
 Eindhoven University of Technology

MASTER

Towards achieving synergy in multiple SLAM algorithms via pose-graph optimization

Walk, B.W.M.

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/1ea7f3df-654e-44a4-b6a8-7dd1c9167344

Towards achieving synergy in multiple SLAM algorithms

via pose-graph optimization

MSc in Systems and Control

Bjorn W.M. Walk
0964797

Department of Mechanical Engineering

Dynamics and Control Group

Supervisor(s):

Dr. Ömür Arslan, Mechanical Engineering, Dynamics & Control

Committee:
Prof. Nathan van de Wouw (Chair), Mechanical Engineering, Dynamics & Control
Dr. René van de Molengraft, Mechanical Engineering, Control Systems Technology

DC 2021.091

Eindhoven, October 13, 2021

February 21, 2020

Declaration concerning the TU/e Code of Scientific Conduct
for the Master’s thesis

I have read the TU/e Code of Scientific Conducti.

I hereby declare that my Master’s thesis has been carried out in accordance with the rules of the TU/e Code of Scientific
Conduct

Date

…………………………………………………..…………..

Name

…………………………………………………..…………..

ID-number

…………………………………………………..…………..

Signature

…………………………………………………..…………..

Submit the signed declaration to the student administration of your department.

i See: https://www.tue.nl/en/our-university/about-the-university/organization/integrity/scientific-integrity/
The Netherlands Code of Conduct for Scientific Integrity, endorsed by 6 umbrella organizations, including the VSNU, can be found
here also. More information about scientific integrity is published on the websites of TU/e and VSNU

04-10-2021

B.W.M. Walk

0964797

https://www.tue.nl/universiteit/over-de-universiteit/integriteit/wetenschappelijke-integriteit/
https://www.tue.nl/universiteit/over-de-universiteit/integriteit/wetenschappelijke-integriteit/

Towards achieving synergy in multiple SLAM algorithms

via pose-graph optimization

B.W.M. Walk

0964797

DC 2021.091

Abstract— Simultaneous Localization and Mapping (SLAM)
is one fundamental challenge of mobile robotics and has many
algorithmic and technical solutions. Unfortunately, there is no
best solution, and each SLAM approach has its advantages and
disadvantages over alternatives under certain circumstances.
However, identifying the limitations of SLAM algorithms is
a research challenge itself. In recent years, due to the many
available SLAM approaches, combining the existing SLAM
algorithms instead of creating new ones received significant re-
search interest. This paper aims to contribute towards achieving
synergy in multiple SLAM algorithms running in parallel, by
proposing a pose-graph optimization approach to autonomously
self-assess the localization performance of each SLAM al-
gorithm in the integration process. This allows automatic
determination of which SLAM data should be used/ignored
in fusing multiple SLAM methods. The conducted experiment
performed with the F1Tenth miniature racecar shows that the
proposed approach leads to an accurate determination of the
localization performance of each considered SLAM method.
This indicates that after the implementation of the proposed
approach, it is possible for a mobile robot to online self-assess
the localization performance of different SLAM algorithms
without a reference/ground truth.

Index Terms— autonomous driving, localization, SLAM,
pose-graph optimization, self-assessment of localization

I. INTRODUCTION

Perception algorithms are key components of mobile

robots and provide functionalities such as estimating the

state of the robot, building a map of its surroundings,

and detect obstacles. One mobile perception approach is

Simultaneous Localization and Mapping (SLAM), which

grants mobile robots the ability to construct a map of

the perceived environment, while simultaneously localizing

themselves with respect to this map [1]. SLAM has been

researched extensively over the past decades and many

different methods have been proposed [2]. SLAM empowers

several mobile robot applications and has been implemented

in many different domains from an indoor office robot to

autonomous submarines [3]. In general, SLAM methods can

be defined by means of two paradigms: filter-based SLAM,

and Graph-based SLAM. The first paradigm is a filtering

technique that incorporates the new information as it comes

available, due to this incremental behavior they are also

The author is an M.Sc. candidate of the Systems and Control master
program, Department of Mechanical Engineering, Dynamics and Control
Group, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eind-
hoven, The Netherlands, 04-10-2021. Emails: b.w.m.walk@student.tue.nl
Supervisors: dr. Ö. Arslan, prof. dr. ir. N. van de Wouw.

known as online SLAM techniques. On the other hand,

graph-based SLAM estimates the full trajectory and map

from all available information and solves, therefore, the full

SLAM problem [4]. The choice of the SLAM method usually

depends on the application and other factors such as compu-

tational load and equipped sensors. Based on these factors

each SLAM algorithm has certain advantages over the other.

However, in practice identifying these advantages usually

requires extensive research of each specific SLAM method

[5]. Thus, substantially limiting the SLAM capabilities and

increasing the deployment costs. Additionally, the tools and

framework available to assess the performance of SLAM

are limited and generally require human interaction and/or

external devices. Furthermore, due to the extensive research

regarding single-robot SLAM, application of multiple SLAM

algorithms running in parallel received significant research

attention [6]. Generally, two approaches are considered; the

first approach applies multiple identical SLAM algorithms

with multiple data sources, e.g. multi-robot setting, and the

second approach considers multiple different SLAM methods

with one shared data source, e.g. single-robot setting. Their

purpose is to improve the overall performance of mapping

as well as localization based on map-fusion and assume each

considered SLAM method is performing well, not assessing

the SLAM performance.

In this paper, we present a pose-graph optimization frame-

work that utilizes multiple different SLAM algorithms run-

ning in parallel on a single robot and averages the obtained

trajectory of each SLAM algorithm to obtain an optimized

reference trajectory of the mobile robot for online self-

assessment of localization performance of SLAM algorithms.

This is considered to be an essential step towards achieving

SLAM synergy in multiple SLAM algorithms running in

parallel since from this point onward we are able to assess

the SLAM localization performance online, such that we

can indicate how well each method is performing. Thus,

being able to determine at what time instance to share

information from the well-performing method to the less

performing method, thereby making it possible to achieve

SLAM localization synergy.

A. Motivation and Problem Formulation

As SLAM is a key component of modern-day mobile

robots, many different SLAM methods are available. Espe-

cially in the commonly used framework for robotics called

Robotics Operating System (ROS). This makes it challenging

to choose a SLAM method for your own specific needs.

Although some research has been conducted in order to

merge multiple SLAM algorithms by considering multiple

robots or different frameworks [7]–[10], they usually do

not consider, or only partially consider, the online quality

of the obtained results. To truly achieve robotic autonomy

with multiple SLAM algorithms running on a single robot

in parallel, it is required to enable robotic platforms to

automatically self-assess the quality of the obtained data. In

practice, some sort of accurate reference trajectory or map,

also known as ground truth, is often used for the quality

assessments of SLAM [5], [11]–[14]. Therefore, the first

step in achieving synergy in multiple SLAM algorithms is to

obtain an accurate reference trajectory without using external

devices or human interaction. This would enable a robot to

autonomously decide when to share the localization results

from the well-performing localization method to the less

performing localization method. In this paper, we present

a pose-graph optimization approach that is able to self-

assess the localization of SLAM by using multiple SLAM

algorithms in parallel, given that the map is accurately

estimated.

B. Contributions and Organization of the Paper

This paper proposes a pose-graph optimization approach

to enable robotic platforms to automatically obtain the state

of a mobile robotic platform as accurately as possible to

achieve autonomy for the quality assessment of the obtained

data of multiple SLAM algorithms. This paper contributes

to achieving synergy in multiple SLAM algorithms as an

autonomous performance measure is a necessary prerequisite

for determining which data to share and when. Presently,

SLAM methods are evaluated based on data obtained from

external devices or human interaction, which limits the full

potential of achieving robotic autonomy as well as increasing

the development costs.

The remainder of this paper is organized as follows.

The problem of SLAM, with in particular localization, is

summarized, related work on the state-of-the-art methods and

improvements are reviewed, and a more in-depth explanation

of pose-graph optimization is given in Section II. In Section

III, the approach proposed in this paper is discussed and

is experimentally validated in Section IV. The paper is

concluded in Section V along with future research directions.

II. BACKGROUND

In this section, a brief overview of widely used localization

methods is presented. Furthermore, we provide an in-depth

introduction to the pose-graph optimization framework as it

is the main topic of this paper.

A. Localization Problem

The SLAM problem may be divided into two subprob-

lems: 1. the localization problem and 2. the mapping prob-

lem; which are closely connected, like the ’chicken and

egg’ causality dilemma. The localization problem can be

described as the estimation of the state belief of the mo-

bile robot’s trajectory x = [x0, ...,xN] for time t = [t0, ..., tN]
given all observations z = [z0, ...,zN], control inputs u =
[u0, ...,uN−1], and map m, represented by a probability den-

sity function such that:

p(x|z,u,m). (1)

This can be extended with the mapping problem m to

become:

p(x,m|z,u), (2)

which is also known as the SLAM problem. However, in this

paper we are only interested in the localization problem of

SLAM.

B. Localization Methods

Localization is essential for a mobile robot as it estimates

the mobile robot’s pose (position and orientation) relative

to the environment (map). If a mobile robot does not know

where it is relative to the environment (map), it is difficult to

decide what to do next. Two common SLAM approaches for

solving the localization problem of a mobile robot are filter-

based localization and graph-based localization [1]. Since

we only focus on the localization problem of SLAM, we are

not limited to use only SLAM methods. Therefore, we also

consider scan-matching-based odometry. It is a widely used

method for estimating the relative pose and given the initial

pose can solve the localization problem of a mobile robot.

1) Filter-based Localization: Filter-based localization of-

ten uses parametric Kalman filtering, nonparametric particle

filtering, and their combination for estimating the robot pose

in a known map. They are generally straightforward to

implement and do not have high computational complexity.

However, they only recursively estimate the current robot

pose and do not take into account the whole trajectory,

making them vulnerable for drift.

The Kalman filter is one of the earliest and widely used

filtering algorithms [1], in which the belief of the robot’s

pose is represented by a Gaussian [4]. Additionally, Kalman

filters assume that the control input and sensor information

are subjected to Gaussian noise. The main advantage of using

Kalman filters for localization is that they are relatively sim-

ple to implement, and thus do not require high computational

power. However, since beliefs are represented by a Gaussian,

which is uni-modal, its representation capabilities are limited.

Kalman filtering also requires a proper initialization, since

a Gaussian function does not allow a multimodal belief

representation.

Particle filters, on the other hand, are nonparametric and

represent the belief of the robot pose by a set of samples,

called particles [1]. Each particle is weighted and given an

importance factor based on the likelihood of the robot’s

measurements being taken at the sample pose. Over time the

particles are resampled in a more likely pose of the mobile

robot, based on the new measurements and updated weight

of the particles. The main advantage of particle filters is that

they do not make the Gaussian assumption and represent any

probability distribution using sample particles. However, the

key problem of particle filters is that in general, in order to

accurately localize, the number of particles is scaled with

the dimension of the environment. Therefore, for relatively

large-scale environments particle filters are computationally

demanding.

Over the past years, several improvements are introduced

to minimize the disadvantages of the filtering techniques by

improving the accuracy and reducing computational com-

plexity [15]–[18]. Furthermore, both filtering techniques are

provided in ROS [17], [19]–[21].

2) Graph-based Localization: In contrast to the filter-

based localization technique, graph-based localization tech-

niques estimate the entire trajectory of a robot [22]. Although

graph-based localization is computationally more expensive

than filtering-based alternatives, recent algorithmic develop-

ments enable fast graph-based localization that is suitable for

real-time operations [23]. Graph-based techniques involve

constructing a graph, whose nodes represent poses of the

mobile robot. In this graph, an edge between two nodes

represents a relative rigid transformation, that constrains the

connected poses. The geometric constraints between adjacent

nodes are obtained from observations of the environment

or odometry information between two consecutive poses.

The crucial problem of graph-based techniques is to find

the optimal rigid transformation between nodes, such that

the measurements are maximally consistent with a given

map. Because graph-based techniques take into account all

available sensor information, its accuracy is generally higher

than filter-based techniques as there is less drift. However,

performing the optimization can be computationally demand-

ing.

Improvements of graph-based techniques are mainly fo-

cused on reducing the computational complexity by solving

the optimization problem more efficiently [23]–[27]. The

ROS implementations of graph-based techniques can be

found in [25]–[27].

3) Scan-Matching-based Odometry: In contrast to previ-

ously mentioned localization methods, which provide the

absolute pose of the robot, we consider the widely used

odometry method based on scan-matching. The goal of scan-

matching-based odometry is to find the relative translation

and rotation between two laser scans taken by the robot at

the reference position and the current position [28]. Scan-

matching is an optimization problem that looks for the best

match between the scans starting from the initial guess

transformation. Most common solutions to scan-matching

problem are Iterative Closest Point (ICP) [29], [30] and

its variant based on point-to-line metric (PLICP) [31]. In

ICP, each point in the reference scan is associated with

the corresponding point in the current scan according to an

Euclidean distance [32]. Hence, the optimal transformation is

considered as a solution to the minimization of the distance

between correspondences. However, not all points in the

reference scan might have reasonable corresponding points

in the current scan, and to overcome this issue the point-to-

line metric is suggested. In PLICP, the points in the reference

scan are associated with the lines extracted from the points in

the current scan, thus, achieving faster convergence and min-

imizing the number of iterations. Furthermore, to minimize

the computational complexity, most of the algorithms rely on

the dead-reckoning systems to predict the transformation and,

thus, to decrease the search-space [28]. Although it provides

the results faster, the robot’s dead-reckoning error affects the

robustness of the algorithm by predicting the initial guess far

from the global maximum [32]. The ROS implementation of

a scan-matching-based localization method can be found in

[33].

C. Pose Graph Optimization

Consider a list of poses in the planar setup p = [p0, ...,pN]
containing n+ 1 poses pi = [xi,yi,θi]

T , describing the posi-

tion (xi,yi) and orientation (θi) of a mobile robot at consec-

utive time instances t = [t0, ..., tN]. Suppose we can obtain

for each pair of poses (pi, p j) a relative pose measurement

p̄
j
i describing a measurement of the relative pose between pi

and p j by considering that pi and p j are the absolute poses

defining a coordinate system and p
j
i is a change of coordinate

system. Then, the measured relative pose between pi and p j

is given by:

x̄
j
i = (x j − xi)cosθi − (y j − yi)sin(θi) (3)

ȳ
j
i = (x j − xi)cosθi +(y j − yi)sin(θi) (4)

θ̄
j

i = θ j −θi (5)

which is also known as the inverse of compounding p
j
i =

pi ⊖p j [34]. However, it is more convenient to describe the

pose measurements as rigid transformation matrices from the

robot frame r to the world frame W:

p̄i = T̄
W
ri
=

[
Ri ti

0 1

]

=

cos(θi) −sin(θi) xi

sin(θi) cos(θi) yi

0 0 1

 (6)

for i= 0, ...,n, where p̄i comprises a translation vector t∈R
2

described by Cartesian coordinates (xi,yi)
T and a rotation

matrix Ri ∈ SO(2) described by corresponding orientation θi

such that p̄i ∈ SE(2). In this paper we switch between both

representations regularly. The relative pose between pi and

p j can then be represented by TW
i and TW

j as:

T̄
i
j = TW

j · (TW
i)−1. (7)

In general, these relative pose measurements are consid-

ered to be the constraints between poses assumed by the

mobile robot at different instants of time and can be de-

scribed by odometry and loop closure constraints. Odometry

constraints are based on the sequential measurements of the

ego-motion of the robot, usually provided by proprioceptive

sensors (wheel odometry, GPS, or IMU), or by exteroceptive

sensor-based techniques (scan matching, feature registration,

etc) [35]. Loop closure constraints are non-sequential and

set up when the current observation is matched with a past

measurement. They require the use of exteroceptive sensors

(LiDAR, vision sensors, etc).

Given the constraints for all available pairs (pi,p j), the

objective of pose graph optimization is to estimate the

configuration of poses p∗ that maximizes measurements

(constraints) satisfaction [36]. A particularly insightful way

of modeling the pose estimation problem is using graph

formalism. Generally, a graph G(V,E) consists out of vertices

V (also called nodes) and edges E (also called constraints),

and can be either directed or undirected, see Figure 1.

Directed graphs have edges that can only traverse in one

direction, while undirected graphs indicate that each edge

can traverse in both directions. The metrical properties of the

graph, such as the length of edges and the positions of nodes,

are irrelevant. In the pose-graph framework, each vertex in

the graph represents an absolute pose, and each edge in

the graph represents a relative pose between two arbitrary

vertices. By convention, if an edge is directed from node i to

node j, the corresponding constraint (relative transformation)

is expressed in the reference frame of node i. The objective of

pose-graph optimization via graph formalism is to associate

an absolute pose to each vertex of the graph based on the

constraints. As the constraints are given as relative poses

and not absolute poses, according to standard procedure,

we set the initial pose of the robot as the origin of the

optimization reference frame, i.e p0 = [0,0,0]. Thus, our

objective is to estimate the configuration p∗ = [p∗
1, ...,p

∗
n]

that maximizes constraints satisfaction while minimizing

constraint violation, in which we exclude p0 from the to-

be-optimized configuration p∗. We consider the optimization

problem to be [37]:

T ∗ = argmin
T

∑
(i, j)∈E

||Ti
j − T̄

i
j||2, (8)

which is a non-convex optimization due to the non-linear

terms in the orientation of the robot. Roughly speaking,

the optimization problem looks for the estimate Ti
j that

minimizes the mismatch with respect to the measurements

T̄
i
j.

A B C

(a)

A B C

(b)

Fig. 1: An simple example of an undirected (1a) and directed

(1b) graph with three nodes, and three edges of which one

is a loop closure

III. PROPOSED POSE-GRAPH OPTIMIZATION APPROACH

We employ the current pose-graph framework to formulate

new relations and constraints for a pose-graph optimization

strategy that averages the obtained poses, such that the

optimized pose is as accurate as possible. For this purpose,

a new library in python is created. The following section

describes how to build a pose-graph, the optimization strat-

egy, windowing of incoming data and afterward weighting

the optimized results.

p0 p1 p2 p3

Fig. 2: Example of a pose-graph containing N = 4 nodes

with K constraints set up by k different localization methods

indicated by the colors red, blue and green. The prior node

is set up as the first node of the graph and each node in p =
[p0, p1, p2, p3] is initialized with an initial estimate p(0) =
[p0(0), p1(0), p2(0), p3(0)].

A. Building the Pose-Graph

Consider k different localization methods. Each localiza-

tion method is synchronized and sampled such that they

provide an equal amount of poses composing a trajectory

of the mobile robot for the same time instances. In the

pose-graph, nodes of the graph represent the absolute pose

estimate, which is later optimized, and constraints represent

the relative transform between nodes estimated by the k

localization methods. In total, we have N nodes and K

repetitive bidirectional constraints. Given the aforementioned

settings, we build the pose-graph as follows:

1) The first step is to initialize the graph by introducing

the nodes and setting up the origin. For example, in

Figure 2, we set up the nodes p = [p0, .., p3], where

p0 is the origin of the graph. The origin determines to

which node all other nodes are optimized and remains

constant during optimization.

2) Next, based on the localization method, edges of the

graph are constructed. The edges from origin are uni-

directional and between other nodes the edges are

bidirectional. For example, in Figure 2, we consider

three localization methods, so there are three edges

between each node indicated by red, blue and green.

3) After, the pose graph is set, we initialize each node such

that p = p(0).
4) Finally, we assign each edge with the corresponding

relative transformation derived from the absolute poses

obtained by the localization methods.

By following these steps, we have build the pose-graph nec-

essary for pose-graph optimization. An illustrative example

is given in Figure 2.

B. Pose-graph Optimization Strategy

Given the pose-graph G, we can define the optimization

problem as follows:

argmin
{t j ,R j | j=0,...,N}

∑
(i, j)k

d(T j
i [k],T((ti,Ri),(t j,R j)), (9)

where t0 and R0 are related to the origin and, therefore,

known, and d denotes a distance metric. However, each

optimized node influences the result of the other nodes in

the pose-graph. Thus, to ensure that each node results in

the most optimal value, instead of optimizing a whole set

of nodes at once, we optimize sequentially by considering

all nodes fixed except for the to-be-optimized node. Thus,

we can rewrite the optimization problem, considering ti,Ri

is fixed, except for j, as:

argmin
{t j ,R j}

∑
i∈K j

d(T j
i [k],T((ti,Ri),(t j,R j)). (10)

If we consider that:

t̂ j[k] = T
j
i [k]ti

R̂ j[k] = R
j
i [k]Ri,

(11)

we can describe the optimization problem as the minimiza-

tion of the cost function:

C(t,R) = argmin
{t j ,R j}

∑
i∈K j

deucl(t j, t̂ j[k])
2

︸ ︷︷ ︸

1

+d∠(R j, R̂ j[k])
2

︸ ︷︷ ︸

2

.

(12)

where deucl(ta, tb) denotes the Euclidean distance between

translation vectors ta, tb ∈ (R2∨R
3), and d∠(Ra,Rb) denotes

a distance metric between the rotations Ra,Rb ∈ SO(3).
SO(3) is a Special Orthogonal Group denoting that the set

of rotation forms a Lie-group:

SO(3) = {R ∈ R
3|R⊤R = I3x3,det(R) = 1}. (13)

Assuming that the position estimate t and rotation estimate

R are independent, the cost function can be described by a

translation minimization problem and rotation minimization

problem, Equation (12): 1 and 2, respectively [35]. The

translation minimization problem is a linear least-square

problem and can be easily solved by calculating the mean

of translations:

t =
1

N

N

∑
i=0

ti. (14)

However, the rotation minimization problem is a non-convex

problem. Hence, rotation averaging is more difficult to solve

[38]. We approach this problem by recalling that R ∈ SO(3),
which is associated with Lie-algebra consisting of the set of

all skew-symmetric 3x3-matrices. A skew-symmetric matrix

Ω may be represented in terms of a 3-rotation vector v =
(v1,v2,v3)

⊤ by:

[v]x =

0 −v3 v2

v3 0 −v1

−v2 v1 0

. (15)

Every rotation in SO(3) can be represented by the angle-axis

representation:

v = θ v̂, (16)

where θ is the angle about an axis represented by a unit

3-vector v̂. The angle-axis representation is not unique and

an alternative representation is given by (2π − θ)(−v̂). To

be unique, every rotation can be represented by a rotation

through an angle by at most π . The connection between the

two representations of a rotation (R3 and SO(3)) is giving by

the exponential and logarithmic mapping. Using Rodrigues’

formula the exponential map on exp[·]x : R3 −→ SO(3) can be

computed as:

exp(θ v̂) = I + sin(θ)[v̂]x +(1− cos(θ))([v̂]x)
2. (17)

And its inverse, the logarithmic map on log(·) : SO(3)−→R
3

by:

log(R) =

{

arcsin(||y||2 y
||y||2 , if y 6= 0.

0, if y = 0.
(18)

where y = (y1,y2,y3) can be derived from the skew-

symmetric matrix Ω:

Ω =
1

2
(R−R⊤) =

0 −y3 y2

y3 0 −y1

−y2 y1 0

. (19)

In this paper, we consider single rotation averaging in

SO(3) under the geodesic distance metric by using a geodesic

L2-mean algorithm [39]. This solves the rotation minimiza-

tion problem C(R) given by:

C(R) =
n

∑
i=1

d∠(R,Ri)
2 (20)

and is also known as the Karcher mean of rotations [40]. We

utilize a Karcher mean algorithm provided by [41] which is

known to be convergent. The algorithm 1 is as follows:

Algorithm 1 Geodesic L2-mean

Input: Set of rotations R = [R0, ...,RN], tolerance ε and

maximum number of iterations imax.

Output: The average rotation R.

Set the first rotation in the set of rotations R as initial value,

R = R0.

1: for the set of rotations R do

2: Compute the mean of rotations r =mean(log(R⊤R)).
3: end for

4: while norm(r)≥ ε and the number of iterations i ≤ imax

do

5: Update R = Rexp(r).
6: Increase the number of iterations i = i+1.

7: end while

Where we consider the following commonly used distance

metrics between two rotations Ra and Rb:

• Angular Distance: The angular distance, also known as

geodesic distance, is defined to be the angle correspond-

ing to the relative rotation RaRT
b , which can always be

chosen such that 0 ≤ θ ≤ π by, if necessary, reversing

the direction of axis. Thus,

dangle(Ra,Rb) = θ = ||log(Ra,R
T
b)||2, (21)

where log(R) denotes the logarithmic map, see Equa-

tion (18). We could equally write this for relative

1For the weights introduced in Section III-D, line 2 should be updated

to r = 1
w ∑

len(R)
i=0 (w[i]∗ log(R⊤R[i])).

rotations RT
a Rb, RaRT

b or RT
a Rb since it is all the same

due to the distance metric being bi-invariant (SO(3)×
SO(3)−→ R

+).

• Chordal Distance: The chordal distance is the Frobe-

nius norm of Ra −Rb:

dchord(Ra,Rb) = ||Ra −Rb|| (22)

and is related to θ using Rodrigues Formula, see Equa-

tion (17), as follows:

dchord(Ra,Rb) = 2
√

2sin
θ

2
. (23)

• Quaternion Distance The quaternion distance between

two rotations is defined by:

dquat = (Ra,Rb) = ||ra − rb||, (24)

which describes the Euclidean distance between two

quaternion representations ra,rb of Ra,Rb respectively.

As this distance metric is also bi-invariant, we can relate

this to the angular distance as follows:

dquat = 2sin(
θ

4
). (25)

Since we consider the angular distance dangle to be the

rotation angle between rotation RaRT
b , the intrinsic metrics

induced by these three metrics ensure that all these metrics

are essentially the same, except for a scaling factor, for small

errors:

dangle = θ ,

dchord ≈
√

2θ ,

dquat ≈
θ

2
.

(26)

Thus, due to the strong coupling in Equation (26), Algorithm

1 allows to select any of these angular metrics for solving the

average rotation. For convenience, we consider the distance

metric d∠ to be the angular distance dangle. Thus, the

optimization problem becomes:

argmin
{t j ,R j}

∑
j∈N

deucl(t j, t̂ j[k])
2 + ∑

j∈N
dangle(R j, R̂ j[k])

2, (27)

which is giving by the following optimization algorithm:

Algorithm 2 Pose-graph Optimization with Translation and

Rotation Averaging

Input: A pose-graph containing prior node Np, to-be-

optimized nodes N, initial estimates E and constraints

K spanned by localization methods k, tolerance ε and

maximum number of iterations imax.

Output: The optimized graph G containing optimized poses.

Initialize the error, error[N] = ∞ and error[Np] = 0, and the

graph G = E.

1: while abs(max(error))≥ ε and the number of iterations

i ≤ imax do

2: for each node in N do

3: Calculate the poses-to-average P[N] = Kk[N] ·N.

4: Average the poses-to-average Pavg =mean(P[N]).
5: Calculate the new error: new error =

norm(Pavg −G[N]).
6: Update the graph: G[N] = Pavg.

7: Update the error[N] = new error.

8: end for

9: Increase iterations i = i+1.

10: end while

C. Sliding Through Data

As the mobile robot progresses through the environment

and receives new pose estimations over time, our incoming

data keeps growing. In order to achieve real-time optimiza-

tion of the trajectory of the robot, we consider a sliding

window through the obtained data. This sliding window w is

an arbitrary variable that determines the amount of data that

should be optimized, from the current time instance t to the

past t−(w−1). Note that we have (w−1) since we start from

time instance t0. For the given pose estimates of the sliding

window, we optimize locally by building the pose-graph of

window w. The size window w should be chosen carefully.

When the window size is chosen relatively big, the noisy

measurements in the obtained data will go unnoticed, as well

as increasing the computational time drastically. However,

when it is chosen too small, the noisy measurements might

dominate the optimization and the results can become biased.

Consider the following example of an mobile robot traversing

through the environment obtaining in total p = [p0, ..., pN]
consecutive pose estimates over time instance t = [t0, ..., tN].
From the time instance that t = tw−1, we start to locally

optimize the received poses by building the pose-graph of

p = [pt−(w−1), ..., pt] given the constraints obtained by k

localization methods and the initial pose estimates equal to

zero-pose ([0,0,0]). From the local optimization we obtain

optimized poses p∗ = [p∗
t−(w−2), ..., p∗t] with respect to the

prior node pt−(w−1) in the window w. After optimization

we receive new data from the mobile robot and the window

moves one time instance, such that t > tw−1. If available, the

obtained locally optimized poses from the previous window

are used as the initial pose estimate for the pose-graph

optimization of the next window. In contrast, the newly

received pose is initially estimated as zero-pose. This process

p0 p1 p2At t = t(w−1) = t2 :

w

p
∗,0
0

p
∗,1
1

p
∗,1
2

p3At t = t3 :

w

p
∗,0
0

p
∗,1
1

p
∗,2
2

p
∗,1
3

p4At t = tN = t4 :

w

p
∗,0
0

p
∗,1
1

p
∗,2
2

p
∗,2
3

p
∗,1
4Optimal result p∗ :

Fig. 3: Illustrative example of the functioning of a sliding

window w = 4 through the data N = 5 for local pose-graph

optimization.

continues until the last pose pN is received at time instance

t = tN , thus, performing N − (w − 1) local optimizations

to obtain optimized poses p∗ = [p∗, ..., p∗N]. Note, that due

to the fact that we only have N − (w − 1) optimizations

and not N, depending on the amount of poses p and the

window w, the considered poses are optimized from 0 up

to w− 1 times. An illustrative explanation is given in Fig.

3, where we consider w = 3 (see red square) and N = 4.

Furthermore, we introduce a variable i, which keeps track

of how many times each pose is optimized. The first local

optimization is performed at t = tw−1 = t2 for the poses

p1 and p2 with respect to the prior node p0 (blue). After

optimization we have obtained poses p∗ = [p∗,i0 , p
∗,i
1 , p

∗,i
2] with

i = [0,1,1]. Next, we obtain a new pose at t = t3 and the

window w shift by one time instance, such that p
∗,1
2 and p

∗,1
3

become the to-be-optimized poses with respect to the new

prior pose p
∗,1
1 . Thus, we obtain p∗ = [p∗,i0 , p

∗,i
1 , p

∗,i
2 , p

∗,i
3] with

i = [0,1,2,1]. Finally, we optimize at time instance t = tN to

obtain the final optimized poses p∗ = [p∗,i0 , p
∗,i
1 , p

∗,i
2 , p

∗,i
3 , p

∗,i
4]

with i = [0,1,2,2,1]. Hence, the amount of optimizations of

each optimized pose p∗ is as follows:

i = 0, if time t = t0.

1 ≤ i < w−1, if time t1 ≤ t < tw−1.

i = w−1, if time tw−1 ≤ t < tN−(w−1).

N − (w−1)≤ i ≤ 1, if time tN−(w−1) ≤ t ≤ tN .

(28)

D. Quantifying the Localization Performance by Weighting

Based on the local pose-graph optimization we can address

the quality of each considered localization method k at tN
based on the window of instances t = [tN−(w−1), ..., tN] by

evaluating the error with respect to the obtained optimized

poses at the same time instances. The error of the translation

(t) and rotation (R) components for each separate localiza-

tion methods k is as follows:

errtrans[k] =
1

N

N

∑
i=0

(deucl(t
∗
i , ti[k])

2

errrot [k] =
1

N

N

∑
i=0

(d∠(R
∗
i ,Ri[k])

2,

(29)

such that we obtain k translation and rotation errors for

each node i ∈N. Based on these errors the weights for each

localization method are calculated accordingly by:

weight[k] =W0 +
(1−W0)∗ ((∑k

i=0 err[i])− err[k])

∑
k
i=0 err[i]

, (30)

where W0 is a constant factor which describes the minimum

value of the weight, such that when W0! = 0 we do not disre-

gard a localization method completely. Thus, the weights can

be a value between W0 up to 1. As we obtain these weights,

we want to use them for the next incoming data, therefore

the optimization algorithm becomes:

Algorithm 3 Weighted Pose-graph Optimization with Trans-

lation and Rotation Averaging

Input: A pose-graph containing prior node Np, to-be-

optimized nodes N, initial estimates E and constraints K

spanned by localization methods k, tolerance ε , maximum

number of iterations imax, the weights w labeled to the

localization methods.

Output: The optimized graph G containing optimized poses.

Initialize the error, error[N] = ∞ and error[Np] = 0, and the

graph G = E.

1: while abs(max(error))≥ ε and the number of iterations

i ≤ imax do

2: for each node in N do

3: Calculate the poses-to-average P[N] = Kk[N] ·N.

4: Label each pose-to-average with a weight based

on Equation (30): w[P] = w[k] ∈ Kk[N].
5: Average the poses-to-average Pavg = sum(w[P] ∗

P[N])/sum(w[P).
6: Calculate the new error: new error =

norm(Pavg −G[N]).
7: Update the graph: G[N] = Pavg.

8: Update the error[N] = new error.

9: end for

10: Increase iterations i = i+1.

11: end while

IV. EXPERIMENTAL VALIDATION

In this section, we perform the experimental validation of

the approach introduced in the previous section. We start by

introducing the experimental setup, including the platform

and considered localization methods. Afterward, we compare

the quality of the weighting with the ’ground truth’ provided

by a motion capture system.

A. Experimental Setup

The experiment is conducted with a teleoperated mobile

robot, F1tenth platform [42], following an s-shaped trajectory

with a speed of 1m/s in a rectangular work-area for a typical

indoor environment, see Figures 4. The considered mobile

robot is a 1-to-10th scaled miniature racecar, equipped with

Light Detection and Ranging sensor (LiDAR). The laser data

obtained by the LiDAR is used as the input for the considered

localization methods provided in ROS, in this case, Hector

SLAM (filter-based) [43], Gmapping (particle-filter based)

[44], Google Cartographer (pose-graph based) and Laser

Scan Matcher (LSM) (scan-matching based) [33]. We syn-

chronize the poses received from each localization method at

a sampling frequency of half the frequency of the slowest lo-

calization method by using the package message filters avail-

able in ROS [45]. This package subscribes to messages from

multiple sources and outputs them only if it has received a

message on each of those sources with approximately the

same timestamp. After we have received the synchronized

poses, we apply our approach with a window size w = 5

to obtain the averaged pose estimation based on our pose-

graph optimization approach. The ’ground truth’ is provided

by the motion capture system, Optitrack, which realizes

high-speed low-latency (millimeter) tracking of the vehicle

https://optitrack.com/applications/robotics/.

(a) The considered F1Tenth platform equipped with LiDAR

(b) The experimental work-area with drawn motion

Fig. 4: The experimental setup of the proposed experiment

The considered s-shape trajectory can be described as

follows: First, the vehicle drives straight for approximately 5

meters; Then it makes a u-turn in a counterclockwise direc-

tion with maximum steering angle; Afterward, it continues

driving straight for approximately 5 meters; Next, it makes a

u-turn in a clockwise direction with maximum steering angle;

Finally, it drives straight again for approximately 5 meters

and stops.

B. Discussion

To validate if the weighting of each localization method

accurately represents the real-world scenario, we compare

the trajectory of each localization method, including our

approach, with the trajectory obtained by the motion capture

system based on the Absolute Trajectory Error (ATE) for the

translation and rotation components separately:

AT Etrans = |deucl(t
∗
a, tb[k])

2|
AT Erot = |d∠(R∗

a,Rb[k])
2|.

(31)

We use statistical metrics such as Root Mean Square Error

(RMSE), mean, median, standard deviation, and maximum

error, to represent the evaluation as well as the ideal weight-

ing calculated from the absolute trajectory errors using Equa-

tion (30). Furthermore, based on the obtained trajectories, we

judge if the changes occurring in weighting are in line with

what we can observe from the trajectories.

For the conducted experiment the trajectories estimated

by each localization method are depicted in Figure 5a along

with the optimized trajectory (optimized) and trajectory

given by the motion capture system (mocap). The optimized

trajectory is obtained via our pose-graph averaging opti-

mization approach, given the weighting in Figure 6 for the

poses from laser scan matcher (lsm), hector slam (hector),

gmapping (gmap), and Google Cartographer (google). The

trajectory depicted in Figure 5a can be divided into three

regions in which significant changes in weighting occur. In

the first region, see Figure 5b, we can observe that after

5 seconds, google cartographer starts to deviate from the

alternative localization methods. Therefore, we expect that

the weighting of google cartographer becomes less. It can

be observed in Figure 6d that at this time instance google

cartographer is indeed starting to be weighted less. However,

at the start of the second region, indicated by Figure 5c

google cartographer is able to recover and, on the contrary,

gmapping starts to fail with respect to alternatives. This shift

of accuracy is indicated by the weighting, as it can be seen

from Figures 6c and 6d that gmapping starts to perform less

while google cartographer recovers. Finally, at the last region

of the trajectory, we can notice that gmapping slowly starts

to recover, and google cartographer slowly starts to deviate at

the end. This behavior is supported by our estimated weight-

ing as gmapping obtains a higher weighting and google

cartographer a lower. Meanwhile, both lsm and hector show

relatively high performance throughout the whole trajectory

and, thus, are weighted higher (see Figures 6a and 6b).

Remarkably, the rotation weight of lsm, see Figure 6a is

1 or very close to 1 throughout the whole trajectory. Thus,

indicating that the optimized rotation is equal to the estimated

rotation of lsm. This seems highly unlikely, but can be ex-

plained by revising the Karcher mean algorithm (Algorithm

1). In this algorithm, the average rotation is initialized as

https://optitrack.com/applications/robotics/

-2 -1 0 1 2 3 4 5 6 7

x-coordinate [m]

-1

0

1

2

3

4

5

y
-c

o
o

rd
in

a
te

 [
m

]

optimized lsm hector gmap google mocap

1

2

3

(a)
(b)

-2 -1 0 1 2 3 4 5 6

x-coordinate [m]

0.5

1

1.5

2

2.5

3

3.5

y
-c

o
o
rd

in
a
te

 [
m

]

10.02

11.0211.8312.62
13.42

14.02

14.99

16.02

16.82

17.6

optimized

lsm

hector

gmap

google

mocap

(c) (d)

Fig. 5: (a) The obtained trajectories of the considered localization methods given by a configuration of poses indicated

by laser scan matcher (lsm), hector SLAM (hector), gmapping (gmap), and google cartographer (google), as well as our

approach and the motion capture system indicated by graph and mocap respectively. The red regions indicate the instances

when significant changes in performance happen. (b) The zoomed version of the first region. Every third illustrated pose is

labeled with the corresponding time instance at which the pose is obtained. (c) The zoomed version of the second region.

(d) The zoomed version of the third region.

the first rotation of a given list of rotations, which in this

case is lsm. When the tolerance is chosen relatively high

or/and the maximum number of rotations is chosen relatively

low, the algorithm terminates too early and the result does

not fully converge. However, when decreasing the tolerance

or/and increasing the maximum number of iterations, the

trade-off occurs that the computational time of rotation

averaging drastically increases. For example in Figure 7, in

which we have increased the number of iterations for the

Karcher mean algorithm from 10 to 100 while remaining

the same tolerance, our approach results in significantly less

optimized poses during rotation. Meanwhile, the weighting

of the methods does not significantly change. Hence, the

proposed weighting represents the actual picture, which we

can observe from the trajectories, and is comparable with

the ideal weighting profile obtained by the motion capture

system.

Overall, based on the observed trajectories, gmapping

and google cartographer estimate the poses quite poorly in

comparison with hector slam and laser scan matcher. This

is confirmed by the evaluation metrics related to the ATE,

see Table I. From the presented table we can observe that

from the localization methods, hector slam can be considered

the best localization method in the proposed environment.

Closely followed by laser scan matcher, which overall

performs very similar to hector slam, whereas gmapping

0 5 10 15 20 25 30

time [s]

0.4

0.6

0.8

1

tr
a

n
s
la

ti
o

n
a

l
w

e
ig

h
t

[-
]

0 5 10 15 20 25 30

time [s]

0

0.5

1

ro
ta

ti
o

n
a

l
w

e
ig

h
t

[-
]

0.2

0.4

0.6

0.8

1

s
te

e
ri
n

g
 u

n
it
 [

-]

lsm lsm ideal steering

1 32

(a)

0 5 10 15 20 25 30

time [s]

0.4

0.6

0.8

1

tr
a

n
s
la

ti
o

n
a

l
w

e
ig

h
t

[-
]

0 5 10 15 20 25 30

time [s]

0

0.5

1

ro
ta

ti
o

n
a

l
w

e
ig

h
t

[-
]

0.2

0.4

0.6

0.8

1

s
te

e
ri
n

g
 u

n
it
 [

-]

hector hector ideal steering

1 2 3

(b)

0 5 10 15 20 25 30

time [s]

0.4

0.6

0.8

1

tr
a

n
s
la

ti
o

n
a

l
w

e
ig

h
t

[-
]

0 5 10 15 20 25 30

time [s]

0

0.5

1

ro
ta

ti
o

n
a

l
w

e
ig

h
t

[-
]

0.2

0.4

0.6

0.8

1

s
te

e
ri
n

g
 u

n
it
 [

-]

gmap gmap ideal steering

2 31

(c)

0 5 10 15 20 25 30

time [s]

0.4

0.6

0.8

1

tr
a

n
s
la

ti
o

n
a

l
w

e
ig

h
t

[-
]

0 5 10 15 20 25 30

time [s]

0

0.5

1

ro
ta

ti
o

n
a

l
w

e
ig

h
t

[-
]

0.2

0.4

0.6

0.8

1

s
te

e
ri
n

g
 u

n
it
 [

-]

google google ideal steering

2 31

(d)

Fig. 6: The estimated weights at each time instance for: (a) laser scan matcher (lsm), (b) hector SLAM (hector), (c) gmapping

(gmap), (d) google cartographer (google), versus ideal weighting given the motion capture system.

-2 -1 0 1 2 3 4 5 6 7

x-coordinate [m]

-1

0

1

2

3

4

5

y
-c

o
o
rd

in
a
te

 [
m

]

00.380.971.62.172.79 3.37 3.99 4.79 5.41 5.99
7.02 8.17

11.46

16.77

20.72
23.14

24.34

25.9627.14

optimized lsm hector gmap google mocap

(a)

0 5 10 15 20 25 30
0

0.5

1

lsm: it=10

lsm: it=100

0 5 10 15 20 25 30
0

0.5

1

hector: it=10

hector: it=100

0 5 10 15 20 25 30
0

0.5

1

gmap: it=10

gmap: it=100

0 5 10 15 20 25 30
0

0.5

1

google: it=10

google: it=100

time [s]

ro
ta

ti
o

n
a

l
w

e
ig

h
t

[-
]

(b)

Fig. 7: The comparison of experimental results with maximum rotational iterations of 10 and 100: (a) The obtained trajectories

of the considered localization methods given for a maximum rotational iterations of 100, with similar threshold as Figure

5a. (b) The weighting of each localization method with a maximum rotational iterations of 10 and 100.

Absolute Trajectory
Error (ATE)

Laser Scan
Matcher

Hector
SLAM

Gmapping
Google
Cartographer

Standard
average

Optimized
uniformly weighted

Optimized
weighted

Optimized
ideal weighted

RMSE translation 0.322 0.306 0.477 0.511 0.404 0.384 0.380 0.366

RMSE rotation 0.019 0.016 0.086 0.048 0.042 0.024 0.020 0.022

Mean translation 0.104 0.094 0.228 0.261 0.172 0.147 0.144 0.134

Mean rotation 3.787e-4 2.623e-4 7.344e-3 2.270e-3 2.564e-3 5.669e-4 4.093e-4 4.676e-4

Median translation 0.112 0.089 0.238 0.246 0.171 0.147 0.145 0.133

Median rotation 1.394e-4 1.555e-06 6.354e-4 1.991e-3 6.919e-4 1.352e-4 1.324e-4 6.015e-05

STD translation 0.065 0.060 0.147 0.166 0.110 0.100 0.093 0.092

STD rotation 7.744e-4 7.474e-4 0.017 2.710e-3 5.332e-3 1.441e-3 8.033e-4 1.035e-3

Max translation 0.230 0.214 0.637 0.570 0.413 0.339 0.320 0.318

Max rotation 5.450e-3 3.652e-3 6.853e-2 1.898e-2 2.415e-2 9.898e-3 5.450e-3 5.868e-3

TABLE I: Statistical evaluation via absolute trajectory error for translation and rotational components of the full trajectory

of laser scan matcher, hector slam, gmapping, google cartographer, the standard average of the 4 mentioned localization

methods, the uniformly weighted pose-graph optimized average of the 4 mentioned localization methods, the pose-graph

optimized average with self-assessed weights for the 4 mentioned localization methods, the pose-graph optimized average

with ideal weights obtained by the motion capture system for the 4 mentioned localization methods

and google cartographer demonstrate worse results for our

experiment. Notably, in rotation laser scan matcher performs

better than hector slam, while in translation the opposite

is observed according to both STD, RMSE, and maximum

error.

The significance of the proposed optimization approach

can be highlighted by comparing it with the standard average

given the four localization methods. We can notice from

the table I that by applying optimization and weights the

statistical measures are closer to the results from the motion

capture system (optimized ideal weighting). Hence, we can

conclude that we can assess the performance of localization

without using external devices or human interaction as in-

tended. We can see that when a localization method starts to

ill-perform, the weighting noticeable change; indicating that

the localization performance of that specific method starts

to lack. We can also observe that the failing of a method

does not mean it is completely excluded from the pose-

graph optimization, therefore being able to recover from a

low weighting.

V. CONCLUSIONS

This paper presents an online pose-graph optimization

approach for self-assessing the localization performance of

multiple localization methods running in parallel. By ap-

plying the proposed approach, we enable robotic platforms

to autonomously self-assess the obtained localization poses

from each localization method as well as the final result

necessary for achieving SLAM synergy. Thereby, being

able to answer the question, when to share the localization

data from the well-performing localization method to the

less well-performing. The approach has been proven to

accurately represent the localization performance of each

implemented localization method by determining weights

based on the translation and rotation error with respect to

the pose-graph optimization approach. The potential future

research includes extensive experiments for validation of

the proposed approach for more and/or different localization

methods available on ROS, and more challenging environ-

ments. Advanced rotation averaging algorithms are necessary

for more accurate optimization of the rotation with a reduced

computational load. Furthermore, since we have answered

the question of when to share data, the new research question

regarding achieving SLAM synergy becomes: how to share

the localization result from the well-performing localization

method to the less performing localization method?

APPENDIX I

LOCALIZATION METHODS IMPLEMENTED IN ROS

A. Gmapping

Gmapping is a ROS Debian package that provides particle

filter based SLAM [44], and needs, in contrast to Hector

SLAM and Googe Cartrographer, odometry information to

function. As the system setup in this project does not provide

such information, the Laser Scan Matcher package is used

to provide the necessary odometry information. Gmapping

uses a Rao-Blackwellized Particle Filter for localization, in

which each particle carries an individual map of the envi-

ronment [46]. It computes an accurate proposal distribution

by not only taking the robots movement, as well as the the

most recent observation into account. Furthermore, it uses

an adaptive resampling technique to maintain a reasonable

variety of particles and thus reducing the risk of particle

depletion.

B. Google Cartographer

Google Cartographer is an pose-graph optimization based

SLAM method provided as a open-source library with ROS

wrapper that can work with and without odometry informa-

tion [47]. It is a system that provides real-time SLAM in 2D

and 3D compatible for multiple sensor configurations and

platforms [27]. Additonally, Google Cartographer is a com-

bination of local and global SLAM where both approaches

try to optimize the optimal transform between the scans. In

the local SLAM approach each consecutive scan is matched

against a submap, which is a piece of the environment,

using a non-linear least squares problem based scan matcher

[48]. The submap construction is an iterative process of

continuously aligning scan and submap coordinate frames,

where the submap is created from a few consecutive scans.

However, before inserting scans into a submap, the Ceres-

based scan matcher [48] is used to optimize the scan pose

of the current local submap. The global SLAM periodically

reaarranges the sub-maps tp reduce the localization error

and tries to prevent drift. In contrast to Hector SLAM’s

multi-resolution grid maps, google Cartographer introduces

a branch and bound algorithm to efficiently compute the

optimal grid-accurate match over large search windows.

Finally, the global map is constructed by combining the

current submap with the finished submaps.

C. Hector SLAM

Hector SLAM is a EKF filter and pose graph optimization

based SLAM method provided as a ROS Debian package

that can work with and without odometry information [43].

It combines a robust scan matching approach using a LIDAR

system with a 3D attitude estimation system based on inertial

sensing [49]. However, in this project we are only interested

in the 2D SLAM of this package as no Inertial Measurement

Unit (IMU) for the Extend Kalman Filter (EKF) based

3D state navigation is present. In this package, the scan

information of the LIDAR is converted into a point cloud

of scan endpoints. These point clouds are then preprocessed

by only taking into account endpoints within a threshold of

the intended scan plane. As occupancy grid maps have a

discrete nature, the precision that can be achieved is limited.

Therefore an interpolation scheme through bilinear filtering

is introduced for both estimating occupancy probabilities

as well as derivatives. The Hector SLAM scan matching

approach is based on an optimization of the alignment

of beam endpoints with the map discovered so far. The

scans get aligned to the existing map and thus matching

is implicitly performed with all preceding scans. Hector

SLAM is based on gradient ascent optimization approach

and is potentially prone to get stuck in a local minima. This

problem is alleviated by introducing a multi-resolution map

representation. Essentially Hector SLAM is using multiple

occupancy grid maps with each coarser map having half of

the resolution of the preceding map. These different maps

are kept in the memory and simultaneously updated using

the pose estimates provided by the alignment process. The

alignment process starts at the coarsest map level and the

resulting pose estimate is used as the start estimate of the

next level.

D. Laser Scan Matcher

Laser Scan Matcher is a Debian package of ROS [33],

which provides the state of the mobile robot by using PLICP

scan matching. The notable feature of this package is that

it does not use scan-to-scan PLICP, but instead uses scan-

to-keyframe PLICP. As noise in the scans are inevitable,

the error over time accumulates even in stationary position,

known as drift. By introducing a keyframe, which only

changes when the vehicle has moved or rotated a certain

distance or angle, this stationary error is minimized as the

keyframe does not change.

REFERENCES

[1] B. Siciliano and O. Khatib, Springer Handbook of Robotics, 2nd ed.
Springer Publishing Company, Incorporated, 2016.

[2] J. Aulinas, Y. Petillot, J. Salvi, and X. Lladó, “The slam problem: a
survey,” Artificial Intelligence Research and Development, pp. 363–
371, 2008.

[3] H. Durrant-Whyte and T. Bailey, ““simultaneous localisation and map-
ping (slam): Part i the essential algorithms”,” Robotics and Automation

Magazine, vol. 13, 01 2006.
[4] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent

Robotics and Autonomous Agents). The MIT Press, 2005.
[5] K. Krinkin, A. Filatov, A. Filatov, A. Huletski, and D. Kartashov,

“Evaluation of modern laser based indoor slam algorithms,” vol. 426,
05 2018, pp. 101–106.

[6] M. A. Abdulgalil, M. H. El-Alfy, M. M. Nasr, and A. Khamis, “Multi-
robot slam: An overview.”

[7] M. Pfingsthorn, B. Slamet, and A. Visser, “A scalable hybrid multi-
robot slam method for highly detailed maps,” in RoboCup 2007: Robot

Soccer World Cup XI, U. Visser, F. Ribeiro, T. Ohashi, and F. Dellaert,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 457–
464.

[8] S. Joo, U. Lee, T. Kuc, and J. Park, “A robust slam algorithm
using hybrid map approach,” in 2018 International Conference on

Electronics, Information, and Communication (ICEIC), 2018, pp. 1–2.
[9] A. Birk and S. Carpin, “Merging occupancy grid maps from multiple

robots,” Proceedings of the IEEE, vol. 94, pp. 1384 – 1397, 08 2006.
[10] P. Buschka, “An investigation of hybrid maps for mobile robots,” 01

2005.
[11] M. Rojas-Fernández, D. Mújica-Vargas, M. Matuz-Cruz, and

D. López-Borreguero, “Performance comparison of 2d slam techniques
available in ros using a differential drive robot,” in 2018 International

Conference on Electronics, Communications and Computers (CONI-

ELECOMP), 2018, pp. 50–58.
[12] R. Yagfarov, M. Ivanou, and I. Afanasyev, “Map comparison of lidar-

based 2d slam algorithms using precise ground truth,” in 2018 15th

International Conference on Control, Automation, Robotics and Vision

(ICARCV), 2018, pp. 1979–1983.
[13] W. Burgard, C. Stachniss, G. Grisetti, B. Steder, R. Kümmerle,

C. Dornhege, M. Ruhnke, A. Kleiner, and J. D. Tardös, “A comparison
of slam algorithms based on a graph of relations,” in 2009 IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2009, pp.
2089–2095.

[14] M. Filipenko and I. Afanasyev, “Comparison of various slam systems
for mobile robot in an indoor environment,” in 2018 International

Conference on Intelligent Systems (IS), 2018, pp. 400–407.
[15] J. Leonard and H. Feder, “A computationally efficient method for

large-scale concurrent mapping and localization,” 2000.
[16] T. Bailey, “Mobile robot localisation and mapping in extensive outdoor

environments,” 2002.
[17] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “Fastslam 2.0:

An improved particle filtering algorithm for simultaneous localization
and mapping that provably converges,” Proc. IJCAI Int. Joint Conf.

Artif. Intell., 06 2003.
[18] A. I. Eliazar and R. Parr, “Dp-slam 2.0,” in IEEE International

Conference on Robotics and Automation, 2004. Proceedings. ICRA

’04. 2004, vol. 2, 2004, pp. 1314–1320 Vol.2.
[19] B. Steux and O. E. Hamzaoui, “tinyslam: A slam algorithm in less than

200 lines c-language program,” in 2010 11th International Conference

on Control Automation Robotics Vision, 2010, pp. 1975–1979.

[20] T. Moore and D. Stouch, “A generalized extended kalman filter
implementation for the robot operating system,” in Proceedings of

the 13th International Conference on Intelligent Autonomous Systems

(IAS-13). Springer, July 2014.

[21] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with rao-blackwellized particle filters,” IEEE Transac-

tions on Robotics, vol. 23, no. 1, pp. 34–46, 2007.

[22] F. Lu and E. Milios, “Globally consistent range scan alignment for
environment mapping,” Auton. Robots, vol. 4, no. 4, p. 333–349, Oct.
1997. [Online]. Available: https://doi.org/10.1023/A:1008854305733

[23] S. Thrun and M. Montemerlo, “The graph slam algorithm with
applications to large-scale mapping of urban structures,” I. J. Robotic

Res., vol. 25, pp. 403–429, 05 2006.

[24] H. Durrant-Whyte, N. Roy, and P. Abbeel, A Linear Approximation

for Graph-Based Simultaneous Localization and Mapping, 2012, pp.
41–48.

[25] K. Konolige, G. Grisetti, R. Kümmerle, W. Burgard, B. Limketkai,
and R. Vincent, “Efficient sparse pose adjustment for 2d mapping,”
10 2010, pp. 22–29.

[26] S. Kohlbrecher, O. von Stryk, J. Meyer, and U. Klingauf, “A flex-
ible and scalable slam system with full 3d motion estimation,” in
2011 IEEE International Symposium on Safety, Security, and Rescue

Robotics, 2011, pp. 155–160.

[27] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure
in 2d lidar slam,” in 2016 IEEE International Conference on Robotics

and Automation (ICRA), 2016, pp. 1271–1278.

[28] O. Bengtsson and A.-J. Baerveldt, “Robot localization based on scan-
matching—estimating the covariance matrix for the idc algorithm,”
Robotics and Autonomous Systems, vol. 44, no. 1, pp. 29–40, 2003.
[Online]. Available: https://doi.org/10.1016/S0921-8890(03)00008-3.

[29] J. Minguez, F. Lamiraux, and L. Montesano, “Metric-based scan
matching algorithms for mobile robot displacement estimation,” in
Proceedings of the 2005 IEEE International Conference on Robotics

and Automation, 2005, pp. 3557–3563.

[30] S. Rusinkiewicz and M. Levoy, “Efficient variants of the icp algo-
rithm,” in Proceedings Third International Conference on 3-D Digital

Imaging and Modeling, 2001, pp. 145–152.

[31] A. Censi, “An icp variant using a point-to-line metric,” in 2008 IEEE

International Conference on Robotics and Automation, 2008, pp. 19–
25.

[32] E. B. Olson, “Real-time correlative scan matching,” in 2009 IEEE

International Conference on Robotics and Automation, 2009, pp.
4387–4393.

[33] A. C. Ivan Dryanovski, William Morris, “Laser scan matcher,” 2019
(accessed January 21th, 2021), http://wiki.ros.org/laser scan matcher.

[34] F. Lu and E. Milios, “Globally consistent range scan alignment for
environment mapping,” Autonomous robots, vol. 4, no. 4, pp. 333–
349, 1997.

[35] L. Carlone, R. Aragues, J. A. Castellanos, and B. Bona,
“A fast and accurate approximation for planar pose graph
optimization,” The International Journal of Robotics Research,
vol. 33, no. 7, pp. 965–987, 2014. [Online]. Available:
https://doi.org/10.1177/0278364914523689

[36] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial
on graph-based slam,” IEEE Transactions on Intelligent Transportation

Systems Magazine, vol. 2, pp. 31–43, 12 2010.

[37] E. Olson, J. Leonard, and S. Teller, “Fast iterative alignment of
pose graphs with poor initial estimates,” Proceedings 2006 IEEE

International Conference on Robotics and Automation, 2006. ICRA

2006., pp. 2262–2269, 2006.

[38] K. Wilson, D. Bindel, and N. Snavely, “When is rotations averaging
hard?” in Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe,
and M. Welling, Eds. Cham: Springer International Publishing, 2016,
pp. 255–270.

[39] R. Hartley, J. Trumpf, Y. Dai, and H. Li, “Rotation averaging,”
International journal of computer vision, vol. 103, no. 3, pp. 267–
305, 2013.

[40] H. Karcher, “Riemannian center of mass and mollifier
smoothing,” Communications on Pure and Applied Mathematics,
vol. 30, no. 5, pp. 509–541, 1977. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160300502

[41] J. Manton, “A globally convergent numerical algorithm for computing
the centre of mass on compact lie groups,” in ICARCV 2004 8th

Control, Automation, Robotics and Vision Conference, 2004., vol. 3,
2004, pp. 2211–2216 Vol. 3.

[42] F1Tenth, “F1tenth,” 2020 (accessed January 15th, 2021),
https://f1tenth.org/.

[43] J. M. Stefan Kohlbrecher, “Hector slam,” 2014 (accessed January 20th,
2021), http://wiki.ros.org/hector slam.

[44] B. Gerkey, “Hector slam,” 2019 (accessed January 21th, 2021),
http://wiki.ros.org/gmapping.

[45] D. T. Josh Faust, Vijay Pradeep, “message filter,” 2018 (accessed
October 15th, 2021), http://wiki.ros.org/message filters.

[46] G. Grisetti, C. Stachniss, and W. Burgard, “Improving grid-based
slam with rao-blackwellized particle filters by adaptive proposals and
selective resampling,” 01 2005, pp. 2432–2437.

[47] Google, “Google cartographer ros,” 2021 (accessed Februari 12th,
2021), https://google-cartographer-ros.readthedocs.io/en/latest/.

[48] S. Agarwal, K. Mierle, and Others, “Ceres solver,”
http://ceres-solver.org.

[49] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf, “A flex-
ible and scalable slam system with full 3d motion estimation,” in
Proc. IEEE International Symposium on Safety, Security and Rescue

Robotics (SSRR). IEEE, November 2011.

https://doi.org/10.1023/A:1008854305733
https://doi.org/10.1016/S0921-8890(03)00008-3.
http://wiki.ros.org/laser_scan_matcher
https://doi.org/10.1177/0278364914523689
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160300502
https://f1tenth.org/
http://wiki.ros.org/hector_slam
http://wiki.ros.org/gmapping
http://wiki.ros.org/message_filters
https://google-cartographer-ros.readthedocs.io/en/latest/
http://ceres-solver.org

