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1 Introduction

Over the last years, Dutch healthcare institutions have faced a shortage of workforce [1]. Due to the higher
pressure on the healthcare system, more work needs to be done by too few employees. One way to solve
this problem is to help with basic, time-consuming tasks such as moving containers or beds. These simple
tasks can be done by robots.

The Robotics Lab is developing an AGV (automated guided vehicle) able to assist in hospitals by taking
over logistical operations such as moving containers and hospital beds. One of the features of the robot
is its capability to autonomously navigate in designated areas, which are predefined in a map. These
areas represent virtual roads the robot can move in. These predefined areas are either “corridors” or
“crossings”. In a corridor, the robot is free to move forward and backward while having perception of what
is happening in front of it. In crossings, the robot has limited perception since entities can approach it
from beside, which it has no perception of. When the robot is arriving at a crossing, it slows down, for
example. Thus, the behaviour of the robots is different in either a corridor or a crossing.

At the moment, these navigation areas are specified by user input in a grid map scan made by the robot.
This makes setting up the robot in new unknown areas time-consuming. It is therefore necessary to
automate this process, to present a working robot to hospitals in the near future, where the scan of the
map is automatically annotated with the right navigation areas. This makes it possible to demonstrate
the robot in new areas quickly and effectively, and thus make a more convincing presentation of the
possibilities of the robot.

For humans, it is easy to recognize rooms, doors or walls by looking at the overall structure of the
gridmap. A human being can recognize areas by applying previously learned things about floorplans and
real-life situations. The combination of how occupied cells (pixels in the gridmap) are aligned to form
walls, which in turn form corridors and crossings, is understandable for most humans. The algorithm
is provided only with a grid map containing free and occupied cells. For an algorithm, the process of
defining each required area is not straightforward, since it has no ability to look for certain semantic
information such as doors and corners.
The current setup transforms this grid map, with little semantic information, to a more rich, useful
map with the right areas assigned, with human input. An algorithm should deem any human input un-
necessary to automate the process of extracting the required semantic information from the basic grid map.

In this report, the development of the tool which will annotate the gridmap with the right areas
is described (in the report the focus was on finding the crossings, since the other areas are defined as
corridors). The method which was chosen relies on finding free space which the robot can move to.
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2 Problem statement

Setting up the navigation areas for the robot in new, unknown areas is time-consuming and requires user
input.
In Figure 2.1a an example of a generated gridmap is shown. In Figure 2.1b a simplified partition of the
gridmap is shown. In this figure, black cells represent a wall, red cells a crossing, yellow cells a corridor
and blue cells a room.

(a) Example of a grid map generated by the robot (b) Different navigation areas

Figure 2.1: A real example of a generated gridmap and a filled-in representation of an area

As can be seen in Figure 2.1a, limited data is provided. A cell is either occupied (black), free (white)
or unknown (gray). While for a human being it is easy to recognize doorways and hallways, the lack of
semantic information makes it a complicated task for an algorithm to divide each gridmap into the right
navigation areas.

Requirements

A tool that divides the grid map must work according to certain requirements in order to say it is either
successful or not.

The tool must:

1. Recognize free space

2. Enrich the given gridmap by showing and defining semantic navigation areas.

3. Be robust; it must work for any gridmap.

4. Take into account the robot’s footprint.

5. Take into account the robot’s minimal turning radius

6. Work within 10 minutes.

7. Require minimal user input.

Navigation areas

The navigation areas are defined as follows, listed from most to least important;

1. Corridor: Area in which the robot has a clear perception of what is happening in front of it, no
need to expect sudden different entities from the side.

2. Crossing: Area in which the robot has limited perception of possible events happening, for example,
another robot approaching from the side. This can thus also be a corner.

3. Room: Destination of the robot. In this area the robot uses a different navigation algorithm than
the navigation algorithms used in crossings and corridors.
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3 Method selection

To divide the gridmap into different segments a method must be derived. This method must ensure that
the right area is given the right label. This can be done in different ways. In this report the most viable
methods are explained and compared. It is important that the chosen method is robust, does not require
any user input and the method must also work quickly. If the algorithm would take too long, say 10
minutes, it limits the user to put the robot to work quickly. The other requirements are also shown in the
requirement list.

Literature Research

On the internet and in the available databases there is information available about methods to divide,
recognize or label different areas in provided pictures. The most relevant available methods and processes
are described here.

Room labeling method

Many methods available are meant to label every room in an area with one unique label. For ex-
ample, Room Segmentation: Survey, Implementation, and Analysis, by Bormann et al [2] explains and
compares four different methods of dividing a 2D grid map into different rooms. These methods are
displayed in Figure 3.1

Figure 3.1: Four different segmentation methods, the first column depicts the ground truth room
segmentation from human labeling, the second column shows morphological segmentation, the third

column yields the distance-based segmentation, column 4 is the Voronoi graph-based segmentation, and
column 5 shows the feature-based room segmentation. [2]

The advantage of these methods is that they are tested and robust. Most of the methods succeed in
labeling different rooms correctly. A problem in these methods is however that while the algorithms are
useful in labeling different rooms, they lack possibilities to recognize different rooms. Thus they will not
be able to recognize either a corridor or a crossing. They will merely recognize that a certain room is in
fact a room, while for the problem at hand it is necessary to define also the “function” of the area. The
task requires the algorithm to recognize different areas and label them accordingly.
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Feature-based room segmentation method
A method described by Oscar Martinez Mozos seems promising since this method distinguishes between
doors, corridors and rooms [3]. This method combines different possible shapes to find possible rooms,
doorways and corridors. Where the distinction is made it is possible to create a similar method to
distinguish between corridors and crossings. The method is based on taking a point in a 2D Gridmap
and simulating a 360◦ laser-scan, also known as raycasting. The resulting scan is then compared to
training data by the AdaBoost algorithm (a boosting algorithm) [4] in which previously taken scans in
known places are shown. An example of this is shown in Figure 3.2. A scan taken in respectively a room,
doorway and corridor is shown in Figure 3.3. Please note, used definitions for areas in the paper by
Martinez Mozos are different from the definitions used in this report.

Figure 3.2: Range scan obtained by a mobile robot in a corridor. The image also shows the complete
map of the environment where the scan was taken. The scan covers the complete 360◦ field of view of the

robot. [3]

Figure 3.3: Example scans recorded in a room, a doorway, and a corridor. [3]

This method (also slightly covered by Bormann et al [2]) provides promising results based on the relevant
features. Once enough training data is provided the solution should give reliable results. However, this
is also where problems can occur. The method is dependant on training data and unreliable when a
situation is shown which is not similar to the training data, or insufficient training data is available.

Conclusion
After considering known methods and speaking with experts on the topic the focus was laid on finding
or creating a method that focuses on the free space that the robot encounters when driving around,
instead of finding a method that relies on trying to recognize spaces from an image, without knowing
what it actually represents. Moreover, it is difficult to find enough training data, or to find reliable and
representative training data. Following this realization the proposed method is explained in the remainder
of this report.
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4 Proposed method

To reliably determine which space should be labeled “crossing” it is robust to work with the free space
available. It can be derived that whenever the robot encounters free space which is not straight in front
of it, it must be in a crossing at that moment. If it were to only find free space in front of it, with no free
space to its sides, it must be in a corridor. When a situation occurs where it finds free space in front, and
to one side, it is in a T-junction, which will also be labeled “crossing”. In a corner, the space will also be
labeled “crossing”. To visualize this, Figure 4.1 shows the situation with the robot in a corridor. Figure
4.2 shows the robot while approaching a crossing.

Figure 4.1: Case 1; Visualisation of the free space method while in Corridor

Figure 4.2: Case 2; Visualisation of the free space method while approaching a crossing

In Case 1 it is clearly visible that the turns 1 and 3 will result in the robot hitting a wall. Driving straight
ahead (“turn 2”) will not result in any collision. Thus it is most likely that the robot is in a corridor
at this moment. Case 2 displays what happens when approaching a crossing. Turns 1 and 3 result in
possible turns. Turn 2 results in the robot hitting a wall. Based on turn 1 and 3 the robot can know that
it is approaching a crossing.
In an algorithm more and different turns can be taken, instead of only turns of 90◦. Furthermore, smaller
steps can be taken, where the algorithm can take account of the size (footprint) and the turning radius of
the robot. This method could be very reliable when the right parameters are set. Difficulties could arise
when it is not clear for the algorithm in what way it should approach a certain map.
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The method relies on checking if a certain position is possible for the robot to move to (free space). A
branch could be formed where the robot moves towards free space. When it only encounters free space in
front of it, it will move forwards to this space. Once it encounters free space after taking a turn, it will
save this position as a possible position to move to when its current branch dies out. A representation of
these branches is showed in Figure 4.3

Figure 4.3: Representation of the branches (in green). In red are the areas which are “corners”. Only
successful turns are shown, turns that resulted in hitting a wall are not shown.
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5 Implementation

To implement the algorithm, the choice was made to use Python. Python is open-source with a lot of
information available online [5]. Python also has many packages dealing with image processing available
which could contribute to the algorithm. OpenCV [6] is one of these packages. It has many available
functions, for example pointPolygonTest() [7], which is a function that examines if a certain point is
inside a polygon.

Algorithm

In this section the main functionality is explained. To start the algorithm, a starting position must be
taken. Afterwards, the dominant direction, which is the longest available direction and its corresponding
angle, is found. From here, the first branch is formed. The algorithm will follow a certain branch as long
as possible, until it hits a wall. When free space is found beside the robot, a new branch is formed. In
this process, all visited spaces will be labeled with either “corridor” or “crossing”.

To elaborate on the algorithm a flowchart is used, where each block is labeled. The flowchart is
in essence which steps are followed in the algorithm. The flowchart is shown in Figure 5.1. The flowchart
consists of different blocks which all have their own function in the algorithm. The blocks are also re-
ferred to in the pseudo-code and the most important blocks/steps are elaborated on further on in the report.

Figure 5.1: Flowchart explaining the concept of the algorithm
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The flowchart in Figure 5.1 is also explained in the following pseudo-code:

1 ## Block 1 (initial point):

2 start_pos = input([x,y])

3 ## Block 2 (dominant direction):

4 start_angle = dominantdirection(start_pos ,map)

5

6 r_pos = [start_position ,start_angle]

7

8 crossing_walls = [] #List containing all pixes marked as crossing

9 pos_available = [r_pos] #List containing all possible positions , including

startposition

10

11 ## Block 6 (check possible turns):

12 while len(pos_available)>0 #Loop will continue as long as there are possible positions

for the robot

13

14 ## Block 9 (make next possible turn , starting with startposition):

15 r_pos = pos_available.pop(0) #Save first possible position and remove it from the

available positions list

16

17 ## Block 3 (check for free space straightforward and to the sides):

18 for turn in range ( -130 ,130 ,10):

19 robot_test_pos = turning(r_pos ,turn) #Turn the robot over a given angle

20 robot_test = getcorners(robot_test_pos)

21

22 ## Block 4 (check when finding free space what direction it is in:)

23 onwall = findwall(robot_test ,map ,contourspace ,1) #Find all walls surrounding the

current contour

24

25 if robot_test not on wall and not encountering wall:

26 possible_turn.append(turn)

27

28 ## Block 5&7 (label crossings & add new possible new positions to list):

29 if possible_turn:

30 if turn <= -30:

31 r_new_left_pos = turning(r_pos ,turn)

32 pos_available.append(r_new_left_pos)

33

34 elif -30 < turn <= 30:

35 r_new_straight = turning(r_pos ,turn)

36 pos_available.append(r_new_straight)

37 elif turn > 30:

38 r_new_right_pos = turning(r_pos ,turn)

39 pos_available.append(r_new_right_pos)
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Key variables and functions

In this subsection the main variables, functions and structures are explained in more detail, to elaborate
on the pseudo-code displayed in Subsection 5 Algorithm.

Gridmap
The gridmap is loaded in the algorithm. This gridmap is then converted into a grayscale image which is
made up of an array containing the value for each pixel at every coordinate (function: convert2array()).
This image can then be handled as if it has a x and a y-axis. Angles are evaluated with respect to the
horizontal x-axis. These axes are also shown in Figure 4.3.

Variable r pos

To start the algorithm, a position for the robot is taken. This variable r pos contains the coordinates
of the centre of the robot and the angle it’s rotated over with respect to the x-axis. To start, a x and
a y-coordinate is needed for the start position. The algorithm will find the dominant direction (which
is the longest direction in which it can travel) and the corresponding angle. This is done in Block 2
of the flowchart. The coordinate of the middle of the robot and the angle together make up r pos. A
visualisation of this “raycasting” is shown in Figure 5.2

Figure 5.2: Visualisation of how the dominant direction is found using raycasting

The code for function dominantdirection() is shown in Appendix A.1.1
With only r pos the contours of the robot can be drawn. For this, the function getcorners() is used.
This function uses r pos and trigonometric functions to determine where the four corners of the robot
are. The code for the function getcorners() is shown in Appendix A.1.2

Function findwall()

To examine whether the given robot is on a wall, the function findwall() is used. This function works
by comparing if the contour of the robot contains any non-white pixels. First, the contour is drawn in the
contourspace, which refreshes after each iteration. An example of the contourspace is shown in Figure
5.4. Once the contour is drawn, the area surrounding the robot is checked for non-white pixels, meaning
either a wall or unknown space. If a non-white pixel is detected in the given gridmap, the position of this
pixel is checked with the OpenCV function pointPolygonTest() to see if the point is inside the contour.
If this is the case, it is added to the list wallsincontour, which contains all the non-white pixels in
the contour. The code for the function is shown in Appendix A.1.3. The function findwall() is also
elaborated on in the flowchart shown in Figure 5.5

Function turning()

To accommodate for the turning radius of the robot, a function is used to calculate the next position of
the robot. This function works by turning the robot over its turning radius and a certain given angle
(“turn” in the pseudo-code). Once it reaches the correct angle, it travels straightforward until it’s traveled

10



a fixed distance (curvelength). This process of following the turning radius and then traveling until
having moved a predefined distance is shown in Figure 5.3

Figure 5.3: Visualisation of the turning process

The fixed distance curvelength can be altered by changing the factor over which the curve length must
be multiplied. Because of this, it is possible to make it travel a shorter distance when traveling forward
for example.

Figure 5.4: Example of the contourspace during one iteration
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Figure 5.5: Flowchart showing the function findwall and how it is checked for every turn

Finding free space
Key functionality of this algorithm is to find available, free, space. Its basis is found in the fact that
if there is free space to the sides of the robot, the robot must be in a crossing at that moment. To
accommodate “traveling” through the gridmap and finding all available free space, the algorithm will
check left turns, movement straight forward and right turns.
After checking multiple different turning angles via the turning process described before, the algorithm
has possibly found multiple possible turns. It will then take the average possible left turn, the average
possible right turn and the average of the possible forward moves. This way, it will find any possible route.
After testing it was found to be best to define average possible forward moves as moves with a turning
angle in between -30◦ and 30◦. Meaning, any move between these angles is considered straightforward.
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This helps with limiting the number of false positives in finding corridors (moreover these false positives
in the “Displaying results” subsection). A visualization of the process of finding the average possible
turn is shown in Figure 5.6. Contour “3” shows that the average possible turn is taken as a next possible
position. As one can see, some of the turns it makes to the left are discarded as they are on a wall. The
process of finding which turns are possible and which turns are not is shown in the flowchart in Figure
5.5.

Figure 5.6: Average turns. [1] is the starting position. [2] is the average possible move forward. [3]
displays the average possible left turn. Contours in gray are all the checked contours

Displaying results
While running the algorithm and moving the robot through the gridmap, the walls which are detected
as crossing walls are saved after each iteration in list: crossing walls. To show where all the walls
are that make up the crossings, the pixels which are detected inside a crossing can be displayed. The
problem with this is that currently, the algorithm makes mistakes. Once a robot ends up in a certain
position in a corridor it detects that there is a possible turn, while in fact it is in a corridor, because
of the width of the corridor. This is displayed in Figure 5.7. Contour 1 displays the robot in an actual
crossing, where it makes a correct turn (and also labeling the detected walls “crossing walls”) to contour
2. The robot displayed by contour 2 then makes a wrongful turn to contour 3. Because a turn was made,
the detected walls are labeled “crossing walls”, even though the robot was inside of a corridor.
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Figure 5.7: Example of how the robot is able to make a turn in a corridor, and then giving wrong
information about the surrounding walls.

To counter this phenomenon, the algorithm works around the gridmap multiple times, and every time it
checks for crossing walls. Once the algorithm has ran for a certain amount of time (dependant on given
variables such as given gridmap, robotsize with respect to gridmap), almost all wall pixels are recognized
by the algorithm. Then a weighing can be added to all found pixels. Meaning; when a pixel is detected
as “crossing wall” more times, it will get a higher ranking. To do this, all pixels in crossing walls

are checked for how often they occur (how often they are being recognized as a crossing wall). They
are stored in a dictionary: rank coord which contains the coordinate as a key and the number of
occurrences as a value.

1 snippet of rank_coord:

2

3 (747, 293): 493, #Likely to be actual crossing wall

4 (747, 294): 504,

5 (748, 293): 508,

6 (749, 293): 506,

7 (660, 275): 78, #Probably a false positive crossing wall

8 (661, 274): 74,

9 (661, 275): 76,

10 (662, 273): 70

The code in Appendix A.1.4 shows how the visualisation is created.
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6 Results

How the results are created is explained in the subsection “Displaying results” in Section 5. The resulting
visualisations are the end result of the algorithm, and show how the crossings are found by the algorithm.

In Figure 6.1 the visualisation resulting from 1132 iterations is shown. The figure shows a gridmap which
is the result of a scan made by the robot. This figure is a large mess of different contours, but it allows
for the viewer to see what paths the algorithm has taken to move in the gridmap and which areas it
has passed most often. Grey contours represent contours made after a turn. These grey contours are
however hard to see in between of all the black contours (contours where the robot traveled forward in
the algorithm). In Figure 6.2 the walls which are detected as crossing walls at least once are shown. As is
visible from the figure, almost all walls are detected at least once as a crossing wall. This figure has no
weighing attached to it. From this figure it can be concluded that many false positives are detected, since
most of the walls coloured white are actually corridor walls. Figure 6.3 shows the crossing walls with a
weighing, and displays how corners are detected by the algorithm much more often. This shows how the
algorithm, over time, detects crossing walls more often.

Figure 6.1: The result of 1132
iterations, showing how each

wall is detected multiple times

Figure 6.2: All detected
crossing pixels are in white,

without weighing

Figure 6.3: Crossing walls
visualisation with ranking

based on number of occurrences

As can be seen in Figure 6.3, the algorithm provides information on the semantics of the position of
crossing walls. For a different gridmap the robot will follow different paths. A different gridmap is shown
in Figure 6.4, with the corresponding visualisations. This is a computer-generated gridmap, not one
generated by the robot.
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Figure 6.4: The result of 937 iterations,
showing how each wall is detected multiple

times.

Figure 6.5: Crossing walls visualisation with
ranking based on number of occurrences.

In a gridmap with relatively thin corridors, the algorithm will have fewer false positive crossing detections,
because the case in Figure 5.7 (case with wrong turn) will happen less often. To simulate this a gridmap
with thin corridors was created. The results of running the algorithm in such a map are shown in Figure
6.6. This result shows in the crossing walls visualisation much more clearly where the walls surrounding
the crossings are compared to gridmaps with relatively large corridors.

Figure 6.6: The result of 258 iterations,
showing how each wall is detected multiple

times.

Figure 6.7: Crossing walls visualisation with
ranking based on the number of occurrences.

The visualisations shown in Figures 6.3, 6.5 and 6.7 are the final results of the algorithm on three different
maps. In the results it is clear that most free space is detected, and with it, the crossing walls. Whenever
a robot is able to turn around a corner the turn is made. The algorithm is effective in finding all spaces it
can go, and thus seeing where free space is. The corners are detected but it also displays the shortcomings
of the algorithm. The combination of the number of false positives and the method of defining the
navigation areas is not viable. This will be explained in more detail in Section 7 Discussions.
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7 Discussion

To assess whether the algorithm is successful in helping with the recognition of the different navigation
areas, it is necessary to check if and to what extend the requirements are met. In the Introduction
multiple requirements are stated.

Assessing requirements

As can be seen in the Section 6 multiple figures display the results of the algorithm. Especially Figures
6.1, 6.4 and 6.6 are of interest, since these Figures display the steps and paths taken. When looking at
these figures, it is clear that the algorithm succeeds in finding free space. The first requirement is met,
since free space is recognized and detected.

The first problems come with the second requirement, which states “The tool must enrich the given gridmap
by showing and defining semantic navigation areas”. In the results, one can see that crossing walls are
detected. There are also corridors that are detected as “crossing walls” however. The combination of how
a crossing wall is detected and how false positives can have a large impact on the final result are the root
cause of this problem. Since the crossing walls are detected in the step where the turn is made often walls
just “before” and “after” the turn are also detected as crossing walls. A solution for this would be to de-
fine the area which is in a “crossing” as the area under the path the robot travels to reach the new contour.

The next problem with the second requirement comes with the method of defining the navigation
areas in the gridmap. Currently, the areas are defined by showing which walls surround the crossing/cor-
ridor. A desired result would be an algorithm that defines each area with points that can form a polygon.
Those coordinates of the polygon which make up each area is useful for the navigation algorithm used by
the robot. Currently, the robot uses polygons defined by coordinates to know where each navigation area
starts and ends. Thus the method of just finding the walls containing each area would not suffice. There
needs to be an improvement on this part (defining where each area is exactly) to make the tool meet
this requirement. A suggestion for this would be to fit contours between the walls of the crossing, and
determining what polygon spans the crossing space. But at this moment this has not been managed.

The third requirement, which states “the tool must be robust; it must work for any gridmap” is
not met to its full extend. It is possible to use any gridmap and get results. In every gridmap used, all
spots in the gridmap are covered. There lies a problem in the method of following branches, since at
the moment the next step the algorithm takes is not necessarily in the same branch. Because of this,
the algorithm tends to reach certain areas more often. This then increases exponentially because an
area which is visited more also creates more possible positions, and thus keeping that area more active.
Therefore, sometimes the weighing factor used to create the crossing walls visualisation is not truly
irrefutable. This symptom is visible in Figures 6.1 and corresponding crossing walls visualisation Fig-
ure 6.3. The left side of the corridor in the gridmap is not very notable, even though it has a clear crossing.

When a gridmap with very wide corridors is used, a large number of false positives will be given.
It can however be discussed that these very wide corridors have in fact the same limitations for the
navigation of the robot as crossings. When the robot is in a position were it is able to make a multitude
of turns to the side, it is also possible to have this corridor meet the “crossing discription”. Since as
explained in the “Navigation areas”, found in Section 2, a crossing is defined as an area in which the
robot has limited perception of possible events happening, for example, another robot approaching from
the side. In wide corridors another robot or human can approach it from the sides, and the area is
then correctly defined as a crossing. This shows that the definitions of the different navigation areas are
disputable and can be altered to change the approach of the desired algorithm.

The fourth and fifth requirements are met by the algorithm since the footprint and its turning radius are
taken into account when trying to find free space for the robot to move to. The sixth requirement is
a time requirement, which is also met. On a standard laptop the algorithm can be stopped within 10
minutes to get a useful result. The seventh requirement, which states that the tool must require minimal
user input is met to a certain extent. It is necessary for the user to input three variables: the turning
radius, the size of the robot and finally the starting location of the robot. This number could be reduced
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if the variables can be known from a given gridmap. Another way to reduce the amount of input variables
is to make the starting position any random location in which the robot can start the algorithm. If the
robot fits in the position and is able to form branches, it suffices.

Recommendations for improving the algorithm

For the algorithm to meet or exceed all stated requirements, the following recommendations are made.
First, the method of defining (with polygons/coordinates) what area has what label must be implemented.
This way, the results are useful for the robots navigation algorithm. The method also needs improvement
on detecting false positives. For this to happen the process of turning and detecting walls must be altered.
Lastly, in an ideal situation the algorithm will know the size of the actual robot (which is constant)
and its corresponding turning radius, and change the size of the simulated robot according to the given
gridmap and create the starting position itself. This way there is no required user input.

Recommendations for the process

Evaluating the process of creating the algorithm, too much time was spent in the wrong direction in the
start-up phase. There have been difficulties in finding the right method, and a significant part of the
literature research, and finding the best possible method to tackle the problem, was focused on tactics
involving neural networks and machine learning. After talking with experts on the subject the choice was
made to move to a method relying on free space. This method seems very promising and the results show
that it is possible. There has however been too little research on how to implement this correctly, since
due to time restrictions it was important to start on the implementation phase. To improve the quality of
the algorithm, more research should be don on how to implement such a “Free space finding” algorithm.

After the problem at hand was understood correctly and the method was derived, the implementa-
tion phase started. Looking back, this phase was too unstructured. It would be beneficial to increase the
time spent on laying out the desired method and corresponding algorithm in paper or in for example
a flowchart, before starting to code. This way, it could be known beforehand that “defining the actual
navigational areas” would come with some problems.
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8 Conclusion

To find the best solution for setting up navigation areas in the gridmap, different methods were assessed.
After defining what the problem exactly was; Setting up the navigation areas for the robot in new,
unknown areas is time consuming and requires user input, and why the solution for the problem is not
straightforward, the requirements were formed. With these requirements and problems in mind the
different methods were compared. The methods concerning recognizing different rooms were discarded
since this method relies on recognizing rooms, not labeling areas. The method relying on using raycasting,
to compare the scans of new areas to known scans, was discarded since this method relies on training
the algorithm. After comparing the different methods, the choice was made to shift away from methods
relying on machine learning and to create an algorithm which focuses on finding free space in the gridmap.
Free space being available positions for the robot after a turn or when moving straightforward. By
defining what rules apply for what area the free space method enabled finding these different navigation
areas. The method relies on creating, and traveling through different branches, to find free space to its
sides along the way.
The created algorithm provides insights into how free space is used to find semantic spaces in a gridmap.
The method of using free space is proven to be useful for finding these areas, but because of the false
turns inside of the corridors, there needs to be improvement on the set rules for defining the areas and
the method of saving what coordinate/pixel belongs to what area. It is especially important to find a
method that defines exactly, with coordinates that form a polygon, where which area is, instead of only
finding the walls surrounding this area. The algorithm can also be improved by finding the relative size
(relative to the gridmap) of the robot. If these problems are solved the method is robust without requiring
training data, since the algorithm works with absolute rules, defined steps and areas. This also eliminates
the risk of finding a situation that a machine-learning algorithm can not be trained for. Therefore it can
be concluded that this method has advantages over other available methods.
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A Appendix

A.1 Code

A.1.1 Function dominantdirection

1 def dominantdirection(r_pos ,map):

2 """

3 Get the dominant direction (longest unobstructed distance and its corresponding angle)

for a given position in the gridmap

4 """

5 x = r_pos [0][0]

6 y = r_pos [0][1]

7 lengthperangle = {}

8 length = 0

9 for angle in range (0 ,360,1):

10 while map[y][x] > 254 #Continue raycasting until a grey/black pixel is detected

11 length += 1

12 x = x + cos(angle)

13 y = y + sin(angle)

14 lengthperangle[angle] = length

15 dominantdirection = max(lenghtperangle)

16 return dominantdirection

A.1.2 Function getcorners

1 def getcorners(r_pos):

2 """

3 Returns position of the four corners with input the position (x,y) and angle of the

robot.

4 ---------

5 """

6 r_size = (45 ,30) #Define Robot Size

7 robot = [None] * 4

8 robot [0] = round( r_pos [0][0] - (r_size [0]/2 * cosd(r_pos [1])) - (r_size [1]/2 *sind(

r_pos [1])) ), round( r_pos [0][1] - (r_size [0]/2 * sind(r_pos [1])) + (r_size [1]/2 *

cosd(r_pos [1])) )

9 robot [1] = round( r_pos [0][0] + (r_size [0]/2 * cosd(r_pos [1])) - (r_size [1]/2 *sind(

r_pos [1])) ), round( r_pos [0][1] + (r_size [0]/2 * sind(r_pos [1])) + (r_size [1]/2 *

cosd(r_pos [1])) )

10 robot [2] = round( r_pos [0][0] + (r_size [0]/2 * cosd(r_pos [1])) + (r_size [1]/2 *sind(

r_pos [1])) ), round( r_pos [0][1] + (r_size [0]/2 * sind(r_pos [1])) - (r_size [1]/2 *

cosd(r_pos [1])) )

11 robot [3] = round( r_pos [0][0] - (r_size [0]/2 * cosd(r_pos [1])) + (r_size [1]/2 *sind(

r_pos [1])) ), round( r_pos [0][1] - (r_size [0]/2 * sind(r_pos [1])) - (r_size [1]/2 *

cosd(r_pos [1])) )

12 return robot

A.1.3 Function findwall

1 ef findwall(robot ,map ,contourspace):

2 """

3 Returns all coordinates of the walls in the contour that is assessed at this

4 iteration

5 """

6 wallsincontour = []

7 x_min ,x_max ,y_min ,y_max = min_x(robot),max_x(robot),min_y(robot),max_y(robot)

8 contours ,_ = cv.findContours(contourspace , cv.RETR_TREE , cv.CHAIN_APPROX_SIMPLE)

9

10 for i in range(x_min ,x_max ,1):

11 for j in range(y_min ,y_max ,1):

12 if 0 < map[j][i] < 210:

13 if cv.pointPolygonTest(contours [1], (i,j), False) == 1:
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14 wallsincontour.append(None)

15 else:

16 continue

17

18 if map[j][i] == 0:

19 if cv.pointPolygonTest(contours [1], (i,j), False) == 1:

20 wallsincontour.append ((i,j))

21 else:

22 continue

23

24 else:

25 continue

26 return wallsincontour

A.1.4 Algorithm results visualisation

1

2 #Create empty space to visualize results

3 wallspace_weight = np.zeros((map.shape [0], map.shape [1]), dtype=np.uint8)

4

5 rank_coord = {} #Empty dictionary to keep track of number of occurrunces per coordinate

6

7 for coord in crossing_walls:

8 if coord not in rank_coord and coord != None:

9 rank_coord[coord] = 1

10 elif coord in rank_coord and coord != None:

11 rank_coord[coord] = rank_coord[coord] + 1

12

13 #Factor which must be scaled according to how long the algorithm had been running

14 rank_factor = 8

15

16 for key in rank_coord:

17 if rank_coord[key] > rank_factor * 6:

18 wallspace_weight[key [1]][ key [0]] = 255 #White

19 elif rank_coord[key] > rank_factor * 5:

20 wallspace_weight[key [1]][ key [0]] = 200

21 elif rank_coord[key] > rank_factor * 4:

22 wallspace_weight[key [1]][ key [0]] = 150

23 elif rank_coord[key] > rank_factor * 3:

24 wallspace_weight[key [1]][ key [0]] = 75

25 elif rank_coord[key] > rank_factor * 2:

26 wallspace_weight[key [1]][ key [0]] = 50

27 elif rank_coord[key] > rank_factor * 1:

28 wallspace_weight[key [1]][ key [0]] = 25 #Very dark grey

29

30 cv2_imshow(wallspace_weight)

A.1.5 Full Algorithm

1 import os

2 import random

3 import matplotlib.pyplot as mpl

4 from matplotlib import font_manager

5 from PIL import Image , ImageDraw , ImageFont

6 import numpy as np

7 import PIL as plt

8 import tensorflow as tf

9 from tensorflow import keras

10 from tensorflow.keras.preprocessing.image import *

11 import matplotlib.pyplot as plt2

12 import math

13 from __future__ import print_function

14 from __future__ import division

15 from google.colab.patches import cv2_imshow

16 import cv2 as cv
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17

18 from google.colab import drive

19 drive.mount('/content/drive ')
20

21 # Define path

22 path = 'drive/MyDrive/Docs/BEP'
23 map_png = '/content/drive/MyDrive/Docs/BEP/map_scan3.png'
24

25 def convert2array(img: Image):

26 """

27 Convert an image to array

28 ---------

29 img : Image

30 Image to convert to array

31 Returns

32 -------

33 features : list/matrix/structure of float , float between zero and 255

34 Extracted features in a format that can be used in the image classifier.

35 """

36

37 # <ASSIGNMENT: Implement your feature extraction by converting pixel intensities to

features.>

38 img = img.convert("L") # converting image to greyscale (in case the image was color

)

39

40 pix = np.array(img) # converting image to array filled with array

41

42 return pix

43

44 def sind(angle):

45 sin_r = np.sin(np.deg2rad(angle))

46 return sin_r

47

48 def cosd(angle):

49 cos_r = np.cos(np.deg2rad(angle))

50 return cos_r

51

52 def min_x(robot):

53 x_min = min(robot)[0]

54 return x_min

55

56 def max_x(robot):

57 x_max = max(robot)[0]

58 return x_max

59

60 def min_y(robot):

61 y_min = min(robot , key=lambda x:x[1]) [1]

62 return y_min

63

64 def max_y(robot):

65 y_max = max(robot , key=lambda x:x[1]) [1]

66 return y_max

67

68 def getcorners(r_pos):

69 """"

70 Returns position of the four corners with input the position (x,y) and angle of the

robot.

71 ---------

72 """

73 r_size = (50 ,36) #Define Robot Size

74 robot = [None] * 4

75 robot [0] = round( r_pos [0][0] - (r_size [0]/2 * cosd(r_pos [1])) - (r_size [1]/2 *sind(

r_pos [1])) ), round( r_pos [0][1] - (r_size [0]/2 * sind(r_pos [1])) + (r_size [1]/2 *

cosd(r_pos [1])) )

76 robot [1] = round( r_pos [0][0] + (r_size [0]/2 * cosd(r_pos [1])) - (r_size [1]/2 *sind(

r_pos [1])) ), round( r_pos [0][1] + (r_size [0]/2 * sind(r_pos [1])) + (r_size [1]/2 *

cosd(r_pos [1])) )

77 robot [2] = round( r_pos [0][0] + (r_size [0]/2 * cosd(r_pos [1])) + (r_size [1]/2 *sind(

r_pos [1])) ), round( r_pos [0][1] + (r_size [0]/2 * sind(r_pos [1])) - (r_size [1]/2 *

cosd(r_pos [1])) )
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78 robot [3] = round( r_pos [0][0] - (r_size [0]/2 * cosd(r_pos [1])) + (r_size [1]/2 *sind(

r_pos [1])) ), round( r_pos [0][1] - (r_size [0]/2 * sind(r_pos [1])) - (r_size [1]/2 *

cosd(r_pos [1])) )

79 return robot

80

81

82 def findwall(robot ,map ,contourspace):

83 """

84 Returns all coordinates of the walls in the contour that is assessed at this

85 iteration

86 """

87 wallsincontour = []

88 x_min ,x_max ,y_min ,y_max = min_x(robot),max_x(robot),min_y(robot),max_y(robot)

89 contours ,_ = cv.findContours(contourspace , cv.RETR_TREE , cv.CHAIN_APPROX_SIMPLE)

90

91 for i in range(x_min ,x_max ,1):

92 for j in range(y_min ,y_max ,1):

93 if 0 < map[j][i] < 210:

94 if cv.pointPolygonTest(contours [1], (i,j), False) == 1:

95 wallsincontour.append(None)

96 else:

97 continue

98

99 if map[j][i] == 0:

100 if cv.pointPolygonTest(contours [1], (i,j), False) == 1:

101 wallsincontour.append ((i,j))

102 else:

103 continue

104

105 else:

106 continue

107 return wallsincontour

108

109 def turning(r_pos ,turn ,lengthfactor):

110 tur_rad = 40

111 r_testpos = [None ]*2

112

113 AB = 2 * tur_rad * sind (0.5 * abs(turn))

114 curvelength = (turn /360) *2* math.pi*tur_rad

115

116 if turn < 0:

117 remaining_dist = lengthfactor * 1.25* math.pi*tur_rad + curvelength

118 elif turn >= 0:

119 remaining_dist = lengthfactor * 1.25* math.pi*tur_rad - curvelength

120

121 r_testpos [1] = r_pos [1] + turn

122 r_testpos [0] = (r_pos [0][0] + AB * cosd(-r_pos [1] - 0.5* turn) + (remaining_dist * cosd

(r_testpos [1])) ), (r_pos [0][1] - AB * sind(-r_pos [1] - 0.5* turn) + (remaining_dist

* sind(r_testpos [1])))

123

124 return r_testpos

125

126 map = convert2array(Image.open(map_png))

127 map_vis = convert2array(Image.open(map_png))

128 map_corners = convert2array(Image.open(map_png))

129 map_walls = convert2array(Image.open(map_png))

130

131 ### Create empty space to draw contour.

132 contourspace = np.zeros((map.shape [0], map.shape [1]), dtype=np.uint8)

133

134

135 ### Current Position

136 r_pos = [None] * 2

137 r_pos [0] = [558 ,187]

138 r_pos [1] = 10

139

140 robot = getcorners(r_pos)

141 for i in range (4):

142 cv.line(contourspace , robot[i], robot[(i+1)%4], ( 255 ), 2)

143 cv.line(map_vis , robot[i], robot[(i+1)%4], ( 0 ), 3)
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144

145

146 tur_rad = 35

147 r_testpos = [None ]*2

148

149 corridor_walls = []

150 crossing_walls = []

151 pos_available = [r_pos]

152 numoffullturns = 0

153 count = 1

154 while len(pos_available) >0:

155

156 r_pos = pos_available.pop(0)

157

158

159 ##RIGHT

160 possible_rturn = []

161 addrturn = True

162 wallsinrturn = []

163 for turn in range (30 ,130 ,10):

164 contourspace_btwn = np.zeros((map.shape[0], map.shape [1]), dtype=np.uint8)

165 contourspace_test = np.zeros((map.shape[0], map.shape [1]), dtype=np.uint8)

166 contourspace_ravg = np.zeros((map.shape[0], map.shape [1]), dtype=np.uint8)

167 r_rtestpos_btwn = turning(r_pos ,turn ,0.5)

168 test_rrobot_btwn = getcorners(r_rtestpos_btwn)

169 for i in range (4):

170 cv.line(contourspace_btwn , test_rrobot_btwn[i], test_rrobot_btwn [(i+1)%4], (255),

1)

171 onwall_rbtwn = findwall(test_rrobot_btwn ,map ,contourspace_btwn)

172

173 r_rtestpos = turning(r_pos ,turn ,0.7)

174 test_rrobot = getcorners(r_rtestpos)

175 #Drawing it in the visual and contourspace

176 for i in range (4):

177 #cv.line(map_vis , test_rrobot[i], test_rrobot [(i+1)%4], (0), 1)

178 cv.line(contourspace_test , test_rrobot[i], test_rrobot [(i+1)%4], (255), 1)

179

180 #Check if tested position is on a wall , if not , add to possible turns

181

182 onwall_r = findwall(test_rrobot ,map ,contourspace_test)

183 wallsinrturn.extend(onwall_r)

184 if len(onwall_r) == 0 and addrturn is True and not onwall_rbtwn:

185 possible_rturn.append(turn)

186 elif len(onwall_r) != 0 and possible_rturn:

187 addrturn = False

188

189 #if there are possible turns , take the average and make that turn a new position.

190 if possible_rturn:

191 avgrturn = sum(possible_rturn) / len(possible_rturn)

192 r_rnewpos = turning(r_pos ,avgrturn ,0.7)

193

194 crossing_walls.extend(wallsinrturn)

195 crossing_walls.extend(wallsinlturn)

196

197 newpos_rrobot = getcorners(r_rnewpos)

198 for i in range (4):

199 cv.line(map_vis , newpos_rrobot[i], newpos_rrobot [(i+1)%4], (100) , 1)

200 cv.line(contourspace_ravg , newpos_rrobot[i], newpos_rrobot [(i+1)%4], (255) , 1)

201

202 onwall_ravg = findwall(newpos_rrobot ,map ,contourspace_ravg)

203

204 if len(onwall_ravg) == 0:

205 pos_available.append(r_rnewpos)

206 else:

207 cv.line(map_vis , newpos_rrobot[i], newpos_rrobot [(i+1)%4], (0), 5)

208

209 ##STRAIGHT

210 possible_str , wallsin_str = [] , []

211 addstr = True

212 strfac = 0.4
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213 if random.randint (0 ,100) > 95:

214 r_pos [1] = r_pos [1] + 180

215 numoffullturns = numoffullturns+ 1

216 for turn in range (-30,30,10):

217 contourspace_test = np.zeros((map.shape[0], map.shape [1]), dtype=np.uint8)

218 contourspace_stravg = np.zeros((map.shape[0], map.shape [1]), dtype=np.uint8)

219

220 r_strtestpos = turning(r_pos ,turn ,strfac)

221 test_strrobot = getcorners(r_strtestpos)

222 #Drawing it in the visual and contourspace

223 for i in range (4):

224 #cv.line(map_vis , test_strrobot[i], test_strrobot [(i+1)%4], (0), 1)

225 cv.line(contourspace_test , test_strrobot[i], test_strrobot [(i+1)%4], (255) , 1)

226

227 #Check if tested position is on a wall , if not , add to possible turns

228 onwall_str = findwall(test_strrobot ,map ,contourspace_test)

229 wallsin_str.extend(onwall_str)

230 if len(onwall_str) == 0 and addstr is True:

231 possible_str.append(turn)

232 elif len(onwall_str) != 0 and possible_str:

233 addstrturn = False

234

235 #if there are possible turns , take the average and make that turn a new position.

236 if possible_str:

237 avgstr = sum(possible_str) / len(possible_str)

238 r_strnewpos = turning(r_pos ,avgstr ,strfac)

239

240 newpos_strrobot = getcorners(r_strnewpos)

241 for i in range (4):

242 cv.line(map_vis , newpos_strrobot[i], newpos_strrobot [(i+1)%4], (0), 1)

243 cv.line(contourspace_stravg , newpos_strrobot[i], newpos_strrobot [(i+1)%4], (255),

1)

244

245 onwall_stravg = findwall(newpos_strrobot ,map ,contourspace_stravg)

246

247 if len(onwall_stravg) == 0:

248 pos_available.append(r_strnewpos)

249 else:

250 cv.line(map_vis , newpos_strrobot[i], newpos_strrobot [(i+1)%4], (0), 1)

251

252 ##LEFT

253 possible_lturn = []

254 wallsinlturn = []

255 addlturn = True

256 for turn in range (-130,-60,10):

257 contourspace_btwn = np.zeros((map.shape[0], map.shape [1]), dtype=np.uint8)

258 contourspace_test = np.zeros((map.shape[0], map.shape [1]), dtype=np.uint8)

259 contourspace_lavg = np.zeros((map.shape[0], map.shape [1]), dtype=np.uint8)

260 r_ltestpos_btwn = turning(r_pos ,turn ,0.5)

261 test_lrobot_btwn = getcorners(r_ltestpos_btwn)

262 for i in range (4):

263 cv.line(contourspace_btwn , test_lrobot_btwn[i], test_lrobot_btwn [(i+1)%4], (255),

1)

264 onwall_lbtwn = findwall(test_lrobot_btwn ,map ,contourspace_btwn)

265

266 r_ltestpos = turning(r_pos ,turn ,0.7)

267 test_lrobot = getcorners(r_ltestpos)

268 #Drawing it in the visual and contourspace

269 for i in range (4):

270 #cv.line(map_vis , test_lrobot[i], test_lrobot [(i+1)%4], (0), 1)

271 cv.line(contourspace_test , test_lrobot[i], test_lrobot [(i+1)%4], (255), 1)

272

273 #Check if tested position is on a wall , if not , add to possible turns

274 onwall_l = findwall(test_lrobot ,map ,contourspace_test)

275 wallsinlturn.extend(onwall_l)

276 if len(onwall_l) == 0 and addlturn is True and not onwall_lbtwn:

277 possible_lturn.append(turn)

278 elif len(onwall_l) != 0 and possible_lturn:

279 addlturn = False

280
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281 #if there are possible turns , take the average and make that turn a new position.

282 if possible_lturn:

283 avglturn = sum(possible_lturn) / len(possible_lturn)

284 r_lnewpos = turning(r_pos ,avglturn ,0.7)

285

286 crossing_walls.extend(wallsin_str)

287 crossing_walls.extend(wallsinrturn)

288 crossing_walls.extend(wallsinlturn)

289

290 newpos_lrobot = getcorners(r_lnewpos)

291 for i in range (4):

292 cv.line(map_vis , newpos_lrobot[i], newpos_lrobot [(i+1)%4], (100) , 1)

293 cv.line(contourspace_lavg , newpos_lrobot[i], newpos_lrobot [(i+1)%4], (255) , 1)

294

295 onwall_lavg = findwall(newpos_lrobot ,map ,contourspace_lavg)

296

297 if len(onwall_lavg) == 0:

298 pos_available.append(r_lnewpos)

299 else:

300 cv.line(map_vis , newpos_lrobot[i], newpos_lrobot [(i+1)%4], (0), 1)

301 count = count + 1

302

303 cv2_imshow(map_vis)

304

305

306 #Create empty space to visualize results

307 wallspace_weight = np.zeros((map.shape [0], map.shape [1]), dtype=np.uint8)

308

309 rank_coord = {} #Empty dictionary to keep track of number of occurrunces per coordinate

310

311 for coord in crossing_walls:

312 if coord not in rank_coord and coord != None:

313 rank_coord[coord] = 1

314 elif coord in rank_coord and coord != None:

315 rank_coord[coord] = rank_coord[coord] + 1

316

317 #Factor which must be scaled according to how long the algorithm had been running

318 rank_factor = 19

319

320 for key in rank_coord:

321 if rank_coord[key] > rank_factor * 6:

322 wallspace_weight[key [1]][ key [0]] = 255 #White

323 elif rank_coord[key] > rank_factor * 5:

324 wallspace_weight[key [1]][ key [0]] = 200

325 elif rank_coord[key] > rank_factor * 4:

326 wallspace_weight[key [1]][ key [0]] = 150

327 elif rank_coord[key] > rank_factor * 3:

328 wallspace_weight[key [1]][ key [0]] = 75

329 elif rank_coord[key] > rank_factor * 2:

330 wallspace_weight[key [1]][ key [0]] = 50

331 elif rank_coord[key] > rank_factor * 1:

332 wallspace_weight[key [1]][ key [0]] = 25 #Very dark grey

333

334 cv2_imshow(wallspace_weight)
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