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1 Introduction
A cyber-physical system like an automotive transportation system is controlled over communication networks with
digital computers. The separate machines communicate with a central hub which in return gives commands to the
machines, makes sure the machines can not damage each other and the machines work in the most efficient way. This
interconnection via networks makes these system, even though very efficient and with great capabilities, vulnerable
to attacks which can cause significant damage to the society and companies. Examples of this are the attacks on the
Ukrainian power grid [6] and the attack on the Iranian uranium enrichment facility [4].

The world is highly interconnected today, and many important systems are controlled with interconnected controllers.
Attackers aim to afflict damage through this controller systems vulnerability and cause adverse societal disruption.
The focus will be on breaching the confidentiality of controller states via sensor data observation and manipulation.
This confidentiality break of the controller states is one step in a bigger attack scheme that is often taken for granted
or assumed to be done already [9].

For this project, it is assumed that the attacker has full knowledge of the plant and controller and it’s noises. The
attacker also has access to the sensory data and can manipulate this data. The attacker does not know what the
initial state of the system is nor what the signal is that the controller sends to the plant. These signals are often
better protected since they are of greater importance and can immediately damage the plant. Further assumptions
are properties of the plant like stabilizabilty and detectability and that the closed loop system is stable. Finally, the
discrete system should have reached steady-state before the attack begins.
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2 Preliminary knowledge
Basic properties of linear time invariant systems in continuous an discrete time are recalled based on the material
presented[1]. Within the state space representation of control systems, knowledge of certain properties is of impor-
tance in this project. In the state space representation, the plant and controller are represented in matrices and state
variables. This can be both in continuous and discrete time with Equation 2.1 and Equation 2.2 as examples for time
invariant plants.

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t) (2.1)

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) +Du(k) (2.2)

These equations have x ∈ Rn as column matrix with the state variable, u ∈ Rm as column input matrix and y ∈ Rl

as column output matrix. The continuous time system is stable if the eigenvalues of A have a negative real part and
the discrete time system is stable if the eigenvalues of A all have a magnitude smaller than 1.
The important properties of state space models are controllability, observability, stabilizabilty and detectability.
Controllability and observability are dual aspects of the same problem. Controllability means that from every state
the initial state can be reached, observability means that from every state with inputs and outputs, the initial state can
be determined. Both have a matrix with which the property can be tested, the matrices are given in Equation 2.3.

C =
[
B AB A2B ... An−1B

]
, O =


C
CA
CA2

...
CAn−1

 (2.3)

Here is n the size of the state vecto x. The image of these matrices are the controllable and observable subspaces
and if these images have the size of the states, there are only controllable and observable states. Thus if the rank of
these matrices are equal to n, the system is controllable (if rank of controllability matrix is n) and observable (if rank
of observability matrix is n).

Stabiliazability and detectability are weaker notions of controllability and observability respectively. Every system
has an uncontrollable equivalent and an unobservable equivalent. If in these equivalents, the uncontrollable states
or unobservable state respectively are stable, the system is stabilizable and detectable respectively. The following
tests are used to check whether a system is stabilizable and detactable. The system is stabilizable if and only if
every eigenvector of AT corresponding to an eigenvalue with a positive or zero real part (continuos time) or with a
magnitude larger than or equal to one (discrete time) is not in the kernel of BT . The LTI system is detectable if and
only if every eigenvector of A corresponding to an eigenvalue with a positive or zero real part (continuos time) or
with a magnitude larger than or equal to one (discrete time) is not in the kernel of C.
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3 Problem formulation
The goal is to find a way for an attacker to estimate the controllers internal state as a reaction on input values for a
linear time invariant system. This will be done according to [9], where this is already done for discrete time. This
discrete time case is used to verify the technique and then a continuous time case will be solved.

3.1 Discrete time
A standard system will be used as format with the plant in Equation 3.1 and the controller in Equation 3.2. The
plant state x is in Rnx , the plant input u ∈ Rnu and the plant output y ∈ Rny , the controller state xc ∈ Rnc .
The plant further consists of the system matrix A ∈ Rnx×nx , the input matrix B ∈ Rnx×nu and the output matrix
C ∈ Rny×nx . The controller further consists of the controller system matrix Ac ∈ Rnc×nc , the input matrix of
the controller Bc ∈ Rnc×ny , the output matrix of the controller Cc ∈ Rnu×nc and the feedthrough matrix from the
measurements to the actuator signal Dc ∈ Rnu×ny . The closed loop system is visualized in Figure 3.1 where a(k)
is the possibility for the attacker to adjust the sensory values and ω(k) and ν(k) are noises with mean 0 and their
respective covariance matrices Σω and Σν .

x(k + 1) = Ax(k) +Bu(k) + ω(k), y(k) = Cx(k) + ν(k) (3.1)

xc(k + 1) = Acxc(k) +Bcy(k), u(k) = Ccxc(k) +Dcy(k) (3.2)

Figure 3.1: Closed loop system visualization

The system can be written down in a compact way by introducing z(k) =

[
x(k)
xc(k)

]
. Combining the plant and

controller in one equation would lead to a system described in Equation 3.3 with A′
z =

[
A+BDcC BCc

BcC Ac

]
,

η′(k) =

[
ω(k) +BDcν(k)

Bcν(k)

]
and Cz =

[
C 0

]
.

z(k + 1) = A′
zz(k) + η′(k), y(k) = Czz(k) + ν(k) (3.3)

The system with uncorrelated noises would be described by Equation 3.4. In this form, Az is made up of plant

matrices and controller matrices in the following way, Az =

[
A BCc

0 Ac

]
and the noises η(k) =

[
ω(k)
0

]
and ν(k)

are uncorrelated. S =
[
BDcΣν BcΣν

]
and R = Σν are noise covariance matrices and Cz =

[
C 0

]
is the input

matrix.
z(k + 1) = Azz(k) + η(k) + SR−1y(k), y(k) = Czz(k) + ν(k) (3.4)

Making an estimation ẑ(k) of z(k) for all k would than suffice in which the only the lower half of the error e(k) =
z(k) − ẑ(k) has to converge to zero and the covariance matrix of the error would have to converge Σ∞ of the form[
P 0
0 0

]
where P is a semi-positive definite matrix [9].

The goal is to show by simulation that this is true for the system used according to the results in [9].
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Bachelor Final Project

3.2 Continuous time
In continuous time, we will design an observer in a situation with deterministic noise and in a situation with stochas-
tic noise.

ẋ(t) = ABx(t) +BBu(t) + d(t), y(t) = CBx(t) + n(t) (3.5)

ẋc(t) = AB,cxc(t) +BB,cy(t), u(t) = CB,cxc(t) +DB,cy(t) (3.6)

A standard system will be used as format with the plant in Equation 3.5 and the controller in Equation 3.6. The
plant state x ∈ Rnx , the plant input u ∈ Rnu and the plant output y ∈ Rny , the controller state xc ∈ Rnc . The
plant further consists of the system matrix AB ∈ Rnx×nx , the input matrix BB ∈ Rnx×nu and the output matrix
CB ∈ Rny×nx . The controller further consists of the controller system matrix AB,c ∈ Rnc×nc , the input matrix
of the controller BB,c ∈ Rnc×ny , the output matrix of the controller CB,c ∈ Rnu×nc and the feedthrough matrix
from the measurements to the actuator signal DB,c ∈ Rnu×ny . The closed loop system is visualized in Figure 3.1
where a(k) is the possibility for the attacker to adjust the sensory values and d(t) and n(t) are the unknown process
noise and sensor noise in the deterministic case and are Gaussian random variables with mean zero and covariance
matrices Σd and Σn in the stochastic case.
The plant matrices in discrete time and continuous time are related to each other and the sample time Ts in the
following ways[3]:

• Adiscrete = eAcontinuous∗Ts

• Bdiscrete = A−1
continuous ∗ eAcontinuous∗Ts − I3 ∗Bcontinuous

Equation 3.5 and Equation 3.6 are written in closed-loop form in Equation 3.7 with z(t) =

[
x(t)
xc(t)

]
. In this form,

AB,z is made up of plant matrices and controller matrices in the following way, AB,z =

[
AB BBCB,c

0 AB,c

]
and the

noises d(t) with B̄ =

[
I3
03

]
and n(t) are uncorrelated. Bz =

[
BBDB,c

BB,c

]
is the throughput matrix and CB,z =[

CB 0
]

is the input matrix.

ż(t) = AB,zz(t) + B̄d(t) +Bzy(t), y(t) = CB,zz(t) + n(t) (3.7)

Deterministic noise
This system can be estimated beginning by taking the noise to be deterministic and small, thus the noise statistics are
unknown to the attacker. Using a Luenberger estimator [7], the goal is to find an estimate which will not converge to
the real value of the state but also should not diverge from the values of the state. The noise is not taken into account
in the estimation which means that the error will not be precisely 0.

Stochastic noise
A better converging way of estimation is done with stochastic noise for which the attacker knows the noise statistics.
A Kalman filter[Class2004MEFilters] can be used to estimate the state variables of the system. The state estimation
error covariance matrix, M , should converge to a stationary solution.

4GC10 Group 003 4
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4 Problem setup
4.1 Discrete time
The problem setup in [9] is recalled. Using a Kalman filter, the state can be approximated in which the error for
the controller state variables should converge tho zero and the covariance matrix of the error should converge to the

form of
[
P 0
0 0

]
. Equation 4.1 is used to make an estimation of the state z(k), in this equation

ẑ(k + 1) = Az ẑ(k) + SR−1y(k) + Lz(k)(y − Cz ẑ(k)) (4.1)

ez(k + 1) = z(k)− ẑ(k) = (Az − Lz(k)Cz)ez(k) + η(k) + Lzν(k) (4.2)

Lz(k) = AzΣz(k)C
T
z (CzΣz(k)C

T
z +R) (4.3)

Σz(k + 1) = AzΣz(k)A
T
z +Q− (AzΣz(k)C

T
z )(CzΣz(k)C

T
z +R)−1(AzΣz(k)C

T
z )

T (4.4)

Q =

[
Σw 0
0 0

]
represents the covariance matrix of η(k) in these equations and the initial value of Σz(k), Σz(0) = Σ0

is the solution to equation Equation 4.5.
Σ0 = A′

zΣ0(A
′
z)

T +Q′ (4.5)

In Equation 4.5, A′
z =

[
A+BDcC BCc

BcC Ac

]
and Q′ =

[
Σω +BDcΣνD

T
c B

T BDcΣνB
T
c

BcΣνD
T
c B

T BcΣνB
T
c

]
. Σz(k) should con-

verge to the the form
[
P 0
0 0

]
where P is a positive semi-definite matrix which is the solution to Equation 4.6 with

A and C the matrices in Equation 3.1.

P = APAT +Σω −APCT (CPCT +Σν)
−1CPAT (4.6)

The paper makes the following assumption about the standard system in Equation 3.1 and Equation 3.2 to ensure
that the estimation will be correct:

Assumption 1 (A,B) is stabilizable and (C,A) is detectable.

Assumption 2 (A,Σ
1
2
ω ) has no uncontrollable modes on the unit circle.

Assumption 3 The controller (Ac,Bc,Cc,Dc) is minimal.

Assumption 4 The closed loop system (plant and controller combined) is stable, thus the spectral radius of A′
z in

Equation 3.3 is smaller than 1.

Assumption 5 The closed loop system has reached steady state before the estimation starts.

Assumption 6 The attacker has access to the matrices of the plant and controller, knows the noise statistics and has
access to the sensor measurements up to current time, thus the attacker has knowledge of (A,B,C,Ac,Bc,Cc,Dc) and
(Σω,Σν) and the measurements y(k) for k ≥ 0. The attacker does not know the control signal u(k) or the initial state
of the system z(0).

Assumption 7 The attacker uses measurementsy(k) up to current time to estimate the controllers state in the next
time step, z(k + 1).

4.2 Continuous time
4.2.1 Deterministic noise
Using a Luenberger estimator, a state estimation can be found as presented in Equation 4.7.

˙̂z = Az ẑ +By + L(y − Cẑ), y = Cz + n(t) (4.7)

Here Az ẑ+By makes a prediction based on a copy of the dynamics of the system and L(y−Cẑ) does a correction
based on the output error. In this method, L is the observer gain matrix determining the correction based on the error.

4GC10 Group 003 5
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L can be designed accordingly using the error system in Equation 4.8. As stated in [7] L can be designed by placing
the poles of (Az − LCz) arbitrarily if (Az, Cz) is observable, however the error system has to be asymptotically
stable thus the poles are placed with strictly negative real parts.

ė = ż − ˙̂z = (Az − LCz)e− Ln(t) +Bzd(t) (4.8)

The following assumptions are made of the system which should hold to be able to use [7, Page 7]:

Assumption 8 (Az ,Cz) is observable.

Assumption 9 The attacker has access to the matrices of the plant and controller and has access to the sensor
measurements up to current time, thus the attacker has knowledge of (A,B,C,Ac,Bc,Cc,Dc) and the measurements
y(k) for t ≥ 0. The attacker does not know the control signal u(t) or the initial state of the system z(0).

Assumption 10 The noise terms d(t) and n(t) in Equation 3.7 are small not influencing the states too greatly.

Assumption 11 The attacker uses measurements y(t) up to current time to estimate the controllers state in Equa-
tion 3.6 in the future with ż(t).

4.2.2 Stochastic noise
Using a Kalman filter, the estimation ẑ(t) of the state z(t) can be made as in Equation 4.9 [2]. The noise terms d(t)
and n(t) are normal random variables with mean 0 and covariance matrices Σd and Σn respectively.

˙̂z(t) = Az ẑ(t) +K(t)(y(t)− Cz ẑ(t) + SR−1y(t) (4.9)

K(t) = MCT
z Σ

−1
n (4.10)

Ṁ = AzM +MAT
z + B̄ΣnB̄

T −MCT
z Σ

−1
n CzM (4.11)

The state estimation error covariance M should converge to a stationary solution which satisfies the Algebraic Riccati
equation in Equation 4.12 [2, Theorem 1]. To get a perfect estimation of the controller state, M converge to a form

of
[
P 0
0 0

]
with P a positive definite matrix. M should have a begin as descirbed by the initial errors in [2].

AzM +MAT
z = −B̄ΣnB̄

T +MCT
z Σ

−1
n CzM (4.12)

This can be proven in simulation when the following assumptions hold:

Assumption 12 (Az ,Cz) is observable.

Assumption 13 The noises d(t) and n(t) are uncorrelated.

Assumption 14 The attacker has access to the matrices of the plant and controller, knows the noise statistics and
has access to the sensor measurements up to current time, thus the attacker has knowledge of (A,B,C,Ac,Bc,Cc,Dc)
and (Σω,Σν) and the measurements y(k) for k ≥ 0. The attacker does not know the control signal u(t) or the initial
state of the system z(0), which is a Gaussian variable.

Assumption 15 The attacker uses measurements y(t) up to current time to estimate the controllers state in Equa-
tion 3.6 in the future with ż(t).

4GC10 Group 003 6
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5 Case study
5.1 Modelling
To simulate attacks, a three tank system is used which is introduced in [9]. This system is used to validate the attack
scheme which is also based on [9]. The plant is given in Equation 5.1 with nx = 3, ny = 2, nu = 2. In this plant,
ω(k) is a Gaussian random variable with mean 0 and covariance matrix a 3x3 identity matrix and ν(k) a Gaussian
random variable with mean 0 and covariance matrix a 2x2 identity matrix divided by 10.

ẋ(t) =

−2 2 0
2 −4 2
0 2 −3

x(t) +

0.5 0
0 0
0 0.5

u(t) + ω(t), y(t) =

[
0 1 0
0 0 1

]
x(t) + ν(t) (5.1)

5.1.1 discrete time
This system can be discretized with a sample time of 0.5 seconds resulting in the plant in Equation 5.2, this is done
according to [3].

x(k+1) =

0.5244 0.3114 0.1331
0.3114 0.3462 0.2448
0.1331 0.2448 0.3355

x(k)+

0.1755 0.0156
0.0566 0.0488
0.0156 0.1433

u(k)+ω(k), y(k) =

[
0 1 0
0 0 1

]
x(k)+ν(k)

(5.2)
The controller used in this system is given by Equation 3.2 with nc = 3, where Ac = A − BKi − LC, Bc = L,
Cc = −Ki and Dc = 0. Pole placement is used to find controller and observer gains, Ki (which can differ per sit-
uation, Ks for a stable controller and Ku for an unstable controller) and L respectively. The poles of A − LC
are placed at 0.1, 0.2 and 0.3 for the discrete time case and for a stable controller the poles of A − BK are

placed at 0.4, 0.5 and 0.6, this leads to observer gain matrix L =

0.5629 0.2603
0.4117 0.3810
0.3595 0.1944

 and controller gain matrix

KS =

[
−1.2433 3.1261 −0.4009
−0.6624 3.3487 −2.7885

]
. An unstable controller is designed in such a way that ρ(A−BKU ) < 1 and

A − BKU − LC has an eigenvalue at 1.5. The resulting controller gain is KU =

[
0.5530 1.9589 1.2225
1.8414 27.0785 −12.9349

]
.

These matrices combine into the stable controller in Equation 5.3 with Ac =

0.7529 −0.8522 −0.0135
0.4141 −0.4060 0.0227
0.2473 −0.6432 0.5469

,

Bc =

0.5629 0.2603
0.4117 0.3810
0.3595 0.1944

 and Cc = −
[
−1.2433 3.1261 −0.4009
−0.6624 3.3487 −2.7885

]
xc(k + 1) = Acxc(k) +Bcy(t), u(k) = Ccxc(k) (5.3)

5.1.2 Continuous time
The plant as in Equation 5.1 is considered in continuous time with a controller made for the continuous time system.
In continuous time the poles are placed at the continuous time equivalent of the discrete time poles calculated with
Equation 5.4 [10]. In this equation, z represents the pole in discrete time and s represents the pole in continuous
time. T is the sample time of the discrete time system.

z = esT (5.4)

This leads to a stable controller gain matrix KS =

[
−3.6416 7.0743 −2.4180
−2.6463 7.0743 −5.8773

]
and an observer gain matrix

L =

 2.2486 0
−0.3732 2

2 1.6052

. Combining the matrices a stable controller is formed as in Equation 5.5 with Ac =−0.1792 −3.7857 1.2090
2.0000 −3.6269 0
1.3231 −3.6907 −1.6665

, Bc =

 2.2486 0
−0.3732 2

2 1.6052

 and Cc = −
[
−3.6416 7.0743 −2.4180
−2.6463 7.0743 −5.8773

]
.

ẋc(t) = Acxc(t) +Bcy(t), u(t) = Ccxc(t) (5.5)

4GC10 Group 003 7
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5.2 simulations
5.2.1 Discrete time
The three tank system can be described by Equation 3.4 when combining the plant and controller state variables,
which has uncorrelated noises [9]. In these equation are both the plant states and the controller states repre-

sented by z(k) =

[
x(k)
xc(k)

]
. Az is made up of plant matrices and controller matrices in the following way, Az =

[
A BK
0 A−BK − LC

]
=



0.5244 0.3114 0.1331 0.2285 −0.6007 0.1137
0.3114 0.3462 0.2448 0.1027 −0.3404 0.1588
0.1331 0.2448 0.3355 0.1143 −0.5285 0.4058

0 0 0 0.7529 −0.8522 −0.0135
0 0 0 0.4141 −0.4060 0.0227
0 0 0 0.2473 −0.6432 0.5469

 and the noises η(k) =
[
ω(k)
0

]

and ν(k) are uncorrelated. S =

[
0

LΣν

]
=



0 0
0 0
0 0

0.0563 0.0260
0.0412 0.0381
0.0360 0.0194

 and R = Σν =

[
0.1 0
0 0.1

]
are noise covariance

matrices and Cz =
[
C 0

]
=

[
0 1 0 0 0 0
0 0 1 0 0 0

]
is the input matrix. This system can be simulated leading to the

state variables plotted in Figure 5.1 in which z1, z2 and z3 represent the state variables for the plant and z4, z5 and
z6 represent the state variables for the controller. The initial state is a Gaussian random variable with mean 0 and
covariance matrix Σ0 which is the solution to Equation 4.5 as in [9].

0 10 20 30 40 50 60 70 80 90 100

time step k

-2

0

2

z
1
 z

4

Discrete first plant and controller state variables

z
1

z
4

0 10 20 30 40 50 60 70 80 90 100

time step k

-5

0

5

z
2
 z

5

Discrete second plant and controller state variables

z
2

z
5

0 10 20 30 40 50 60 70 80 90 100

time step k

-2

0

2

z
3
 z

6

Discrete third plant and controller state variables

z
3

z
6

Figure 5.1: State variables discrete time simulation three tank system

Firstly, all assumptions which the system should comply to are met. These assumptions are stated in chapter 3 and
are all true for this system, which means that the attack strategy applied in [9] should be applicable.
assumption one is met since the rank of both the controllability matrix and observability matrix are both equal to

three, which is also the size of the plant state column matrix. There are no uncontrollable eigenmodes of (A,Σ
1
2
ω
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thus assumption 2 is automatically met. The controller is minimal since the number of controller states necessary to
control a plant are minimally the same as those of the plant, which are both three in this case. The spectral radius of
A′

z is equal to 0.5388 thus assumption 4 is met as well and the last three assumptions are met in way of modelling.
The simulations of both the actual z values and estimation values have been completed for both a stable and unstable
controller and the error of the first controller state variable is plotted in Figure 5.5. The initial estimation state is
taken to be zero, as in [9] to get resembling confirmation of the right technique of estimation. To show that the

covariance matrix Σz converges to the form of
[
P 0
0 0

]
as the theorem and its proof states, the norm of the matrix is

plotted over time in Figure 5.6 and Figure 5.7 for both the stable and unstable controller respectively. P is the unique

solution of the algebraic Riccati equation in Equation 4.6 and the norm of
[
P 0
0 0

]
is 1.5644 which the plot of the

covariance norm of z of the stable controller converges to. In these figures it can be observed that the covariance
matrix with a stable controller actually converges to the correct value and for the unstable controller this does not
happen, which means that the estimation only works for the stable controller.
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Figure 5.2: Plant states, estimations and errors for a stable controller in discrete time
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Figure 5.3: Controller states, estimations and errors for a stable controller in discrete time
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Figure 5.4: Plant states, estimations and errors for an unstable controller in discrete time
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Figure 5.5: Controller states, estimations and errors for an unstable controller in discrete time
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Figure 5.6: Norm of the covariance matrix for a stable controller
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Figure 5.7: Norm of the covariance matrix for an unstable controller

5.2.2 Continuous time
Deterministic case
Using a Luenberger estimator, a state estimator can be found as presented in Equation 4.7. The assumptions for
this case (assamption 8-11) are all true for the system, with the rank of the observability matrix equalling 6, the
amount of states. The attack only uses known matrices to the attacker and measurement up to current time. Also the
plots show limited influence of noise on the states. The noises are now taken to be Gaussian random variables with

Σd =

1 0 0
0 1 0
0 0 1

 and Σn =

[
0.1 0
0 0.1

]
which is a small noise in continuous time. The poles of (Az − LCz) are

now placed on -2, -4, -6, -8, -10 and -12, they were first chosen arbitrarily and than optimized a small bit based on
how fast the estimation would move to be similar to the real states of the controller. The results of both the plant
state estimation and controller state estimation are in Figure 5.8 and Figure 5.9. The estimation clearly approaches
the real values of the states, which shows in simulation that it works for this system.
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Figure 5.8: Plant states, estimations and errors for a stable controller with Luenberger observer

Figure 5.9: Controller states, estimations and errors for a stable controller with Luenberger observer

4GC10 Group 003 13



Bachelor Final Project

Stochastic noise
For the stochastic noise in continuous time, a maximum error of the sensors of 1% is used [5]. This would mean that
the standard deviation is 0.01 and thus n would be a Gaussian random variable with covariance matrix Σn = 0.012I2
and as in [9] d is taken to have a variance ten times bigger, thus d is a Gaussian random variable with mean zero
and covariance matrix Σd = 10 ∗ 0.012I3. All the assumptions to use the Kalman filter are met with the system,
the observability is already shown in the deterministc noise case and the noises are uncorrelated. Equation 4.9 -
Equation 4.11 are used to find a estimation which converges to the real state values, but it does it slowly. This
is shown in Figure 5.10 and Figure 5.11. The error covariance matrix M does indeed converge to the stationary
solution to Equation 4.12. This can be tested by plotting the norm of the covariance matrix against time and see
whether it converges to the norm of the unique solution of Equation 4.12, which is 0.4425 and the plot shows that
the norm of M converges to that value. However, the begin values of M should be taken a look at since it should not
be a zero matrix but have a begin situation with which the estimation is stable as described in [2], but this did not
work out yet and should be worked on in the future.
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Figure 5.10: Plant states and estimations for a stable controller with a Kalman filter in continuous time
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Figure 5.11: Controller states and estimations for a stable controller with a Kalman filter in continuous time
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Figure 5.12: Norm of the covariance matrix M
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6 Defence Mechanisms
The goal of the defence mechanisms is to make it impossible for the attacker to estimate the controller state without
taking away much of the functionality of the controller. The simple way of doing this is by looking at the assumptions
which have to hold for the estimation to work and make sure they do not hold for the case. [9] already mentions the
techniques of using an unstable controller and injecting noise into the controller side which would basically mean
that the measurement values of the attacker would not be usable. Other ways to defend the system would be to
defend the sensor measurement signal y(k) or y(t) better against attacks in the same way the attacker can not use the
control signal u(k) or u(t) or make the controller unobservable in the discrete time case or the closed loop system
unobservable in the continuous time case by using non-minimal control.

6.1 Signal defence
The control signal is stated to be better protected in [9] since manipulation of this signal could lead to immediate
physical problems. Since in this case the goal is to prevent attackers to find an estimation of the controller state,
a similar protection on the measurement data could do the job. The estimation could lead to knowledge about the
control signal when all other system parameters in the form of system and controller matrices are known, which
could lead to similar physical problems when the measurement data is manipulated. A possible way of protection is
by using subchannels with more sets of data, so producing both valuable data and invaluable data and splitting them
into separate subchannels and using multiresolution coding to protect the most valuable data [8].

6.2 Unobservability by non minimal control
Non minimal control could make the system unobservable, a minimal realization of a system is always controllable
and observable [1, Theorem 17.1], so using non minimal realizations could have the benefit of being unobservable
and thus making it impossible to estimate the state of the controller.
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7 Conclusion and future work
Concluding, the estimator for the discrete time systems work very well in simulation. The error covariance matrix
converges to the form it should converge to and the error thus converges to zero for the controller states. In continu-
ous time the case with deterministic noise behaves as expected in simulation, where the error approaches zero. The
noise factors are not taken into account in the estimation which means that the estimation error does not actually
converge to 0 but only approaches 0. In the stochastic noise case the error does actually converge to 0 in simulation,
but the only problem is that the initial condition of the error covariance matrix is not yet implemented correctly. This
means that the estimation works over time but could possibly work much quicker if the initial condition of the error
covariance matrix is implemented correctly.

For future work the completion of the continuous time case is the starting point, making sure that the stochastic
noise case in continuous time works completely correctly and than start looking at the newly imposed defence
mechanisms. This would mean looking at how to implement the defence of measurement signals and whether it is
possible to design a non-minimal controller which ensures the confidentiallity of the controller states. The system
has to become unobservable and also the observable decomposition should not give value to the attacker.

4GC10 Group 003 17



Bachelor Final Project

Bibliography
[1] Joao P. Hespanha. Linear systems theory. 1st ed. Vol. 1. Princeton: Princeton University Press, 2009. ISBN:

9780691140216.

[2] Tony Kelman. ME 233 Advance Control II Lecture 13 Continuous Time Kalman Filters. University of Cali-
fornia at Berkely, 2004.

[3] Sarah Koskie. Discretization of Continuous-Time Systems. 2005.

[4] David Kushner. “The real story of stuxnet”. In: IEEE Spectrum 50.3 (2013), pp. 48–53. ISSN: 00189235. DOI:
10.1109/MSPEC.2013.6471059.

[5] Konstantinos Loizou and Eftichios Koutroulis. “Water level sensing : State of the art review and performance
evaluation of a low-cost measurement system”. In: Measurement 89 (2016), pp. 204–214. ISSN: 0263-2241.
DOI: 10.1016/j.measurement.2016.04.019. URL: http://dx.doi.org/10.1016/j.
measurement.2016.04.019.

[6] Michael Assante; Tim Conway; Robert Lee. “Analysis of the Cyber Attack on the Ukrainian Power Grid”.
In: SANS Industrial Control Systems Security Blog (2016), pp. 1–26. URL: https://ics.sans.org/
media/E-ISAC_SANS_Ukraine_DUC_5.pdf.

[7] Richard M Murray. Introductory Control Theory: Lecture 1-2 Observability and State Estimation. California
Institue of Technology, 2007.

[8] Ganesh R. Naik. Signal Processing: New Research. 1st ed. New York: New York : Nova Science Publishers,
Inc. 2013.

[9] David Umsonst and Henrik Sandberg. “On the confidentiality of controller states under sensor attacks”. In:
Automatica 123 (Jan. 2021). ISSN: 00051098. DOI: 10.1016/j.automatica.2020.109329.

[10] Won Young Yang. Signals and Systems with MATLAB. Berlin: Springer-Verlag, 2009. DOI: 10.1007/978-
3-540-92954-3.

4GC10 Group 003 18

https://doi.org/10.1109/MSPEC.2013.6471059
https://doi.org/10.1016/j.measurement.2016.04.019
http://dx.doi.org/10.1016/j.measurement.2016.04.019
http://dx.doi.org/10.1016/j.measurement.2016.04.019
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://doi.org/10.1016/j.automatica.2020.109329
https://doi.org/10.1007/978-3-540-92954-3
https://doi.org/10.1007/978-3-540-92954-3

	Introduction
	Preliminary knowledge
	Problem formulation
	Discrete time
	Continuous time

	Problem setup
	Discrete time
	Continuous time
	Deterministic noise
	Stochastic noise


	Case study
	Modelling
	discrete time
	Continuous time

	simulations
	Discrete time
	Continuous time


	Defence Mechanisms
	Signal defence
	Unobservability by non minimal control

	Conclusion and future work

