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1 Introduction
Imagine multiple vehicles following each other. If the first vehicle stops, everyone expects, and hopes, that the
rest also stops. If the first vehicle accelerates, ideally would be if the other vehicles follow. If both are the case,
the line of vehicles can be considered a platooning system. It would be nice if one of the vehicles is not in some
state from where the breaks do not work, or that it is not possible to accelerate. This thesis attempts to solve that
problem. Every vehicle is modeled as its own system. Each vehicle only knows the distance to the vehicle in
front. The vehicles can also start accelerating or decelerating, depending on the distance. The distance is modeled
as discrete events. Whenever the distance crosses a certain threshold, an event triggers, letting the vehicle know
something happens. Depending on those triggered events, the vehicle can choose to trigger events in the form of
a deceleration or acceleration.

The vehicles are modeled as timed automata. An automaton is a type of system that is only in one location at a
time. The automaton can change locations when events occur. An event occurrence can be restricted in a location
depending on variables. In a timed automaton the only type of variables is time. Time can only be reset and
the value of a timer can be read. The states from where it is not possible to leave are called blocking states.
An algorithm that changes a timed automaton such that it does not reach those blocking states is proposed by
Rashidinejad et al., (2021). The goal of this thesis is to apply this algorithm to a model of one vehicle following
another vehicle.

After the prerequisites in chapter two, in chapter three, the model is introduced. The model is separated into three
layer: The plant layer where only the possibilities of the system is described, the observer layer that can only make
observations of the plant layer, this is where time is introduced, and the requirement layer that puts restrictions on
the plant layer. The system was modeled in CIF. Adjustments were made until the model worked.

The synthesis algorithm requires a single automaton. Therefore all the automata from chapter three had to be
combined into one single automaton. This would be too much to do by hand so it is automated by a computer.
Scripts that compute this single automaton are given in the appendix. In chapter 4.1 and 4.2 the scripts are layed
out in pseudocode. In chapter 4.3 an attempt is made at automating the synthesis algorithm from Rashidinejad et
al., (2021).

From the single automaton that is computed in chapter four, a small piece is taken and used in chapter five. Chapter
five applies the synthesis algorithm by hand and shows how it works.

Finally, in the conclusion, recommendations are given on how the scripts can be improved and applied.
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2 Prerequisites
An automaton is a system consisting of one or more locations (L), events (σ) and variables. Locations can also
be called states, these two terms are used interchangeably in this thesis. The automaton always starts in an initial
location (l0). An event can for example be the push of a button or a sensor output. An event is contained in an
edge. An edge (e) can make that, should en event occur, the automaton changes state to location lt. An edge
can also put restrictions on the event. This is called a guard (g). If the guard is not satisfied, the event cannot
occur. Finally, the event can perform an update on variables. For example, if the event occurs, a variable should
be multiplied by two or reset to zero.

While an automaton is in a location, requirements can be put on the variables. This means that the automaton
is only allowed to stay in that location while the requirement evaluates to True. This requirement is called an
invariant (I).

Supervisors are a type of automaton that keep the system from reaching an undesirable location and be stuck there.
In order to do that, the supervisor has to know which locations are desirable, also called stable locations or marked
locations (lm). If there are no stable locations, the supervisor does not know in what location the automaton is
allowed to be in. A location is blocking if there are no more ways to reach a stable location. The supervisor helps
the automaton reach those locations by making the blocking locations unreachable (Rashidinejad et al., 2021).

The supervisor considers two types of events: controllable events and uncontrollable events. Controllable events
are events that can be controlled by the supervisor. They can also be preempted if the supervisor so desires.
Uncontrollable events are, as the name implies, uncontrollable. The supervisor is unable to change the guards of
these events and cannot control when or whether they occur. Controllable events can for example be the turning
on of a light bulb. An uncontrollable event is for example the light switch. If the uncontrollable event of switching
the light switch occurs, the system should trigger the controllable event of turning on the light. Another type of
event is a forcible event. A forcible event is an event that is able to preempt the passage of time in a location.
They are not used in the system described in this thesis, but they can be used when synthesizing a supervisor. Bad
locations are locations that lead to blocking locations through uncontrollable events or locations that are blocking
themselves. They should therefore not be reachable (Rashidinejad et al., 2021).

This thesis deals with a specific type of automaton called a timed automaton (TA). The only type of variable in a
TA are clock variable (C). All clock variables change at the same speed, at a rate of 60 seconds per minute. They
can however be reset in the update of an edge. In that case, the clock resets to zero.

An automaton is said to be a seven-tuple. Meaning that it is made up out of seven elements. An edge is a five-tuple
since it consists of five elements, an overview of the elements that make up an automaton is shown below:

• C: The set of clocks

• L: The set of locations. An individual location is indicated by l where l ∈ L

• Σ: The set of events. An individual location is indicated by σ where σ ∈ Σ

• E: The set of edges of the form e ∈ E = {ls, σ, g, r, lt}
ls: The start location

σ ∈ Σ: The event causing the edge

g: The guard

r: The set of clocks to be reset

lt: The target location

• Lm: The set of marked locations

• L0: The set of initial locations

• I: The set of invariants. An individual invariant is indicated by i where i ∈ I

Multiple automata are used to describe the vehicle system that is the subject of this thesis. Supervisor synthesis
requires those automata to be combined into one single automaton. That single combined automaton is called
the synchronous product. The locations of the synchronous product is the product of all locations such that every
possible combination is represented. In each of those combined locations, the new invariant is the conjunction
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of the two original invariants. The new edges are the sum of the original edges with, if they are shared, the new
guard as the conjunction of the original guards. The target location of such a shared edge is the location that is
the product of the the target locations of the original edges. This can intuitively be understood by imagining an
edge that has a target location lt = l1, and another edge that has as its target location lt = l2, then the combined
edge has as its target the location that is the product of both l1 and l2. The product is two automata G1 and G2 is
denoted as follows (Rashidinejad et al., 2021):

G1||G2 = (C1 ∪ C2, L1 × L2,Σ1 ∪ Σ2, EP , Lm,1 × Lm,2, (L0,1, L0,2), IP ) (2.1)

In words: The disjunction of the clocks, the product of all locations, the disjunction of all events, the set of the
edges combined, the product of all marked locations, both sets of initial locations and the set of all invariants
combined.
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3 System Setup
The goal of the system is to make one vehicle follow another vehicle. In order to accomplish this goal, the vehicles
are assumed to have a sensor that measures the distance to the vehicle in front. The speed of the vehicles is not
used. Instead, the speed is measured indirectly by measuring the time it takes between events.

The input to the system is the distance sensor on the follower vehicle. This sensor causes events to happen when
the distance crosses certain thresholds. The values for these thresholds are not discussed in this thesis, only the
events are used. The distance is split into five discrete distances in the following events:

• D→none: This is the output of the sensor where the distance to the vehicle in front becomes equal to the
ideal distance.

• D→front,small: This event happens when the distance to the vehicle in front is slightly smaller than ideal.
This distance is still assumed to be save.

• D→front,large: When this event occurs, the distance to the vehicle in front is too small and the vehicle
should decelerate to prevent accidents.

• D→back,small: This event happens when the vehicle gets slightly behind, but the deviation from the ideal
distance is not yet considered to be a problem.

• D→back,large: This distance is considered to be too large and the vehicle should accelerate to catch up.

These distances are all uncontrollable and therefore cannot be influenced by the supervisor. In the graphical
representations of the automata, shown in Figure 3.1, uncontrollable events are indicated by dashed lines. In the
CIF representations, the uncontrollable event start with the letter u.

The events that the supervisor has control over are the acceleration and deceleration events. These can be imagined
like a gas paddle and a break paddle. A list of these events is given below:

• A→none: When this event occurs, the acceleration is set to zero, the vehicle drives at a constant speed.

• Decel→small: This event sets the acceleration of the vehicle to be slightly negative. The vehicle is deceler-
ating.

• Decel→large: The deceleration is large.

• Accel→small: The vehicle starts accelerating, but the acceleration is not large.

• Accel→large: This event sets the acceleration to be large.

These are controllable events and are indicated by a continues line for the edges in the graphical representations,
as shown in Figure 3.2. In the CIF representation, these events start with the letter c. The ten events described
above are the only events in the system.

The system is event-based. This means only the events are used to indicate something. It is not possible to say:
’When this automaton is in this location, do ...’ since that requires the location. Only events are synchronized and
the different automata do not know what location the other automata are in. In order to simplify this, all events are
memory-less. This means only the destination location of the event matters, not where it came from. This makes
the event based system easier because instead of saying: ’when in this location, do ...’, there is only one event that
results in the automaton being in that location. As an example, the event A→none always points tot the locations
where the acceleration is zero. There are not separate events that set the acceleration to zero if the acceleration
was previously negative and one for the case where the acceleration was previously positive.
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To make the purpose of the automata clear, they have been seperated into three layers: the plant layer, the observer
layer and the requirement layer. The purpose of these layers is described below:

• The plant layer: This is where the plant is modeled. There are no real restrictions put onto the system yet.
Everything is possible.

• The observer layer: This layer only observes the plant and adds something to it. In this case the observer
adds timing to the plant layer.

• The requirement layer: This is where the requirements are modeled as automata. This layer restricts the
behaviour of the plant.

The requirement automata are different from requirement automata in for example Rashidinejad et al., (2021).
There, whenever a requirement is not met, the system goes to a blocking state. In the requirement automata
described in this thesis, this is not the case. Here the requirement automata only limit the behaviour of the plant.

The goal of the system has been formalized into four requirements. These requirements are given below:

1. Whenever the events D→front,large or D→back,large happen, the vehicle should start to decelerate or accel-
erate respectively.

2. If the acceleration or deceleration does not result in the event D→none within a certain time, the acceleration
or deceleration should be faster.

3. If, depending on the speed at which the vehicle is getting closer or further away, a small deceleration or
acceleration is not enough. The vehicle should immediately decelerate or accelerate heavily.

4. When the distance between the vehicle and the vehicle in front is equal to the ideal distance, the speed
should be constant.

Designing the automata started with an draft. This draft was transferred to the CIF programming language and
a simulation was made to check if everything worked. If something did not work, the automata were adjusted
until it did work. Most of the problems that occurred resulted from one automaton blocking the events of another
automaton. Supervisor synthesis is unable to add edges where there previously were none, so the automata were
adjusted. A result of this is that the automata became more complicated since self loops and additional edges were
added.
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3.1 Plant automata

Plant automata do not restrict the system, they only model the possibilities of the system. The plant is split
into two automata: one for the distance sensor input and one for the acceleration and deceleration output. The
distance automaton is shown in Figure 3.1. The acceleration and deceleration automaton is shown in Figure 3.2.
Neither automaton has a memory, meaning that when an event happens, only the destination is used. The distance
automaton only consists of uncontrollable events because they are all sensor dependent. The acceleration and
deceleration automaton only consists of controllable events.

The distance automaton starts in the initial location where the distance is equal to the ideal distance. When the sen-
sor outputs that the distance is smaller or larger than the ideal distance, the events D→front,large or D→back,large

happen and the system changes state to Dfront,small or Dback,small. If the distance is even closer or further away
the states are Dfront,large or Dback,large respectively. If the deviation is small, not action is taken. The vehi-
cle only decelerates or accelerates when the deviation is large. A larger or smaller acceleration or deceleration
depends on the time it takes for the automaton to go from a small to a large deviation.

Dnonestart

Dfront,small

Dfront,large

Dback,small

Dback,large

D→back,small

D→none

D→front,small

D→front,largeD→front,small

D→none

D→back,small

D→back,large

Figure 3.1: Distance automaton used to represent the distance to the truck in front. Dnone represents the ideal distance. All
events are uncontrollable because they represent sensor outputs. This is a visualization of the plant_distance automaton in
Appendix 8.7
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anonestart

adecel,smalladecel,large

aaccel,smallaaccel,large

Decel→smallDecel→large

Accel→smallAccel→large

A→none
A→none

A→none

A→none

Decel→large

Decel→small

Accel→large

Accel→small

Figure 3.2: Acceleration and deceleration automaton. There are two levels of deceleration and two levels of acceleration, one
small and the other larger. This automaton does not have a memory, meaning that the events only point to their destination
and do not know where they come from. This is a visualization of the plant_acceleration automaton in Appendix 8.7

3.2 Observer automata

Observer automata only say something about the automata described in the plant layer, they do not influence
anything. There are two observer automata in the second layer, one for the closer distance as shown in Figure 3.3
and one for the further distance as shown in Figure 3.4. These automata look similar to the plant automata, except
that time has been added. If the time it takes to cross from the small deviation to the large deviation is known,
the speed can be calculated. This is later used in the requirement automata to decide between a large or a small
deceleration or acceleration. The requirement automata takes the value of t1 and checks how long it takes before
the D→front,large event happens. If this takes long, it means that the approaching distance is slow. The speed
that is considered slow can be set afterwards. In the system described here, the time is an arbitrary 3/8 seconds.
Quicker is considered fast. Slower is considered slow.
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Timefront,nonestart

Timefront,small

Timefront,large

D→front,small

t1 := 0

D→front,large

t1 := 0
D→front,small

t1 := 0

D→none

t1 := 0

D→none

Figure 3.3: Automaton that adds timing to the "front" part of the distance automaton. This timing is later used in the require-
ment automata to say something about the speed of approach. This is a visualization of the time_close automaton in Appendix
8.8

Timeback,nonestart

Timeback,small

Timeback,large

D→back,small

t2 := 0

D→back,large

t2 := 0
D→back,small

t2 := 0

D→none

t2 := 0

D→none

Figure 3.4: Automaton that adds timing to the "back" part of the distance automaton. This timing is later used in the require-
ment automata to say something about the speed of approach.This is a visualization of the time_far automaton in Appendix 8.8
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3.3 Requirement automata

Requirement automata restrict the behaviour of the plant layer, depending on observations made in the observer
layer. Below, the requirement automata are shown. The acceleration and deceleration automata for every speed
work in a similar manner. The automata in Figure 3.5 and Figure 3.6 meet requirement 1: "Whenever the events
D→front,large or D→back,large happen, the vehicle should start to decelerate or accelerate respectively." For the
slow deceleration automaton as shown in Figure 3.5, the steps are described below. The automaton from Figure
3.6 works in the same way:

1. The automaton starts in location v : constant. The event A→none is a self loop so that it is blocked in all
other locations. The uncontrollable events D→none and Dfront→small are there so that they are not blocked
for the other automata.

2. When the event D→front,large happens, the state changes to the Deviation : large location and the timer
t3,slow is reset to zero. In this location, the timer t3,slow is not allowed to grow greater than 0, so the
automaton must immediately take the event Decel→small in order to satisfy the invariant. The self loop
Decel→large is there because the other automaton from Figure 3.7 also goes to a location Deviation : large
when under the same condition, but this automaton takes the event Decel→large and this event must not be
blocked. This event is blocked in the v : constant location because deceleration when the distance is good
is undesirable.

3. When the event Decel→small happens, timer t3,slow is reset and the automaton reaches the location decel :
small. In this location the event D→front,small is a self loop because the vehicle should only stop deceler-
ating once the ideal distance is reached, so deceleration should only stop when the event D→none happens.
The event Decel→large is a self loop in this location because of requirement 2: "If the acceleration or de-
celeration does not result in the event D→none within a certain time, the acceleration or deceleration should
be faster", which is satisfied in automaton Figure 3.7. The event Decel→large is only allowed while this
automaton is in the locations Deviation : large or Decel, small and not in the other locations because
deceleration is only allowed when the distance is too close.

4. The automaton is also able to go directly from the location v : constant to the location Decel : small.
This is when the speed of approach is quick and the automaton should decelerate aggressively immediately.
This event is so that the automaton of Figure 3.9 does not have its events blocked.
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v : constantstart

Deviation : large
¬(t3,slow > 0)

Decel : small

D→front,large

t1 ≥ 3/8
t3,slow := 0

D→front,large

t1 < 3/8

D→none

D→font,small

D→front,small

D→none

D→front,small

A→none

Decel→small

t3,slow := 0

Decel→large

Decel→large

Figure 3.5: Automaton that requires the system to slow down when the approaching speed it slow. The automaton starts in
the v : constant location and when the event D→front,large happens, depending on the timer t1, the automaton goes to the
Deviation : large or the Decel, small location. When in location Deviation : large, the event Decel→small must happen
to satisfy the invariant. This is a visualization of the decel_slow automaton in Appendix 8.9

.

v : constantstart

Deviation : large
¬(t4 > 0)

Accel : small

D→back,large

t2 ≥ 3/8
t4 := 0

D→back,large

t2 < 3/8

D→none

D→back,small

D→back,small

D→none

D→back,small

A→none

Accel→small

t4 := 0

Accel→large

Accel→large

Figure 3.6: Automaton to meet the requirement that whenever the distance is very far and the speed with which the distance
grows is slow, the vehicle should accelerate slowly. This is a visualization of the accel_slow automaton in Appendix 8.10
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The automata from Figure 3.7 and Figure 3.8 are to meet requirement 2: "If the acceleration or deceleration does
not result in the event D→none within a certain time, the acceleration or deceleration should be faster.". The
working of these automata is similar to the automata from Figure 3.5 and Figure 3.6, except that the automaton
is allowed to stay in the Deviation : large location for a while, as a result the small acceleration or deceleration
happens earlier. The automaton will only take the event Accel→large or Decel→large after it has stayed in that
location for a while. This gives the automaton time to go back to the v : constant state if the distance has
decreased enough. If the event where the distance is large is followed by the event where the distance is small, the
automaton is going back to the ideal position.

v : constantstart

Deviation : large
¬(t3,fast > 1/8)

Decel : large

D→front,large

t1 ≥ 3/8
t3,fast := 0

D→front,large

t1 < 3/8

D→none

Dfont→small

D→front,small

D→none

D→front,small

A→none

Decel→small

Decel→large

Decel→large

t3,fast := 0

Decel→small

Decel→large

Figure 3.7: Automaton to meet the requirement that when the distance is very close but a small deceleration is not enough,
then the deceleration should switch from a slow deceleration to a large deceleration. This is a visualization of the decel_panic
automaton in Appendix 8.9
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v : constantstart

Deviation : large
¬(t4,fast > 1/8)

Accel : large

D→back,large

t2 ≥ 3/8
t4,fast := 0

D→back,large

t2 < 3/8

D→none

Dback→small

D→back,small

D→none

D→back,small

A→none

Accel→small

Accel→large

Accel→large

t4,fast := 0

Accel→small

Accel→large

Figure 3.8: Automaton to meet the requirement that when the distance is very far but a small acceleration is not enough,
then the acceleration should switch from a slow acceleration to a large acceleration. This is a visualization of the accel_fast
automaton in Appendix 8.10

Requirement 3 is: "If, depending on the speed at which the vehicle is getting closer or further away, a small
deceleration or acceleration is not enough. The vehicle should immediately decelerate or accelerate heavily".
This requirement is met with the automata from Figure 3.9 and Figure 3.10. The idea behind these is similar to the
previous automata, except that these automata take the D→front,large or D→back,large events to the Deviation :
large location if the timers t1 and t2 are small. Similar to the slow acceleration and slow deceleration automata,
these automata are not allowed to stay in that temporary location for any period of time and therefore the events
Decel→large or Accel→large must be taken immediately. These automata do not have an edge directly from the
v : constant state to the Accel : large or Decel : large state. These automata took a different approach to the
same problem that the event D→back,small should not be blocked. Here the event is added as a self loop to the
location v : constant.
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v : constantstart

Deviation : large
¬(t3,panic > 0)

Decel : large

D→front,large

t1 < 3/8
t3,panic := 0

D→front,large

t1 ≥ 3/8
D→none

D→front,small

D→front,small

D→none

D→front,small

A→none

Decel→small

Decel→large

Decel→large

t3,panic := 0

Figure 3.9: Automaton to meet the requirement that when the distance is very close and the speed of approach is fast, then the
vehicle should immediately Decelerate fast. This is a visualization of the decel_panic automaton in Appendix 8.9

v : constantstart

Deviation : large
¬(t4,panic > 0)

Accel : large

D→back,large

t2 < 3/8
t4,panic := 0

D→back,large

t2 ≥ 3/8
D→none

D→back,small

D→back,small

D→none

D→back,small

A→none

Accel→small

Accel→large

Accel→large

t4,panic := 0

Figure 3.10: Automaton to meet the requirement that when the distance is very far and the leaving speed is fast, then the
vehicle should immediately Accelerate fast. This is a visualization of the accel_panic automaton in Appendix 8.10

The last requirement is: "When the distance between the vehicle and the vehicle in front is equal to the ideal dis-
tance, the speed should be constant". This requirement is met by the automaton from Figure 3.11. The automaton
transitions to location D ̸= 0, a ̸= 0 whenever the acceleration is not equal to zero. If the event D→none happens,
the automaton goes to a location D = 0, a ̸= 0 where is is not allowed to stay for any time, so the event a→none

must happen immediately. Thus meeting the requirement that whenever the distance is equal to the ideal distance,
the acceleration is zero, is met.
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D = 0, a = 0start D ̸= 0, a ̸= 0
D = 0, a ̸= 0
¬(t5 > 0)

decel→small

decel→large

accel→small

accel→large

decel→small

decel→large

accel→small

accel→large

a→none

t5 > 0

D→none

t5 := 0

Figure 3.11: Automaton to meet the requirement that whenever the distance to the vehicles predecessor is equal to the ideal
distance, the acceleration should be zero. This requirement is met because at the location D = 0, a ̸= 0, the timer is not
allowed to become larger then zero and thus the controllable event anone must be taken. This is a visualization of a_none
automaton in Appendix 8.11
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4 Automation
There is a total of eleven automata that describe the system and the requirements. Computing the synchronous
product of all these automata would be too much work to do by hand. The synchronous product computed by
the CIF language was not in the correct form since it consisted of only one location. This makes supervisor
synthesis more complicated since it relies on edges to marked or blocking locations. Therefore an attempt was
made at creating a program that computes the synchronous product for the automata described in chapter three.
The algorithms that were used for this are shown in Algorithm 1, 2 and 3. Of these three, Algorithm 1 is the
main algorithm and both Algorithm 2 and 3 are called from the first one. It should be noted that these algorithms
compute the product between two automata. The program is called many times, ten in total, to first compute the
product between the first two, and add every consecutive automaton to the product. It can be visualized as follows
for four automata:

A1||A2||A3||A4 = (((A1||A2)||A3)||A4) (4.1)

Here the brackets indicate that every time, only the product between two automata needs to be computed. As is
done in Appendix 8.1, line 102− 105.

4.1 Parsing

In order to compute a product, first the computer must know the automata. These automata initially only existed
in text, so the text must be translated into something that the computer understands, this is called parsing. A parser
reads the text and translates it into a structure that can be understood by the computer. The algorithm that is used
by the parser is only described in words. The corresponding lines in the code from the appendix are given.

The scripts are written in Java, which is an object oriented language. These objects know things and they can do
things. Take for example an object to perform operations on two numbers. First both numbers should be send to
that object, then the object knows the numbers. Next there are a couple of possibilities. The main script could for
example tell the object to compute the product between the numbers. The object would do that and then it also
knows the product between the numbers. The main script could also tell the object to compute the sum. Then
the object knows the sum as well. It is this idea that is used by the parser: an "automaton" object is created, this
object is given a text string so that it knows the text string. The automaton is then told to "organize" the text. This
means the automaton looks for the locations, its name and its alphabet. The steps that are taken by all objects are
described below:

• The main script loads a text as a string and searches for the location of the "automaton" word, as well as the
"end" word that is used to indicate the end of an automaton. The sub-string that runs from one occurrence
of the word "automaton" till the next "end" occurrence is send to the automaton object. This is done in
appendix 8.1, line 74− 85.

• The automaton object then takes that string and starts looking for the word that is between the "automaton"
word and the first ":". This is saved as the name of the automaton. The automaton object then looks for the
occurrences of the "location" word and sends the sub-string that runs from the occurrence of "location" till
the next, to the location object. This is done in appendix 8.2, line 61− 113.

• The location object looks for the occurrence of the word "invariant" and saves that which runs from that
word till the first ";" as the invariant. Next the location searches for the location of the word "edge" and
sends that which runs from that word till the first ";" to the edge object. This in done in appendix 8.3, line
140− 217.

• The edge object does the same for the guards and the updates. The first word that comes after the "edge"
word is saved as the event of the edge. The first word after the "do" word is saved as the update. The first
word after the "when" word is saved as the guards and whichever comes after "goto" is saved as the target
location. This is done in appendix 8.4, line 137− 227.
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The parser does not check for the correctness of the CIF specification. This means that if something is wrong in
the CIF model, the parser will either give an error or the output does not make sense.

The above method results in the following structure: The automaton object contains the alphabet, its name, the
string it is composed of and the locations that make up the automaton. Locations contain the name of the locations,
the string that originally made up the location, the owner automaton, whether it is an initial location, whether it
is a marked location and the edges it contains. Edges contain the event, the string that makes up the edge, the
update, the guard, the initial location, the target location, whether it is forcible and whether it is uncontrollable .
The structure is also given below:

• Automaton (contains: ↓)

– Alphabet

– Name

– Text string

– Locations (contain: ↓)

* Name

* Text string

* Owner automaton

* Boolean initial

* Boolean marked

* Edges (contain: ↓)
· Event
· Text string
· Update
· Guard
· Initial location
· Controllable
· Destination location
· Owner automaton
· Boolean uncontrollable
· Boolean forcible

In the algorithms below, sub-elements are denoted by dots. Below, a couple of examples are given for how to read
these:

• e1.σ denotes the event from an edge.

• A.Σ denotes all events that are part of automaton A. This is also referred to as the alphabet.

• l.Σ denotes all events that exist in the location l.

• l denotes a location l ∈ L. The notation L ← Combine locations(l1, l2,Σ1,Σ2) means the output of the
function Combine locations is added to the set L.

• l.E ← e2 means edge e2 is added to the set of edges in l.

• l ∈ A.L indicates a location in the automaton A.

The algorithms are meant to explain the scripts in the appendix. They do not explain how to perform the operations
in the most efficient manner, only how it was done in the scripts. The scripts were not made to be efficiënt.
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4.2 Computing the product

Algorithm 1 is the main algorithm that computes the product. It is the backbone of script 8.5 in the Appendix. The
algorithm loops over every possible combination of locations in both automata and combines them. The output
of the combination is stored in a new location. The final step in the algorithm is cleaning the locations. Here
the locations that cannot be reached through events from the initial locations, are removed. The clean locations
algorithm is explained in Algorithm 3. As a last step the new text file is generated. The first part of the CIF code
is expected to contain the declaration of the variables. This part is copied and pasted back as the first part in the
CIF file of the synchronous product. For all timers that exist in the product, a declaration of the form: cont x der
1; is added before the first locations.

Algorithm 1 Computing the product
Input: Automaton A1 = (C1, L1,Σ1, E1, Lm,1, L0,1, I1);

Automaton A2 = (C2, L2,Σ2, E2, Lm,2, L0,2, I2);
Output: Automaton AP = A1||A2 = (C1 ∪ C2, L1 × L2,Σ1 ∪ Σ2, EP , Lm,1 × Lm,2, (L0,1, L0,2), IP );

1: Lp = ∅
2: for l1 ∈ A1.L do ▷ Appendix 8.5, Line: 337− 351
3: for l2 ∈ A2.L do
4: LP ←Combine locations(l1, l2,Σ1,Σ2)
5: end for
6: end for
7:
8: AP .L = LP

9: Clean locations(A.LP )

4.2.1 Merging locations

The algorithm that combines two locations is given in Algorithm 2. This algorithm takes as input two locations
and outputs a single location. This is done by merging all the edges in both automata. The actual Java script
separates this into two functions, but in Algorithm 2 they are taken together. The algorithm takes the following
steps:

1. The algorithm starts with an empty set lp.E, which is filled up with all the combined edges. In the first loop
(Line: 4 − 10), the locations are checked for overlapping events. If two events are the same, they are not
blocked in either location and thus are not blocked in the combined location. Therefore they are added to the
set lp.E. The "Merge edges" algorithm combines two edges. Merging edges means taking the conjunction
of the guards, the conjunction of the clock resets and merging the target locations.

2. The next loop (line: 12 − 18) goes over all the edges in the location L1 and contains two booleans: x and
y. The boolean x is True when the event causing the edge is in the alphabet of the automaton from the
other location. The boolean y is True when the event causing the edge is in the other location. If y is True,
this means that the event is in both locations and thus is is already added in the loop that checks for double
events. If x is True and y is False, it means that is is in the alphabet, but not in the location and thus it is
blocked by the other automaton. Only when it is not part of the other automaton and it is not already in
added in the first loop, it can be added in this loop. The case where the event is not part of the alphabet of the
other automaton, but it is part of the events in the other location, is impossible. Therefore ¬x∧ y = False.
In the script in Appendix 8.5, line 177, this is solved by using the logical "and". This means first the left
part is evaluated and if that is False, the right part is skipped.

3. The last loop (line: 20− 26) does the exact same thing as the previous loop, except for the other edges. The
event cannot be in the alphabet but not in the location because then it is blocked. It also cannot be in the
other location either because then it was already added in the first loop.

In script 8.5 in the appendix, the function merge_edges from line 60 combines the guards and updates. The desti-
nation locations from the two original edges are added to a separate list in the new edge, called destination_sum.
Later, the function adjust_destination from line 234 looks through all new locations and searches for the location
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that is the combination of the two target locations in the original edges. The name of the new target location of the
edge is then adjusted according to the new name of the target locations. Any variables from other automata that
are references are changed. The reference that occurs before the dot is removed. Also nothing is done to change
the name of variables that have the same name. This means that if two automata share the same variable name, in
the product they will be the same variable.

Algorithm 2 Merge locations
Input: Location l1, Location l2;

Alphabet Σ1, Alphabet Σ2;
Output: Location lP = l1 × l2;

1: lP .initial = l1.initial ∧ l2.initial
2: lP .marked = l1.marked ∧ l2.marked
3: lP .E := ∅
4: for e1 ∈ l1.E do ▷ Appendix 8.5, Line 151− 160
5: for e2 ∈ l2.E do
6: if e1.σ = e2.σ then
7: lP .e←Merge edges(e1, e1)
8: end if
9: end for

10: end for
11:
12: for e1 ∈ l1.E do ▷ Appendix 8.5, Line 162− 172
13: x := e1.σ ∈ Σ2

14: y := e1.σ ∈ l2.Σ
15: if ¬x ∧ ¬y then
16: lp.E ← e1
17: end if
18: end for
19:
20: for e2 ∈ l2.E do ▷ Appendix 8.5, Line 174− 184
21: x := e2.σ ∈ Σ1

22: y := e2.σ ∈ l1.Σ
23: if ¬x ∧ ¬y then
24: lp.E ← e2
25: end if
26: end for
27: return lP

4.2.2 Cleaning unreachable locations

Algorithm 3 cleans all locations that cannot be reached from an initial location. It does this by adding the target
locations for every edge in the reachable locations to the set of reachable location. This stops when for all locations
no new locations are added to the set of reachable locations. The set of reachable locations consists of the names
of the reachable locations, not of the locations themselves. This is the reason for the final loop on line 25 − 29
over all locations. There the name of the location name is not part of the list of reachable locations, it is removed
from the actual set of locations. This part is ineficiënt because of the constant loop over all locations. It would be
faster to only check those locations that are reachable. In more detail, the algorithm works as follows:

1. The first step is looking for the initial locations. The names of these locations are added to the set of
reachable locations (Line: 3− 8). Right now only one initial location is accepted. This is seen on line 7 in
the algorithm: The For-loop ends once an initial location is found.

2. For the while loop, a boolean Finished is used. The value is initially set to False and directly after the loop
is set to True. If a new location is added, the value is set to False again. If no new location is found, the
boolean is never set to False so the loop stops.

Frank Vlaar 19



Real-time supervisory control synthesis program for one dimensional vehicle following system

3. In the while loop, a sub loop runs over all location. If the location is a member of the Reachable locations,
for all edges in that location, the target location is added to the set of reachable locations if it was not already
in there. If it was not already in there, the boolean Finished its set to False.

4. The while loop finished when there is no new value added to the set of reachable locations.

5. The last loop goes over all locations and checks if it is in the set of reachable locations. If it is not in there,
the location is removed.

Algorithm 3 Clean locations
Input: Locations L
Output: Locations L

1: Bool Finished = False
2: Lreachable = ∅
3:
4: for l ∈ L do ▷ Appendix 8.5, Line 267− 274
5: if l.initial then
6: Lreachable ← l
7: end for
8: end if
9: end for

10:
11: while ¬Finished do ▷ Appendix 8.5, Line 276− 291
12: Finished = True
13: for l ∈ L do
14: if l ∈ Lreachable then
15: for lt ∈ l do
16: if ¬lt ∈ Lreachable then
17: Lreachable ← lt
18: Finished = False
19: end if
20: end for
21: end if
22: end for
23: end while
24:
25: for l ∈ L do ▷ Appendix 8.5, Line 294− 303
26: if ¬l ∈ Lreachable then
27: Remove l
28: end if
29: end for
30: Return L

Applying the algorithms on the system described in Chapter 3 results in 147 locations. When the guards of the
edges are merged in the locations, they are not checked. This means some of the guards are False for all time.
Such a guard may look as follows:

e.g = t1 ≥ 3/8 ∧ t1 < 3/8 (4.2)

These guards are a result of for example 3.9 and 3.5. Both locations start in location v : constant and have
D→front,large in an outgoing edge. The guards for these edges are t1 ≥ 3/8 and t1 < 3/8 respectively. Com-
bining these edges and not simplifying the resulting guard results in a guards that is never satisfied. Later in this
chapter a method that is able to simplify the guards is used, but this is not yet applied in the product-computation
scripts.
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4.3 Controller synthesis

An attempt was made at implementing Algorithm 5.3 from Rashidinejad et al., (2021) in Java. The first script from
Algorithm 4 runs the outer loop and checks whether the program is finished. This is where the other algorithms
are called. All algorithms and equations presented in this section are a direct implementation of algorithms and
equations in chapter five of Rashidinejad et al., (2021).

4.3.1 Main file

In the scripts, simplification of logical expressions is done by Matlab in Script 4.1. The input to the function is
a string and an optional argument. This string must contain the clocks that are reset. The string is first checked
for the "and" and "or" words and they are changed for the Matlab equivalent of & and | respectively. The string
that contains the logical expression is converted into an symbolic expression on line 4. The next if -statement
checks if an optional argument was supplied. If this is the case, the clocks are substituted as zero in the symbolic
expression. The assumption is made that all variables in the expression are real numbers and finally the expression
is simplified. The simplify function is set to 100 iterations because some expressions can be very long. Finally the
simplified expression is converted into a string so that it can be understood by Java. The "and" and "or" words are
not put back because that is done at the end when the CIF text is generated.

Listing 4.1: Matlab simplifiction function. The input is a string that represents a logical expression, the ouput is a string with
that expression simplified.

1 f u n c t i o n s i m p l e = s i m p l e r ( i n p u t , v a r a r g i n )
2 i n p u t = s t r r e p ( i n p u t , ’ and ’ , ’ & ’ ) ;
3 i n p u t = s t r r e p ( i n p u t , ’ o r ’ , ’ | ’ ) ;
4 sym = s t r 2 s y m ( i n p u t ) ;
5 i f ( n a r g i n >= 2)
6 r e s e t s = v a r a r g i n { 1 } ;
7

8 v a r s _ o l d = symvar ( sym ) ;
9 vars_new = v a r s _ o l d ;

10 f o r i = 1 : l e n g t h ( vars_new )
11 i f ismember ( vars_new ( i ) , r e s e t s )
12 vars_new ( i ) = 0 ;
13 end
14 end
15 sym = subs ( sym , v a r s _ o l d , vars_new ) ;
16 end
17 assume ( symvar ( sym ) , ’ r e a l ’ ) ;
18 s i m p l e = s i m p l i f y ( sym , 100) ;
19 s i m p l e = s t r i n g ( s i m p l e ) ;
20 end

Frank Vlaar 21



Real-time supervisory control synthesis program for one dimensional vehicle following system

For the actual synthesis, Algorithm 4 is used. This algorithm is directly related to Figure 5.4 in Rashidinejad
et al., (2021). First the non-blocking conditions are computed for all locations. This is done in Algorithm 5.
Next the bad-state conditions are computed in Algorithm 6 and the guards are adapted in Algorithm 7. Line 8
checks whether the guards have changed, if that is not the case and they have remained the same, the invariants
are updated in Algorithm 8. If they have changed, the first small loop from line 4− 5 starts again. If the invariants
have not changed, the program is finished.

Algorithm 4 Controller synthesis
Input: Automaton A;
Output: Automaton A;

1: Boolean Loop2 = False
2: Boolean Loop1 = False
3: while ¬Loop2 do ▷ Appendix 8.6, Line 475− 486
4: while ¬Loop1 do
5: Non blocking
6: Bad state
7: Adapt guards
8: Loop1 = Guards Equal
9: end while

10: Loop1 = False
11: Adapt invariants
12: Loop2 = Invariants equal
13: end while

4.3.2 Non-blocking predicate

The non-blocking predicate is computed in Algorithm 5. This program first sets the non-blocking conditions to
the invariant for all the locations, otherwise the non-blocking predicate is set to False. This happens on line 3− 9.
On line 12 − 16, the first part of the non-blocking condition is calculated, corresponding to number 1 and 2 of
Algorithm 5.1 in Rashidinejad et al., (2021). Here the new non-blocking conditions is calculated according to the
following equation:

Predicaten+1 = Predicaten ∨
∨

l
σ,g,r−−−→lt

(g ∧ lt.i ∧ lt.NB) (4.3)

Number three from Algorithm 5.1 in Rashidinejad et al., (2021) could not be easily computed by the computer
so the user is asked to solve that part, it is given below as well. This implies that if for a time delay ∆ the
non-blocking condition is True, then for all δ ≤ ∆, the invariant should also be True.

∃∆l.NB(t+∆) ∧ ∀δ ≤ ∆l.i(t+ δ) (4.4)

To check whether the non-blocking condition has changed from one iteration to another, the boolean Finished is
used. This variable is set to False if a condition has changed. Checking if the condition has changed is done by
taking the conjunction of the old non-blocking condition with the negation of the new non-blocking condition. If
neither of them is False in any case, this conjunction should evaluate to False. This can intuitively be understood
by saying x ∧ ¬y, which is always False if x = y. The check for either of them being False, but not both, is done
on line 21.
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Algorithm 5 Non-blocking conditions
Input: Automaton A;
Output: Automaton A;

1: Boolean Finished = False
2: for l ∈ A.L do ▷ Appendix 8.6, Line 204− 219
3: if l.marked then
4: l.NB = l.i
5: else
6: l.NB = False
7: end if
8: end for
9:

10: while ¬Finished do ▷ Appendix 8.6, Line 222− 294
11: for l ∈ A.L do ▷ Appendix 8.6, Line 225− 269
12: Predicate = L.NB
13: for e ∈ L.E do
14: Predicate = Predicate ∨ (e.lt.i ∧ e.g ∧ e.lt.NB)
15: end for
16: Predicate = Predicate ∨ PartThree(l.i, l.NB)
17: l.NBtemp = Predicate
18: end for
19:
20: for l ∈ A.L do ▷ Appendix 8.6, Line 272− 292
21: if (l.NBtemp = False)⊕ (l.NB = False) then
22: Finished = false
23: Break
24: else if ¬((l.NBtemp ∧ ¬l.NB) = False) then
25: Finished = false
26: Break
27: else
28: Finished = true
29: Break
30: end if
31: l.NB = l.NBtemp

32: end for
33: end while
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To minimize the amount of times user input is needed, the trivial case where either or both l.NB or l.I are False
is solved automatically in Matlab script 4.2. The script is explained below.

Listing 4.2: Function to check for the trivial case of part three from algorithm 5.1 from Rashidinejad et al., (2021). The trivial
case is where either the non-blocking condition or the invariant is False or if one is True

1 f u n c t i o n r e s u l t = c l o c k _ r e g i o n s (N, I )
2 N_sym = s t r 2 s y m (N) ;
3 I_sym = s t r 2 s y m ( I ) ;
4 var_N = symvar ( N_sym ) ;
5 v a r _ I = symvar ( I_sym ) ;
6 i f ( N_sym== s y m f a l s e )
7 r e s u l t = s t r i n g ( s i m p l i f y ( I_sym , 20) ) ;
8 r e t u r n ;
9 end

10 i f ( I_sym== s y m f a l s e )
11 r e s u l t = s t r i n g ( s i m p l i f y ( I_sym , 20) ) ;
12 r e t u r n ;
13 end
14 i f ( N_sym== symt rue | | I_sym== symt rue )
15 r e s u l t = s t r i n g ( s i m p l i f y ( I_sym , 20) ) ;
16 r e t u r n ;
17 end
18 r e s u l t = " n u l l " ;
19 r e t u r n ;
20 end

This script takes as input the N and I . In this case, N can be either the non-blocking predicate or the bad-state
predicate. The predicates are first converted to symbolic equations and then checked for either or both of them
being False. The interpretation from Rashidinejad et al., (2021) of Equation 4.4 reads: "The condition to stay (for
some time delay δ ≤ ∆) in a non-blocking location as long as the invariant is satisfied". This means that, in the
case that the invariant is True for all time, then the non-blocking predicate must also be True for all time. Else, if
the invariant is False for all time, the non-blocking predicate must also be False. In the case that the non-blocking
predicate is False, the requirement says that the automaton is allowed in the location for as long as the invariant is
satisfied, so the invariant is returned.

4.3.3 Bad-state predicate

The bad-state predicate from Algorithm 6 is computed in a similar way as the non-blocking predicate and is based
on Algorithm 5.2 from Rashidinejad et al., (2021). First the predicate is set to the negation of the non-blocking
predicate in line 3 − 4. Next, the first part of the new bad-state predicate is computed according to the following
equation from Rashidinejad et al., (2021):

Predicaten+1 = Predicaten ∨
∨

l
σunc,g,r−−−−−→lt

(g ∧ lt.i ∧ lt.BS) (4.5)

In the above Equation 4.5 it should be noted that in this equation, only the uncontrollable edges are taken into
account. The final part of the bad-state predicate could again not easily be automatically computed. It did however
become simpler because there are no forcible events. Forcible events are events that can preempt the passage of
time, but they are not used in the platooning system described in Chapter 3. Therefore, the final part of the
bad-state predicate can be computed by the user according to the following equation:

∃∆l.BS(t+∆) ∧ ∀δ ≤ ∆l.i(t+ δ) (4.6)

This Equation 4.6 can be interpreted similar to Equation 4.4. The automaton should be allowed to stay in a location
as long as the invariant is satisfied. In Algorithm 6, the user is asked to solve this equation on line 15. The user is
given the bad-state predicate along with the invariant.
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Algorithm 6 Bad-state conditions
Input: Automaton A;
Output: Automaton A;

1: Boolean Finished = False
2:
3: for l ∈ A.L do ▷ Appendix 8.6, Line 314− 326
4: Predicate = ¬l.NB
5: end for
6:
7: while ¬Finished do ▷ Appendix 8.6, Line 328− 405
8: for l ∈ A.L do ▷ Appendix 8.6, Line 330− 381
9: for e ∈ l.E do ▷ Appendix 8.6, Line 335− 358

10: if e.σ.uncontrollable then
11: Predicate = Predicate ∨ (e.lt.i ∧ e.g ∧ e.lt.BS)
12: Apply resets(Predicate)
13: end if
14: end for
15: Predicate = Predicate ∨ PartThree(l.i, l.NB)
16: l.BStemp = Predicate
17: end for
18:
19: for l ∈ A.L do ▷ Appendix 8.6, Line 383− 403
20: if (l.BStemp = False)⊕ (l.BS = False) then
21: Finished = false
22: Break
23: else if ¬((l.BStemp ∧ ¬l.BS) = False) then
24: Finished = false
25: Break
26: else
27: Finished = true
28: Break
29: end if
30: l.BS = l.BStemp

31: end for
32: end while
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4.3.4 Adapting guards and invariants

Adaptation of the guards and the invariants is done in Algorithm 7 and 8 below. The new guard is equal to, for all
outgoing uncontrollable edges, the disjunction of the old guards and the negation of the bad-state predicate of the
target location. Uncontrollable events are uncontrollable, therefore the supervisor cannot adapt them, otherwise
they would be controlled. The invariant can only be adjusted if there is an outgoing forcible event in the location.
If that is the case, the new invariant is equal to the disjunction of the old invariant and the negation of the bad-state
predicate. Forcible events are not used therefore no invariants are adapted.

Algorithm 7 Guard adaptation
Input: Automaton A;
Output: Automaton A;

1: for l ∈ A.L do ▷ Appendix 8.6, Line 147− 180
2: for e ∈ l.E do
3: if e.σ.controllable then
4: Predicate = e.g ∧ ¬e.lt.BS
5: e.g = Predicate
6: end for
7: end if
8: end for
9: end for

Algorithm 8 Invariant adaptation
Input: Automaton A;
Output: Automaton A;

1: for l ∈ A.L do ▷ Appendix 8.6, Line 115− 134
2: for e ∈ l.E do
3: if e.σ.forcible then
4: Predicate = l.i ∧ ¬l.BS
5: end for
6: end if
7: end for
8: l.i = Predicate
9: end for
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5 Single test case
This chapter will synthesize a supervisor by hand for a small automaton according to the method proposed in
Rashidinejad et al., (2021). In the automaton from Figure 5.1, a single modified string from the complete syn-
chronous product is shown. The string has been modified because in the original string, the guards from location
2 to 3 and from location 3 to 4 are always False. The reason that this remained in the product, is because the
simplifications with a matlab script were not yet used. An explanation as to why the guards are always False is
given in equation 4.2.

loc : 1start loc : 2
loc : 3

¬(t3,slow > 0) loc : 4

loc : 5

D→front,large

t1 ≤ 3/8
t3,slow := 0
t1 := 0

Dfront→small

t1 := 0

Dfront→large

t1 := 0
t3,slow := 0

a→none

t5 > 0

Figure 5.1: This automaton is a modified version of a single string from the synchronous product of the system. It is modified
so that synthesis can be applied. In the actual test string, the edge from location 2 to 3 is not possible because the original
guard is: t1 < 3/8 ∧ t1 ≥ 3/8. Which is always False.

As a first step, the non-blocking conditions for all locations are computed. These are shown in Table 5.1. Initially,
the non-blocking condition is set to the the invariant for all marked locations. Location 5 does not have an
invariant so it is True. Next, for every location, Equation 4.3 is solved. In the case of location 1, this results in
False ∨ True ∨ (t5 > 0 ∧ False) = True. Part three from Equation 4.4 does not change anything about that
since the the condition already is True for all time. Since there are no events going to location 1, iteration 3 does
not change with respect to iteration 2.

Iteration loc:1 loc:2 loc:3 loc:4 loc:5
1 False False False False True
2 True False False False True
3 True False False False True

Table 5.1: The non-blocking condition for the automaton from Figure 5.1

The bad-state conditions are shown in Table 5.2. Initially, all the bad-state conditions are set to the negation of
the non-blocking conditions. This results in all conditions being True except for location 1 and 5. After one
iteration, this does not change. For example, the bad-state predicate for location 2 resulted in: True ∨ (t1 ≤
3/8 ∧ ¬(t3,slow > 0) ∧ True) = True.

Iteration loc:1 loc:2 loc:3 loc:4 loc:5
1 False True True True False
2 False True True True False

Table 5.2: The bad-state condition for the automaton from Figure 5.1

The next step is updating the guards. Only the uncontrollable events can have their guards updated. The new
guard is the conjunction between the old guards and the negation of the bad state of the target location. The only
controllable event is the edge from location 1 to 2. The bad-state condition in location 2 is True, therefore the new
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guards is t5 > 0 ∧ ¬True = False. The new automaton is shown in Figure 5.2. Invariants can not be adapted
due to there being no forcible events in the automaton.

loc : 1start loc : 2
loc : 3

¬(t3,slow > 0) loc : 4

loc : 5

D→front,large

t1 ≤ 3/8
t3,slow := 0
t1 := 0

Dfront→small

t1 := 0

Dfront→large

t1 := 0
t3,slow := 0

False

Figure 5.2: The supervisor automaton for Automaton 5.1. In red the new guard is shown. This guard is false so that the
blocking location 4 can no longer be reached.

The supervisor for the automaton from Figure 5.1 is shown in Figure 5.2. In red the adapted guard is shown. The
blocking location is location 4. Due to the guard from location 1 to location 2 being False, this location 4 can no
longer be reached. The only possibility for this automaton is going from location 1 to the marked location 5.
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6 Conclusion
First a model was made for one vehicle following another vehicle in a straight line, this resulted in eleven automata.
In order to compute the synchronous product, a script was written in Java that takes as input the CIF code and
outputs the synchronous product in CIF as well. The synchronous product had 147 states. Some of these states
had guards that would never be satisfied. The reason for this is that the script that computes the product does not
simplify the expression for the guards.

An attempt was made at automating the synthesis of a supervisor. The process relied heavily on the algorithm
from Rashidinejad et al., (2021). Not all equations could be solved automatically so some are left to the user as
input. Some trivial cases were solved automatically.

Since the a large amount of user inputs would be needed if synthesis would be applied to the product consisting
of 147 states, a small string from the product is used. Synthesis is done by hand on this string. The result was that
the blocking state could no longer be reached.
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7 Notes
The scripts that compute the synchronous product and synthesize the supervisor require attention when used.
Points to pay attention to and methods for improving the scripts are given below:

• As of right now, only automata can be parsed and not plants. The simple reason for this is that the parser
looks for the word "automaton" and not for the "plant" word. This can easily be changed by changing the
string in all cases.

• The parser does not check for the correctness of the CIF model. This means that if something is wrong with
the CIF model, the product is also wrong.

• When timers from other automata are referenced in the CIF code with a dot, the program simply removes
everything that precedes the dot. The means that if timers share the same name but different automata, in
the synchronous product they will be equal.

• In the computation of the product, all information that precedes the word "automaton" is simply copied
back in the code for the product. Information that is in between the word "end" and the word "automaton"
is therefore lost in the product. This should be changed if the scripts is to be adapted.

• The scripts are inefficient. An example is cleaning the locations: In order to find the reachable locations,
the script continuously runs over all locations. This can be improved by starting in the initial location and
only run over the reachable locations.

• The simplification algorithm requires the Matab engine. Calling this engine from java is a slow process.
Implementing a symbolic simplification algorithm would increase the speed.

• When using the algorithms to compute a product, the only variables can be timers. This has mostly to do
with the way the variables are put back in the product. The product puts "cont x der 1" for all variables
above the first location.

• For the computation of the synchronous product, the guards are not simplified. The script that is able to do
this exists in Matab but is not yet implemented.

• The supervisor synthesis scripts asks the user to solve equations. If the scripts are to be used on large
systems, those equations should be solved automatically.
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8 Appendix

8.1 Main file

1 import java.io.FileWriter;
2 import java.nio.file.Files;
3 import java.nio.file.Path;
4 import java.util.ArrayList;
5

6 class main_file {
7 private static String define_clocks(automaton [] automata) {
8 ArrayList <String> clocks = new ArrayList<>();
9 String text = "";

10 for (automaton autom: automata) {
11 for (edge edge: autom.edges) {
12 for (String clock: edge.clock_resets) {
13 if (! clocks.contains(clock)) {
14 clocks.add(clock);
15 }
16 }
17 }
18 }
19 for (String clock: clocks) {
20 text += " cont " + clock + " der 1;\n";
21 }
22 return text;
23 }
24

25 private static int[] find (String main_text, String small_text) { //Returns the
occurances of a piece of small text in a larger text.

26 int main_length = main_text.length();
27 int small_length = small_text.length();
28 String substring;
29 int [] result_array;
30 ArrayList<Integer> result = new ArrayList<Integer>();
31

32 //Because arrays do not have a dynamic length, a list is used.
33 for (int i=0; i<main_length-small_length+1; i++) {
34 substring = main_text.substring(i, i+small_length);
35 if (substring.equals(small_text)) {
36 result.add(i);
37 }
38 }
39 //The list is changed to an array because I find it easier to work with.
40 result_array = new int[result.size()];
41 for (int i=0; i<result.size(); i++) {
42 result_array[i] = result.get(i);
43 }
44 return result_array;
45 }
46

47 private static automaton [] parse (String text) {
48 automaton [] automata;
49 String autom_name = "automaton ";
50 String end_name = "end";
51 String substring;
52 int [] plant_occurances;
53 int [] end_occurances;
54 int automaton_amount;
55 int end_length = end_name.length();
56 int start;
57 int end = 0;
58

59 //Find the indices of teh ’plant’ word.
60 plant_occurances = find(text, autom_name);
61 end_occurances = find(text, end_name);
62

63 //The amound of occurances of the ’plant’ word is an indication of the amount of
plants in the system.

64 automaton_amount = plant_occurances.length;
65 automata = new automaton [automaton_amount];
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66

67 //The plant runs from the ’plant’ word till the ’end’ word.
68 for (int i=0; i<automaton_amount; i++) {
69 //The index of the start of the plant is the same as the index of the word ’plant’
70 start = plant_occurances[i];
71 //The plant ends the first time the ’end’ word occurs.
72 for (int j: end_occurances) {
73 if (j > start) {
74 end = j;
75 end = end + end_length;
76 break;
77 }
78 }
79 //Send the plant to the new automaton and organize the automaton.
80 substring = text.substring(start, end);
81 automata[i] = new automaton();
82 automata[i].organize_text(substring);
83 }
84

85 return automata;
86 }
87

88 private static automaton compute_product (automaton [] automata, boolean print) {
89 //Compute the product betweent the first two automata.
90 if (automata.length == 1) {
91 return automata[0];
92 }
93 int automaton_amount = automata.length;
94 automaton product = new automaton();
95 try {
96 if (print) { System.out.println("Computing product between \"" + automata[0].name

+ "\" and \"" + automata[1].name + "\""); }
97 product = ProductComputation.compute(automata[0], automata[1], print);
98 }
99 catch (ArrayIndexOutOfBoundsException e) {}

100

101 //Compute the product between the subsequent automata.
102 for (int i=2; i<automaton_amount; i++) {
103 if (print) { System.out.println("\nAdding \"" + automata[i].name + "\" to the

product. "); }
104 product = ProductComputation.compute(product, automata[i], print);
105 }
106

107 return product;
108 }
109 public static void main(String args[]) throws Exception {
110 automaton [] automata;
111 automaton product;
112

113 String clock_text;
114 String pre_text;
115 int [] plant_occurances;
116

117 //Read the text file
118 Path path = Path.of("text_BusPed.txt");
119 String text = Files.readString(path);
120

121 plant_occurances = find(text, "automaton");
122 automata = parse(text);
123 product = compute_product(automata, false);
124

125 product = ControllerSynthesis.synthesize(product, true);
126

127 //Generate the text as a large string.
128 pre_text = text.substring(0, plant_occurances[0]);
129 clock_text = define_clocks(automata);
130 product.generate_text(clock_text, pre_text);
131 String printing_text = product.text;
132

133

134 //Write to a file.
135 FileWriter myWriter = new FileWriter("Product_automaton.txt");
136 myWriter.write(printing_text);
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137 myWriter.close();
138

139 }
140 }
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8.2 Automaton class

1 import java.util.ArrayList;
2

3 public class automaton {
4 ArrayList<String> alphabet = new ArrayList<String>();
5 String text = "";
6 String name = "";
7 location [] locations;
8 edge [] edges;
9

10 private int[] find (String main_text, String small_text) {
11 int main_length = main_text.length();
12 int small_length = small_text.length();
13 String substring;
14 int [] result_array;
15 ArrayList<Integer> result = new ArrayList<Integer>();
16

17 for (int i=0; i<main_length-small_length+1; i++) {
18 substring = main_text.substring(i, i+small_length);
19 if (substring.equals(small_text)) {
20 result.add(i);
21 }
22 }
23 result_array = new int[result.size()];
24 for (int i=0; i<result.size(); i++) {
25 result_array[i] = result.get(i);
26 }
27 return result_array;
28 }
29

30 private edge [] add_edge (edge [] edge_original, edge edge_new) {
31 //Function that adds an edge to an array of edge methods.
32 int length;
33 try {
34 length = edges.length + 1;
35 }
36 catch (Exception e){
37 length = 1;
38 }
39 edge [] edges = new edge[length];
40 for (int i=0; i<length-1; i++) {
41 edges[i] = edge_original[i];
42 }
43 edges[length-1] = edge_new;
44 return edges;
45 }
46

47

48 public void generate_text(String clocks, String pre_text) {
49 for (location loc: locations) {
50 loc.generate_text();
51 }
52 text += pre_text;
53 text += "automaton " + name + ":\n";
54 text += clocks;
55 for (location loc: locations) {
56 text += loc.text + "\n";
57 }
58 text += "end";
59 }
60

61 public void organize_text(String text) {
62 this.text = text;
63

64 String location_name = "location";
65 String plant_name = "automaton";
66 String end_name = "end";
67 String substring;
68 String DDot = ":";
69 int [] location_indices;
70 int [] end_index;
71 int location_amount;
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72 int plant_length = plant_name.length();
73 int [] index_1;
74 int [] index_2;
75

76 //Find the indices of the ’location’ word and the ’end’ word.
77 location_indices = find(text, location_name);
78 end_index = find(text, end_name);
79 location_amount = location_indices.length;
80 locations = new location[location_amount];
81

82 // Find the indices for the plant name.
83 index_1 = find(text, plant_name);
84 index_1[0] += plant_length;
85 index_2 = find(text, DDot);
86

87 //Save the plant name
88 this.name = text.substring(index_1[0]+1, index_2[0]);
89

90 // Find the locations. The location ends when a new location start or the ’end’ word
occurs.

91 for (int i=0; i<location_amount; i++) {
92 //First try from one location till the next locaiton.
93 try {
94 substring = text.substring(location_indices[i], location_indices[i+1]);
95 locations[i] = new location();
96 locations[i].organize_text(substring, name);
97 }
98 //If there is no new location, the location gives an ’IndexOutOfBounds’ error,

when search for the ’end’ word.
99 catch (ArrayIndexOutOfBoundsException e){

100 substring = text.substring(location_indices[i], end_index[0]);
101 locations[i] = new location();
102 locations[i].organize_text(substring, name);
103 }
104 }
105 for (location i: locations) {
106 for (edge j: i.edges) {
107 this.edges = add_edge(edges, j);
108 if (! alphabet.contains(j.event)) {
109 alphabet.add(j.event);
110 }
111 }
112 }
113 }
114 }
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8.3 Location class

1 import java.util.ArrayList;
2

3 public class location {
4 ArrayList<String> next_stops = new ArrayList<String>();
5 ArrayList<String> invariant_list = new ArrayList<>();
6 String matlab_temp;
7 String [] matlab_nonblocking_pred;
8 String [] matlab_bad_state;
9 String [] matlab_invariants;

10 String [] name_sum = new String[2];
11 String text;
12 String name;
13 String automaton;
14 edge [] edges;
15 boolean initial;
16 boolean marked;
17

18 public void create_matlab_invariants() {
19

20 this.matlab_invariants = new String[1];
21 for (String invariant: invariant_list) {
22 if (this.matlab_invariants[0] == null) {
23 this.matlab_invariants[0] = "( " + invariant + " )";
24 }
25 else {
26 this.matlab_invariants[0] += " & ( " + invariant + " )";
27 }
28 }
29

30 }
31

32 private int[] find (String main_text, String small_text) {
33 int main_length = main_text.length();
34 int small_length = small_text.length();
35 String substring;
36 int [] result_array;
37 ArrayList<Integer> result = new ArrayList<Integer>();
38

39 for (int i=0; i<main_length-small_length+1; i++) {
40 substring = main_text.substring(i, i+small_length);
41 if (substring.equals(small_text)) {
42 result.add(i);
43 }
44 }
45 result_array = new int[result.size()];
46 for (int i=0; i<result.size(); i++) {
47 result_array[i] = result.get(i);
48 }
49 return result_array;
50 }
51

52 private String remove_whitespace (String word) {
53 int length = word.length();
54 String space = " ";
55 String NewName = "";
56 String substring;
57

58 for (int i=0; i<length; i++) {
59 substring = word.substring(i, i+1);
60 if (!(substring.equals(space))) {
61 NewName += word.substring(i, i+1);
62 }
63 }
64 return NewName;
65 }
66

67 private String replace(String string, String initial, String result) {
68 int [] index;
69 int length_small = initial.length();
70 int length_large;
71 String substring1;
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72 String substring2;
73

74 while (true ) {
75 index = find(string, initial);
76 try {
77 length_large = string.length();
78 substring1 = string.substring(0, index[0]);
79 substring2 = string.substring(index[0]+length_small, length_large);
80 string = substring1 + result + substring2;
81 }
82 catch (ArrayIndexOutOfBoundsException e) { return string;}
83 }
84 }
85

86 private void create_invariant_text() {
87

88 int length = matlab_invariants.length;
89 String invariant = matlab_invariants[length-1];
90

91 this.invariant_list = new ArrayList<String>();
92

93 invariant = replace(invariant, "|", "or");
94 invariant = replace(invariant, "&", "and");
95 invariant = replace(invariant, "symtrue", "true");
96 invariant = replace(invariant, "symfalse", "false");
97

98 this.invariant_list.add(invariant);
99 }

100

101 public ArrayList<String> get_next_stops() {
102 ArrayList<String> result = new ArrayList<String>();
103 for (edge edges: edges) {
104 result.add(edges.destination_location);
105 }
106 return result;
107 }
108

109 public void generate_text() {
110 try {
111 create_invariant_text();
112 }
113 catch (NullPointerException e) {}
114 text = "";
115 text = " location " + name + ":\n";
116 if (initial) {
117 text += " initial;\n";
118 }
119 if (marked) {
120 text += " marked;\n";
121 }
122 for (String invariant: invariant_list) {
123 text += " invariant " + invariant + ";\n";
124 }
125 for (edge edge: edges) {
126 edge.generate_text();
127 text += " " + edge.text + "\n";
128 }
129 if (edges.length == 0) {
130 text += " " + "edge tau;\n";
131 }
132 }
133

134 public void print_edges() {
135 for (edge i: edges) {
136 i.print_info();
137 }
138 }
139

140 public void organize_text (String text, String automaton) {
141 this.text = text;
142

143 String substring;
144 String initial = "initial";
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145 String marked = "marked";
146 String location_name = "location";
147 String DDot = ":";
148 String DComma = ";";
149 String edge = "edge";
150 String invariant = "invariant";
151 int name_length = location_name.length();
152 int invariant_length = invariant.length();
153 int edges_amount;
154 int start = 0;
155 int end = 0;
156 int [] initial_index;
157 int [] marked_index;
158 int [] name_index;
159 int [] DDot_index;
160 int [] edge_index;
161 int [] Dcomma_index;
162 int [] invariant_index;
163

164 initial_index = find(text, initial);
165 marked_index = find(text, marked);
166 name_index = find(text, location_name);
167 name_index[0] += name_length;
168 DDot_index = find(text, DDot);
169 edge_index = find(text, edge);
170 Dcomma_index = find(text, DComma);
171 invariant_index = find(text, invariant);
172 edges_amount = edge_index.length;
173

174

175 // Determine weather the location is marked or initial;
176 if (initial_index.length != 0) {
177 this.initial = true;
178 }
179 else {
180 this.initial = false;
181 }
182 if (marked_index.length != 0) {
183 this.marked = true;
184 }
185 else {
186 this.marked = false;
187 }
188

189 // Determine the name of the location;
190 try {
191 this.name = text.substring(name_index[0]+1, DDot_index[0]);
192 }
193 catch (StringIndexOutOfBoundsException e) {
194 this.name = "NAMELESS";
195 }
196 // Find the invariants
197 for (int i=0; i<invariant_index.length; i++) {
198 start = invariant_index[i] + invariant_length;
199 for (int j: Dcomma_index) { if (j > start) {end = j; break;}}
200 substring = remove_whitespace(text.substring(start, end));
201 invariant_list.add(substring);
202 }
203

204 // save the edges;
205 edges = new edge[edge_index.length];
206 for (int i=0; i<edges_amount; i++) {
207 //The location starts when the ’edge’ word occurs.
208 start = edge_index[i];
209 //The location ends at the first occurance of the ’;’ symbol.
210 for (int j: Dcomma_index) { if (j > start) {end = j+1; break; } }
211 substring = text.substring(start, end);
212 edges[i] = new edge();
213 edges[i].organize_text(substring, name, automaton);
214 }
215

216 //Convert to matlab-readable invariants
217 }
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218 }
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8.4 Edge class

1 import java.util.ArrayList;
2 import java.util.Collections;
3 import java.util.List;
4

5 public class edge {
6 String [] destination_sum = new String[2]; //index #0 is the original location, index #1

is the location of the new automaton.
7 ArrayList <String> clock_resets = new ArrayList<>();
8 String text;
9 String event;

10 String update;
11 String [] guard;
12 String initial_location;
13 String destination_location;
14 boolean forcible = false;
15 String automaton;
16 boolean uncontrollable;
17

18 private int[] find (String main_text, String small_text) {
19 int main_length = main_text.length();
20 int small_length = small_text.length();
21 String substring;
22 int [] result_array;
23 ArrayList<Integer> result = new ArrayList<Integer>();
24

25 for (int i=0; i<main_length-small_length+1; i++) {
26 substring = main_text.substring(i, i+small_length);
27 if (substring.equals(small_text)) {
28 result.add(i);
29 }
30 }
31

32 result_array = new int[result.size()];
33 for (int i=0; i<result.size(); i++) {
34 result_array[i] = result.get(i);
35 }
36 return result_array;
37 }
38

39 private String remove_whitespace (String word) {
40 int length = word.length();
41 String space = " ";
42 String NewName = "";
43 String substring;
44

45 for (int i=0; i<length; i++) {
46 substring = word.substring(i, i+1);
47 if (!(substring.equals(space))) {
48 NewName += word.substring(i, i+1);
49 }
50 }
51 return NewName;
52 }
53

54 public void remove_update_reference () {
55 if (guard != null) {
56 String substring;
57 int [] dot_loc;
58 int length = guard[0].length();
59

60 dot_loc = find(guard[0], ".");
61 try {
62 substring = guard[0].substring(dot_loc[0]+1, length);
63 guard[0] = substring;
64 }
65 catch (ArrayIndexOutOfBoundsException e) {}
66 }
67 }
68

69 private String replace(String string, String initial, String result) {
70 int [] index;
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71 int length_small = initial.length();
72 int length_large;
73 String substring1;
74 String substring2;
75

76 while (true ) {
77 index = find(string, initial);
78 try {
79 length_large = string.length();
80 substring1 = string.substring(0, index[0]);
81 substring2 = string.substring(index[0]+length_small, length_large);
82 string = substring1 + result + substring2;
83 }
84 catch (ArrayIndexOutOfBoundsException e) { return string;}
85 }
86 }
87

88 public void generate_text() {
89 String edge_text;
90 String condition_text;
91 String destination_location_text;
92 String update_text;
93 String temp_text = "";
94 String temp_guard;
95 try {
96 temp_guard = this.guard[this.guard.length-1];
97 temp_guard = replace(temp_guard, "|", "or");
98 temp_guard = replace(temp_guard, "&", "and");
99 temp_guard = replace(temp_guard, "symfalse", "false");

100 temp_guard = replace(temp_guard, "symtrue", "true");
101 }
102 catch (NullPointerException e) {temp_guard = null;}
103

104 edge_text = "edge " + event;
105 temp_text += edge_text;
106

107 if (destination_sum[0] != null && destination_sum[1] != null) {
108 destination_location_text = destination_sum[0] + "__" + destination_sum[1];
109 }
110

111 if (temp_guard != null) {
112 condition_text = " when " + temp_guard;
113 temp_text += condition_text;
114 }
115 if (update != null) {
116 update_text = " do " + update;
117 temp_text += update_text;
118 }
119 if (destination_location != null) {
120 destination_location_text = " goto " + destination_location;
121 temp_text += destination_location_text;
122 }
123 temp_text += ";";
124 this.text = temp_text;
125 }
126

127 public void print_info() {
128 System.out.println("

---------------------------------------------------------------------------------");
129 System.out.println("Host automaton is: " + automaton);
130 System.out.println("Initial location is: " + initial_location);
131 System.out.println("Destination location is: " + destination_location);
132 System.out.println("Event name is: " + event);
133 System.out.println("Event condition is: " + guard);
134 System.out.println("Event update is: " + update);
135 System.out.println("Text is: " + text);
136 }
137

138 public void organize_text(String text, String initial_location, String automaton) {
139 this.text = text;
140 this.initial_location = initial_location;
141 this.automaton = automaton;
142
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143 String substring = "";
144 String edge_text = "edge ";
145 String Dcomma = ";";
146 String goto_name = "goto ";
147 String when_name = "when ";
148 String do_name = "do ";
149 String clock_reset = ":=0";
150 List<Integer> index_list = new ArrayList<>();
151 int when_length = when_name.length();
152 int do_length = do_name.length();
153 int goto_length = goto_name.length();
154 int edge_length = edge_text.length();
155 int [] clock_reset_index = null;
156 int [] index_array;
157 int [] do_index;
158 int [] Dcomma_index;
159 int [] goto_index;
160 int [] edge_index;
161 int [] when_index;
162 int start = 0;
163 int end = 0;
164

165 do_index = find(text, do_name);
166 edge_index = find(text, edge_text);
167 Dcomma_index = find(text, Dcomma);
168 goto_index = find(text, goto_name);
169 when_index = find(text, when_name);
170

171 for (int i: edge_index) { index_list.add(i); }
172 for (int i: Dcomma_index) { index_list.add(i); }
173 for (int i: goto_index) { index_list.add(i); }
174 for (int i: do_index) { index_list.add(i); }
175 for (int i: when_index) { index_list.add(i); }
176

177 Collections.sort(index_list);
178 index_array = new int[index_list.size()];
179 for (int i=0; i<index_list.size(); i++) {
180 index_array[i] = index_list.get(i);
181 }
182

183 //Find the event name:
184 start = edge_index[0] + edge_length;
185 for (int i: index_array) { if (i > start) { end = i; break;} }
186 substring = text.substring(start, end);
187 this.event = remove_whitespace(substring);
188

189 //Find the event destination:
190 if (goto_index.length != 0) {
191 start = goto_index[0] + goto_length;
192 for (int i: index_array) { if (i > start) { end = i; break;} }
193 substring = text.substring(start, end);
194 this.destination_location = remove_whitespace(substring);
195 }
196

197 //Find the event update:
198 if (do_index.length != 0) {
199 start = do_index[0] + do_length;
200 for (int i: index_array) { if (i > start) { end = i; break;} }
201 substring = text.substring(start, end);
202 this.update = remove_whitespace(substring);
203 clock_reset_index = find(this.update, clock_reset);
204 }
205

206 if (clock_reset_index != null) {
207 for (int index: clock_reset_index) {
208 this.clock_resets.add(this.update.substring(0, index));
209 }
210 }
211

212 //Find the event condition:
213 if (when_index.length != 0) {
214 start = when_index[0] + when_length;
215 for (int i: index_array) { if (i > start) { end = i; break;} }
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216 substring = text.substring(start, end);
217 this.guard = new String[1];
218 this.guard[0] = remove_whitespace(substring);
219 }
220

221 if (event.substring(0, 1).equals("u")) {
222 this.uncontrollable = true;
223 }
224 else {
225 this.uncontrollable = false;
226 }
227 }
228 }
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8.5 Computing the product

1 import java.util.ArrayList;
2

3 public class ProductComputation {
4 static location [] locations;
5 static edge [] edges;
6 static ArrayList<String> alphabet = new ArrayList<String>();
7 static String text = "";
8 static String name = "";
9 static boolean print;

10

11 //Combine 2 locations
12 private static edge [] insert_edge (edge edge_origin [], edge edge_new) {
13 //Insert a new edge into a list.
14 int length_result = edge_origin.length;
15 length_result++;
16 edge [] result = new edge[length_result];
17

18 for (int i=0; i<length_result-1; i++) {
19 result[i] = new edge();
20 if (edge_origin[i].destination_sum[0] != null && edge_origin[i].destination_sum[1]

!= null) {
21 result[i].destination_sum = new String[2];
22 result[i].destination_sum[0] = new String(edge_origin[i].destination_sum[0]);
23 result[i].destination_sum[1] = new String(edge_origin[i].destination_sum[1]);
24 }
25 result[i].text = edge_origin[i].text;
26 result[i].event = edge_origin[i].event;
27 result[i].update = edge_origin[i].update;
28 result[i].guard = edge_origin[i].guard;
29 result[i].initial_location = name;
30 result[i].destination_location = edge_origin[i].destination_location;
31 result[i].automaton = edge_origin[i].automaton;
32 for (String clock_origin: edge_origin[i].clock_resets) {
33 if (! result[i].clock_resets.contains(clock_origin)) {
34 result[i].clock_resets.add(clock_origin);
35 }
36 }
37 }
38 result[length_result-1] = new edge();
39 if (edge_new.destination_sum[0] != null && edge_new.destination_sum[1] != null) {
40 result[length_result-1].destination_sum = new String[2];
41 result[length_result-1].destination_sum[1] = new String(edge_new.destination_sum

[1]);
42 result[length_result-1].destination_sum[0] = new String(edge_new.destination_sum

[0]);
43 }
44 result[length_result-1].text = edge_new.text;
45 result[length_result-1].event = edge_new.event;
46 result[length_result-1].update = edge_new.update;
47 result[length_result-1].guard = edge_new.guard;
48 result[length_result-1].initial_location = name;
49 result[length_result-1].destination_location = edge_new.destination_location;
50 result[length_result-1].automaton = edge_new.automaton;
51 for (String clock_new: edge_new.clock_resets) {
52 if (! result[length_result-1].clock_resets.contains(clock_new)) {
53 result[length_result-1].clock_resets.add(clock_new);
54 }
55 }
56

57 return result;
58 }
59

60 private static edge merge_edges(edge edge_origin, edge edge_new) {
61 //edge conditions and updates are merged.
62 edge result = new edge();
63 String condition;
64 String update;
65 int length_origin;
66 int length_new;
67

68 if ((edge_origin.guard != null) && (edge_new.guard != null)) {
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69 length_origin = edge_origin.guard.length;
70 length_new = edge_origin.guard.length;
71 condition = edge_origin.guard[length_origin-1] + " and " + edge_new.guard[

length_new-1];
72 result.guard = new String[1];
73 result.guard[0] = condition;
74 }
75 else if ((edge_origin.guard != null) && (edge_new.guard == null)) {
76 length_origin = edge_origin.guard.length;
77 condition = edge_origin.guard[length_origin-1];
78 result.guard = new String[1];
79 result.guard[0] = condition;
80 }
81 else if ((edge_origin.guard == null) && (edge_new.guard != null)) {
82 length_new = edge_new.guard.length;
83 condition = edge_new.guard[length_new-1];
84 result.guard = new String[1];
85 result.guard[0] = condition;
86 }
87

88 if ((edge_origin.update != null) && (edge_new.update != null)) {
89 update = edge_origin.update + ", " + edge_new.update;
90 result.update = update;
91 }
92 else if ((edge_origin.update == null) && (edge_new.update != null)) {
93 update = edge_new.update;
94 result.update = update;
95 }
96 else if ((edge_origin.update != null) && (edge_new.update == null)) {
97 update = edge_origin.update;
98 result.update = update;
99 }

100

101 if ((edge_origin.destination_location != null) && edge_new.destination_location !=
null) {

102 result.destination_sum[0] = edge_origin.destination_location;
103 result.destination_sum[1] = edge_new.destination_location;
104 }
105 else if ((edge_origin.destination_location != null) && edge_new.destination_location

== null) {
106 result.destination_sum[0] = edge_origin.destination_location;
107 result.destination_sum[1] = edge_new.initial_location;
108 }
109 else if ((edge_origin.destination_location == null) && edge_new.destination_location

!= null) {
110 result.destination_sum[0] = edge_new.initial_location;
111 result.destination_sum[1] = edge_new.destination_location;
112 }
113

114 for (String clock: edge_origin.clock_resets) {
115 if (! result.clock_resets.contains(clock)) {
116 result.clock_resets.add(clock);
117 }
118 }
119

120 for (String clock: edge_new.clock_resets) {
121 if (! result.clock_resets.contains(clock)) {
122 result.clock_resets.add(clock);
123 }
124 }
125

126 result.event = edge_origin.event;
127 return result;
128 }
129

130 private static edge [] add_edge (String name, edge[] edges_origin, edge[] edges_new,
ArrayList<String> alphabet_autom1, ArrayList<String> alphabet_autom2) {

131 ArrayList<String> doubles = new ArrayList<String>();
132 ArrayList<String> double_text = new ArrayList<String>();
133 ArrayList<String> edges_loc_new = new ArrayList<String>();
134 ArrayList<String> edges_loc_origin = new ArrayList<String>();
135 String initial_location_origin = name;
136 String initial_location_new = edges_new[0].initial_location;
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137 edge [] checked = new edge[0];
138 boolean alphabet_other;
139 boolean location_other;
140 boolean allowed;
141 edge temp;
142

143 for (edge edge_origin: edges_origin) {
144 edges_loc_origin.add(edge_origin.event);
145 }
146 for (edge edge_new: edges_new) {
147 edges_loc_new.add(edge_new.event);
148 }
149

150 //Check for all edges that occur in both locations, merge those.
151 for (int j=0; j<edges_origin.length; j++) {
152 for (int i=0; i<edges_new.length; i++) {
153 if (edges_origin[j] != null && edges_new[i] != null && edges_origin[j].event.

equals(edges_new[i].event)) {
154 temp = merge_edges(edges_origin[j], edges_new[i]);
155 checked = insert_edge(checked, temp);
156 doubles.add(edges_new[i].event);
157 double_text.add(edges_new[i].text);
158 }
159 }
160 }
161 //Check for all edges of the first automaton and see if they are allowed. They are

allowed if the other automaton is not blocking that edge.
162 for (edge edge_origin: edges_origin) {
163 alphabet_other = alphabet_autom2.contains(edge_origin.event);
164 location_other = edges_loc_new.contains(edge_origin.event);
165 allowed = ! alphabet_other && ! location_other;
166 if (allowed) {
167 checked = insert_edge(checked, edge_origin);
168 checked[checked.length-1].initial_location = name;
169 checked[checked.length-1].destination_sum[0] = edge_origin.

destination_location;
170 checked[checked.length-1].destination_sum[1] = initial_location_new;
171 }
172 }
173 //Do the same for the new edges.
174 for (edge edge_new: edges_new) {
175 alphabet_other = alphabet_autom1.contains(edge_new.event);
176 location_other = edges_loc_origin.contains(edge_new.event);
177 allowed = ! alphabet_other && ! location_other;
178 if (allowed) {
179 checked = insert_edge(checked, edge_new);
180 checked[checked.length-1].initial_location = name;
181 checked[checked.length-1].destination_sum[0] = initial_location_origin;
182 checked[checked.length-1].destination_sum[1] = edge_new.destination_location;
183 }
184 }
185 return checked;
186 }
187

188 private static location Merge_locations(location loc_origin, location loc_new, ArrayList<
String> alphabet_origin, ArrayList<String> alphabet_new) {

189 location location = new location();
190 ArrayList<String> next_stops = new ArrayList<String>();
191 ArrayList<String> invariant_list = new ArrayList<>();
192 String text = "";
193 edge [] edges;
194

195 edge [] edges_origin = loc_origin.edges;
196 edge [] edges_new = loc_new.edges;
197

198 location.marked = loc_origin.marked && loc_new.marked;
199 location.initial = loc_origin.initial && loc_new.initial;
200 location.name = loc_origin.name;
201 location.name_sum[0] = loc_origin.name;
202 location.name_sum[1] = loc_new.name;
203 location.automaton = "product";
204

205 //Remove the reference from the original edges. time_slow.t_1 becomes just t_1.
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206 for (edge edges_loc_new: loc_new.edges) {
207 edges_loc_new.remove_update_reference();
208 }
209 //Combine all edges.
210 edges = add_edge(location.name, edges_origin, edges_new, alphabet_origin, alphabet_new

);
211

212 //Combine invariants
213 for (String invariant_origin: loc_origin.invariant_list) {
214 if (! invariant_list.contains(invariant_origin)) {
215 invariant_list.add(invariant_origin);
216 }
217 }
218

219 for (String invariant_new: loc_new.invariant_list) {
220 if (! invariant_list.contains(invariant_new)) {
221 invariant_list.add(invariant_new);
222 }
223 }
224

225 location.name = loc_origin.name + "_" + loc_new.name;
226 location.next_stops = next_stops;
227 location.invariant_list = invariant_list;
228 location.text = text;
229 location.edges = edges;
230

231 return location;
232 }
233

234 private static void adjust_destinations (location loc) {
235 //Every combination of edges has a small list that has contains the destinations of

the two original edges.
236 //This function looks for the location that corresponds to the combination of

destinations of edges.
237 Boolean found1;
238 boolean found2;
239

240 for (edge edge: loc.edges) {
241 for (location location: locations) {
242 if (edge.destination_sum[0] != null && location.name_sum[0] != null) {
243 found1 = edge.destination_sum[0].equals(location.name_sum[0]);
244 }
245 else { found1 = false;}
246 if (edge.destination_sum[1] != null && location.name_sum[1] != null) {
247 found2 = edge.destination_sum[1].equals(location.name_sum[1]);
248 }
249 else {found2 = false;}
250 if (found1 && found2) {
251 edge.destination_location = location.name;
252 }
253 }
254 }
255 }
256

257 //become automaton product
258 private static void clean_locations() {
259 ArrayList<String> nonBlocking = new ArrayList<String>();
260 ArrayList<Integer> Accessible = new ArrayList<Integer>();
261 ArrayList<String> Accessible_locations = new ArrayList<String>();
262 Boolean finished = false;
263 int removed_locations = 0;
264

265 if (print) { System.out.println("Cleaning locations."); }
266

267 for (int i=0; i< locations.length; i++) {
268 if (locations[i].initial == true) {
269 nonBlocking.add(locations[i].name);
270 Accessible.add(i);
271 Accessible_locations.add(locations[i].name);
272 break;
273 }
274 }
275 // Loop over all locations untill no new location is added to the list of accessible
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locations
276 while (! finished) {
277 finished = true;
278 //Loop over all locations
279 for (location loc: locations) {
280 // If a location is part of the list of accessible locations, add it’s edge

destination to the list of accessible locations
281 if (Accessible_locations.contains(loc.name)) {
282 for (edge edge: loc.edges) {
283 // Only add a new destination if it is not alreay part of the list of

accessible locations
284 if (! Accessible_locations.contains(edge.destination_location)) {
285 Accessible_locations.add(edge.destination_location);
286 finished = false;
287 }
288 }
289 }
290 }
291 }
292 //If a location is not part of the list of accessible locations, remove it.
293 finished = false;
294 while (! finished) {
295 finished = true;
296 for (int i=0; i<locations.length; i++) {
297 if (! Accessible_locations.contains(locations[i].name)) {
298 remove_location(i);
299 finished = false;
300 removed_locations++;
301 }
302 }
303 }
304 if (print) {System.out.println("Removed " + removed_locations + " locations.");}
305 }
306

307 private static void remove_location(int remove) {
308 //Function that removes the location corresponding to the index ’remove’
309 int new_length = locations.length-1;
310 location [] temp = new location[new_length];
311 for (int i=0; i<remove; i++) {
312 temp[i] = locations[i];
313 }
314 for (int i=remove+1; i<new_length+1; i++) {
315 temp[i-1] = locations[i];
316 }
317 locations = temp;
318 }
319

320 private static void become_product (automaton plant_origin, automaton plant_new) {
321 //Generate locations equal to the total number of locations.
322 int location_amount = plant_origin.locations.length * plant_new.locations.length;
323 int i = 0;
324 int index = 0;
325 double percentage;
326 double i_double;
327 double location_amount_double = location_amount;
328 if (print) {
329 System.out.println("The number of new locations is: " + location_amount);
330 System.out.print("Combining locations: ");
331 }
332

333 locations = new location[location_amount];
334 name = "product";
335

336 //Loop over every combination of locations and merge all edges.
337 for (location plant_origin_loc: plant_origin.locations) {
338 for (location plant_new_loc: plant_new.locations) {
339 locations[i] = new location();
340 locations[i] = Merge_locations(plant_origin_loc, plant_new_loc, plant_origin.

alphabet, plant_new.alphabet);
341 i++;
342 i_double = i;
343 percentage = ((i_double / location_amount_double) * 100);
344 if (percentage-index > 0 && print) {
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345 for (int j=index ;j<percentage; j++) {
346 System.out.print("-");
347 index++;
348 }
349 }
350 }
351 }
352 i = 0;
353 index = 0;
354 if (print) {
355 System.out.print("\n");
356 System.out.print("Adjusting destinations: ");
357 }
358 //For all merged edges, find the new name of the destination.
359 for (location loc: locations) {
360 adjust_destinations(loc);
361 i++;
362 i_double = i;
363 percentage = ((i_double / location_amount_double) * 100);
364 if (percentage-index > 0 && print) {
365 for (int j=index ;j<percentage; j++) {
366 System.out.print("-");
367 index++;
368 }
369 }
370 }
371 if (print) {System.out.print("\n");}
372 //Remove the unaccessible destinations. This saves a lot of computing time.
373 clean_locations();
374 //Adjust the alphabet of the product.
375 for (location loc: locations) {
376 for (edge edge: loc.edges) {
377 if (! alphabet.contains(edge.event)) {
378 alphabet.add(edge.event);
379 }
380 }
381 }
382 }
383

384 //The main function to be called
385 public static automaton compute(automaton automaton_1, automaton automaton_2, boolean

printing) {
386 automaton product = new automaton();
387 print = printing;
388 name = "product";
389 locations = automaton_1.locations;
390 edges = automaton_1.edges;
391

392 become_product(automaton_1, automaton_2);
393

394 product.name = name;
395 product.locations = locations;
396 product.edges = edges;
397 product.alphabet = alphabet;
398

399 return product;
400 }
401 }
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8.6 Controller synthesis

1 import java.util.ArrayList;
2 import java.util.Scanner;
3 import java.util.concurrent.ExecutionException;
4 import java.util.concurrent.RejectedExecutionException;
5

6 import com.mathworks.engine.*;
7

8 public class ControllerSynthesis {
9 static MatlabEngine matlab;

10 static automaton automaton;
11 static boolean print;
12

13 private static void printing(String to_print) {
14 if (print) {
15 System.out.print(to_print);
16 }
17 }
18

19 private static String last(String [] string) {
20 int length;
21 String result;
22 try {
23 length = string.length;
24 }
25 catch (NullPointerException e) {
26 return null;
27 }
28

29 result = string[length-1];
30 return result;
31 }
32

33 private static String [] add_string(String [] original_string, String new_string) {
34 int length;
35 try {
36 length = original_string.length;
37 }
38 catch (ArrayIndexOutOfBoundsException e) {
39 length = 0;
40 }
41 catch (NullPointerException e) {
42 original_string = new String[0];
43 length = 0;
44 }
45 String [] string = new String[length+1];
46

47 for (int i=0; i<length; i++) {
48 string[i] = original_string[i];
49 }
50 string[length] = new_string;
51

52 return string;
53 }
54

55 private static String [] list_to_string(ArrayList<String> list) {
56 String [] string;
57 int length = list.size();
58

59 if (list.size() == 0) {
60 return null;
61 }
62

63 string = new String[length];
64 for (int i=0; i<length; i++) {
65 string[i] = list.get(i);
66 }
67 return string;
68 }
69

70 private static String target_invariant (String destination) {
71 String predicate;
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72 for (location location: automaton.locations) {
73 if (location.name.equals(destination)) {
74 if (location.matlab_invariants != null) {
75 predicate = last(location.matlab_invariants);
76 return predicate;
77 }
78 else {
79 return "symtrue";
80 }
81 }
82 }
83 return null;
84 }
85

86 private static String target_nonblock (String destination) {
87 String predicate;
88 for (location location: automaton.locations) {
89 if (location.name.equals(destination)) {
90 predicate = last(location.matlab_nonblocking_pred);
91 return predicate;
92 }
93 }
94 return null;
95 }
96

97 private static String target_bad_state (String destination) {
98 String predicate;
99 for (location location: automaton.locations) {

100 if (location.name.equals(destination)) {
101 predicate = last(location.matlab_bad_state);
102 return predicate;
103 }
104 }
105 return null;
106 }
107

108

109 private static void adapt_invariants() throws RejectedExecutionException, EngineException,
InterruptedException, ExecutionException {

110 String predicate;
111

112 // The new invariant for all locations is the conjuntion between the old invariant
113 // and the negation of the bad-state predicate.
114 printing("Adapting invariants\n");
115 for (location location: automaton.locations) {
116 for (edge edge: location.edges) {
117 if (edge.forcible) {
118 printing(" New invariant for " + location.name + " is: ");
119 // If the location already has an invariant, the new bad-state predicate

is added to that.
120 try {
121 predicate = "( " + last(location.matlab_invariants) + " )";
122 predicate += " & ~ ( " + last(location.matlab_bad_state) + " )";
123 }
124 // Else the invariant is set to true.
125 catch (NullPointerException e) {
126 predicate = "symtrue & ~ ( " + last(location.matlab_bad_state) + " )";
127 }
128 printing(predicate + "\n");
129 predicate = matlab.feval("simpler", predicate);
130 location.matlab_invariants = add_string(location.matlab_invariants,

predicate);
131 break;
132 }
133 }
134 }
135 printing("\n------------------------------------------\n");
136 }
137

138 private static void adapt_guards() throws RejectedExecutionException, EngineException,
InterruptedException, ExecutionException {

139 String predicate;
140 int guard_length;
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141 String target_bad_state;
142 String [] resets;
143

144 printing("Adapting guads\n");
145 // Loop over all guards for all locations. The new guard is the conjunction of the

old guard
146 // with the negation of the bad-state predicate of the target location.
147 for (location location: automaton.locations) {
148 printing(" New guards for location " + location.name + " are:\n");
149 for (edge event: location.edges) {
150 // See if there the event already has a guard, else the guard is set to true.
151 try {
152 guard_length = event.guard.length;
153 }
154 catch (NullPointerException e) {
155 event.guard = new String[1];
156 event.guard[0] = "symtrue";
157 guard_length = 1;
158 }
159 // Only the guards of uncontrolleble events may be adjusted.
160 if (! event.uncontrollable) {
161 target_bad_state = target_bad_state(event.destination_location);
162 predicate = "( " + event.guard[guard_length-1] + " )";
163 predicate += " & ~ ( "+ target_bad_state + " )";
164 resets = list_to_string(event.clock_resets);
165 if (resets != null) {
166 predicate = matlab.feval("simpler", predicate, resets);
167 }
168 else {
169 predicate = matlab.feval("simpler", predicate);
170 }
171 event.guard = add_string(event.guard, predicate);
172 }
173 //If the event was uncontrollable, the new guard is equal to the old guard.
174 else {
175 event.guard = add_string(event.guard, event.guard[guard_length-1]);
176 }
177 printing(" " + event.event + ": " + event.guard[guard_length] + "\n");
178 }
179

180 }
181 printing("\n------------------------------------------\n");
182 }
183

184 private static void non_blocking() throws RejectedExecutionException, EngineException,
InterruptedException, ExecutionException {

185 String predicate;
186 String edge_predicate;
187 String edge_guard;
188 String target_invariant;
189 String target_nonblocking;
190 String equality_test;
191 String old_predicate;
192 String new_predicate;
193 String part_three;
194 String invariant;
195 String non_blocking;
196

197 Scanner scan = new Scanner(System.in);
198 boolean finished = false;
199 printing("Computing the non-blocking conditions: \n");
200

201 // Setting all the non-blocking conditions to the invariants for the marked locations
202 // and the false for all other locations.
203 printing("Initial non-blocking invariants are: \n\n");
204 for (location location: automaton.locations) {
205 location.matlab_nonblocking_pred = new String[1];
206 if (location.marked) {
207 if (location.matlab_invariants[0] == null) {
208 location.matlab_invariants[0] = "symtrue";
209 location.matlab_nonblocking_pred[0] = "symtrue";
210 }
211 else {
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212 location.matlab_nonblocking_pred = add_string(location.
matlab_nonblocking_pred, last(location.matlab_invariants));

213 }
214 }
215 else {
216 location.matlab_nonblocking_pred[0] = "symfalse";
217 }
218 printing(location.name + ": " + last(location.matlab_nonblocking_pred ) + "\n");
219 }
220 printing("\n");
221

222 while (! finished) {
223 finished = true;
224 //Set the the predicate to the last non-blocking condition.
225 for (location location: automaton.locations) {
226 printing(" Computing non-blocking predicate for " + location.name + "\n");
227 if (last(location.matlab_nonblocking_pred) != null) {
228 predicate = last(location.matlab_nonblocking_pred);
229 }
230 else { predicate = "symtrue"; }
231 location.matlab_temp = predicate;
232 printing(" Initial predicate: " + predicate + "\n");
233 // The new non-blocking condition is the last non-blocking condition and for

all edges,
234 // the conjunction of the guard and the previous non-blocking condition.
235 for (edge edge: location.edges) {
236 printing(" add edge predicate for " + edge.event + ": ");
237 edge_guard = last(edge.guard);
238 if (edge_guard == null) {edge_guard = "symtrue";}
239

240 target_nonblocking = target_nonblock(edge.destination_location);
241 if (target_nonblocking == null) {target_nonblocking = "symtrue"; }
242

243 target_invariant = target_invariant(edge.destination_location);
244 if (target_invariant == null) {target_invariant = "symtrue"; }
245 edge_predicate = " ( " + edge_guard + " & " + target_nonblocking + " & " +

target_invariant + " )";
246 printing(predicate + " | " + edge_predicate + " --> ");
247 predicate += " |" + edge_predicate;
248 predicate = matlab.feval("simpler", predicate);
249 printing(predicate + "\n");
250 location.matlab_temp = predicate;
251 }
252 invariant = last(location.matlab_invariants);
253 if (invariant == null) {invariant = "symtrue";}
254 non_blocking = last(location.matlab_nonblocking_pred);
255 if (non_blocking == null) {non_blocking = "symtrue";}
256 printing(" Part three inputs are: N: " + non_blocking + ", I: " +

invariant + ", ");
257 part_three = matlab.feval("clock_regions", non_blocking, invariant);
258 if (part_three.equals("null")) {
259 printing("\n Solve: " + non_blocking + " With some time delay Delta

AND " + invariant + " with time delay delta for all time delta < Delta\n");
260 part_three = scan.nextLine();
261 }
262 printing("Output is: " + part_three + "\n Adding gives: ");
263 predicate += " | ( " + part_three + ")";
264 printing(predicate + " --> ");
265 predicate = matlab.feval("simpler", predicate);
266 location.matlab_temp = predicate;
267 printing(predicate + "\n\n");
268 predicate = null;
269 }
270 // Here the finished condition is also checked. The condition is check by

computing (x & ~y), with x and y being logic equations. This is always false
271 // if x is equal to y, or if y is false or if x is false.
272 for (location location: automaton.locations) {
273 printing("Final NBC are: " + location.name + ": " + location.matlab_temp + "\n

");
274 old_predicate = last(location.matlab_nonblocking_pred);
275 new_predicate = location.matlab_temp;
276 equality_test = "test";
277 if ((old_predicate.equals("symfalse")) ^ (new_predicate.equals("symfalse"))) {
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278 equality_test = "dont";
279 }
280 else if (old_predicate.equals(new_predicate)){
281 equality_test = "symfalse";
282 }
283 else {
284 equality_test = "( " + old_predicate + " ) & ~ ( " + new_predicate + " )";
285 equality_test = matlab.feval("simpler", equality_test);
286 }
287 if (! equality_test.equals("symfalse")) {
288 finished = false;
289 }
290 location.matlab_nonblocking_pred = add_string(location.matlab_nonblocking_pred

, location.matlab_temp);
291 location.matlab_temp = null;
292 }
293 printing("------------------------------------------\n");
294 }
295 }
296

297 private static void bad_state() throws RejectedExecutionException, EngineException,
InterruptedException, ExecutionException {

298 String predicate;
299 String guard;
300 String target_condition;
301 String [] resets;
302 String equality_test;
303 String old_predicate;
304 String new_predicate;
305 String invariant;
306 String bad_state;
307 String part_six;
308 boolean finished = false;
309

310 Scanner scan = new Scanner(System.in);
311

312 printing("Computing the bad-state conditions: \n");
313 printing("Initial bad-state conditions are: \n");
314 for (location location: automaton.locations) {
315 if (location.matlab_nonblocking_pred != null) {
316 predicate = last(location.matlab_nonblocking_pred);
317 }
318 else {
319 predicate = "symtrue";
320 }
321 predicate = "~ ( " + predicate + " )";
322 predicate = matlab.feval("simpler", predicate);
323 location.matlab_bad_state = add_string(location.matlab_bad_state, predicate);
324 location.matlab_temp = predicate;
325 printing(location.name + ": " + predicate + "\n");
326 }
327

328 while (! finished) {
329 finished = true;
330 for (location location: automaton.locations) {
331 printing("\n");
332 printing(" Computing bad-state predicate for " + location.name + "\n");
333 predicate = "( " + last(location.matlab_bad_state) + " )";
334 printing(" Initial predicate is: " + predicate + "\n");
335 for (edge event: location.edges) {
336 if (event.uncontrollable) {
337 printing(" add edge predicate for " + event.event);
338 if (event.guard != null) {guard = last(event.guard);}
339 else {guard = "symtrue";}
340

341 target_condition = target_bad_state(event.destination_location);
342 if (target_condition == null) {target_condition = "symtrue"; }
343 predicate += " | ( ( " + guard + " ) & ( " + target_condition + " ) )"

;
344 resets = list_to_string(event.clock_resets);
345 if (resets != null) {
346 printing(" with resets: ");
347 for (String reset: resets) {printing(reset + " ");}
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348 printing(predicate + " --> ");
349 location.matlab_temp = matlab.feval("simpler", predicate, resets);
350 printing(location.matlab_temp + "\n");
351 }
352 else {
353 printing(predicate + " --> ");
354 location.matlab_temp = matlab.feval("simpler", predicate);
355 printing(location.matlab_temp + "\n");
356 }
357 }
358 }
359

360 invariant = last(location.matlab_invariants);
361 if (invariant == null) {invariant = "symtrue";}
362 bad_state = last(location.matlab_bad_state);
363 if (bad_state == null) {bad_state = "symtrue";}
364 printing(" Part three inputs are: N: " + bad_state + ", I: " +

invariant + ", ");
365 part_six = matlab.feval("clock_regions", bad_state, invariant);
366 if (part_six.equals("null")) {
367 printing("\n Solve: " + bad_state + " With some time delay Delta

AND " + invariant + " with time delay delta for all time delta < Delta\n");
368 part_six = scan.nextLine();
369 }
370 printing("Output is: " + part_six + "\n Adding gives: ");
371 predicate += " | ( " + part_six + ")";
372 printing(predicate + " --> ");
373 predicate = matlab.feval("simpler", predicate);
374 location.matlab_temp = predicate;
375 printing(predicate + "\n\n");
376 predicate = null;
377

378 if (location.matlab_temp == null) {
379 location.matlab_temp = predicate;
380 }
381 }
382 printing("\n");
383 for (location location: automaton.locations) {
384 printing("Final BSP are: " + location.name + ": " + location.matlab_temp + "\n

");
385 old_predicate = last(location.matlab_bad_state);
386 new_predicate = location.matlab_temp;
387 equality_test = "test";
388 if (old_predicate.equals("symfalse") ^ new_predicate.equals("symfalse")) {
389 equality_test = "dont";
390 }
391 else if (old_predicate.equals(new_predicate)) {
392 equality_test = "symfalse";
393 }
394 else {
395 equality_test = "( " + old_predicate + " ) & ~ ( " + new_predicate + " )";
396 equality_test = matlab.feval("simpler", equality_test);
397 }
398 if (! equality_test.equals("symfalse")) {
399 finished = false;
400 }
401 location.matlab_bad_state = add_string(location.matlab_bad_state, location.

matlab_temp);
402 location.matlab_temp = null;
403 }
404 printing("------------------------------------------\n");
405 }
406 }
407

408 private static boolean invariants_equal() throws RejectedExecutionException,
EngineException, InterruptedException, ExecutionException {

409 String equality_test;
410 String old_invariant;
411 String new_invariant;
412 int length;
413

414 for (location location: automaton.locations) {
415 length = location.matlab_invariants.length;
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416 new_invariant = location.matlab_invariants[length-1];
417 old_invariant = location.matlab_invariants[length-2];
418 if (old_invariant.equals("symfalse") ^ new_invariant.equals("symfalse")) {
419 equality_test = "dont";
420 }
421 else if (old_invariant.equals(new_invariant)) {
422 equality_test = "symfalse";
423 }
424 else {
425 equality_test = "( " + old_invariant + ") & ~ ( " + new_invariant + " )";
426 equality_test = matlab.feval("simpler", equality_test);
427 }
428 if (! equality_test.equals("symfalse")) {
429 return false;
430 }
431 }
432 return true;
433 }
434

435 private static boolean guards_equal() throws RejectedExecutionException, EngineException,
InterruptedException, ExecutionException {

436 String equality_test;
437 String old_guard;
438 String new_guard;
439 int length;
440

441 for (location location: automaton.locations) {
442 for (edge event: location.edges) {
443 length = event.guard.length;
444 old_guard = event.guard[length-2];
445 new_guard = event.guard[length-1];
446 if (old_guard.equals("symfalse") ^ new_guard.equals("symfalse")) {
447 equality_test = "dont";
448 }
449 else if (old_guard.equals(new_guard)) {
450 equality_test = "symfalse";
451 }
452 else {
453 equality_test = "( " + old_guard + ") & ~ ( " + new_guard + " )";
454 equality_test = matlab.feval("simpler", equality_test);
455 }
456 if (! equality_test.equals("symfalse")) {
457 return false;
458 }
459 }
460 }
461 return true;
462 }
463

464 public static automaton synthesize (automaton original_automaton, boolean print_controller
) throws IllegalArgumentException, IllegalStateException, InterruptedException,
RejectedExecutionException, ExecutionException{

465 boolean loop1 = false;
466 boolean loop2 = false;
467

468 matlab = MatlabEngine.startMatlab();
469 automaton = original_automaton;
470 print = print_controller;
471

472 for (location location: automaton.locations) {
473 location.create_matlab_invariants();
474 }
475 while (! loop2) {
476 while (! loop1) {
477 non_blocking();
478 bad_state();
479

480 adapt_guards();
481 loop1 = guards_equal();
482 }
483 loop1 = false;
484 adapt_invariants();
485 loop2 = invariants_equal();
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486 }
487 return automaton;
488 }
489 }
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8.7 CIF plant

1 import "requirement_far.cif";
2 import "requirement_close.cif";
3 import "requirement_a_none.cif";
4 import "observer.cif";
5 import "svg.cif";
6
7 uncontrollable u_D_front_small, u_D_front_large;
8 uncontrollable u_D_back_small, u_D_back_large;
9 uncontrollable u_D_none;

10
11 controllable c_decel_small, c_decel_large;
12 controllable c_accel_small, c_accel_large;
13 controllable c_a_none;
14
15 const real time_constraint = 3/8;
16 const real distance_small = 5;
17 const real distance_large = 10;
18
19 plant plant_distance:
20 alg real distance = x_leader - x_follower;
21
22 location DNone:
23 initial; marked;
24 edge u_D_front_small when distance<-distance_small goto TimeFSmall;
25 edge u_D_back_small when distance>distance_small goto TimeBsmall;
26
27 location TimeFSmall:
28 edge u_D_front_large when distance<-distance_large goto TimeFLarge;
29 edge u_D_none when distance>1 goto DNone;
30
31 location TimeFLarge:
32 edge u_D_front_small when distance>-distance_large goto TimeFSmall;
33
34 location TimeBsmall:
35 edge u_D_back_large when distance>distance_large goto TimeBLarge;
36 edge u_D_none when distance<1 goto DNone;
37
38 location TimeBLarge:
39 edge u_D_back_small when distance<distance_small goto TimeBsmall;
40 end
41
42 plant plant_acceleration:
43 location ANone:
44 initial; marked;
45 edge c_decel_small goto ADecelSmall;
46 edge c_decel_large goto ADecelLarge;
47 edge c_accel_small goto AAccelSmall;
48 edge c_accel_large goto AAccelLarge;
49
50 location ADecelSmall:
51 edge c_decel_large goto ADecelLarge;
52 edge c_a_none goto ANone;
53
54 location ADecelLarge:
55 edge c_decel_small goto ADecelSmall;
56 edge c_a_none goto ANone;
57
58 location AAccelSmall:
59 edge c_accel_large goto AAccelLarge;
60 edge c_a_none goto ANone;
61
62 location AAccelLarge:
63 edge c_accel_small goto AAccelSmall;
64 edge c_a_none goto ANone;
65 end
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8.8 CIF Observers

1 import "plant.cif";
2
3 plant time_close:
4 cont t_1 der 1;
5 location TimeFNone:
6 initial; marked;
7 edge u_D_front_small do t_1 := 0 goto TimeFSmall;
8 edge u_D_none;
9

10 location TimeFSmall:
11 edge u_D_none do t_1 := 0 goto TimeFNone;
12 edge u_D_front_large do t_1 := 0 goto TimeFLarge;
13
14 location TimeFLarge:
15 edge u_D_front_small do t_1 := 0 goto TimeFSmall;
16 end
17
18 plant time_far:
19 cont t_2 der 1;
20 location TimeBNone:
21 initial; marked;
22 edge u_D_back_small do t_2 := 0 goto TimeBSmall;
23 edge u_D_none;
24
25 location TimeBSmall:
26 edge u_D_none do t_2 := 0 goto TimeBNone;
27 edge u_D_back_large do t_2 := 0 goto TimeBLarge;
28
29 location TimeBLarge:
30 edge u_D_back_small do t_2 := 0 goto TimeBSmall;
31 end
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8.9 CIF Requirement Close

1 import "plant.cif";
2
3 plant decel_slow:
4 cont t_3_slow der 1;
5 location DecelSlowVConst:
6 initial; marked;
7 edge u_D_front_large when time_close.t_1 >= time_constraint
8 do t_3_slow := 0
9 goto DecelSlowDLarge;

10 edge u_D_front_large when time_close.t_1 < time_constraint
11 goto DecelSlowASmall;
12 edge u_D_front_small;
13 edge u_D_none;
14 edge c_a_none;
15
16 location DecelSlowDLarge:
17 invariant t_3_slow <= 0;
18 edge c_decel_small do t_3_slow := 0
19 goto DecelSlowASmall;
20 edge u_D_front_small goto DecelSlowVConst;
21 edge c_decel_large;
22
23 location DecelSlowASmall:
24 edge u_D_none goto DecelSlowVConst;
25 edge u_D_front_small;
26 edge c_decel_large;
27 end
28
29 plant decel_large:
30 cont t_3_large der 1;
31 location DecelLargeVConst:
32 initial; marked;
33 edge u_D_front_large when time_close.t_1 >= time_constraint
34 do t_3_large := 0
35 goto DecelLargeDLarge;
36 edge u_D_front_large when time_close.t_1 < time_constraint
37 goto DecelLargeALarge;
38 edge u_D_front_small;
39 edge u_D_none;
40 edge c_decel_small;
41 edge c_decel_large;
42 edge c_a_none;
43
44 location DecelLargeDLarge:
45 invariant t_3_large <= 1/8;
46 edge c_decel_large do t_3_large := 0
47 goto DecelLargeALarge;
48 edge u_D_front_small goto DecelLargeVConst;
49 edge c_decel_small;
50
51 location DecelLargeALarge:
52 edge u_D_none goto DecelLargeVConst;
53 edge u_D_front_small;
54 edge c_decel_large;
55 end
56
57 plant decel_panic:
58 cont t_3_panic der 1;
59 location DecelPanicVConst:
60 initial; marked;
61 edge u_D_front_large when time_close.t_1 < time_constraint
62 do t_3_panic := 0
63 goto DecelPanicDLarge;
64 edge u_D_front_large when time_close.t_1 >= time_constraint;
65 edge u_D_front_small;
66 edge u_D_none;
67 edge c_decel_small;
68 edge c_decel_large;
69 edge c_a_none;
70
71 location DecelPanicDLarge:

Frank Vlaar 61



Real-time supervisory control synthesis program for one dimensional vehicle following system

72 invariant t_3_panic <= 0;
73 edge c_decel_large do t_3_panic := 0
74 goto DecelPanicALarge;
75 edge u_D_front_small goto DecelPanicVConst;
76
77 location DecelPanicALarge:
78 edge u_D_none goto DecelPanicVConst;
79 edge u_D_front_small;
80 end
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8.10 CIF Requirement Far

1 import "plant.cif";
2
3 plant accel_slow:
4 cont t_4_slow der 1;
5 location AccelSlowVConst:
6 initial; marked;
7 edge u_D_back_large when time_far.t_2 >= time_constraint
8 do t_4_slow := 0
9 goto AccelSlowDLarge;

10 edge u_D_back_large when time_far.t_2 < time_constraint
11 goto AccelSlowASmall;
12 edge u_D_back_small;
13 edge u_D_none;
14 edge c_a_none;
15
16 location AccelSlowDLarge:
17 invariant t_4_slow <= 0;
18 edge c_accel_small do t_4_slow := 0
19 goto AccelSlowASmall;
20 edge u_D_back_small goto AccelSlowVConst;
21 edge c_accel_large;
22
23 location AccelSlowASmall:
24 edge u_D_none goto AccelSlowVConst;
25 edge u_D_back_small;
26 edge c_accel_large;
27 end
28
29 plant accel_large:
30 cont t_4_large der 1;
31 location AccelLargeVConst:
32 initial; marked;
33 edge u_D_back_large when time_far.t_2 >= time_constraint
34 do t_4_large := 0
35 goto AccelLargeDLarge;
36 edge u_D_back_large when time_far.t_2 < time_constraint
37 goto AccelLargeALarge;
38 edge u_D_back_small;
39 edge u_D_none;
40 edge c_accel_small;
41 edge c_accel_large;
42 edge c_a_none;
43
44 location AccelLargeDLarge:
45 invariant t_4_large <= 1/8;
46 edge c_accel_large do t_4_large := 0
47 goto AccelLargeALarge;
48 edge u_D_back_small goto AccelLargeVConst;
49 edge c_accel_small;
50
51 location AccelLargeALarge:
52 edge u_D_none goto AccelLargeVConst;
53 edge u_D_back_small;
54 edge c_accel_large;
55 end
56
57 plant accel_panic:
58 cont t_4_panic der 1;
59 location AccelPanicVConst:
60 initial; marked;
61 edge u_D_back_large when time_far.t_2 < time_constraint
62 do t_4_panic := 0
63 goto AccelPanicDLarge;
64 edge u_D_back_large when time_far.t_2 >= time_constraint;
65 edge u_D_back_small;
66 edge u_D_none;
67 edge c_accel_small;
68 edge c_accel_large;
69 edge c_a_none;
70
71 location AccelPanicDLarge:
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72 invariant t_4_panic <= 0;
73 edge c_accel_large when t_4_panic >= 0
74 do t_4_panic := 0
75 goto AccelPanicALarge;
76 edge u_D_back_small goto AccelPanicVConst;
77
78 location AccelPanicALarge:
79 edge u_D_none goto AccelPanicVConst;
80 edge u_D_back_small;
81 end
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8.11 CIF Requirement Acceleration None

1 import "plant.cif";
2
3 plant a_none:
4 cont t_5 der 1;
5 location D0A0:
6 initial;
7 marked;
8 edge c_decel_small goto D1A1;
9 edge c_decel_large goto D1A1;

10 edge c_accel_small goto D1A1;
11 edge c_accel_large goto D1A1;
12
13 location D1A1:
14 edge u_D_none do t_5:=0 goto D0A1;
15 edge c_decel_small;
16 edge c_decel_large;
17 edge c_accel_small;
18 edge c_accel_large;
19
20 location D0A1:
21 edge c_a_none when t_5>0 goto D0A0;
22 end
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