
 Eindhoven University of Technology

MASTER

Sequential Testing for the Diagnosis of High-tech Systems

Beurskens, Joep C.A.

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/9f10d82d-fd68-4918-98b7-73cb9b6afb39

1CM96

Master Thesis

Sequential Testing for the Diagnosis of
High-tech Systems

5th June 2022

Author: J.C.A. (Joep) Beurskens 1498819

Mentor: Dr. A.E. (Alp) Akçay TU/e

2nd assessor: Dr. C. (Claudia) Fecarotti TU/e

3rd assessor: Dr. M. (Melvin) Drent TU/e

Company Supervisor: Ir. M.J.A.M. (Emile) Van Gerwen ESI (TNO)

Word count: 17241

TU/e University of Technology Eindhoven, School of Industrial Engineering
Series Master Theses Operations Management and Logistics

Keywords: Bayesian Network, Influence Diagram, Diagnosis, High-tech, Myopic, Lim-
ited Memory.

i

Abstract

Machines develop to being more complicated and intelligent and are subject to growingly
demanding operational conditions. The traditional method of doing maintenance and dia-
gnostics, which involved evaluating the entire system, is no longer appropriate for the job.
Though there has been considerable progress in offering effective ways to utilize existing AI
technology, it does not perform well in practice in this field. The process through which ser-
vice engineers are faced with a diagnostic task may be viewed as a sequential decision process.
Their goal is to determine the root cause using various actions such as observing and meas-
uring. Every action has a cost associated with it, and the ideal diagnostic strategy is the one
that identifies the root cause with the least cost. As a means of addressing the problems of
inadequate data, incorporating the least-cost strategy, and guaranteeing computational feas-
ibility, the construct of Bayesian networks extended to influence diagrams is a very appealing
modeling scheme for a diagnostic reasoning system. From this, a methodology to generate a
reasoning engine for decisions on large scales to cover the best diagnostic action (i.e., test)
is proposed. The technique combines the Limited Memory Influence Diagram framework to
represent the subset of potentially observable variables relevant to each decision with a My-
opic approximation to derive the next best test. The suggestion and the time to suggest the
next best test are of acceptable quality. The implementation of a Myopic approach with a
Limited Memory Influence Diagram is not seen before in literature. The construction of such
a solution framework is fully generic and independent of the underlying Bayesian network.
The framework is compatible with the software used by ESI (TNO) and can be modified and
operated through Python.

ii

Executive summary

Today’s high-tech machinery is developing towards being more complicated and intelligent
and is subject to growingly demanding operational conditions in a highly competitive in-
dustry. An essential criterion for this growingly demanding operational condition is keeping
the system available with high reliability and minimizing unscheduled downtime caused by
system faults. One of the possible uncertainties with respect to downtime is the time required
to diagnose the issue. Increasing system complexity puts more pressure on a fast diagnosis of
the underlying root cause of an issue. In recent years, there has been an increasing interest
in fault detection and diagnosis approaches to cope with such issues. The most interest is
in data-driven approaches since these methods play an important role in modern systems
since they can reduce time and cost because they do not require the development of models
(Alzghoul et al., 2014). Despite the time and cost savings that data-driven techniques may
provide, their development and implementation are hindered by operational and functional
challenges. These include: (1) a lack of data on individual machine failures (Zhao et al.,
2019); (2) the need for a preprocessing step to extract useful information from data with a
high computational cost (Tidriri et al., 2016); and (3) it can be difficult to gain a thorough
understanding of the inner workings of many of these data-driven approaches. While theor-
etical research on system failures is growing, many of the studies depend on simulation data
for both normal and malfunctioning situations. Because real-world systems typically lack the
historical record of malfunctioning data that theoretical research necessitates, the suggested
scheme’s applicability remains in doubt.

Among some methods for diagnosis, the Bayesian network framework is the only one that
integrates uncertainties and allows for the use of both data and expert knowledge. The
semantics of the Bayesian network makes it possible to understand the causal mechanism
linking a symptom to its root cause. Nonetheless, the Bayesian network demands more re-
sources than any other approach. Literature also suggests that Bayesian networks augmented
with utilities (e.g., costs and benefits) and decisions, called influence diagrams, can assure
a least-cost strategy. However, the process of building an influence diagram requires a deep
understanding of the problem and is therefore still considered an art (Clemen, 1996; Bielza
et al., 2011). It is also known that the modeling process is not yet automated and that
the majority of the literature has paid little attention to it. Thus, very little feedback from
analysts and experts on their experiences using influence diagrams to build decision-making
models is present. Compared to the theoretical research on data-driven methods, research on
the application of influence diagrams to fault diagnosis of high-tech systems is slim to none
despite its introduction that dates back to the early 1980s (Shachter, 1986). As a result, there
is a deficiency of verification of the theoretical framework’s applicability and reliability in real
situations in this domain.

iii

Research Question and Focus

A lack of understanding of the primary issues encountered by those who attempt to (auto-
matically) model complex decision-making problems on large scales using influence diagrams
has been found in the current literature. Also, the applicability of such a method to these
systems is currently unexplored. As a result, the purpose of this project is to develop an
implementable method to aid in the decision-making process of fast and complex diagnosis of
the underlying root cause to minimize unexpected downtime caused by system faults. This
project’s objective, or main research question, is therefore stated as follows:

”How to develop a decision support method based on an influence diagram for assisting service
engineers in their diagnostics task by advising an efficient diagnostic action?”.

The focus of this research project is specifically on the supporting material for a service en-
gineer. The intention is to provide a tool, regardless of experience, to increase their efficiency.
The proposed influence diagram-based decision support model was developed within Bayes
Server Limited (2022) Software and is complemented by the Python programming language.
These standards for modeling are acceptable within the ESI (TNO) project team since they
also develop frameworks in these supporting tools.

Methodology

The methodology that is proposed consists of two parts, namely, constructing and execut-
ing the method. Figure 0.1 shows the flowchart of an influence diagram-based method for
diagnosis. In the constructing part (PART 1), an influence diagram may be generated auto-
matically given a Bayesian network and a mapping between tests and network nodes. A
mapping of this type is built using the system designer’s and the Bayesian network con-
structor’s knowledge. The input, such as component prior failure probability derived from
operational data, reliability numbers, or expert judgment, has already been initialized in the
Bayesian network.

Figure 0.1: Flowchart of approach

The executing part (PART 2) consists of finding a solution to the diagnosis problem. The
technique combines the solution of the Limited Memory Influence Diagram framework to
represent the subset of potentially observable variables relevant to each test decision with

iv

a Myopic approximation to derive the next best test out of the subset of variables. The
potentially observable variable that has the highest expected value is the test that will be
performed. The evidence obtained after performing that test updates the belief on all the
variables in the network. If the belief of a potential root cause is high enough, the network
will stop representing a subset of potentially observable variables relevant to each test decision
and instead present one or more variables relevant to each repair/root cause decision.

Numerical Investigations

To evaluate the proposed method, another representation of an influence diagram is presented,
called the discrete influence diagram. This representation represents an exact solution to the
problem, whereas the limited memory influence diagram plus myopic is an approximation.
Some representative examples are used for the feasibility study and are of sufficient detail to
be comparable with examples from practice. It was found that assuming a single fault, the
solutions to the exact and approximate methods are equal. Relaxing this assumption leads
to a small decrease in performance for the approximate one. The computation time is very
advantageous for the approximation method, especially when the single fault assumption is
relaxed. The exact method is only available to derive a solution for the problem with up to
8 decision nodes and is not further considered because of the memory limitation.

Conclusion and Future Work

This work extends existing literature on the use of modeling and solving large and complex
test sequencing problems with influence diagrams. The approach uses a novel implementation
of a Limited Memory Influence diagram accompanied by a Myopic approach to suggest the
next best test. The solution framework is constructed to be fully generic and independent of
the Bayesian network since it only depends on a mapping between nodes in the network and
the set of possible tests. Its solution is equal with the exact solution of the decision problem
under the single fault assumption. Relaxing this assumption does lead to a performance
decrease but is considered comparable since its normalized distance to the exact method
is, in all cases, relatively close. The suggested approach outperforms the exact solution for
larger networks because of the computational restrictions arising in the exact method. In
these larger networks, the computation time to generate the next best test is very appealing
when the single fault assumption is relaxed since it suggests the next test within a short
period of time. Testing different topologies reinforces our belief that the approach is also
suitable for different network configurations.

Further research could be to explore approximate or faster and more memory-efficient infer-
ence algorithms when the full decision sequence (in the discrete influence diagram) is specified
and to explore the possibility of not having to go through all the possible test sequences. Some
important modeling issues can also be tackled in further research. An important distinction
should be made between probing and intervening actions. Because of the assumption that
one should always perform a test before a corrective maintenance action if both are suggested,
one does not consider corrective maintenance actions in the set of possible next actions when
both are suggested. A research opportunity is, therefore, to include corrective maintenance
actions in the set of possible next actions.

v

Preface

This master’s thesis report marks the end of my studies in Operations Management and
Logistics at the Eindhoven University of Technology (TU/e). The project has been super-
vised by Dr. A.E. Akçay and Dr. C. Fecarotti from the TU/e and Ir. M.J.A.M. Van Ger-
wen from Embedded Systems Innovation (ESI) of Nederlandse Organisatie voor Toegepast-
natuurwetenschappelijk onderzoek (TNO).

First of all, I would like to express my gratitude to my mentor and first supervisor, Dr. A.E.
Akçay. The extensive guidance, critical feedback sessions, and discussions on the subject kept
me motivated throughout the project. Through these sessions, new insights were gained that
helped to take the research to the next level. Furthermore, I would like to express gratitude
to my company supervisor, Ir. M.J.A.M. Van Gerwen, for the opportunity to perform my
research within ESI (TNO) and for the extensive guidance throughout the entire project. His
guidance style and critical questions helped to get relevant outcomes for ESI (TNO). The
extensive guidance from both is highly appreciated!

Besides, I would like to thank my colleagues from the CareFree team for the conversations
and support throughout the project. Although mostly from home, I had a great time working
within the team.

Finally, I would like to thank my family and friends for their support and the fun activities
over the past few months that helped to refuel my energy levels. Without all of you, finalizing
this report would have been more of a hassle.

Joep Beurskens

5th June 2022

vi

Table of Contents

List of Tables ix

List of Figures x

List of Acronyms xii

Glossary xiii

1 Introduction 1
1.1 Background . 1
1.2 Literature Review . 2
1.3 Research Questions . 5
1.4 Structure of this Document . 6

2 Problem Description 7
2.1 Context . 7
2.2 Scope . 9
2.3 Specification . 10

3 Theory 12
3.1 Characteristics Probabilistic Networks . 12
3.2 Bayesian Network . 13

3.2.1 Construction of Bayesian Networks . 14
3.3 Influence Diagram . 15
3.4 Representation of Influence Diagrams . 18

3.4.1 The diagnosis problem . 18
3.4.2 Sequential Influence Diagram . 19
3.4.3 Limited Memory Influence Diagram 19

4 Running Examples 21
4.1 Model 1: Single Light . 21
4.2 Model 2: Quadruple Light . 23

5 Methodology 27
5.1 Influence Diagram-based Method for Diagnosis 27

5.1.1 Structure of the Model . 28
5.1.2 Test Modeling . 30

vii

Table of Contents

5.1.3 Solution LIMID . 34
5.1.4 Solution Discrete ID . 36

6 Numerical Investigations 38
6.1 Software and Models . 38
6.2 Results . 41
6.3 Scalability (Computational Time) . 44
6.4 Policy Evaluation . 45

6.4.1 Sensitivity analysis . 46
6.4.2 Comparison . 48

6.5 Chapter Conclusion . 51

7 Conclusion and Future Work 52
7.1 Conclusion . 52
7.2 Limitation . 53
7.3 Further Work . 54

Bibliography 56

Appendices 59
A Model 1: Single Light visualization in software (BayesServer) 59
B Link specification algorithms . 61
C Next best test algorithm . 62

viii

List of Tables

1.1 Data-driven diagnosis methods analysis (Thierno M. L. et al., 2018) 3

2.1 Some impact factors of corrective maintenance phases (ESI (TNO), 2022) . . 8

3.1 The variables’ symbols . 12
3.2 Example probability table . 13
3.3 Example utility function U1 of X1 with domain {0, 1} and D1 with domain {0, 1} 17

5.1 Notation used throughout this chapter . 27
5.2 Utility function corrective maintenance . 30
5.3 CPT without state not done . 31
5.4 CPT with state not done . 31
5.5 Calculation on the expected utility for the LIMID + Myopic Approximation . 36
5.6 Finding the best sequence and the maximum expected utility for the Discrete ID 37

6.1 Overview evaluated IDs . 38
6.2 Translation table theory to software . 39
6.3 The parameters for the numerical examples 42
6.4 Comparison of total expected utility and run time for the solution in the dis-

crete ID and LIMID + Myopic methods for the single light model 42
6.5 Comparison of total expected utility and run time for the solution in the dis-

crete ID and LIMID + Myopic methods for the quadruple light model 43
6.6 Sensitivity parameter for the numerical examples 46

ix

List of Figures

0.1 Flowchart of approach . iv

1.1 Taxonomy of terms in tree-like model . 4

2.1 Phases of corrective maintenance (ESI (TNO), 2022) 8
2.2 Alternative representations of an assembly model of a fan for the Bayesian

network construction (ESI (TNO), 2022) . 9

3.1 A directed acyclic graph . 13
3.2 A influence diagram representation of Figure 3.1 16
3.3 Definition arcs in influence diagram . 17
3.4 A sequential influence diagram representation of the diagnosis problem 19
3.5 A limited memory influence diagram representation of the diagnosis problem 20

4.1 Example models for a single light circuit . 21
4.2 Bayesian network of a single light circuit . 22
4.3 Example of an electrical drawing of a quadruple light circuit 23
4.4 Example of a structural description of a quadruple light circuit 24
4.5 Bayesian network of a quadruple light circuit including all nodes 25
4.6 Bayesian network of a quadruple light circuit excluding redundant nodes . . . 26

5.1 Flowchart of approach . 28
5.2 Transforming the Model 1: Single Light Bayesian network to an influence dia-

gram for diagnostic output . 29
5.3 Automatically determined Dn threshold values 30
5.4 Influence diagram of Model 1: Single Light for diagnostic output, as well as

isolated tests . 31
5.5 SLM influence diagram for diagnostic output plus possible additional tests . . 32
5.6 QLM influence diagram for diagnostic output plus possible additional tests . 33

6.1 Single light influence diagrams depicted in the software 40
6.2 Influence diagram of the quadruple light circuit depicted in the software . . . 41
6.3 Abstracted influence diagram for scalability comparison 44
6.4 Inference time comparison of single sequence of the discrete ID and average

time to come up with the next best test in the LIMID + Myopic 45
6.5 Policy change for different costs and prior probabilities 47
6.6 Normalized distance between the discrete ID and LIMID +Myopic in the range

of the discrete ID and testing all components per probability specification . . 49

x

List of Figures

6.7 Normalized distance between the discrete ID and LIMID +Myopic in the range
of the discrete ID and testing all components per ratio binned 50

A.1 Posterior network after observation on Iwire1 59
A.2 Posterior network after observation on Iwire2 60

xi

List of Acronyms

API Application Programming Interface

BN Bayesian network

CAD Computer-aided design

DAG Directed Acyclic Graph

ESI Embedded Systems Innovation

ID Influence Diagram

JVM Java Virtual Machine

LIMID Limited Memory Influence Diagram

MAU Multi-Attribute Utility function

PCA Principal Component Analysis

SFA Single Fault Assumption

SID Sequential Influence diagram

SPU Single Policy Updating

TNO Nederlandse Organisatie voor Toegepast-natuurwetenschappelijk onderzoek

TU/e Eindhoven University of Technology

xii

Glossary

Black box model
a model which produces useful information without revealing any information about its
internal workings

CareFree
team within ESI for the diagnostics to prevent and reduce machine downtime

Decision policy
the action for the decision-maker for all possible observations made prior to making the
decision

Failure
a permanent interruption of a system’s ability to perform a required function under
specified operating conditions

Fault
an unpermitted deviation of at least one characteristic property or parameter of the
system from the acceptable condition

Heap space size
area of memory used to store objects instantiated by applications running on the Java
Virtual Machine

No-forgetting constraint
the network has perfect recall of all observations and decisions made in the past

Regularity constraint
there must be a total order on all the decision variables in the network

xiii

Chapter 1

Introduction

1.1 Background

In modern industry, machines develop towards being more complicated and intelligent and
are subject to growingly demanding operational conditions. An essential criterion for this
condition is keeping the system available with high reliability and minimizing unscheduled
downtime caused by system faults. One of the possible uncertainties with respect to downtime
is the time required to diagnose the issue. The traditional method of doing maintenance and
diagnostics, which involved evaluating the entire system, is no longer appropriate for the job.
Increasing system complexity puts more pressure on a fast diagnosis of the underlying root
cause of an issue and involves a certain least-cost strategy.

The goal of diagnosis is to identify the underlying causes of the detected fault. This task
encompasses the fault isolation and identification steps that enable us to characterize the
type of fault, its size, and its profile. The occurrence of a fault in the system can generate a
failure. The term “fault” is defined by Isermann (2006) as an unpermitted deviation of at least
one characteristic property or parameter of the system from the acceptable condition. On the
other hand, failure is a permanent interruption of a system’s ability to perform a required
function under specified operating conditions. This study assumes that the system is not
able to perform a required function under specified operating conditions since the aim is to
minimize unscheduled downtime caused by system faults. Diagnosing efficiency is becoming
important because of several trends:

• as product variability increases, it becomes more difficult to gain experience on specific
systems;

• increasing product complexity makes diagnosis more difficult;

• service is delegated to dealer organizations, effectively reducing engineer experience.

Current high-tech industry service organizations tackle complex diagnostics based on extens-
ive service manuals. The walk-through of these service manuals is complex and often requires
the knowledge and involvement of scarce system designers. In recent years, there has been
an increasing interest in fault detection and diagnosis approaches to cope with such issues.
Among these approaches, one can distinguish between data-driven approaches, model-based
approaches, and expert knowledge ones (Venkatasubramanian et al., 2003; Cai et al., 2017).

1

Chapter 1. Introduction

Model-based approaches rely on an analytical model of the system, whereas data-driven meth-
ods rely on statistical models built from accessible process data. Expert knowledge meth-
ods understandings are usually expressed in terms of mathematical functional relationships
between the inputs and outputs of the system. The advantage of model-based and expert
knowledge ones over data-driven methods is that they more reliable in describing the pro-
cess’s dynamics with a piece of physical knowledge. However, several factors such as system
complexity, high dimensionality, process nonlinearity and/or lack of good data often render it
very difficult even impractical, to develop an accurate (mathematical) model for the system.
This, of course, limits the usefulness of this approach in real industrial processes (Atoui and
Cohen, 2021). Therefore, the a lot of interest is in data-driven approaches since these methods
play an important role in modern systems, especially for large-scale industrial applications
since they can reduce time and cost since they do not require the development of models
(Alzghoul et al., 2014).

Despite the time and cost savings that data-driven techniques may provide, their development
and implementation are hindered by operational and functional challenges. Among the major
challenges identified are:

• insufficient data concerning individual machine failure (Zhao et al., 2019);

• their application necessitates a preprocessing step to extract useful information from
data with a high computational cost (Tidriri et al., 2016);

• it can be difficult to gain a thorough understanding of the inner workings of many of
these data-driven approaches.

The inner workings of many of these data-driven approaches are typically black box models.
Since explaining these inner workings will not only enable the acceptance of the diagnostic
reasoning system but will also help domain specialists with varying levels of expertise. While
theoretical research on system failures is growing, many of the studies depend on simulation
data for both normal and malfunctioning situations. Because real-world systems typically
lack the historical record of malfunctioning data that theoretical research necessitates, the
applicability of solely a data-driven method remains in doubt. It is critical to note that this
field is still in its early stages and there is still a lack of a trustworthy, affordable, and scalable
solution, as well as real-time implementations for diagnosing high-tech systems. Therefore, a
hybrid approach is proposed that could both use data as well as expert knowledge to construct
a model to overcome the aforementioned challenges.

1.2 Literature Review

Some data-driven diagnostic approaches to generate a reasoning engine exist in literature
(Namburu et al., 2006; Tidriri et al., 2016; Mirnaghi and Haghighat, 2020). In general, among
the most popular data-driven methods, one can cite Neural Networks (Mohd Amiruddin
et al., 2020), Bayesian networks (Cai et al., 2017), Control Charts, Principal Component
Analysis (PCA), and Partial Least Squares (Tidriri et al., 2016). The study of Thierno M. L.
et al. (2018) compared some of these methods to choose the framework that they utilized
to model their diagnostic approach. Four comparative criteria that also suit the goal of this
study were used:

2

Chapter 1. Introduction

• dealing with uncertainty (failure probabilities);

• ability to use data as well as expert knowledge;

• user’s ability to understand the existing causal relationships between the various para-
meters (semantic);

• resources required to implement the method (e.g., the time required for modeling tasks,
the amount of memory consumed, the necessary computing time).

Table 1.1 displays the comparative analysis of these methods. Among the methods invest-
igated, the Bayesian network framework is the only one that integrates uncertainties and
allows for the use of both data and expert knowledge. The semantics of the Bayesian network
makes it possible to understand the causal mechanism linking a symptom to its root cause.
Nonetheless, the Bayesian network demands more resources than any other approach.

Table 1.1: Data-driven diagnosis methods analysis (Thierno M. L. et al., 2018)

Methods Consideration
of uncertainties

Incorporation
of expert know-
ledge

Semantics Resources
needed

Neural Network − + − −−
Bayesian network + + + −−−
PCA − − + −−
Clustering − − − −
“−” = NO or NEGATIVE

“+” = YES or POSITIVE

The constructs of Bayesian networks are very appealing modeling schemas for diagnostic
reasoning systems. Since it handles the issue of inadequate data and assures computational
feasibility in modeling and solving sequential decision-making problems. Literature suggests
that Bayesian networks augmented with utilities (e.g., costs and benefits) and decisions, called
influence diagrams, can assure a least-cost strategy, which is also an important criterion.
However, the process of building an influence diagram requires a deep understanding of the
problem and is therefore still considered an art (Clemen, 1996; Bielza et al., 2011). It is also
known that the modeling process is not yet automated and that the majority of the literature
has paid little attention to it. Thus, very little feedback from analysts and experts on their
experiences using influence diagrams to build decision-making models is present.

An extensive literature study was performed that studies the building blocks and methods
that have been proposed to design Influence Diagram (ID)s while keeping an eye on the
fault detection and diagnosis strategy for these systems. The terms found in the articles are
structured in a tree-like model as depicted in Figure 1.1. Not all fault diagnosis procedures
with influence diagrams are described. The ones falling into the scope of the project are
represented and each bold leaf node is discussed in this report.

3

Chapter 1. Introduction

The study found the educational intended books of Clemen (1996), Jensen (2001), Kjærulff
and Madsen (2008), and Koller and Friedman (2009). Their primary audience is practitioners
rather than students. It is therefore considered to use the books as the fundamental basis to
get a more thorough understanding of the techniques used when building influence diagrams.
The most important techniques are mentioned in a tree-like model (Figure 1.1). This model
is distinguished into four categories applicable to this report. These books only briefly touch
upon techniques for modeling complex decision-making problems and do not discuss real-
world applications. Since the ultimate goal is to use theory in practice, real-world problems
will be considered. Gómez (2004) provides an overview of prototypes and real applications
where influence diagrams play a central role. Both in this overview and the more recent
articles, it is noted that diagnostic reasoning in the field of medical applications is much more
explored than system failure diagnostics. It is interesting to see if the same principles can be
applied for the domain of system failures.

Figure 1.1: Taxonomy of terms in tree-like model

The literature study found some criteria necessary for “IDs structure modeling.” It is import-
ant to model causal relations since models with explicit representation of decisions (influence
diagrams) must follow the causal relations. Tests can be modelled as these decisions where
a distinction is made between observations (probing) and interventions. Probing is a pass-
ive observation of the state of a variable, and intervention is an active action that forces a
variable to be in a certain state. The latter received little attention when talking about their
modeling in influence diagrams. The final criteria in this is that the automated generation of
such models has not yet been investigated in current literature.

4

Chapter 1. Introduction

Also, despite the extensive educational work, most representations and applications still face
some widely recognized problems that hinder their application to real-life scenarios. The
article of Bielza et al. (2011) reviewed the representation issues and modeling challenges
associated with influence diagrams. They discuss various representations accompanied by
their strengths and limitations. Some representations to deal with diagnosis problems are
unconstrained, sequential, partial, and limited memory influence diagrams as depicted in
the ’Representation’ branch for the ’IDs solver for decision-making’ in Figure 1.1. State-of-
the-art representations are presented in the articles of Diez et al. (2017) and Cooper et al.
(2019). The latter two discuss Markov and deep influence diagrams. It involves a dynamic
network and a differentiable generator network, which require a lot of resources. Thus, they
lack the aforementioned challenges of insufficient data, computational cost, and thorough
understanding.

In a complex system with several components, component-level diagnostics necessitates the
use of a memory-efficient model. When compared to other influence diagrams, the Limited
Memory Influence Diagram (LIMID) introduced by Lauritzen and Nilsson (2001) relaxed
two of the major constraints: complete order for decision variables and no-forgetting. The
latter leads to significant computational demands. By relaxing this assumption, its solution
is computationally tractable, whereas the same decision problem could be intractable if the
no-forgetting assumption is assumed. However, the optimal solution of a LIMID may not be
optimal for the same decision problem if the no-forgetting condition were to be assumed. This
gives a trade-off between the tractability of the solution and optimality. According to Cobb
(2021), after their debut, Mauá et al. (2011) and Khaled et al. (2013) have released several
new computational strategies to improve the solution algorithm for LIMIDs. Nielsen and
Sørensen (2010) and Hovgaard and Brincker (2016) have employed LIMIDs for applications
in the maintenance of offshore wind turbines and structural damage detection, respectively.

Compared to data-driven methods, research on the application of influence diagrams to fault
diagnosis of high-tech systems is scarce despite its introduction that dates back to the early
1980s (Shachter, 1986). Research has developed methods for solving large decision prob-
lems using LIMID models. However, applications in offshore wind turbine maintenance and
structural damage detection do not fit the current application since they already have a pre-
specified sequence of decisions and, in this case, the sequence has yet to be determined. As
a result, there is a deficiency of verification of the theoretical framework’s applicability and
reliability in real situations in this domain.

1.3 Research Questions

A lack of understanding of the primary issues encountered by those who attempt to (auto-
matically) model complex decision-making problems on large scales using influence diagrams
has been found in the current literature. Also, the applicability of such a method to these
systems is currently unexplored. As a result, the purpose of this project is to develop an
implementable method to aid in the decision-making process of fast and complex diagnosis of
the underlying root cause to minimize unexpected downtime caused by system faults. This
project’s objective, or main research question, is stated as follows:

5

Chapter 1. Introduction

“How to develop a decision support method based on an influence diagram for assisting service
engineers in their diagnostics task by advising an efficient diagnostic action?”.

The following sub-questions have to be answered before the main objective can be achieved:

1. How can an influence diagram be applied in this domain?

2. How to build such a model in a scalable way?

After answering these sub-questions, an attempt can be made to answer the main research
question regarding the induce of a methodology to generate a reasoning engine for decisions
on a large scale to cover the best diagnostic action.

1.4 Structure of this Document

The remainder of this document is structured as follows: Chapter 2 provides a problem
description. Chapter 3 is an introduction to the notation and theorem behind the funda-
mentals of the methods. The next chapter (4) presents some examples derived from practice.
Chapter 5 provides a detailed description of the method for representing and solving the
decision support method. In Chapter 6, the proposed methodology is applied and evaluated
based on its diagnostic task. Finally, Chapter 7 concludes this thesis and discusses some
possible future research lines.

6

Chapter 2

Problem Description

The problem description consists of the formulation of the problem in a general context. The
first section presents a broad overview of the problem, accompanied by the current practice.
This overview will then be further scoped in the second section to set the boundaries of this
research. The final section describes some system/problem-specific issues.

2.1 Context

The project is conducted in cooperation with ESI (TNO) and a large professional printer
manufacturer. The project’s team is working to improve the service process to decrease
service costs and system downtime. Their objective is to start with corrective maintenance
and work their way up to predictive maintenance. Corrective maintenance is only performed
after system failures or breakdowns are reported. It is the technical activity carried out
after a failure has occurred, and its purpose is to repair an asset to a condition in which
it can perform its intended function. Preventive maintenance measures are planned and
performed on a system with the purpose of ensuring that failures do not occur and to lessen
the consequences of breakdowns. Preventive maintenance has the considerable advantage of
being plannable. This is advantageous to the customer since the unexpected system downtime
will be reduced. Predictive maintenance is maintenance that monitors the performance and
condition of the system during normal operation to reduce the likelihood of failure. It predicts
when equipment failures might occur and tries to prevent the occurrence of the failure by
performing preventive maintenance (Jolandie Konig, 2021). This work solely covers hard
system down circumstances in which the system is completely inoperable.

For high-tech systems, the time required for corrective maintenance can be broken down into
several parts. Figure 2.1 indicates the phases of the time required for corrective maintenance.
These phases are further elaborated in Table 2.1 in which some impact factors are depicted.

When looking at Table 2.1, the focus is on the diagnosis phase and specifically the supporting
material (in bold). The intention is to provide a tool for the service engineer, regardless of
experience, to increase their efficiency. The proposed methodology here must also aid in as-
sessing and improving diagnosability, as creating a technical service manual that captures the
detect-and-repair tactic is a difficult undertaking in the current way of working. The difficulty
comes from the need to manage multiple and unobservable faults, model uncertainties, noise,

7

Chapter 2. Problem Description

Figure 2.1: Phases of corrective maintenance (ESI (TNO), 2022)

Table 2.1: Some impact factors of corrective maintenance phases (ESI (TNO), 2022)

Review Issue Travel Diagnose Corrective action Start-up

• Customer
trying to re-
start/repair

◦ Travel to
customer

• Diagnosability
(e.g. unique
error code)

◦ Spare part
availability

• Rebooting

• Service desk
contacting

◦ Make
service
engineer
available

• Engineer
experience

◦ Engineer
competence

• Stabilizing

• Supporting
mater-
ial (e.g.
service
manual)

◦ Serviceability
(e.g. access-
ibility to
component)

• Re-
calibration

• Acceptance
test

and unknown disturbances. This makes the capturing of the process dynamics with a piece of
physical knowledge of experts difficult for complex systems. Also, increasing service engineer
system understanding is important. An explainable model is beneficial since it will not only
enable the acceptance of the diagnostic reasoning system but also help domain specialists
with varying levels of expertise.

ESI (TNO) (2022) therefore suggest making use of a diagnostic model-based approach since
the aforementioned challenges in data-driven methods (Section 1.1) are more severe than
the model-based challenges (Section 1.1 and paragraph above). They proposed a three-step
approach in order to construct a proper diagnostic model:

1. From existing technical information, such as design models or technical drawings, create
a first model version. Depending on the source of information, this can be partially
automated.

2. Manually augments a model into a full diagnostic model.

3. Assess necessary variables, e.g., component prior failure probabilities, from operational
data, reliability figures, or expert judgment.

8

Chapter 2. Problem Description

The model’s goal is to diagnose a system with N (N ≥ 100) components and a set of M
(possible) tests at the component level. If the initial set of observations is too small to reli-
ably identify the root cause, service engineers can improve their diagnosis reliability through
various means, such as:

• increasing the number of observations (probing);

• actively changing the system operation (intervention).

If this does not provide a conclusive answer, the process repeats, so the diagnostics task can be
regarded as a sequential decision process. In the current work, devising a diagnostic strategy
is not easy because multiple failure modes map to the same error code, and a single failure
mode can result in multiple error codes. From the technical service manual, with an error
code as a starting point, means are suggested to find the root cause. However, deriving such
a manual is a difficult undertaking.

2.2 Scope

To scope the project, the second step in the diagnostic model construction is the common
theme running through this report. There will still be references to the first and last items,
but only suggestions will be made. To address the decision-making process in this work, a
model of the problem is essential. According to ESI (TNO) (2022), a Bayesian network (BN)
model can be (partially) automatically derived from existing technical information. Further
details on BNs are provided in Chapter 3. The model of a BN can be derived via one of two
approaches, namely the structural or functional approach. See Figure 2.2 for a representation
of an assembly from which a BN model can be derived. The model derived using the structural
approach uses a formal description of the physical layout, such as a standardized electrical
schema or a Computer-aided design (CAD) drawing, to construct a BN (Figure 2.2a). The
functional model requires a functional decomposition accompanied by additional human input
to come up with a complete BN (Figure 2.2b). ESI (TNO) (2022) suggests using a structural
approach where possible and a functional approach when needed.

(a) Fan structural model (b) Fan functional model

Figure 2.2: Alternative representations of an assembly model of a fan for the Bayesian network
construction (ESI (TNO), 2022)

The currently proposed strategy for the decision-making process to improve the service en-
gineers’ diagnosis reliability is as follows: Given a BN that is derived from a functional model

9

Chapter 2. Problem Description

and considering all the initial evidence, a calculation of the posterior probability for every
state of every node in the network is done. The nodes in the network that represent com-
ponents and that have a failure probability greater than 0.2 are considered potential failures.
For every available test, a calculation of the entropy of the set of potential failures is per-
formed, given the tests. The so-called Shannon’s entropy of a test (variable) is the amount
of information contained in the variable. It measures the expected (i.e., average) amount of
information conveyed by identifying the outcome of a random trial. The top m-tests that
have the lowest entropy (that gives the most information among the set of potential failures)
are recommended as tests. This is repeated until the failure probability of a component is
larger than a specified threshold or the service engineers’ belief is high enough to identify a
potential root cause.

The current implementation does not account for the cost of the diagnostic actions nor support
the use of the structural model. As the probing and intervening actions also have a resource
cost (e.g., time and materials) associated with them, the best sequence of the suggested
means to find the root cause. It is also assumed that there is a one-to-one relationship
between functions and tests in the functional model. However, there exist functions for which
there are no tests or tests that are available but cannot be mapped to a function in the
model. It is also remarked that the functional descriptions used in the functional model are
typically not precise enough to be easily converted into a model for diagnostics and therefore
require additional effort from an expert. It is therefore suggested to continue with the use of
structural models.

Two representative examples derived from current practice are depicted in the chapter titled Run-
ning Examples of this report. These examples are used for the feasibility study and are of
sufficient detail to be comparable with examples from practice. Studying the approach for
these examples will demonstrate the suitability for the actual system, but since the research is
still in its early stages, full implementation in a complex system is not yet applicable because
scalability is still an important topic to address.

2.3 Specification

An algorithm or extension of the current approach is necessary to help a decision-maker that
tries to decide which information to acquire (which test to do) to reduce the uncertainty over
a model, considering costs. The goal is, therefore, to develop an improved solution approach
to suggest the next best test. This solution approach has to take some of the cost of used
resources into account. The strategy to acquire additional information consequently improves
the quality of the diagnosis at hand.

As a part of the research questions, the applicability of influence diagrams is firstly discovered
because they seem to fit best with the current approach. Because the current approach uses
a Bayesian network and can be augmented with decision and utilities to create an influence
diagram its application seems most promising.

Evaluation of the proposed method is important. The currently proposed strategy for decision-
making cannot be seen as a benchmark for the newly suggested approach. Since the current

10

Chapter 2. Problem Description

situation does not include cost and uses the unit of bits (“shannons”), which cannot be com-
pared with the value of information when cost is introduced. Therefore, the question of an
appropriate comparison material between some models is required for proper evaluation.

11

Chapter 3

Theory

This section will discuss two type of probabilistic networks. The diagnostic tool’s basic
reasoning engine, a Bayesian network extended to an influence diagram, is a probabilistic
graphical model. In the first section, an introduction to the characteristics of the networks
used in the subsequent sections is given. The essential mechanisms of a Bayesian network
and influence diagram are presented in the second and third sections, respectively. The final
section describes two special representations of an influence diagram.

3.1 Characteristics Probabilistic Networks

Probabilistic network models are networks in which there are three main classes of vertices,
namely, vertices representing chance variables, vertices representing decision variables, and
vertices representing utility functions. The edges in the network reflect various types of rela-
tionships among the vertices. Chance and decision variables represent an exhaustive collection
of mutually exclusive events, known as the variable’s domain. These events are also often
called “states.” The utility function associates a utility value with each configuration of its
domain variables. The domain of these vertices might be discrete or continuous; discrete
domains are always finite. The vertices representing decision variables and vertices represent-
ing utility functions are added when studying influence diagrams (Section 3.3). The variable
taxonomy of discrete variables, including the variables in influence diagrams, is summarized
in Table 3.1, which was obtained from Kjærulff and Madsen (2008).

Table 3.1: The variables’ symbols

(a) The variable taxonomy
(Kjærulff and Madsen, 2008) (b) The variable symbols

Category Kind Subtype*

Chance Discrete Labeled
Decision Continuous Boolean
Utility Numbered

Interval

*Subtype only applies for discrete variables

Category Kind Symbol

Chance Discrete ◦
Decision Discrete □
Utility Discrete ⋄

12

Chapter 3. Theory

Throughout this work, circles represent discrete chance variables, rectangles represent discrete
decision variables, and diamonds represent discrete utility functions. For ease of explanation,
only discrete variables are considered.

3.2 Bayesian Network

A Bayesian network is a type of probabilistic network that uses Bayesian inference to update
the probability for a hypothesis as more evidence or information becomes available. These
models are sometimes referred to as normative expert systems because they give model-based
domain descriptions in which the model reflects the problem domain attributes and probability
calculus is employed as the uncertainty calculus (Kjærulff and Madsen, 2008). By representing
edges between vertices in an Directed Acyclic Graph (DAG), Bayesian networks aim to model
conditional dependence. In mathematical terms, a DAG is represented as G = (V,E), where
V is a finite set of distinct vertices (or nodes) and E ⊆ V × V is a set of edges. In E, an
ordered pair (u, v) denotes a directed edge from vertex u to vertex v, with u being a parent
of v and v being a child of u. The set of a vertex’s (v) parents and children are denoted by
pa(v) and ch(v), respectively.

Bayesian networks, N = (X ,G,P), extend this notation by introducing a set of variables
X and a set of conditional probability distributions P. Each node v in G corresponds to a
discrete random variable Xv ∈ X with a finite set of mutually exclusive states. The variables,
together with the directed edges E form a Directed Acyclic Graph. For each variable Xv ∈ X ,
there is a conditional probability distribution P (XV |Xpa(v)) ∈ P.

Definition 3.1 (Bayesian network by Jensen (2001)). A Bayesian network consists of the
following:

• A DAG G = (V,E) with nodes V = {v1, ..., vn} and directed links E.

• A set of variables X represented by the nodes of G.

• A set of conditional probability distributions P with one distribution P (Xv|Xpa(v)), for
each random variable Xv ∈ X .

Note that if Xv has no parents, then the table reduces to unconditional probabilities P (Xv).
For the DAG in Figure 3.1, the prior probabilities of P (X1) must be specified. The sum of
the probabilities in a probability distribution must always equal 1.

Figure 3.1: A directed acyclic graph

Table 3.2: Example probability table

Distribution X1 with domain {0, 1}
X1 = 0 X1 = 1

0.8 0.2

13

Chapter 3. Theory

Every Bayesian network demands a particular factorization of a joint probability distribution
over a set of random variables, X , of a problem domain. The factorization of a joint probability
distribution over the variables is given by the directed edges of the DAG. The set of conditional
probability distributions, P, specifies a multiplicative factorization of the joint probability
distribution over X as represented by the chain rule of Bayesian networks:

Theorem 3.1 (Bayesian network chain rule).

P (X) =
∏
v∈V

P (Xv|Xpa(v)) (3.1)

where Xpa(v) represents the set of parent variables of variable Xv for each node v ∈ V . The
factorization in Equation 3.1 expresses the local Markov property, which states that a node is
conditionally independent of its non-descendants given its parents. It is the existence of such
an independence assumption that makes it possible to specify the conditional probabilities
and to perform inference efficiently in larger Bayesian networks, since, generally, most nodes
will have a small set of parents relative to the overall size of the network.

A scenario typically contains some evidence, i.e., evidence or information on some variables
have been instantiated, and something about the probability distribution of some other vari-
ables needs to be inferred. The conditional probability distribution across the variables of
interest is calculated analytically in exact inference. When the Bayesian networks represent
a causal relationship between X → Y , where X is a cause of Y and where Y takes the role of
an observable effect of X, assuming that X cannot be observed itself. Given the observation
Y = y and using the prior distribution P (X) and the conditional probability distribution
P (Y |X) specified in the model, the posterior probability distribution P (X|Y = y) can be
computed. This computation employs the Bayes’ rule, as described in Equation 3.2.

Theorem 3.2 (Bayes’ rule).

P (X|Y = y) =
P (Y = y|X)P (X)

P (Y = y)
(3.2)

where P (Y = y) =
∑

x P (Y = y|X = x)P (X = x). This theorem plays a central role in
statistical inference because the probability of a cause can be inferred when its effect has been
observed. Many inference algorithms have been developed, both exact and approximate. One
of the more efficient methods of exact inference is through variable elimination (Zhang and
Poole, 1994), which takes advantage of the fact that each factor only involves a small number
of variables. Jensen et al. (1990) developed inference methods for Bayesian networks based on
message passing in a tree structure (junction tree) derived from the structure of the Bayesian
network. Both approaches are frequently utilized inference method in current probabilistic
network software packages.

3.2.1 Construction of Bayesian Networks

As described above, a Bayesian network can be described in terms of a qualitative compon-
ent, consisting of a DAG, and a quantitative component, consisting of a joint probability
distribution that factorizes into a set of conditional probability distributions governed by the
structure of the DAG. The construction of a Bayesian network thus runs in two phases.

14

Chapter 3. Theory

First, given the problem at hand, one identifies the relevant variables and the (causal) rela-
tions among them. The second phase is that the resulting DAG specifies a set of dependence
and independence assumptions that will be enforced on the joint probability distribution by
constructing the variables priors and conditional probability tables.

Causality plays an important role in the process of constructing probabilistic network models.
Although it is not strictly necessary to follow a causal interpretation in a Bayesian network
model, models with explicit representation of decisions must follow the causal relations. This
is discussed when we talk about influence diagrams in Section 3.3. Causal networks have
the additional advantage that they make the model much more intuitive, ease the process of
getting the dependence and independence relations right, and significantly ease the process
of eliciting the conditional probabilities of the model (Pearl, 2000).

A Bayesian network can be constructed manually, (semi-)automatically from data, or through
a combination of a manual and a data-driven process (Jensen, 2001). Manual construction of a
Bayesian network can be a labor-intensive task, requiring a great deal of skill and creativity as
well as close communication with problem-domain experts. Once constructed, the parameters
of a Bayesian network may be continuously updated as new information arrives. Thus, a model
for which rough guesses on the parameter values are provided initially will gradually, after
updating, improve as it gets presented with more and more cases.

3.3 Influence Diagram

Most often, the outputs of interest of a Bayesian network are the posterior probabilities of
the variables representing the problem that is reasoned about. These probabilities are often
combined with the costs and benefits (utilities) of performing one or more actions to solve
the problem. That is, from the posterior probabilities and the utilities, expected utilities
for each possible decision option (e.g., different treatment alternatives) can be computed.
The decision option with the highest expected utility should then be selected to improve
the quality of the decision. A Bayesian network can be augmented with decision variables,
representing decision options, and utility functions, representing preferences, that may depend
on both chance variables and decision variables. Networks so augmented are called influence
diagrams. Nowadays, they have become a popular and standard modeling tool (Pearl, 2005;
Bielza et al., 2011).

It is found that influence diagram outputs are remarkably valuable. Given a specific configura-
tion of variables, an influence diagram yields the best course of action. But influence diagram
responses are not limited to providing optimal strategies for the decision-making problem.
Inferred posterior distributions may be employed to generate diagnosis outputs (probability
of a cause). Influence diagrams may also generate explanations of their proposals as a way to
justify their reasoning by exploring alternative what-if scenarios (Fernández del Pozo et al.,
2005; Bielza et al., 2008).

Influence diagrams, N = (X ,G,P,U), extend the mathematical notation of Bayesian networks
by introducing an additional set of decision variables XD in X and a set of utility functions
U . The DAG G = (V,E), has nodes (V) which include chance nodes (VC), decision nodes

15

Chapter 3. Theory

(VD), and utility nodes (VU). These nodes represent random variables, decision variables, and
utility functions, respectively. Each decision variable, D, represents a specific point in time
under the model of the problem domain where the decision maker has to make a decision.
The states (d1, ...dn) of D are the decision options or alternatives. The local utility functions
associated with D or one of its descendants in G are used to assess the usefulness of each
decision option. Each local utility function u(Xpa(v)) ∈ U , where v ∈ VU is a utility node,
adds to the total utility function u(X) in X . As a result, the total utility function is the sum
of all utility functions in the influence diagram, u(X) =

∑
v∈VU

u(Xpa(v)).

Definition 3.2 (Discrete Influence diagram by Kjærulff and Madsen (2008)). A discrete
influence diagram consists of the following:

• A DAG G = (V,E) with nodes, V , and directed links, E, encoding dependency relations
and information precedence, as well as a total order of decisions.

• A set of random variables, XC , and decision variables, XD, such that X = XC ∪ XD

represented by nodes of G.

• A set of conditional probability distributions, P, with one distribution, P (Xv|Xpa(v)),
for each discrete random variable Xv.

• A set of utility functions U , with one utility function u(Xpa(v)), for each node v in the
utility node subset VU ⊂ V .

A discrete influence diagram supports the representation and solution of sequential decision
problems with multiple local utility functions under the so-called no-forgetting constraint
(Clemen, 1996), assuming perfect recall of all observations and decisions made in the past.
There must also be a total order on the decision variables XD = {D1, ..., Dn} ⊆ X . The
total order requirement is referred to as the regularity constraint. To specify a total order of
(D1, ..., Dn) on XD = {D1, ..., Dn}, informational links are present. There needs only to be a
directed path from one decision variable to the next one in the decision sequence to enforce
a total order on the decisions. In Figure 3.2b the sequence is enforced by modeling a link
between D1 and D2. The total order of decisions in this network, therefore, specifies that
decision D1 is a predecessor of D2.

(a) Regularity constraint does not hold
(unsolvable in the discrete representation)

(b) Regularity constraint holds (solvable
in the discrete representation)

Figure 3.2: A influence diagram representation of Figure 3.1

16

Chapter 3. Theory

The interaction between the various nodes assembled into a graph (Figure 3.2b) represents
either relevance or sequence, with the meaning indicated by the context of the arrow. Their
definition is specified in Figure 3.3 The links into a node representing a random variable,
X1 into X3, indicate that the uncertainty at the node is probabilistically conditioned on the
preceding nodes and are called conditional arcs (Figure 3.3a). While the links from a node
representing a variable, X, into a node representing a decision variable, X3 into D1, denotes
that the state of X3 is known when decision D1 is to be made. Everything prior to the decision
has to be resolved before it is finalized. Links ending in decision nodes representing (temporal)
sequencing are called informational arcs (Figure 3.3b). The preceding nodes can be random
as well as other decision variables. For random variables, certainty on the distribution of the
variables’ potential values is not possible. However, the range of uncertainty can be reduced
through prior information-gathering decisions. For prior decision variables, a choice has been
made that offers the greatest likelihood of achieving the targeted objectives given the range
of subsequent decision alternatives. The final set of links represent functional arcs and end
in utility nodes (Figure 3.3c). The functional dependence of U1 on Xv ∈ X is denoted by a
node representing a local utility function, U1.

(a) Condi-
tional

(b)
Informa-
tional

(c) Functional

Figure 3.3: Definition arcs in influence diagram

Table 3.3: Example utility function
U1 of X1 with domain {0, 1} and D1

with domain {0, 1}

X1 D1 = 0 D1 = 1

0 Some cost some cost
1 Some cost some cost

As in every Bayesian network, an Influence diagram demands a particular factorization of a
joint probability distribution over a set of variables, X , of a problem domain. An influence
diagram is a compact representation of a joint expected utility (EU) function over X as
represented by the chain rule:

Theorem 3.3 (The chain rule for influence diagrams).

EU(X) =
∏

Xv∈XC

P (Xv|Xpa(v))
∑
w∈VU

u(Xpa(w)) (3.3)

where w denotes a vertex from a directed edge between w to vertex v. This chain rule can be
used to solve N by computing the expected utility EU(∆̂) of the optimal strategy ∆. In order
to compute the expected value of the optimal strategy, one must first identify that optimal
strategy. A strategy, ∆, is an ordered set of decision policies, ∆ = (δ1, ..., δn) including one
decision policy for each decision Dn ∈ XD. The decision policy outlines how to make choices
in order to act in alignment with the purposes and goals. A policy for decision D specifies

17

Chapter 3. Theory

the (optimal) action for the decision maker for all possible observations made prior to making
decision D. For Figure 3.2b, the set of decision policies will look like something like:

δD1(X3) =

{
0 X3 = 0
1 X3 = 1

δD2(X4, D2) =


0 X4 = 0, D1 = 0
0 X4 = 1, D1 = 0
0 X4 = 0, D1 = 1
1 X4 = 1, D1 = 1

An optimal strategy is defined as ∆̂ = (δ̂1, ..., δ̂n), which maximizes the expected utility over
all possible strategies, that is, it satisfies

EU(∆̂) ≥ EU(∆) (3.4)

for all strategies using ∆ (Kjærulff and Madsen, 2008). Later, the introduced discrete influence
diagram will be used to evaluate the sequencing problem.

3.4 Representation of Influence Diagrams

There are many different representations of influence diagrams, which differ in the way in-
formation is handled. Often, the influence diagram is based on the no-forgetting constraint:
when making a decision, all previous decisions, as well as previous observations, are known.
This requires that there be a (temporal) ordering of the decisions. The no-forgetting con-
straint leads to significant computational demands. For this reason, two influence diagrams
that relax the no-forgetting constraint are discussed. By relaxing this constraint, an unop-
timal use of the knowledge is made and, therefore, the decision is not optimal. Both models
are shown after a diagnosis problem description is displayed. Before diagnosis problems for
system diagnostics are discussed, a medical example will be presented to explain both models.

3.4.1 The diagnosis problem

A doctor is trying to decide on a policy for treating patients who, after an initial examination
of their symptoms (S) are suspected to suffer from an infection (I). This infection has two
measurables, X1 and X2, that are observable in e.g. a blood test and urine test. Before
deciding on whether or not to treat the infection (D3), the doctor can decide to perform a
blood test (D1) and/or a urine test (D2) which will produce the test results. After the doctor
has observed the test results (if any), he has to decide whether to treat the patient for the
infection. Observe that in this decision problem, the sequence in which the tests are decided
upon is unspecified, and that the test result of, e.g., the blood test is only available if the
doctor actually decides to perform the test; similarly for the result of the urine test.

To represent this problem with a discrete influence diagram, the unspecified ordering of the
D1 and D2 has to be represented in a strict ordering of the decisions. Unfortunately, the
structure of the decision problem is not apparent from the description, and, for large decision
problems, this modeling technique will be prohibitive as all N possible scenarios (N possible
orderings of D), would lead to N = |D|! different encodings of the model (Jensen et al., 2006).

18

Chapter 3. Theory

3.4.2 Sequential Influence Diagram

Instead of making the possible decision sequences explicit in the model Sequential Influence
diagram (SID) postpone it to the solution phase by allowing the temporal ordering to be
unspecified; note that this also implies that when solving the SID we not only look for an
optimal strategy for the decisions but also for an optimal conditional ordering of the decisions.
The diagnosis problem can therefore be represented by a SID (Figure 3.4) (Jensen et al.,
2006). D1 and D2 represent two different tests that can be performed to gather information
on X1 and X2 that take the role of an observable effect of infection, I. This information
can only be observed when the state of D1 and/or D2 is yes (dash-dot arc). The structural
arc emanating from the cluster (dotted circle) indicates that all decisions made within the
cluster are followed by the decision D3. The arc from symptoms S indicates that S is known
prior to make decisions on D1 and D2. SIDs are designed for representation of the general
class of decision problems, not just diagnosis or troubleshooting problems. When Bayesian
networks are augmented to SIDs, fewer additional nodes are required since some links specify
the decision outcomes and not the nodes because usually dummy variables are introduced
to represent these outcomes. However, the main disadvantage of this representation is that
when the number of possible tests is large, solving SIDs may be intractable (Bielza et al.,
2011), because every possible scenario in each cluster has to be evaluated.

Figure 3.4: A sequential influence diagram representation of the diagnosis problem

3.4.3 Limited Memory Influence Diagram

When there may not even be a total order specified among the decision nodes, another repres-
entation comes to life. Lauritzen and Nilsson (2001) introduced the notion of Limited Memory
Influence Diagram (LIMID) as a model for multistage decision problems in which both con-
ditions dealt with: total order for decision variables and no-forgetting. The decision-making
sequence is only defined by its compatibility with the graph’s partial order (Figure 3.5), i.e.,
D1 and/or D2 before D3. The parents of a decision node D represent exactly the variables
whose values are known and taken into consideration when a decision at D has to be made.
(Figure 3.5) shows that S is known before the decisions at D1 and D2, and TRX1 and TRX2

are known before the decision at D3. Due to the asymmetric nature of the information
constraints, this technique will require either dummy variables or dummy states due to the

19

Chapter 3. Theory

dummy variables. TRX1 , for example, is a dummy variable with the values test positive,
test negative, and test not done. Where test not done indicates that the test has not been
performed and therefore no additional costs are incurred. It does mean that that particular
test has not been performed because the cost of that test does not outweigh the value of the
information it could provide.

Figure 3.5: A limited memory influence diagram representation of the diagnosis problem

It is also noted that the links point from the measurables (X1 and X2) to the indicators
of the test results (TRX1 and TRX2). It may appear counter-intuitive at first because the
flow of information is from test results to measurables. However, it is the condition of the
measurable that causally affects the test result, and not vice-versa. LIMIDs allow for multiple
agents of a decision-maker (who may not be able to communicate with each other) or for
forgetful decision-makers. The main motivation for LIMIDs is that by limiting the number
of information arcs, their solutions are computationally tractable, whereas the same decision
problem could be intractable if the no-forgetting condition is assumed. The disadvantage is
that an optimal solution of a LIMID may not be optimal for the same decision problem if
the no-forgetting condition were to be assumed. This gives a trade-off between tractability of
solution and optimality.

20

Chapter 4

Running Examples

In this chapter, two representative examples are presented to illustrate some test sequence
problems. These examples will also be used to introduce some of the proposed methodology’s
features in Chapter Methodology. In each example, a service engineer must decide to do a
certain diagnostic task when the initial set of observations is too small to reliably identify
the root cause. Information can be gathered before a repair action can be decided. But how
much information should be gathered optimally? Since information does not come for free.

4.1 Model 1: Single Light

The single light problem describes an electrical circuit with four different components (see
Figure 4.1a): (1) a battery (b1) (2) a switch (s1); (3) a light (l1); (4a) wire (w1) connecting
the battery and switch; and (4b) wire (w2) connecting the switch and light.

(a) Electrical circuit model

(b) Structural model

Figure 4.1: Example models for a single light circuit

The system is derived from a structural description of the electrical as depicted in Figure 4.1b.
The corresponding structural Bayesian network (BN) with 12 chance nodes is depicted in

21

Chapter 4. Running Examples

Figure 4.2a. The BN is generated by creating a chance node for each component I that
represents its normal behavior and a corresponding node that represents the components’
health H, both in a causal relationship. The BN also includes nodes containing P of present,
which show the presence, e.g., Pbat there is a battery present or Ptrig the button is fired. Since
these statuses of presence are additional observations and are known upfront, e.g., the trigger
is on and there is a battery present, these nodes are redundant and therefore removed from
the network (see Figure 4.2b). In this example, the I represents the presence of power;
for example, is there power in the battery (P (Ibat)) given the condition (H(Ibat)) and the
presence (P (Ibat)) of the battery? This network can also be generated by the functional
model (Section 2.2). This can create a different BN, but a method is proposed that should
become independent of the BN structure.

Each components’ Health node in this network has a corresponding failure distribution of
these components attached to it. These distributions consist out of two possible states, for
Hbat either Ok or Empty, the Hwire either Ok or Disconnected, and for the Htrig and Hlamp

either Ok or Broken. Al the states for the nodes I represent whether there is power thus their
states are either Yes or No.

(a) All nodes included

(b) Excluding redundant nodes

Figure 4.2: Bayesian network of a single light circuit

The problem for these network is: If it is observed that the light is not functioning while the
trigger is on and there is a battery present, what is the best action to diagnose why the light
is not functioning?

It is useful to recap that due to evidence gathering and Bayesian inference, the probabilities
are getting updated. A range of possible tests can be performed to diagnose the problem.
These include: (1) observing whether the light is on; (2) checking the status of the light
bulb; (3) checking the battery; and (4) measuring the voltage at each wire end. Each has
an associated cost of performance. Before deciding which component is likely to be failed,

22

Chapter 4. Running Examples

the decision-maker can decide to perform all or any of these tests. After observing the test
results (if any), a decision has to be made on whether the root cause of the problem can
be reliably diagnosed. Note that in this decision problem, the sequence in which the tests
are decided upon is unspecified and that the test result, e.g., the check light bulb status,
is only available if the decision-maker decides to perform the test; similarly for the other
test results. It is however assumed that the decision-maker first has the option to gather
additional observations or measurements and then decides whether to perform a corrective
maintenance action on the components. This makes the decision-maker think about whether
it is profitable to perform a test before simply replacing a component.

In the proposed framework, the BN representation is adapted to an ID representation by
introducing test results, decisions, and utility nodes. The additional nodes are applied in a
general way in which it is easier to possibly automate the adaptation from BNs to IDs in
this domain (more details in Chapter 5). This example is introduced to demonstrate the core
concept of transforming a BN to an ID. The building blocks derived from this example are
applicable to larger networks. The adaptation is not dependent on the BN of the structural
model; any BN should fit the adaptation to a ID as long as there is a correct mapping between
the possible tests and nodes in the network.

4.2 Model 2: Quadruple Light

A larger example of the network described in Section 4.1 is depicted in this example. Here,
the electrical circuit problem describes a circuit with 23 components (see Figure 4.3).

Figure 4.3: Example of an electrical drawing of a quadruple light circuit

The system is depicted in a BN with 54 nodes (see Figure 4.5) and is again derived from a
structural description displayed in Figure 4.4. This problem is approached the same way as in
Section 4.1. In the BN of Figure 4.6, the redundant nodes are removed. These nodes include
again the trigger statuses and the battery presence, but also the joint 1, 2, and 3 health nodes

23

Chapter 4. Running Examples

since their probability of failure is set to zero. Therefore, the same tests or actions could
be performed as in the previous section. However, this system is more complex. Figure 4.3
displays an electrical circuit where four lights work in parallel in which additional nodes like
joints and switches are added. As a result, the possible number of tests increases due to
the increase in the number of components that could be tested. This example is beneficial
to explore the possibilities when having a larger and parallel structure in the system. Also,
different error scenarios could occur (e.g., one light working, the other not), which gives the
possibility of mapping multiple errors into the model.

Figure 4.4: Example of a structural description of a quadruple light circuit

24

Chapter 4. Running Examples

Similar to the previous model, a range of possible tests or actions can be performed to
diagnose the problem. The association of tests with the functional model is relatively easy in
a BN representation because typically a test tests a particular function. However, in these
structural models, a clear mapping between the tests and nodes needs to be present. A
comprehensible understanding of what each test actually tests is of significant importance.
Again, each with a corresponding cost. As mentioned earlier, there are also tests that test
components in isolation. Section 5.1.2 addresses this topic by modeling tests in different ways
based on what they are doing. The results are shown in Section 6.2 of Chapter 6, which
distinguishes between tests for components in isolation and tests for functions.

Figure 4.5: Bayesian network of a quadruple light circuit including all nodes

25

Chapter 4. Running Examples

Figure 4.6: Bayesian network of a quadruple light circuit excluding redundant nodes

26

Chapter 5

Methodology

A diagnostic model is proposed to aid in the decision-making process of fast and complex
diagnosis of the underlying root cause. This chapter provides details of both the discrete
influence diagram and the limited memory influence diagram chosen for the use of modeling
and solving the decision-making problem. Table 5.1 provides a summary of the notation used
throughout this chapter for convenient reference.

Table 5.1: Notation used throughout this chapter

Notation Description

c1 Cost of carrying out a test
c2 Replacement cost
c3 Incorrect replacement penalty
c4 Failure-to-repair cost [c4 ≫ c2 + c3]

5.1 Influence Diagram-based Method for Diagnosis

An influence diagram is a valuable tool for developing expert systems that include probabilistic
features, including decision-making based on utility values. However, there are several types
of influence diagrams that differ in how information is handled. The influence diagram is
typically built on the no-forgetting assumption: while faced with a decision, all prior decisions
and observations are known. This type is called the Discrete Influence Diagram as described
in Section 3.3. This necessitates that the decisions be ordered on time. The notion of no-
forgetting imposes enormous computing loads on the system. As a result, the Sequential
Influence diagram (SID) and Limited Memory Influence Diagram (LIMID) were developed,
which establish an explicit relationship between the nodes known before making the choice
and the decision node. Only the parents of a decision node are known in the LIMID at
the moment of the decision. This limits the number of nodes considered for the decision,
reduces the policy domain, and makes it easier to find the (sub-)optimal strategy with the
highest expected utility. In conclusion, the LIMID framework is a viable choice for modeling
large and complex domains with an appropriate assumption of decision-maker forgetfulness.
The previously introduced SID is hindered by its solving intractability for large networks.

27

Chapter 5. Methodology

The LIMID is therefore utilized for the influence diagram-based approach for diagnosis. The
utilized LIMID is later compared to the discrete influence diagram.

5.1.1 Structure of the Model

Following the procedure shown in the flowcharts in Figure 5.1, an influence diagram-based
method for diagnosis can be abstracted using the Discrete ID and LIMID. Both these flow-
charts also shows the corresponding sections where these procedures are discussed. An in-
fluence diagram may be generated automatically given a Bayesian network and a mapping
between tests and network nodes. A mapping of this type is built using the system designer’s
and the Bayesian network constructor’s knowledge. The input, such as component prior fail-
ure probability derived from operational data, reliability numbers, or expert judgment, has
already been initialized in the Bayesian network. The construction is kept generic and is
therefore the same for both methods.

(a) Discrete Influence Diagram

(b) Limited Memory Influence Diagram

Figure 5.1: Flowchart of approach

There are some initial assumptions for the construction and solving of the network. For the
Bayesian network; (1) component failures are independent of each other. For the influence
diagram; (2) test costs are independent, (3) tests are perfect, (4) no intermittent faults, and
(5) only probing tests are considered.

28

Chapter 5. Methodology

Diagnosing

First, the construction of an influence diagram for diagnosis can be derived from models used
in medical applications. Lacave et al. (2007) and Luque et al. (2016) both propose models in
which they represent the possible tests, their costs, and their outcomes. The found educational
books referred to in Section 1.2, assent to this way of modeling. However, an adaption of
these models is proposed since all of these models only suggest one possible action (treatment)
after diagnosing. This is in line with the single fault assumption. The diagnosis of a high-tech
system usually consists of n ≥ 1000 components, this increases the probability of having more
than one fault. Since the analysis is on the component level, this assumption is relaxed by
giving each component its own action (treatment) node. As mentioned in Section 3.3, inferred
posterior distributions may be employed to generate diagnosis outputs. Figure 5.2a’s model is
augmented with utility and decision nodes in Figure 5.2b. This figure uses the Health states
of the components to generate these diagnosis outcomes.

(a) Bayesian network (b) Influence diagram

Figure 5.2: Transforming the Model 1: Single Light Bayesian network to an influence diagram
for diagnostic output

As mentioned in Section 2.2, the current Bayesian network approach uses rules that give
threshold values for inferred posterior distributions, such as potential failure if P (Hbat =
Empty) ≥ 20% or replacing the battery if P (Hbat = Empty) ≥ 80%. When modeling as in
Figure 5.2b, threshold values are automatically specified based on their local utility function.
These functions, Un ∈ U , denote the functional dependence of Un on Hn and Dn. Corrective
maintenance refers to the decision, Dn, to perform an action on component n. It contains
the decision options (Dn = 0, Dn = 1) = (Do nothing,Replace n). The threshold is based
on the specification of Table 5.2 derived from the ratio after solving the equation:

P (Hn = 0)

P (Hn = 1)

−(c2 + c3)

c2 − c4
= 1 (5.1)

where P (Hn = 0) denotes the probability of a component in good condition and P (Hn = 1)
denotes the probability of a component with a defect or flaw. This opens the opportunity
to automatically generate threshold values based on the cost of the part and replacement
time. Meaning, more expensive parts need a higher certainty of P (Hn = 1) before getting a

corrective action, which is intuitive. For example, when Equation 5.1 returns P (Hn=0)
P (Hn=1)

1
1 = 1,

29

Chapter 5. Methodology

the threshold value is depicted as 50% in Figure 5.3, D1. This figure also shows different
threshold values for the ratios 1

3 = 25% and 4
1 = 80% for D2 and D3, respectively. This

shows, the importance of the parameters c3 and c4.

Table 5.2: Utility function corrective
maintenance

Hn Dn = 0 Dn = 1

Hn = 0 0 c2 + c3
Hn = 1 c4 c2

Figure 5.3: Automatically determined Dn

threshold values

Decisions made in the absence of complete information are inevitably uncertain; there is a
probability that the decision will be incorrect, with consequences in terms of the payoffs as-
sociated with the decision. According to the theory in Section 3.3, the optimal option for
a risk-neutral decision-maker is to pick the alternative with the highest expected value, re-
gardless of uncertainty. Nonetheless, decision uncertainty is of importance in determining
the value of gathering additional knowledge to better inform future decisions (Meltzer, 2001).
A decision-maker may be confronted with the possibility of conducting a test to gather ad-
ditional information. The “Test to Node Mapping” in Figure 5.1 depicts the collection of
available tests. The extension of the model in Figure 5.2b to include test nodes to gather
additional information is shown in Figure 5.4. The example assumes that all components are
tested individually (in isolation). This does not have to be the case; for example, there could
be a test to see if there is power at Iwire1. If the test result observes that there is power, the
belief of the antecedents, {Hwire1, Ibat, Hbat}, also has power given Bayesian inference. This
will be further discussed in Section 5.1.2.

5.1.2 Test Modeling

Performing a test yields a test result that is modeled as a dummy random variable, Test, with
states matching the various test results. The influence diagram includes a decision variable,
T , with states (t1 = no, t2 = yes), denoting whether or not the test is suggested, in addition
to the random variable representing the test result. If the test is carried out, the outcome is
made available to the decision-maker (link Testn to Dn). If, on the other hand, the test is not
done, no test results are available. The test establishes the value of information according to
the extent to which it might reduce the expected costs of uncertainty by reducing uncertainty
in the evidence base. This entails evaluating the expected value of a decision made with
and without additional information. When payoffs are represented in monetary terms, an
explicit monetary valuation of the expected value of information is provided, which may then

30

Chapter 5. Methodology

be directly contrasted against the expected cost of information to evaluate if it is valuable.
The influence diagram also includes a utility function, U ∈ U , that specifies the cost of the
test.

Figure 5.4: Influence diagram of Model 1: Single Light for diagnostic output, as well as
isolated tests

The link from Testn to Dn specifies that the value of Testn is known when making the
corrective maintenance decision Dn. This cannot, however, be the case when the test is not
performed. According to Kjærulff and Madsen (2008), there are two alternative options to
correctly model the test result variable to behave as expected when the test is not performed.
Both options consider the specification of the conditional probability distribution (CPT)
P (Testn|Hn, Tn) in different ways. Table 5.3 handles this by specifying P (Testn|Hn, Tn = no)
as a uniform distribution. Table 5.4 introduced an additional not done state, such that not
performing the test instantiates that state.

Table 5.3: CPT without state not done

Hn Tn Testn = pos Testn = neg

0 no 0.5 0.5
0 yes 1 0
1 no 0.5 0.5
1 yes 0 1

Table 5.4: CPT with state not done

Hn Tn Testn = nd Testn = pos Testn = neg

0 no 1 0 0
0 yes 0 1 0
1 no 1 0 0
1 yes 0 0 1

The second option is more semantically clear than the first one because it is self-evident that if
the test is not performed, Testn should be instantiated to not done. However, by introducing
the additional not done state in the Testn variable, the model’s complexity increases. For
the sake of convenience, it is chosen to continue with the latter option. Note that there is
no uncertainty when performing a test, i.e., Tn = yes → P (Testn = pos) = 1 ∨ P (Testn =
neg) = 1. The assessment of the value of information is called the “expected value of perfect
information” (EVPI) because it quantifies the value of acquiring perfect information about
all aspects of the decision (eliminating all uncertainty). This does not have to be the case
that all the uncertainty of a variable is eliminated. However, it is assumed that all tests are
perfect.

Up till now the set of possible tests exists out of tests that test components in isolation, as
seen in Figure 5.4. However, such a test may not exist for some triggers, such as T3. An

31

Chapter 5. Methodology

additional observation can be made by measuring the voltage at the wire ends. This test is
likely cheaper than checking the health of each component individually, and it might improve
the reliability of the model the most. The network will look like Figure 5.5 if the measurement
tests (T6, T7) are included but not the trigger test (T3). Measuring a voltage at the output of
Iwire1 indicates that it is likely that the trigger, wire2, or lamp is broken. While measuring no
voltage indicates there is probability a defect in the battery and/or wire1, plus an additional
chance (prior probability) that trigger, wire2, and lamp are also broken. See Appendix A for
a visualization in the software of these scenarios.

Figure 5.5: SLM influence diagram for diagnostic output plus possible additional tests

The informational links from Test6 to D2 and from Test7 to D4 in Figure 5.5 indicate that
the information is only available prior to making a decision on D2 and D4. However, this
information is also available for all decisions. But limiting the number of information links is
the main motivation of LIMID. Its solution is computationally tractable, whereas the same
decision problem could be intractable if the no-forgetting condition is assumed. It is not
always obvious which informational links to include in a LIMID without affecting the policies
and the expected utility of the computed policies.

These are considered the building blocks for modeling the diagnosis network and are applicable
to Model 2: Quadruple Light. Figure 5.6 depicts the augmented Bayesian network to an
influence diagram of the network in Figure 4.6. Hence, it is assumed that every component
can be tested in isolation, except for the connecting wires. These are modeled similarly to T6

and T7 (Figure 5.5), where the voltage at each wire end can be measured.

32

Chapter 5. Methodology

Figure 5.6: QLM influence diagram for diagnostic output plus possible additional tests

33

Chapter 5. Methodology

5.1.3 Solution LIMID

In the ID, decisions are made based on the information available when making those decisions.
In the LIMID, these are the nodes with links pointing to the decision node. A policy consists
of a set of rules that define which decision to take as a function of the available information.
The more information is used for making a decision, the larger the policy domain and, con-
sequently, the computational demand. A set of policies for all the decision nodes in the ID
is called a strategy. Lauritzen and Nilsson describes a single policy updating algorithm for
finding a (locally) optimal solution to a LIMID.

The LIMID is solved by Single Policy Updating (SPU) via message passing in a junction tree.
The SPU algorithm proceeds by passing messages toward a root node containing a decision
variable and its parents from all other nodes in the junction tree. As each root node for
each decision variable is encountered, the strategy is updated. A forward and backward pass
through all the root nodes containing decisions constitutes one iteration of SPU. Iterations
of SPU are continued until the maximum expected utility is unchanged. This is the optimal
solution to the LIMID, and the current strategy set is optimal.

Mathematically (Lauritzen and Nilsson, 2001), let N = (X ,G,P,U) be a LIMID model. The
probabilistic policy function is a key encoding in the process of solving a LIMID.

δ′i(di|J (Di) = j) =

{
1 if di = δDi(j),
0 otherwise.

(5.2)

of a decision policy δDi(J (Di)). Where J is a disjoint information set of random variables
relative to the decision variables specifying the precedence order. The information set J is the
set of variables observed after decision Di but before decision Di+1. And δi can be thought
of as a function that maps relevant observations from J (Di) to the entire decision domain
dom(Di).

The aim of solving N is to identify a strategy, ∆, that maximizes the expected utility. The
SPU algorithm starts with some initial strategy and iteratively updates a single policy until
convergence has occurred. Convergence has occurred when no single policy modification can
increase the expected utility of the strategy. Assume ∆ is the current strategy and Di is the
next decision to be considered for a policy update, then SPU proceeds by performing the
following steps according to Kjærulff and Madsen (2008):

Retract Retract the policy δ′i from ∆ to obtain ∆−i = ∆\{δ′i} (i.e., ∆−i is a strategy
for all decisions except Di)

Update Identify a new policy δ̂′i for Di by computing;

δ̂′i = argmax
δ′i

EU(∆−i ∪ {δ′i}). (5.3)

Replace Set ∆ = ∆−i ∪ {δ′i}

The strategy ∆̂ = {δ̂Di} is the optimal solution to the algorithm after convergence (when
no single policy modification can increase the expected utility of the strategy). The solution

34

Chapter 5. Methodology

represents the optimal set of decisions given the current evidence of the network. When
evidence is added or changed, the solution to the algorithm may change. Each policy is
only a function of the most recent test results, if any. This implies that previous results
and decisions are ignored. The set of test decision variables suggested to be executed in the
influence diagram represents the subset of potentially observable variables relevant to each
network state. It is viable that the subset of potentially observable variables relevant to each
decision in the optimal strategy ∆̂ of the LIMID representation suggests several possible tests
to execute. This creates a new problem.

LIMID + Myopic Approximation

When it is allowed to only perform one test and the network suggests several possible tests
to execute, a calculation of the expected value of each test may be performed, but it is not
sure that the best choice is the one with the highest expected value. A proper analysis of the
choices should consist of an analysis of all possible sequences of tests (including the empty
sequence). To avoid such an intractable analysis, the so-called myopic approximation is often
used. Jensen (2001) calls this hypothesis-driven: since usually the distribution of a hypothesis
variable H is the target of the analysis. In the current situation, the myopic approximation
is used to come up with the next best test according to the following steps:

Retract Retract the (locally) optimal solution, EU(∆̂) = EU({δ̂Di}), to the LIMID
Compute Calculate the expected value;

EV (T) =
∑
t∈T

EU(∆̂|t) ∗ P (t) ∀ T ∈ δ̂Di (5.4)

Suggest Suggest the next best decision by computing;

D̂i =

 argmax
δ̂Di

EV (δ̂Di) if max
δ̂Di

EV (δ̂Di) ≥ EU(∆̂),

∅ otherwise.
(5.5)

When the subset of potentially observable variables (test decisions) relevant to each network
state is larger as 1, the expected value of each test is calculated. This expected value was
obtained by extrapolating one step forward and computing the expected utility based on the
test result of one of the potentially observable variables (EU(∆̂|t)). The expected utility of
the network knowing the test result is multiplied by the probability of occurrence of that
test result (P (t)) because the outcome of the test is unknown (yet). This is done for each
test result of the test. And finally, all the multiplied expected utilities of a test are added
up (

∑
t∈T

EU(∆̂|t) ∗ P (t)). This results in the expected value of a test EV (T). This process

is repeated for each suggested test. Then, if you are allowed to perform at most one test,
the one with the highest expected value is chosen, if it is larger than the initial expected
utility. An algorithm that finds the next best test using the described procedure is depicted
in Appendix C.

35

Chapter 5. Methodology

Solving LIMID + Myopic Approximation

The proposed LIMID + Myopic Approximation only looks one timestep ahead to suggest the
next best test. To get the expected utility of the proposed method over the full solution, some
simulations have to be executed. Each possible failure scenario (e.g., the battery is broken,
the rest is OK) needs to be resolved. This is done by testing and replacing components until
End is reached (in Figure 5.1). The amount it costs to solve the problem is then multiplied
by the probability of that scenario occurring. And the final expected utility is then the sum
of all the utilities multiplied by the probabilities. Table 5.5 shows how these expected utilities
are derived for the example displayed in Figure 5.4.

Table 5.5: Calculation on the expected utility for the LIMID + Myopic Approximation

Scenarios
Utility* P (scenario)* Weighted Utility

Hbat Hwire1 Htrig Hwire2 Hlamp

1 0 0 0 0 −12 0.315 −3.780
0 1 0 0 0 −18 0.016 −0.288
...

...
...

...
...

...
...

...
1 1 1 1 1 −58 9.870 ∗ 10−11 −5.725 ∗ 10−9

Sum: 1.0 Expected Utility

*Example values are depicted

5.1.4 Solution Discrete ID

The discrete ID described Section 3.3 is used to compare the method described in Section 5.1.3.
The constructed influence diagrams (in Section 5.1.2) are not directly applicable to be solved
by a discrete ID. A discrete model requires a total order of the decision variables and ensures
perfect recall of all previous observations and decisions. An adaptation to the network is
therefore necessitated. All the links specifying total order and no-forgetting need to be depic-
ted in the network. An algorithm that specifies these links is provided in Appendix B. Since
a prespecified order of decision variables needs to be present, each order has to be evaluated.
Only the order of the test decision nodes needs to be looked at because, by modeling in this
way, the corrective maintenance decision nodes always come after the test decision nodes.
How discrete IDs come up with the expected utility is already described in Section 3.3. How-
ever, since one has to consider all the different sequences of tests when solving the discrete
ID, the expected utility of each possible sequence is kept. Hence, the network is initialized
with the sequence that has the maximum expected utility over the set of possible sequences.
Table 5.6 shows how the maximum expected utility is derived for the example displayed in
Figure 5.4.

36

Chapter 5. Methodology

Table 5.6: Finding the best sequence and the maximum expected utility for the Discrete ID

Prespecified Decision Sequence Expected Utility* Best Sequence

T1 T2 T3 T4 T5 D1 D2 D3 D4 D5 −18.5
T2 T1 T3 T4 T5 D1 D2 D3 D4 D5 −17.8 ←
...

...
...

...
...

...
...

...
...

...
...

...
T5 T4 T3 T2 T1 D1 D2 D3 D4 D5 −19.2
*Example values are depicted

37

Chapter 6

Numerical Investigations

This chapter begins by explaining the software and models used for the investigation. Then,
the numerical examples presented in Chapter 4 and extended to influence diagrams in Chapter 5
will be used in the second section to demonstrate the results obtained. The methods used for
solving these networks are the discrete ID and the proposed LIMID + Myopic one. There-
after, the scalability of the methods is investigated. And this chapter ends with a sensitivity
and performance analysis of the discrete ID and the proposed LIMID + Myopic approach.
The assumption stated in Section 5.1.1 remains valid.

6.1 Software and Models

Three influence diagrams of Model 1: Single Light and Model 2: Quadruple Light were
modeled and solved using the Application Programming Interface (API) of the Bayes Server
Limited (2022) software. An overview of the models is depicted in Table 6.1. As seen the
influence diagrams of Model 1 has two alternatives, both alternatives are used for evaluation.

Table 6.1: Overview evaluated IDs

Model Figure Software

Model 1: Single Light (1a) 5.4 6.1a
(1b) 5.5 6.1b

Model 2: Quadruple Light (2) 5.6 6.2

Figure 6.1a and 6.1b show the used alternatives of Model 1 and displays their modelling in the
software. The influence diagram of Model 2 is shown Figure 6.2. In these figures it is shown
that, not circles but white rectangles represent discrete chance variables, gray rectangles
represent discrete decision variables, and not diamonds but yellow rectangles represent discrete
utility functions, summarized in Table 6.2. The purpose of these figures is not to demonstrate
their readability, but rather to demonstrate how large the network can be. Due to their size,
modeling it by hand tends to be very error-prone, and the automated generation of influence
diagrams is therefore highly appreciable, if not required.

38

Chapter 6. Numerical Investigations

Table 6.2: Translation table theory to software

Variable Theory Software

Chance ◦ →

Decision □ →

Utility ⋄ →

Also, in the upper right-hand corner of each variable in the network in the software, the
group to which this node belongs is specified. And two additional nodes are added: MAU

and Single Fault, which represent the sum of all the utility nodes (Multi-Attribute Utility
function (MAU)) and the single fault assumption, respectively. The MAU node is introduced
because the software requires that for influence diagrams with multiple utility nodes, each
utility node must have a common descendant that is also a utility node. And the Single

Fault node is added to initialize the model when the single fault assumption is applied.

The discrete ID described Section 3.3 is used to compare the method described in Section 5.1.3.
As mentioned in Section 5.1.4, the constructed influence diagrams (overview in Table 6.1) are
not directly applicable to be solved by a discrete ID. A discrete model requires total order on
the decision variables and ensures perfect recall of all previous observations and decisions. An
adaptation to the network is therefore necessitated. All the links specifying total order and
no-forgetting need to be depicted in the network. An algorithm that specifies these links using
the API of Bayes Server Limited (2022) is provided in Appendix B. The LIMID + Myopic
approach does not necessitate additional tweaking to the network. There is an additional
algorithm on top that finds the next best test. This algorithm is depicted in Appendix C.
The software runs on a laptop with a 1.70 GHz processor and 16 GB of random access memory.
Additional algorithms are run in Python 3.9. The API runs on a Java Virtual Machine (JVM)
with a heap space size of 12 GB.

39

C
h
a
p
ter

6
.

N
u
m
erica

l
In
vestiga

tion
s

(a) Model 1: Isolated tests

(b) Model 1: Additional tests

Figure 6.1: Single light influence diagrams depicted in the software

40

Chapter 6. Numerical Investigations

Figure 6.2: Influence diagram of the quadruple light circuit depicted in the software

6.2 Results

For each example, different values of the components’ prior probability P (H) and cost C
are considered (Table 6.3). The cost of each test (c1) is fixed at 2. As pointed out in
Section 5.1.4, when solving the evaluated IDs with the discrete ID, one has to consider all the
different sequences of tests since a prespecified order is required. Therefore, the maximum
expected utility over the set of possible sequences is kept, where the set of possible sequences
is the number of test decision nodes (n) factorial, n!. The average time it takes to find the
optimal sequence is also monitored.

Solving the evaluated IDs with the LIMID + Myopic approach, each possible failure scenario
(e.g., battery is broken, rest is OK) needs to be resolved (perform until End is reached, in
Figure 5.1) as Section 5.1.3 suggests. The results show a weighted expected utility because the

41

Chapter 6. Numerical Investigations

solution to each possible scenario is weighed against the likelihood of that scenario occurring.
The weighted average utility is the sum of all possible failure scenarios, where the total
number of failure scenarios equals 2 to the power of the number of components minus one,
2|components| − 1. Given that each component has two states and the scenario in which all
components are OK is excluded because it is not relevant given a system failure. In this
approach, the amount of time it on average takes to suggest the next best test is kept. The
results obtained for the different evaluated IDs using the two methods are shown in Table 6.4
and 6.5.

Table 6.3: The parameters for the numerical examples

(a) Model 1: Single Light (b) Model 2: Quadruple Light

Components c2 c3 c4 P (Hn = 0)

Battery 10 6 50 0.980
Wire 10 6 50 0.999
Switch 10 6 50 0.990
Lamp 10 6 50 0.970

Components c2 c3 c4 P (Hn = 0)

Battery 10 6 100 0.980
Wire 10 6 100 0.999
Switch 10 6 100 0.990
Lamp 10 6 100 0.970

Table 6.4: Comparison of total expected utility and run time for the solution in the discrete
ID and LIMID + Myopic methods for the single light model

Expected utility [e] Run time [sec]

Single light model (Figure 6.1a, isolation)

Discrete ID Discrete ID
SFA SFA

Possible Sequences = 120 ; 120
time = 29.46 ; 31.27

Maximum Expected Utility = −14.45 ; −13.47

LIMID + Myopic LIMID + Myopic
SFA SFA

Number Scenarios = 31 ; 5
time = 0.23 ; 0.34

Weighted Average Utility = −14.68 ; −13.47

Single light model (Figure 6.1b, additional)

Discrete ID Discrete ID
SFA SFA

Possible Sequences = 720 ; 720
time = 1, 008.10 ; 1, 065.61

Maximum Expected Utility = −14.73 ; −13.76

LIMID + Myopic LIMID + Myopic
SFA SFA

Number Scenarios = 31 ; 5
time = 0.21 ; 0.31

Weighted Average Utility = −14.98 ; −13.76

42

Chapter 6. Numerical Investigations

Table 6.5: Comparison of total expected utility and run time for the solution in the discrete
ID and LIMID + Myopic methods for the quadruple light model

Expected utility [e] Run time [sec]

Quadruple light model (Figure 6.2)

Discrete ID Discrete ID
SFA SFA

Possible Sequences = 2.43 ∗ 1018 ; 2.43 ∗ 1018
Memory Error

Maximum Expected Utility =

LIMID + Myopic LIMID + Myopic
SFA SFA

Number Scenarios = 1, 048, 575 ; 20
time = 4.51 ; 36.92

Weighted Average Utility = −16.34 ; −15.24

In each table, a distinction is made between the results obtained with the Single Fault As-
sumption (SFA) and the multiple-faults one. The SFA is introduced because the algorithm
keeps performing tests before corrective maintenance actions if both are present in the set of
potentially observable variables. By introducing the SFA, the algorithm will stop suggesting
tests when a single fault is found. It is noted that the single fault scenarios are also considered
in the multiple fault ones. The number of scenarios in Table 6.4, having 5 components, is
therefore 2|5|−1 = 31 relaxing the SFA and |5| = 5 assuming only a single fault. The number
of possible sequences remains untouched.

Even though there are advanced inference algorithms, when the number of decision (test)
nodes becomes larger, the exact (discrete ID) method will have memory issues. In the LIMID
+ Myopic, only those nodes with links to the decision nodes are assumed to be known at the
time of making the decision. This assumption can strongly reduce the computational effort
when optimizing the decisions. With increasing memory, i.e., with an increasing number of
links to the decision nodes, the policy domains of the decision nodes increase, making the
solution of the optimization problem intractable. On the other hand, reducing the number of
information links toward the decision node leads to suboptimal solutions.

The discrete ID model outperforms the LIMID + Myopic model with a higher maximum
expected utility in all scenarios in which the SFA is removed, as indicated by the values in
Table 6.4, except for the values where the discrete ID cannot compute the expected utility
for the network, as seen in Table 6.5. From this table, it is observed that the discrete is
not scalable for networks where the total number of test nodes is large, whereas the Myopic
can solve this problem within an acceptable amount of time. The average percentage of
change between the max values of the discrete ID models (−14.45;−14.73) in Table 6.4 and
the weighted average utility of the LIMID + Myopic models (−14.68;−14.98) is 1.59% and
1.70%, respectively. Assuming a SFA, the performance of the discrete ID and LIMID +
Myopic models is equal. More details about the differences in their scalability and decision-
making performance can be found in Section 6.3 and 6.4. The inequality between the models
in Table 6.4 is that an additional observation to determine the health of the trigger is needed

43

Chapter 6. Numerical Investigations

for the additional model. Therefore, the expected utility is slightly lower for the latter.

6.3 Scalability (Computational Time)

In this section, the scalability of the two methods is tested to verify the applicability of the
model construction in a scalable way. A problem with a range of components and functions
in a series is tested in isolation. See Figure 6.3 for an abstract representation of the network.
This network relates to the IDs of Model 1, since these networks also consist of a series of
components and functions. However, the network of Model 1 consists of only 5 or 6 test
decision nodes, and the example of Figure 6.3 continues until there are 20 test decision nodes.
Model 2 also consists of 20 test decision nodes. However, in contrast to the configurations of
Model 2, the network does not have parallel structures and consists of a series where all the
probabilities and costs are equal. The number of components N and tests M is also equal.
Hence, the scalability of both methods is compared based on inference times.

Figure 6.3: Abstracted influence diagram for scalability comparison

In describing an approach to find a solution to a problem with a final decision table (full
decision sequence specified as in the discrete ID) requires a lot of computing time and is
intractable in common software applications. Extending the problem to 10 available tests
would involve a final decision table of over 61 billion entries and the number of possible
sequences of over 3.6 million. Considering the Java virtual machine with a heap space size
of 12 GB, the experiment returns an out of memory error when nine decision variables are
employed. Thus, Figure 6.4 considers only the discrete ID model up to 8 decision nodes and
is not further considered because of the memory limitation.

The average time to come up with the next best test is, in all cases, an advantage with the
LIMID + Myopic. The LIMID + Myopic average time is considered acceptable when the
SFA is removed. The average inference time when under the SFA drastically increases for
the number of test nodes ≥ 17. This phenomenon has already been noticed in Table 6.4
and 6.5, where the run time is longer when the SFA is used. Modeling the SFA explicitly
in the network in the current way is by linking all health nodes to the Single Fault node,
which fosters an increase in density in the network, since finding a failed component will
set the other components to OK, causing nodes to no longer be regarded as independent of
each other. The increase in density causes longer inference times because dense networks are
computationally more expensive (Kjærulff and Madsen, 2008).

44

Chapter 6. Numerical Investigations

Figure 6.4: Inference time comparison of single sequence of the discrete ID and average time
to come up with the next best test in the LIMID + Myopic

When diving deeper in the individual values, not observable from the figures, the main increase
in inference time is found when initializing the first evidence (e.g. Single Fault= yes and
error states). Where for the SFA considering 20 decision nodes (Model 2: Quadruple Light),
it is on average 2500 seconds and for the relaxation of the assumption, it is 15 seconds. When
the evidence is set and the next best test algorithm can be executed, the average inference
time is slightly higher than when the single fault is removed.

It has also been discovered that every test adds value (Tn = yes) in this case. This assumes
that, for every test, the expected value is checked. Therefore, the average inference time is
also increasing for larger values since it needs to check every test, excluding the ones already
performed. Considering different network structures (as in Table 6.5), the set of suggested
tests is smaller and, therefore, the average time to suggest the best next test is less.

6.4 Policy Evaluation

A sensitivity and performance analysis of both approaches is described in this section to
demonstrate the degree of effectiveness (accuracy) of the advised diagnostic action. The
examples in this analysis consist of a network in a series where the probabilities are equal,
ascending, descending, and random, accompanied by different cost parameters. The example
used for both analyses is the Single light model (Figure 5.4, isolation).

45

Chapter 6. Numerical Investigations

6.4.1 Sensitivity analysis

Different prior probabilities (P (H)) are chosen for the components’ failure probability. And
various cost parameters (C) are considered for each example. These are specified as follows:

Table 6.6: Sensitivity parameter for the numerical examples

(a) Probabilities P (Hn = 0)

Type P (Hbattery) P (Hwire1) P (Htrigger) P (Hwire2) P (Hlamp)

Equal 0.920 0.920 0.920 0.920 0.920
Ascending 0.850 0.880 0.920 0.950 0.990
Descending 0.990 0.960 0.920 0.890 0.850
Randomized Random uniform between 0.850 - 0.990

(b) Costs

Name Definition Range Step size

Cost of carrying out a test c1 0 -
Replacement cost c2 10 -

Incorrect replacement penalty c3 5, 15, ..., 75 10
Failure-to-repair cost c4 25, 50, ..., 400 ∗2

A total of 40 unique cost configurations appear and for each cost configuration, four different
probability types can be applied. This increases the total of unique cost-probability configur-
ations to 160. When the probability type is Randomized, different probability draws are made
based on samples from a uniform distribution between 0.850 and 0.990 for each component’s
health. A sensitivity analysis is considering the policy for both the discrete ID and LIMID
+ Myopic. The graphs in Figure 6.5 display the first decision policy, examining whether the
exact method represents the same first decision as the approximate one, bearing in mind the
difference in ratio and prior probabilities for both with and without the SFA.

Figure 6.5a is the model that assumes a single fault. All different costs and prior configurations
revolve around the same decision policy. This indicates that the LIMID + Myopic generates
an optimal solution for the decision problem considering the SFA. Where the SFA is removed
(Figure 6.5b) and the replacement cost and incorrect replacement penalties are larger than
the failure-to-repair cost (cost ratio ≥ 2.5), the models choose an optimal first decision. The
same holds when the prior probabilities are equal. However, cost ratios of > 1 and equal
failure probabilities of components will probably not emerge in real-life scenarios. Cost ratios
of > 1 suggest that the inability to fix a component means that the entire system will have
to be replaced. This will not be possible for systems considered in this report.

For the models where there is a greater difference in prior probabilities, the LIMID + Myopic
model (removing the SFA) tends to be less accurate. These models more often choose a
suboptimal path. This behavior comes from the fact that sometimes a single test does not
yield anything by itself (Myopic), whereas its outcome may be crucial for selecting a second,
very informative test. This behavior is captured when the full sequence is specified since it
includes these informational links.

46

Chapter 6. Numerical Investigations

(a) Single fault assumption

(b) Single fault assumption removed

Figure 6.5: Policy change for different costs and prior probabilities

47

Chapter 6. Numerical Investigations

6.4.2 Comparison

The final analysis is done using each possible configuration of the models in Subsection 6.4.1.
The previous subsection compares the suggested first test of the LIMID + Myopic to any
other suggested test in the network. Here, proper analysis is done for the models where the
single fault assumption is removed (Figure 6.5b). In these models, many of the first decisions
deviate from the optimal decision, especially in the interested area (cost ratio ≤ 1 and different
probabilities). It is thus determined how far they deviate from the ideal when considering
a full solution (not only first decision) because this method would choose a different order
but can still come up with an efficient solution. Figure 6.6 and 6.7 depict the normalized
difference between the expected utility of the best sequence of the discrete ID (DIDEU) and
the expected utility of the LIMID + Myopic (LIMIDEU) on the y-axis. The range of the
distance is determined by the expected utility when all components are tested (ALLEU). The
values that are plotted on the y-axis are then specified as follows:

Normalized distance =

∣∣∣∣LIMIDEU −ALLEU

DIDEU −ALLEU
− 1

∣∣∣∣
where 0 indicates the same expected utility (discrete ID and LIMID + Myopic). Each box in
Figure 6.6 and 6.7 extends from the data’s lower to upper quartiles, with an orange line at
the median. The whiskers extend from the box to show the range of the data. Flier points
(circles outside each box) are those past the end of the whiskers. Based on the 160 unique
cost-probability configurations found in Section 6.4.1, the number of data points in each of
the four columns of Figure 6.6 is as follows: 40; 40; 40; and 40, where each column has equal
priors but different cost ratios. And the number of data points in each of Figure 6.7’s five
columns is: 28; 36; 36; 36; and 24, where each column has similar cost ratios but many priors
can be present.

It was found that in discrete ID, the number of tests suggested is more than one. The
expected utility is therefore reduced and dependent on the outcomes of the initial set of first
tests. Hence, it, for example, suggests testing wire1, wire2, and trigger, whereas the LIMID
+ Myopic is forced to only perform one test. Even if the probability of a defect in a component
has the greatest likelihood. The difference is that, since we assume to relax the single fault
assumption, if one component is likely to be faulty, the other components are likely to be
faulty with its original prior probability (as seen in Appendix A). It proposes to still reduce
the uncertainty in these nodes due to the higher cost, in contrast to the low cost for testing.
The discrete ID suggests, therefore, that you simply test multiple components, whereas the
LIMID + Myopic only accepts one test at a time. The ratio between replacement cost,
incorrect replacement penalty and the failure to fix cost is of fewer importance considering
these assumptions.

The difference between the test cost and failure to fix cost is of much greater importance.
Hence, this is when the difficulty of the corrective maintenance action comes to mind. When
the cost of failure to fix becomes larger, accompanied by the assumption to always perform a
test before a corrective maintenance action if both are suggested, the method will keep testing
until no more tests are suggested or left before performing such an action. This behaviour
can be seen when comparing the boxplots of Figure 6.7a with 6.7b. Higher test cost (c1) leads
on average to an decrease in distance between the discrete ID and LIMID + Myopic since it

48

Chapter 6. Numerical Investigations

will decrease the number of tests it performs.

(a) c1 = 2

(b) c1 = 5

Figure 6.6: Normalized distance between the discrete ID and LIMID + Myopic in the range
of the discrete ID and testing all components per probability specification

49

Chapter 6. Numerical Investigations

(a) c1 = 2

(b) c1 = 5

Figure 6.7: Normalized distance between the discrete ID and LIMID + Myopic in the range
of the discrete ID and testing all components per ratio binned

50

Chapter 6. Numerical Investigations

6.5 Chapter Conclusion

The proposed LIMID + Myopic solution approach and its potential were evaluated on dif-
ferent criteria. The evaluation procedure covered both performance and scalability. The
performance under the Single Fault Assumption (SFA) is similar to the exact solution as
found using the discrete ID. However, the discrete ID is not scalable both with and without
the SFA, whereas the LIMID + Myopic is only scalable by removing the SFA. When in the
LIMID + Myopic, the SFA is considered, their inference times increase drastically since the
domain that is evaluated for the inference is larger and requires computationally more storage.
The decision policy without the SFA more often chooses a suboptimal path. However, their
normalized distance to the exact solution is relatively close and particularly in the region we
are interested where the cost ratio is between 0 − 0.5. In conclusion, the solution approach
provided by the LIMID + Myopic method appeared to be a good approximation and provides
sufficient insight into the scalability and performance of a decision support method based on
an influence diagram for assisting service engineers in their diagnostics tasks. Nevertheless,
to emphasize that in the end, corrective maintenance actions are not included in the set of
next best tests when both tests and corrective actions are suggested. Therefore, the proposed
method’s applicability for real-life applications will require some more adjustments to the
network before actual usage.

51

Chapter 7

Conclusion and Future Work

The goal of this thesis was to develop a decision support method for assisting service engineers
in their diagnostics tasks by advising an improved diagnostic action. This concluding chapter
starts off with a summary of the main contributions of this thesis. This section is followed by
several limitations of the existing contribution. The final section introduces some points for
future work within this context.

7.1 Conclusion

In this work, an introduction to the extension of Bayesian networks into influence diagrams
to model decision processes is given. Influence diagrams are a compact yet powerful tool that
allows both for the elicitation of complex processes by non-computer experts and their sound
analysis using the known paradigm of Bayesian inference.

The first research sub-question; How can an influence diagram be applied in this domain?, has
received little attention by literature. Hence, this report has proposed a method for solving
large and complex decision-making problems to come up with a decision sequence. The
method uses a novel implementation of a Limited Memory Influence diagram accompanied
by an approximate Myopic approach to suggest the next best test. Such implementation
has not been seen before in the literature. The solution framework is constructed to be
fully generic and therefore applicable to any problem in this domain. This framework is also
compatible with the software used by ESI (TNO) and can be modified and operated through
Python. The representation of a decision process in a Limited Memory Influence diagram
explicitly distinguishes the information known to a decision-maker at the time of the decision
from that which is not. This allows us to memory efficiently model diagnostic information in
these influence diagrams which yields a computationally tractable solution.

The second sub-question; How to build such a model in a scalable way?, is also investigated.
The building blocks for modeling influence diagrams are derived from medical applications.
Because the current approach uses a Bayesian network for diagnostics, a transformation from
the existing Bayesian network to an influence diagram is therefore proposed. This transform-
ation only depends on a mapping between nodes in the network and the set of possible tests.
The framework is therefore independent of the Bayesian network structure and is also applic-
able to other sequencing problems. The question on the use of the structural or functional

52

Chapter 7. Conclusion and Future Work

model is not applicable since the modeling is independent of the network, as long as a good
test-node relationship is described. In the ideal case, these influence diagrams are directly
generated from existing technical information without the need to first have a Bayesian net-
work. Although the process begins with identifying hard-system down scenarios, all design
decisions are made with the goal of extending performance and predictability. Because influ-
ence diagrams can also be used in a dynamic environment for state-transition models.

The main research question; How to develop a decision support method based on an influ-
ence diagram for assisting service engineers in their diagnostics task by advising an efficient
diagnostic action?, is partly answered. The diagnostic efficiency is the final criteria. The
solution of the proposed method is equal to the exact solution of the decision problem under
the single fault assumption. Relaxing this assumption does lead to a performance decrease
but is considered comparable since its normalized distance to the exact method is, in all cases,
relatively close. The suggested method outperforms the exact solution for larger networks
because of the computational restrictions arising in the exact method. For larger networks,
the computation time to generate the next best test is very appealing when the single fault
assumption is relaxed since it suggests the next test in less than 40 seconds. The spike in
computation time considering the single fault assumption is mainly dependent on the time
it takes to initialize and execute the model with the initial evidence. After the initialization,
the computation times are very similar. Testing different topologies reinforce our belief that
the method is suitable for different network configurations.

7.2 Limitation

As seen in the results, the Myopic approach does not guarantee an optimal sequence. Some-
times a single test does not yield anything by itself, whereas its outcome may be crucial for
selecting a second, very informative test. The expected value of a pair of tests may be greater
than that of a single test. In that case, the Myopic approach is misleading. This phenomenon
is mentioned in Subsection 6.4.1. Where the discrete influence diagram solution approach
produces different first decisions as seen in Figure 6.5b.

The model’s size is not shrunk to the minimum. As mentioned in Section 5.1.2, the size can
be further reduced by limiting the number of possible states of a node. For the test result
nodes, the number of states can be reduced from 3 to 2, excluding the not done state, but this
was not done. Different values in Section 6.3 could therefore be obtained since the number of
entries into a (final) decision node is reduced.

In the current approach, the assumption holds that one should always perform a test before
a corrective maintenance action if both are suggested in the case where the single fault
assumption is relaxed. What if a corrective maintenance action can also be considered a
test? Since the replacement of a part can be seen as an intervening action, this is currently
modelled as the final node (action) if there are no more tests to perform. It may be the case
that just replacing the component is more cost-efficient than testing another component to
further increase the reliability of your diagnosis. This is currently not handled.

Finally, there is a lack of concise evaluation criteria that use the expected utility of the

53

Chapter 7. Conclusion and Future Work

worst possible sequence as the lower benchmark rather than the expected utility when all
components are tested. This is because it is self-evident that when the test costs increase, the
Myopic moves further and further away from simply performing all the tests. An evaluation
that takes the worst possible sequence was not feasible within the time frame of this thesis. It
requires some immense simulation time since a proper analysis of the choices should consist
of an analysis of all possible sequences of tests (including the empty sequence). Therefore,
the choice of taking the expected utility when all components are tested is a proper initial
benchmark.

7.3 Further Work

Despite the fact that influence diagrams (IDs) have been around a long time, there are still
directions for future work. In IDs where the full decision sequence is specified, the outcomes
of all nodes must be conditioned on all the outcomes of their parents. This implies that when
generating the equivalent tree, all decision scenarios must be explored, including redundant
paths. Such a tree can be beneficial to help with the explainability of the diagnostic actions.
However, as the problem is dealt with an increasing scale, the usefulness of a discrete influence
diagram diminishes. A point is reached where the complexity of the interactions creates data
overload (memory error). Frequently, the constraint is merely the size of the diagram and the
inability to deal with the entire domain of influences in one model.

A line for further research could be to explore approximate or faster and more memory-efficient
inference algorithms when the full decision sequence is specified. When such an algorithm
can be employed, one can explore the possibility of not having to go through all the possible
test sequences. A smarter algorithm that reduces the number of possible sequences can be
introduced. Because the time required to find the correct sequence is O(m!), where m denotes
the number of tests in the network.

Another line could be to explore what happens to the decision policy if we remove the test
cost independence assumption and use another alternative of Model 1: Single Light that does
not test components in isolation but also performs tests on functions. The discrete ID also
takes future decisions into account in their decision-making and the LIMID + Myopic only
considers a one-time step ahead. Therefore, by considering test cost dependence, the discrete
ID should therefore have more advantages in order to perhaps perform a more expensive test
first, which then entails a set of cheaper but very efficient tests.

Some important modeling issues can be tackled in further research. Firstly, an important
distinction should be made between probing or intervening actions. Probing is a passive
observation of the state of a variable, and intervention is an active action that forces a
variable to be in a certain state (Kjærulff and Madsen, 2008). Intervening actions change the
system. Intervening actions are not discussed in this report but can be modeled as we merely
do with isolated tests. The replacement of a part can also be seen as an intervening action.
However, because of the assumption that one should always perform a test before a corrective
maintenance action if both are suggested, one does not consider corrective maintenance actions
in the set of possible next actions. A research opportunity is, therefore, to include corrective
maintenance actions in the set of possible next actions.

54

Chapter 7. Conclusion and Future Work

And the final point to improve the model is that the current representation does not include
the cost of testing the entire system again after some maintenance. It immediately checks
if the system is operational after some corrective maintenance action is performed. Since
testing/checking the entire system could take a substantial amount of time for typical high-
tech machinery, and if you only replace a small, simple component, is it then necessary to
check the entire system, or is it more beneficial to check other components first.

55

Bibliography

Alzghoul, A., Backe, B., Löfstrand, M., Byström, A., and Liljedahl, B. (2014). Comparing
a knowledge-based and a data-driven method in querying data streams for system fault
detection: A hydraulic drive system application. Computers in Industry, 65.

Atoui, M. A. and Cohen, A. (2021). Coupling data-driven and model-based methods to
improve fault diagnosis. Computers in Industry, 128:103401.

Bayes Server Limited (2022). Computer software. https://www.bayesserver.com/. [Online;
accessed 2022-01-03].

Bielza, C., Fernández del Pozo, J., and Lucas, P. J. (2008). Explaining clinical decisions by
extracting regularity patterns. Decision Support Systems, 44:397–408.

Bielza, C., Gomez-Olmedo, M., and Shenoy, P. (2011). A review of representation issues and
modeling challenges with influence diagrams. Omega, 39:227–241.

Cai, B., Huang, L., and Xie, M. (2017). Bayesian networks in fault diagnosis. IEEE Trans-
actions on Industrial Informatics, PP:1–1.

Clemen, R. (1996). Making Hard Decisions: An Introduction to Decision Analysis.

Cobb, B. R. (2021). Statistical process control for the number of defectives with limited
memory. Decision Analysis, 18(3):203–217.

Cooper, H., Iyengar, G., and Lin, C.-Y. (2019). Deep Influence Diagrams: An Interpretable
and Robust Decision Support System, pages 450–462.

Diez, F., Yebra, M., Bermejo, I., Palacios-Alonso, M., Arias, M., Luque, M., and Pérez Mart́ın,
J. (2017). Markov influence diagrams: A graphical tool for cost-effectiveness analysis.
Medical Decision Making, 37:183–195.

ESI (TNO) (2022). Technical memo rd. Unpublished confidential document. [Accessed from;
Van Gerwen, Emile. Cited with permission].

Fernández del Pozo, J., Bielza, C., and Gómez-Olmedo, M. (2005). A list-based compact
representation for large decision tables management. European Journal of Operational
Research, 160:638–662.

Gómez, M. (2004). Real-world applications of influence diagrams. In Advances in Bayesian
Networks, pages 161–180. Springer Berlin Heidelberg.

56

https://www.bayesserver.com/

Bibliography

Hovgaard, M. and Brincker, R. (2016). Limited memory influence diagrams for structural
damage detection decision-making. Journal of Civil Structural Health Monitoring, 6:205–
215.

Isermann, R. (2006). Fault diagnosis systems an introduction from fault detection to fault
tolerance. SERBIULA (sistema Librum 2.0).

Jensen, F. (2001). Bayesian Network and Decision Graphs.

Jensen, F., Lauritzen, S., and Olesen, K. (1990). Bayesian updating in causal probabilistic
networks by local computations. Computational Statistics Quarterly, 5.

Jensen, F., Nielsen, T., and Shenoy, P. (2006). Sequential influence diagrams: A unified
asymmetry framework. International Journal of Approximate Reasoning, 42:101–118.

Jolandie Konig (2021). Knowing the difference. https://www.eaglecmms.com/

knowing-the-difference-between-predictive-preventive-and-corrective-maintenance/.
[Online; accessed 2022-04-08].

Khaled, A., Hansen, E., and Yuan, C. (2013). Solving limited-memory influence diagrams
using branch-and-bound search. International Symposium on Artificial Intelligence and
Mathematics, ISAIM 2012.

Kjærulff, U. and Madsen, A. (2008). Bayesian Networks and Influence Diagrams.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and Tech-
niques.

Lacave, C., Luque, M., and Diez, F. (2007). Explanation of bayesian networks and influence
diagrams in elvira. IEEE transactions on systems, man, and cybernetics. Part B, Cyber-
netics : a publication of the IEEE Systems, Man, and Cybernetics Society, 37:952–65.

Lauritzen, S. and Nilsson, D. (2001). Representing and solving decision problems with limited
information. Management Science, 47.

Luque, M., Diez, F., and Carlos, D. (2016). Optimal sequence of tests for the mediastinal
staging of non-small cell lung cancer. BMC Medical Informatics and Decision Making, 16.

Mauá, D., Campos, C., and Zaffalon, M. (2011). Solving limited memory influence diagrams.
Journal of Artificial Intelligence Research, 44.

Meltzer, D. (2001). Addressing uncertainty in medical cost–effectiveness analysis: Implica-
tions of expected utility maximization for methods to perform sensitivity analysis and the
use of cost–effectiveness analysis to set priorities for medical research. Journal of Health
Economics, 20(1):109–129.

Mirnaghi, M. S. and Haghighat, F. (2020). Fault detection and diagnosis of large-scale hvac
systems in buildings using data-driven methods: A comprehensive review. Energy and
Buildings, 229:110492.

Mohd Amiruddin, A., Zabiri, H., Taqvi, S. A. A., and Tufa, L. D. (2020). Neural net-
work applications in fault diagnosis and detection: an overview of implementations in
engineering-related systems. Neural Computing and Applications, 32.

57

https://www.eaglecmms.com/knowing-the-difference-between-predictive-preventive-and-corrective-maintenance/
https://www.eaglecmms.com/knowing-the-difference-between-predictive-preventive-and-corrective-maintenance/

Bibliography

Namburu, S., Wilcutts, M., Chigusa, S., Qiao, L., Choi, K., and Pattipati, K. (2006). System-
atic data-driven approach to real-time fault detection and diagnosis in automotive engines.
pages 59 – 65.

Nielsen, J. and Sørensen, J. (2010). Planning of o&m for offshore wind turbines using bayesian
graphical models. Reliability, Risk and Safety: Back to the Future, pages 1081–1088.

Pearl, J. (2000). Causality: Models, reasoning, and inference, second edition. Causality, 29.

Pearl, J. (2005). Influence diagrams-historical and personal perspectives. Decision Analysis,
2.

Shachter, R. D. (1986). Evaluating influence diagrams. Oper. Res., 34:871–882.

Thierno M. L., D., Henry, S., Ouzrout, Y., and Bouras, A. (2018). Data-based fault diagnosis
model using a bayesian causal analysis framework. International Journal of Information
Technology & Decision Making, 17.

Tidriri, K., Chatti, N., Verron, S., and Tiplica, T. (2016). Bridging data-driven and model-
based approaches for process fault diagnosis and health monitoring: A review of researches
and future challenges. Annual Reviews in Control, 42.

Venkatasubramanian, V., Rengaswamy, R., Kavuri, S., and Yin, K. (2003). A review of
process fault detection and diagnosis part i: Quantitative model-based methods. Computers
& Chemical Engineering, 27:293–346.

Zhang, N. and Poole, D. (1994). A simple approach to bayesian network computations.
Proceedings of the Tenth Canadian Conference on Artificial Intelligence, pages 171–178.

Zhao, Y., Li, T., Zhang, X., and Zhang, C. (2019). Artificial intelligence-based fault detection
and diagnosis methods for building energy systems: Advantages, challenges and the future.
Renewable and Sustainable Energy Reviews, 109:85–101.

58

Appendices

A Model 1: Single Light visualization in software (BayesServer)

Function test

The model utilized in this example is the Bayesian network represented in Figure 4.2a. The
initial evidence as mentioned in Section 4.1, that the trigger is on and there is a battery
present, is already modeled in the Figures A.1 and A.2. After deciding to execute a test to
gather further information about one of the network’s states, the decision-maker decides to
measure the voltage at the output of Iwire1 or Iwire2 (Figures A.1 and A.2).

(a) Measuring voltage at bold circled node

(b) Not measuring voltage at bold circled node

Figure A.1: Posterior network after observation on Iwire1

The presence of electricity at a wire end indicates that the system is operational at all preced-
ing nodes of that wire end. As can be seen in Figures A.1a and A.2a, all of the previous nodes’
posterior health probabilities (state = OK) are equal to 100 percent. The latter observation,
Iwire2 = yes, identifies the source of the problem quickly, specifically that the light is broken
(P (Hlight = broken) = 100%).

59

Bibliography

(a) Measuring voltage at bold circled node

(b) Not measuring voltage at bold circled node

Figure A.2: Posterior network after observation on Iwire2

While measuring no voltage at Iwire1 (Figure A.1b), it implies a defect in Hbat and/or Hwire1,
as well as a possibility (prior probability) that Htrig, Hwire2, and Hlamp are also broken. This
is due to the fact that there is a chance that several defective components will arise. The
change may be subtle at first, but it is present. The measurement of indicating no voltage
at Iwire1 reduces the change of P (Hlight = broken) and increases the likelihood of the others.
However, the prior probability of being broken persists.

60

Bibliography

B Link specification algorithms

Algorithm to generate the given sequence in a network

Algorithm 1: Generate the specified sequence in the network

Function GenerateSequenceNetwork(B,N, S, T,R):
Data: B: BayesServer represents the Java modules, N : the network representing

the influence diagram, S: one possible sequence of decision nodes
accompanied by corresponding test result nodes, T : set of test decision
nodes, and R: set of diagnostic decision nodes

Result: A fully specified network structure with correct distributions

for s ∈ S do
for node from ∈ s do

add link to test = list(of all subsequent decision nodes) ;
if add link to test is not empty then

for node to ∈ add link to test do
Add link node from to node to ;

end

for r ∈ R do
if link between r and node from not exists then

Add link node from to r ;

end

end

end

for node ∈ T +R do
normalize distribution for node ;

end
Return N

End Function

61

Bibliography

C Next best test algorithm

Additional algorithm (Myopic) on top of the LIMID solution that finds the next
best test

Algorithm 2: Myopic test selection given a network configuration

Function NextBestTest(B,N, TR,EU):
Data: B: BayesServer represents the Java modules, N : the network representing

the influence diagram, TR: set of test decision nodes at 100% accompanied
by their test result node, and EU : current expected utility of the network

Result: Returns the node of the next best test to perform

expected values← (empty list) ;
for test result node ∈ TR do

ev value← (empty list) ;
prob result = probability table of current test result ;
if 1.0 not in prob result then

for state ∈ test result node do
set evidence of state to 100% ;
retrieve the expected utility of the network given that evidence ;
multiply the found expected utility with probability of the test result ;
append the value to the ev values list ;
remove evidence of state ;

end

end
append sum of ev value to expected values ;

end

best index = argmax(expected values) ;
if EU > max expected values then

Return (empty list)
else

Return TR[best index]
end

End Function

62

	List of Tables
	List of Figures
	List of Acronyms
	Glossary
	Introduction
	Background
	Literature Review
	Research Questions
	Structure of this Document

	Problem Description
	Context
	Scope
	Specification

	Theory
	Characteristics Probabilistic Networks
	Bayesian Network
	Construction of Bayesian Networks

	Influence Diagram
	Representation of Influence Diagrams
	The diagnosis problem
	Sequential Influence Diagram
	Limited Memory Influence Diagram

	Running Examples
	Model 1: Single Light
	Model 2: Quadruple Light

	Methodology
	Influence Diagram-based Method for Diagnosis
	Structure of the Model
	Test Modeling
	Solution LIMID
	Solution Discrete ID

	Numerical Investigations
	Software and Models
	Results
	Scalability (Computational Time)
	Policy Evaluation
	Sensitivity analysis
	Comparison

	Chapter Conclusion

	Conclusion and Future Work
	Conclusion
	Limitation
	Further Work

	Bibliography
	Appendices
	Model 1: Single Light visualization in software (BayesServer)
	Link specification algorithms
	Next best test algorithm

