence the target variable in the future, would allow for predictive action
to be undertaken, which is not part of the current artifact design. Although this drawback, we
concluded that the efficacy of the approach is high.
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9.2.2 Efficiency

To analyze and process WMS data, preprocessing steps needed to be performed. To efficiently
execute this phase, interviewees noted that a sound data architecture and data analysis team have
to be in place. Conventional analysis of WMS data by logistic personnel requires the manual pro-
cessing of data, which in turn requires experience. Often there is a lack of experience, specifically,
because WMS systems are complex and it takes time to learn how to extract and interpret data.
PT has a dedicated data analytics team, that can extract data from SAP EWM, and transform it
into a data warehouse such that it can be loaded for use in applications such as subgroup discov-
ery. However, the transformation of data from SAP to the data warehouse can take a lot of time.
Especially, because not all data can be retrieved from SAP EWM directly and retrospectively.
Meaning that if, for example, a user likes to gain information on product capacity, historic data
cannot be retrieved from the central data warehouse. A so-called (digital) ’pipeline’ has to be
constructed in order to capture the data, which can be resource-intensive if a lot of variables are
to be included. Moreover, the domain knowledge of the data analytics and logistics domain have
to be combined, which can take a lot of time and effort. Furthermore, the number of resources
and time required to apply the AIL-SD can be even more extensive when not all root causes can
be extracted directly from WMS data or other sources. Interviews with relevant stakeholders are
then necessary to obtain a clear overview of all the internal logistics cause relations, which will
add to the time spent executing the approach. Furthermore, it was noted that the vast amount of
preprocessing steps to be performed before being able to retrieve insightful subgroups could hinder
the efficient use of the AIL-SD. Thus, the efficiency of the approach is found to be moderate.

9.2.3 Effectiveness

The approach can identify important root causes in relation to the target variable. Further
monitoring of important variables can be done by using Microsoft Power BI reporting, which
is currently common practice at PT. Furthermore, the identification of problems to a small set
of problematic storage areas and the internal transport process is seen as beneficial to making
informed decisions to improve process performance. It was mentioned that the root causes found
are not a surprise to stakeholders. A thorough qualitative analysis could have provided similar
results. Although, it was recognized that the analysis of factual data confirmed a ’gut feeling’
on process bottlenecks that was already present among stakeholders. Furthermore, to act upon
the outcomes directly, permanent control loops should be established. For example, monitoring
the storage capacity of the pick & pack areas such that if the capacity limit is nearly reached,
team leaders, can act before the occurrence of a potential problem. Lastly, it is noted that the
application of the approach would provide even more insight if more variables related to order
pick time would be incorporated, which could not be done due to time limitations of the research.
Concluding, the approach was found to be moderately effective.

9.2.4 Evaluation of Artifact Requirements

Four requirements have been defined in section 5.1 that the designed approach must meet. The
first defined requirement stated that the data used as input of the artifact should be presented
in a way that the traceability to source data is high. This has been ensured by saving the data
retrieval SQL queries in the preprocessing phase. Hence, it is possible to retrieve the data used
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for the analysis. However, data stewards have highlighted that sometimes source data changes,
and therefore that the queries should be altered to return the right data. For example, column
headers have been changed. However, this should be no problem as SQL queries can be altered
with not much effort. The second requirement, requiring that the artifact should be designed
flexibly such that data from novel sources could be added with relative ease, is also met by saving
the SQL queries, as these can be altered with relative ease to add new data sources, by for
example, performing a join between two tables. Third, it was required that the output of the
artifact should be easy to interpret and actionable. The subgroup discovery and subsequent root
causes found were very specific according to interviewees and the recommendations to improve
were regarded as actionable. Furthermore, outcomes were visualized by using Pareto charts and
a cause-effect relation tree. Thus, it was concluded that the third requirement was met. Last, the
fourth requirement stated that the artifact should minimize the workload needed for generating
insightful output. Not all root causes found could be derived from the found subgroups, and
therefore domain knowledge from various stakeholders had to be applied, which required more
resources than expected. However, this was partly caused by the researcher not being familiar
with the IL domain at PT. It is likely that practitioners applying the AIL-SD already have a good
understanding of the IL process they analyze.

9.3 Conclusion

The AIL-SD has been successfully demonstrated in a case study at PT. Subsequently, the approach
was evaluated based on its efficacy, efficiency, and effectiveness. The efficacy of the approach is
high, and the efficiency and effectiveness of the approach are moderate. The granular insights
that the approach can provide support custom process improvements. Furthermore, the visual
depiction of the root causes aids decision-making. However, the process requires a solid data
architecture to be efficient which can take time to be constructed, and it is recognized that the
various complex preprocessing steps can reduce the effectiveness of the approach for practitioners.
The phases of the approach are designed agnostic to the specific problem context at PT, and the
approach has been successfully demonstrated. Therefore, it is concluded that the approach could
be further validated at other companies with business activities in the IL domain.
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10 Conclusions

This chapter provides an overview of the answers to the research questions from section 1.5. In
addition, it also includes a discussion in which the relevance, limitations, and suggestions for
further research are discussed respectively.

10.1 Research Conclusion

This research was initiated by the lack of data-driven decision capabilities of the IL department at
PT to find the root causes of production orders not being delivered in time. Existing approaches
in literature with the aim of extracting knowledge from WMS data are limited. However, SD and
RCA techniques were derived from literature that could potentially be used to extract knowledge
from WMS data. Therefore, the objective of this research is attained by answering six sub-research
questions centered around the following main research question:

How can an approach based on Subgroup Discovery techniques and Root Cause Analysis
techniques be developed to identify the root causes of production orders not starting in time in

internal logistics operations at Prodrive Technologies to improve process performance?

The objective of this master thesis is to design a new artifact and therefore the design science
research methodology is followed. The development of the artifact is based on a synthesis of ex-
isting methodologies, theories, key business insights, and business requirements. First, a method
of transforming raw WMS data into a suitable format for data processing, including the stan-
dardized mapping of logistics activities and the transformation to event logs, was found. Second,
to incorporate SD with WMS data, a methodology was found that structures the extraction of
subgroups. Third, a methodology that structures the extraction of a process model for knowledge-
intensive causal subgroup analysis was found, which formed the basis for developing the artifact.
Furthermore, stakeholders were interviewed to define design requirements, and literature on RCA
techniques was used to ensure that research contributions were the basis of the design.

Subsequently, the approach has been demonstrated in a case study at the IL department of PT.
By demonstrating, the approach could be further refined in an iterative process. First, SD was
applied and interesting subgroups were found. The obtained subgroups were interpreted by the
researcher and domain experts, to construct a cause-effect relation tree to visually depict the
causal framework in relation to order pick time. From this RCA, the second cause levels lack of
short-term storage capacity, many order operations, labor problems, and equipment failure were
found. Subsequently, the relative strength of root causes is estimated by visualizing their impor-
tance by using Pareto charts. The demonstration resulted in insights that support the data-driven
decision capabilities of the department. Four key insights contributing to long order pick times
are, (1) the lack of short term-storage locations, especially at pick & pack areas, (2) long internal
transport times between buildings, (3) the high fluctuation of workload for logistics handlers, and
(4) the lack of training of logistics handlers. Based on these insights five main recommendations
were formulated: (i) it is recommended to reduce the number of warehouse tasks in the queue
at the pick & pack areas which reduces the amount of parallel processed production orders. In
turn, reducing the utilization of the pick & pack areas, and therefore, decreases order picking
times. Furthermore, (ii) it is recommended that PT finds inventive ways to attract new person-
nel and attain the existing workforce, especially to solve the driver shortage as it was found as
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the most important bottleneck in the IL process. Moreover, (iii) it is recommended to align the
logistics planning with the expected logistics workload to be able to anticipate the expected daily
workload. And, (iv) it is recommended that the training of logistics handlers should focus on:
increasing flexibility, decreasing stock-outs and the scrap-rate, and focus on the proper scanning
of RFID tags. Lastly, (v) the outcomes of this study support the construction of a new centralized
warehouse that would combine the warehouse functions of existing warehouses.

The approach is validated on its efficacy, efficiency, and effectiveness. The results indicated that
the efficacy of the approach is high, and the efficiency and effectiveness of the approach are mod-
erate. The granular insights that it can provide support custom process improvements and the
visual depiction of the root causes support data-driven decision-making. However, the process
requires a solid data architecture that enables the retrieval of relevant variables from a WMS to
be efficient. It is recognized that the various complex preprocessing steps required to retrieve and
process these variables can reduce the effectiveness of the approach for practitioners.

The evaluation of the case study and the designed approach indicate that applying the approach
is useful for finding the root causes of production orders in time, and can be used to improve IL
performance. Thus, it was concluded that the research achieves its objective.

10.2 Contribution to Research

Olson (2020) states that currently, there is a lack of comprehensive methodologies and frameworks
to support logistics companies in adopting, implementing, and sustaining operational excellence
in literature (Wang et al., 2014; Trakulsunti et al., 2021; Olson, 2020). This research contributes
a successfully demonstrated approach, AIL-SD, providing insight on how a methodology tailored
to the IL domain can benefit practitioners. The approach provides guidance in the process of
identifying root causes, processing WMS data, performing SD, and using RCA methods to create
a causal model identifying the root causes of long order pick time. Moreover, the demonstration
of the approach showed that it is possible to retrieve causal relations among the manifold of multi-
causal interactions in the logistics domain. Furthermore, this research shows that the standardized
mapping method for automatically mapping functional flows to WTs proposed by Knoll et al. is
able to effectively map WMS data to logistics activities, and that their method of transforming
WTs to event logs can be effectively be applied for data analysis purposes.

10.3 Limitations and Recommendations for Future Work

As in every research, limitations, and suggestions for future work can be identified. The limita-
tions and recommendations for future research are provided in this section.

The approach in this study is likely to be widely applicable for the root cause analysis of other
variables in the operational internal logistics domain. Further research could investigate the gen-
eralizability of the AIL-SD. Evaluation of the process approach is based on a set of evaluation
criteria selected by the researcher, partly substantiated by literature (5Es framework by Checkland
and Scholes (1990)) and partly based on what the researcher finds important. However, for the
evaluation of IT artifacts a wide range of evaluation criteria can be found in literature (Prat,
Comyn-Wattiau, & Akoka, 2014). Therefore, there are other important criteria to evaluate the
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approach. A more comprehensive set of evaluation criteria might result in a more complete eval-
uation, which in turn might lead to more possible improvement directions of the approach.

Although the AIL-SD has been iteratively developed in corporation with stakeholders at PT. At
PT the developed artifact has some drawbacks for use by practitioners, that could be investigated
in the future. Specifically, the vast amount of data processing required to obtain a dataset suitable
for SD increases the complexity of applying the approach. This can be attributed to a set of causes:

1) First, WMS data had to be transposed to a format suitable for subgroup discovery. This re-
quired the use of complex algorithms, which will take time for practitioners to understand. 2)
Second, dimensionality reduction needed to be applied to successfully perform SD. Dimensionality
reduction increases the complexity of the preprocessing phase, thus increasing the complexity of
the process. Before dimensionality reduction was considered, other open-source software options
apart from Vikamine (Atzmueller & Lemmerich, 2012) were tested for their workings with large
volumes of data. Orange in Knime (Demšar et al., 2013), Rapidminer (Nopparoot et al., 2013),
and pysubgroup in Python (Lemmerich & Becker, 2018) were considered. However, no application
could be used for SD without preprocessing the WMS data. Future research should investigate
methods that can efficiently handle large volumes of event log data, such that the whole data set
can be exploited with relative ease. 3) Lastly, although Vikamine was used, it had some limita-
tions on its own (Appendix D). Most importantly it is not clear to the user how different quality
measures can be used for categorical and numerical target variable settings. Only after contact-
ing Dr. Martin Atzmüller himself, these, among other more minor problems were solved. Thus,
the limitations of the Vikamine platform increase the complexity of applying the approach. One
additional limitation of Vikamine was the need for variable discretization. Future research could
expand the numerical variable capabilities of the tool, as the discretization of variables results in
loss of information.

Not all variables could be included in the current study due to time limitations and the complex
nature of the data architecture at PT. Future research should aim to incorporate the identified
variables from section 9.1.4 to include all potential causes of long order pick time in the SD phase,
instead of in the RCA phase. The rigidness of the constructed cause-effect relation diagram could
subsequently be improved by using subgroups that support the relations found instead of using
domain knowledge. A limitation of the development of the cause-effect relation tree of order pick
time is that it is synthesized by combining the found subgroups with domain knowledge. Research
contributions were not used as the basis of the design, partly because no conceptual model could
directly be found in literature. This diagram could be used for the construction of a generalized
cause-effect model of order pick time in the IL domain.

61



References

Abdullah, N., Ismail, S. A., Sophiayati, S., & Sam, S. M. (2015). Data Quality in Big Data:
A Review. International Journal of Advances in Soft Computing & Its Applications, 7 (3),
16–27.

Andersen, B., & Fagerhaug, T. (2006). Root Cause Analysis Simplified Tools and Techniques.
ASQ Quality Press.

Atieh, A. M., Kaylani, H., Al-Abdallat, Y., Qaderi, A., Ghoul, L., Jaradat, L., & Hdairis, I.
(2016). Performance improvement of inventory management system processes by an au-
tomated warehouse management system. In Procedia cirp (pp. 568–572). doi: 10.1016/
j.procir.2015.12.122

Atzmueller, M. (2015, 1). Subgroup discovery. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery , 5 (1), 35–49. doi: 10.1002/widm.1144

Atzmueller, M., & Lemmerich, F. (2009). Fast Subgroup Discovery for Continuous Target Con-
cepts. In International symposium on methodologies for intelligent systems (Vol. 5722, pp.
35–44). doi: https://doi.org/10.1007/978-3-642-04125-9{\_}7

Atzmueller, M., & Lemmerich, F. (2012). VIKAMINE – Open-Source Subgroup Discovery, Pattern
Mining, and Analytics. In Machine learning and knowledge discovery in databases, lecture
notes in computer science (Vol. 7524, pp. 842–845). Springer-Verlag.

Atzmueller, M., & Puppe, F. (2007). A Knowledge-Intensive Approach for Semi-Automatic Causal
Subgroup Discovery. In Prickl’07 & web mining 2.0 (pp. 13–24).

Atzmueller, M., Puppe, F., & Buscher, H.-P. (2004). Towards Knowledge-Intensive Subgroup
Discovery. In M. Atzmueller, F. Puppe, & H.-P. Buscher (Eds.), Proceedings of the lernen
wissensentdeckung adaptivität fachgruppe maschinelles lernen (pp. 111–117).

Boysen, N., Emde, S., Hoeck, M., & Kauderer, M. (2015, 4). Part logistics in the automotive
industry: Decision problems, literature review and research agenda. European Journal of
Operational Research, 242 (1), 107–120. doi: 10.1016/j.ejor.2014.09.065

Brand, N., & Van der Kolk, H. (1995). Workflow Analysis and Design (Vol. 33). Deventer: Kluwer
Bedrijfswetenschappen.

Brito, P. Q., Soares, C., Almeida, S., Monte, A., & Byvoet, M. (2015, 3). Customer segmentation
in a large database of an online customized fashion business. Robotics and Computer-
Integrated Manufacturing , 36 , 93–100. doi: 10.1016/J.RCIM.2014.12.014

Chapman P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000).
CRISP-DM 1.0: Step-by-step data mining guide. SPSS inc.

Checkland, P., & Scholes, J. (1990). Soft Systems Methodology in Action. Chichester, West Sussex:
Wiley.

Chen, W. C., Tseng, S. S., & Wang, C. Y. (2005). A novel manufacturing defect detection method
using association rule mining techniques. Expert Systems with Applications 29 , 807–815.

Dakic, D., Sladojevic, S., Lolic, T., & Stefanovic, D. (2019). Process Mining Possibilities and Chal-
lenges: A Case Study . In International symposium on intelligent systems and informatics
(pp. 161–166).

De Koster, R., Le-Duc, T., & Roodbergen, K. J. (2007, 10). Design and control of warehouse order
picking: A literature review. European Journal of Operational Research, 182 (2), 481–501.
doi: 10.1016/j.ejor.2006.07.009

Demšar, J., Erjavec, A., Hočevar, T., Milutinovič, M., Možina, M., Toplak, M., . . . Zupan, B.

62



(2013). Orange: Data Mining Toolbox in Python. Journal of Machine Learning Research,
14 , 2349–2353.

Dewa, P. K., Pujawan, I. N., & Vanany, I. (2017). Human errors in warehouse operations: An
improvement model. International Journal of Logistics Systems and Management , 27 (3),
298–317. doi: 10.1504/IJLSM.2017.084468

Duivesteijn, W., & Knobber, A. (2011). Exploiting False Discoveries – Statistical Validation of
Patterns and Quality Measures in Subgroup Discovery. In International conference on data
mining (pp. 151–160).

Ebeto, C., & Babat, O. (2017). Sampling and Sampling Methods. Biometrics & Biostatistics
International Journal , 5 (6), 2015–2917. doi: 10.15406/bbij.2017.05.00149

Ershadi, M. J., Aiasi, R., & Kazemi, S. (2018). Root cause analysis in quality problem solving
of research information systems: A case study. International Journal of Productivity and
Quality Management , 24 (2), 284–299. doi: 10.1504/IJPQM.2018.091797

Faber, N., De Koster, M. B., & Smidts, A. (2013). Organizing warehouse management. In-
ternational Journal of Operations and Production Management , 33 (9), 1230–1256. doi:
10.1108/IJOPM-12-2011-0471

Fani Sani, M., Van der Aalst, W., Bolt, A., & García-Algarra, J. (2017). Subgroup Discovery in
Process Mining. In International conference on business information systems (pp. 237–252).

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From Data Mining to Knowledge Dis-
covery in Databases. AI Magazine, 17 (3), 54. doi: 10.1609/AIMAG.V17I3.1230

Grosskreutz, H., Rüping, S., & Wrobel, S. (2008). Tight Optimistic Estimates for Fast Subgroup
Discovery. In Joint european conference on machine learning and knowledge discovery in
databases (pp. 440–456).

Gu, J., Goetschalckx, M., & McGennis, L. (2005). Research on Warehouse Operation: A Com-
prehensive review. School of Industrial and Systems Engineering , 177 , 1–21.

Helal, S. (2016, 5). Subgroup Discovery Algorithms: A Survey and Empirical Evaluation. Journal
of Computer Science and Technology , 31 (3), 561–576. doi: 10.1007/s11390-016-1647-1

Herrera, F., Carmona, C. J., González, P., & del Jesus, M. J. (2011, 12). An overview on
subgroup discovery: Foundations and applications. Knowledge and Information Systems,
29 (3), 495–525. doi: 10.1007/s10115-010-0356-2

Ho, G. T., Lau, H. C., Chung, S. H., Fung, R. Y., Chan, T. M., & Lee, C. K. (2008). Fuzzy
rule sets for enhancing performance in a supply chain network. Industrial Management and
Data Systems, 108 (7), 947–972. doi: 10.1108/02635570810898017

Hodge, V. J., & Austin, J. (2004). A Survey of Outlier Detection Methodologies. Artificial
intelligence review , 22 (2), 85–126.

Kamsu-Foguem, B., Rigal, F., & Mauget, F. (2013, 3). Mining association rules for the quality
improvement of the production process. Expert Systems with Applications, 40 (4), 1034–1045.
doi: 10.1016/J.ESWA.2012.08.039

Knoll, D., Reinhart, G., & Prüglmeier, M. (2019, 6). Enabling value stream mapping for internal
logistics using multidimensional process mining. Expert Systems with Applications, 124 ,
130–142. doi: 10.1016/j.eswa.2019.01.026

Kumar, S., & Schmitz, S. (2011). Managing recalls in a consumer product supply chain – root
cause analysis and measures to mitigate risks. International Journal of Production Research,
49 (1), 235–253. doi: 10.1080/00207543.2010.508952

Kumar, V., & Minz, S. (2014). Feature Selection: A literature Review. Smart Computing Review ,

63



4 (3). doi: 10.6029/smartcr.2014.03.007
Kurgan, L., & Musilek, P. (2006). A survey of Knowledge Discovery and Data Mining process

models. The Knowledge Engineering Review , 21 (1), 1–24. doi: 10.1017/S0269888906000737
Lau, H. C., Ho, G. T., Zhao, Y., & Chung, N. S. (2009, 11). Development of a process mining

system for supporting knowledge discovery in a supply chain network. International Journal
of Production Economics, 122 (1), 176–187. doi: 10.1016/j.ijpe.2009.05.014

Lavrac, N., Kavsek, B., Flack, P., & Todorovski, L. (2004). Subgroup Discovery with CN2-SD.
Journal of Machine Learning Research, 5 , 153–188.

Lemmerich, F. (2014). Novel Techniques for Efficient and Effective Subgroup Discovery (Unpub-
lished doctoral dissertation). Julius-Maximilians-Universitat Wurzburg, Wurzburg.

Lemmerich, F., & Becker, M. (2018). pysubgroup: Easy-to-use Subgroup Discovery in Python. In
Joint european conference on machine learning and knowledge discovery in databases (pp.
658–662).

Li, J., Le, T. D., Liu, L., Liu, J., Jin, Z., Sun, B., & Ma, S. (2015, 11). From observational studies
to causal rule mining. ACM Transactions on Intelligent Systems and Technology , 7 (2). doi:
10.1145/2746410

Liu, P., Wang, Q., & Gu, Y. (2009). Study on comparison of discretization methods. In 2009
international conference on artificial intelligence and computational intelligence (Vol. 4, pp.
380–384). doi: 10.1109/AICI.2009.385

Mariscal, G., Marban, O., & Fernandez, C. (2010). A survey of data mining and knowledge
discovery process models and methodologies. The Knowledge Engineering Review , 25 (2),
137–166. doi: 10.1017/S0269888910000032

Meng, M., & Knobbe, A. J. (2011). Flexible enrichment with Cortana – Software Demo. In
Belgian dutch conference on machine learning (pp. 117–119).

Nopparoot, K., Sasithorn, K., Reenapat, A., & Tiranee, A. (2013). RapidMiner Framework for
Manufacturing Data Analysis on the Cloud. In International joint conference on computer
science and software engineering (pp. 149–154).

Olken, F., & Rotem, D. (1995). Random sampling from databases: a survey. Statistics and
Computing , 5 , 25–42.

Olson, D. L. (2020). A Review of Supply Chain Data Mining Publications. Journal of Supply
Chain Management Science, 1 , 15–26. doi: 10.18757/jscms.2020.955

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007, 12). A design science
research methodology for information systems research. Journal of Management Information
Systems, 24 (3), 45–77. doi: 10.2753/MIS0742-1222240302

Prat, N., Comyn-Wattiau, I., & Akoka, J. (2014). Artifact Evaluation In Information System
Design Science Research - A Holistic View. In 18th pacific asia conference on information
systems.

Prodrive Technologies. (2020, 1). Release of Financial statements for 2020 (Tech. Rep.).
Qu, T., Thürer, M., Wang, J., Wang, Z., Fu, H., Li, C., & Huang, G. Q. (2017, 5). System dy-

namics analysis for an Internet-of-Things-enabled production logistics system. International
Journal of Production Research, 55 (9), 2622–2649. doi: 10.1080/00207543.2016.1173738

Raj, A., Mukherjee, A. A., de Sousa Jabbour, A. B. L., & Srivastava, S. K. (2022, 3). Sup-
ply chain management during and post-COVID-19 pandemic: Mitigation strategies and
practical lessons learned. Journal of Business Research, 142 , 1125–1139. doi: 10.1016/
J.JBUSRES.2022.01.037

64



Ramaa, A., Subramanya, K., & Rangaswamy, T. (2012). Impact of Warehouse Management
System in a Supply Chain. International Journal of Computer Applications, 54 (1), 975–
8887.

Ross, B. C. (2014, 2). Mutual information between discrete and continuous data sets. PLoS ONE ,
9 (2). doi: 10.1371/journal.pone.0087357

Sabet, S. A. A. M., Moniri, A., & Mohebbi, F. (2017). Root-Cause and Defect Analysis based on
a Fuzzy Data Mining Algorithm. International Journal of Advanced Computer Science and
Applications, 8 (9), 21–28.

Sariyer, G., Mangla, S. K., Kazancoglu, Y., Ocal Tasar, C., & Luthra, S. (2021). Data analytics
for quality management in Industry 4.0 from a MSME perspective. Annals of Operations
Research. doi: 10.1007/s10479-021-04215-9

Schmidt, M., Tatjana, J., & Hartel, L. (2019). Data based root cause analysis for improving
logistic key performance indicators of a company’s internal supply chain. In Cirp global web
conference (pp. 276–281). doi: 10.1016/j.procir.2020.01.023

Staudt, F. H., Alpan, G., Di Mascolo, M., & Rodriguez, C. M. (2015, 9). Warehouse performance
measurement: A literature review (Vol. 53) (No. 18). Taylor and Francis Ltd. doi: 10.1080/
00207543.2015.1030466

Steven Walfish. (2006). A Review of Statistical Outlier Methods. Pharmaceutical Technology ,
30 (11).

Suriadi, S., Ouyang, C., Aalst, W. M. P. v. d., & Hofstede, A. H. M. t. (2012). Root Cause Analysis
with Enriched Process Logs. In International conference on business process management
(Vol. 132, pp. 174–186). Springer, Berlin, Heidelberg. doi: 10.1007/978-3-642-36285-9{\
_}18

Ting, S. L., Tse, Y. K., Ho, G. T., Chung, S. H., & Pang, G. (2014). Mining logistics data to assure
the quality in a sustainable food supply chain: A case in the red wine industry. International
Journal of Production Economics, 152 , 200–209. doi: 10.1016/j.ijpe.2013.12.010

Todorovski, L., Flach, P., & Lavrač, N. (2000). Predictive Performance of Weighted Relative
Accuracy. In European conference on principles of data mining and knowledge discovery
(pp. 255–264).

Trakulsunti, Y., Antony, J., & Douglas, J. A. (2021). Lean Six Sigma implementation and
sustainability roadmap for reducing medication errors in hospitals. The TQM Journal ,
33 (1), 33–55. doi: 10.1108/TQM-03-2020-0063

Van Leeuwen, M., & Knobbe, A. (2012). Diverse subgroup set discovery . Data Mining and
Knowledge Discovery , 25 , 208–242. doi: 10.1007/s10618-012-0273-y

Viaene, S. (2013). Data Scientists Aren’t Domain Experts. IT Professional , 15 (06), 12–17.
Vinodh, S., & Joy, D. (2012). Structural Equation Modelling of lean manufacturing practices.

International Journal of Production Research, 50 (6), 1598–1607. doi: 10.1080/00207543
.2011.560203

Wang, Y., Caron, F., Vanthienen, J., Huang, L., & Guo, Y. (2014). Acquiring logistics process
intelligence: Methodology and an application for a Chinese bulk port. Expert Systems with
Applications, 41 (1), 195–209. doi: 10.1016/J.ESWA.2013.07.021

Wiendahl, H.-H., Cieminski, G. V., & Wiendahl, H.-P. (2005). Stumbling blocks of PPC: Towards
the holistic configuration of PPC systems. Production Planning & Control , 16 (7), 634–651.
doi: 10.1080/09537280500249280

Wieringa, R. J. (2014). Design science methodology: For information systems and software

65



engineering. Springer Berlin Heidelberg. doi: 10.1007/978-3-662-43839-8
Wilkinson, L. (2012). Revising the Pareto Chart . The American Statistician, 60 (4), 332–334.

doi: 10.1198/000313006X152243
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a Standard Process Model for Data Mining.

In International conference on the practical applications of knowledge discovery and data
mining (pp. 29–40).

Yildirim, P., Birant, D., & Alpyildiz, T. (2017). Discovering the relationships between yarn and
fabric properties using association rule mining. Turkish Journal of Electrical Engineering
and Computer Sciences, 25 (6), 4786–4804. doi: 10.3906/elk-1611-16

Yue, S., Pilon, P., & Cavadias, G. (2002, 3). Power of the Mann-Kendall and Spearman’s rho
tests for detecting monotonic trends in hydrological series. Journal of Hydrology , 259 (1-4),
254–271. doi: 10.1016/S0022-1694(01)00594-7

Zhong, R. Y., Huang, G. Q., Lan, S., Dai, Q. Y., Chen, X., & Zhang, T. (2015, 7). A big data ap-
proach for logistics trajectory discovery from RFID-enabled production data. International
Journal of Production Economics, 165 , 260–272. doi: 10.1016/J.IJPE.2015.02.014

66



Appendices

A Internal Logistics Process Flow

The internal logistics process starts with a material request that is received by the planning de-
partment based on customer agreements. Material requests analyzed for this research are referring
to requests that translate to (a group of) components that are needed at the manufacturing line
to produce a product. The material requests are analyzed in the analyze and process request
activity, based on product lead times, capacity requirements, and planning input requirements.
When requirements are met, the order is accepted. Generally, production orders are only accepted
when sufficient stock is available in the warehouses, which is modelled by the planned order ac-
cepted gateway. An accepted order is materialized in a production planning document taking
into account manufacturing capacities in the release production order process. The information
that is relevant for IL is presented in a document referred to as a production order, containing
information about when components are needed for the planned production run.

Figure 17: BPMN model of the production order process at internal logistics.

A released production order is received by the logistics department and, subsequently, Warehouse
Tasks (WTs) are created to fulfill these production orders in a process referred to as prepare trans-
fer. WTs are documents used to execute goods movements by logistics handlers. WTs contain all
the information required to execute the physical transfer of components into the warehouse, out
of the warehouse, or within the warehouse from one storage bin to another storage bin. After the
creation of WTs components are picked accordingly at the pick goods activity. Subsequently, an
appropriate storage bin should be determined for storing the goods at the prepare goods activity.
Depending on the determined storage bin the applicable storage requirements have to be met,
such as the removal of cartons and wood. Additionally, goods are loaded on handling units (e.g.
trolleys or pallets) that ensure that components can be moved throughout the warehouse facilities
and that the goods are unaffected during transport. Components are transferred in the transfer
goods activity to an orders collect area. Components can be delivered to the manufacturing fa-
cility at the delivery to orders collect activity where goods are stored temporarily before being
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consumed at the assembly line. Another possibility is that components are putaway at another
warehouse in the putaway goods activity, from where they can be processed further.

B Warehouse Performance Indicators

Table 10: Quantitative warehouse performance indicators (Staudt et al., 2015)

Dimension Measure Definition
Time Order Lead Time Lead time from order placement to shipment

Receiving Time Unloading time
Order Pick Time Lead time to pick an orderline
Queuing Time Time that products wait on hold to be handled

Putaway Time
Lead time since a product(s) has been unloaded to when it is stored in
its designated place

Quality On-time delivery Number of orders received by customer on or before committed date
Customer satisfaction Number of customer complaints per number of orders delivered
Order Fill Rate Orders filled completely on the first shipment

Physical Inventory Accuracy
Measures the accuracy of the physical inventory compared to the
reported inventory

Stock-out Rate The percentage of stock not available upon the requested need
Scrap Rate Rate of product loss and damage

Costs Inventory Costs Total storage costs/unit or Inventory level (costs)
Cost as a % of Sales Total warehousing costs as a percent of total company sales
Order Processing Costs Total processing cost of all orders per number of orders

Productivity Labour Productivity
Ratio of the total number of items managed to the amount of
item-handling working hours

Throughput Items/hour leaving the warehouse
Shipping Productivity Total number of products shipped per time period
Transport Utilization Vehicle fill rate

Warehouse Utilization
The average amount of warehouse capacity used of a specific
amount of time

Inventory Space Utilization Rate of space occupied by storage
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C Activity and Case Mappings

C.1 Activity Mappings

The automatic creation of activity mappings by Knoll et al. (2019) was implemented to reduce
manual effort. For the creation of these mappings two hierarchy levels were defined. Being the
storage bins with the lowest level of aggregation (section 3.2) as Ab. And, the activity area Aa was
defined as an aggregated storage location activity. Subsequently, the WTs were mapped against
seven standardized material flow activities which are depicted in Table 11, where:

1) The transport activity ratio ηt compares the source activity area and the destination activity
area. If the source activity area equals the destination activity area, no transport between storages
is included (e.g. buffer, relocate within area).
2) The part quantity ratio ηq calculates the modification of the part quantity between the prede-
cessor event and the event. If ηq > 1 the event modified the unit load by removing parts (e.g.
distribute). Else, if ηq < 1, additional parts are added to the unit load (e.g. collect). Otherwise
no modification to the amount is performed.
3) The unique part ratio ηu calculates the unique count of parts for the predecessor event compared
to the current event. ηq and nu,pre counts the number of unique parts of the event divided by
the predecessor event. If ηq < 1, the event contains a sequencing of multiple parts. If ηq > 1, a
deconsolidation event is included. Else if, ηq = 1, the unit load has not been modified.
4, 5) The activity predecessor ratio ηa,pre and the activity successor ratio ηa,suc describe the rela-
tionship of a single event within the network of events. If ηa,pre > 1, the event collects parts and
else if ηa,pre < 1 the event distributes parts. Furthermore, ηa,pre determines the role of an event.
If ηa,pre = 0, the event is a starting event (e.g. pick at material storage).
6) The average duration of an activity ta describes the time-based dimension. Using the duration
ta, the activities of buffering and storing can be differentiated.

Table 11: Six metrics to characterize the event data.

# Metric Formula

1 Transport activity ratio ηt =

1, if Aa, source ̸= Aa, destination

0, if Aa, source = Aa, destination

2 Part quantity ratio ηq = nq,pre/nq

3 Unique part ratio ηu = nu,pre/nu

4 Activity predecessor ratio ηa,pre = na,pre/na

5 Activity successor ratio ηa,suc = na,suc/na

6 Activity duration ta = TSa − TSpre

For all events the metrics were calculated and mapped to material flow activities which is shown
in Table 12.
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Table 12: Table mapping of five material flow metrics to the internal logistics activities.

The pseudo-code of the mapping of WTs to activities is provided in Figure 18.

Figure 18: Pseudo code activity mappings (based on Knoll et al (2019)).

C.2 Case Mappings

The pseudo-code of the mapping of WTs to cases is provided in Figure 19.

Figure 19: Pseudo code case mappings (based on Knoll et al (2019)).
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D Vikamine

The Vikamine framework created by Atzmueller and Lemmerich (2012) provides a general and ex-
tendable framework for subgroup discovery. The software covers two important features which we
will discuss here. First, Vikamine provides a workbench to support automatic subgroup discovery.
An overview of the workbench is provided in Figure 20. In this mode different algorithms and
metrics are provided to find subgroups in an automatic manner. A large amount of algorithms
are available to support subgroup discovery tasks. It can also be combined with different quality
metrics. Furthermore the number of In the workbench first the target variable has to be specified.
Furthermore, the number of attribute-value pairs can be defined and other pruning techniques
can be applied. Output is provided in an overview with subgroups and and the quality measures
selected. For the categorical targets we see the amount of sought after observations in the sub-
group. When the target is numerical we see the difference between the subgroup and population
mean.

There are however still things that could be improved for this application. For example, the
subgroups could not be exported to Excel for numerical targets, and numerical indicators can only
be used when discretization has been applied first. Furthermore, the different use of the quality
metrics and SD algorithms is not clear for categorical or numerical targets. Moreover, targets
can be numerical or binary, but if a target is categorical the different categories are analyzed as
separate variables. Other problems found were related to the selection of subgroups from the
results page, and the implementation of quality metrics. Concluding, the visual interface provides
the user with a lot of information, but is quite hard to interpret.

Figure 20: An overview of the Vikamine workbench.
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E Data Preparation

Figure 21: Final products and their number of warehouse tasks.

(a) (b)

Figure 22: Boxplots of (a) the number of warehouse tasks per case, and (b) order pick time per case.

Figure 23: Boxplot of the duration of events.
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F Feature Importance

F.1 Correlation between important variables

Table 13: Pearson correlation (>.95) of important variables. Italic variables were removed.

Variable Correlation
SupplyArea_A1D-A001

0,986
SapDepartmentIdDescription_HVP
SupplyArea_G4-A001

1,000
SapDepartmentIdDescription_SGPS Sensor
SupplyArea_LM

0,973
SapDepartmentIdDescription_SMD
SupplyArea_PT2-CH01

1,000
SapDepartmentIdDescription_CHM
WorkCenterDescription_HVP Automated Station 01 ASL SGPS

1,000
SapDepartmentIdDescription_SGPS Sensor
WorkCenterDescription_Lasermarker SMD

0,973
SapDepartmentIdDescription_SMD
WorkCenterDescription_SA Engineering

1,000
SapDepartmentIdDescription_LAB
WorkCenterDescription_SAC Pre-Clean

1,000
SapDepartmentIdDescription_PRCL
OperationDescription_Heat Staking

1,000
WorkCenterDescription_HVP Heat staking

F.2 Mutual Information of selected variables

Table 14: Feature importance by applying mutual information measure ( >0.005).

Variables Information Gain Variables Information Gain
Transport_T 0,359 ScrapPercentage 0,009
NrOfWTs 0,140 SupplyArea_ASSY 0,008
Sort_T 0,091 OperationDescription_System Assembly 0,008
Buffer_T 0,078 WorkCenterDescription_SAC Power Cabinet 0,008
Pick_T 0,038 WorkCenterDescription_Lasermarker SMD 0,007
PickingLinesCount 0,030 OperationDescription_Lasermarker1 0,007
Distribute_T 0,028 MaterialGroupDescription_NXT3 Empty pwr cab 0,006
NrGoodsReceiptBooking 0,026 SapDepartmentIdDescription_SMD 0,006
SapDepartmentIdDescription_SAC 0,011 TechnologyProgramId_PC 0,006
PickingTargetBool 0,010 SapDepartmentIdDescription_CHM 0,005
SapDepartmentIdDescription_SA 0,009 OperationDescription_Product Assembly 0,005
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G Results Overview

G.1 Global Analysis

Table 15: Overview of subgroups found using all input variables on case level (attribute-value pair = 1).

Var
Nr.

Variable NWRAcc
Pop
Size

SG Size Lift SG Mean
Pop
Mean

1 Consolidate_T[2406.5;[ 0,076 70000 13976 2,091 0,734 0,351
2 Transport_T[2317.5;[ 0,076 70000 13915 2,094 0,735 0,351
3 NrOfWTs[7.5;8.5[ 0,029 70000 20450 1,283 0,45 0,351
4 NrOfWTs[8.5;[ 0,026 70000 8679 1,604 0,563 0,351
5 Buffer_T[492.5;[ 0,024 70000 13275 1,364 0,479 0,351
6 Pick_T[0.5;[ 0,014 70000 11016 1,248 0,438 0,351
7 Transport_T[993.5;2317.5[ 0,013 70000 13999 1,192 0,418 0,351
8 Distribute_T[0.5;[ 0,012 70000 3144 1,785 0,627 0,351
9 Actual_Quantity_Total[427.5;[ 0,012 70000 13514 1,173 0,412 0,351
10 SupplyArea_CLRM_ASSY]-;0.5[ 0,011 70000 58901 1,038 0,365 0,351
11 PickingTargetBool[0.5;[ 0,011 70000 3017 1,744 0,612 0,351
12 TechnologyProgramId_PC]-;0.5[ 0,011 70000 52967 1,040 0,365 0,351
13 NrGoodsReceiptBooking[588.5;727.5[ 0,01 70000 13994 1,141 0,401 0,351
14 Actual_Quantity_Total[115.5;427.5[ 0,009 70000 14015 1,128 0,396 0,351
15 PickingLinesCount]-;4431[ 0,008 70000 13997 1,108 0,389 0,351
16 SupplyArea_ASSY[0.5;[ 0,006 70000 36112 1,034 0,363 0,351
17 PickingLinesCount[4431;5283[ 0,005 70000 14109 1,068 0,375 0,351
18 TechnologyProgramId_ECS[0.5;[ 0,005 70000 13389 1,071 0,376 0,351
19 Category_Component Request]-;0.5[ 0,004 70000 30387 1,024 0,36 0,351
20 Actual_Quantity_Total[34.5;115.5[ 0,003 70000 13960 1,041 0,365 0,351
21 NrGoodsReceiptBooking[800.5;886.5[ 0,002 70000 13851 1,034 0,363 0,351
22 PickingLinesCount[5283;6183.5[ 0,002 70000 13849 1,031 0,362 0,351
23 HandlingUnitTypeDescription_source_Case, Small - Size <175*135*100MM]-;0.5[ 0,001 70000 69522 1,004 0,353 0,351
24 SupplyArea_LM]-;0.5[ 0,001 70000 60145 1,005 0,353 0,351
25 ScrapPercentage[0.5;[ 0,001 70000 14160 1,019 0,358 0,351
26 TechnologyProgramId_CMS]-;0.5[ 0,001 70000 56151 1,004 0,353 0,351
27 HandlingUnitTypeDescription_source_Pallet, Euro, ESD - Size 0.8*1.2*<0.9m]-;0.5[ 0,001 70000 69426 1,003 0,352 0,351
28 HandlingUnitTypeDescription_source_Case, Medium - Size <600*400*170MM]-;0.5[ 0,001 70000 69590 1.003 0,352 0,351

G.2 Local Analysis of Transport, Buffer, Pick and Distribute Activities

G.2.1 Transport

The second variable to be analyzed is Transport_T [2317,5;], considering the cases that trans-
port components for 38 minutes (2317 seconds) or more. Thus, results were conditioned on the
transportation time being longer than 2317 seconds. Subsequently, events were analyzed that
contributed the most to longer transportation times (> three hours). First, it was observed that
the ’queue’ was the most important variables in relation to transport time, as it provides this
subgroup with the highest WRAcc values (Table 16). Specifically, the queues ’INT TRANS’,
referring to components being transported between warehouses by truck, the ’L DECON’, refer-
ring to components being handled in the (de-)consolidation area of warehouse L, and lastly ’A
INTERNAL’, referring to components being transported from warehouse A to warehouse G by
card. These three queues were analyzed in more detail.

Table 16: Subgroups of queues with transportation time > 2317 seconds.

# Subgroup Description Quality Subgroup Size Target/Subgroup TP Rate Coverage Lift
1 Queue=INT_TRANS AND Transport>2317s 0,024 17250 49,80% 29,40% 6,10% 4,843
2 Queue=L_DECON AND Transport>2317s 0,005 5569 36,90% 7,00% 2,00% 3,584
3 Queue=A_INTERNAL AND Transport>2317s 0,001 2135 19,30% 1,40% 0,80% 1,88

The subgroups with in transit queues and their respective source and destination locations are
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presented in Table 17. From this table it can be induced that components have to wait a significant
amount of times at the outbound locations of warehouses L and J when they wait to be transported
to the manufacturing facility in building G. This is illustrated by the respective source locations
OUT L -> G (subgroups 27 and 28) and OUT J -> G (subgroups 29 and 30), which represent
outbound areas that are used to temporarily store components on pallets before they are loaded
into trucks. Trucks are indicated with DRIVER1 and DRIVER2 (subgroups 25 and 26). All
components that need to be transported by truck are delivered by one of these trucks. From
subgroups 25 and 26 we can observe by the high target/subgroup rate of these subgroups (> 50%),
that a lot of these transport movements are waiting for longer than three hours. Furthermore,
the long waiting times at the outbound area of warehouse F (subgroup 32) show the similar
long waiting times for truck pickups at this location. Hence, the duration for components to be
loaded into a truck and transported to the production facility is rather long. Additionally, the
target/subgroup rate is rather high for all these subgroups (> 40%), meaning that components
often have to wait longer than three hours before being transported to the manufacturing facility.

Table 17: Subgroups of in transit queues with transportation time > 2317 seconds.

# Subgroup Description Quality Subgroup Size Target/Subgroup TP Rate Coverage Lift

24
Queue=INT_TRANS AND Source ID=OUT_L_->_G AND
Transport>2317s

0,014 9357 51,70% 16,50% 3,30% 5,019

25
Destination ID=DRIVER1 AND Queue=INT_TRANS AND
Transport>2317s

0,012 8448 52,00% 15,00% 3,00% 5,057

26
Destination ID=DRIVER2 AND Queue=INT_TRANS AND
Transport>2317s

0,007 4762 51,40% 8,40% 1,70% 4,998

27
Destination ID=DRIVER1 AND Queue=INT_TRANS AND
Source ID=OUT_L_->_G AND Transport>2317s

0,006 3880 57,30% 7,60% 1,40% 5,565

28
Destination ID=DRIVER2 AND Queue=INT_TRANS AND
Source ID=OUT_L_->_G AND Transport>2317s

0,004 2714 54,20% 5,00% 1,00% 5,267

29
Destination ID=DRIVER1 AND Queue=INT_TRANS AND
Source ID=OUT_J_->_G AND Transport>2317s

0,002 1891 41,60% 2,70% 0,70% 4,044

30
Destination ID=DRIVER2 AND Queue=INT_TRANS AND
Source ID=OUT_J_->_G AND Transport>2317s

0,001 1174 40,60% 1,60% 0,40% 3,94

31
Destination ID=G-DECONSOLIDATION AND
Queue=INT_TRANS AND Source ID=OUT_L_->_G AND
Transport>2317s

0,001 745 48,60% 1,20% 0,30% 4,722

32
Queue=INT_TRANS AND Source ID=OUT_F_->_G AND
Transport>2317s

0,001 471 57,80% 0,90% 0,20% 5,612

The subgroups with the L (de-)consolidation queues and their respective source and destination
locations is presented in Table 18. From this table, it was observed that the earlier described
capacity problem in warehouse L not only causes long consolidation times in this warehouse, but
also long transportation times. Subgroups 9 to 15 reflect components being temporarily stored
on one of the L PT cards which do not change handling unit type, thus they do not have to be
consolidated, also have to wait for long times before they are actually transported to the temporary
storage locations.
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Table 19: Subgroups of internal transport A queues with transportation time > 2317 seconds.

# Subgroup Description Quality
Subgroup

Size
Target/

Subgroup
TP

Rate
Coverage Lift

23
Queue=A_INTERNAL AND Source ID=OUT_A_->_G AND
Transport>2317s

0,001 1911 18,90% 1,20% 0,70% 1,841

Table 18: Subgroups of L (de-)consolidation queues with transportation time > 2317 seconds.

# Subgroup Description Quality Subgroup Size Target/Subgroup TP Rate Coverage Lift

9
Queue=L_DECON AND Source ID=L-PT03 AND
Transport>2317s

0,001 901 34,30% 1,10% 0,30% 3,333

10
Queue=L_DECON AND Source ID=L-PT04 AND
Transport>2317s

0,001 958 31,50% 1,00% 0,30% 3,064

11
Queue=L_DECON AND Source ID=L-PT02 AND
Transport>2317s

0,001 875 33,50% 1,00% 0,30% 3,254

12
Queue=L_DECON AND Source ID=L-PT06 AND
Transport>2317s

0,001 608 43,10% 0,90% 0,20% 4,188

13
Queue=L_DECON AND Source ID=L-PT05 AND
Transport>2317s

0,001 515 44,10% 0,80% 0,20% 4,283

14
Queue=L_DECON AND Source ID=L-PT07 AND
Transport>2317s

0,001 378 50,80% 0,70% 0,10% 4,936

The subgroup with the queue of internal transport in warehouse A and the respective source and
destination location is presented in Table 19. Transport from warehouse A is primarily performed
by cards instead of trucks as this warehouse is physically connected to the manufacturing facility in
building G. From subgroup (23) it is induced that some components are waiting for transport for a
long period of time at the OUT A -> G location. However, the target/subgroup rate is rather low
(18,9%), hence this does not occur as often compared to components that are transported by truck.

Lastly, the subgroups of storage types and transportation time > 2317 seconds are provided in
Table 20. Looking at the coverage rate and the target/subgroup metric it can be concluded that
components are being transported for a long time when stored in either the pick & drop areas
(subgroups 15, 17, 21, and 22) and in pick & pack areas (subgroups 16, 18 and 20). In the pick &
drop areas, components need to wait in outbound areas before they are picked up by trucks. Long
transport time in the pick & pack areas is likely to be attributed to a lack of storage capacity in
these locations.

Table 20: Subgroups of storage types and transportation time > 2317 seconds.

# Subgroup Description Quality Subgroup Size Target/Subgroup TP Rate Coverage Lift

15
StorageType=P&D_building_L AND
Transport>2317s

0,016 10027 54,80% 18,60% 3,50% 5,269

16
StorageType=Pick_&_Pack_building_L AND
Transport>2317s

0,015 12658 43,10% 18,50% 4,50% 4,146

17
StorageType=P&D_building_J AND
Transport>2317s

0,006 4445 48,00% 7,20% 1,60% 4,615

18
StorageType=Pick_&_Pack_building_G AND
Transport>2317s

0,003 4466 26,70% 4,00% 1,60% 2,563

19
StorageType=(De)-Consolidation_building_G_Order_Coll AND
Transport>2317s

0,002 1164 50,70% 2,00% 0,40% 4,872

20
StorageType=Pick_&_Pack_building_A AND
Transport>2317s

0,001 2708 22,80% 2,10% 1,00% 2,19

21
StorageType=P&D_building_F AND
Transport>2317s

0,001 574 62,50% 1,20% 0,20% 6,012

22
StorageType=P&D_building_A AND
Transport>2317s

0,001 1587 27,00% 1,50% 0,60% 2,598
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G.2.2 Buffer

The buffer subgroup analyzed from the global knowledge section is Buffer[492.5;]. This subset
considers events that buffer components for longer than 8.2 minutes (492 seconds), subsequently,
the cases that have a duration of over 3 hours were analyzed. From Table 21 it is observed that
buffer times longer than 3 hours are present in buildings G, J, L, and A (subgroups 5, 6, 7, and
8). Further analysis of these subgroups revealed that buffering times were especially long for
events that have source location Order Delivery G (Table 22, subgroup 15). Manual inspection
of these events and the corresponding cases showed that components in these subgroups were
often picked in Kardex locations. As mentioned, Kardex locations are a form of automated
storage and retrieval systems used to handle small items and are located near the manufacturing
areas. The buffer times for this subgroup of components can be explained by components that
are picked by logistics handlers, and have to be buffered such that they can be consolidated with
other components from their respective production orders. Reasoning that the other components
belonging to that production order are stored in other warehouses. Thus, items being from the
Kardex locations have to be buffered before the other components arrive.

Table 21: Subgroups of storage types and buffer time > 492 seconds.

# Subgroup Description Quality
Subgroup

Size
Target/

Subgroup
TP

Rate
Coverage Lift

5
Buffer>492s AND
StorageTypeDescription=Production_Supply_ID_G

0,002 3735 25,50% 3,20% 1,30% 2,46

6
Buffer>492s AND
StorageTypeDescription=Pick_&_Pack_building_J

0,001 2432 25,30% 2,10% 0,90% 2,435

7
Buffer>492s AND
StorageTypeDescription=Pick_&_Pack_building_L

0,001 3410 20,60% 2,40% 1,20% 1,98

8
Buffer>492s AND
StorageTypeDescription=Pick_&_Pack_building_A

0,001 3882 15,10% 2,00% 1,40% 1,456

Table 22: Subgroups of storage types source and destination location and buffer time > 492 seconds.

# Subgroup Description Quality
Subgroup

Size
Target/

Subgroup
TP

Rate
Coverage Lift

15
Buffer>492s AND
Source ID=ORDER_DELIVERY-G AND
StorageTypeDescription=Production_Supply_ID_G

0,002 3756 26,30% 3,40% 1,30% 2,54

G.2.3 Pick

In this section the subgroups in relation to the variable Pick_T [0,5;] from the global knowledge
section are analyzed. Results are depicted in Table 23. First, it should be noted that the coverage
of these subgroups is rather low (< .3%), indicating that picking actions taking longer than three
hours are very rare. Subgroups 1 refers to the picking of components from shelf storage sections.
Shelf storage sections are used very commonly in the IL process. Lastly, subgroups 3 and 4 in-
dicate the ’Case Small’ and ’Case Medium’ handling units used in the picking process. However,
these handling units are often used during the picking process, hence no specific cause of long
duration can be attributed to this subgroup.
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Table 23: Subgroups of storage types and handling units with picking time > 0 seconds.

# Subgroup Description Quality
Subgroup

Size
Target/

Subgroup
TP

Rate
Coverage Lift

1
Pick>0s AND
StorageTypeDescription=Shelf_storage

0,001 499 47,30% 0,80% 0,20% 4,555

2
Pick>0s AND
StorageTypeDescription=Kardex

0,001 658 35,00% 0,80% 0,20% 3,366

3
HandlingUnitType_dest=Case,_Small AND
Pick>0s

0,001 840 33,50% 1,00% 0,30% 3,222

4
HandlingUnitType_source=Case,_Medium AND
Pick>0s

0,001 821 30,20% 0,80% 0,30% 2,909

G.2.4 Distribute

For the distribute subgroup analyzed from the global knowledge section (Distribute_T[0.5;]) the
significant subgroups are presented in Table 24.

The SD results analysis has not indicated specific causes for long distribution times. Hence, domain
knowledge was applied to interpret these subgroups. At the pick point area, where distribution
events take place, pallets with components are temporarily stored such that components can be
distributed. However, when there is no available space to store the pallets, the efficiency of this
process is greatly reduced. When this happens components are stored here for a long time while
they should be stored only for a short time. Further reduction in event duration at the pick point
area can be attributed to the subsequent pick & pack area utilizing the full storage capacity.
Meaning that components from the pick point area cannot be distributed to the pick & pack
area because of the lack of physical storage space. Furthermore, logistics handlers have indicated
that the dimensions and weight of components can also attribute to longer processing times, as
some larger components need to be moved by more than one logistics handler. Lastly, for some
components, a lot of administrative steps need to be conducted in the WMS, which takes a lot of
time to process. This also provides insight on why cases with distribution activities have a longer
case duration.

Table 24: Subgroup of storage type and distribution time > 0 seconds.

# Subgroup Description Quality
Subgroup

Size
Target/

Subgroup
TP

Rate
Coverage Lift

1
Distribute_Bool=True AND
StorageTypeDescription=Pick_Point_J

0,001 1669 26,60% 3,00% 0,58% 2,316
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