
 Eindhoven University of Technology

BACHELOR

One-week SBE course for water locks supervisory control

de Feijter, Ilias I.A.

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/9da72ada-01f1-4939-9c1d-d232a8062f14

Final bachelor project

One-week SBE course for water locks
supervisory control

Quartile 3-4 - 2021-2022

Full Name Student ID Study
I.I.A. de Feijter 1470590 Mechanical

Engineering

Supervisors: Dr.ir. J.M. van de Mortel-Fronczak, Em.prof.dr.ir. J.E. Rooda

Eindhoven, July 10, 2022

Abstract

Rijkswaterstaat,[24], is the executive agency of the Dutch Ministry of Infrastructure and Water Management.
It is responsible for the construction, management, design, and maintenance of infrastructural facilities in
the Netherlands, e.g. bridges, tunnels, and water locks. Such systems are called cyber-physical systems
(CPS) and are essential parts of the infrastructure, especially in a country like the Netherlands, with many
rivers and waterways[24]. It is important for the economy and the safety of people that such systems operate
safely and as intended. Therefore, a supervisor that removes all dangerous behaviour from the system must
be developed[8]. Synthesized-based engineering, SBE, [8] provides the method to develop such a supervisor
correctly, and the Eclipse Supervisory Control Engineering Toolkit (ESCET™)[7], developed by Eindhoven
University of Technology, provides the tools to execute the method. Rijkswaterstaat currently outsources its
supervisor development for water locks to external companies. However, it is important that its engineers
know how SBE works such that they know what they are talking about and can have a critical look at the
provided supervisors from the external companies. This project proposes a one-week course in which an
engineer familiar with water locks learns how to use ESCET™ to develop supervisory controllers for water
locks. The result is a course consisting of 10 modules, of which the first four have been developed in this
project. The modules consist of a theory section, quizzes that test whether the participant has understood
the theory, an ESCET™ section explaining how the theory is applied in ESCET™ , exercises, and the water
lock case. The water lock case goes through the process of synthesizing and testing supervisors for water
locks, from defining the system to testing the supervisors on models. In previous projects, similar cases have
been applied in courses with success [14][12]. Participants of those courses reported that the cases made
them understand the theory better. The course developed in this project explains the development process
of supervisors in a general way and focuses on water locks by implementing the water lock case. However,
the course focus can be changed by replacing the water lock case with another case, e.g. a tunnel case.

1

Contents

1 Introduction 3
1.1 Project context . 3
1.2 Project objective . 4
1.3 Report outline . 4

2 Course setup 5
2.1 Course profile . 5
2.2 Course structure . 6
2.3 Water lock case . 8

3 Literature 11
3.1 Supervisory control theory . 11
3.2 Learning theory . 11

4 Building Website 15
4.1 Website . 15
4.2 Figures . 15
4.3 Recommendations website . 16

5 Conclusion and Recommendation 17
5.1 Conclusion . 17
5.2 Recommendation . 17

References 18

Appendices 19

A Project files 19

B Website files instructions and contents 19
B.1 Open the website . 19
B.2 Change the content and style of the website . 19
B.3 Create an exercise or assignment . 19
B.4 Create a quiz . 20
B.5 Other files . 21

C Latex files instruction 22
C.1 Make figure . 22
C.2 Change figure settings . 22

D CIF files contents 23

1 Introduction
This chapter introduces the project by giving the project’s context and objective. At the end of the chapter,
the outline of the report is provided.

1.1 Project context

Rijkswaterstaat,[24], is the executive agency of the Dutch Ministry of Infrastructure and Water Management.
It is responsible for the construction, management, design, and maintenance of infrastructural facilities in the
Netherlands, e.g. bridges, tunnels, and water locks . Such systems are called cyber-physical systems (CPS),
[11] which are mechanical systems controlled by a computer-based algorithm. Figure 1 shows a schematic
overview of such a system.

Figure 1: Schematic overview of a cyber-physical system

A CPS consists of mechanical components, actuators, sensors and resource controllers. The actuators of
a CPS actuate the mechanical components, and sensors provide the feedback on the position or state of
the mechanical components to the resource controllers that control the actuator’s movement. Based on the
feedback from the sensors obtained via the resource controllers, the supervisory controller (supervisor) can
disable the movement of the actuators via the resource controllers. The supervisor is between the human
operator of the CPS and the CPS itself to ensure the safe and desired operation of the system. The supervisor
does not allow dangerous behaviour to occur in the system. For example a supervisor disables opening a
water lock gate when the water level at both sides of the gate is not equal.

Therefore, these supervisors must be correct for the safe operation of infrastructure and the safety of people.
A correct supervisor starts by making the supervisor in a proper systematic way that minimizes human
errors from occurring in the process. The synthesis-based design process synthesizes a supervisor, with an
algorithm, out of a discrete-event (plant) model, also called plant model, of the CPS and a model of the
requirements[8]. A discrete-event model only contains all the states a system can be in and the transitions
between these states without taking time into account, where the system modelled is called a discrete-event
system [8]. This synthesis algorithm incorporates all supervisor requirements correctly into the supervisor
[8]. When synthesized, the supervisors are validated and tested on a model of the CPS to ensure it only
allows desired behaviour of the CPS and removes dangerous behaviour. When the testing shows that a
requirement is wrongly defined by the engineer or an additional requirement is needed, it is easily solved
by changing the requirement model and re-synthesizing the supervisor. When the supervisor is finished,

3

PLC code can be generated to control the actual CPS or a digital twin. This way of designing supervisors
significantly reduces the development time and increases the quality of supervisory controllers, and is also
referred to as Synthesis-Based Engineering (SBE) [8].

Eindhoven University of Technology (TU/e) has developed the Eclipse Supervisory Control Engineering
Toolkit (ESCET™)[7], which provides the tools for this synthesis-based design process. The toolkit includes
the modelling language, editor and simulator, and tools to perform synthesis and code generation. With
ESCET™, supervisors can be synthesized and tested with simulation and PLC code can be generated from
them.

1.2 Project objective

Rijkswaterstaat currently outsources its supervisor development for water locks to external companies. How-
ever, it is important that its engineers know how this synthesis-based design process works such that they
know what they are talking about and can have a critical look at the provided supervisors from the external
companies. Therefore, this project’s goal is to propose a one-week course in which an engineer familiar with
water locks learns how to use ESCET™ to develop supervisory controllers for water locks.

1.3 Report outline

This report is structured as follows. Chapter 2 provides and substantiates the course setup, the elements of
the course and the platform on which the course is provided. Chapter 3 discusses the literature consulted for
making the course setup and gaining the knowledge to make the course content. The chapter substantiates,
with the literature, the choices made for the course elements and structure. Chapter 4 explains the tools
used to build the platform on which the course is provided. Finally, Chapter 5 provides the conclusion and
a summary of the recommendations for a subsequent project.

4

2 Course setup
Before developing the course content, it is important to consider the course setup, including the course profile
and structure, to prevent discrepancies between the initial course objective and the final course. By clearly
defining the course profile, including the aim and learning outcomes, at the start of developing the course,
the course content required to meet the course profile can be easier defined. The structure of this content and
how it is presented in the course is defined in the course structure. Defining the course structure correctly
ensures that all content required to meet the course profile is present. This chapter gives the course setup
and the reasoning behind it.

2.1 Course profile

2.1.1 Assumed knowledge

The participants of this course are assumed to have a university of applied sciences or a university degree
at a technical level, meaning that the participants can think in an abstract and problem-solving way. This
course is written for the supervisory control development of water locks using ESCET™. So knowledge of
water lock control and behaviour and programming is recommended but not required.

2.1.2 Aim

This course aims to enhance and enlarge engineers’ understanding and knowledge of supervisory control
theory and discrete-event systems. Furthermore, this course aims to teach the participants how to use
ESCET™ (Eclipse Supervisory Control Engineering Toolkit) to implement the theory in practice to obtain a
proper supervisory controller of a system. In this project, the course focuses on supervisors for water locks.
However, the course is set up in such a way that the focus can be changed to another kind of system. How
the course focus can be changed to another application than water locks is explained in Subsection 2.2.2.

2.1.3 Target group

The course is written for engineers of Rijkwaterstaat familiar with water locks. Therefore, special attention
to water lock is given in the practical application part of the course. The course, however, explains the
development of a proper supervisory controller in a general way. So the knowledge gained from this course
is widely applicable to a large field of applications and is therefore also useful for people with a different
background.

2.1.4 Learning outcomes

At the end of the course, after thoroughly studying the course modules and doing the exercises and assign-
ments, the participant is expected to:

• Know and understand discrete-event systems. The participant knows what a discrete-event system is,
what the properties of such systems are, and what their abstraction levels are.

• Know the definition of automata with associated terms: locations, events, transitions, variables, and
initial and marked states.

• Be able to apply the synchronous composition on automata.

• Know concepts encountered in supervisory control synthesis, like non-blockingness, controllability, and
maximal permissiveness.

• Know the basic supervisory control problem and be able to apply the synthesis procedure manually on
a simple uncontrolled plant to gain a supervisory controller.

• Know how automata and state-based expressions specify a requirement model.

• Know how to use ESCET™ and the CIF language.

• Be able to use ESCET™ to make a model of the uncontrolled plant and of the requirements.

• Be able to use ESCET™ to synthesize a supervisory controller from the plant and requirement model.

• Be able to use ESCET™ and Scalable Vector Graphics (SVG) visualization to validate the synthesized
controller.

5

• Develop a controller for a water lock by using ESCET™.

2.2 Course structure

2.2.1 Course platform

The course is provided via a website. This website is straightforward and enables an interactive learning
experience in which theory and practice alternate. A website gives much freedom in designing the course.
Almost everything is possible and can be added to a website. It enables interaction in the form of quizzes
and creates structure by having multiple web pages. Currently, the website is a sort of a text file with some
quizzes and exercises that give feedback to allow interaction. However, in a subsequent project, more features
can be added to the website (see Subsection4.3. Furthermore is a website easily shared with participants
both offline and online. The website is elaborated on in Chapter 4.

2.2.2 Learning activities

The project objective states that the course should require one week, meaning 40 hours, to be completed.
The decision was made to divide the course content into 10 modules of 4 hours, each requiring 1.5 hours of
studying the theory and 2.5 hours of doing the exercises and assignments. This setup gives the participant
the power to plan his learning path. Ideally, the participant finishes one module every day, but he can choose
to do two modules a day or only a part (theory or exercise) of a module.

Each module starts by explaining the theory that is divided into sections. At the end of each section, a
small quiz is provided to test whether the participant has understood the theory. After the theory part,
the ESCET™ section explains how the theory is applied in ESCET™ . After the ESCET™ section, exercises
are provided, which are more challenging than the quizzes and require a better understanding of the theory.
The module ends with making a part of the water lock case. This case takes the participants through
the process of synthesizing and testing supervisors for water locks. The participants can make the case by
making assignments with the same difficulty level as the exercises. The next chapter presents the scientific
substantiation for the chosen learning activities.

As discussed earlier in this chapter, is the course written in a general way such that it can be used for
multiple applications. The water lock case makes this course aim for supervisor synthesis of water locks.
The theory, quizzes, and exercises explain the supervisory control theory in a general way with arbitrary
examples and exercises. The advantage of this is that the course focus can be changed from water locks to,
for example, tunnels by changing the water lock case with a tunnel case. The tunnel case still has to be
made, but the rest of the course can remain unchanged.

The CIF models of the exercises, water lock, and the examples used in the theory part can be found in A,
and their contents are elaborated in D.

2.2.3 Course modules

The first four modules were developed in this project. The participants know at the end of module 4 how
they should make supervisors of discrete-event systems and how they can test their supervisor on a discrete-
event model with SVG visualization. In a subsequent project Modules, 5 through 10 can be developed.
Recommendations for the contents of these modules are provided in Subsection 2.2.4. Below, a list with the
contents of Modules 1 through 3 is provided.

• Module 1: Introduction and discrete-event systems
Automata are used to make discrete-event models [20] and consist of states and transitions between
the states, representing the same states and transitions of the system it represents. The state of an
automaton is a combination of a location and all the variables’ values. The transitions of an automaton
are labelled with events [20].

This module introduces the course by giving the course guide, a general introduction, and how it is set
up. Furthermore, it gives an overview of what supervisory controllers are and their design processes.
Also, discrete-event systems, automata, locations, variables and events are explained.

• Module 2: Network of Automata
Automata can be reachability, blocking and have deadlock. The term reachability means all states are

6

reachable from the initial state. An automaton has deadlock when from at least one of its states, no
transitions can be taken and is blocking when at least one of its states has no sequence of transitions
ending in a marked state. A marked state is a state defined by the system’s modeller to be stable. [20]

To model a system, a discrete-event model can contain multiple automata, called a network of au-
tomata. Variable and events can be shared between the automata of a network. The network of
automata has to synchronize on shared events. To convert a network of automata into a single au-
tomaton with the same behaviour, the synchronous composition is applied on the network of automata.
[20]

This module explains the terms reachability, deadlock and non-blocking. Furthermore, how automata
interact with each other, shared variables, synchronization on events, and synchronous composition on
automata are explained.

• Module 3: Plant model and basic supervisory synthesis procedure
The basic supervisor synthesis procedure allows to remove deadlock and blocking behaviour in au-
tomata, resulting in a supervisor that is controllable, non-blocking and maximally permissive. A
supervisor is controllable when it does not disable uncontrollable events. Uncontrollable events are
events the supervisor cannot disable, defined by the system’s modeller. A supervisor is non-blocking
when the system under the supervisor’s control is not blocking. A supervisor is maximally permissive
if it only disables events for the purpose of removing blocking behaviour. [20]

This module explains the basic supervisory synthesis procedure and how one can make a supervisor
for a simple uncontrolled plant model by explaining the basic supervisory control synthesis algorithm
and applying it to simple problems. To do this, the terms controllability, non-blocking, and maximal
permissiveness are explained.

• Module 4: Requirement model and SVG
The discrete-event model can contain undesired behaviour which is not blocking. To remove such
behaviour, requirements are specified. Requirements can be specified by automata or state-based
expressions [20]. To validate and test synthesized supervisors, SVG visualization can be used [3].

The final result of this module is that the participants can model the plant and requirements in
ESCET™using the correct CIF language and tools. Furthermore, the module explains two types of
requirement specifications: requirements specified by automata and state-based expressions. Further-
more, SVG visualization is explained to validate the synthesized supervisors.

2.2.4 Recommendations for Modules 5 through 10

To properly test supervisors, the time must be added to the plant models, making the models hybrid instead
of discrete-event [8]. As an alternative to 2D SVG visualization, 3D digital twins of the system can be used
to test the supervisors, giving a closer representation of reality. In a subsequent project, it is recommended
to fill the additional modules by explaining how to make hybrid models and connecting the CIF models to
a digital twin to test the supervisors. The water lock case can be extended to support these modules. The
case models can be used immediately to make hybrid water lock models. A digital twin has not yet been
made of the system.

Erick Hoogstrate has started making a configurator with which a digital twin can relatively fast be made
for a specific water lock by defining its components [9]. This configurator is not yet finished at the time of
writing, but during a subsequent project, it possibly is. If so, the course can explain how this configurator
works, and as practice, the participant can make a digital twin of the water lock case with this configurator.
Below, a list with recommendations for the contents of Modules 5 through 10 is provided for a subsequent
project.

• Module 5
This module could be dedicated to explaining hybrid models and how they are made. The participants
already know the CIF language needed for hybrid modelling. However, they should understand the
difference between discrete-event and hybrid models, the implications for modelling and for what
purposes both are used.

7

• Module 6
Possibly, one module is not enough. If so, this module can be used to finish hybrid models. The rest
of the module can explain an organized file structure, like in [17], and how the supervisor derived from
the discrete-event plant model is connected to the hybrid model.

• Module 7
With the project of Erick Hoogstrate, this module could be dedicated to explaining how a digital twin
is made. A digital twin of the water lock case can then be made as practice.

• Module 8 Possibly this module is also needed to explain digital twin production.

• Module 9 This module could be dedicated to explaining PLC code generation out of the supervisor
and how to connect this PLC code to the digital twin for testing.

• Module 10 This module can be used as a buffer if a topic requires more space and time to be explained.

Note that the course profile and structure need to be updated if the recommendations are implemented. For
example, the learning goals as they are now would not suffice anymore when hybrid modelling and digital
twins become part of the course.

2.3 Water lock case

The course explains the development process of supervisory controllers, with a focus on water locks. The
water lock case makes that this course focuses on water locks and allows the participants to apply their
knowledge into practice on a problem that is representative of problems they encounter in their profession.
This case goes through the process of synthesizing and testing supervisors, from defining the system to
testing the supervisors on models. This section presents the setup of the water lock case and the reasoning
behind it.

The end product of the case is a synthesized supervisory controller of a simplified version of the Westsluis
of the Terneuzen lock complex, shown in Figure 2. This lock is chosen due to personal preference of the
course developer. The actual Westsluis consists of 5 sliding gates, two at each end and one in the middle. In
this case, this is simplified to two gates, one at each end, two bridges with traffic barriers and traffic lights
(horizontal two lights) at each end, two pairs of culverts responsible for filling and draining the chamber,
two pairs of entering traffic lights (vertical three lights) and two pairs of leaving traffic lights (vertical two
lights). In Figure 3, an overview of the simplified Westsluis is shown.

Figure 2: Westsluis located in Terneuzen. Image obtained from scheepvaartkrant.nl

At the start of the course, the participants receive a CIF file containing the uncontrolled plant model [17].
The SVG drawing shown in Figure 3 and the tooldef file to simulate the model with the SVG drawing is also

8

https://www.scheepvaartkrant.nl/nieuws/proef-met-bootlieden-op-westsluis-van-terneuzen

provided. The participants can play around with these files and detect that this system needs control for
safety reasons. The CIF file contiaining the uncontrolled plant model is, when opened, not informative for a
starting participant of this course, so they cannot ’cheat’. In Modules 1 through 3, the participants re-make
the CIF model of the uncontrolled plant step by step. In Module 4, the participants add the requirements
to synthesize a supervisor for the Westsluis.

In each module, a part of the case is finished with the knowledge they gained in that module. The participants
define the system and its components in the first module. Which components the system has and what their
discrete behaviour is, is answered. They have to see that the system consists of two gates, two bridges,
two pairs of culverts, two pairs of entering/leaving/bridge lights and two pairs of traffic barriers. Of these
components, they make simple models in CIF that do not yet include models of subcompenents like sensors
and actuators. For example, the model for a gate is an automaton with two locations: Closed and Open.

In the second module, the participants learn about networks of automata. They apply the learned theory
to the case by extending their simple CIF models made in Module 1, with automata representing subcom-
ponents, like sensors and actuators. The participants learn that each component contains sensors to give
feedback on the system’s state and actuators to change the system’s state [8]. At the end of this module,
they have modelled all components with sensors and actuators just like in [17].

The water lock case in Figure 3 has symmetry; the north (right side in the figure) and south (left side in the
figure) sides have the same components. The west (above in the figure) and east (below in the figure) sides
also show symmetry for all components except the bridge and gate. Therefore, it is burdensome to model all
components separately. Automaton and group definitions, and instantiations can be used in more than one
component model to define similar automata[3]. The participants learn in the third module how automaton
definitions work and apply them to make a complete model of the water lock case with the component models
they made in Module 2. At the end of this module, the plant model is ready to add requirements.

Module 4 explains requirement modelling and SVG visualization. With this knowledge, the participants
model the requirements and synthesize a supervisor with their plant and requirement model.

Figure 3: SVG drawing of a simplified version of Westsluis used for the water lock case

2.3.1 Possible extensions

The water lock case now only models the bridges, gates, entering/leaving/bridge lights, traffic barriers and
culverts. It would be beneficial if there also would be a sensor giving feedback on the water level. If the
water level is not equal at both ends of the gate, it cannot open. This requirement can not be met if there is

9

no sensor. Sensors that give feedback on whether a ship is lying in front of the bridge or gate would also be
a good addition to the case. If a ship is in front of a bridge or gate, that bridge or gate cannot close. This
requirement can also not be met without a sensor. Due to a lack of time, these sensors were not added to
the case.

A ship can be added to the SVG visualization to make the case more representative of reality and more
interactive. This ship can be spanned at either side of the lock to pass the lock. At the start of the course,
when the uncontrolled plant and SVG visualization is provided to the participants, they can instruct the
ship to move and can operate the uncontrolled lock. When a dangerous situation occurs, for example, the
bridge is instructed to close when a ship is underneath it (for this, a sensor is needed), the visualization
spans a text box with sinking ship. Just like when a gate or culvert is opened when the gate or culvert at
the other side is not closed, the SVG visualization spans flood. The latter is already incorporated in the
SVG visualization. By adding this kind of feedback to the SVG visualization, the participants can find all
dangerous behaviour of the uncontrolled lock and define the requirements themselves more easily. This will
also enhance their learning as they find the requirements themselves by doing and observing [15], which is
elaborated in Chapter 3.

At the end of Module 4, this added ship in the SVG visualization can also aid in testing the supervisor the
participants made. With that ship, the participants can more easily see whether the lock behaves correctly
and that all dangerous behaviour is prevented.

In a subsequent project one can also decide to give the hybrid models and SVG visualization at the start
of the course to give an even more realistic experience to the participants. It is then, however, maybe not
so clear to the participants why the discrete-event model has to be modelled in the first 4 modules. If the
discrete-event SVG visualization, instead of the hybrid SVG visualization, is given at the start of the course,
it is clear to the participants that at the end of Module 4, the obtained models are not yet realistic because
no time is added, and that hybrid models are the following step in the process.

10

3 Literature
This chapter presents the literature that was consulted to make this project. In addition, this chapter
explains how the knowledge needed to make this course was obtained. The chapter consists of two sections.
The first focuses on how theoretical knowledge about supervisory control theory was obtained. The second
section is about how the knowledge of how the course needs to be set up for optimal learning was obtained.
This section gives the scientific substantiation for the course setup chosen in the previous chapter.

3.1 Supervisory control theory

At the start of this project, the course 4TC00[3] was already followed and passed successfully. This gave a
good basis for learning Supervisory control theory and its implementation in ESCET™. Because this course
explains automata and the CIF language, the CIF language was already mastered at the start of this project
which was useful. Therefore, it is recommended that the next person working on this project follows this
course. The website belonging to this course [3] is a good guide for the CIF language and was consulted
during this project.

Previously an educational toolbox has been developed for supervisor synthesis using Matlab Simulink[12].
This toolbox was used in a course with success. Students reported that they learned SBE while enjoying it.
This also inspired this project and the developed water lock case.

A literature study was performed to get acquainted with supervisory control theory. One paper about the
application of supervisory controllers in the Prinses Marijke Complex [8] was provided at the start of the
project. This paper was useful to read as it gave a good explanation of the use of supervisory controllers
and a glimpse of how the controllers are derived. Sources [1],[21], [4] and [19] of [8], were also worthwhile to
read. The other sources of [8] are about the mathematical background, which is not relevant for this project.
Source [17] of [8] are the CIF files of the application in the Prinses Marijke Complex. These files are useful
in understanding how to use ESCET™ to develop supervisory controllers and structure the files. These files
also were the inspiration for the water lock case.

The synthesising of supervisory controllers only applies to discrete event systems (DES). Source [4] introduced
DES and was consulted when writing the course. However, only Chapter 1.3 about DES was used in the
course to explain DES. The rest of the book is also interesting to read but goes into quite some detail for
this project.

The rest of the theory explained in the course was gained from the lecture notes of the course 4CM30 [20].
The setup of the modules is based on the setup of these lecture notes because these lecture notes explain the
supervisory control synthesis in a clear and structured manner. However, some parts of the lecture notes are
not relevant for this project and are left out.

3.2 Learning theory

3.2.1 Andragogy

The participants of this course are adults. Because children and adults learn differently, the way the educa-
tional activities are organised in this course should be adjusted for adults. The way children learn is defined
by Pedagogy, literally meaning the art and science of teaching children. Andragogy, on the other hand, is
the art and science of teaching adults, first introduced by Malcolm Knowles in 1980 [13].

Because the brains of children and adults differ, they also have different learning styles and views on learning.
In [2], researchers found that teachers believed adults to be significantly more intellectually curious, motivated
to learn, willing to take responsibility for their learning, willing to work hard at learning, clear about what
they want to learn, and concerned with the practical applications and implications of learning than were
children and adolescents. This has implications for the organisation of education for adults.

When designing education for adults, 10 adult learning principles should be tried to be applied. These
principles reflect the needs of adult participants in education. Table 1 gives the 10 principles and how they
can be implemented into education [6].

11

Table 1: 10 adult learning principles[6]

Principle Application

1. Adults have accumulated a
foundation of life experiences

and knowledge.
Connect life experiences and prior learning to new information.

2. Adults are autonomous and
self-directed

Involve participants in the learning process, serving as a facilitator
and not just a supplier of facts

3. Adults are goal-oriented.
Create educational programs that are organised with clearly

defined elements, clearly showing how the program will
help participants reach their goals.

4. Adults are relevancy-oriented
and practical.

Help learners see a reason for learning something by making
it applicable to their work or other responsibilities of value to them.

5. Adults (all learners) need to
be respected.

Acknowledge the experiences that adult participants bring to the
learning environment, allowing for opinions to be voiced freely.

6. Adults are motivated to learn
by both intrinsic and extrinsic

motivation.

Show learners how the learning will benefit them and create
a comfortable and appropriately challenging learning environment.

7. Adults learn best when they
are active participants in
the learning process.

Limit lecturing and provide opportunities for sharing of
experiences, questions, and exercises that require participants to

practice a skill or apply knowledge.

8. Not all adults learn the same
way.

Accommodate different learning styles by offering a variety
of training methods (e.g., group discussion, role-playing, lecturing,
case studies, panel/guest expert, games, structured note-taking,

individual coaching, demonstration, and variation in media used) and
by using visual and auditory.

9. Adults learn more effectively
when given timely and appropriate

feedback and
reinforcement of learning.

Provide opportunity for feedback from self, peers, and instructor.

10. Adults learn better in an
environment that is informal

and personal.
Promote group interaction.

Most of these principles have been applied in the course and guided the making of the course setup. Below,
the application of the principles is elaborated on.

Principle 1: Because most of the participants of this course are engineers familiar with water locks, principle
1 is applied. The course connects the participant’s previous life experiences with water locks with new
knowledge about synthesising a supervisory controller of water locks with ESCET™.

Principle 2: By letting the participants follow the course at their own time and pace and providing enough
exercise material, they are in control of their own learning process.

Principle 3: The course is structurally divided into 10 modules, and each module has clear elements:
theory, quizzes, ESCET™, exercises and water lock case. These elements are elaborated on in Chapter 2.

12

This structure show the participants how this course helps them reach their goals.

Principle 4: This course applies to the participant’s work, giving the participants a reason to follow this
course properly.

Principle 5: The participant’s experiences are acknowledged in the fact that the course is written at a
technical level, requiring technical knowledge. The rest of principle 5 does not apply to this type of online
education.

Principle 6: The water lock case challenges the learning process and shows the participants what is possible
with the theory learned. This hopefully motivates the participants to learn.

Principle 7: The participants can practice using ESCET™ with the water lock case and the exercises. The
rest of principle 7 does not apply, as the course is taken individually and does not directly allow for sharing
experiences and asking questions.

Principle 8: Hopefully, the different elements provide enough different teaching methods to accommodate
most participants learning styles. Participants that are more theoretically oriented will like the theory
elements and quizzes. More practically oriented participants will like the exercises and water lock case. The
reviews of ex-participants of the course will reveal whether this principle is applied correctly.

Principle 9: The quizzes aim to test whether the participant has properly understood the theory presented
in the sections. The answers to all exercises and assignments for the water lock case are directly available
after completion. These elements enable the participants to improve and learn as effectively as possible and
act as a feedback mechanism.

Principle 10: This principle does not apply to online education.

7 out of 10 principles (principles: 1, 2, 3, 4, 6, 8, 9) are correctly applied in the course. Principles 5, 7, and
10 are partly or not applied in the course because this course is given online and taken individually. This
makes it hard to allow interaction between participants to improve the learning process. In a subsequent
project incorporating a discussion forum into the website can be looked into.

So adults learn differently than children. The course has adult participants and should therefore be set up
based on andragogy by applying the 10 adult learning principles, which for principle 1, 2, 3, 4, 6, 8, 9 was
possible so far.

13

3.2.2 Cone of experience

Many learning activities can be chosen when designing education to transfer the knowledge to the partici-
pants. Some activities, for example, are lectures, exercises and giving a presentation. Not all activities result,
when completed, in the same amount of knowledge retention in the participants. The cone of experience,
[15] shown in Figure 4, shows the level of retention and the category of learning activity. The participants
do not retain much information when they learn through abstraction. They retain more when they learn
through observation, by attending lectures and by looking at pictures. The participants learn the most by
doing, applying the theory in practice, and doing exercises. Therefore, this way of learning should also form
the majority of the course.

From this pyramid, one could conclude that learning by doing is the best way to learn. However, it is stated
that a combination of the three ways of learning is the best [15]. If one way is dominant, it can obstruct the
process of meaningful generalisation. For example, a mathematician could not develop a system of higher
mathematics by counting on his fingers (learning by doing) only.

The course consists of theory divided into sections that need to be read (learning through abstraction),
with examples (learning through observation) demonstrating the theory. Each section is closed with a quiz
(learning by doing), and after the last section, exercises are provided (learning by doing). Once the exercises
are completed, a part of the water lock case is done (learning by doing).

These learning activities correspond to the theory presented in [15]. The participants encounter time-wise
the most activities that make them learn by doing (quizzes, exercise and water lock case). Most of the
theory is supported with a demonstration of an example to explain the theory, learning through observation.
Learning by abstraction and reading theory is encountered the least, time-wise.

The water lock case is especially useful to effectively transfer the knowledge to the participants as it directly
applies the theory in practice to a real-life simulation. Moreover, such a case has been applied in a similar
course before, with success [14].

Figure 4: Cone of experience [15]

14

4 Building Website
As platform of the course a website was chosen because it gives a lot of possibilities in designing the course,
allows for interaction in the form of quizzes and provides structure to the course by having multiple web-
pages. This chapter shows how the website was built and how the figures are made. The first section explains
the building of the website, and the second the making of the figures. Finally, recommendations are given
on how the website can be improved.

4.1 Website

The foundation of the website is made with HTML5 code. With HTML5, the website’s textual and graphical
content (figures) is defined, and the hierarchy between these different elements is defined. Furthermore, in
the HTML5 file, the link to the CSS and JavaScript file is defined for the styling and functionality of the
website.

The HTML5 code is sufficient to make a website. However, it would be a not so interesting website as it
would be just a black-coloured text on a white background, like a text document. For styling a website,
the CSS language is used. With CSS, a style sheet can be made where all the styling commands are given.
These styling commands can change, for example, the background colour, size of a figure, font size and
colour. Without CSS, every website on the internet would be a black-coloured text on a white background.
So everything that makes the website not just a text file, is defined with CSS.

With HTML5 and CSS, a beautiful website can be built that shows text and figures, but further than that
has no other features or functions or allows interaction. With JavaScript, the website can be made interactive
by, for example, adding multiple-choice quizzes or buttons that show the answer to a question when pressed.
JavaScript has been used on this website to make the exercises and quizzes. For more detail on how the
JavaScript file works, look at the comments in the files.

At the start of this project, no experience was present with HTML5, CSS or JavaScript. These three
programming languages were learned by searching the internet. The internet is full of sources that explain
HTML5, CSS and JavaScript perfectly well. The main source consulted during this project to learn and solve
problems was [23]. The code files of the website can be found in A and the instructions for and structure of
the files are provided in B.

For coding, Visual Studio Code was used from Microsoft [16]. This text editor makes coding for various
languages, including HTML5, CSS and JavaScript, easier and more structured. In addition, it is advised to
install the code spell checker extension [5], which is a spell checker and prevents stupid spelling mistakes.

For sharing the website with participants, the website files can be compressed to a Zip file together with
the CIF files and sent. The participants can then open the website in a browser. Because the files are on
the computer, the participants do not have to be connected to the internet. If the website is put online, the
participants can just search the internet, but then hosting costs should be paid.

So to summarise, HTML5 was used for the content and structure of the website, CSS for the styling and
JavaScript for functionality and interaction of the website, for which plenty of educational material can be
found on the internet. The text editor used was Visual Studio Code with the code spell checker installed.
Moreover, the website can be shared both offline and online.

4.2 Figures

While making the course, many figures were made of automata and CIF code. It is important for a pro-
fessional look of the website that these figures are sharp and that the automata and CIF code snippets in
these figures have the same size and style. If, for example, the location of an automaton in Figure A is twice
as big as that of an automaton in Figure B, this does not look professional. The same applies to the code
snippets. The font size of the code in all figures should be the same. This section explains the process of
making the figures in the website, the problems encountered and how they were fixed.

The automata figures were made with the Tikz automata package in Latex to ensure the figures look the
same [22]. This package allows for easy drawings of automata. The details on how this package works can
be found in the documentation [22]. In a subsequent project the same Latex file A must be used as was used

15

in this project because some parameters have been set to make the figures so far. For example, the distance
between locations, the location size, the font size, arrow size and marked location style are set in that Latex
file. The figures will not be the same if this file is not used. Instructions on how to use the Latex files are
provided in C.

For the CIF code snippets, the Lstlisting package has been used. With this package, code can nicely be
displayed. Because this package does not recognise CIF, the language was manually defined in Latex. Doing
this is well described and documented in the Latex file by means of comments. A piece of code can be
copy-pasted into the Latex file, which is nicely displayed to make a figure of it.

Now that it is clear how the figure’s content can be made systematically of the same quality, it should be
figured out how the figure itself should be made. The automata drawing or code snippet is nicely displayed
on A4 size but can only be exported as a PDF file when using a standard Latex file. Instead, it should be
exported as a PNG or JPG file to be usable on the website.

This can be solved by adding a new file to a project named ”latexmkrc” with no extension [10]. In this file,
the following line of code is added.

END { system (’ convert −dens i ty 700 −r e s i z e 15% output . pdf myImage . png ’) ; }

When the file containing the automata drawing or code snippet is recompiled, the file can be exported as a
PNG file in the tab ”logs and output files” with the same name specified in the line of code (myImage.png).

Changing the size of the figures must be done in the line of code by changing the ”-resize” percentage number.
Because when the size of the figures is changed in the website, html5, the figures become blurry. Again this
is well documented in the Latex file.

The above enables the figures to be exported as PNG, but the figures are still the size of an A4. Using
the document class ”standalone”, the output file only contains the document’s content with no extra (or
specified) white margins [10].

So a way of making the figures is found by making a Latex file where the automata can be drawn with
the Tikz automata package, and the code snippets can be displayed with the Lstlistings package. The
”latexmkrc” file makes sure the figure is exportable as a PNG file, and the standalone document class makes
sure that the document wraps around the content. This results in a Latex file A that consistently can make
figures of the same size and quality that can directly be imported into the website.

4.3 Recommendations website

In this section, some recommendations are given to improve the website.

The course participants have to open the website page and the Eclipse interface separately on their screen.
In a subsequent project, it would be beneficial for the user experience to integrate this into the website.
Then, the participants can code on the website and do not have to leave the website. The result would be
something similar to Jupyter notebook, where users can code and run their code on the same page where
they read textual material [18].

In the third chapter, it was mentioned that adult learning principles 5,7 and 10 are not applied in the course
because the course does not allow for interaction between fellow participants. This could be improved by
adding a sort of discussion forum to the website where questions can be posted and answered by participants.

16

5 Conclusion and Recommendation

5.1 Conclusion

This project aimed to propose a one-week course in which an engineer familiar with water locks learns how to
use ESCET™ for supervisory controller development. The proposed course setup is backed by literature and
covers all aspects of supervisor development. The first 4 out of 10 planned modules have been developed in
this project. For the other modules, a recommendation is given about its contents for a subsequent project.
Modules 1-4 explain how supervisors are synthesised by making a model of the discrete-event model of the
plant and a model of the requirements. The participants can practise their learned skills on the water lock
case specially created for this course. The course can easily be changed to another application by replacing
the water lock case with a case about another application (e.g. tunnel).

As platform for the course, a website was chosen because a website gives much freedom in designing the
course. It allows for interaction in the form of quizzes and enables structure by having multiple web pages.
The website was built with HTML5, CSS and JavaScript. The figures of the website have been made in
Latex.

5.2 Recommendation

In this section, all recommendations are summarised.

Course content

• Module 5 and 6 could explain how hybrid models are made and how the supervisor is connected to
such models.

• Module 7 and 8 could be about making digital twins with the configurator from Erick Hoogstrate if
the configurator is finished by that time.

• Module 9 could explain how PLC code is generated and how this is connected to a digital twin.

Implementation

• It is recommended to add a ship to the SVG visualization and include feedback when a dangerous
situation is encountered in the visualization. This will enhance the participants’ learning experience
and ease the supervisor’s testing. Moreover, will it make the case represent reality more closely.

• A possible option is to give the hybrid model at the start of the course, when it is finished, instead of
the discrete-event model, to give the participants a more real experience. However, this has pros and
cons, as discussed in Subsection 2.3.1

• To allow for interaction between fellow participants, it is an option to add a discussion forum on the
website, where participants can ask and answer questions.

• To make the website more user-friendly, the Eclipse interface could be integrated into the website such
that the participants do not have to leave the website anymore.

17

References

[1] Jos C. Baeten, Joanna M. van de Mortel-Fronczak, and Jacobus E. Rooda. “Integration of supervisory
control synthesis in model-based systems engineering”. In: Complex Systems (2016), pp. 39–58. doi:
10.1007/978-3-319-28860-4_2.

[2] Harold W. Beder and Gordon G. Darkenwald. “Differences Between Teaching Adults and Pre-Adults:
Some Propositions and Findings”. In: Adult Education 32 (3 Mar. 1982), pp. 142–155. issn: 0001-8481.
doi: 10.1177/074171368203200303.

[3] D van Beek. 4TC00 model-based systems engineering. 2022. url: https://cstweb.wtb.tue.nl/
4tc00/index.html.

[4] Christos G Cassandras and Stéphane Lafortune. Discrete Event Systems Second Edition.
[5] Code spell checker - visual studio marketplace. 2022. url: https://marketplace.visualstudio.com/

items?itemName=streetsidesoftware.code-spell-checker.
[6] Jannette Collins. “Education Techniques for Lifelong Learning”. In: RadioGraphics 24 (5 Sept. 2004),

pp. 1483–1489. issn: 0271-5333. doi: 10.1148/rg.245045020.
[7] Eclipse ESCET™. 2022. url: https://www.eclipse.org/escet/.
[8] Hardware-in-the-loop Set-up for Supervisory Controllers with an Application: the Prinses Marijke Com-

plex. 2019. isbn: 9781728127675. doi: 10.0/Linux-x86_64.
[9] Erick Hoogstrate. HIL simulation with waterway locks digital twins. 2022, Eindhoven University of

Technology.
[10] How to convert a latex PDF to PNG-. Apr. 2021. url: https://latexdraw.com/how-to-convert-

a-latex-pdf-to-png/.
[11] N. Jazdi. “Cyber physical systems in the context of Industry 4.0”. In: Proceedings of 2014 IEEE

International Conference on Automation, Quality and Testing, Robotics, AQTR 2014 (2014). doi:
10.1109/AQTR.2014.6857843.

[12] Claudius Jordan, Canlong Ma, and Julien Provost. “An educational toolbox on supervisory control
theory using MATLAB Simulink stateflow: From theory to practice in one week”. In: 2017 IEEE Global
Engineering Education Conference (EDUCON) (2017). doi: 10.1109/educon.2017.7942912.

[13] Malcolm S Knowles. The modern practice of adult education. url: https://pdfs.semanticscholar.
org/8948/296248bbf58415cbd21b36a3e4b37b9c08b1.pdf.

[14] O. T. Laseinde et al. “Educating tomorrows engineers: Reinforcing engineering concepts through Vir-
tual Reality (VR) teaching aid”. In: vol. 2016-January. IEEE Computer Society, Jan. 2016, pp. 1485–
1489. isbn: 9781467380669. doi: 10.1109/IEEM.2015.7385894.

[15] S. J. Lee and T Reeves. Edgar Dale and the Cone of Experience. 2018. url: https://edtechbooks.
org/lidtfoundations..

[16] Microsoft. Visual studio code - code editing. redefined. Nov. 2021. url: https://code.visualstudio.
com/.

[17] F. F. H. Reijnen J. J. Verbakel J. M. van de Mortel-Fronczak and J. E. Rooda. Models and im-
plementation code for the Prinses Marijke complex. 2019. url: www . github . com / ffhreijnen /

PrinsesMarijkeComplex..
[18] Project jupyter. 2022. url: https://jupyter.org/.
[19] F F H Reijnen et al. Supervisory Control Synthesis for a Waterway Lock. 2017. isbn: 9781509021826.

doi: 10.0/Linux-x86_64.
[20] Ma Reniers and JM van de Mortel-Fronczak. 4CM30, Supervisory control. 2022, Eindhoven University

of Technology.
[21] R. J.M. Theunissen M. Petreczky R. R.H. Schiffelers D. A. Van Beek J. E. Rooda. “Application of

supervisory control synthesis to a patient support table of a magnetic resonance imaging scanner”.
In: IEEE Transactions on Automation Science and Engineering 11 (1 Jan. 2014), pp. 20–32. issn:
15455955. doi: 10.1109/TASE.2013.2279692.

[22] Satyaki Sikdar. Drawing Finite State Machines in L A T E X using tikz A Tutorial. 2017. url:
https://www3.nd.edu/~kogge/courses/cse30151-fa17/Public/other/tikz_tutorial.pdf.

[23] W3Schools free online web tutorials. 2022. url: https://www.w3schools.com/.
[24] Ministerie van Infrastructuur en Waterstaat. Our organisation. June 2022. url: https : / / www .

rijkswaterstaat.nl/en/about-us/our-organisation.

18

https://doi.org/10.1007/978-3-319-28860-4_2
https://doi.org/10.1177/074171368203200303
https://cstweb.wtb.tue.nl/4tc00/index.html
https://cstweb.wtb.tue.nl/4tc00/index.html
https://marketplace.visualstudio.com/items?itemName=streetsidesoftware.code-spell-checker
https://marketplace.visualstudio.com/items?itemName=streetsidesoftware.code-spell-checker
https://doi.org/10.1148/rg.245045020
https://www.eclipse.org/escet/
https://doi.org/10.0/Linux-x86_64
https://latexdraw.com/how-to-convert-a-latex-pdf-to-png/
https://latexdraw.com/how-to-convert-a-latex-pdf-to-png/
https://doi.org/10.1109/AQTR.2014.6857843
https://doi.org/10.1109/educon.2017.7942912
https://pdfs.semanticscholar.org/8948/296248bbf58415cbd21b36a3e4b37b9c08b1.pdf
https://pdfs.semanticscholar.org/8948/296248bbf58415cbd21b36a3e4b37b9c08b1.pdf
https://doi.org/10.1109/IEEM.2015.7385894
https://edtechbooks.org/lidtfoundations.
https://edtechbooks.org/lidtfoundations.
https://code.visualstudio.com/
https://code.visualstudio.com/
www.github.com/ffhreijnen/PrinsesMarijkeComplex.
www.github.com/ffhreijnen/PrinsesMarijkeComplex.
https://jupyter.org/
https://doi.org/10.0/Linux-x86_64
https://doi.org/10.1109/TASE.2013.2279692
https://www3.nd.edu/~kogge/courses/cse30151-fa17/Public/other/tikz_tutorial.pdf
https://www.w3schools.com/
https://www.rijkswaterstaat.nl/en/about-us/our-organisation
https://www.rijkswaterstaat.nl/en/about-us/our-organisation

Appendices

A Project files
The project files, including the website, Latex, and CIF files, can be found here.

B Website files instructions and contents
The instructions for and contents of the website files, found in the ”Website final.zip” A file, are explained
in this appendix.

B.1 Open the website

1. Extract the ”Website final.zip” file.

2. Open the index.html (or another .html file) in a browser (Internet Explorer is not supported).

B.2 Change the content and style of the website

. The content of the websites is defined in the HTML5 files (.html). The styling of the website is done in
the CSS files (.css).

• To change the content of moduleX open the ”moduleX.html” file, with X the module number, e.g. 2.

• To change the styling of moduleX open the ”moduleX.css” file.

• To change the styling of all modules, open the ”generalmodule.css” file, which is imported in all the
”moduleX.css” files. A change in the ”generalmodule.css” is displayed in all modules.

• To change the styling of the navigation bar, open the ”navbar.css” file

B.3 Create an exercise or assignment

All the interactive parts of the website, like the quizzes and exercises, use functions defined in JavaScript
files (.js). Each ”moduleX.html” file imports its own ”mainX.js”, with X the module number, e.g. 2, where
the functions used are located. In this subsection, the creation of an exercise or assignment is explained.
Exercises and assignments have the same structure.

1. The exercises and assignments have a results button that displays the answer when clicked. To achieve
this, the ”hide()” function is created in the JavaScript file, displayed in Figure 5. Each element in an
HTML5 file can be labelled with an id. The hide function takes an id as input and changes its display
attribute value to ”block” when it is ”none” and vice versa.

Figure 5: Hide function

2. In the ”moduleX.html” file, the button has to be created and the elements that contain the exercise
and the answer to the exercise. Figure 6 shows how this is done. First, a div element is created with
an id name. This id name is given as input to the hide function, which is executed when the button

19

https://surfdrive.surf.nl/files/index.php/s/5moEo3K9A81EQAK

is clicked. Each element can also belong to a class. A class can contain multiple elements where an
id is specific to only one element. The classes ”submit” and ”answer” are used for styling. In the
”generalmodule.css” file, the style of these classes is defined. Every element that belongs to such a
class takes the same style.

Figure 6: Template of an exercise or assignment.

3. When the website is reloaded, the button works as intended. However, the answer is by default
displayed, which is not desired for an answer. To change this, the line of code in Figure 7 is added to
the JavaScript file, which changes the display attribute value to ”none”.

Figure 7: Change display to none
.

B.4 Create a quiz

Below, the steps to create a quiz are provided.

1. To start, the quiz content has to be defined. This is done by defining a constant in the form of Figure
8 in the ”mainX.js” file, where X is the module number where the quiz is supposed to be displayed.

Figure 8: Quiz questions template

20

2. After the questions have been defined, the quiz can be built by calling the ”quizbuild(Questions,
”quiznumber”, ”id”, ”type”)” function, as shown in Figure 9. The first parameter, ”Questions”, is
a constant that contains the quiz questions, as shown in Figure 8. The second parameter is the
quiznumber which is explained in the next step. The quizzes can be of three types specified by the
fourth parameter, which can have the following values: ”blur”, ”hide”, and ”off”. A quiz of type blur
unblurs the element with id name ”id”, the third parameter, that is part of the subjects class when
the participant answered all the questions correctly. The subjects class should be set to a blur of 6px
in the CSS files when this types is used. In the final version of the website, this type does not occur
anymore. A quiz of type ”hide” unhides the element with id name ”id”, the third parameter, if the
participant answered all the answers correctly. In Modules 1 and 2, this is used. A quiz of type ”off”
does not unhide or unblur anything; it is just a simple quiz.

Figure 9: Quizbuild() function instantiation

3. In the ”moduleX.html” file, the quiz should be defined at a place on the web page. This is done as
shown in Figure 10. Here the second parameter of the quizbuild function comes in, ”quiznumber”. The
quiz is built by replacing ”quiznumber” in both the div elements id’s and in the quizbuild instantiation
with a number, e.g. 1.

Figure 10: Defining quiz in HTML5 file

B.5 Other files

The list below sums up all the other files found in the ”Website final.zip” A file and their contents.

• The ”Casefiles.zip” file contains all the files the participants need to open the uncontrolled plant
simulation. It contains the uncontrolled plant, ”Plant provided.cif”, the SVG drawing of the Westsluis,
”lock.svg”, a CIF file containing all in- and output mappings for the SVG visualization, ”SVG.cif”,
and a tooldef file to start the simulation, ”simulation.tooldef”. The participants can download the
”Casefiles.zip” in Subsection ”Setup”, Module 1.

• The ”synthesis.zip” file contains the ”synthesis.tooldef” file to synthesize a supervisor. The participants
can download this file in Section ”Water lock case”, Module 4.

• The ”Allcasefiles.zip” file contains all the files of the water lock case, which is more elaborated in D.
The participants can download this zip file at the end of Module 4.

• The ”controllability.zip” file contains the answers to Exercise 1, Module 4.

• The ”Spartan.zip” file contains the font style used in the navigation bar.

• The ”img” contains all the figures used in the website.

21

C Latex files instruction
This appendix explains the steps to make the figures in Latex with the files found in the ”Latexfiles final.zip”
file A.

C.1 Make figure

• Import one of the figuremaker folders into a Latex editor.

• Open the ”main.tex” file where all the figures’ definitions can be found. All figure definitions are com-
mented at the top with the same name as the actual figure in the ”img” folder in the ”Website final.zip”
file.

• To create a figure, uncomment the figure definition and re-compile the latex file.

• In the ”Logs and output files”, the compiled document can be downloaded as a PNG file.

C.2 Change figure settings

• Under ”lstdefinelanguage” in the ”main.tex” file, all the parameters are specified to display the CIF
code snippets in Latex. Here additional keywords that should be displayed in a certain colour can be
defined.

• Under ”tikzset” in the ”main.tex”, the parameters for the Tikz figures are defined, like node size and
distance.

• To change the size, dots per inch density or output file name, change the ”density”, ”resize” attribute
value and the last entry, respectively, in the line of code in the ”latexmkrc” file, shown below.

END { system (’ convert −dens i ty 700 −r e s i z e 15% output . pdf myImage . png ’) ; }

22

D CIF files contents
This section explains the contents of the ”CIFfiles final.zip” file A.

For each module, a folder contains a content, an exercises and a case folder containing the CIF specifications
of the examples used in the theory and ESCET™ sections, the exercises and the case assignments, respectively.

The Marijke sluis folder is retrieved from [19].

Below, a list is provided with the contents of the water lock case folder. These files are also part of the
”Allcasefiles.zip” file, found in the ”Website final.zip” file A.

• The ”lock.svg” file contains the SVG drawing of the Westsluis used in the water lock case. This file is
provided to the participants at the start of the course and is part of the ”Casefiles.zip” file.

• The ”Plant templates.cif” file contains all the templates defined by automaton and group definitions
for the components and subcomponents of the Westsluis.

• The ”Plant.cif” file models the plant and contains all the group instantiations of the group definition
defined in the ”Plant templates.cif” file and an automaton to model the commands.

• The ”Plant requirements .cif” file only contains the plant requirements that make the commands func-
tional. The ”Plant.cif”, ”Plant templates.cif”, and ”Plant requirements .cif” model the uncontrolled
plant.

• The ”Plant provided.cif” file is provided to the participants at the start of the course and is part
of the ”Casefiles.zip” file. This file is the output file of data-based synthesis with the ”Plant.cif”,
”Plant templates.cif”, and ”Plant requirements .cif” as input. This makes the participants cannot
easily copy-paste the plant model and cheat during the cours.

• The ”Requirements.cif” file contains all the requirements for the Westsluis, including the safety require-
ments that ensure the lock does not contain dangerous behaviour. The ”Plant.cif”, ”Plant templates.cif”,
and ”Requirements .cif” model the controlled plant.

• The ”Supervisor.cif” file is the output file of data-based synthesis with the ”Plant.cif”, ”Plant templates.cif”,
and ”Requirements .cif” as input.

• The ”synthesis Plant provided.tooldef” and ”synthesis Supervisor.tooldef” file synthesize the ”Plant provided.cif”
and ”Supervisor.cif” files, respectively, with the data-based synthesis tool, when executed.

• The ”SVG.cif” file contains all the in- and output mappings for the SVG visualization. This file is
provided to the participants at the start of the course and is part of the ”Casefiles.zip” file.

• The ”simulation.tooldef” file simulates the ”SVG.cif” file when executed. This file is provided to the
participants at the start of the course and is part of the ”Casefiles.zip” file.

23

	Introduction
	Project context
	Project objective
	Report outline

	Course setup
	Course profile
	Course structure
	Water lock case

	Literature
	Supervisory control theory
	Learning theory

	Building Website
	Website
	Figures
	Recommendations website

	Conclusion and Recommendation
	Conclusion
	Recommendation

	References
	Appendices
	Project files
	Website files instructions and contents
	Open the website
	Change the content and style of the website
	Create an exercise or assignment
	Create a quiz
	Other files

	Latex files instruction
	Make figure
	Change figure settings

	CIF files contents

