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Abstract

The topic of this graduation project is the fault detection for an environment perception system applied to a
class of autonomous systems. The literature survey on this topic showed that in current research some topics
regarding robust perception are not fully covered yet, for both general multiple target tracking systems as
well as in the application domain of autonomous vehicles. Therefore, this project investigates how to develop
a fault detection and isolation framework for the perception system of an autonomous tractor, by exploiting
sensor redundancy in the perception system and making use of model-based approaches. A model for the
perception system and environment is developed. This model is used to describe the nominal and degraded
system behavior and assess performance. Then, fault detection approaches exploiting hardware-redundancy
and models are developed and challenges are identified. Finally, a number of use cases are developed in order
to asses the performance of the fault detection approaches.
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Chapter 1

Introduction

The topic of this graduation project is the fault detection for an environment perception system applied to a
class of autonomous systems. In order to solve the problem of detecting faults in the perception system, a
model for the perception system and environment is developed. This model is used to describe the nominal
and degraded system behavior and assess performance. This chapter is structured as follows. Section 1.1
presents the background and motivation for this research project. It gives a high-level overview on the
research topics for autonomous vehicles, outlines the current state of practice, and concludes with a high-level
problem statement. Section 1.2 states functionality assumptions and constraints imposed to carry out the
research in this thesis. A number of definitions are given to make the remaining of the thesis more transparent.
Next, Section 1.3 discusses relevant literature with respect to the high-level problem statement in the scope
of this project. It concludes identifying the gap in current knowledge, relevant to the considered application.
Section 1.4 discusses the research questions and project goals, based on the motivation and the literature
survey. Finally, Section 1.5 gives the outline of this thesis.

1.1 Background

Autonomous driving is a promising technology, which had led to significant research on autonomous vehicles
(AVs) over the past decades. Due to advances in Global Positioning Systems (GPS), LIght Detection And
Ranging (LIDAR), RAdio Detection And Ranging (RADAR), computing power and other technologies, the
level of driving automation evolved towards the current state; self-driving vehicles are used operationally in
warehouses and self-driving functionalities are integrated with consumer vehicles [1], [2]. General benefits of
AVs include increasing road traffic safety, travel time reduction and fuel efficiency. A thorough study about
the advantages of AVs is discussed in [3].

A particular type of AVs are autonomous vehicles with a working function, also referred to as work-drive
vehicles. These type of AVs are common in agriculture, logistics and the manufacturing industry. An example
in the agricultural environment is a tractor with an implement, e.g., a front loader, mowing arm, sprayer, etc.
Furthermore, automated guided vehicles with a robot arm used for drilling, picking or visual inspection can
be seen in logistics and manufacturing industry. Figure 1.1 shows the AV that serves as a motivation for
this project. Advantages of AVs in agriculture are reduction in expenditure on employment, less exposure
towards health hazards caused by the spraying chemicals and a higher precision of the work performed by
the autonomous functionalities.
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Chapter 1. Introduction

Figure 1.1: Considered platform in typical application environment.

Compared with general AVs, an agricultural AV faces the same challenges as it operates in an environment
where humans and vehicles are present. An additional challenge compared with regular AVs is that the
autonomous tractor needs to interact with the environment. One of the core functionalities needed in
autonomous vehicles is the capability of perceiving the environment. Based on the environment perception,
it is possible to navigate and perform tasks. Perceiving the environment accurately is thus important for
safe operation, in the context of collision avoidance. This is important with regard to humans (to prevent
casualties), as well as for the platform itself (to prevent damage). Furthermore, accurate perception of the
environment is needed to perform tasks and interact with objects in the surroundings.

The perception system is a part of the functional system architecture for an AV. The perception sys-
tem performs the task of collecting information and extracting relevant knowledge of the environment. It
is needed to detect the environment and keep track of earlier detections. Figure 1.2 shows a functional
system architecture of a general AV [4], which enables the vehicle to operate safely and efficiently through the
environment. Based on the position of the host platform and perceived objects, stored in the environmental
model, missions can be planned. Mission planning concerns the high-level task of an AV, such as a certain
operation in the field (e.g., spraying the farmland) or remaining idle. The task and motion planner involve
low-level operation of an AV based on the current mission, such as navigating between waypoints, or picking
up pallets. The vehicle control block concerns the control signals to the actuators.

Figure 1.2: General functional system architecture for an AV, based on [4].

Another important part of an AV are the sensors, providing information about the surroundings (perception)
and the position of the AV with regard to the environment (localization). The platform needs to keep
track of several objects that exist in the world. Each object can be defined with a set of variables, such
as position and object class, that can be measured with help of the perception sensors (for the considered
cameras and lidars) mounted to the platform. With help of cameras the object class can be identified,
but cameras cannot estimate the depth coordinates accurately. Lidars are able to measure depth, but can
not detect object classes, making the two sensor types supplementary. Besides the measurements from the
current time step, it is possible to use the sensor readings from previous time steps to keep track of the
objects in the environment. These values are stored in the environment (or world) model. A detailed descrip-
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Chapter 1. Introduction

tion of the host platform perception system part from the functional architecture can be found in Appendix A.2.

The perception system is critical for safe and efficient operation, therefore it is important that percep-
tion system is monitored for showing nominal or faulty behavior. The property indicating that a system is
able to continue operation despite being in a degraded state is referred to as ‘robustness’. Fault detection
and fault-tolerance [5] are methods that can be used to create a robust system. In this project a robust
perception system is developed. In the following, some basic terminology used in the field of fault detection
and fault tolerance is discussed.

A fault is an unexpected deviation of at least one characteristic property (feature) of the system from
the acceptable, usual or standard condition [5]. The propagation of a fault can result in a failure or mal-
function of the system. A malfunction is an intermittent irregularity in the fulfillment of a system’s desired
function. A failure is a permanent interruption of a system’s ability to perform a required function under
specified operating conditions [6]. Fault tolerance is a system property indicating that the system can continue
operation, although it can be in a degraded state due to faults.

One could think of the following typical cases, indicating the relevance of robust environment percep-
tion. False object detection could lead to erroneously belief in the presence of a human or other object,
causing the system to go to the safe state, or to start replanning unnecessarily. On the other hand, missed
detections could lead to dangerous situations (such as collisions) or inefficient operation, when the target
object that needs to be acted upon is not detected. Both of these situations can be classified as failures.

Now that the most important aspects regarding the problem have been introduced, the background regarding
this project is presented. This graduation project is conducted in cooperation with Flanders Make and Eind-
hoven University of Technology (TU/e). Flanders Make is a strategic research centre for the manufacturing
industry, their aim is to enable the technological development of autonomous vehicles, machines and factories
of the future. Autonomous vehicles with a work-drive functionality for agricultural and logistic applications is
one of the topics currently being researched by the Belgium research institute Flanders Make. This graduation
project is part of the work-drive research at Flanders Make. Challenges that are studied in this research
concern modularity with respect to the perception architectures in automated vehicles with a work function [7].

By having the robust perception capabilities on the processed perception sensor output (more details
on this are given in the next section), instead of the raw sensor data, the robust perception algorithms are
independent of specific used sensors and therefore could contribute to the modular perception architectures.
Therefore, the high-level problem statement is as follows: to develop a framework that is able to distinguish
between nominal and faulty object detections on an object fusion level for an autonomous vehicle that operates
in the presence of faults in software and hardware of sensors.

1.2 Preliminaries

In this section, preliminaries are discussed to clarify specific terms used throughout the document. Also,
constraints and assumptions are given.

Figure 1.3 shows a smart sensor schematically. The sensor together with the object detection algorithm, can
be observed as a ‘black box object detector’, or a so-called ‘smart-sensor’.
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Chapter 1. Introduction

Figure 1.3: A schematic depiction of a smart sensor.

As the figure shows, faults can originate from the hardware or software. For this project, the origin of the
fault is not relevant. The robust perception framework receives one or multiple sensor readings at time step
k (output from smart sensor(s)), and needs to detect whether this sensor reading is in a degraded state. A
set of smart sensors is attached to the considered work-drive AV. When referring to this considered AV, the
term host platform is utilized, in order to prevent confusion when referring to other or general AVs. This
expression is chosen to make explicit that the considered platform hosts the perception system. A complete
overview of assumptions is documented in Appendix A.1.

Two main fault categories are considered in this project: localization and existence faults. Localization faults
are modified observations of a given target. During nominal operation, sensor readings will adhere to a sensor
noise according to an assumed distribution. When the noise increases or a bias is added, the sensor will
output faulty measurements. Existence faults are divided into two subcategories, false object detections and
missed detections. False object detections include clutter and decoys. A decoy can be introduced by an
adversary as an attack to the system. Clutter is defined as the set of detections by a sensor not originating
from true objects, where the number of detections and the coordinates of the detection can be sampled from
a probability distribution. A missed detection fault type means that an object is not detected by a sensor,
despite it is expected to be detected, for example caused by target suppression by an adversary. Another
cause of missed detections could be due to sensing limitations, simply because the object is not identifiable
yet (the considered object might be too far away, or unidentifiable caused by bad weather conditions) from
the raw sensor data. Further possible causes for failing to detect an object are a limited Field of View (FoV)
or an occlusion. Figure 1.4 shows the considered fault types and some examples in a diagram.

Figure 1.4: Fault types considered in this project.

In the literature on the topic of fault detection and fault tolerance, many terms can be encountered due to
terminology not being unique, since these topics are researched in many application domains. This document
maintains the following definitions, mostly based on definitions used in [5] and [8].

Analytical redundancy: making use of multiple ways to determine a variable, where at least one
way uses a mathematical process model in analytical form.

Fault detection: fault detection is the capability to determine if there is a fault in the system.

Fault diagnosis: consists in determining the type, size and location of the fault, as well as its time of
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Chapter 1. Introduction

detection. In this project, fault diagnosis is used in the context of determining if a detected fault is an
existence or localisation fault.

Fault isolation: the ability to isolate the specific faulty measurement from the set of measurements.

Fault reconfiguration: the ability to take action after a fault has been detected and isolated in order
to return the system to a stable state.

Nominal: expected value from the process

Residual: a fault indicator, based on deviation between measurements and model predictions.

The following definitions are related to multiple object tracking. See [9] for an extensive literature survey on
multiple object tracking.

Object detection: detecting an object of interest in a single environment scan at a time step.

State: a set of variables at a point in time describing the dynamic behavior of interest for a system.

Object tracking: associating object detections to the object of interest across several environment
scans over time.

1.3 Literature review

Based on the high-level problem statement, motivation and scope given in the previous sections, a literature
study is performed. The goal of the literature survey is to asses general fault detection methods, discuss
object tracking methods and in particular evaluate how object tracking and perception systems (applied but
not limited to autonomous vehicles) cope with faults.

From a high-level view, there are roughly three building blocks to make a fault-tolerant system: fault
detection, fault isolation and fault reconfiguration. There are basically two mechanisms to detect faults:
one is to compare sensor readings mutually from the same time step, making use of hardware redundancy.
The second approach is to compare model predictions with sensor readings (model-based fault detection).
The main purpose of fault detection and isolation is to effectively detect faults and accurately isolate them
from a failed component in the shortest time possible. This capability leads to reduction in diagnostic time
or downtime in general and, therefore, increased system availability. In order for a system to reconfigure
(automatically) from a failure, there are in general three ways to realize this capability [10], defined by the
following:

• discard the faulty modules,

• switch to redundant modules,

• continue operation with less performance.

Further, attention is given to multiple target tracking in the literature review, to asses how several approaches
compare. The structure of the literature review is as follows. Section 1.3.1 discusses multiple target tracking
approaches. Section 1.3.2 documents common hardware redundancy based approaches for fault detection.
Section 1.3.3 gives a summary of literature in the field of fault detection and fault tolerance for perception
systems. General achievements, advantages and disadvantages are listed per research. Finally, in Section
1.3.4 the gap in current research relevant for this project is identified.

1.3.1 Multiple target tracking

Multiple Target Tracking (MTT), also referred to as Multiple Object Tracking (MOT), concerns estimating
the number of objects in the world (in the proximity of the application at hand) and the attributes of those
objects. Attributes can be object type, orientation or position. In this project, the attribute is limited to
position in a two-dimensional plane. Several challenges exist concerning MTT, such as the probability of
detecting an object and the challenge of assigning sensor readings to (new) tracks, known as data association.
An object might not be present in the field of view of the sensor. Also, a problem arises when target are
densely distributed, this makes the assignment of detections to tracks (data association) ambiguous. Further,
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false object detections increase complexity of the data association. To cope with those challenges, several
approaches towards solving the problem exist, these will be discussed in a later part of this section, first a
general multiple target tracking framework is introduced.

Figure 1.5 shows a diagram with functional elements as a general framework for most MTT approaches. The
MTT scheme is now referred to as the ‘system’. The system considers whether it needs to update tracks
based on new sensor readings. It is assumed that the tracks already have been initialized. In the filtering
step, states are predicted from the current time step state estimations to the next time step with help of
a filter (such as a particle or Kalman filter). Based on the predicted tracks, validation gates per track are
computed. Sensor readings satisfying the gate condition are considered as sensor reading candidates to be
assigned to the track. Defining a gate area can be improved with help of knowledge on the measurement noise
and state prediction covariance [11]. During data association, sensor readings are assigned to tracks, based
on the used tracking algorithm. During the track management step, tracks can be initialized, confirmed or
deleted. Unassigned sensor readings can be used to initialize a new track. Tentative tracks are tracks that
have been initialized recently, and can be confirmed if enough evidence is provided that this concerns a real
track. Furthermore, tracks that remain without or with a few detections for set period, can be deleted.

Figure 1.5: General target tracking scheme.

The three most commonly used MTT algorithms are the Multiple Hypothesis Tracking [12], Global Nearest
Neighbour (GNN) [13] and Joint Probabilistic Data Association (JPDA) [14] apporaches. The GNN approach
assigns the observation to a track that has the smallest mutual distance. The JPDA algorithm incorporates
all detections found inside the validation gate. All the detections inside the gate contribute as a weighed
average. The MHT is a target tracking algorithm that keeps at each time step multiple hypotheses about the
past and current data association uncertainties. At every time step, all possible hypotheses are generated
and over time part of them will be pruned, else, the number of hypotheses to maintain will become too large
to keep track off. Hypotheses are pruned by combining similar hypotheses, or by pruning low probability
hypotheses. GNN and JPDA approaches tend to perform very bad compared to MHT in environments
with high clutter to low signal value. A clear disadvantage of MHT is the high computational load. An
in-depth study of several MTT algorithms is presented in [15]. Extensions and improvements of the previously
discussed tracking methods are also discussed in this work.

1.3.2 Hardware redundancy-based fault detection

The considered host platform possesses multiple perception sensors. Some sensors have a overlapping field of
view. The sensors with overlapping field of views will detect on their intersecting FoVs the same objects during
nominal operation. If one sensor gets corrupted by a sufficiently large (‘detectable’) fault, it is possible to
identify the faulty sensor by comparing the sensor readings mutually. The common mechanism to implement
this, works as follows. First, the sensor readings are mutually compared with help of a distance metric. Then,
sensor readings are declared faulty or nominal based on the distance metric values. To declare sensor readings
faulty or nominal, there should be a sufficient amount of healthy sensors. The amount needed depends on
the chosen method. Finally, with help of the nominal sensor readings a final output is computed.

The four most commonly used voter techniques in fault tolerant systems [16], are the majority voter,
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weighted averaging technique, median voter and the plurality voter. The majority, median and plurality
voters compare the received values and will output either the majority median or plurality as the final value.
The weighed average voter combines all measurements and produces a new distinct output. The choice of
weights can be defined based on the prior knowledge of the sensor reliability [16].

A clear disadvantage of the described voter techniques is that the nominal sensor readings are deter-
ministic. In most systems, sensor readings are subject to noise, and therefore cannot be compared directly.
Comparing readings mutually would lead to declaring nominal measurements as faults, since it is not possible
to measure the variable of interest without uncertainty in a real world setting. This is also applicable to
the perception sensors of the host platform. To cope with this problem, sensor measurements are compared
mutually with help of a distance metric [17], if the distance is smaller than a threshold, the measurements
are considered equivalent. With help of this attribute, it is possible to use the preceding voter techniques.
The former discussed voters were applied to object coordinate measurements. Additionally, it is possible to
use a voter method to distinguish between true and false object detections. In [18] a voter algorithm for
an automated vehicle was implemented to distinguish between false and true object detections. This is a k
out of n voter for confirming detections, with n the number of sensors and k a tunable algorithm parameter.
When setting k, this forms a special instance of the plurality or majority voter.

1.3.3 Model-based fault detection

Grübmuller et al. developed a fault-tolerant environment perception architecture that is able to detect
software and hardware faults [19]. To this end, the state of the hardware and software are monitored
separately. ‘Observers’ are defined to estimate states (e.g., position and velocity) of detected objects over
time. This means that every detected object has a separate observer. Hardware faults are detected with
help of a χ2-fault detector by comparing observer values with sensor readings. To detect software faults,
redundant observers are initialized, and their outputs are compared mutually. Brumback et al. [20] were
among the first to use fault detection with help of a χ2 distribution. Faults considered in the research are
clutter and faults in state estimation due to modelling errors. Disadvantages are that only fault detection is
performed on a single object detection per sensor. Further, no explicit use is made of sensing redundancy,
but only observer (i.e., software) redundancy. Furthermore, combined clutter and localization fault, which
gives rise to problems with gating for data association, is not addressed in this research.

In a series of publications, [21], [22], [23], Realpte et al. published research about a fault-tolerant per-
ception system. In order to detect the faults, a Support Vector Machine (SVM) algorithm is trained.
Drawbacks are that the considered fault-tolerant framework uses raw sensor data (low-level sensor fusion).
Using raw sensor data is sensor specific and obstructs the possibility of modular perception architectures.
Another drawback is the assumption made that a reference sensor can be used. This reference sensor is
assumed to always be in a nominal (i.e., not faulty) state.

The research in [24] provides a fault detection approach that makes use of a world model, for an AV
perception system. Faults are detected by comparing the bounding box smart sensor outputs with a reference
(predicted by the model). Also object classes from sensor readings are compared with the reference with
help of a look-up table listing the class correlations. When the correlation between the estimated (detection)
class and the predicted (reference) class is too low, a fault indicator can be triggered. Disadvantages of the
approaches in this research is that no use is made of sensor noise knowledge or sensing redundancy. Both
could have great potential to improve fault detection.

In [25], Fault detection in (distributed) multiple target tracking system is studied. With help of the
OPtimal Sub-pattern Assignment (OSPA) metric [26], various fault types can be detected, such as dynamic
decoys, clutter and suppressed targets (existence faults) as well as bias and excessive noise (localization
faults). However, it is not possible to distinguish between the fault types (Fault Diagnosis).

1.3.4 Discussion

The literature survey shows that in current research some topics regarding robust perception are not fully
covered yet, for both general multiple target tracking systems as in [25] as well as in the application domain
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of autonomous vehicles [19]. The topics that remain open are as follows:

1. the possibility to exploit hardware redundancy to detect faults in an environment perception system,

2. FDI in an environment with both false object detections and bias at the same time instant,

3. distinguish between fault types, clutter and localization fault.

1.4 Problem formulation

Based on the research gap from the previous section and the high-level problem statement introduced earlier
in the introduction, the following problem statement is defined:

How to develop a fault detection and isolation framework for the perception system of an autonomous
tractor, by exploiting sensor redundancy in the perception system?

The problem statement can be subdivided into the following challenges.

1 How to detect faults in the perception system?
2 How to distinguish between localization and existence faults?
3 How to perform the late data fusion from multiple sensors such that objects can be tracked accurately?

From the defined challenges, the following research goals can be formulated.
Develop a fault detection framework for a work-drive system of Flanders Make that is able to:
1 detect and isolate faulty data in the environment perception system,
2 distinguish between localization and existence faults,
3 fuse data from multiple sensors in order to track and localize objects.
4 Implement the framework in a simulation environment and evaluate its performance.

The final chapter, Section 6.1 discusses how each research goal of this project is fulfilled. In order to
develop a framework that allows for robust perception, a model of the system will be developed. Then, by
defining degraded system models, appropriate solutions are provided to detect faulty measurements. The
following section explains the thesis outline in more detail.

1.5 Thesis outline

The remainder of this thesis is structured as follows. Chapter 2 presents how the system and environment are
modelled. The chapter describes how the perception system is modelled in order to asses the fault detection
performance.

Chapters 3 and 4 explain the development and the motivation of the fault detection algorithms for the
perception system. Hardware-redundancy and model-based based fault detection methods are considered,
respectively.

Chapter 5 presents the design of the use cases and the used metrics to evaluate the performance. Thereafter,
the performance of the fault detection schemes in terms of the discussed metrics are given, and assessed with
help of simulations.

Finally, Chapter 6 concludes with a discussion on the obtained results and a conclusion. Furthermore,
possible research paths for useful and promising future work are given.
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System modelling

The goal of this project is to develop a method that monitors the state of the perception system and detects
if this system is in a degraded state, i.e., faults are present. In the considered application, the perception
system is part of an autonomous vehicle (host platform), that navigates in an agricultural environment. In
order to analyze the performance of the developed methods, models are made of the perception system and
objects in the environment. Figure 2.1 shows an adapted version of the multiple target tracking architecture
from Figure 1.5, now including a fault detection module. The parts with a yellow background need to be
modeled to design the fault detection approaches. The fault detection block itself is discussed in Chapters 3
and 4. This chapter describes how the perception system and objects in the environment are modelled in
order to asses the fault detection performance.

Figure 2.1: Multiple target tracking architecture modified for fault detection.

Figure 2.2 shows the model of the multiple target tracker and perception sensors in a high-level overview.
Compared to Figure 2.1, the ‘Filtering’ block is now split into an update step (also referred to as state
estimation) and prediction step block. Furthermore, the fault detection and isolation block is discarded, since
the diagram only shows the modelled components.

The model made of the perception system and objects in the environment is simplified with regard to the
real system; a detailed description of the application perception system can be found in Appendix A.2. The
data processed by the multiple target tracker function blocks, is the set of all tracks O = {O1, O2, . . . , OHk

}.
A track Ol is defined as a list containing several variables relevant for an object trajectory. It contains the
associated sensor readings and the estimated states up till the current time step. With this information
available, it is possible to update state estimates by taking into account the associated measurement, stored
in the considered object list Ol. In Section 2.1.1 an explicit definition of the track variable is given. Section
2.3 explains how the Global Nearest Neighbour (GNN) algorithm works.
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Figure 2.2: Overview of involved components for multiple target tracking.

Based on the multiple target tracking architecture, the chapter is structured as follows. Section 2.1 concerns
the state space representation used to model object states, measurements and state estimates xj

k, z
ȷi
k,i and

x̂l
k|k respectively. The section introduces notation and explains the tracking structure. Section 2.2 discusses

Kalman filters and their capability to filter the sensor readings. In the multiple target tracking overview figure,
the prediction and update step blocks are part of the Kalman filter. Section 2.3 explains the methodology of
the data association module. Section 2.4 explains the track management. Finally, Section 2.5 explains how
faults are introduced in the nominal sensor model.

2.1 State space representation

This section starts with defining state space models, which are commonly used to describe dynamic systems.
Based on this equations, models are derived for the perception sensors and objects in the environment.

2.1.1 State space model

A state space model is a mathematical model of a physical system described by input, state and output
variables. The state space representation is used to model objects in the environment and the host platform.
The external inputs could be the input velocity, if a set of state space equations models a vehicle. A
continuous-time model with external input u can be described as follows:

ẋ(t) = f(x, u), (2.1)

z(t) = g(x, u), (2.2)

with x the system state, z the observed state (output) and ẋ the time derivative of the state. The non-linear
system equations described in discrete time, are:

xk+1 = h(xk, u), (2.3)

zk = l(xk, u). (2.4)

If the functions f(xk, u) and g(xk, u) are linear, the system equations can be written in state space form:

ẋ(t) = Ax(t) +Bu(t), (2.5)

z(t) = Cx(t) +Du(t), (2.6)

with A, B, C and D the state matrix, the input (or control) matrix, the output (or observation) matrix and
the feedthrough (or feedforward) matrix, respectively. If Equations (2.1) or (2.2) are non-linear, they can be
linearized around an operating point and written in the linear state space form [27], given by Equations (2.5),
(2.6). The continuous time state space equations can be described as discrete time equations:

xk+1 = Adxk +Bduk, (2.7)

zk = Cdxk +Dduk, (2.8)

with k ∈ N the sample time step. The discretized state space equations can be derived using the analytical
solution of Equation (2.5) assuming zero-order hold for the input u(t). With some rewriting this results
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in:

x((k + 1)Ts) = eATsx(kTs) +

∫ (k+1)Ts

kTs

eA(k+1)T−τdτBu(kTs),

with τ ∈ [kTs, (k + 1)Ts) and Ts the sample period. By defining λ = (k + 1)Ts − τ we obtain:

x((k + 1)Ts) = eATsx(kTs) +

∫ Ts

0

eAλdλBu(kTs),

with λ ∈ [0, Ts). Note that the equation is now written in the form of Equations (2.7) and (2.8). Therefore
discretized state space matrices can be described in terms of the continuous time matrices and the sample
period:

Ad = eATs , (2.9)

Bd =

∫ Ts

0

eAλdλB. (2.10)

A more elaborate derivation of these equations can be found in [28]. In the rest of this document, the
subscripts for the discrete time state space matrices Ad, Bd, Cd, Dd will be omitted from notation for sake of
simplicity. If the real system dynamics differ too much from the state space description, there is a modelling
mismatch. To take this mismatch into consideration, a process noise term wk is introduced in the equations.
Furthermore, to allow for the measurement noise, the term vk is introduced in the observation equations.
The set of adapted discrete-time state space equations is now given by:

xk+1 = Axk +Buk+1 + wk+1, (2.11)

zk = Cxk +Duk + vk. (2.12)

with A ∈ Rn×n state transition matrix, B ∈ Rn×p control-input matrix and wk ∈ Rn the process noise vector,
which is described by a zero mean multivariate normal distribution with covariance Q ∈ Rn×n: wk ∼ N (0, Q).
Further, C ∈ Rq×n is the observation matrix mapping the ground truth space to the observed space and
vk ∈ Rq the measurement noise vector, described by a zero mean multivariate normal distribution with
covariance matrix R ∈ Rq×q: vk ∼ N (0, R). This is a probabilistic state space model [29]. Furthermore, the
following notation is introduced. In order to consider for multiple objects in the environment, Equation (2.11)
is adapted as follows:

xj
k+1 = Ajx

j
k +Bju

j
k+1 + wj

k+1, (2.13)

with j ∈ {1, 2, . . . , Nk} the ground truth object index and Nk the amount of objects in the environment. The
set of ground truth object states at time step k is defined as:

Xk = {x1
k, x

2
k, . . . , x

Nk

k }.

For a static object in two-dimensional space, Equation (2.13) is modified as follows:[
xj
k+1,1

xj
k+1,2

]
=

[
1 0
0 1

][
xj
k,1

xj
k,2

]
+

[
wj

k+1,1

wj
k+1,2

]
,

describing a point object at a constant position over time. The control input term is dropped, since it is
assumed the object is static. The state matrix A is now the identity matrix, because the two-dimensional
coordinates remain constant over time. Assumed there is only one static object in the considered setting,
Equation (2.12) extends to: 

zk,1 = C1xk + vk,1,

zk,2 = C2xk + vk,2,
...

zk,ns = Cnsxk + vk,ns .

(2.14)
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Now, each sensor i can detect multiple objects, Equation (2.14) is adapted as follows for measurements zȷii,k,
with each sensor detecting Nk objects:

zȷii,k = Cix
j
k + vk,i, (2.15)

where i ∈ {1, 2, . . . , ns} is the sensor index and ȷi ∈ {1, 2, . . . ,mk,i} is the detection index for sensor i at time
step k, where mk,i is the number of detections by sensor i at time step k. If a sensor i has no limit in its field
of view, then the amount of objects modeled in the environment is equal to the amount of detected objects
by sensor i, and thus mk,i = Nk, in nominal behavior. A set of sensor readings at time step k, from sensor i,
is defined as:

Zk,i = {z1k,i, z2k,i, . . . , z
mk,i

k,i }.

The set of all sensor readings at time step k, is defined as:

Zk = {Zk,1, Zk,2, . . . , Zk,ns}.

The set of measurement noise covariances is defined as:

R = {R1, R2, . . . , Rns
},

which are assumed to be constant over time, per sensor. Since now multiple objects in the environment are
considered, multiple tracks can be initialized. The set of state, covariance and measurement predictions are
defined as:

X̂k|k−1 = {x̂1
k|k−1, x̂

2
k|k−1, . . . , x̂

Hk

k|k−1},

Pk|k−1 = {P̂ 1
k|k−1, P̂

2
k|k−1, . . . , P̂

Hk

k|k−1},

Ẑk|k−1 = {ẑ1k|k−1, ẑ
2
k|k−1, . . . , ẑ

Hk

k|k−1},

with Hk the number of tracks. Further, let l ∈ {0, 1, . . . Hk} be the index over the number of tracks.

In the introduction, 1.2 object tracking was defined as: associating object detections to the object of
interest across several environment scans over time. In order to perform this task, a structure is defined
that supports the object tracking task. This structure is called a ‘track’. A track is defined as a structured
list:

Ol,k = {x̂k|k, Pk|k, z, trstatus},

with x̂k|k, Pk|k the state and covariance estimates, z a vector containing all the associated measurements.
Further, trstatus = (cconf , ca, cm) is a list containing information about the track management, Section 2.4
explains these variables in more detail. The data association and track management approaches are explained
in Sections 2.3 and 2.4, respectively. The state and covariance estimation is explained in the following section.
If a track is initialized, it is assumed that the underlying state space model is known. The set of all tracks is
defined as O = {O1, O2, . . . , OHk

}.

2.1.2 Sensor model

The perception sensors of the host platform are limited in their field of view. To take this effect into account,
the field of view of a sensor is parametrized with an opening angle ϕi and a detection range li. The mounting
position on the platform is parametrized with the position ri and the orientation θi. This is schematically
depicted for one perception sensor in Figure 2.3. Table 2.1 gives an overview of the sensor field of view
parameters.
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Figure 2.3: Field of view example for one sensor.

Table 2.1: Sensor field of view parameters.

Parameter Unit Description
θi rad Orientation angle of sensor i
ϕi rad Opening angle of sensor i
li m Range of sensor i
ri m Mounting position of sensor i

In order to verify that an object is in the field of view of a sensor, the coordinates xj
k need to be transformed

to the local coordinate frame of the sensor, x̃j
k. Then, with the following expression it can be verified if the

object is in the field of view: {
cfov = 1 if ||x̃j

k|| ≤ li & ∠|x̃j
k| ≤ ϕi,

cfov = 0 else.
(2.16)

The scalar cfov is used to determine if an object is detected by a sensor.

2.2 State Estimation

This section discusses state estimation for objects that are being tracked. An autonomous vehicle navigates
through the environment and makes decisions based on the perceived surroundings. To this end, it is
important that objects are tracked accurately. Outputs from the sensor can be used to track objects, but
measurements are often subject to noise, resulting in inaccurate measurements. Also, it is often not possible
to obtain all internal states by sensor measurements alone. As state estimator, the Kalman filter is used
in this project. The Kalman filter combines measurements with model-based predictions to obtain a state
estimation that is more accurate than state estimations obtained by only using measurements or model-based
predictions. The filtering is optimal under condition of Gaussian noise and observable system equations.
Appendix C.1 gives more details on the observability condition.

The Kalman filter has been used in widespread practical applications in many fields [30], such as or-
bit calculation, target tracking and navigation [31], in combination with GPS and environmental perception
sensors. It also plays a role, in sensor data fusion, microeconomics [32], and in the field of digital image
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processing and the current research fields like pattern recognition, image segmentation and image edge
detection [33].

Section 2.2.1 introduces the general Kalman filter. Section 2.2.2 discusses how measurements are fused.

2.2.1 Linear Kalman Filter

The Kalman filter [34] is a recursive algorithm that combines a measurement with a prediction to compute an
estimate of the current state. The Kalman filter procedure consists of two steps. It estimates the next state
of a system (‘prediction’), then it corrects the estimation with a measurement (‘update’). The sequence of
ground truth states xk, xk+1, xk+2, . . . and the measurements zk, zk+1, zk+2, . . . are modeled by a probabilistic
state space model, as described by Equation (2.11) and (2.12).

The Kalman filter is an optimal linear estimator in the Minimum Mean-Square-Error (MMSE) sense [35]
given a set of conditions, where the MMSE is defined as E{||x̂k − xk||2}, with E the expectation, xk the
ground truth state and x̂k the estimated state. The first assumption concerns the system model is linear,
time-invariant and in state space form. The system equations after linearization described in the previous
section adhere to these assumptions, see Equations (2.13) and (2.15). Further, the distributions of the state
and measurements are Gaussian since the state space models are linear and the disturbances are assumed to
be Gaussian:

zk ∼ N (Cxk, R). (2.17)

This can also be interpreted as the process and measurement noise being zero mean Gaussian and mutually
uncorrelated:

wk ∼ N (0n×n, Q), (2.18)

vk ∼ N (0q×q, R). (2.19)

In the following, x̂k|k−1 is an estimate of the state xk at time step k based on the posterior state estimate at
time step k − 1. The Kalman filter models the system with a linear state space model, see previous section,
discretized in the time domain:

xk = Axk−1 +Buk + wk, (2.20)

zk = Cxk + vk, (2.21)

The optimal state estimator for the previous described system, is the Kalman filter. The filter gives an
estimate of the state x̂k|k and its covariance matrix Pk|k. This result is obtained by a prediction and an
update step. Prediction step equations are given by:

x̂k|k−1 = Ax̂k−1|k−1 +Buk, (2.22)

Pk|k−1 = APk−1|k−1A
T +Q. (2.23)

Update step equations are as follows:

νk = zk − Cx̂k|k−1, (2.24)

Kk = Pk|k−1C
T (CPk|k−1C

T +R)−1, (2.25)

x̂k|k = x̂k|k−1 +Kkνk, (2.26)

Pk|k = (I −KkC)Pk|k−1, (2.27)

ηk = zk − Cx̂k|k, (2.28)

with νk the measurement pre-fit residual, Kk the Kalman gain, x̂k|k and Pk|k updated state estimate and
covariance and finally ηk the measurement post-fit residual. Figure 2.4 shows the discrete time Kalman filter
visualized in a block diagram. In the prediction step, the predicted state and covariance estimations are
computed with help of Equation (2.22) and (2.23). In the update step, the state and covariance estimate are
computed, see Equations (2.24)-(2.28).
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Figure 2.4: Block diagram of discrete time Kalman filter.

2.2.2 Sensor fusion

As an extension to the preceding, this section describes a single system that can be estimated by multiple
sensors ns. There are two alternative approaches for handling measurements from multiple sensors: the
group-sensor method and sequential fusion methods [36]. The group-sensor method treats all separate sensor
readings as if they originate from one sensor, and uses this augmented measurement to update a Kalman
filter. The sequential approach updates the state estimate consecutively, with measurements from the same
time step. In this section, the group-sensor method is considered. To this end, the system model equations
are now adapted to accommodate for multiple sensors detecting a single object:

xk = Axk−1 +Buk + wk,

zk,1 = C1xk + vk,1,

zk,2 = C2xk + vk,2,
...

zk,ns
= Cns

xk + vk,ns
.

(2.29)

The set of sensor readings at time step k is defined as:

Zk = {zk,1, zk,2, . . . , zk,ns
}.

The prediction equations stay the same as in Equations (2.22)-(2.23) and Equations (2.24)-(2.28), respectively.
As can be observed, the conventional Kalman filter algorithm equations can be used, but the following variables
need to be changed to incorporate multiple sensor readings in the prediction and update equations:

zk :=


zk,1
zk,2
...

zk,ns

 , (2.30)

C :=


C1

C2

...
Cns

 , (2.31)

vk :=


vk,1
vk,2
...

vk,ns

 , (2.32)

R := E{vkvTk }

:= E{
[
vT1 , v

T
2 , . . . , v

T
ns

]T [
vT1 , v

T
2 , . . . , vns

]
}

:= blockdiag{R1, R2, . . . , Rns
}.

(2.33)
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The above derivation holds when the sensor measurement noises are not cross-correlated at time step k, [36],
i.e.,

E{vk,ivTk′,i′} = Riδii′δkk′ ,

where δii′ , δkk′ are the Kronecker delta functions.

2.3 Data association

This section presents the data association method. The purpose of data association is to assign measurements
to the corresponding tracks. In an environment with multiple objects, multiple sensor readings are generated
per scan (by an individual sensor). When tracks are far apart and only the true objects are detected, this task
is not too difficult, but it is often the case that objects are in close proximity and due to the uncertainty in the
sensor readings it might result into a conflicting situation. Additionally, some of those sensor readings may
not originate from the real target, but are clutter or false alarms. Figure 2.5 shows an ambiguous situation,
illustrating the relevance of a data association method. It is not clear beforehand what sensor readings
belongs to what target, since there are multiple sensor readings and object state predictions. Furthermore,
object tracks 1 and 2 share a sensor reading that seems to be belonging to both the tracks. To cope with these
problems, a dedicated approach is needed. To this end, the Global Nearest Neighbour (GNN) [13] algorithm
is considered. This approach consists of three consecutive steps: the state prediction, gating computation
and finally the data association itself. Figure 2.2 gives an overview of the discussed data association steps in
the overall object tracking architecture.

Figure 2.5: Example of a conflicting data association situation.

Now, the mathematics involved in the steps is presented. First, the set of states X̂k|k−1 and covariance
estimates Pk|k−1 of the tracks are predicted for the time step of sensor readings Zk. Prediction of the
state and covariance estimates is treated in detail in Section 2.2. Then, based on a distance metric in
combination with covariances of the measurement noise R and state estimate Pk|k−1, the gates can be
defined. The gate is defined by setting an appropriate threshold to use in combination with the distance
metric. The gates serve the purpose of excluding sensor readings from data association that are highly unlikely.

On the basis of the used distance metric to compare predictions and measurements, a gating thresh-
old can be chosen. Since the residual covariance matrix can be computed on the basis of the measurement
covariance Ri and the predicted estimate covariance Pk|k−1, the Mahalanobis distance metric is used [37].
The advantage of this metric is the chi-squared distribution property, and therefore the gating threshold can
conveniently be defined from a table of the χ2

d distribution, with d degrees of freedom. The gate threshold
dgate is chosen according to an allowable probability of a valid observation falling outside the gate.

The Mahalanobis distance [37] is defined as:

dMD(zȷik,i, ẑ
l
k|k−1)

2 = (zȷik,i − Cix̂
l
k|k−1)

(
Σil

)−1
(zȷik,i − Cix̂

l
k|k−1)

T ,

with Σil = CiP
l
k|k−1C

T
i +Ri being the residual covariance matrix. If the distance metric exceeds the gate
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threshold, the weight value is set to infinity, clȷi := ∞.

clȷi :=

{
∞ if dMD ≥ dgate,

dMD(zȷik,i, ẑ
l
k|k−1)

2 if dMD < dgate.
(2.34)

Finally, the data association itself is performed. This algorithm tries to find for every tracked object, the
closest sensor reading. First the weights computed with the distance metric are stored in a cost matrix.
Each row in the cost matrix corresponds to a different track and each column to a different sensor reading.
By setting weight values to infinity during the gating, it is assured that these measurement and track
combinations will not be assigned. The cost matrix is defined as follows:

Ccost
i =


c11 c12 . . . c1mk,i

c21 c22 . . . c2mk,i

... . . .
. . .

...
cHk1 cHk2 . . . cHkmk,i

 , (2.35)

the superscript ‘cost’ is introduced to avoid confusion with the output matrix Ci from the state equations.
The GNN algorithm aims to find the combination of tracks and measurements that minimizes the following
cost function:

J =

Hk∑
l=1

mk,i∑
ȷi=1

elȷiclȷi ,

subject to the following constraints:

mk,i∑
ȷi=1

elȷi = 1,∀l,

Hk∑
l=1

elȷi = 1,∀ȷi,

(2.36)

with elȷi ∈ {0, 1} and where elȷi = 1 when a measurement is associated to a track. These constraints assure
that only one track is assigned to one measurement and vice versa. Unassigned measurements can be used to
initialize new tracks, as discussed in the next section.

An algorithm to solve the linear assignment problem is the Hungarian method [38]. In this work, the
function Matchpairs from Matlab is implemented to perform this task [39] [40]. Since multiple sensors are
used, an object can be detected multiple times. In order to make sure every sensor readings is correctly
assigned, the gating and data association steps need to be performed separately for every set of sensor
readings Zk,i. Algorithm 2.1 shows the data association mechanism in pseudo code, corresponding to the
prediction, gating and data association steps of Figure 2.2. The explanation of the preceding is applied to
a single sensor, but generalization to multiple sensors is trivial since the data association is performed per
sensor individually.

Input: sensor readings Zk, Predicted state and covariance estimates X̂k|k−1, Pk|k−1

Output: Set of tracks O (updated with measurements)
Algorithm parameter: R

1. for all tracks
2. perform prediction step
3. end
4. for all sets of sensor readings
5. for all tracks
6. Construct cost matrix Ci

7. end
8. assign readings to track with linear assignment solver
9. store associated detections in corresponding tracks
10. end

Algorithm 2.1: Pseudo code of GNN algorithm.
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2.4 Track management

Due to the limited field of view of the perception sensors, it is possible that objects enter and leave the
perceived area. In order to manage this, a track management function is needed. The track management
functionality serves three goals: 1) initializing new tracks, 2) verify whether initialized tracks can be confirmed
and 3) delete confirmed tracks that remain undetected [41]. To this end, the following variables are defined
per track: cconf ∈ {0, 1} to indicate whether a track is confirmed, with cconf = 0 for tentative tracks and
cconf = 1 for a confirmed track. Distinction is made between tentative and confirmed tracks, since it is
possible a track is initialized by false object detections. Therefore, the tentative track is subject to a more
strict requirement to exist than the confirmed tracks, more details about this are given later in this section.

Further, ca ∈ N and cm ∈ N are defined as counter variables. The scalar ca ∈ N counts how many
times in the last Na time steps at least one measurement is associated to the track and cm ∈ N counts how
many times in the last Nm time steps the track remained without associated measurements. Further, for the
counter variables the thresholds dtc, dtd and dcd are defined for the transition from tentative to confirmed,
from tentative to deletion and from confirmed to deletion, respectively. A confirmed track should be harder
to delete than a tentative track, therefore dtd < dcd. The transitions are schematically depicted in Figure 2.6.
The figure shows the transitions and conditions for a track in a flowchart, with conditions for transiting to a
new state indicated along the edges. Every vertex depicts one of the possible operations on a track, where
tent means that a track is tentative, conf indicates a track Ol is confirmed and finally delet means a track
is to be deleted from the set of tracks O.

Figure 2.6: The transitions for a track depicted with a flowchart.

2.5 Fault modelling

Equation (2.21) introduced the nominal discrete-time state space model, for modelling perception sensor
measurements. In order to model degraded sensor behavior, the nominal sensor models need to be adjusted
to model faults. In literature, mainly two approaches exist towards fault modelling in (discrete-time) state
space systems, these are additive fault and multiplicative fault representation. Therefore, to introduce faults
in the system, the nominal sensor model introduced in Equation (2.15), is adapted. For a sensor with index i,
the observation equations are now:

zȷik,i = Cix
j
k + vk,i +Hif

loc
k,i , (2.37)

with zȷik is defined as: zȷik,i ∈ {null,Rqi}, where null is part of the domain to model the possibility that an
object is not detected. Setting the value to the real value zero would not satisfy, since this would imply
that an object in the origin of the coordinate frame is detected. The localization faults are modelled with
Hi ∈ Rqi×gi as the fault entry matrix and f loc

k,i ∈ Rgi the localization fault vector. By describing the fault
injection with help of a fault vector and fault entry matrix, it is possible to map faults from the fault space
Rgi , to the measurement space Rqi . By setting the elements appropriately in the fault vector and entry
matrix, the fault is transformed to Cartesian coordinates and can be injected in the system equations. In
a two-dimensional plane this can be parametrized with a direction ω and a magnitude F . The fault entry
matrix and vector are then:

Hi =

[
cosω 0
0 sinω

]
f loc
k,i =

[
F
F

]
.

TU/e 18



Chapter 2. System modelling

To describe the effect of clutter, ck,i is introduced, this means that Equation (2.37) can be augmented with
clutter terms, per sensor i, modelled as:

zȷik,i = ck,i.

The false positive object detections ck,i are defined on the domain ck,i ∈ {null,Rnfp·n}, where nfp is equal
to the number of false positive object detections. In order to model the absence of false positive object
detections, the domain of real numbers Rnfp·n should be augmented with the concept of detecting ‘nothing’,
this is implemented by adding the term null to the domain.

The probability of detecting a false object at time step k can be modelled with a Bernoulli distribu-
tion. The Bernoulli distribution is the discrete probability distribution of a random variable taking value
1 with probability p and taking value 0 by probability q = 1 − p. The probability mass function of this
distribution is: {

p if β = 1,

q = 1− p if β = 0,
(2.38)

where β = 0 and β = 1 are associated with ck,i ∈ {null} and ck,i ∈ {Rnfp·n}, respectively.

The clutter behavior is captured by sampling from a multivariate normal distribution, therefore each seperate
false positive object inside ck,i follows the distribution N (µi,Σi) with parameters µi ∈ Rqi , Σi ∈ Rqi×qi ,
which are sensor specific. The assumption is that false positive object detections are more likely to happen
close to the sensor, therefore µi is equal to the sensor mounting position on the host platform.Vector zȷik,i is

defined as: zȷik,i ∈ {null,Rn}, where null is part of the domain to model the possibility that an object is not
detected, caused by a limited field of view.

Table 2.2 gives an overview of the parameters and functions involved in modelling faults in the system
equations.

Table 2.2: Simulation parameters

Parameter Fault class Description
Hi Localization fault Fault entry matrix
f loc
k,i Localization fault Fault vector

p Existence fault Probability of detecting clutter
N (µi,Σi) Existence fault Coordinate probability distribution clutter

cfov Existence fault Parameter describing if object is detected
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Chapter 3

Hardware redundancy-based fault
detection

This chapter is structured as follows. First, Section 3.1 discusses a general framework for detecting faults
with help of hardware-redundancy. Then, in Sections 3.2 and 3.3 methods to detect faults are derived for
single and multiple objects, respectively.

3.1 Fault detection schemes

This section gives a general introduction to Hardware Redundancy-Based (HRB) fault detection. Since only
measurements at one time step are compared mutually in this method, time indices are not relevant and
thus will be dropped from notation, unless needed and explicitly stated otherwise. Further, it is assumed
that every sensor only outputs one detection per time step, i.e., only one object is in the field of view of the
perception sensors.
Fault detection based on hardware redundancy makes use of multiple sensors measuring the same entity xj

at a point in time. The measurements from the set of measurements Z are compared mutually and finding
a healthy output (nominal measurements, i.e., not corrupted by faults) zh, in a so-called voter. The most
commonly used and applicable voters for the considered application are the majority, plurality and weighted
average voters [16]. The working mechanism of these voting schemes will be briefly discussed in this section.
Figure 3.1 shows a general scheme of such a system. Hardware redundancy can be exploited to detect faults
in the measurements from perception sensors if their fields of view are overlapping.

Figure 3.1: System with redundant modules and a voter.

An important advantage of redundant systems with ns ≥ 3 sensors is their fault-tolerance property. This
means that if a fault occurs in a minority of the sensors, the fault can be detected, isolated and a output
zh can be found with help of the healthy measurements. Multiple fault-tolerant algorithms incorporating
hardware redundancy exist, but the general framework of a voter consists of the following steps.

1. Compare measurements from Z = {z1, z2, . . . , zns} = {zi}i=1:ns mutually and compute a degree of
overlap, in terms of a distance metric.

TU/e 20



Chapter 3. Hardware redundancy-based fault detection

2. Use the metrics computed in step 1 to distinguish between healthy and faulty measurements.

3. Based on the healthy measurements, compute final output value zh.

In the following, a more detailed explanation supported by equations and expressions.

Step 1 distance metric on measurements
Measurements of object positions are neither exact nor Boolean values, therefore it is necessary to have
a distance measure quantifying the order of equivalence between measurements. Therefore, the first step
compares the measurements {zi}i=1:ns mutually, with a metric:

di
′

i = d(zi, zi′). (3.1)

There are many possible distance metrics to use. More details about the distance metric are given in the next
section. The distances di

′

i for the measurement of one particular sensor i to any other sensor i′ measurement,
for which it thus holds that i′ ̸= i, are stored in the set Di. For an example case with ns = 3 sensors, D1

would be as follows:
D1 = {d(z1, z2), d(z1, z3)} := {d21, d31}.

The superset D contains the subsets Di, i.e. D := {D1, D2, . . . , Dns}.

Step 2 determine healthy and faulty measurements
In the second step, the sensor reading from sensor i is declared faulty or healthy based on the distance metrics
in Di, computed in the previous step. The preceding is performed for all measurements, finally resulting in a
set of fault indicators fd,i ∈ {0, 1}:

Floc = {fd,1, fd,2, . . . , fd,ns}.

The set of healthy sensor reading indices is described as K ⊆ {1, 2, . . . , ns} and ZK ⊆ Z = {z1, z2, . . . , zns}
describes the subset of healthy measurements. Another possibility is to assign a weight wi to the sensor
reading, depending on how well the sensor reading i matches with the other measurements i′ ̸= i. Voting
supported with weights is known as weighted average voters. Possible methods to compute these weight are
fuzzy [42] or soft voters [17].

Step 3 determine single output
Finally, based on the subset of healthy measurements ZK, the merged output zh can be computed. A simple
average can be computed over the healthy measurements, or if weights wi are computed in the previous step,
a weighted average can be computed as an output. A possible approach is to use weights that are the inverse
sensor noise covariance Ri matrices [43], in order to give more weight to more reliable sensors. The weighted
average output is computed as follows:

zk,h =
( nh∑
i=1

Λizi
)( nh∑

i=1

Λi

)−1
, (3.2)

with nh the cardinality of ZK, i.e., nh = |ZK| and Λi = R−1
i .

3.2 Single object: majority voter

In this section, first the problem setting will be specified, then relationships with regard to the nominal and
the faulty state will be derived. Finally, the majority voter algorithm will be explained.

It is assumed only one object is detected by all sensors per time step and no existence faults occur. The state
equations for modelling the ground truth state of a single object reduces to :

xk+1 = Axk +Buk + wk, (3.3)
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the index j over the number of objects is dropped, since only one object is considered. The measurement
equations are adapted as follows: 

zk,1 = C1xk + vk,1 +H1f
loc
k,1 ,

zk,2 = C2xk + vk,2 +H2f
loc
k,2 ,

...

zk,ns
= Cns

xk + vk,ns
+Hns

f loc
k,ns

.

(3.4)

The set of measurements is defined as Zk = {zk,i}i=1:ns
. The goal of the majority voter is to compute a

single output value based on the healthy measurements, by detecting and isolating faulty measurements.
By comparing the measurements by a distance metric it can be determined how similar those measurements
are. By comparing a distance metric with a threshold, the measurements can be declared (dis)similar. When
two measurements are dissimilar, one or both of the measurements might be in a degraded state, i.e. faulty.
The order of similarity is determined by computing the difference between the pairs of measurements. When
comparing measurements from sensors i and i′ by computing the difference, we obtain the following:

zk,i − zk,i′ = Cixk − Ci′xk + vi − vi′ +Hif
loc
k,i −Hi′f

loc
k,i′ ,

where Ci = Ci′ . If, it is assumed there are no faults, (i.e., we consider the nominal state), in either sensor i′

or i, the difference reduces to the following:

zk,i − zk,i′ = vi − vi′ . (3.5)

The scalar γii′ is defined as the random variable describing the difference between the measurement noise
from vi and vi′ , hence, γii′ := vi − vi′ . The difference of the two multivariate normal random variables
vi ∼ N (0, Ri) and vi′ ∼ N (0, Ri′) is a normal distribution described by:

γii′ = vi − vi′ ∼ N (0, Ri +Ri′). (3.6)

This can be proven with help of the characteristic function [44], a full proof is given in Appendix C.2. Based on
this derivation, we can thus find that the difference in the nominal case is: γii′ = vi + (−vi′) ∼ N (0, Ri +Ri′).
If a fault is injected in sensor i, Equation (3.5) changes to:

zk,i − zk,i′ = vi +Hif
loc
k,i − vi′ , (3.7)

we define γ̃ii′ = vi +Hif
loc
k,i − vi′ to describe the difference of measurements for the faulty case. Assuming

that Hif
loc
k,i is deterministic over time, the difference is again described by a normal distribution, with a

shifted mean: γ̃ii′ ∼ N (Hif
loc
i , Ri + Ri′). This knowledge can be used to derive a useful distance metric

function d(., .) and accompanying similarity threshold ϵ later in this section.

In Section 3.1, a general approach to hardware redundancy fault detection was given. One simple al-
gorithm to solve this problem is the majority voter [16]. Figure 3.2 shows the majority voter fault detection
scheme [17].

Figure 3.2: Majority voter.

As explained in the previous section, the algorithms work with three streps. First distances on any pair of
measurements are computed. Then the distances are compared with a threshold to determine if a sensor
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reading is faulty or not. Finally a single output value is computed. Algorithm 3.1 shows the pseudo code of
computing the pair-wise distances for the majority voter algorithm.

1. Input: Zk Output: Fd,k

2. Constants: ns, h
3. for i = 1 : ns

4. Compute Di = {d(zi, zi′)|∀i′ ̸= i}
5. end

Algorithm 3.1: Compute pair-wise distances.

A commonly used distance metric is the Euclidean distance

dE(zi, zi′) =
√

(zi − zi′)2.

The Euclidean distance expresses the length of a line segment in Euclidean space between the two measurements.
This is a suitable first crude solution, but it is not possible to express how likely the distance is in terms of a
probability distribution. If knowledge is available about the probability distributions from the measurements,
a suitable metric is the Mahalanobis distance:

DMD(zi, zi′) = (zi − zi′)
TΣ−1(zi − zi′),

with Σ = Ri + Ri′ during nominal condition, prove given in Equation (3.6). This metric follows a χ2
g

probability distribution, with degrees of freedom g equal to the dimension of the observation space [45].
Therefore, it is possible to compute the probability of a measurement being in nominal or faulty state with
help of the distance metric. To apply this metric, the variance of (zi − zi′) should be known.

In the second step, a sensor reading from sensor i is declared faulty or healthy based on the distance
metrics in Di, computed in the previous step. In order to declare a sensor reading zi faulty or not, the
distance with respect to all the other measurements, expressed with di

′

i , are compared with a threshold:{
di

′

i ≤ ϵ then zi ≡ zi′ ,

di
′

i > ϵ then zi ̸≡ zi′ .
(3.8)

If the distance metric is smaller than the threshold, the measurements are equivalent, indicated with the
symbol ‘≡’. If the distance metric exceeds the threshold ϵ, one of the measurements can be faulty and
there is no consensus between measurements from sensor i and i′, hence zi ̸≡ zi′ . The number of equivalent
measurements in set i is called the consensus number, nc,i. Depending on the consensus number nc,i,
compared with a threshold h, a sensor reading zi is declared faulty or healthy, setting fd,i ∈ {0, 1}. The
threshold variable h can vary according to the used method. A majority voter demands that the consensus
number nc,i is equal or larger than the majority of measurements. The majority threshold h ∈ N>0, with ns

measurements, is defined as:

h =

{
ns

2 + 1, if ns even,
ns+1

2 , if ns odd.
(3.9)

The preceding is done for all measurements, finally resulting in a set of fault indicators fd,i:

Floc = {fd,1, fd,2, . . . , fd,ns
}.

The set of healthy sensor reading indices is described as K ⊆ {1, 2, . . . , ns} and ZK ⊆ Z = {z1, z2, . . . , zns
}

describes the subset of healthy measurements. The final coordinates are computed with help of Equation
(3.2) and the set of healthy measurements. If the cardinality of the set of healthy measurements is smaller
than h, it is not possible to determine what measurements are faulty and nominal based on the majority
voter test. The final coordinates are now computed with help of all measurements and Equation (3.2). Figure
3.3 shows probability distributions P (.) for nominal γii′ ∼ N (0, 1) and faulty situations γ̃ii′ ∼ N (f loc

1 , 1),
with f loc

1 = 1.5. For illustrative purposes, a one-dimensional, n = 1, situation is considered. The plot shows
the effect of varying the equivalence threshold ϵ influencing the probabilities of detecting faults (in)correctly
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(true positive and false positive) and detecting (in)correctly the nominal state (true negative and false
negative).

Figure 3.3: Influence of the equivalence threshold ϵ on the classification assessment.

To model existence faults for the case that a single object is considered, the equations given in Section 2.5
are now considered. The principle of the h out of ns voter is used [18], as discussed in the literature survey in
the introduction. This means that at least h out of ns sensors need to confirm the detection of an object, to
declare the object detection as a true positive object detection. Algorithm 3.2 shows the pseudo code of the
majority voter algorithm for detecting existence faults as well.

1. Input: Zk Output: Fd,k

2. Algorithm parameter: Ddmv

3. Constants: ns, h
4. if |Zk| ≤ h
5. Declare detections as existence faults, false positive object detections.
6. elseif h < |Zk| < ns

7. Declare missing detections as existence faults, missed detections.
8. Apply regular majority voter algorithm to remaining detections.
9. else
10. Apply regular majority voter algorithm
11. end

Algorithm 3.2: Static majority voter algorithm, incorporating existence faults.

3.3 Multiple objects: clustering algorithm

In the previous sections, fault detection schemes are discussed for single object positions. Detecting faults
in data measuring states for several objects is more complicated than for a single object, since it is not
known what measurements belong to what object. Therefore this complexity is treated as a separate extension.

If the set of measurements Zk contain detections of multiple objects, it is not possible to use a HRB
fault detector directly. To this end, first the data that originates from the same object needs to be grouped
together. Therefore, a hierarchical clustering algorithm [46] is implemented.
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In the following, the clustering mechanism is explained. The clustering algorithm is initialized by set-
ting every separate sensor reading as a singleton cluster. Singleton clusters are clusters containing only one
sensor reading, one cluster ic = {1, 2, . . . , nc} containing one sensor reading is defined as:

Cic = {zȷik,i}

with ic the index over the number of clusters. In the clustering process, these clusters will be merged. By
comparing the clusters mutually, according to a linkage criteria and a distance metric, the two closest clusters
of detections can be merged. The linkage criteria determines what elements from clusters should be compared.
The following linkage criteria are common for hierarchical clustering:

max{d(a, b) : a ∈ A, b ∈ B},
min{d(a, b) : a ∈ A, b ∈ B},
||cs − ct||,

1

|A| · |B|
∑
a∈A

∑
b∈B

d(a, b),

which are the complete (or maximum), single (or minimum), centroid and average linkage clustering criteria,
respectively. Clusters are defined as A and B with elements a and b respectively, for notation simplicity.
Further, d() is an unspecified metric, usually the Euclidean distance is used.

Merging clusters with the linkage criteria continues until a cluster contains as many measurements as
sensors are present. Then, the cluster is finished and not considered in the clustering algorithm anymore.
This process continues until there are no more incomplete clusters.

To improve the clustering, additional conditions are used to allow clusters to be merged. The first condition
is that the clusters should not be too distant. The distance between the clusters can be compared with a
threshold and it can be defined with assumptions on the sensor noise covariance magnitude. Furthermore,
clusters containing measurements from the same sensor are not allowed to be merged, since it is assumed
every sensor detects an object at most once. Algorithm 3.3 shows the clustering algorithm.

Input: set of measurements Zk Output: set of clusters Ck
Algorithm parameter: distance threshold Tcl

1. Start clustering: declare each detection as a singleton cluster.
2. Identify the two clusters that are closest together, with help of Euclidean distance and centroid linkage

criterion.
3. Merge closest clusters into a new cluster, provided distance is smaller than set threshold Tcl.
4. If new cluster contains ns singleton clusters, cluster is complete and prune cluster from process clustering

algorithm.
5. Steps 2 and 3 are repeated untill:

• No more clusters remain
OR

• Either the remaining clusters can not be merged, since intersection on the sensor indices between
clusters are non-empty or the remaining clusters are too distant

Algorithm 3.3: Clustering algorithm

The clustering algorithm returns a set of clusters Ck containing nc clusters Cic , with ic the index over the
number of clusters nc. A cluster contains a subset of the set of measurements, i.e., Cic ⊆ Zk.

Figure 3.5 shows the clustering algorithm performance for several linkage criteria, with Euclidean distance
as distance metric. Four objects are positioned equidistant, and are moved further away from each other,
expressed by scaling factor c. The scaling factor can be interpreted as a normalized distance between the
objects. Initially, the objects are positioned in the origin (c = 0). In the final position (c = 1), the distance
between two objects is 5 m in x- and y-direction. Figure 3.4 shows the situations for c = 1 on the left and
c = 0.1 on the right. The green diamonds depict the ground truth object states, the circles represent the
measurements. Furthermore we have ns = 3 sensors.
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Figure 3.4: Problem setting considered for performance analysis clustering algorithm, left and right figures
with scaling factors c = 1 and c = 0, respectively.

In a simulation, the distance is varied from c = 0 to c = 1. For the varying scale factor in the simulation, 500
samples were taken, and the fraction of correct clustered detections P is computed. Then the average of the
fraction P̄ of correctly clustered detections is computed and plotted against the scale factor, see Figure 3.5.
This graph is plotted for the complete (or maximum), single (or minimum), centroid and average linkage
clustering criteria, respectively. For a small and large scale factor, c → 0 and c → 1, the results are not
relevant. For small scale values, the objects are very close to each other and the clustering performance
is random. For larger scale factors the objects are very distant and the clustering will always be correct.
Therefore the graphs are plotted on the domain 0.135 ≤ c ≤ 0.235. In the first part and at the tail of the
graphs it can indeed be observed the performance converges for the used methods. From Table 3.1 and Figure
3.5 we can observe that the performance of the criteria do not differ significantly.

Figure 3.5: Performance of several linkage criteria, as function of mutual object distance.
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Table 3.1

Linkage method Single Complete Centroid Average
Average P̄ 0.9747 0.9741 0.9750 0.9747

This chapter discussed an approach to exploit redundancy of the perception sensors in order to detect faulty
measurements. The regular majority voter structure is modified to cope with noisy (nominal) measurements
and to be effective when multiple objects are present in the field of view.
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Model-based fault detection

This chapter discusses model-based approaches towards fault detection for a perception system. Sections
4.1, 4.2 and 4.3 consider a single sensor and single object case, multiple sensors and a single object case and
multiple sensors and multple objects situation, respectively. First, a short introduction on model-based fault
detection is given. The core element of model based fault detection is the generation of residuals exploiting
the concept of analytical redundancy. In order to provide useful information for FDI, the residual rk should
be as follows:

rk ̸= 0 ⇐⇒ fk ̸= 0, (4.1)

with fk any type of fault, for now localization faults f loc
k are considered. Examples of residuals are the

measurement pre-fit and post-fit residuals, νk and ηk defined by Equations (2.24) and (2.28). A fault can
be detected by comparing a residual evaluation function J(rk) with a threshold value Tk, according to the
test: {

J(rk) ≤ Tk for f loc
k = 0,

J(rk) > Tk for f loc
k ̸= 0.

(4.2)

If the threshold is exceeded, the presence of a fault is likely [47]. Its likelihood is dependent on the used metrics.
Possible residual evaluation functions are metrics such as the 2-norm or the Mahalanobis distance, with a
threshold a positive constant. In [48], more details about residual evaluation functions are given. To indicate
whether a fault is detected, we define the Boolean variable fd ∈ {0, 1} with the following functions:

fd =

{
1 if J(rk) > Tk,

0 if J(rk) ≤ Tk.
(4.3)

4.1 Single sensor and object

In a first step we consider Nk = 1 object in the environment and ns = 1 sensor. The observation and
prediction equations are now adapted to the environment and system setting:{

xk = Axk−1,

zk = Cxk + vk +Hfloc,k.
(4.4)

x̂k|k−1 = Ax̂k−1|k−1,

ẑk|k−1 = Cx̂k|k−1

Pk|k−1 = APk−1|k−1A
T

(4.5)

The process noise wk and the control input Buk−1 are omitted, since only static objects are considered in
this chapter. Therefore, we assume there is no uncertainty in the system modelling equations nor input
that will cause movement of the object, thus we define the covariance of the process noise as Q = 0n×n and
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Buk−1 = 0. The objects are considered in a n = 2 dimensional plane and are defined as point objects. Both
state variables are observable. Therefore the state and observation matrix are defined as follows:

A =

[
1 0
0 1

]
, C =

[
1 0
0 1

]
.

The covariance R ∈ R2×2 of the measurement noise vk ∼ N (0, R) is assumed to be known:

R :=

[
σ2
x1x1

σ2
x1x2

σ2
x2x1

σ2
x2x2

]
.

The Kalman filter update equations do not need to be modified. In order to detect and isolate faults, the
pre-fit residual rk := νk is monitored as the relevant residual value. If a fault is detected, the measurement is
isolated and not used to update the Kalman filter. Expanding the residual by writing the terms explicitly
results into the following expression:

rk := νk = zk − Cx̂k|k−1 = C(xk−1 − x̂k|k−1) + vk−1 +Hfloc,k−1.

Figure 4.1 shows a a block diagram of the fault detection scheme integrated with the Kalman filter, for the
single object and single sensor setting. In the following, it will be explained how the fault detection and
isolation mechanisms work.

Figure 4.1: Block diagram of the fault detection scheme.

Approach 1
As a first simple fault detection scheme, the Euclidean norm and the a static threshold are used, as
follows.

J(rk) = ||rk||2 = ||zk − ẑk|k−1||2 (4.6)

Tk = c1σ1 + c2σ2, (4.7)

where c1 and c2 are tunable scalars and σ1 and σ2 are the standard deviation elements from the measurement
noise covariance matrix. Algorithm 4.1 shows the peudo-code of the algorithm, as implemented in the ‘Fault
Detection and Isolation’ block from Figure 4.1.

1. Input: zk, ẑk|k−1, R Output: fd
2. Algorithm parameter: c1, c2
3. Compute J(rk) = ||rk||2 = ||zk − ẑk|k−1||2
4. If J(rk) > Tk, set fd := 1
5. If J(rk) ≤ Tk, set fd := 0

Algorithm 4.1: Static threshold fault detector algorithm.

Approach 2
To make use of the sensor noise knowledge in a more meaningful way, a better approach is to use the
Mahalanobis distance, inspired by [45]. The Mahalanobis distance for the residual is defined as:

DMD(rk)
2 = (zk − ẑk|k−1)

(
Σ
)−1

(zk − ẑk|k−1)
T = rkΣ

−1rTk . (4.8)

TU/e 29



Chapter 4. Model-based fault detection

To apply this method, the variance Σ of the residual rk = zk − ẑk|k−1 should be computed. To this end, first
the prediction and observation model equations are substituted in the residual function:

rk = νk = zk − ẑk|k−1 = C(xk − x̂k|k−1) + vk.

Now, we can compute the variance of rk = zk − ẑk|k−1 :

E{rkrTk } = CE{(xk − x̂k|k−1)(xk − x̂k|k−1)
T }CT + E{vkvTk },

with Pk|k−1 = E{(xk − x̂k|k−1)(xk − x̂k|k−1)
T } and R = E{vkvTk } and thus:

E{rkrTk } = CPk|k−1C +R.

Now we can use Σ := CPk|k−1C + R for computing the Mahalanobis distance. By definition, under the
assumption the previous modelling equations hold, the Mahalanobis distance follows a χ2

d distribution with
degrees of freedom d equal to the dimension of the residual, rk ∈ R2. This means that if anomalies (faults)
occur in a measurement, these can be found with a statistical test. Defined as follows, with residual evaluation
J(rk) = p and threshold function Tk = α, the p-value and the significance level α of the significance test,
respectively:

1. H0: DMD ∼ χ2
d = N (0, 1)

2. Ha: DMD ≁ χ2
d = N (0, 1)

3. Test statistic: p := 1−
∫DMD

0
χ2
d(u)du

4. Reject H0 if p < α, faulty measurement detected, set fd := 1

5. Accept H0 if p ≥ α, no fault detected, set fd := 0

The threshold α ∈ (0, 1) can be tuned based on the distribution of the residual during nominal operation, i.e.
when there are no faults, and a desired false alarm rate. If a measurement is classified as faulty, while the
system is in nominal operation, the detected fault is a false alarm. Since the distribution of the residual is
known, α can be chosen to correspond to a set false alarm rate.
The statistical test can be written as an algorithm, see pseudo code in Algorithm 4.2. This algorithm is
implemented in the ‘Fault Detection and Isolation’ block, Figure 4.1.

1. Input: zk, ẑk|k−1, R, Pk|k−1 Output: fd
2. Algorithm parameter: Tk = α
3. Compute: DMD(rk)

2.

4. Compute p-value: J(rk) = p := 1−
∫D2

MD

0
χ2
d(u)du

5. If p < α, faulty measurement detected, set fd := 1
6. If p ≥ α, no fault detected, set fd := 0

Algorithm 4.2: χ2-fault detector algorithm.

4.2 Multiple sensors, single object

As an extension to the preceding, we now consider any number of sensors, ns ∈ N, and a single object, and
thus single Kalman filter N = 1. Since there are now multiple sensor readings per Kalman filter, the sensor
readings need to be fused, possible methods to do this are the group-sensor and sequential fusion methods
[36]. In this section, the group-sensor method is considered. First it is described how the Kalman filter works
for the fault free case, then how a fault detector is integrated in the fusion process. To this end, the system
model equations are now: 

xk = Axk−1,

zk,1 = C1xk + vk,1,

zk,2 = C2xk + vk,2,
...

zk,ns = Cnsxk + vk,ns .

(4.9)
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The set of sensor readings at time step k is defined as:

Zk = {zk,1, zk,2, . . . , zk,ns
}.

With prediction equations: 
x̂k|k−1 = Ax̂k−1|k−1,

ẑk|k−1 = Cx̂k|k−1,

Pk|k−1 = APk−1|k−1A
T .

(4.10)

With update equations: 
νk = zk − Cx̂k|k−1,

Kk = (Pk|k−1C
T )(CPk|k−1C

T +R)−1,

x̂k|k = x̂k|k−1 +Kkνk,

Pk|k = (I −KkC)Pk|k−1.

(4.11)

As can be observed, the conventional Kalman filter algorithm equations can be used, but the following variables
need to be changed to incorporate multiple sensor readings in the prediction and update equations:

zk :=
[
zTk,1, z

T
k,2, . . . , z

T
k,ns

]T
, (4.12)

C :=
[
CT

1 , C
T
2 , . . . , C

T
ns

]T
, (4.13)

vk :=
[
vTk,1, v

T
k,2, . . . , v

T
k,ns

]T
(4.14)

where

R := E{vkvTk }

:= E{
[
vT1 , v

T
2 , . . . , v

T
ns

]T [
vT1 , v

T
2 , . . . , vns

]
}

:= blockdiag{R1, R2, . . . , Rns}.
(4.15)

The above derivation holds when the sensor measurement noises are not cross-correlated at time step k,[36],
i.e.,

E{vk,ivTk′,i′} = Riδii′δkk′ ,

where δii′ , δkk′ are the Kronecker delta functions.
In the following it is explained how the sensor fusion works in combination with a fault detection framework.
First, the system model equations need to be adapted, to model faults:

xk = Axk−1,

zk,1 = C1xk + vk,1 +H1floc,k,

zk,2 = C2xk + vk,2 +H2floc,k,
...

zk,ns
= Cns

xk + vk,ns
+Hns

floc,k.

(4.16)

Figure 4.2 shows the placement of the fault detection algorithm in the overall sensor fusion process.

Figure 4.2: Block diagram of the sensor fusion scheme.
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The fault detection algorithm for a single sensor case as described in the pseudo code of Algorithm 4.2, can
be used for multiple sensor case as well. The residual function J(rk,i) is now evaluated per sensor reading i.
To this end, the Mahalanobis distance is modified as follows:

DMD(rk,i)
2 = (zk,i − ẑk|k−1)

(
Σi

)−1
(zk,i − ẑk|k−1)

T = rk,iΣ
−1
i rTk,i, (4.17)

with Σi = CPk|k−1C +Ri. A detection threshold Tk,i := αi per sensor can be set. The algorithm is presented
in Algorithm 4.3.

1. Input: Zk, ẑk|k−1, Ri, Pk|k−1 Output: Fd,k

2. Algorithm parameter: Tk,i = αi

3. for i = 1 : ns

4. Compute: DMD(rk,i)
2.

5. Compute p-value: J(rk,i) = p := 1−
∫D2

MD

0
χ2
d(u)du

6. If p < αi, faulty measurement detected, set fd,i := 1
7. If p ≥ αi, no fault detected, set fd,i := 0
8. Store fd,i in Fd,k.
9. end

Algorithm 4.3: χ2-fault detector algorithm for multiple sensors.

Figure 4.3 shows the mechanism of the fault detection algorithm in a block diagram.

Figure 4.3: Block diagram of the fault detection scheme.

With help of Fd,k as output from the fault detection block, it is known what sensor readings are declared
faulty. In the consecutive update step, the faulty measurements should not be used to compute the state and
covariance estimates x̂k|k and Pk|k . To this end, the variables in Equations (4.12) till (4.15) should contain
only the values corresponding to the healthy sensors. The healthy sensor index subset Kk ⊆ {1, 2, . . . , ns},
from the sensor index set S = {1, 2, . . . , ns}, can be obtained with help of Fd,k. Now the variables belonging
to the faulty sensor indices are pruned from Equations (4.12) till (4.15), resulting into the following array of
measurements, observation matrix, and measurement covariance matrix only containing elements belonging
to healthy sensors: zk,K, Ck,K, Rk,K.

4.3 Multiple sensors and multiple objects

Figure 4.4 shows the block diagram of the filtering process for the problem setting considering multiple
sensors and multiple objects in the environment. Before it is possible to apply fault detection, the received
sensor readings from the set Zk must be associated to the tracks, with help of predictions from the set Ẑk|k−1.
To this end, an additional step is used, called ‘Data Association’. Section 2.3 documents how the data
association algorithm works. After the data association step, the same fault detection algorithms as discussed
in Figure 4.3 can be utilized. The challenge is to find a gate that includes localization faults, but does detect
existence faults by excluding them from the gate. The gate is defined by the confidence ellipsoid during the
data association step, if a very conservative gate is chosen, the object detections will likely be included in the

TU/e 32



Chapter 4. Model-based fault detection

data association step. But, if a fault is injected in one of the sensors with a sufficient magnitude, it is possible
the fault falls outside the gate. This will cause the fault to remain undetected as a localization fault.

Figure 4.4: Block diagram of the fault detection scheme.

This chapter showed an approach towards detecting faults with help of a model-based approach, based on
the knowledge of the sensor noise models.
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Chapter 5

Simulation and performance analysis

This chapter is organized as follows. First, in Section 5.1, the used performance metrics for the simulations
are discussed. Next, in Section 5.2 the simulation results are presented.

5.1 Performance metrics

According to the mentioned goals, presented in the introduction Section 1.4, faults should be detected and
objects tracked with the system corrupted by faults. To asses how well the objects are tracked and faults
are detected, a number of performance indicators are defined. To this end, a number of fault detection
performance indicators are defined.

Detecting faults can be defined as a binary classifier problem. In the actual situation, there is either
a fault in the sample data, indicated with P (Positive), or no fault in the sample data, indicated with N
(Negative). The classifier, in this case the fault detection algorithm, predicts based on a test if there is a fault
in the sample PP (Predicted Positive) or no fault in the sample data, PN (Predicted Negative). Table 5.1
shows how the classification outcomes relate to the predictions and actual values. This table is commonly
referred to as the confusion matrix (or table).

Table 5.1: Confusion matrix.

Prediction
PP PN

Actual
P True Positive (TP) False Negative (FN)
N False Positive (FP) True Negative (TN)

A very good fault detector has a very high true positive and true negative score, and a very low false positive
and false negative score. The amount of true positives or false positive classifications on itself are meaningless.
In order to obtain significant performance values, the amount of true positive detections, or any other
classification, needs to be compared to the other classifications. To this end, the performance metrics are
defined as a fraction of other classifications. Often used metrics are the detection rate and false alarm rate,
given by:

Detection rate =
TP

TP + FN
=

TP

P
,

False alarm rate =
FP

FP + TN
=

FP

N
,

(5.1)

Detection Rate (DR) can be interpreted as the fraction of actual detected faults, out of all faults. Detection
rate is also known as recall, sensitivity or True Positive Rate (TPR). False Alarm Rate (FAR) is defined as
the percentage of false alarms encountered as a fraction of all data without faults. False alarm rate is also
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known in literature as Fall-out or False Positive Ratio (FPR). The Receiver Operating Characteristic curve
(ROC-curve) is a graph plotting the true positive rate against the false alarm rate as a function of a classifier
parameter (usually the detection threshold) [49]. With help of this curve, a user of the algorithm can choose
a desired threshold based on the amount of false alarms that are tolerated. Equation (5.2) shows how the
actual classifier performance equations are implemented in the time domain, with k ∈ {1, 2, . . . ,K} the time
index over all time steps.

Detection rate =

K∑
k=1

TP(k)

K∑
k=1

(TP(k) + FN(k))

=

K∑
k=1

TP(k)

K∑
k=1

P(k)

,

False alarm rate =

K∑
k=1

FP(k)

K∑
k=1

(FP(k) + TN(k))

=

K∑
k=1

FP(k)

K∑
k=1

N(k)

.

(5.2)

5.2 Simulations

This section presents the results of the simulations, made with help of the models from Chapter 2 and the
algorithms from Chapters 3 and 4. First, in Section 5.2.1, the performance of the fault detection algorithms
developed in Chapters 3 and 4 are discussed with help of ROC-curves. In Section 5.2.2 the performance of
the model-based fault detectors is assessed for multiple objects. First, an introductory example is discussed
that serves as a motivation for further analysis, in which the influence of the gate size is investigated. Finally,
in Section 5.2.3 the performance of the majority voter combined with the model-based approach is discussed.
A decoy (false object detection) is introduced in one sensor and it is shown that no track is initialized.

5.2.1 Effect of localization fault magnitude on detection performance

In this section, the performance of the majority voter algorithms (as discussed in Section 3.2) with the static
and chi-squared threshold, and the model-based algorithms with static (Algorithm 4.1) and chi-squared
threshold (Algorithm 4.2) are assessed in terms of the detection and false alarm rate as a function of the
detection threshold, with help of ROC-curves.

The results of the ROC-curves are obtained by looping over various fault detection threshold values for
varying fault magnitudes. For every fault magnitude and detection threshold combination, the simulation was
run for K = 250 samples, and the average true detection and false alarm rates are computed. The resulting
values can be plotted in the ROC-curves.

Figure 5.1 shows the problem setting in a two-dimensional plane for varying fault size f loc
1 , with ns = 3

sensors, with localization fault injected in sensor 1. The fault magnitude is constant for each diagram, but
the direction is not, therefore the faulty measurements appear in a circular pattern around the nominal
measurements. The model-based fault detection approach uses the same setting, but with the difference that
ns = 2 sensors are used.
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Figure 5.1: Several diagrams, with each diagram showing sensor readings for a set fault magnitude in sensor
1.

Figure 5.2 shows the ROC-curves for the model-based fault detection algorithms. The performances for both
the deterministic and chi-squared algorithms are for the given simulation equal. The measurement noise

covariance is chosen as a diagonal matrix: Ri =

[
σ2
11 0
0 σ2

22

]
, with σ11 = σ22 = 1

8 for all sensors, which makes

static fault detector also suitable to detect faults. When this is not the case, the detection threshold is not
able to perform as well, since not only the noise size, but the noise direction plays also a role. Another
advantage of the chi-squared fault detector is that the detection threshold is linearly related to the false alarm
rate. The general tendency is that when decreasing the detection threshold, for a set fault magnitude, the
true detection rates increases. However, decreasing the detection threshold comes at the cost of a higher false
alarm rate. The fault magnitude itself also influences the detection rate performance. For a set threshold,
the detection rate increases for increasing fault magnitude. Choosing the threshold should be related to the
smallest fault one desires to detect and the tolerated false alarm rate.
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Figure 5.2: ROC-curves for several fault magnitudes, as a function of the thresholds α (significance level, for
the chi-squared test) and c (constant threshold, for the static fault detector) and with b1 = f loc

1 .

Figures 5.3 and 5.4 show the ROC-curves for several faults magnitudes as a function of a varying fault
detection thresholds for the majority voter with chi-squared (CS) and static distance (SD) metrics. It shows
again that for increasing fault magnitude the detection rate improves. The chi-squared fault detector shows
improved performance over the static fault detector for the same false alarm rates, compared in terms of the
detection rate. To this end, the CS majority voter is favored over the SD majority voter.

Figure 5.3: Majority voter ROC-curve with chi-squared distance metric.
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Figure 5.4: Majority voter ROC-curve with static distance metric.

5.2.2 Static environment

Introductory example
The use case discussed in this section, serves the purpose to show what the advantages and challenges of
the chi-squared fault detection mechanism are, discussed in Section 4.3. Figure 5.5 shows the estimated and
measured coordinates of two static objects plotted over time. In Appendix B.2, a figure can be found showing
the sensor readings in a two-dimensional plane. Starting from time step k = 22 a bias fault is introduced
in sensor 1, with random angle and magnitude f1 = 2σ. In Figure 5.5 the dashed vertical line in the figure
indicates the time the fault is injected, the blue line is the Kalman filter output and the other graphs are the
noisy sensor measurements (with ns = 2).

Figure 5.5: Measurements and state estimates over time.

Figures 5.6 shows detected localization faults per object over time. Figure 5.7 shows the detected false object
detections over time. Since only a localization fault is injected in sensor 1, only the fault detections in the two
upper subplots of figure 5.6 are true fault detections, the other detected faults are false alarms. The faults
detected in any of the sensors before a fault is injected, are also all false alarms. The false alarms with regard
to the false object detections are caused by sensor readings that fall outside the gate during data association.
Unassociated measurements are used to initialize a new track if conditions are met, otherwise those are
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declared false object detections. The next section studies the influence of gate size and fault magnitude on
the fault detection performance.

Figure 5.6: Detected localization faults over time.

Figure 5.7: Detected false object detections over time.

Data association gate and fault magnitude
Figure 5.8 shows the detection rate of the localization faults and of the false object detections. The problem
setting is the same as in the previous section, but this situation is now analyzed as a function of the gating
threshold size and the fault magnitude. By increasing the gate size, the probability of including all detections
in the gate increases. Very large faults still fall outside the gate and are thus not detected. Small faults that
fall inside the gate, are not always detected since the chi-squared test declares them insignificant for the set
threshold. This explains the yellow disc shaped area towards the left in the graph.
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Figure 5.8: Colour maps for the localization detection rate and false alarm rate of localization and false
object detections as a function of the fault magnitude and gating size. The gate is expressed in terms of the
confidence region αgate, related to the gate threshold dgate by the chi-squared distribution.

5.2.3 Dynamic environment

This section considers a use case for which a decoy c1k,1 = (35, 0) is injected in sensor 1 at time step k = 5.
The field of view of the ns = 3 sensors is limited with ranges l1 = l2 = l3 = 20 m and opening angles ϕ1 = π

6
Rad, ϕ2 = π

2 Rad and ϕ3 = π
3 Rad, see Figure 5.9. An actual static object is in the environment positioned

at x = (15, 12). The platform travels in a straight line with velocity v = 2.5 m/s. Object x1
k is detected from

the start of the simulation.

Figure 5.9: Overview of considered use case.

When the object enters the field of view, a track is initialized since a majority of the sensors detect the object.
Figure 5.11 shows the state estimates computed by the Kalman filter and the associated sensor measurements.
The track is pruned at k = 22 since there were no more detections for 15 (track deletion tuning parameter
N = 15) consecutive time steps. Figure 5.12 shows that the decoy injected in sensor 1 is detected as a false
object detection, since only 1 sensor receives this measurement, hence no track is initialized.
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Figure 5.10: Sensor readings in x and y coordinates plotted for the three sensors over time.

Figure 5.11: Kalman filter state estimates and associated sensor readings.
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Figure 5.12: Detected false object sensor readings for all sensors and object tracks.

In conclusion, it is observed that object tracks are only initialized when those are confirmed by all available
sensors in the field of view.
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Chapter 6

Conclusion and discussion

First, Section 6.1 presents some conclusions with help of the project goals defined in the introduction. Then,
Section 6.2 provides a discussion about how the set assumptions would influence the performance of fault
detection framework when applied in a real world setting. Based on this and limitations of the provided
solutions, the section gives suggestions for future work.

6.1 Conclusion

The goal for this graduation project was to develop a fault detection and isolation framework for the perception
system of an autonomous tractor. To this end, a model of the perception system and environment to asses
the performance was developed. Based on the sensor models in degraded state, fault detection schemes
were derived in order to detect the anomalies in the observation models. Finally, the performance of these
algorithms was assessed with help of simulated use cases. The remainder of the conclusion will be discussed
with help of the sub-goals as defined in Section 1.4.

1) Develop a fault detection framework for a work-drive system of Flanders Make that is able to detect
and isolate faulty data in the environment perception system.
Fault detection and isolation is in general applied to systems where the variable of interest is measured
directly and the origin of this measurement is known. Examples are a global positioning system [45] or servo
control systems in aviation applications [50]. Detecting faults by using the output from perception sensors is
accompanied by the challenge that these sensors do measure the variables of interest (i.e., in this project
object positions) directly, but for the consecutive time steps it is unknown which measurements originate
from what object in the real world.

Therefore, first the received sensor readings need to be structured before a fault detection method can
be applied. The structuring refers to a method of grouping sensor readings that belong to the same object.
To structure the data, a clustering algorithm with appropriate constraints or data association method can
be used. Data association is used when a track is available as a reference, otherwise clustering can be used.
After the data is structured, it is possible to detect faults by comparing the measurements mutually or with
the reference value from the track. Then the definitions of the nominal sensor models, faulty sensor models,
and state estimates can help by defining appropriate fault detection and isolation tests. With help of these
definitions, a static and hypothesis-based fault detector was derived for both the hardware-redundancy as the
model-based fault detection algorithms.

2) Develop a fault detection framework for a work-drive system of Flanders Make that is able to distinguish
between localization and existence faults.
The model-based fault detection scheme classifies object detections that remain unassociated during data
association, and are not used to initialize a new track, as false object detections. If the magnitude of a
localization fault increases towards a point that it falls outside a gate, this measurement will wrongly be
classified as a existence fault. To make sure localization faults are correctly classified, the gate size should be
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chosen such that the largest fault magnitude that is desired to be detected, falls within the gate.

3) Develop a fault detection framework for a work-drive system of Flanders Make that is able to fuse
data from multiple sensors in order to track and localize objects.
Data from multiple sensors are fused by using the information from multiple sensors in an augmented
measurement vector and using it in the Kalman filter. Object tracks are initialized with help of the majority
voter.

4) Implement the framework in a simulation environment and evaluate the performance.
In the introduction the functional architecture of the perception system was presented in Figure 1.2. The
relevant parts of this system and the environment were modeled in order to asses the performance of the
fault detection schemes, as explained in Chapter 2. The environment objects and nominal sensor models are
modelled by discrete time linear state space equations. The observation models were adapted with additional
terms and functions to model additive faults and limited field of view, respectively.

6.2 Discussion and future work

This section discusses how limitations of the fault detection schemes and assumptions used to develop models
and fault detection schemes influence the performance when it would be implemented in the real world system.
Based on the limitations, suggestions for future work are given.

The host platform is equipped with cameras and lidars. Objects detected by those sensors are typically
represented by bounding boxes in two dimensions (for cameras) and in three dimensions (for lidars), while
the sensor model outputs measurements as point objects in a two-dimensional plane. In order to apply the
fault detection schemes on the measurements from a lidar, the centers of geometry of the three-dimensional
bounding boxes can be used. In order to apply fault detection on the camera detections, more modifica-
tions are needed, since it is not trivial to obtain depth information from these object detections. In [24]
a fault detection method was developed for a perception system that outputs two-dimensional bounding boxes.

In this work, only the performance of the fault detectors was assessed in an environment with static
objects. Tracking dynamic objects poses the additional challenge that predicting the objects states becomes
more complex, when they are not moving with constant speed. If an object is moving with constant speed,
this can be augmented in the state vector and the prediction equations need to be adapted accordingly. In
reality, humans and other dynamic objects in the environment are not moving with a constant speed but
(de)accelerate often during their trajectory. The change of speed can be modeled with help of the control
input vector in the state space equations. However, when performing a prediction step, the tracking system
does not know what the values of the control inputs are, since these take place in an external object. To
cope with this problem, a first approach could be to use a larger process noise, indicating there is a high
modelling uncertainty. A dedicated algorithms to cope with this problem is the interacting Multiple Model
(IMM) algorithm [51].

Further research based on the work of this project, could be to further investigate the performance between
the model-based and hardware-redundancy based approaches, also in a simulation setting. A majority
voter type fault detector could work better in circumstances where the model is updated accidentally with
faulty data, which would result in faulty reference predictions in subsequent time steps. When computing
model-based residuals, the faulty measurements can be regarded as healthy. When a majority voter type
fault detector is used, only the mutual sensor readings are compared, if the fault magnitude is sufficiently
large, this fault can be detected, provided that the majority amount of sensors is healthy. The risk of this
particular case will especially increase in the presence of drift faults, since a drift will cause the reference
(model-based) values to gradually increase over time.

The chi-squared fault detection algorithm makes use of the measurement covariances, which are assumed to
be known. In reality, the estimated covariance can differ significantly or vary over time. In order to cope
with varying measurement noise, for robust fault detection, the measurement covariance can be updated
real-time. In [45] an approach was given to solve this problem, by computing the residual over a window
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of time steps. This would also be a useful feature in the work drive research, since one of the goals was to
have modular perception architectures. By using the aforementioned capability, the measurement models can
be adapted for a new (sub)set of sensors, resulting into a stable performance for different sensor sets and
therefore increasing the level of modularity.

As discussed in Chapter 5, the implemented fault detection schemes can detect localization faults, but
for decreasing magnitude, especially for faults f loc

k < 3
4 (3σ) the detection rate drops significantly, and comes

at the cost of a higher false alarm rate. In [52] a model-based cumulative sum (also referred to as CUSUM)
procedure is presented, that is able to detect small persistent faults.
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Appendix A

System description

A.1 Assumptions

In the following, a list of assumptions and constraints used in the project are listed. These are used to model
the system, environment and to develop fault detection schemes. The following constraints are defined.

• The number of objects Nk in the world is not known to the perception system. .

• Objects in the environment are static.

• The field of view (FoV) per sensor is limited.

• Existence and localization faults can occur at any time instant and at any number.

• The sensor readings are fused centrally.

• Process noise is set to zero.

The following sensor model assumptions are defined.

• It is unknown what sensor reading belongs to what object in the real world (ground truth).

• Measurements received by a sensor, are point objects in a two-dimensional plane, with respect to the
global coordinate system.

• Measurement noises are independent, i.e. there is no cross-correlation. Measurement noise can be
described with a multivariate normal distribution.

• An object in the world can cause at most 1 sensor reading, and every sensor reading originates from at
most 1 object.

A.2 Perception system description

Figure A.1 shows a detailed diagram of the high-level system architecture of the considered platform perception
system. Reliable environment perception is needed to navigate the environment safely. The output of the data
fusion is sent to the path planner to decide on what actions to take to warrant such safety. The host state
estimation provides the object observers with state values of the platform, that is needed for a transformation
to the global coordinate system. The data fusion consists of the following steps, after it receives an object
observation from a perception sensor. First, a prediction step is performed on the states of all objects that
exist in the current status of the world model. Then, in the data association step the noisy smart sensor
readings are associated to the predicted states and finally an update step is performed.
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Appendix A. System description

Figure A.1: High level system architecture.

Figures A.2 and A.3 show in two steps how the data fusion module process an object observation. The figures
are based on Figure A.1, but some parts are omitted for brevity. Each node in the world model is associated
to its own Extended Kalman Filter (EKF), and this EKF can be used to predict the state of the node with
respect to its parent at any given timestamp, using all observations that are currently stored in memory and
associated to this specific object. The following notation is introduced: yk is the measurement value from a
smart sensor at timestamp k, x̂jw

k,trans and P̂jw
k,trans are the predicted state and covariance values of objects for

timestamp k in the reference frame of the sensor belonging to the received sensor reading (indicated with
subscript ‘trans’), with jw ∈ {1, . . . , n}, where n is the number of previously objects.

As shown in Figure A.2, after a detection arrives, the state values of all n objects that currently exist
in the world model are predicted in the same coordinate frame as the measurement for timestamp k. With
help of the world model, it is possible to transform the coordinates of x̂jw

k , P̂jw
k into the same coordinate

frame as the sensor measurement. The data association block verifies whether the detected object’s state falls
within one of the prediction’s covariance ellipsoids. If this is true, the detection is associated to the closest
prediction point, measured with the Mahalanobis distance [37]. Figure A.5 shows an exemplary situation,
wherein detection yk falls within both the covariance ellipsoids of predictions x̂1

k,trans and x̂2
k,trans, but is

associated to prediction x̂1
k,trans since it has the smallest Mahalanobis distance with yk. In Figure A.4, the

other situation can be observed: detection yk is not associated with any prediction x̂jw
k,trans.

Figure A.3 shows how the detection yk is subsequently added to one of the observers, or initialized as
a new object. The data association blocks informs the switch that either the object observation is associated
with a prediction, or a newborn object. The switch sends the observation yk to the correct block. If the
data association check succeeds, the observation is added to the EKF of the object with the closest x̂jw

k,trans,

Pjw
k,trans. If the check fails, a new object n+1 is added to the world model, and a new EKF is constructed for

which the initial state is computed based on the detected object state. In Figure A.3 the situation of Figure
A.5 is depicted, i.e., detection yk is associated with prediction x̂1

k, and thus the detection yk is added to EKF
object 1.
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Appendix A. System description

Figure A.2: Inputs for data association.

Figure A.3: Output of data association, based on situation 2, see Figure A.5.

Figure A.4: Data association, situation 1. Figure A.5: Data association, situation 2.
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Appendix B

Performance analysis

B.1 Redundancy based fault detection

Figure B.1

Figure B.2
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Appendix B. Performance analysis

Figure B.3: Problem setting considered for performance analysis clustering algorithm.

B.2 Performance model based fault detection

Figure B.4 shows the sensor readings for several sample of two objects in a two dimensional plane, with
ns = 2 sensors. A localization fault is injected in sensor 1, causing an offset with constant magnitude but
random angle. Furthermore, the gating regions used for data association are plotted.

Figure B.4
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Appendix C

Other

C.1 Observability

A system is observable if it is possible to reconstruct the internal states xk of the system at time step k,
based on the observed (a measurement of the system) space zk at time step k. For discrete time linear
time-invariant systems, the test for observability is defined as follows.

If the observability matrix 
C
CA
...

CAn−1


has row rank n, with n the dimension of the state vector xk, then the system is observable [53].

C.2 Sum of normal distributions

Assume two multivariate normal random variables X ∼ N (µX ,ΣX) and Y ∼ N (µY ,ΣY ). The expression of
the characteristic function for X is:

ϕX(u) = exp (iuTµX − 1

2
uTΣXu).

A property of the characteristic function is that the sum of two independent random variables is equal
to the product of their respective characteristic functions, hence ϕXϕY = ϕX+Y . This can be derived as
follows:

ϕX+Y (u) = exp (iuTµX − 1

2
uTΣXu) exp (iuTµY − 1

2
uTΣY u).

= exp (iuTµX − 1

2
uTΣXu+ iuTµY − 1

2
uTΣY u)

= exp (iuT (µX + µY )−
1

2
uT (ΣX +ΣY )u).

(C.1)

Therefore we find that X + Y ∼ N (µx + µY ,ΣX +ΣY ).
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