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Abstract

System models are invaluable in analysing functional modules of complex mechatronic systems.
In such models, also called lumped mass models, the components are represented by only a few
degrees of freedom. This is often too coarse to get sufficiently accurate or even meaningful results.
High fidelity models of these components based on the finite element method, however, often
come with great computational cost which for some applications form a significant drawback.
At Sioux Mathware, knowledge on systematic and automatic reduction of finite element models
to so-called reduced order models (ROMs) for the use in system models is developed. These
ROMs may then be used for e.g. real-time FEM simulations in feedback control or as part
of a larger FEM simulation. One of the major challenges in creating ROMs is dealing with
non-linearities. The dynamic behaviour of gas lubricated journal bearings is an example of a
non-linear (on account of, at least, turbulence and convection) system. These bearings are used
as rotating/sliding joints for, e.g. the suspension of shafts in turbo-machinery and high precision
positioning devices. In this master thesis the development of a finite element model of an air
bearing is elaborated. Both model-based and data-driven model order reduction techniques are
then utilized to define a ROM of the proposed model.
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Chapter 1

Introduction

System models are invaluable in analysing functional modules of complex mechatronic systems.
In such models, also called lumped mass models, the components are represented by only a
few degrees of freedom. This is often too coarse to get sufficiently accurate or even meaningful
results. High fidelity models of these components based on the finite element method (FEM)
form a better and more accurate representation, as these models are physics based and include
possible non-linear behaviour. These models, however, often come with great computational cost
which for some applications form a significant drawback. At Sioux Mathware, knowledge on
systematic and automatic reduction of finite element models to so-called reduced order models
(ROMs) for the use in system models is developed. These ROMs may then be used for e.g. real
time FEM simulations in feedback control or as part of a larger FEM simulation.

One of the major challenges in creating ROMs is dealing with non-linearities. A commonplace
approach is to combine local linearisations (The empirical interpolation method of Maday et
al. [1] is a prominent example). Also system theory techniques for model order reduction, e.g.
balanced truncation (BT) or iterative rational krylov algorithms (IRKA), are widely used in
industry as it integrates well with dynamical system models. A new emerging technique is to
take a Koopman operator theory perspective [2]. That is, to find a combination of nonlinear
measurements of the system state in which the system appears to behave linearly. Only in the
past ten years, starting with the work of Mezić [3], ways are starting to be found to approximate
this so-called coordinate transformation that can linearize system response.

The dynamic behaviour of gas lubricated journal bearings is an example of a non-linear (on ac-
count of, at least, turbulence and convection) system. These bearings are used as rotating/sliding
joints for, e.g. the suspension of shafts in turbo-machinery and high precision positioning devices.
Gas lubricated bearings are attractive because of their advantages over traditional oil lubricated
systems, namely, minimal friction losses, high durability and environmental friendliness [4]. The
dynamic behaviour of gas lubricated bearings is often studied through numerical models based
on linearization of the Reynolds equation [5–7]. These models are used to predict the bearing
performance in terms of load capacity and stiffness both statically and dynamically. Numerical
solutions to these models based on finite element comuptations have been found earlier, e.g. in
[8, 9], however only for rotational joints. The dynamic behaviour of the linear horizontal motion
of gas lubricated journal bearings is not much covered yet in literature.

1.1 Objective and outline

As stated above, the significant computational cost of a FEM simulation often restricts the use
of these models in real time applications. The overarching objective of the research presented in
this thesis is therefore the development of reduced order finite element models of gas lubricated
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1.1. OBJECTIVE AND OUTLINE

journal bearings. Both system theory and Koopman-based algorithims form a promising approach
for divergent reasons, which will therefore be explored. The accuracy of the different ROM
approaches to predict dynamic characteristics and its efffiency regarding computational cost will
be investigated and compared to the high fidelity results.

In Chapter 2 the geometry of the used journal bearing is ellaborated. This geometry is
then used to propose a mathematical framework which will describe the dynamics of a gas
lubricated journal bearing. The required assumptions and their inpact to the model, as well as
the boundary conditions for the problem will also be discussed.

Chapter 3 includes the discretization of the high fidelity model posed in Chapter 2. A
numerical framework is selected to solve the discretized problem for both steady state and
transient problems. The convergence of the solution and quantities of interest is investigated to
determine the accuracy and quality of this discretization. Additionally, the high fidelity results
are presented, discussed and validated using results found in literature.

In Chapter 4 the ROM approach is presented which is used for the reduction of the high
fidelity numerical model posed in Chapter 3. Different approaches are selected to demonstrate
the differences in accuracy and efficiency. The ROM results are compared to the high fidelity
results and validated with literature.

In Chapter 5 the conclusions are drawn and reccomendation for future research are discussed.

2



Chapter 2

Journal gas bearing model

The main task associated to the modeling of a gas bearing system is to define the gas pressure
distribution within the thin lubricating film of the bearing. This pressure distribution expresses
upon integration the forces which affect the bearing, subsequently introducing a notion of bearing
stiffness. In order to find characteristics such as the bearing stiffness and damping, a finite
element model is constructed. This model allows one to solve for the film pressure distribution
and find the bearing performance and characteristics as a function of geometrical properties and
boundary conditions.

In lubrication theory for in- and compressible lubricants, the pressure distribution of the
viscous film is often solved using a thin film approach described by the so called Reynolds
equation (Reynolds 1886). It forms a convenient model as the condition of mass continuity is
embodied within its definition. Hence there is no need for iterating for mass flow balance as
this is implicitly respected. This model is also very well applicable to the gas bearing system
considered in this thesis as will later be elaborated further.

The construction of this model regarding the used geometry and the mathematical framework
including the governing equations will be discussed in this chapter. The required assumptions
to arrive at the Reynolds equation will be elaborated as well as the physical significance of its
terms. At last a dimensionless analysis of this air bearing model will be provided to conclude
with a complete problem definition.

Figure 2.1. Schematic layout of a journal air bearing. (Not to scale)

3



2.1. GAS BEARING GEOMETRY

2.1 Gas bearing geometry

The bearing under consideration is an industry case journal bearing. A journal bearing consists of
a concentric cylindrical shaft and bush which move relative to each other in either the tangential
or axial direction. In Figure 2.1 the layout of a journal air bearing is schematically illustrated
in the system of Cartesian coordinates (i-j-k). Note that the distance between the shaft and
the bush is exaggerated. The orifices are the supply holes through which the pressurized gas at
constant supply pressure ps flows radially inward to feed the air gap between the bush and the
shaft. After the gas exits the orifice, the gas expands and exits the flow domain from the two
outflow regions on either side of the bush. This constant flow of gas creates a thin fluid film
between the bush and the shaft that generates the lubricating effect of a journal gas bearing.
The bush can have one or multiple arrays of orifices in which the orifices are distributed evenly
around the bush. The illustration above has only one array of orifices and this set-up will also
be used in the remainder of this thesis.

2.1.1 Compensation

In case the shaft is located exactly centrally within the bush, the film height is equal along and
around the bearing surface. This equilibrium height is known as the initial bearing clearance c
and has a typical value in the order of microns. Assuming a perfect bearing surface and equal
orifice geometries, the resistance to air flow through each orifice is equal. This results in a
symmetric film pressure distribution and hence the net force on the shaft is zero.

The application of a radial load on the shaft displaces the shaft radially in the direction of
the load, resulting in a film height that varies with angular position around the bush. This
eccentric configuration for both the i-j and i-k cross sections of the journal bearing are illustrated
in respectively Figure 2.2a and 2.2b. All important bearing parameters used for the model
are aditionally illustrated. This eccentric configuration of the shaft within the bush increases
the resistance to air flow through the orifices where the film height is decreased. Conversely,
the resistance to air flow through the orifices on the side where the film height is increased
in turn decreases. This difference in flow resistance results in a non-zero pressure differential
between these two opposed areas and hence a non-zero net force on the shaft is induced. This
phenomenon is referred to as compensation and is the mechanism that provides a journal gas
bearing its stiffness. Given that the applied load W lies within the design limits of the bearing,
an equilibrium is reached where the integrated pressure distribution is equal to the applied load.

(a) i-j plane (b) i-k plane

Figure 2.2. Schematic representation of both the x-y (left) and x-z (right) cross sections of a
loaded journal air bearing with radial displacement e. (Not to scale)
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CHAPTER 2. JOURNAL GAS BEARING MODEL

The dimensionless eccentricity ratio ε is introduced to define a measure for the deviation to the
concentric case. The eccentricity scales the radial displacement e to the bearing clearance as
ε = e/c.

2.1.2 Thin film approximation

Given typical values for c and R used in this thesis as 10−6 ≤ c ≤ 50× 10−6 m and R ≥ 0.02
m respectively, there exists a discrepancy in length scales between these bearing dimensions as
c ≪ R. This allows one to neglect the curvature of the fluid film in the journal bearing and
map the 3-D cylindrical fluid domain depicted in Figure 2.1 to a 2-D rectangular domain [10].
This establishes a more simplistic description that benefits the meshing and post processing
procedures as will be discussed in Chapter 3. In Figure 2.3, this mapped domain is schematically
illustrated which will be used for in the remainder of this thesis. A total domain Ω ⊂ R2 is
considered which is constructed from the fluid domain Ωf and the encapsulated orifice domain
Ωor as Ω = Ωf ∪ Ωor. The y-axis coincides with the j-axis of Figures 2.1 and 2.2a and represents
the length of the bearing. The x coordinate represents the circumferential position around the
bearing as x = θR, with the circumferential angle θ in radians as illustrated in Figure 2.2b.
The film height h is now parameterized and defined on every point on Ω along the z direction
pointing towards the reader. Assuming the shaft only deflects vertically (no tilt), h can be
described for 0 ≤ ε < 1 as:

h(θ) = c (1 + εcos (θ)) (2.1)

Remark 2.1.1. To elucidate this notation, the height field is in fact a map from the domain Ω
to the set of real numbers as:

h : Ω → R (2.2)

This means that h denotes the map, whereas h(x⃗) = h(θ) represents the point value of this map
at angle θ.

Figure 2.3. Illustration of the rectangular fluid domain Ωf with the encapsulated orifice domain
Ωor and boundaries ΓD and ΓP of the full air bearing geometry. (Not to scale)
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2.2. MATHEMATICAL DESCRIPTION

2.2 Mathematical description

With the geometry and the working principle of a journal gas bearing discussed, a mathematical
model of such a bearing can be introduced. The thin gas film between the bush and the shaft
can be described by a fully compressible viscous gas that agrees to the widely used Navier-Stokes
equations. This set of equations consists of the conservation laws of mass (continuity) and
momentum. Neglecting all body forces, these equations are given by respectively Equation (2.3)
and (2.4) in Cartesian coordinates.

∂ρ

∂t
+∇ · (ρu⃗) = q (2.3)

∂(ρu⃗)

∂t
+∇ · (ρu⃗)u⃗ = −∇p+∇σT (2.4)

With density ρ, velocity vector u⃗, pressure p and stress tensor σ. To incorporate the inflow
through the orifice, the source term q is added to the continuity equation. This source term
depicts the generation of mass per unit volume per unit time for each orifice and will later be
elaborated further.

Remark 2.2.1. Because of the fact that the viscosity of a gas is very small, the energy dissipated
through the gas is negligible and hence the flow can assumed to be isothermal [11]. This removes
the necessity of an energy equation.

2.2.1 Reynolds equation

Taking into account the physical properties of the gas and the boundary conditions of the
film, the mass and momentum equations may assume the form of the Reynolds equation. The
Reynolds equation is a partial differential equation that describes a pressure distribution in a
bearing gap and lies at the very foundation of lubrication theory, as it was first introduced for
incompressible lubricants by Osborne Reynolds in 1886. Later Harrison (1913) incorporated the
effects of compressibility. Looking at the case of a journal gas bearing, several assumptions can
be made to arrive at the Reynolds equation which are listed below:

1. Any body forces acting on the entire system are neglected, including gravity, inertial
accelerations and electric field accelerations.

2. Considering Remark 2.2.1, c≪ {R,L} and hence the pressure gradient over the film height
is negligible.

3. A Newtonian fluid is assumed, i.e. the shear stress changes linearly with the strain rate:

σ = µγ̇

Where γ̇ = 1
2

{
∇u⃗+ (∇u⃗)T

}
the strain rate tensor. While no real fluid or gas fits the

definition of a Newtonian fluid perfectly, common gases, such as air, do behave like one
[12].

4. No slip boundaries on both the shaft and the bush.

5. Isoviscous flow. Fortunately the viscosity of gas is comparatively insensitive to changes in
temperature and pressure and hence isoviscosity can be assumed [13].

6. Isothermal flow.

6



CHAPTER 2. JOURNAL GAS BEARING MODEL

7. Laminar flow.

All assumptions are either evident or discussed above, except for assumption 7. Although
it is showed in [14] that in typical hydrodynamically lubricated bearings the viscous forces are
much greater than the inertial forces, one cannot assure laminar flow for all cases of bearing
dimensions and boundary conditions. Given the small length scales of the film height and orifice
diameter and the above mentioned viscous dominated flow, it is reasonable to assume laminar
flow. Nonetheless, one should keep in mind that the validity of this assumption is bounded in
the case of a journal gas bearing.

Taking these assumptions into account, the Reynolds equation can be derived by integrating
the continuity equation across the film thickness and incorporating the momentum conservation
onto which the no-slip boundary conditions are applied. This derivation is thoroughly elaborated
in [14] and [15]. The resulting equation can be written as:

∇ ·
(
h3ρ

12µ
∇p

)
− 1

2
u⃗ · ∇(ρh) +

∫ h

0
q dz =

∂ (ρh)

∂t
(2.5)

This equation is the most general form of the Reynolds equation and describes the pressure p
on every point in the fluid domain between two surfaces separated by a small distance h. The
relative velocity of the shaft to the bush is vectorised as u⃗ = {u, v} with relative horizontal and
rotational velocities u and v respectively.

2.2.2 Physical significance of terms

To understand the mechanisms of how pressure can build up within a thin film, the different
terms and their physical significance will be explored. Considering a one dimensional system
with no sources, Equation (2.8) can be simplified yielding Equation (2.6).

∂

∂x

(
ρh3

12η

∂p

∂x

)
︸ ︷︷ ︸
Poiseuille flow

− ∂

∂x

(
ρh (ua)

2

)
︸ ︷︷ ︸

Couetteflowx
h (ua)

2

∂ρ

∂x︸ ︷︷ ︸
Density wedge

+
ρh

2

∂

∂x
(ua)︸ ︷︷ ︸

Stretch

+
ρ (ua)

2

∂h

∂x︸ ︷︷ ︸
Physical wedge

=

(
∂(ρh)

∂t

)
︸ ︷︷ ︸

Dynamic effect

(2.6)

The tree main terms in the above equation are labeled as the Poiseuille flow, Couette flow and
dynamic effects. Each have their own mechanism of pressure generation within the thin film and
will be discussed below [14].

Poiseuille flow: Describes the net flow rates due to pressure gradients.

Couette flow: Describes the net flow rates due to surface velocities. Looking at its partial
expansion to x, three distinct terms arise.

- The density wedge term is coupled to the rate at which the lubricant density changes in
the sliding direction. This change in density is mostly temperature induced and hence not
important as isothermal flow is assumed.

- The stretch term considers the rate at which the surface velocity changes in the sliding
direction, e.g. a surface deformation. This mechanism is not encountered in this report as
the bearing and the shaft are assumed to be rigid.

7



2.2. MATHEMATICAL DESCRIPTION

- The physical wedge term is the most important mechanism for pressure generation. This
mechanism considers how a non-constant h field generates a flow. In the case h varies
around the bearing (ε > 0), there is a different Couette flow rate at each point around the
bearing. In order to still achieve continuity, a balancing Poiseuille flow is superimposed.
Hence to generate a positive load carrying capacity, a non-zero eccentricity is required.

Dynamic effect: Describes the net flow rate due to dynamic effects. This can be split up into two
mechanisms, namely a squeeze term and a local expansion term. The squeeze term generates a
flow by considering the rate of change of h in time. The local expansion term generates a flow
by a varying density in time.

2.2.3 Reynolds equation for compressible lubricants

Because of the fact that a compressible lubricant is considered, the density in Equation (2.5) is
dependent on the pressure. lubricant density can therefore not be considered constant and hence
an additional equation is required. By assuming the lubricant as an ideal gas, a pressure/density
relation can be found in the equation of state given by Equation (2.7).

ρ =
p

RsTs
(2.7)

Where Ts is the temperature of the supply gas and Rs is the specific gas constant defined as
Rs = R/M , with universal gas constant R and the molar mass of the considered gas M . By
taking into account assumptions 5 and 6, Equation (2.5) can be written in its compressible form
as:

∇ ·
(
h3p∇p

)
− 6µu⃗ · ∇ (ph) + 12µRsTs

∫ h

0
q dz = 12µ

∂ (ph)

∂t
(2.8)

2.2.4 Entrance flow model

As stated before, the inclusion of the continuous gas flow through the orifices is achieved through
the source term q in Equation (2.3). This source term only applies to the encapsulated domain
Ωor and represents the mass flow per unit volume. This domain can either be modelled as a
point source or as a sub area through which the mass flows. A point source has the advantage
that it allows the usage of structured meshes and is computationally less expensive. Thererfore
this modeling approach is chosen which allows to rewrite q in terms of the dirac delta function δ
as:

q =
N∑
j=1

ṁjδ
3
(
x⃗orj

)
(2.9)

With the mass flow rate through the jth orifice ṁj , the total number of orifices N and the
location of the jth orifice x⃗orj = {xorj , yorj , zorj }. Since the Dirac delta has the inverse dimension
as its argument, it can be seen that this expansion of q has the same dimension as q itself
and is therefore dimensionally valid. The definition of the Dirac delta function is given by
Equation (2.10).

δ3
(
x⃗orj

)
≜ δ

(
x− xorj

)
δ
(
y − yorj

)
δ
(
z − zorj

)
(2.10)

With the identity for all sufficiently smooth function ϕ as:∫∫∫
Ω
δ3

(
x⃗− x⃗orj

)
ϕ(x⃗)dV = ϕ(x⃗orj ) (2.11)
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CHAPTER 2. JOURNAL GAS BEARING MODEL

In literature, several types of orifices exists which each require a different modelling approach
[13, 16]. The two most used in industry are the inherently compensated orifice and the pocketed
compensated orifice. The inherently compensated type is practically a small hole drilled into the
surface of the bush. A pocketed compensated orifice is machined by recessing the area around
the orifice to allow for a larger area where the pressure is equal to the downstream pressure of
the orifice. These pocketed compensated orifices typically have a greater stiffness by a factor of
up to 1.5 [16]. Because of their relative simplicity, only inherently compensated orifice restrictors
are considered in this thesis.

Inherent compensation

In Figure 2.4 an enlarged geometry of an inherently compensated orifice restrictor is illustrated
with the corresponding pressure profile. As can be seen in this figure, the entrance flow from
supply pressure to film entrance pressure is described by the actual pressure profile. After
recovery this actual pressure profile is dominated by viscous flow. In literature, methods are
proposed to solve for this actual pressure profile [17]. However, a more practical approach would
be to formulate a lumped-parameter approach to account for the entrance effects without the
necessity to solve for the actual pressure profile for each given bearing configuration. This
is achieved by relating the mass flow rate to the pressure ratio β = pt/ps. Where pt is the
theoretical static downstream orifice pressure which is obtained by extrapolating the viscous
profile in the film [18]. Given that the dimensions of an orifice are very small compared to
the other bearing dimensions, the expansion of the gas through the orifice curtain area occurs
extremely fast and this process can therefore be assumed isentropic. An expression for the
mass flow rate through the jth orifice can be found by using the isentropic relations yielding
Equation (2.12).

ṁj = CDAor,j
ps√
TsRs

Ψ(pt) (2.12)

With the area of the jth orifice Aor,j and lubricant supply temperature Ts. CD is the coefficient
of discharge that depends on the orifice geometry and is typically taken to be 0.8 in literature
[19]. As β decreases, the mass flow through the orifices increases up until the point the critical
pressure ratio βγ reached. At this point the flow is choked and has reached its maximum velocity,
any further downstream pressure reduction cannot increase the flow rate. The flow function Ψ

Figure 2.4. Local pressure losses in an inherently compensated orifice restrictor [16].
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2.3. DIMENSIONLESS REYNOLDS EQUATION

assures the mass flow through an orifice is bounded according to Equation 2.13. For an isentropic
gas flow the critical pressure βγ is given by Equation 2.14.

Ψ(pt) =


√(

2γ
γ−1

)(
pt
ps

2/γ − pt
ps

γ+1/γ
)

if pt/ps ≥ βγ√(
2γ
γ−1

)(
β
2/γ
γ − β

γ+1/γ
γ

)
if pt/ps ≤ βγ

(2.13)

βγ =

(
2

γ + 1

) γ
γ−1

(2.14)

2.2.5 Boundary and initial conditions

The considered domain is supplemented with Dirichlet and periodic boundary conditions on
complementary parts of the boundary ∂Ω. For the Dirichlet (ΓD) and the periodic (ΓP )
boundaries it holds that ΓD ∪ ΓP = Γ = ∂Ω. The periodic boundaries assure that the left
and right sides of the domain coincide by letting ϕx|θ=0 = ϕx|θ=2π with smooth real functions
ϕ : R2 → R. The Dirichlet boundaries define the outflow pressure of the gas. When symmetry
axes are defined, as will later be discussed in Chapter 3, the periodic boundaries are replaced
with Neumann boundaries ΓN . On these boundaries the normal pressure gradient is described
as n⃗ · ∇p = 0.

The initial conditions are defined as the pressure field at t = 0. This can either be the static
solution of the concentric or eccentric configuration defined by ε.

2.3 Dimensionless Reynolds equation

Often it is convenient to write Equation (2.8) in dimensionless form by means of normalization.
Introducing a set of dimensionless variables and parameters, let

x = Rx̃, y = Rỹ, p = pap̃, h = ch̃, t = taτ, ∇ =
1

R
∇̃ (2.15)

where pa and ta are the characteristic pressure and time constants. Typically these are set to be
the ambient pressure and a characteristic frequency, respectively. In this case the characteristic
time is proportional to the induced horizontal shaft velocity as ta = uu

L . The dimensionless

gradient operator is defined as ∇̃ =
{

∂
∂x̃ ,

∂
∂ỹ

}
. The dimensionless outflow pressure at the

Dirichlet boundaries is rewritten accordingly as po = pap̃o. Incorporating above definitions into
Equation 2.8 and assuming inherent compensation as discussed above, the Reynolds equation in
its dimensionless form is written as:

∇̃ ·
(
h̃3p̃∇̃p̃

)
− Λ⃗ · ∇̃

(
p̃h̃

)
+

N∑
j=1

Υṁj(p̃)δ
2(x⃗orj ) = Π

∂

∂τ

(
p̃h̃

)
(2.16)

where:

Λ⃗ =
6µR

c2pa
u⃗

Υ =
12µRsTsR

2

c3p2a

Π =
12µR2L

c2pauu

(2.17)
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CHAPTER 2. JOURNAL GAS BEARING MODEL

are known as the bearing number, the feeding parameter and the frequency or squeeze number
respectively [20]. Note that the bearing number is vectorised as Λ⃗ = {Λu,Λv}. The resulting
dimensionless partial differential equation is clearly elliptic and nonlinear. This is due to the
divergence of the pressure gradient in the poiseuille term and the coupled mass flow equation in
the source term. Nonlinear solution methods are therefore required to solve this problem as will
be discussed in the next chapter. Note that negative pressures are not excluded by the above
equation. Negative pressures would mean a physically infeasible solution and should be excluded
through the selection of proper boundary conditions.

2.4 Problem definition

Combining the geometry and the mathematical formulation of the Reynolds equation of previous
sections, a problem definition can be constructed in both the strong and weak form. Looking
at the domain as proposed in section 2.1.2, two symmetry axes can be recognized. As in the
remainder of this thesis only horizontal shaft velocities will be induced (Λv = 0), a vertical
symmetry axis arises which reduces the horizontal axis to (0 ≤ θ ≤ π). This allows one to only
model half an air bearing, reducing the computational cost of the numerical calculations. It is
important to note that in this case the periodic boundary conditions ΓP in Figure 2.3 must be
replaced with Neumann boundary conditions ΓN prescribing the normal pressure gradient at
these boundaries.

2.4.1 Strong formulation

Considering the domain Ω with supplemented boundary ΓD ∪ ΓN = Γ = ∂Ω, the pressure
distribution as a result of a shaft deflection ε is described by the strong form problem (S) as:

(S)



Given h : Ω → R2 and constants Λ, Υ and Π,

find p : Ω → R2 such that:

∇ ·
(
h3p∇p

)
− Λ⃗ · ∇ (ph) +

N∑
j=1

Υṁj(p)δ
2(x⃗orj ) = Π

∂

∂τ
(ph) in Ω

n · ∇p = 0 on ΓN

p = pa on ΓD

(2.18)

2.4.2 Weak formulation

The finite element method that will be used in this thesis is generally used in conjunction with
the weak form of the problem. The weak form is obtained by the multiplication of the differential
equation 2.8 by an arbitrary test function and integrating it over its domain Ω. To arrive at the
weak form of 2.18, the suitable scalar-valued Sobolev spaces V and S are introduced that make
up the test and trial spaces respectively according to Equation 2.19 and 2.20.

V =
{
φ | φ ∈ H1(Ω), φ = 0 on ΓD

}
(2.19)

S =
{
p | p ∈ H1(Ω), p = pa on ΓD

}
(2.20)

Note that the trial functions meet the Dirichlet condition and the test functions vanishes at the
Dirichlet boundaries. Using these spaces, the problem definition can be described in its weak
formulation as:
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2.4. PROBLEM DEFINITION

(W)



Given h : Ω → R2 and constants Λ, Υ and Π,

find p ∈ S such that:

B(φ, p) +M(φ, p) = F(φ) ∀φ ∈ V
where:

B(φ, p) =
∫
Ω
(∇φ) ·

(
h3p∇p− 2hpΛ⃗

)
dV

M(φ, p) = − ∂

∂τ

∫
Ω
φ (Πph) dV

F(φ) =
N∑
j=1

∫
Ωor

φ
(
Υṁj(pt)δ

2(xorj )
)
dV =

N∑
j=1

φ(x⃗orj )
(
Υṁj(pt(x⃗

or
j ))

)

(2.21)
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Chapter 3

Numerical simulations

While different numerical strategies for solving mathematical models such as the one presented
in Chapter 2 exist, only the finite element method (FEM) is considered throughout this thesis.
Although FEM is not the industry standard for computational fluid dynamics, its accuracy with
respect to solving these elliptical partial differential equations on potentially complex domains
allows for an accurate and modular model. In this chapter the implementation of the weak
formulation (2.21) into a FEM framework is discussed. A convergence study is performed to
determine the quality of the model and the validity of the obtained output. This model is then
solved for different cases both stationary and transient. At last a validation of this predictive
model is included by means of numerical and empirical analyses found in literature.

3.1 Discretization

Given the bilinear and linear form from the weak form as B(φ, p)+M(φ, p) and F(φ) respectively,
a discrete model can be constructed by applying the Bubnov-Galerkin method. Therefore the
infinite dimensional trial and test spaces S and V are approximated by their discrete and finite
dimensional counterparts, in terms of the discrete test space Vh according to Equation (3.1).
The superscript h indicates the space is finite dimensional.

Sh =
{
vh + qh | vh ∈ Vh

}
(3.1)

With qh a lifting function that satisfies the boundary conditions. The weak problem (2.21) can
be written in its finite dimensional form (G) as:

(G)

{
Find vh ∈ Vh such that:

B(φh, vh) +M(φh, vh) = F(φh) ∀ φh ∈ Vh
(3.2)

A finite element mesh is constructed in order to discretise the domain Ω. Two mesh types are
considered, a structured mesh using quadrilateral elements and an unstructured mesh using
triangular elements. The fact that point sources are used to model the orifices allows one to
apply the former type. This has the additional advantages of higher computational efficiency,
easier meshing procedures and better convergence propperties. In Figure 3.1 an example of a
uniform and structured mesh with quadrilateral elements is illustrated, the location of the nodal
point sources is marked in red. A mesh refinement is achieved by cutting the element in half
in both directions. Formally speaking, the level of mesh refinement is controlled through the
element width h which is defined as h = h0/2

n, where h0 is the minimal element width and
n = 0, 1, 2, .. a refinement factor. Note that the aspect ratio of the elements remains the same
for each refinement.
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3.2. STEADY STATE RESULTS

Table 3.1. Default bearing dimensions and flow parameters used for the numerical simulations.
For the gas lubricant air will be used.

Parameters Values

Shaft radius (R) 22.5 mm

Bush length (L) 50 mm

Bearing clearance (c) 13 µm

Orifice radius (d) 10 µm

Number of orifice rows 1

Number of orifices per row (N) 10

Outflow pressure (po) 1.0× 105 Pa

Supply pressure (ps) 6.0× 105 Pa

Atmospheric pressure (pa) 1.0× 105 Pa

Air temperature (Ts) 293 K

Air dynamic viscosity (µ) 1.79× 10−5 Pa · s

For all the conducted simulations the free and open source Python programming library for
FEM computations Nutils is used [21]. Quadratic spline basis functions are used, which on
a structured mesh with n = 0 results in approximately 120 degrees of freedom. An iterative
Newton-Raphson method is used to solve the non-linear partial differential equation, using a
uniform pressure field of value po as an initial guess. The allowed absolute tolerance of the
residual norm is set at 10−10. Unless stated differently, the default flow conditions and bearing
dimensions as listed in Table 3.1 are used for the numerical simulations conducted in this chapter.

3.2 Steady state results

The static solution to (G) is computed for an increasing value of ε. An example of the film height
h(x, y), which is used as an input to the model, is illustrated in Figure 3.2 for ε = 0.5. Figure 3.3
then shows the computed static solutions for eccentricy values ε = 0.0, 0.2, 0.4 and 0.6 using
n = 2 and Λu = 0. It can be seen that the solution of the concentric case shows a symmetric
pressure profile and a smooth pressure decay towards the outflow regions as one would expect.
For ε > 0.0, the pressure drop over the orifices decreases where the film height increases, clearly
demonstrating the compensation mechanism as discussed in Chapter 2.
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Finite element mesh, n=0

Figure 3.1. Finite element mesh for n = 0.
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Figure 3.2. Film height for ε = 0.5.
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(a) ε = 0.0 (b) ε = 0.2

(c) ε = 0.4 (d) ε = 0.6

Figure 3.3. Steady state pressure distribution for increasing eccentricities and Λu = 0.

3.2.1 Static characteristics

The static stiffness of a gas bearing is calculated through the load capacity which is directly
related to the pressure distribution of the thin gas film. Integrating the computed pressure
distribution, the load capacity of the bearing is given according to Equation (3.3). Note that
this represents the net force as there is compensated for the outflow pressure. The static stiffness
is then obtained by the differential of the load capacity with respect to the film height, as given
by Equation (3.4). As only vertical shaft deflections are considered, the horizontal component
Fx will in all cases be zero and therefore only the vertical component Fy will be used.{

Fx

Fy

}
= −2

∫ L/2

−L/2

∫ π

0
(p− po)

{
cos(θ)
sin(θ)

}
R dθdy (3.3)

K = −dF
dh

= −dF
dε

dε

dh
= −1

c

dF

dε
(3.4)

Additionally, with the static pressure distribution the mass flow rate of gas can be computed.
This expression is derived from the mass of gas flowing between two plates separated by a finite
but small distance [19]. Integrating this expression over the Dirichlet boundaries, the mass flow
over the outflow boundaries is defined according to Equation (3.5). A massflow residual function
can then be defined as ṁin − ṁout = 0.

ṁout =

∫
ΓD

p

RsTs

(
h3

12µ
∇p+ u⃗h

2

)
· n⃗ dS (3.5)
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3.2. STEADY STATE RESULTS

3.2.2 Convergence study

Mass flow

Given the definitions of the quantities of interest above, the mesh convergence of the air bearing
model can be assessed. The above defined air bearing problem is solved for an increasing number
of degrees of freedom, and for eccentricy values ε = 0.0, ε = 0.2 and ε = 0.4. In Figure 3.4
the effect of grid size to the mass residual error is reported on grids with n = 0, 1, 2, 3, 4 and 5,
resulting in systems between approximately 120 and 11200 degrees of freedom. Figure 3.4a
contains the convergence properties for Λu = 0.0. The convergence rate for each eccentricity
has a slope of approximately 2.0. Figure 3.4b contains the convergence properties for Λu = 1.0,
which shows very similar results to those using Λu = 0.0. However, the values of the relative
mass residual are one order of magnitude higher compared to Λu = 0.0.

Load capacity

The load capacity is the quantity of interest (QOI) and directly relates to the stiffness of the
bearing. Its convergence should therefore be studied carefully. As stated in Chapter 2, the load
capacity in the concentric situation (ε = 0) should be zero. To validate this for an increasing
number of degrees of freedom, the effect of the grid size to the load capacity at zero eccentricity
is reported in Figure 3.5, for both zero and non-zero bearing numbers. The results show close to
zero load capacities at almost machine precission in all cases for both bearing numbers.

The residual function of the load capacity is defined as |F h − F e|, where the superscript h
defines an approximated solution for the load capacity and the superscript e the exact solution.
Due to the absence of an analytical solution, the exact solution is assumed to be a FEM solution
solved on a grid with n = 6, resulting in a system with approximately 42200 degrees of freedom.
In Figure 3.6 the effect of grid size to the relative load capacity residual is reported on the
same grids as used for the mass flow residual analysis. Figure 3.6a contains the convergence for
Λu = 0.0 and Figure 3.6b for Λu = 1.0. The results are very similar to those of the mass flow
residual, however, now with a slighly steeper convergence rate for Λu = 1.0.

From these results one could state that the solutions on a grid with n = 2 have acceptible
results while still maintaining a workable mesh size in terms of computational time. Allowing a
relative mass flow error of around 8× 10−3, and a relative error in load capacity of around 10−5.
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Figure 3.4. Relative mass flow residual for Λu = 0.0 and Λu = 1.0
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Figure 3.5. Absolute load capacity at ε = 0 for both Λu = 0.0 and Λu = 1.0.
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Figure 3.6. Relative load capacity residual for Λu = 0.0 and Λu = 1.0

Error norms

As an addition to the convergence of the QOI’s, the convergence rates of the pressure solution in
the normed space V are investigated. Figure 3.7 reports the convergence rates of both the L2(Ω)
and H1(Ω) error norms of the solution with respect to the grid size. Considering the H1(Ω)
error norms, a quasi-optimal solution would have a convergence rate of p+ 1−m = 2 for m = 1.
This means that the convergence rates shown in Figures 3.7b and 3.7d are suboptimal. This
is due to the fact that the orifices in the domain are modeled as point sources around which
great pressure gradients arise. The solution therefore exhibits singularies at the location of these
point sources which causes the convergence rates to be sub-optimal. A condition number of the
residual is found to be approximately 103. Adaptive mesh refinement around the orifices may
increase the convergence rates and reach quasi-optimality. However, as the convergence of the
integrated solution on uniform gridsd is already acceptible for both the mass flow residual and
load capacity residual, adaptive mesh refinement is not investigated any further.

Remark 3.2.1. It should be pointed out here that the contribution of the flow through the
orifices to the pressure solution grows with increasing orifice diameter d. One could say that
the analytical solution of the isentropic flow is effectively coupled through this parameter to the
numerical solution in the remainder of the domain. It is observed that for increasing d the
convergence becomes significantly poor, resulting in unacceptable values for the mass flow residual,
load capacity residual and L2(Ω) error norm. Adaptive mesh refinement for structured meshes
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(c) Λu = 1.0
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Figure 3.7. Relative L2(Ω) and H1(Ω) error norms for increasing eccentricity at both Λu = 0.0
and Λu = 1.0.

is therefore advised for higher values of d. Another alternative would be to model the orifices
as finite areas using unstructured grids. The latter option is elaborated further in Appendix A,
reporting results using this method. In the remainder of this thesis only stable values for d are
used with uniform structured grids.

3.2.3 Parameter dependency

As the convergence behaviour of the numerical model shows promising and reliable results, the
output of the model is compared to results in literature. Figure 3.8 reports both the static load
capacity and stiffness characteristics as a function of eccentricity ratio according to Equations
(3.3) and (3.4). The output at ε = 0 behaves as expected with a zero load capacity and a
non-zero stiffness. For increasing values of ε, the load capacity and stiffness increase which is a
direct result of the compensation mechanism. This confirms the observation in Chapter 2.2.1
that a non-zero eccentricity is required to generate a positive load capacity. Similar behaviour is
also observed in literature which also comfirms the order of magnitude of both the load capacity
and stiffness [5, 12, 19, 20, 22, 23]. Alltough an exact qualitative comparison cannot be made,
the static model does behave as expected with trustworthy results.

The effect of the initial bearing clearance to the static stiffness is reported in Figure 3.9. The
static bearing stiffness is plotted for a range of bearing clearances and eccentricities. It clear
that the bearing clearance has a great effect on the stiffness especially for c ≥ 4× 10−6. Here the
stiffness increases significantly at low eccentricities for decreasing c, which is in correspondance
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Figure 3.8. Static bearing characteristics as a function of ε. The simulation is conducted for
the default bearing geometry and parameters, Λu = 0.
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Figure 3.9. Static stiffness as a function of h0 and ε

with theories found in literature [19]. It is good to note that this theory breaks down at the
extreme configuration 10−6 ≤ c < 3× 10−6. This is most likely due the fact that the pressure
gradient over the shaft is small because the resistance to air flow through the orifice for these
values of c is already relatively high at low eccentricity.

3.3 Transient results

To investigate the dynamic characteristics of the bearing model, a transient simulation is
conducted. For this simulation the same spatial discretization is used as discussed in the previous
section. For the time discretization an implicit Euler scheme is applied for which a steady
state solution at ε = 0.0 is used as an initial condition. The dynamic response is visualized
by evaluating the Reynolds equation at various excitation frequencies around the equilibrium
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point at t = 0. For this, a sinusoidal pertubation is added to Equation (2.1) resulting in a time
dependent film height as:

h(θ, t) = h0︸︷︷︸
1

+ h0ε cos(θ)︸ ︷︷ ︸
2

+ de cos(θ) sin(ωt)︸ ︷︷ ︸
3

(3.6)

Where ω is the pertubation frequency of the shaft and de the amplitude of this pertubation.
Typical values used for de lie within 10% of the initial bearing clearance. The three components
from above definition may be interpreted as:

1. The initial bearing clearance as determined in the design of the bearing.

2. A manufacturing error or static load which results in an eccentric configuration quantified
by ε.

3. The dynamic behaviour of the shaft.

To ensure the transient response is converged, the simulation is conducted up untill the difference
in amplitude of the response of at least three complete and consecutive pertubation periods lie
within 5%. The timestep of the simulation is set to be approximately 1/20th of the pertubation
period to ensure the time dependent film height is properly discretised in time.

3.3.1 Dynamic characteristics

The dynamic bearing stiffness and damping characteristics can be determined by the evaluation
of the transfer function H at a given frequency. For the above defined transient analysis this
requires the computation of the magnitude and phase angle of the input/output response. In
this analysis this information is obtained by transforming the time response to the frequency
domain by means of a Fourier transform. The resulting complex valued transfer function H
can then be used to compute the dynamic stiffness and damping characteristics according to
Equation (3.7) and (3.8) respectively.

K = |H| cos(∠H) (3.7)

C =
|H|
ω

sin(∠H) (3.8)

In Figure 3.10 the dynamic coefficients as a function of the pertubation frequency ω are reported
in the form of a bode plot for both zero and non-zero eccentricities. Considering Figure 3.10a,
frequency dependency of the dynamic coefficients is clearly observed, i.e., for increasing ω the
dynamic stiffness significantly increases while the dynamic damping decreases. The relationship
between the dynamic coefficients and ω is clearly non-linear which is due to the compressibility
effects discussed in Section 2.2.2. For the lower frequency range below approximately 1 Hz,
the stiffness is asymptotically equal to the static stiffness depicted in Figure 3.8b. For higher
frequencies the dynamic squeeze film becomes dominant and the dynamic stiffness increases
significantly with increasing ω. In the high frequent range above approximately 10 kHz an
asymptotic value is reached. The dynamic damping response behaves very similar but inverted,
with a larger damping value in the lower frequency range, and becomes negligible beyond 1 kHz.
Very similar results are also found in literature, which strenghtens these observations [5, 24, 25].

The results for the eccentric case depicted in Figure 3.10b are very similar to those of the
concentric case. However, at low frequencies unexpected artefacts arise in the damping graph.
This low frequent behavivour is most probably due to the fact that the used timesteps are
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Figure 3.10. Dynamic damping and stiffness as a function of pertubation frequency ω for
ε = 0.0 and ε = 0.1.

optimised for the applied input signal. This however neglects the presence of other time scales
in the model which can cause this behaviour at low frequencies. Additionally, a small phase
difference due to damping from the time integration potentially yields great errors in the low
frequeny range. This because the dynamic damping is inversely proportionate with ω. This
effect is also confirmed by the observation that for smaller time intervals the graph straightens.
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Chapter 4

Reduced order modeling

To increase computational efficiency, a reduced order model (ROM) is created of the proposed
model. Model order reduction aims to lower the computational complexity of mathematical and
dynamical models by reducing its associated state space dimension. One rather obvious way
to achieve this dimensionality reduction for a finite element model is to lower the number of
degrees of freedom (dofs), i.e. coarsening the mesh. In Chapter 3, however, the dependecy of the
model results to the mesh size and the disadvantages of grid coarsening is thoroughly discussed.
Hence a different dimensionality-reduction technique is required.

Various methods are available to create a ROM of which many are based on the projection
of known, high-dimensional dynamics onto a set of modes. These modes are obtained by a
hierarchical modal decomposition that can be truncated at some reduced model order r. Consider
a high-dimensional system written as a linear time invariant (LTI) system in descriptor form:

EẊ = AX+BU,

Y = CX
(4.1)

The primary goal of model order reduction is to find a dedicated coordinate transformation
X = TX̃, to construct a related system in reduced dimensional space with similar input/output
behaviour:

Ẽ ˙̃X = ÃX̃+ B̃U,

Y = C̃X̃
(4.2)

To retrieve such a coordinate transformation and the resulting reduced order system, different
methods can be used of which two will be accessed throughout this thesis. First, a system
theory approach is applied which utilizes a linearization of the Reynolds equation around an
equilibrium state. This allows one to apply balancing techniques to retrieve the best obeservable
and controllable modes of the system. Secondly, a data-driven approach is applied that uses
spatial-temporal data from, in this case, a simulation. This data can be used to construct a
linear model of a possible strongly non-linear system and reducing it accoringly.

Both approaches have a different philosophy, advantages and disadvantages. In this chapter
the development of a ROM of the proposed air bearing model is discussed using both approaches
discussed above. The results of each approach will be discussed independently after which a
comparison is made.
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4.1. SYSTEM THEORY APPROACH

4.1 System theory approach

As stated before, the overarching reason for creating a ROM is to allow for real time applications
of high dimensional models. In the case of an air bearing system this most likely means the
deployment of a ROM within a feedback control loop, or as part of a larger FEM simulation.
As these applications benefit more from the response of the input/output behaviour of this
component, it is wise to explore system theory based approaches for creating a ROM. This
implies the creation of an LTI representation of the Reynolds equation by means of linearization
around an equilibrium state. In this way the state of the system is written in terms of shaft
positions and velocities.

4.1.1 Linearization

Introducing the perturbed variables of the Reynolds equation as:

h = h0 + δh(t),

p = p0 + δp(t)
(4.3)

where p0 and h0 define the equilibrium state, and p and h are defined according to the finite
element discretization with basis functions φ and ξ as:

p = φiXi,

h = ξdkUk,

ḣ = ξvkU̇k

(4.4)

with the pressure dofs stored in X, position input in U and velocity input in U̇ . The linearization
is then obtained by taking the Gateaux derivative of the bilinear and linear forms of the
discretised Reynolds equation, as derived in Equation (3.2), allong the direction of φ and ξ. The
equilibrium position around which the linearization is performed is defined as ε = 0.0 and ḣ = 0.
The linearization is given according to Equations (4.5) to (4.7).

∂

∂t
M(p, φ) ∼= ⟨∂pMi, φj⟩︸ ︷︷ ︸

Eij

Ẋj +
〈
∂ḣMi, ξ

v
k

〉︸ ︷︷ ︸
Bv

ik

U̇k (4.5)

B(p, φ) ∼= ⟨∂pBi, φj⟩︸ ︷︷ ︸
Aij

Xj +
〈
∂hBi, ξ

d
k

〉
︸ ︷︷ ︸

Bd
ik

Uk (4.6)

F(φ) ∼= ⟨∂pFi, φj⟩︸ ︷︷ ︸
Cij

Xj (4.7)

It turns out that the linearization of the squeeze term yields an additional input matrix Bv.
This is however not treated as an additional input to the system, since the input U̇ is directly
computed as the time derivative of U , yielding a single-input single-output (SISO) system. Using
the system matrices as described above, the LTI system can be written as:

EẊ = AX+BdU +BvU̇ ,

Y = CX
(4.8)

Taking the Laplace transform of Equation 4.8 and rearanging its terms, an expression for the
transfer function (TF) of the Reynolds equation is yielded according to Equation (4.9). Where s
is a complex frequency written as s = iω.
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CHAPTER 4. REDUCED ORDER MODELING

H(s) =
Y(s)

U(s)
= C(Es−A)(Bd + sBv) (4.9)

To determine the performance of the linearization, both the static and dynamic coefficients are
computed in the same manner as for the full non-linear FEM. The steady state problem is solved
by excluding the time dependent terms in Equation (4.8), after which the system AX = −BdU
can be solved. Figure 4.1 reports the static behaviour of the linearised system by simulating a
small pertubation in ε, resulting in the perturbed pressure field given by Figure 4.1b. This result
is then compared to a full FEM solution using the same pertubation as given by Figure 4.1a.
The resulting error is computed as |pfem − plti| and normalised to the supply pressure ps. It can
be seen in Figure 4.1c that very favorable error values are achieved which are significantly lower
than the accepted discretization errors discussed in Chapter 3. In terms of load capacity error, a
relative error of 7.07× 10−5 is found which is approximately the same order of magnitude as the
error in the pressure solution.

For the dynamic coefficients, the frequency dependent results of the LTI system are compared
to those of the full FEM solution. Figure 4.2 reports the frequency dependent dynamic coefficients
of both the FEM and the LTI, using both ε = 0.0 and ε = 0.5. Figure 4.2a additionally contains
the frequency response of the LTI system using a Crank-Nicolsen (CN) time discretization
scheme to validate the time convergence of the LTI. From this analysis, the LTI system shows
good convergence in time as it overlaps almost perfectly with the TF approach. This assures the
exclusion of initial transients in the computation of the dynamic coefficients.

From both Figure 4.2a and Figure 4.2b it can be seen that the response of the LTI in the

(a) Perturbed FEM. (b) Perturbed LTI.

(c) Normalised error.

Figure 4.1. Comparison of the static linearised Reynolds model with the full non-linear Reynolds
model. For both simulations the same shaft perubation is applied of 10−7 m.
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4.1. SYSTEM THEORY APPROACH

low frequency range approaches the FEM solution. Both damping and stiffness coeffients have
the same assymptotic behaviour at ω → 0 and ω → ∞. The squeeze film dynamics around
ω = 102 Hz is also captured in both the stiffness and damping response. In contrary to the
FEM solution for ε = 0.1, the LTI results for the damping at ω → 0 behave as one would expect
without the artefacts visible in the FEM solution. Because the TF approach is only frequency
dependent this strenghtens the observation made in Section 3.3.

The qualitiy of the linearization is examined through the error between the FEM and LTI
solutions normalized to the FEM solution. Figure 4.3 reports the relative error as a function of
pertubation frequency for both the stiffness and damping results at ε = 0.0. The error clearly
increases around 100 Hz where the non-linear squeeze behaviour is dominant, yielding errror
values much greater than the accepted discretization error. Considering both the static and
dynamic behaviour, the LTI is able to capture the response of both the stiffness and damping
characteristics. However, in terms of relative error one should be carefull in the range where the
non-linear squeeze behaviour is dominant.

4.1.2 Balanced truncation

The linear system is allready significantly faster to solve than the full non-linear FEM, however,
it still consists of the complete set of pressure dofs. Allthough the used model only consists of
only a couple of hundred dofs, this number can grow rapidly to a couple of thousands when
unstructured meshes are used, or adaptive mesh refinement is applied. Therefore a ROM is
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Figure 4.2. LTI performance compared to the non-linear FEM solution in terms of the dynamic
stiffness and damping as a function of pertubation frequency ω. In Figure 4.2a the transient LTI
is solved using a Crank-Nicolsen scheme which shows proper convergence in time.
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Figure 4.3. Relative error of the dynamic stiffness and damping for ε = 0.0.

constructed by using the balanced truncation method (BT), first introduced by B.C. Moore [26].
This method is based on the introduction of a balanced realization of the full-order LTI system
and truncating it accordingly. This implies the discovery of a coordinate transformation that
captures the most controllable and observable states in the system. In this way the stability
of the system is preserved, which is a major advantage of BT. An additional advantage is the
definition of a-priori computable upper and lower error bounds for the system error [27]. Starting
from the full-order realization of the LTI given by Equation (4.8), the balancing problem can be
defined as:

Find the invertible coordinate transformation matrices T, S ∈ Rn×n,

such that the realization with:

Ê = STET = I

Â = STAT

B̂ = STB

Ĉ = CT

has Gramians P and Q satisfying :

P = Q = ΣH = diag(σHi )

(4.10)

with the Hankel singular values σHi . The controlability (P) and observability (Q) gramians are
defined as:

P =

∫ ∞

0
eAτBB∗eA

∗τdτ (4.11)

Q =

∫ ∞

0
eA

∗τC∗CeAτdτ (4.12)

In geneneral it is rather impractical to compute the controllability and observability Gramians
directly from Equation (4.11) and Equation (4.12). Instead these Gramians are computed by
solving the Lyapunov equations given by Equation (4.13)

0 = AP + PA∗ +BB∗

0 = A∗Q+QA+C∗C
(4.13)

Remark 4.1.1. It should be taken into account that solving the Lyapunov equations for high-
dimensional systems is numerically rather expensive [28]. For these systems it would be beneficial
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to approximate the gramians using experimental or numerical data instead as showed in [29].

The truncation of the model is based on the controllability and observability energies of the
states. These energy functions define the minimum energy to steer the system from the zero
state to the next, and the energy of the output at that next state. Given that P is invertible,
the controllability and observabillity energies are given by respectively Equation (4.14) and
Equation (4.15):

Ec = x∗P−1x (4.14)

Eo = x∗Ox (4.15)

Relating the energy functions to the fact that P and Q are equal to Σ, it becomes clear that the
states corresponding to the smallest Hankel singular values are the most difficult to reach and
observe. A truncated model can therefore be defined by defining two basis matrices V,W ∈ Rn×r

as the first r columns of T and S, yielding a ROM as:

Ẽ ˙̃X(t) = ÃX̃(t) + B̃U(t)

Y (t) = C̃X̃(t)
(4.16)

where Ẽ =WTEV, Ã =WTAV, B̃ =WTB, C̃ = CV [27, 29, 30].

Error bounds

As stated above, computable a-priori error bounds are defined for the BT method. The H∞
norm of the error between the transfer functions of the full-order model and the ROM is bounded
according to the upper and lower bounds described by Equation (4.17) and Equation (4.18)
respectively [27].

∥H(s)− H̃(s)∥H∞ ≤ 2

n∑
i=r+1

σi (4.17)

∥H(s)− H̃(s)∥H∞ ≥ σr+1 (4.18)

Figure 4.4 reports the upper and lower a-priori error bounds for the LTI system for all possible
model orders r. A rapid decay of the error is observed at the first couple of model orders for
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Figure 4.4. Upper and lower a-priori error bounds of the balanced LTI model for ε = 0.0.
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both the upper and lower bound. A ROM that utilizes the first 20 balanced states yields an
upper bound error of approximately 10−8. This is significantly lower than the linearization error
defined above.

Figure 4.5 reports the frequency response of the balanced LTI truncated at various model
orders. Figure 4.5a contains the results for ε = 0.0, which shows relative fast convergence towards
the full-order LTI model. The results for ε = 0.4 in Figure 4.5b shows a slower convergence. The
ROMs of which its respective model order is too low are underestimating the stiffness at high
frequencies, while overestimating the damping at lower frequencies. The ROM of order r = 20
shows to be a good approximation of the full order LTI for both zero and non-zero eccentricity.
To confirm this observation, the frequency dependent magnitudes of the error between the
full-order model and a ROM of order 20 for both ε = 0.0 and ε = 0.4 are reported in Figure 4.6.
From this figure the a-priori H∞ norm of the error is visible as the maximum value of the error
magnitude of the ε = 0.0 case. Alltough the eccentric case has an error magnitude of 3 orders of
magnitude higher than the concentric case, it is still significantly lower than the linearization

Table 4.1. Comparison of the simulation times betweem the full non-linear FEM, the full-order
LTI system and a ROM of order 20.

Model order r Simulation time [s]

FEM 6673.34

LTI 23.87

ROM r=20 2.54
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Figure 4.5. Dynamic results of the balanced LTI truncated at increasing model order r, for
both ε = 0.0 and ε = 0.4.
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Figure 4.6. Magnitude of the error between the full-order model and a ROM of order 20 for
ε = 0.0 and ε = 0.4.

error. Both graphs show a further decrease in error in the higher frequency range.
The improved efficiency of the ROM is accessed through the comparison of the computational

time used to solve a transient problem. To that end, the transient response to a step input of
both the full-order LTI and the ROM of order 20 are computed and reported in Figure 4.7. From
this figure it is clear that the ROM again shows good performance compared to the full-order
LTI system, now for inputs using multiple frequencies. For both systems the transient response is
solved using a CN scheme and a timestep of 10−5. The computational time of both simulations,
and of a non-linear FEM simulation using the same number of timesteps, are listed in Table 4.1.
The table shows a reduction in computational time of the ROM compared to the LTI with a
factor of around 10.
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Figure 4.7. Transient response to a step input of 10−6 for the full-order LTI model and a ROM
of order 20. The transient simulation is solved using a CN scheme and a timestep of 10−5 for
ε = 0.0.
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4.2 Data-driven approach

Data-driven approaches are widely used for model order reduction. Methods such as the proper
orthogonal decomposition (POD) and the dynamic mode decomposition (DMD) have proved
their contribution to the model reduction of large scale fluid dynamical problems [29, 31]. DMD
is based on POD and both methods utilizes the singular value decomposition (SVD), which make
these methods computaionally efficient and attractive. POD provides a modal decomposition
solely based on the SVD that hierarchically orders its modes in terms of spatial correlation
and energy content. In contrast to POD, DMD provides a modal decomposition of which each
mode consists of spatially correlated structures that have the same linear behaviour in time.
An advantage of these data-driven methods over the model-based methods, as discussed in
the previous section, is that no prior knowledge of the system is required. These methods are
completely equation free and may be applied utilizing just collected data from the system.

4.2.1 Dynamic mode decomposition

DMD was first introduced by Schmid et al. [31, 32] to identify spatio-temporal coherent structures
from high-dimensional data. The original DMD method utilizes a Krylov subspace method, a
variant of the commonly used Arnoldi iteration, where it searches for the best-fit linear operator
A that advances high-dimensional measurements of a potentially non-linear system in time as:

X′ ≈ AX (4.19)

Different algorithms exist to compute this operator, here only the standard SVD-based algorithm
(SDMD), as presented in [32], is considered. Because DMD is inherently data-driven, it requires
measurements or snapshots of the system. Therefore, solutions to the non-linear FEM problem
are aranged in two matrices X and X′, as the system evolves in time. These snapshot matrices are
constructed according to Equation (4.20) and (4.21), with the total number of snapshot matrices
s. For very high-dimensional systems the computation of A and its spectral decomposition
becomes intractable. The SDMD therefore provides an algorithm that leverages dimensionality
reduction to compute the spectral decomposition of A, without the necessity of computing A
directly. The SDMD algorighm is described in Algorithm 1.

X =

 | | |
x1 x2 · · · xs−1

| | |

 (4.20)

X′ =

 | | |
x2 x3 · · · xs

| | |

 (4.21)

Control

The DMD as described above was initially developed to identify naturally evolving systems [29].
A prominent example of this in which the strengths of DMD emanate is for instance the flow
around a cylinder [33]. This however does not account for the effect of any forcing or control of
the system, which for the case of an air bearing component in a high performance application
would be opportune. The DMD with control (DMDc) by Proctor et al. [34] is an extension to
the DMD algorithm where the unforced dynamics is seperated from the effect of actuation. This
method essentially differs from SDMD in the sense that an additional measurement is added to
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the system. The aim of DMDc is to search for the best fit linear operators A and B that relates
the snapshot matrices X ′ and X and the control input Υ best in time as:

X′ ≈ AX+BΥ (4.22)

DMDc is described by Algorithm 2. It utilizes the beneficial properties of SDMD in the sense
that both A and B are not computed directly. The method requires the definition of an
additional third snapshot matrix Υ, which contains the actuation input of the system as given
by Equation (4.23). The resulting reduced order operators Ã and B̃ may be used to construct a
reduced order state space realization by the assignment of C̃. This method is not used within
this thesis, however, it is a promising approach. In Appendix B it is therefore briefly elaborated
further.

Υ =

 | | |
u1 u2 · · · us−1

| | |

 (4.23)

4.2.2 Stability of the ROM

To showcase the SDMD and the DMDc algorithms on the proposed air bearing model, a trivial
case is examined through the process of data reconstruction. Therefore the matrices X and X′

are constructed using the frequency response data from a transient FEM simulation as described
in Section 3.3. The pertubation signal applied to the shaft is used as a control input stored in Υ.
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Figure 4.8. Singular values of the snapshot matrices constructed at increasing values of ω.
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Algorithm 1 SDMD

Find dynamic properties of:
X′ ≈ AX

1. Compute truncated SVD of X:

X ≈ ŨΣ̃Ṽ∗

2. Compute pseudo-inverse of X:

X† = VΣ−1U∗

3. Compute reduced-order approximation of A:

Ã = X′X† = X′ṼΣ̃−1Ũ∗

4. Spectral decomposition of Ã:

ÃW = WΛ

5. Compute dynamic modes:

Φ = X′ṼΣ̃−1W

6. Spectral expansion:

X(k∆t) = ΦΛtb

Algorithm 2 DMDc

Find dynamic properties of:
X′ ≈ AX+BΥ

1. Construct input matrix:

Ω = [X,Υ]⊤

2. Compute truncated SVD of input matrix:

Ω ≈ ŨΣ̃Ṽ∗ = [X,Υ] Σ̃Ṽ∗

3. Compute truncated SVD of output matrix:

X′ ≈ ÛΣ̂V̂∗

4. Reduced-order approximation of A:

Ã = Û∗X′ṼΣ̃−1Ũ∗
1Û

5. Reduced-order approximation of B:

B̃ = Û∗X′ṼΣ̃−1Ũ∗
2

6. Eigen decomposition:

ÃW = WΛ

7. Compute dynamic modes:

Φ = X′VΣ̃−1Ũ∗
1ÛW

Remark 4.2.1. Algorithm 2 describes the DMDc algorithm for the case B is fully unknown.
However, it is worth mentioning that in [34] an additional algorithm is developed for the case
that B is known.
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To determine a suffieciently large model order, the energy content of each SVD mode of the
snapshot matrix is examined in terms of the corresponding singular values. Figure 4.8 reports
the singular values of the snapshot matrices constructed with training data at different values of
ω. From this figure it can be concluded that for all cases almost all of the energy of the system
is contained within the first 20 to 40 SVD modes. From the figure the increasing dominance
of the squeeze dynamics can be observed, since for the mid frequency range more modes are
required to contain the same energy content.

In contrast to BT, the initial stability of a system in not preserved. Hence the stability of
the retrieved reduced order SDMD and DMDc dynamical systems should be carefully examined.
The stability is analysed in Figure 4.10, showing the size of the eigenvalues of both the SDMD
and DMDc Ã operators, with respect to the unit circle. Figures 4.10a − 4.10c contain the
stability results of the SDMD, and Figures 4.10d − 4.10f contain the stability results of the
DMDc. Both operators are trained at three different frequencies and truncated at r = 25. It can
be seen that for all cases the eigenvalues lie within the unit circle, resulting in stable systems.
Only at ω = 107 a non stable eigenvalue appears. However, the time scale of the pertubation at
this frequency is suffieciently short that no unstable behaviour is expected in the first couple of
periods in the transient response.

The stability results of the reduced order systems trained at ε > 0.0 are very similar to
those reported for the systems trained at ε = 0.0. For ω = 10−2, however, the DMDc operator
has slightly unstable eigenvalues as can be seen in Figure 4.9. Because the time scales of the
pertubation are relatively large, this slight instability will cause the transient response to diverge.

4.2.3 Reconstruction of transient response

With the computed operators, the transient response is reconstructed using the first column of
both X and Υ as an initial condition. Figure 4.11 reports the reconstructed response of both the
SDMD and DMD for the three different frequencies. As expected, DMD is able to reconstruct its
response very well. However, DMDc is showing some unexpected behaviour at lower frequencies.
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Figure 4.9. Eigenvalues of both the EDMD and DMDc Ã operators of order 25 with respect to
the unit circle. The operators are trained at ω = 10−2 and ε = 0.4.
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Figure 4.10. Eigenvalues of both the SDMD and DMDc Ã operators of order 25 with respect to
the unit circle. The SDMD results are depicted in 4.10a− 4.10c , the DMDc results are depicted
in 4.10d− 4.10f . The operators are trained for three different frequencies, all at ε = 0.0.
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The reason of this is however not completely clear. A possible reason could be that the amplitude
of the input signal is too low for the time scales present at lower frequencies. In that case
the DMDc algorithm is effectively trying to approximate noise and is not able to seperate the
unforced dynamics and the input. This is also observed in the fact that the reduced DMDc
model is insensitive to any perturbation of the input. Further research, utilizing more suitable
data generation methods, is required to obtain a sound understanding of these results.

0 500 1000 1500 2000 2500 3000
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Lo
ad

 c
ap

ac
ity

 [N
]

Reynolds
SDMD
DMDc

(a) ω = 10−2

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
Lo
ad

 c
ap

ac
ity

 [N
]

Reynolds
SDMD
DMDc

(b) ω = 102

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [s] 1e−6

−3

−2

−1

0

1

2

3

Lo
ad

 c
ap

ac
ity

 [N
]

Reynolds
SDMD
DMDc

(c) ω = 107

Figure 4.11. Reconstructed transient responses using the reduced order SDMD and DMDc
operators, trained at different values of ω. All in comparison with the full non-linear response.
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Chapter 5

Conclusion and discussion

The use of high fidelity models in analysing functional modules of complex mechatronic systems
allows the utilization of more accurate predictions. However, these models often come at great
computational costs. In this master thesis the development and reduction of a finite element
model of an inherently compensated journal gas bearing is elaborated.

The proposed high fidelity finite elment model is based on the Reynolds equation. The model
is able to describe the static and dynamic characteristics of the bearing for various geometries
and input parameters. A thorough convergence study showed good convergence of the pressure
solution and the computed characteristics, on structured uniform grids. Both of which are in
correspondance to results found in literature. However, for larger orifice diameters, the proposed
point source approach to model the orifices proved to be disadvantageous for the convergence of
both the mass flow residual and load capacity. Due to the presence of steep pressure gradients,
the solutions converge significantly slower resulting in impractical mesh sizes. Two altered
approaches are therefore suggested. Firstly, utilizing adaptive mesh refinement and secondly,
the consideration of the orifices as small but finite areas.

A linearization of the finite element model is constructed to allow for a more system theoretic
approach. Significant linearization errors arise around the frequencies at which the non-linear
squeeze dynamics become dominant. A good understanding of the operating domain of the
bearing should determine whether this linearization error is acceptable or not. This ofcourse is
strongly related to the application of the bearing and the loads it has to carry. The proposed
balanced linearization truncated at order 20 is able to approach the linearization with a maximum
error of approximately 10−5. An efficiency increase of a factor 10 is achieved in terms of
computational costs. Regardless of the favorable efficiency and implementation of BT, it should
be taken into account that this ROM approach is not very well scalable to larger systems.

An alternative method is found in data-driven ROM approaches. Two variants of the dynamic
mode decomposition are applied to the bearing case by reconstructing transient data. The
original DMD algorithm is very well able to reproduce the transient response at a given frequency,
only utilizing a few dynamic modes. However, this method is unable to include any form of
actuation or control. Therefore, DMDc is introduced which seperates the naturally evolving
system from the control input. Using the same transient data as for the DMD, the DMDc is
not able to produce a similar reconstruction. Assumably the input pertubation is not defined
well enough for a proper separation. Therefore it is recommended to explore more suitable data
generation methods that better define the input signal.
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5.1. RECOMMENDATIONS AND FUTURE RESEARCH

5.1 Recommendations and future research

The proposed model is based on the Reynolds equation and therefore several assumptions
have been made. Although these assumptions are discussed and acknowledged, their specific
contribution to the solutions remain unknown. A comparison with experiments or a model based
on the full navier-stokes equations may elucidate the effect of these assumptions.

To determine the dynamic behaviour of the bearing it is assumed that the shaft only deflects
in the radial direction. However, in practice the shaft is also able to tilt relatively to the bush.
This tilt behaviour is quantified through the tilt stiffness and is an important characteristic of
the bearing performance. The ability of the proposed model and its reductions to predict this
tilt stiffness is not included in this work. Further research should determine if adjustments to
the model and the ROM approaches are required to capture the full dynamics if tilt is included.

In this work only the inherently compensated orifices are considered. However, the current
implementation of the gas bearing model allows for other types of orifice restrictors, e.g. pocketed
compensated or slot entry journal bearings. These types of orifices have different advantages
over one another as elaborated in [16]. These orifice can be implemented through the definition
of a suitable film height function h(θ), taking into account the limits of the thin film assumption.

The generation of trainig data for the DMD is conducted by isolating the transient response
of the Reynolds equation at a given frequency. This results in relatively clean data with only a
few frequencies that are present in the output of the model. It is shown that DMDc benefits from
training data with clear defined actuation. A more advanced method of data generation to train
the DMDc model is therefore advised. This may be achieved by the persistent excitation of the
system, e.g., applying a gaussian noise signal to the system. In this way multiple frequencies are
applied to the input while maintaining a workable time step size. The current implementation
of the model does not allow for such random input signals. An alteration of the implementation
of the transient solver is therefore required.
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Appendix A

Unstructured mesh results

To utilize the meshing and efficiency benefits of structured and uniform grids, that grid type
has been used throughout the main content of this thesis. Nonetheless, the properties and
perfomance of unstructured grids has been investigated, as the convergence of unstructered and
uniform grids is bounded. The results obtained for unstructured meshes are reported in this
appendix and compared to those of structured grids used in the main content.

The unstructred meshes are constructed using triangular elements using the default dimensions
as listed in Table 3.1. The three-dimensional finite element mesh generator Gmsh is used for the
meshing of unstructured meshes [35]. An example of such a mesh is illustrated in Figure A.1 for
the half bearing geometry. A fundemental difference of this mesh type, in comparison with the
structured meshes, is the fact that the orifices are now modeled as small but finite areas. For
that reason the mesh density around the orifices is significantly higher.

A.1 Revision of the weak form

Because of the fact that a different modeling approach for the orifices is required, the entrance
flow model, and additionally the weak form, should be revised accordingly. The source term of
the Reynolds equation, which is given by Equation (2.9) in terms of the dirac delta function, is
therefore rewritten in terms of the mass flow rate instead according to Equation (A.1)∫ h

0
qdz =

ṁj

Vj
hj =

ṁj

Aj
(A.1)

0.00 0.02 0.04 0.06
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Figure A.1. Example of an unstructured finite element mesh for the half bearing geometry.
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A.2. STEADY STATE RESULTS

Where ṁj is the mass flow rate through the jth orifice with area Aj . The expression for ṁj

as given in Section 2.2 still holds. The linear form of the weak form is altered accordingly, by
applying this new source term as according to Equation (A.2). For this expression the same test
and trial spaces are used as (2.20).

F(φ) =
N∑
j=1

∫
Ωor

φ (ΓQj) dV ∀φ ∈ V (A.2)

Where the the complete source term Q is written as:

Q = 12µRsTs

∫ h

0
q dz =

N∑
j=1

12µRsTs
ṁj

Aj
(A.3)

A.2 Steady state results

Since the unstructured grids are not compatible with a b-spline basis, quadratic Bernstein basis
functions are used for the discretization. Besides the above defined revisions, the same simulation
is conducted as for the structured meshes. Figure A.2 reports the static pressure solution for
eccentricity values ε = 0.0, 0.2, 0.4, 0.6. The results look very similar as those solved using a
structured mesh depicted in Figure 3.3, in both the peak value of the pressure as well as its
distribution.

(a) ε = 0.0 (b) ε = 0.2

(c) ε = 0.4 (d) ε = 0.6

Figure A.2. Steady state pressure distribution for increasing eccentricities and Λ = 0.0.

44



APPENDIX A. UNSTRUCTURED MESH RESULTS

1.2.1 Convergence of unstructred meshes

As proposed in Section 3.2, unstructured meshes may be utilised to conduct simulations with
larger orifice diameters. Therefore, the convergence of these meshes is examined. Figure A.3
reports the convergence of the relative load capacity residual and the mass flow residual, using
an orifice diameter of 0.18mm. This is about 10 orders of magnitude greater than the orifice
geometry used throughout the main content. The relative load capacity residual in Figure A.3a
shows decent performance in terms of rates and residual value. For the relative mass flow
residual, however, the effect of the larger orifice diamer is visible. The rate is significantly lower
and the residual values are realtively high.

To see the effects of such a bigger orifice to the pressure solution, a static solution is obtained
using the orifice diameter of 0.18 mm. Figure Figure A.4 reports the static pressure solution for
both ε = 0.0 and ε = 0.4. It can be seen that the pressure at the orifice approaches the supply
pressure as the larger orifice diameter allows more mass to flow.
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(b) Relative mass flow residual

Figure A.3. Convergence properties of the relative load capacity and the mass flow error using
unstructured meshes.

(a) Vertical static load capacity (b) Vertical static stiffness

Figure A.4. Steady state pressure solution solved with orifice diameter 0.18 mm for ε = 0.0
and ε = 0.4.
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Appendix B

State space representation of DMDc

DMDc is able to find two reduced order operators Ã and B̃ that relates the snapshot matrices
X′ and X and the control input Υ best in time. By assigning a C̃, the construction of a reduced
order state space is allowed. Using the defined linearization from Chapter 4, C̃ can be defined
as:

C̃ = ÛC (B.1)

resulting in a state space realization of the DMDc, which according to Equation (4.9) can be
written as a transfer function. To showcase this state space realization for the proposed air
bearing model, the transient response at ω = 107 is used to train the DMDc. The dynamic
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Figure B.1. Poorly predicted dynamic characteristics obtained from the DMDc state space
realization. The DMDc is trained at ω = 107 and ε = 0.0.
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characteristics can be computed according to the method given in Section 4.1, the results of
the DMDc state space representation are reported in Figure B.1. Because the DMDc is not
able to capture the transient response per frequency, it is of no suprise that this poorly trained
DMDc approximation is not able to predict the frequency dependent dynamic characteristics.
However, given a proper trained DMDc, a convenient framework exists to couple the snapshot
based DMDc with a system theoretic implementation.
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Appendix C

Nonlinear Balanced Truncation

The goal of balanced truncation, transforming the system coordinates into its balanced form
and subsequently obtaining a reduced-order-model, remains the same for nonlinear systems.
However, in general this can only be achieved locally by a nonlinear coordinate transform.

Consider a smooth nonlinear system of the form:

ẋ(t) = f(x(t)) + g(x(t))u(t),

y(t) = h(x(t))
(C.1)

Additionally, zero is assumed to be an equilibrium, i.e. f(0) = 0 and h(0) = 0. The energy
functionals defined by Scherpen are defined in analogy to the linear case as:

Lc (xd) = min
u∈L2(−∞,0;Rm)
x(−∞)=0,x(0)=xd

1

2

∫ 0

−∞
uT (t)u(t)dt

Lo (x0) =
1

2

∫ ∞

0
yT (t)y(t)dt, x(0) = x0, u(t) ≡ 0, 0 ≤ t <∞

(C.2)

While the Gramians P and Q of a linear system satisfy the linear matrix equations known
as the Lyapunov equations, this does not hold for the nonlinear case. With suitable solvability
assumptions the above defined Lc and Lo solve the following partial differential equations:

∂LC

∂x
(x)f(x) +

1

2

∂Lc

∂x
(x)g(x)

(
∂Lc

∂x
(x)g(x)

)T

= 0, LC(0) = 0

∂Lo

∂x
(x)f(x) +

1

2
(h(x))Th(x) = 0, Lo(0) = 0

(C.3)

Using a nonlinear coordinate transform x = ψ(x̃, ψ(0) = 0, the following holds for the
transformed balanced functionals.

L̃c(x̃) := Lc(ψ(x̃)) =
1

2
χ̃T x̃

L̃o(x̃) = Lo(ψ(x̃)) =
1

2
x̃T diag (σ1(x̃), . . . , σn(x̃)) x̃

(C.4)

It can be shown that a linearization of this approach yields the classical balancing technique
applied to the linearization of the nonlinear system. Another approach for nonlinear balanced
truncation is focused on replacing Lc and Lo by algebraic approximations, particularly for the
class of bilinear systems.
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C.1. BILINEAR SYSTEMS

C.1 Bilinear systems

Bilinear systems arise in several practical applications, but can also be used to approximate
more general nonlinear systems by a Carleman linearization.

Consider a bilinear system as:

χ̇(t) = Aχ(t) +
m∑
i=1

Nix(t)ui(t) +Bu(t)

y(t) = Cχ(t)

(C.5)

The main advantage of using the algebraic gramians is that a global static coordinate
transfrom can be used to transform the above bilinear system into balanced form and is
completely analogous to the linear case.

Figure C.1. Algorithm for bilinear balanced truncation from benner2021
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