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Abstract

Integrating new components in high-tech systems becomes more challenging as these systems
increase in scale and complexity. Traditionally, during the integration and testing phases, the
new system components are realized and integrated with the existing system, and the total
system is tested against its requirements. However, when new components are integrated and
tested earlier in the design process, design faults and integration problems can be found prior
to the realization of the component. This reduces the costs and the time-to-market, as errors
can be solved earlier and therefore easier when a component is not yet realized.

Model-based integration has proven to be feasible for earlier integration and testing of new
components in systems with discrete-event behavior by using formal and executable models
of the new component. Simulation in combination with a system visualization can be used to
increase the understanding of the system specifications. Although the feasibility and potential of
this method is proven by several case studies, it still comes with the great disadvantage that the
supervisory controller is obtained manually from the models, instead of mathematically derived.
Therefore, verification of the supervisory controller is required, as it cannot be guaranteed
that the supervisor adheres to the specified requirements. With synthesis-based engineering,
verification is not required as the supervisor is generated automatically from models of the
system components and the safety requirements and is correct-by-construction. In this project,
it is explored how model-based integration can be combined with synthesis techniques.

The contribution of this project is the synthesis-based integration method, where supervisory
control theory is used to automatically synthesize the supervisory controller. The synthesis-
based integration method is specifically designed for the replacement of a component in an
existing system with discrete-event behavior. By modeling the existing system and the new
component, insight is obtained in their working principles and their interface. If there are
interface discrepancies between the new component and the existing system, different solutions
are proposed, depending on if the interface can be changed. When the interface cannot be
changed, guidelines are provided to develop an adapter which converts the outputs and inputs
of the existing system to respectively the inputs and outputs of the new component. When the
interface can be changed, an adapter is not required as changing the existing control system
and/or the new component will suffice to resolve the interface discrepancies.

The potential and feasibility of synthesis-based integration is demonstrated with the multi-phase
renovation of the lighting system of the Swalmen tunnel. With this renovation, the hardware and
software components are not renovated simultaneously and their interfaces are not allowed to be
changed. By using the proposed synthesis-based integration method, the interface discrepancies
are identified and adapters are developed. Based on the results of the case study, it is expected
that with synthesis-based integration the mean and variance of the integration time of a new
component is decreased.
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Chapter 1

Introduction

The design of supervisory controllers of discrete-event systems becomes more challenging as
systems continue to grow in scale and complexity, and the market demands require verified
safety, low costs, and short time-to-markets. Model-based engineering methods have proven to
be feasible in overcoming these difficulties, and are used in industry nowadays [1].

However, the increased system complexity makes the integration of components and testing of
the total system more challenging as well. During the integration and testing phases, the system
components are realized and combined, and the total system is tested against the specified
requirements. As proposed by [2], components can already be integrated earlier in the design
process by using models instead of realized components. This so-called model-based integration
method is suitable for renovating or upgrading existing systems. In these situations, the absence
of clear documentation of the existing system is often an additional challenge.

The main disadvantage of the integration method proposed by [2] is that model verification
is required, as the supervisory control models are obtained manually. With synthesis-based
engineering, a supervisory controller is generated automatically from models of the system
components and the safety requirements. As the supervisor is guaranteed to be correct-by-
construction, verification is not necessary. In this project, it is explored how the method of [2]
can be combined with synthesis techniques. The resulting method is tested on a case study
where an existing system is renovated in multiple phases.

1.1 Research context

A common structure of computer controlled high-tech systems is depicted in Figure 1.1. This
structure consists of five layers. The two layers at the bottom represent the physical parts of the
system, that is, the mechanical components (layer 1) and the actuators and sensors (layer 2).
The states of the mechanical components are influenced by the actuators, and feedback about
the states of these components is provided by the sensors. These commands and feedback are
respectively sent and received by the supervisory controller via the resource controllers. A
resource controller executes low-level control, and is generally time-driven. The supervisory
controller is event-driven and responsible for the high-level coordination and safe operation
of the different components. From the perspective of the supervisory controller, the resource
controllers are part of the plant, together with the mechanical components and the actuators
and sensors, indicated with the dashed box. Depending on the application area, a graphical
user interface (GUI) could be part of the control system. Via the GUI, an operator can send
commands to the supervisory controller.
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Figure 1.1: Schematic overview of the structure of computer controlled high-tech systems.

Traditionally, supervisory controllers were designed using a document-based engineering ap-
proach. Here, the focus is on controlling the documentation of the system and ensuring that it
is complete and consistent. However, as discussed by [3], this method has a fundamental limi-
tation: the system’s information is spread across many documents, making it difficult to assess
the completeness, consistency, and relationships between requirements and design. This short-
coming makes the document-based method an error-prone method for the high-tech systems of
today.

Model-based engineering circumvents the shortcomings of document-based engineering by using
formal and executable models instead of documents to specify system components and require-
ments. As discussed by [4], with model-based engineering the objective is to control the models
instead of the documents. It facilitates the understanding of the system and design scope,
brings structure in the system specifications, and enables evolvability of the system without
losing information due to disconnected documentation [1]. Moreover, by using models for not
yet realized system components, system integration and testing of components can already be
carried out earlier in the design process, as shown by [2]. By integrating and testing components
earlier, inconsistencies and errors in the designed components can be found prior to the realiza-
tion of the component. As errors can be solved easier when components are not yet realized,
the time-to-market and costs are decreased in comparison to solving errors in already realized
components.

For complex systems, the manual development, verification and validation of their supervisory
controllers is however very challenging. To enhance the development of supervisory controllers
for these complex systems, synthesis-based engineering can be used. It builds upon the model-
based approach by incorporating a formal method which guarantees certain system properties.
The foundation of this method is supervisory control theory (SCT), developed by Ramadge
and Wonham [5], [6]. SCT enables the correct-by-construction development of supervisory
controllers for discrete-event systems. Moreover, as researched and shown by [7], by using
templates for similar components, model development becomes a less time-consuming and error-
prone task. Applications of synthesized supervisory controllers in various systems, such as
theme park vehicles [8], an MRI scanner patient support table [9], and a rotating bridge [10],
have proven to be successful. This latter case study is part of the research conducted in the
MultiWaterWerk project. This project is a collaboration between Rijkswaterstaat, which is
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part of the Dutch Ministry of Infrastructure and Waterway Management, and the Eindhoven
University of Technology. The case study in this report, the renovation of the lighting system
of a road tunnel near the town Swalmen in the Netherlands, introduced in Section 3.2, is also
provided by Rijkswaterstaat.

1.2 Research objective

The model-based integration method of [2] has proven to be successful for developing new
systems or upgrading existing systems with new functionalities, as shown in [11] and [12].
Although the feasibility and potential of this method is proven by several case studies, it still
comes with the great disadvantage that the supervisory controller is obtained manually from the
models, instead of mathematically derived. Therefore, verification of the supervisory controller
is required, as it cannot be guaranteed that the supervisor adheres to the specified requirements.

With synthesis-based engineering, the supervisory controller is mathematically derived from
the plant and requirement models, instead of modeled manually. Due to this advantage and
the formal and structural approach of synthesis-based engineering, the research objective is to
investigate if synthesis techniques can be combined with the model-based integration method
of [2]. Therefore, the research question is:

� In what way can synthesis techniques be combined with the model-based integration method
developed by [2]?

In the case studies in [11] and [12], both the hardware and the software of the component is
considered when developing or upgrading the system. By considering both, possible interface
discrepancies are prevented. However, there are cases where software and hardware are not
changed simultaneously, for instance when a part of a system is renovated. As a consequence,
interface discrepancies could emerge between changed and unchanged software or hardware com-
ponents. The model-based integration method of [2] does not take this situation into account.
Therefore the synthesis-based integration method developed in this project is demonstrated on
a case study where software and hardware are not renovated simultaneously. This case study
concerns the renovation of the lighting system of a road tunnel near the town Swalmen in the
Netherlands. This case study is discussed in Section 3.2.

1.3 Report outline

This report is structured as follows. In Chapter 2, the methods and tools which are used to real-
ize the project objective are introduced. In Chapter 3, the synthesis-based integration method
is proposed, and the case study is introduced. Then, in Chapters 4 and 5, the models of respec-
tively the initial situation and second renovation phase of the Swalmen tunnel are discussed. In
Chapter 6, the model of the first renovation phase, where synthesis-based integration is used, is
introduced. Finally, in Chapter 7, conclusions on the performed research and recommendations
for further research are given.
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Chapter 2

Preliminaries

In this chapter, the methods and tools which are used during this project are discussed. First,
in Section 2.1, the model-based engineering method is presented, followed by the model-based
integration method in Section 2.2. In Section 2.3, synthesis-based engineering is explained,
which uses supervisory control synthesis, discussed in Section 2.4. To analyze the system,
Design Structure Matrices are used, presented in Section 2.5. Finally, in Section 2.6, the tools
which are used in this project are shortly listed.

2.1 Model-based engineering

With the increased number of system components and complex requirements, model-based
engineering is a suitable method to design supervisory controllers for systems with discrete-
event behavior. Formal and executable models are used to design the system, which allow
for a more consistent and less ambiguous description of the system and its desired behavior
in comparison to textual documents. The model-based engineering process for designing a
supervisory controller is shown in Figure 2.1, which is adapted from [13].

HR

CR CD C C

PR PD P P

extract

extract

define

design

design

model

model

realize

realize

= document, = model, = realization.

H = high-level, C = controller, P = plant, R = requirement, D = design.

= model simulation, = hardware-in-the-loop simulation, = system testing.

Figure 2.1: Schematic overview of model-based system engineering, adapted from [13].

First, before designing, the formal high-level requirements HR for the system are defined. From
this set of system requirements, a division is made between the requirements for physical compo-
nents (the plant) PR and the controller requirements CR. The plant usually consists of actuators

4



that need to be controlled and sensors that provide the supervisory controller with information
about the state of the system. From both PR and CR, a document-based design is made, PD

and CD respectively. A plant model P and controller model C are then made based on these
design documents. Finally, these two models can then be realized: the system is built and the
controller is programmed and implemented in the realized system.

With model-based design, validation of the modeled plant and controller is possible in multiple
stages of the engineering process. First, by simulating the plant model P with the controller
model C, it is validated if the controlled behavior is as intended. If the controlled behavior is
not correct, the formal requirements HR are changed, followed by changing the document-based
design and the model, and then the behavior can be validated again. Moreover, the realized
controller C can be tested on the plant model. This controller is realized in Programmable Logic
Controller (PLC) code, and implemented on a PLC. This realization and implementation of the
supervisory controller is tested by means of hardware-in-the-loop (HIL) simulation. Finally, the
last possible validation step is the integrated system test, where the realized controller is tested
on the realized plant.

2.2 Model-based integration

As discussed in [2], high leadtimes and costs are faced during the integration and test phase for
new or upgraded high-tech multidisciplinary systems. An advantage of model-based engineering
is that, by using models, a significant part of the controller and plant validation can be per-
formed before they are realized. This property is used in the so-called model-based integration
and testing method, developed by [2]. This method is suitable for systems which need to be
developed, or which are already realized. Before this method was developed, the integration
and testing of new components was performed with component realizations instead of models.
As a consequence, the time-to-market and costs increase as feedback on the system behavior
and performance is obtained later in the engineering process.

The model-based integration and testing method has proven to be successful for developing new
systems or upgrading existing systems with new functionalities, as shown in [11], [12]. In these
case studies, both the hardware and software of the component is considered simultaneously
when developing or upgrading the system, preventing possible interface discrepancies between
the hardware and software of this component. However, it is possible that software and hard-
ware are not changed at the same time, for instance when systems are renovated. Therefore,
interface discrepancies could emerge between changed and unchanged software and/or hardware
components. The model-based integration and testing method of [2] does not take this into ac-
count. A real life situation where hardware and software are not renovated simultaneously is
the renovation of the Swalmen tunnel. This case study is introduced in Section 3.2.

2.3 Synthesis-based engineering

Although model-based engineering enhances the quality and reduces the time-to-market and
costs, the supervisory controller is manually obtained. Therefore, verification of the supervisor
is still necessary. With increasing systems complexity, the effort required to test the designed
system against its initial requirements becomes a challenging task. Therefore, a new engineering
process is proposed by [13], where supervisory control synthesis is integrated in model-based
engineering. This results in synthesis-based engineering, a method where the supervisory con-
troller can be generated from the formal automata models of the plant and the requirements.
The deployed algorithms guarantee, amongst other properties, a supervisory controller which is
correct-by-construction.
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The synthesis-based engineering method is shown in Figure 2.2. The foundation of synthesis is
supervisory control theory (SCT), developed by Ramadge and Wonham [5], [6].

HR

CR CR C C

PR PD P P

extract

extract

define

design

design

synthesize
generate and
implement

model realize

= document, = model, = realization.

H = high-level, C = controller, P = plant, R = requirement, D = design.

= model simulation, = hardware-in-the-loop simulation, = system testing.

Figure 2.2: Schematic overview of synthesis-based system engineering, adapted from [13].

The difference with model-based engineering is that from the plant model P and requirement
model CR, a supervisory controller is automatically synthesized. By automatically deriving the
controller, errors are not introduced when the controller is manually made as with model-based
engineering. Moreover, the deployed synthesis algorithms guarantee that the supervisor satisfies
the requirements, is non-blocking, controllable and maximal permissive [5]. These properties
are explained in more detail in Section 2.4. These guarantees allow the engineer to focus on
specifying and improving the formal requirements and the plant model instead of debugging a
manually made controller. The same validation steps as for model-based engineering apply to
synthesis-based engineering.

2.4 Supervisory control synthesis

The use of formal models is the foundation of synthesis-based engineering. Formal models have
syntax (how the models can be written down) and semantics (the meaning of these models).
Supervisory control theory, initiated by [5] and [6], provides a synthesis method to automatically
synthesize a supervisor from a formal uncontrolled plant model, describing what the system can
do, and a formal requirement model, describing what the system should do. These formal
models are obtained during the engineering process which is presented in Figure 2.2.

In the subsections below, a plant model, a requirement model, and a supervisor is explained.
This is inspired by [14]. Furthermore, the modeling guidelines for plant and requirement models
are discussed.

2.4.1 Plant model

The plant model describes the uncontrolled behavior of the system. The boundaries of the
plant model depend on the type of controller. As can be seen in Figure 1.1, from the point of
view of the supervisory controller, the uncontrolled plant includes the mechanical components,
the actuators and sensors and the resource controllers. From the perspective of the resource
controller, the uncontrolled plant includes only the mechanical components and the actuators
and sensors. In this project, both supervisory controllers and resource controllers are modeled.
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The uncontrolled plant is modeled as a discrete-event system, by using finite-state automata
(FSA) and extended finite-state automata (EFSA), as described in [14] and [15]. An example
of an FSA is a lamp, consisting of an actuator and a sensor. The corresponding automaton
definitions are shown in Figure 2.3.

Off

Actuator:

On Off

Sensor:

Onc on

c off

u on

u off

Figure 2.3: Example of a plant model of a lamp, with on the left-hand side the actuator and
on the right-hand side the sensor.

An automaton has one or multiple locations, representing the states of the modeled system,
indicated with the circles in Figure 2.3. In the case of the actuator and sensor, the possible
states are Off and On. Transitions from one state to another are indicated with arrows. There
are two possible events: controllable and uncontrollable events. Whereas a controllable event
may be disabled by the supervisory controller, an uncontrollable event may not. An example of
a controllable event is an actuator turning on or off, indicated with solid arrows on the left-hand
side in Figure 2.3. A sensor switching on or off is an uncontrollable event, indicated with dashed
arrows on the right-hand side in Figure 2.3. The initial location is indicated with the incoming
arrow without source location. For both the actuator and the sensor, the Off location is the
initial location. This location is also the marked location, indicated with the concentric circle.
A marked location represents the safe location of the system. In this location, the system is
considered (by the modeler of the system) to be in a stable position. Therefore, this location is
considered to be safe. With supervisor synthesis, it is guaranteed that the system can always
return to its marked locations.

2.4.2 Requirement model

The requirement model describes the desired behavior of the plant. The textual requirements
are formalized by a model, as defined in the first step of the engineering process depicted in
Figure 2.2. Requirements can be modeled as an extended finite-state automaton, or as a logical
expression, introduced in [16] and [17]. An example of a requirement, both as automaton and
as state-based expression, is given in Figure 2.4.

requirement Actuator.c on

needs not Sensor.On

Actuator.c on

when
not Sensor.On

Figure 2.4: Example of a requirement model to turn on the actuator of the lamp, depicted
on the left-hand side as automaton requirement, and on the right-hand side as state-based
expression.

From the logical expression on the right-hand side in Figure 2.4, it can be observed that a
requirement formulated as logical expression is similar to a textual description of the desired
behavior. Depending on the nature and complexity of the desired behavior, either a logical ex-
pression or automaton requirement is more suitable. When alternating or consecutive controlled
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behavior is desired, automaton requirements are often more suitable than logical expressions.
An example is the case where two actuators have to alternate, and between every alternation,
a timer has to turn on and then elapse. It is more convenient and intuitive to express this with
an automaton than with a logical expression.

2.4.3 Supervisor

Supervisory control theory guarantees that the synthesized supervisory controller satisfies the
following properties:

� Safety: The system cannot reach states and enable events that are forbidden by the
requirements.

� Nonblockingness: The supervisor ensures that the system can always reach a marked
state.

� Controllability: The supervisor only restricts controllable events. Uncontrollable events
may never be disabled by the supervisor.

� Maximal permissiveness: The supervisor imposes the minimal restriction on the plant to
satisfy safety, nonblockingness, and controllability.

The supervisor can be obtained with different synthesis techniques. Within this project, mono-
lithic synthesis is applied, resulting in a monolithic supervisor. This supervisor is a single
supervisor that controls the complete plant, to ensure the above mentioned properties. When
the modeled system has a very large state space, other synthesis techniques are often considered,
such as multi-level and modular synthesis. More information on these techniques can be found
in [18].

2.4.4 Modeling guidelines

It is of great importance that the plant and requirement models are correct, understandable
and unambiguous. Although supervisor synthesis provides a controller which is correct-by-
construction and adheres to the requirements, this controller is meaningless when the models
are incorrect, as argued by [19]. Since the plant and requirement models are obtained manually,
they are subject to human errors. In [19], modeling guidelines are provided to obtain “better”
models. For this project, the following guidelines from [19] are considered and applied:

� The uncontrolled behaviour of the system is described in the plant model, and the desired
behaviour is described in the requirement model.

� Independent plant components are modeled as asynchronous plant models.

� The abstraction level of the inputs and outputs of the control hardware are used for the
plant model.

� The requirements do not introduce new events or variables.

� The requirements do not refer to locations of other requirements.

� Requirements with logical expressions are split into smaller ones.
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2.5 Design Structure Matrices

To obtain a better insight in the modeled system and to analyze its structure and possible
modularity, Design Structure Matrices (DSM) can be used. A DSM is an N ×N matrix, where
both axis contain the same entities and the cells represent the relationships (e.g. shared events)
between these entities. These entities and relationships can differ depending on the analysis
objective. By clustering the DSM, elements with many mutual dependencies are grouped within
one cluster. These clusters can help the engineer to understand the structure of the system.
In-depth information on DSMs and applications in industry can be found in [20].

Within this project, the dependency between the plant components and the requirements is
investigated. By mapping these dependencies, missing requirements or unexpected shared re-
quirements can easily be identified. The entities are the subplants from the most refined product
system. These subplants contain the plant models which all share the same events. The differ-
ent subplants do not share events. By using the subplants of the most refined product system
as entities, it is ensured that the components that are closely connected through shared events
are always in the same cluster.

The foundation for a DSM, is a domain mapping matrix (DMM). A DMM is an N ×M matrix
which maps the relationship between the plant models N from the most refined product system
and the requirements M . From the DMM, the unclustered DSM is obtained using simple
matrix multiplications, see [21]. The steps from DMM, to unclustered DSM, to clustered DSM
are explained using a simplified model of a tunnel lighting system. These steps are based on
[22]. The components of the simplified model are based on the lighting system of the Swalmen
tunnel in 20XX, introduced in Section 5.2. In Appendix C, the exact models of the tunnel
lighting system in 20XX can be found.

The most refined product system of the simplified tunnel lighting system is given by:

1. Outside light sensor

2. Traffic tube state, operation mode general lighting, light level general lighting

3. Operation mode entrance lighting, light level entrance lighting

4. Timer entrance zone

5. Current light level entrance zone

6. Timer general lighting

7. Current light level general lighting

On this system, 32 requirements are imposed to guarantee the safe operation of the tunnel
lighting system. The dependencies between the components of the most refined product system
and the requirements are shown in the DMM in Figure 2.5. Only the non-zero elements are
shown for readability.
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1 1 1 1

1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1

Figure 2.5: The DMM PR of the simplified tunnel lighting system example.
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From this DMM, an unclusterd DSM, depicted in Figure 2.6a, can be generated with simple
matrix multiplications [21]. Information on the structure of the system is difficult to determine
from an unclustered DSM alone. By clustering the DSM, elements with many mutual depen-
dencies are grouped in a cluster. There exist multiple clustering algorithms, and for this project
the Markov-based clustering algorithm from [23] is used. As argued in [22], this algorithm is
also suitable for clustering multi-level discrete-event systems. Moreover, the algorithm does
not require any information on the structure as input, which makes it easier to use since this
information is usually not known beforehand. Only four input parameters need to be set: the
expansion coefficient α, the inflation coefficient β, the evaporation constant µ, and the bus
threshold value γ. Consult [23] for more information about these parameters and their effects.

The clustered DSM PC is depicted in Figure 2.6b. The settings for clustering the DSM P are:
α = 2, β = 2.5, µ = 1.5, and γ = 1.8.
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(a) The unclustered DSM P .
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(b) The clustered DSM PC .

Figure 2.6: The unclustered DSM P and clustered DSM PC of the simplified tunnel lighting
system example. PC is obtained with the clustering algorithm from [23], with settings: α = 2,
β = 2.5, µ = 1.5, and γ = 1.8.

From Figure 2.6b, it can be observed that the elements within a cluster have many mutual
dependencies, and few dependencies outside the cluster. The DSM PC has three clusters, and
one so-called bus. A bus contains all elements which have many dependencies with elements
throughout the system. In this example, components 2 and 3 of the product system are part
of the bus structure located on the top left, as almost all other components depend on these
three components. Component 2 consists of the traffic tube state model, the operation mode
model, and light level model of the general lighting of the tunnel. Component 3 consists of the
operation mode model and light level of the lighting in the entrance zone.

Within this project, DSMs are not only used to analyze the structure and possible modularity
of the system, but also to identify and eliminate modeling errors. This applicability is explored
in [24]. In [18], guidelines are proposed to eliminate modeling errors by using DSMs. These
modeling guidelines are as follows.

� A DMM of the plant models and requirements should not contain an empty column.
An empty column indicates a missing or obsolete requirement model.

� A DSM of the plant models and requirements should not have independent clusters.
An independent cluster means that the system consists of different independent subsys-
tems. The rationale to combine plant models in one model is that these components are
considered to be one system. Therefore, as an independent cluster is not intended, it is
most likely the result of a missing requirement or obsolete plant model.

� Similar components of the system should have similar dependencies in the DSM.

These guidelines are used in this project whilst modeling the system.
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2.6 Tools

The models are developed in the open-source Eclipse Supervisory Control Engineering Toolkit
(ESCET�)1. ESCET� includes a simulator and the implementations of:

� The synthesis algorithm,

� DSM derivation and structuring,

� Dependency graphs derivation,

� PLC code generation.

In ESCET�, the plant components and requirements are modeled with Compositional Inter-
change Format (CIF), an automata-based modelling language for the specification of discrete-
event, timed and hybrid systems [25].

1See https://www.eclipse.org/escet/
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Chapter 3

Synthesis-based integration

The integration of new components in existing systems becomes more difficult as the scale,
complexity and number of requirements of systems increase. As a result, the costs and time-to-
market rise. In this chapter, a method is proposed to reduce the integration effort specifically for
the replacement of components in existing systems. This so-called synthesis-based integration
method is proposed in Section 3.1. The feasibility of the method is shown with the case study
introduced in Section 3.2.

3.1 Method

When a component of an existing system is replaced by a new component, there is a possibility
that their interfaces do not match. With the model-based integration method, proposed by
[2], these possible interface discrepancies are identified by using models. Moreover, the method
allows for earlier integration and testing of the new components by using these models instead of
component realizations. This integration method of [2] is combined with synthesis techniques, to
automatically derive a supervisory controller which adheres to the specified requirements. This
allows the engineer to focus on developing and improving the solution for interface discrepancies,
instead of manually modeling and debugging the supervisory controller.

The proposed synthesis-based integration method is specifically designed for the replacement of
a component in an existing system, where interface discrepancies can emerge. The interface is
defined as the physical inputs and outputs of the control hardware and plant components and the
information that is communicated via these inputs and outputs. When it is known beforehand
that no interface discrepancies will emerge, the synthesis-based engineering method described in
Section 2.3 can be applied. However, there are situations where the realized system is not clearly
documented, which makes it difficult to have a full understanding of the interface between the
existing system and new component, and possible interface discrepancies. The synthesis-based
integration method offers guidelines to explore and resolve these possible discrepancies.

When there is a discrepancy between the interface of the existing system and the new compo-
nent, it is important to know if the interface can be changed. This is for instance not possible
when the interface of the existing system is conform to specific guidelines and the inputs of the
new plant component are determined by the manufacturer. When both interfaces cannot be
changed, an intermediate solution, called an adapter, is required.

In the remainder of this section, the synthesis-based integration method is proposed which
provides a method to integrate a new component in an existing system and solve possible
discrepancies.
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First, the new component is considered:

1. Model the plant PC and requirements RC of the new component and synthe-
size the supervisory controller SC .
The plant and requirement models are modeled according to the synthesis-based engineer-
ing process depicted in Figure 2.2. These models are made in ESCET�, which is described
briefly in Section 2.6. During modeling, the guidelines introduced in Subsection 2.4.4 are
followed.

(a) Determine the high-level requirements for the new component.
These requirements depend on the model scope, which is defined by the inputs and
outputs of the component.

(b) Split the high-level requirements into requirements for the plant and for the controller.

(c) Model the plant PC and requirements RC based on the specified requirements in the
previous step.
The structure of the model can be based on a clustered DSM of the system compo-
nents and requirements. These techniques are explained in Section 2.5.

(d) Synthesize the supervisory controller SC from the plant and requirement models.

(e) Validate the synthesized supervisory controller SC .
It is advised to conduct this step by using simulation with visualization, as this allows
for a better understanding of the controlled behavior. This simulation model is a
hybrid version of the discrete-event model.

When the supervisory controller SC of the new component is validated, the existing system is
considered:

2. Model the plant PS and requirements RS of the existing system and synthesize
the supervisory controller SS.
The plant and requirements are modeled as described in steps 1(a) until 1(e). The models
contain the to be replaced component, and the components that share an interface with it
and if applicable, other components that are relevant for the functioning of the component.

When the two supervisors are obtained, one of the current situation, and one of the new com-
ponent, it is investigated if there are interface discrepancies:

3. Remove the to be replaced component from the existing model.
If the component and controller are replaced, then remove the component from the plant
model PS and requirement model RS . If only the component or the controller is replaced,
then remove respectively the component from PS or the requirements from RS .

4. Determine and model the interface of the existing system and the new com-
ponent.
The interface is defined by the outputs and inputs of the control hardware and the inputs
and outputs of the new component. These inputs and outputs are modeled in the plant
models PS and PC as shown in [26].

5. Determine if the interfaces align, and if not then determine a solution.
First, it is determined if the interfaces of the existing system and the new component
align. These align when the outputs of the existing system are the inputs of the new
component, and vice versa. If these align, skip the remainder of this step.
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If the interfaces do not align and the existing control system is not allowed to be changed,
then an adapter is required:

(a) Determine the high-level requirements of the adapter.
The adapter converts the output signals from the existing system to the correct
input signals for the new component, and vice versa. The specific requirements of
the adapter depend on the system, and are based on the discrepancy between the
inputs and outputs of the existing system and new components.

(b) Model the plant PA and requirements RA of the adapter and synthesize the supervisory
controller SA.
Based on the high-level requirements of the adapter, which are determined in the
previous step, the plant PA and requirements RA are modeled. These models are
obtained using synthesis-based engineering, as explained in steps 1(a) until 1(e). The
inputs and outputs of the adapter are modeled in the plant model as shown in [26].

In case of the adapter, the plant model PA does not contain physical components, but
components which can be considered to be “internal” components. These internal
components are used to convert the outputs of the existing to the correct inputs of
the new component, and vice versa.

When the interfaces do not align, but the interface of the existing system and/or the new
component is allowed to be changed:

(a) Make the required changes in the existing control system and/or the new component.
The required changes depend on if both the existing control system and new com-
ponent are allowed to be changed. Experience has taught that existing systems
are often developed with a document-based approach, and are poorly documented.
Therefore, when the specifications of the new component are known, it is advised to
change the interface of the new component. It is advised to only change the existing
control system when the specifications are known or an expert on the existing system
can make these changes. By changing the existing control system, the changes have
to be validated as well. When this existing system is not obtained with synthesis,
model verification is also required. Therefore, when both systems are not clearly
documented, it is advised to solve the interface discrepancy with an adapter.

When the supervisors of the current system and the new component, and if applicable the
adapter, are obtained, then these are merged to link the inputs and outputs of the supervisors
and to check if this system as a whole is non-blocking.

6. Merge the supervisors SS, SC and if applicable SA, and the plants PS, PC and
if applicable PA.
The models are merged using the CIF-merger [27]. By merging the supervisors, the inputs
and outputs of the different supervisors are linked. Check if every input is linked to an
output and vice versa. When an input of one supervisor is not linked to an output of
another, information is not communicated, which will most likely result in malfunctioning
of the system as a whole.

7. Synthesize the merged system to check if the system as a whole is non-blocking.
Although synthesis guarantees that the supervisors SS , SC and if applicable SA, are each
non-blocking, this does not imply that system as a whole is non-blocking as well. It could
be that, for instance, to return to a marked state, the supervisor SC is dependent on
supervisor SS . Before the supervisors are merged, the data required for this dependency
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is modeled with an input variable, see step 4. These input variables are used to model
that the data exists, without specifying how or when the value changes. During synthesis,
it is assumed that every value can be enabled. This can create possible blocking issues
when the supervisors are merged and this input variable is replaced by the actual data.
Therefore, it is important to check if the system as a whole is non-blocking as well. As it
is not possible yet to perform a non-conflicting check for data-based systems in ESCET�,
the merged system is synthesized since supervisory control theory guarantees that the
synthesized supervisor is non-blocking. When additional guards are introduced during
synthesis because the system is blocking, the modeled requirements need to be revisited
and be made more restrictive to prevent the system from reaching the blocking state(s).

The final step is to validate the integration of the new component:

8. Validate the integration of the new component in the existing system (and if
applicable with the adapter).
The integration of the new component with the current system (and if applicable with
the adapter), is validated using simulation, preferably supported by a visualization of the
system.

The above stated steps of the synthesis-based integration process are schematically depicted in
Figure 3.1. As can be seen, first the supervisor SC of the new component is obtained, followed
by the existing system SS . In this existing system, the to be replaced component is denoted
by SS,C . Then, the plant and/or requirement models of this component are removed from the
existing system model, and it appears that the interfaces of the new component and the existing
system do not match. Two solutions are provided: an adapter, denoted by SA, to convert the
outputs of the existing system to the correct inputs of the new component and vice versa. A
second option to resolve the discrepancy is to change either the interface of the existing system,
or the interface of the new component. In this schematic overview, the interface of the new
component is changed.

Sc

Ss Ss

Sc

Sc

SA

Ss

Ss

Ss,c

Sc

Figure 3.1: Schematic overview of the synthesis-based integration method.

When the validation of the system as a whole is performed, and the behavior is as desired,
there are additional steps which can be taken. Besides simulation, HIL tests can be performed.
When the existing system is available, the implementation code of the adapter, and the plant
model of the new component could be tested together with the physical existing system. HIL
provides an additional opportunity to test the integration of the new component (and adapter)
model into the existing system before the new component and adapter are realized.
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The synthesis-based integration method is developed with the assumption that the supervisors
of the existing system, the adapter, and the new component are all deployed on separate PLCs.
Deploying multiple supervisors on the same PLC does not have any consequences for the func-
tioning of the system. However, in the PLC code there is no distinction anymore between the
different supervisors. As a consequence, the performance of the individual supervisors, such
as cycle times, cannot be analyzed anymore. Moreover, it is assumed that every controllable
event is controlled by only one of these three supervisors to prevent possible conflicts when, for
instance, one supervisor requires the light to be off, when the other supervisor requires it to be
on.

The feasibility of the proposed method is proven with a case study. This case study concerns
a multi-phase renovation of hardware and software installations. In Section 3.2, the details of
this case study are presented.

3.2 Case study: The Swalmen tunnel

The synthesis-based integration method is applied to the renovation of the lighting system of the
Swalmen tunnel. The Swalmen tunnel is a 400 meter long tunnel located on the A73 highway
next to Swalmen, a small town in the south of the Netherlands. The tunnel, shown in Figure
3.2, has two traffic tubes, each with two traffic lanes, and one escape route in between the traffic
tubes.

Figure 3.2: The Swalmen tunnel [28].

The A73 highway is crucial in connecting the northern and the southern parts of the Netherlands,
and on a daily basis 45,000 vehicles pass through the tunnel [29]. Therefore, high availability
and reliability of the hardware and software of Swalmen tunnel is of great importance. Since
its opening in 2010, only small renovations have been performed on the tunnel. In the coming
years, the tunnel will be renovated [28]. This renovation is executed in two phases:

� 2023 - Renovation phase I
In 2023, a set of hardware installations which have reached their end of life and/or end of
service will be renovated. These new hardware installations and their resource controllers
are conform to the national tunnel standard (Dutch: Landelijke Tunnel Standaard (LTS)
[30]). There are no changes allowed to the control system, which is replaced in 20XX.

� 20XX - Renovation phase II
In 20XX, the not yet renovated hardware installations which have reached their end of
life and/or end of service will be renovated. Moreover, the control system will be replaced
with a new one conform to the LTS. The resource controllers are considered to be part of
this control system as well, and will be removed.

The control system is replaced in 20XX, whereas most of the plant components are already
replaced in 2023. One of these components is the lighting system. The renovation of this
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system is considered in the case study. Rijkswaterstaat requires that the current control system
is not changed until 20XX, and the hardware installations and resource controllers which are
placed in 2023 are not changed later on. Therefore, as these systems are not allowed to be
changed, most likely an adapter is required to bridge the gap between the current control
system and the new plant components of the lighting system. This solution is required from
the first renovation phase in 2023, until the second renovation phase in 20XX. Then, in 20XX,
the total control system, including the resource controllers, is replaced. The new control system
will be conform the LTS, which means that it matches with the hardware components which
are already renovated in 2023. Therefore, the adapter solution is not required anymore after
20XX.

The synthesis-based integration method for the renovation of the lighting system results in three
models. These three models contain a reduced version of the tunnel and the lighting system.
This reduction is twofold. First, it is based on the symmetry of components of the Swalmen
tunnel. The Swalmen tunnel has two traffic tubes, which both have a lighting system. These
tubes are identical, and for this reason the lighting system of only one traffic tube is modeled.
Secondly, for this project, it is preferred to start with a model with a small set of functionalities.
In that way, the engineer is able to validate and extend the model step by step while retaining a
full understanding of the modeled specifications and their implications. Therefore, initially not
all system specifications are included in the model. Moreover, some functionalities are modified
to simplify them for initial use. The model scope is described in more detail for each model in
the corresponding chapters.

The first model describes the lighting system and relevant components in 20XX. This model
is introduced in Chapter 5. There are two versions presented of model 20XX. First, a model
is made where the structure is based on the clustered DSM of the system components and
their requirements. The detailed supervisory control model is included in Appendix C. Then,
a second version is made where the model is according to the structure described in the LTS.
The detailed supervisory control model of this version is presented in Appendix D. This second
version contains the lighting system with the interface as to be implemented in 2023. Then,
the model of the current system, called model 2010, is introduced in Chapter 4. The detailed
supervisory control model is presented in Appendix B. Since the new lighting system interface
does not match with the existing system, an adapter is required. The adapter is obtained with
the synthesis-based integration method described in Section 3.1 and this process is described in
detail in Chapter 6. The detailed supervisory control model is presented in Appendix E.
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Chapter 4

Model 2010 - Current situation

In this chapter, model 2010 is discussed. This model describes the current lighting system of
the Swalmen tunnel. First, in Section 4.1, the lighting system and its automatic operation are
described. In Section 4.2, the structure, scope and assumptions of model 2010 are presented. In
Section 4.3, the details of the synthesized supervisory controller are given. Finally, in Section 4.4,
the simulation model and validation of the supervisor are discussed. The plant and requirement
models of model 2010 can be found in Appendix B.

The specifications of the supervisory controller and components of the lighting system are
obtained first and foremost from [31] and [32]. These documents describe the realized lighting
system of the Swalmen tunnel. When specifications in these documents were unclear or missing,
[33] was consulted. That document presents the integration site acceptance test of the lighting
system of the Swalmen tunnel. Finally, if needed, [34] was consulted as final resource. This
document contains the specifications of the lighting system defined by the tender, before the
system was realized.

4.1 Lighting system

The lighting system of the traffic tube is divided into several zones. The zones are controlled
separately, to realize different light levels throughout the traffic tube. There are seven zones:
the entrance zone, pre-transition zone, transition zones 1, 2, and 3, central zone and exit zone.
These seven zones are depicted in Figure 4.1.

Tunnel

Entrance zone Central zone Exit zone

Li
gh

t l
ev

el

Transition zone

Driving direction

Pre-  
Transition  

zone
1 2 3

Figure 4.1: Zones of the lighting system of the Swalmen tunnel. The colors red, yellow, and
blue denote the outside, additional, and general lighting system respectively.
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4.1.1 Light levels

The possible number of light levels differs per lighting system and zone. There are three lighting
systems: the outside lighting, the general lighting and the additional lighting. The outside
lighting system is present in the entrance and exit zone and is indicated in Figure 4.1 with red.
The possible light levels in both zones are either off, night level or fully on. In the traffic tube,
there are two lighting systems operational: general lighting and additional lighting. The general
lighting and additional lighting systems are present in the pre-transition and transition zone
and are indicated in Figure 4.1 in blue and yellow respectively. In the central zone, only the
general lighting system is present, as can be seen in Figure 4.1. These zones have the following
light levels:

� Pre-transition zone:

– General lighting: Off, night, twilight, day, 100% level.

– Additional lighting: Seven light levels (off, 12.5%, 25%, 37.5%, 50%, 75%, 100%).

� Transition zones 1 and 2:

– General lighting: Off, night, twilight, day, 100% level.

– Additional lighting: Five light levels (off, 25%, 50%, 75%, 100%).

� Transition zone 3:

– General lighting: Off, night, twilight, day, 100% level.

– Additional lighting: Four light levels (off, 50%, 75%, 100%).

� Central zone:

– General lighting: Off, night, twilight, day, 100% level.

4.1.2 Light level patterns

The light sources are high-pressure sodium lamps [34]. These lamps are gas-discharge lamps
and cannot be dimmed, they are either on or off. To create different light levels, each zone
consists of a number of sections with groups of these sodium-vapor lamps. By turning specific
groups of lights, and therefore a different number of lights, on or off, different light levels are
obtained. Each zone has four sections, and per section the following number of groups of lamps
[31]:

� Pre-transition zone: 4 groups

� Transition zones 1 and 2: 2 groups

� Transition zone 3: 2 groups

In Figure 4.2, the switching pattern of the pre-transition zone is depicted. The pre-transition
zone has seven light levels, which are realized by switching the four light groups of a section in
different configurations. The pattern depicted in Figure 4.2 is translated into Table 4.1. This
table presents the values for the signals of the light groups within a section. Each group has a
signal Low, which is either true (1) or false (0). The signals High of each group are combined,
signal High is shared by groups 1 and 2 and groups 3 and 4. By setting the signals Low and High
to true or false, the patterns depicted in Figure 4.2 are obtained. The possible combinations of
inputs are:

19



� Signal Low = 1 and signal High = 0 → group is off

� Signal Low = 0 and signal High = 0 → group is half on

� Signal Low = 0 and signal High = 1 → group is fully on

For example, the light level 0% is obtained by setting the signals Low to true, and the signals
High to false. This means that the lamps stay off. To obtain light level 12,5%, group 1 should
turn on at half capacity. This is realized by setting the signal Low for group 1 to false. When
this false signal Low is combined with a false signal High of group 1 and 2, the result is that
group 1 is switched half on.

Group 1

Group 4

Group 3

Group 2

Group 1

Group 4

Group 3

Group 2

Group 1

Group 4

Group 3

Group 2

Group 1

Group 4

Group 3

Group 2

100%

Section 1

Section 2

Section 3

Section 4

12,50% 25% 37,50% 50% 75%0%

Figure 4.2: Switching pattern of the pre-transition zone, based on [31]. The red outlined section
1 is modeled in model 2010.

Table 4.1: Signals corresponding to the switching pattern of one section in the pre-transition
zone. The signals are identical for every section within the zone.

0% 12,5% 25% 37,5% 50% 75% 100%

Group 1 - Low 1 0 0 0 0 0 0

Group 2 - Low 1 1 1 1 0 1 0

Group 1&2 - High 0 0 0 0 0 1 1

Group 3 - Low 1 1 0 0 0 0 0

Group 4 - Low 1 1 1 0 0 0 0

Group 3&4 - High 0 0 0 0 0 1 1

In Figure 4.3, the switching pattern for transition zones 1 and 2 is depicted. These zones are
controlled together. Each section consists of two groups. Whereas the pre-transition zone has
seven possible light levels, this is too refined for the transition zones 1 and 2, as argued by [31].
It appeared that five possible light levels are sufficient: off, 25%, 50%, 75%, and 100%. Figure
4.3 includes light levels 12,5% and 37,5% as well, since this figure is based on [31]. Light level
12,5% is identical to light level 0%, and light level 37,5% is identical to light level 50%. This
means there are five unique light levels.
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Figure 4.3: Switching pattern of transition zones 1 and 2, based on [31]. The red outlined
section 1 is modeled in model 2010.

The switching pattern of transition zone 3 is depicted in Figure 4.4. Again, seven light levels
are depicted. However, this zone has only four unique light levels. The light levels 0%, 12,5%
and 25% are identical and the light levels 37,5% and 50% are identical.

Group 1

Group 2

Group 1

Group 2

Group 1

Group 2

Group 1

Group 2

Section 1

Section 2

Section 3

Section 4

100%0% 12,50% 25% 37,50% 50% 75%

Figure 4.4: Switching pattern of transition zone 3, based on [31]. The red outlined section 1 is
modeled in model 2010.

The signals of transition zones 1 and 2 are combined with transition zone 3. The signals of the
transition zones 1, 2 and 3 are presented in Table 4.2. Although the two switching patterns are
combined, the rationale is still identical to Table 4.1. The light levels 37,5%, 50%, 75% and
100% are identical for all three zones. Transition zone 1 and 2 however also have light level
25%. This level realized by setting the signal Low of zone 1&2 for group 1 to false, which is
combined with a false signal High of zone 1, 2 and 3 for group 1. As described earlier, the
combination of two false signals results in the group being half on.

Table 4.2: Signals corresponding to the switching patterns of one section in transition zone 1,
2 and 3. The signals are identical for every section within the zones.

0% 12,5% 25% 37,5% 50% 75% 100%

Group 1 - Zone 1&2 Low 1 1 0 0 0 0 0

Group 1 - Zone 3 Low 1 1 1 0 0 0 0

Group 1 - Zone 1&2&3 High 0 0 0 0 0 0 1

Group 2 - Zone 1&2 Low 1 1 1 0 0 0 0

Group 2 - Zone 3 Low 1 1 1 0 0 0 0

Group 2 - Zone 1&2&3 High 0 0 0 0 0 1 1
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4.1.3 Automatic operation

The lighting system of the traffic tube is either operated manually or automatically. When the
operation mode is automatic, the light levels of the zone are controlled based on the outside
light level and the traffic tube state. The possible traffic tube states are:

� Operational, local, power loss, and calamity.

The automatic operation is as follows:

1. Entrance and exit zone

� Day: Lights are off.

� Twilight: 100%

� Night: Night level

� When the traffic tube state is calamity: 100%.

2. Pre-transition zone

� General lighting:

– Day: Day level

– Twilight: Twilight level

– Night: Night level

– When the traffic tube state is calamity: 100%.

� Additional lighting:

– Day: Light level is based on the outside light level, measured by the outside light
sensor.

– Twilight: Lights are off. The general lighting is on.

– Night: Lights are off. The general lighting is on.

– When the traffic tube state is calamity: 100%.

3. Transition zone 1,2 and 3

� General lighting:

– Day: Day level

– Twilight: Twilight level

– Night: Night level

– When the traffic tube state is calamity: 100%.

� Additional lighting:

– Day: Light level is based on the outside light level, measured by the outside light
sensor.

– Twilight: Lights are off. The general lighting is on.

– Night: Lights are off. The general lighting is on.
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– When the traffic tube state is calamity: 100%.

4. Central zone

� General lighting:

– Follows the general lighting settings of transition zone 3: Off, night, twilight,
day or 100% level.

4.2 Model 2010

The scope, structure and assumptions of model 2010 are discussed in this section. The plant
and requirement models are presented in Appendix B.

4.2.1 Model scope

Model 2010 presents a reduced model of the actual tunnel and its lighting system. The general
model scope is described in Section 3.2. Below, further explanation is given on the scope of
model 2010.

1. Only nominal behavior is considered in the model. This means that faults cannot occur,
nor is the model able to identify faults. All functionalities in [31] and [32] related to the
occurrences and detection of faults are therefore not taken into account.

2. In [31], it is defined that the traffic tube can be operated in three modes: automatically,
manually and locally (Dutch: plaatselijk). The precise working principles and require-
ments of the local operation mode are not defined in [31]. Therefore, only the automatic
and manual operation modes are modeled.

3. The possible traffic tube states are: operational, calamity, local, power loss. The states
operational and calamity are modeled. Since the requirements for the state local are not
defined, this state is not modeled. Moreover, since only nominal behavior is considered,
the state power loss is also not modeled. In case of power loss, a diagnoser is required to
detect the loss of power, which is considered to be part of a fault-tolerant supervisor [10].

4. In [31], it is defined that certain parameters of the lighting system can be changed when the
tunnel is operated in special authorization mode. In this model, this special authorization
mode is not modeled.

5. There is a sensor present inside of the traffic tube to measure the realized light level inside
of the traffic tube. This sensor information is used as a feedback signal to the supervisory
controller to detect possible differences between the required light level and the realized
light level. This is of importance when faults can occur. Since only nominal behavior
is considered in this model, this means that the measurement of the inside light level is
irrelevant. For this reason this sensor is not modeled.

6. For the entrance and exit zones, only the road lighting system is modeled. The lighting sys-
tems for the movable guardrail (Dutch: verplaatsbare vangrail (VeVa) zone), calamity area
(Dutch: calamiteiten terrein), calamity passage (Dutch: calamiteiten doorsteek (CaDo))
and boom barriers, described in [32], are not modeled. These components are controlled
separately from the tunnel lighting system, and are therefore considered as separate enti-
ties and thus not included in the model.

7. In [31], there are multiple different specifications given on dimming the general light level
for certain outside light levels, to prevent that drivers are blinded when driving into the
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tunnel. These specifications are contradicting and unclear and therefore this functionality
is not modeled.

8. The light sources are high-pressure sodium lamps, which cannot be dimmed. As can be
seen in the switching pattern figures, for certain light levels only 50% of the light group
capacity is required. Since the lamps cannot be dimmed, it is assumed that this 50% on
can only be realized by having two lamps (or a multiple of two) where half of the lamps
are on and the other half are off. The resource controller required for switching half of
the lamps on and the other half off is not included in the model.

9. In the LTS, it is specified that light levels must change gradually, to prevent sudden
changes in the light level which could surprise drivers. These specifications are not given
in [31], [32] and [34]. Although after consultation with Rijks-
waterstaat, it is assumed that these functionalities are included in the current control
system, these functionalities are not included in the model.

4.2.2 Model structure

The structure of model 2010 is depicted in Figure 4.5. The inputs and outputs of the control
hardware are chosen to be the abstraction level of the plant models. This choice is in line with
the modeling guidelines formulated by [19]. As argued by [19], modeling this level of abstraction,
enables the deployment of the synthesized supervisor on hardware. For model 2010, the inputs
and outputs of the control hardware are based on the input and output overview presented in
[31]. This overview is not complete, therefore several assumptions have been made, which are
listed in Subsection 4.2.3.

The supervisory controller is divided into two layers: the traffic tube module and the lighting
system module. For the pre-transition and transition zone, there are resource controllers defined
as well. This structure is based on a clustered DSM of the components in the model, shown in
Figures 4.6 and 4.7.
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Figure 4.5: Structure of model 2010. The components in the green layers are controlled by the
supervisory controller and the components in the purple layers by the resource controllers.
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The first layer is the traffic tube module, which is the main module of the model. This module
contains the components which are not only relevant for the lighting system, but for other
systems in the traffic tube as well. Currently, these other systems are not included in the model.
The second layer is the lighting system, in which different sub-modules can be distinguished,
each containing one or more components. The outside light sensor is placed in this layer as well,
since this sensor is not relevant for other systems than the lighting system. For the pre-transition
and transition zones there is a third control layer, which are the resource controllers. These
controllers are responsible for low-level control. In this model, the resource controllers determine
the values of the input signals for the light groups within a section. In the lighting system module
the required light level for the pre-transition zone and transition zone is determined, based on the
level of the outside light sensor. This required level is communicated to the resource controllers,
which determine the input values corresponding to this required light level. This rationale is
based on the switching patterns and corresponding input values presented in Subsection 4.1.2.
The fourth and final layer depicts the physical lighting system components, which are included
in the simulation model.

The general structure of the model is based on a clustered DSM of all modeled components,
shown in Figure 4.6. This DSM presents the relationship between the components of the most
refined product system and the requirements. The clustering parameters are: α = 2, β = 1.5,
µ = 2 and γ = 2. Consult Section 2.5 for more information on DSMs. There is a fairly large
bus structure located in the top left, containing all components which are controlled by the
supervisory controller. Then, there is one cluster, which contains all the components which are
required for the resource control of the system.
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Figure 4.6: DSM of all modeled components of model 2010.

The components of the bus and cluster can be associated with respectively the supervisory
controller and resource controllers in Figure 4.5. The cluster contains all the components which
are related to either the signals of the pre-transition zone or the transition zones 1, 2, and 3.
These components are controlled by the resource controllers, as depicted in Figure 4.5. The
components in the bus are part of the traffic tube and lighting system, and are controlled by the
supervisory controller. To determine if there is a hierarchical structure within the supervisory
controller, the components in the bus are considered in a separate DSM. This DSM is shown in
Figure 4.7. The clustering parameters are: α = 2, β = 1.8, µ = 2 and γ = 2.
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Figure 4.7: DSM of traffic tube and lighting systems components of model 2010.

In this smaller DSM, the internal structure of the traffic tube and lighting system can be seen.
There is a bus, located on the top left, containing the traffic tube state and outside light sensor.
Although these two components are located in the bus, it is decided to not place the outside
light sensor in the same layer as the traffic tube state, as explained earlier. This can be seen
in Figure 4.5. Then, there two clusters, the main cluster contains all the lighting systems, and
the smallest contains only the lighting systems within the tunnel. The outside lighting system
is not part of this cluster, since it has no dependencies on the systems within the tunnel. It is
chosen to model the total lighting system within one layer, containing both the systems outside
and within the tunnel. This corresponds to the main cluster of the DSM, and this layer can be
seen in Figure 4.5 as well.

4.2.3 Assumptions

The following assumptions have been made for model 2010:

1. Only nominal component behavior is considered in the model.

2. The level of the outside light, measured by the outside light sensor, is discretized into nine
possible light levels. These light levels correspond to the same light levels of the different
zones: off, night, twilight, day (12,5%), 25%, 37.5%, 50%, 75%, 100%.

3. In [31], contradicting requirements are given regarding the possible number of light levels
for the additional lighting in the pre-transition and transition zones. It is assumed that
the number of light levels is seven: off, day (12,5%), 25%, 37.5%, 50%, 75%, 100%. During
the night and twilight, the additional lighting in the pre-transition and transition zones
1&2&3 is off. Therefore, the levels night and twilight are included in the level off.

4. In [32], there is no separate input and output defined for the general lighting in the central
zone. Therefore it is assumed that the general lighting in the central zone is controlled
together with the general lighting of transition zone 3, as this zone precedes the central
zone.

5. In [31], there are no details given about a separate operation mode for the general lighting
system in the traffic tube. Therefore it is assumed that the general lighting cannot be
controlled separately from the additional lighting. The operation mode of the traffic tube
thus holds for the general lighting and the additional lighting systems.

6. In [31] and [34], there is no information (such as input and output signals) given on
possible sections within the traffic tube zones. Considering the switching pattern figures
for the additional lighting, there are however multiple groups. It is assumed that a set
of different groups, which together are able to emit different levels of light, make up a
section. This means that the additional lighting has the following number of sections:

� Pre-transition zone: 4 sections, with each 4 light groups
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� Transition zones 1&2: 4 sections, with each 2 light groups

� Transition zone 3: 4 sections, with each 2 light groups

In the model, per zone only one of these sections is modeled. It is assumed that the
entrance and exit zone and the general lighting do not have sections, since there is no
information in [31] nor [32] which could indicate that these zones/systems have sections.

7. In the LTS it is defined that when the traffic tube is operated manually and the traffic
tube state changes, the operation mode becomes automatic. In that way, when a different
light level is required due to the changed traffic tube state, this light level is automatically
set. In [31], [32] and [34], the documentation of the current control system, this desired
behavior is not specified. In consultation with Rijkswaterstaat, it is assumed that this
behavior is present in the current system. Therefore, although it is not documented, this
functionality is included in the model.

4.3 Supervisor synthesis

The plant and requirement models of model 2010 are presented in Appendix B. The plant model
consists of 27 automata and the requirement model of 71 requirements. From these models,
a supervisory controller can be synthesized. To compute this supervisor, data-based synthesis
in the ESCET� environment is used. This algorithm computes the largest state space that
satisfies all imposed requirements. Moreover, this supervisory controller satisfies the safety,
controllability and non-blocking properties discussed in Subsection 2.4.3.

The size of the uncontrolled state space, which entails the state space with none of the require-
ments applied, is 6,68 · 1012 states. The controlled state space, which entails the state space
when the requirements are imposed on the plant model, has exactly the same number of states
as the uncontrolled state space. This phenomenon is due to the possibility to manually operate
the lighting system. The manual operation can always be enabled, if the manual operation
button is pushed. Pushing this button is always possible, since this is an uncontrollable event,
which is not controlled by the supervisory controller. With manual operation, every light level
can be realized. When the manual override is removed from the model, the controlled state
space is 2,32 · 1010 states. This shows that the manual operation indeed maintains the full
state space. While the state space is not reduced, transitions might be blocked. Although
in ESCET� the number of transitions in the uncontrolled and controlled state space can be
determined with the CIF explorer [35], this it not possible for model 2010 as its state space is
too large.

4.4 Simulation and validation

The possibility of using a simulation model is one of the advantages of model-based engineer-
ing. Using simulation in combination with a visualization of the system, the uncontrolled
or controlled system can be visualized, facilitating the understanding of the modeled system.
Moreover, simulation can be used to validate the modeled system. As discussed in Section 2.4,
the supervisor does not have to be verified. However, validating the correctness of the modeled
plant and requirements is still important. Although synthesis is an automatic process executed
by a computer, the specifications are still interpreted and modeled by humans. This manual op-
eration could introduce errors in the model. Besides human errors, it could be that the textual
requirements, defined in the first step in Figure 2.2, are incorrect.

In Subsection 4.4.1, the simulation model interface is presented and explained. In Subsection
4.4.2, the validation process of the supervisory controller for model 2010 is discussed.
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4.4.1 Simulation model interface

To perform simulations, a hybrid plant model is made to simulate the synthesized supervisory
controller. This hybrid model contains the continuous time behavior of the system. The simula-
tion is extended with a visualization, depicted in Figure 4.8. The objective of the visualization is
to support the validation process. The visualization does not represent the MMI (man-machine-
interface) of the tunnel. Therefore, in this project, the person using the simulation is called the
user, and not the operator.

In Figure 4.8, the situation is depicted where the traffic tube state is operational and the outside
light level is 37,5%. The zones are operated automatically, which means that the automatic
operation described in Subsection 4.1.3 is followed.

Light group One section

Figure 4.8: Simulation model interface of model 2010.

At the top of the simulation model interface, the outside light sensor (L20 sensor), profile
and traffic tube (Dutch: tunnel stand) state are visualized. The user chooses the level of the
outside light sensor and the traffic tube state. The outside lighting system (Dutch: openbare
verlichting) is depicted and the lighting systems inside the tunnel (Dutch: tunnel verlichting).
For the pre-transition (Dutch: drempelzone) and transition zones (Dutch: overgangszone), the
light groups of one section are modeled and visualized. The pre-transition zone has four light
groups, depicted by the four lamps per section. The transition zones 1 and 2 and transition
zone 3 both have two light groups per section, depicted by two lamps. These light groups realize
different light levels with different switching patterns, which are explained in Subsection 4.1.2.
The light groups can be off, half on, or fully on, depending on the required light level pattern.
For instance, as can be seen Figure 4.8, the light level 50% in transition zone 3 is realized by
switching both light groups half on. The outside lighting systems and general lighting (Dutch:
basisverlichting) do not have these switching patterns, and are therefore represented by a single
lamp which can be dimmed.

28



4.4.2 Validation

The validation of model 2010 is carried out in two steps. The first step is to validate if the textual
requirements are correctly interpreted before these are modeled. This step is very important,
because the information on the specifications of the current lighting system are scattered over
multiple documents. This makes it difficult to establish a complete set of system specifications.
When this set is not complete or incorrect, the modeled system will be incomplete or incorrect
as well. This first step is carried out by writing all requirements down in textual form, and
linking these requirements to the available documentation. This is done vice versa as well,
since the documentation also describes some implementation specifications, for which reasoning
is provided why they are (not) included in the model. This overview has been checked by P.
Maessen (personal communication, March 9, 2022), who is an employee of Rijkswaterstaat.

The second step is to validate the model containing the plant components and the requirements.
This step is performed by using the same overview of the textual requirements as in step 1, and
each requirement is checked by either simulating the situation where this requirement comes
into play, or by checking the modeled logical expression in CIF code. This second and final
validation step was carried out together with P. Maessen (personal communication, March 9,
2022). During this step of the validation process, two modeling errors in the requirements of
the general lighting were found, which are listed below. These errors were fixed on the spot.

� Modeled requirement: The light level day is only allowed when the operation mode of the
traffic tube is automatic and the traffic tube state is operational and it is day, or when the
operation mode of the traffic tube is manual and the light level button s3 of the traffic tube
is pushed.

This modeled requirement is not complete: when the lighting system is operated manually,
the light level day is only enabled when the button s3 (12,5%) is pushed. However, the
light level buttons s4 (25%), s5 (37,5%), s6 (50%), and s7 (100%) must be included as
well, as these light levels are also possible during the day.

New requirement: The light level day is only allowed when the operation mode of the
traffic tube is automatic and the traffic tube state is operational and it is day, or when the
operation mode of the traffic tube is manual and one of the light level buttons s3, s4, s5,
s6 or s7 of the traffic tube is pushed.

� Modeled requirement: The lights may only be fully on when the operation mode of the
traffic tube is automatic and the traffic tube state is calamity, or when the operation mode
of the traffic tube is manual and the light level button s4 of the traffic tube is pushed.

This requirement is wrong: button s4 equals light level 25%. To obtain light level 100%,
button s8 must be pushed.

New requirement: The lights may only be fully on when the operation mode of the traffic
tube is automatic and the traffic tube state is calamity, or when the operation mode of the
traffic tube is manual and the light level button s8 of the traffic tube is pushed.

The power of simulation is, that this tool can already be used whilst modeling the specifications,
to check if these are correctly modeled. By using simulation whilst modeling, most of the errors
are already found before the “official” validation takes place. This is also the case for model
2010. More thorough validation in the form of test protocols is required when the supervisor will
be implemented in the actual system. However, model 2010 is solely made for the purpose of
developing and testing the synthesis-based integration method. Therefore, the aforementioned
validation process is sufficient.
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Chapter 5

Model 20XX - Renovation phase II

In this chapter, model 20XX is discussed. This model describes the lighting system of the
Swalmen when it is completely renovated in 20XX. There are two versions of model 20XX in
terms of structure: one where the model is structured based on the requirements, and one where
the model is structured based on the implementation structure described in the LTS.

For both models, the specifications of the supervisory controller and components of the lighting
system are obtained first and foremost from the LTS ([30]). [36] is used to obtain the working
principles of the resource controllers, as these are not included in [30]. [37] is used to obtain the
functionalities which are not described in the [30] nor in [36].

In Section 5.1, the lighting system and its automatic operation are described. In Section 5.2,
the structure, scope and assumptions of model 2010 are presented. In Section 5.3, the structure,
scope and assumptions of the LTS compatible version of model 20XX are presented. In Section
5.4, the details of the synthesized supervisory controllers for both versions of model 20XX are
given. In Section 5.5, the simulation model and validation of the supervisors are discussed. The
plant and requirement models of model 20XX can be found in Appendix C. In Appendix D, the
plant and requirement models of the model compatible to the LTS can be found.

5.1 Lighting system

The lighting system of the traffic tube is divided into four zones: the entrance zone, transition
zone, central zone, and exit zone. These four zones are controlled separately, to realize different
light levels throughout the traffic tube. The lighting system layout is schematically depicted in
Figure 5.1.

Tunnel

Central zoneTransition zone

Driving direction

Entrance zone

Li
gh

t l
ev

el

Exit zone

Figure 5.1: Zones of the lighting system of the Swalmen tunnel. The colors red, yellow, and
blue denote the outside, additional, and general lighting system respectively.
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5.1.1 Light levels

There are two lighting systems present: the outside lighting system and the lighting system
within the traffic tube. The outside lighting system is present in the entrance and exit zone,
and has the following lighting levels:

� Entrance and exit zone: Off and 100% level.

The lighting system within the traffic tube consists of two parts: general lighting and additional
lighting. The general lighting is present in the transition and central zone, and is controlled as
one system. The additional lighting is only present in the transition zone. These zones have
the following light levels:

� Transition zone:

– General lighting: Off and 100% level (when operation mode is manual), day and
night level (when operation mode is automatic).

– Additional lighting: 9 light levels (off, 12.5%, 25%, 37.5%, 50%, 62.5%, 75%, 87.5%,
100%).

� Central zone:

– General lighting: Off and 100% level (when operation mode is manual), day and
night level (when operation mode is automatic).

5.1.2 Automatic operation

The light level in each zone is operated manually or automatically. When the zone is operated
manually, every light level can be chosen (light level 0 in the entrance zone is only allowed when
the traffic tube state is maintenance or recovery), no matter if it is day or night. When the
zone is operated automatically, the light level is controlled based on the outside light level and
the traffic tube state. The possible traffic tube states are:

� Operational, calamity, standby, maintenance, support, evacuation, recovery.

The automatic operation is as follows:

1. Entrance and exit zone

� Day: Lights are off.

� Night: 100%

� When traffic tube state is calamity or standby: 100%

2. Transition zone

� General lighting:

– When operation mode is automatic: Day, night level.

– When operation mode is manual: Off (only possible if traffic tube state is main-
tenance or recovery), 100% level.

� Additional lighting:

– Day: 9 light levels (off, 12.5%, 25%, 37.5%, 50%, 62.5%, 75%, 87.5%, 100%).

– Night: Lights are off.
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– When the traffic tube state is maintenance, or recovery: Pre-configured light
level.

3. Central zone

� General lighting:

– When operation mode is automatic: Day, night level.

– When operation mode is manual: Off (only possible if traffic tube state is main-
tenance or recovery), 100%.

5.2 Model 20XX

The scope, structure and assumptions of model 20XX are discussed in this section. The plant
and requirement models are presented in Appendix C.

5.2.1 Model scope

Model 20XX presents a reduced model of the actual tunnel and its lighting system. The general
model scope is described in Section 3.2. Below, further explanation is given on the scope of
model 20XX.

1. Only nominal behavior is considered in the model. This means that faults cannot occur,
nor is the model able to identify faults. All functionalities in [30] and [36] related to the
occurrences of faults are not taken into account.

2. There are two outside light sensors present, to perform a redundancy measurement used
for fault tolerant control of the lighting system. Since only nominal behavior is considered
in the model, a second light sensor is unnecessary. Therefore, only one sensor is modeled.

3. It should be possible to change the driving direction in the Swalmen tunnel [30]. To
include this functionality, the model becomes too extensive for its initial use. Therefore, it
is decided to not include this functionality in the model. As a consequence, the automatic
operation only depends on the measured outside light level and the traffic tube state.

4. In [30], it is defined that zones can be operated in three manners: automatically, manually
and locally (Dutch: plaatselijk). In case of manual operation, changes in the traffic
tube state cause the operation mode to become automatic. This does not hold for local
operation, this operation mode is not affected by changes in the traffic tube state. In the
model, the zones can only be operated manually or automatically. It is thus not possible
to control the zone locally.

5. Variables that are not required because these are not used in other modeled functionalities,
are not modeled. This concerns for instance the following variables:

� The variable ”gedeeltelijk hand” (BSTTI#18502, [30])

� The zone variables energy consumption and luminance hours (BSTTI#2250, [30])

5.2.2 Model structure

The structure of model 20XX is depicted in Figure 5.2. The abstraction level of the model is
based on the inputs and outputs of the control hardware. As argued by [19], modeling this level
of abstraction, enables the deployment of the synthesized supervisor on hardware. For model
20XX, the inputs and outputs of the control hardware are based on [30].
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The supervisory controller is divided into two layers: the traffic tube module and the lighting
system module. Each zone has a resource controller as well. This structure is based on a
clustered DSM of the components in the model, shown in Figure 5.3.
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Figure 5.2: Model structure of model 20XX. The components in the green layers are controlled
by the supervisory controller and the components in the purple layers by the resource controllers.

The first layer is the traffic tube module, which is the main module of the model. This module
contains components which are relevant for not only the lighting system, but for other systems
as well. Currently, these other systems are not included in the model. The second layer is
the lighting system, in which different lighting system sub-modules can be distinguished, each
containing a number of components. The outside light sensor is placed in this layer as well,
since this sensor is not relevant for other systems than the lighting system. The supervisory
controller is synthesized from the plant components and requirements of these two layers.

This supervisory controller interacts with the resource controller of each of the zones, which
are present in the third level of Figure 5.2. In this model, these resource controllers enable a
gradual change in the light level in the zones. In the lighting system module, the required light
level for each zone is determined. This required light level is communicated to the resource
controllers, which enable a gradual change from the current light level towards this required
light level. The fourth and final layer depicts the physical lighting system components, which
are included in the model via the simulation model.

33



The structure of the model is based on a clustered DSM of all modeled components, shown in
Figure 5.3. This DSM presents the relationship between the components of the most refined
product system and the requirements. The clustering parameters are: α = 2, β = 1.5, µ = 2
and γ = 1.8. Consult Section 2.5 for more information on DSMs.
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Figure 5.3: DSM of all modeled components of model 20XX.

A bus structure is located in the top left. In this bus, the components of the traffic tube and
lighting system layer are located. Although the outside light sensor is not located in this bus,
it is included in the lighting system layer of the model, since it is relevant for the additional
lighting and general lighting within the traffic tube. The main cluster corresponds to the third
layer of the model, as this cluster includes the components which are controlled by the resource
controllers. The components of controlled by the four individual resource controllers can be
identified in the four smaller clusters in this main cluster. The components of the bus and the
four smaller clusters can be associated with respectively the supervisory controller and the four
resource controllers in Figure 5.2.

5.2.3 Assumptions

Besides modifying components and functionalities, the following assumptions have been made:

1. To allow drivers who drive into the tunnel to adjust to the lower light level in the tunnel,
the light level in the transition zone must decrease gradually to the lower light level in the
central zone. It is assumed that this gradient is realized by increasing spacing between
the lights over the length of the transition zone.

2. To prevent that drivers are surprised by sudden large changes in the light levels throughout
the tunnel, the lights must be changed in steps of one level at a time. In [30] and [36], it
is not defined if this also must hold when the traffic tube state changes to a state which
requires a specific light level. It is assumed that when the traffic tube state changes, the
light level can be changed without intermediate steps.

5.2.4 Modeling choices

The following choices are made for model 20XX:

� When the traffic tube is in maintenance or when recovery takes place, the light level in
the transition zone should be set to a pre-configured light level. This level is not defined
in [30] or [36], and is therefore chosen to be level 4.

� According to [30], the entrance and exit zones should follow the light level of the general
road light system present outside of the tunnel. This input signal is however not defined
in [30] nor in [36]. In consultation with Rijkswaterstaat and one of the contractors, it is
decided that in the model the entrance and exit zone are not dependent on the road light
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level, but on the day and night switch. In manual operation, the zones are controlled via
the tunnel control system, which is in accordance with [30] and [36].

� The transition from day to night depends on an astronomical clock [30]. In the model,
this transition is based on the outside light level measured by the outside light sensor,
where the measured light level corresponds to day and night as follows:

– Outside light level = 1: Night.

– Outside light level > 1: Day.

� When the traffic tube is operated manually, the operator can only choose between the
following three light levels: off, night and day [30]. In model 20XX, it is however possible
to choose every light level of a zone in manual operation. The reason is that when
setting up the model this limited manual choice was not known. Before the supervisor is
implemented in the system, the manual options should thus be limited to off, night and
day. This requires changes in the plant model of the possible manual light level buttons
of the traffic tube lighting, presented in Appendix C.1.2. Moreover, the corresponding
requirements, presented in Appendix C.3.3, must then be changed as well.

5.3 Model 20XX - LTS compatible

The LTS not only describes the specifications of the lighting system, but also the implementation
structure of these specifications. In this section, the model is presented that is compatible to this
structure described by the LTS. The most significant difference with the initial model 20XX, is
that coordinating tasks are allocated to both the supervisory controller and the resource con-
trollers. This results in two automatic operation regimes, one located in the supervisor and one
in each resource controller. When the traffic tube state is operational, the automatic operation
present in the resource controllers is switched on. This automatic operation determines the
light level based on the outside light level. In case the traffic tube state changes, this automatic
operation is switched off and the automatic operation of the supervisory controller takes over.
This automatic operation determines the light level based on the current traffic tube state.

In Subsection 5.3.1, the structure of the model compatible to the LTS is presented. Moreover,
the differences with the initial model structure are pointed out.

5.3.1 Model structure

The structure of the model is depicted in Figure 5.4. The interfaces between the different
controllers are based on the LTS. The internal structure of these controllers is almost identical
to the initial model 20XX. The first layer is the traffic tube module, which is the main module
of the model. This layer is identical to the initial model. The second layer of the model is the
lighting system. With respect to the initial model, the outside light sensor is moved to the third
layer. This third layer contains the components which are controlled by the resource controllers.
These also coordinate the light level when the traffic tube state is operational. This automatic
operation regime is based on the outside light sensor measurement, and therefore this sensor is
moved from the second to the third layer in the model.

The supervisor interacts with the resource controller of each zone by the five control signals
listed on the left in Figure 5.4. Based on these five signals, the resource controller either follows
the received light level from the supervisor, or executes its own automatic operation.
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Figure 5.4: Model structure of model 20XX - LTS compatible. The components in the green
layers are controlled by the supervisory controller and the components in the purple layers by
the resource controllers.

5.4 Supervisor synthesis

The supervisory controller is synthesized from the plant and requirement models. The plant
and requirement models of model 20XX are presented in Appendix C. The plant and require-
ment models of model 20XX which is compatible to the LTS are presented in Appendix D. For
both models, the supervisory controller is computed using data-based synthesis in the ESCET�
environment. This procedure computes the largest state space that satisfies all imposed require-
ments. Moreover, this supervisory controller satisfies the safety, controllability and non-blocking
properties discussed in Subsection 2.4.3.

5.4.1 Model 20XX

The plant model consists of 24 automata and the requirement model of 73 state-based require-
ments and 4 automaton requirements. The size of the uncontrolled state space, which entails
the state space with none of the requirements applied, is 3,65 · 1014 states. The controlled state
space, which entails the state space when the requirements are imposed on the plant model, is
3,48· 1015 states. What can be noted, is that the controlled state space is larger than the un-
controlled state space. The supervisor is the synchronous product of the plant and requirement
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models. In case of model 20XX, automaton requirements are used, as can be seen in require-
ment 9 in Appendix C.4. These automaton requirements are included in the state space. When
the synchronous product of the plant and requirement models does not have many blocking
states, which are removed during synthesis, the controlled state space can be larger than the
uncontrolled state space due to these automaton requirements.

5.4.2 Model 20XX - LTS compatible

The plant model consists of 36 automata and the requirement model of 135 requirements and 4
automaton requirements. With respect to the initial model 20XX, both the number of automata
and the number of requirements have increased significantly. This increase is because the
coordinating supervisor tasks are now allocated to both the supervisory controller and the
resource controllers, which introduces additional automata and requirements. The size of the
uncontrolled state space is 5,39 · 1019 states. The size of the controlled state space is 5,08 · 1020
states. Again, the controlled state space is larger than the uncontrolled state space, due to the
automaton requirements.

5.5 Simulation and validation

Simulation, in combination with a visualization, is used to validate the supervisory controller. A
hybrid plant model is made to simulate the synthesized supervisory control model. This hybrid
model contains the continuous time behavior of the system. The simulation models are extended
with a visualization. The objective of this visualization is to support the validation process. The
visualization does not represent the MMI (man-machine-interface) of the tunnel. Therefore, in
this project, the person using the simulation is called the user, and not the operator.

5.5.1 Simulation model interface

The simulation model interface of model 20XX is depicted in Figure 5.5. It is also used for the
LTS compatible version of model 20XX. In Figure 5.5, the situation is depicted where the traffic
tube state is operational and the outside light level is 4 (50%). The entrance (Dutch: toegang)
and exit (Dutch: verlating) zones are operated automatically, which means that the automatic
operation described in Subsection 5.1.2 is executed. The transition zone (Dutch: ingangszone)
is operated manually at light level 6.

The top part of the visualization is almost the same to the visualization of model 2010, which is
depicted in Figure 4.8. In the case of model 20XX, there are more possible traffic tube states.
These are chosen by the user, as well as the level of the outside light sensor (L20 sensor).
Whereas in 2010 the traffic tube is divided into multiple zones, in 20XX this division is not
made. There are two systems lighting systems within the traffic tube: the general lighting
(Dutch: basisverlichting) and additional lighting. The additional lighting is only present in the
transition zone (Dutch: ingangszone). The systems can be operated automatically by pushing
the button Auto, or manually by pushing the button Hand.

5.5.2 Validation

The validation of model 20XX is carried out in the same manner as the validation of model
2010, which is described in Subsection 4.4.2. The first step of the validation process is to
validate if the textual requirements are correctly interpreted before these are modeled. The
requirements are written down in textual form, and linked to the requirements described in the
LTS. This is done vice versa as well. This document is checked and approved by P. Maessen
(personal communication, March 9, 2022), an employee of Rijkswaterstaat. The second step
is the validation of the plant and the requirement models. This step is performed using the
same overview of the textual requirements as in step 1, and each requirement is checked by
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Figure 5.5: Simulation model interface of model 20XX.

either simulating the situation where this requirement comes into play, or by checking the
modeled logical expression in CIF code. This second step is carried out together with P. Maessen
(personal communication, March 9, 2022). During this step of the validation process there were
no errors encountered.

Initially, the validation of the LTS compatible version was also carried out in the same manner as
the validation of model 2010 and model 20XX. This first validation was supervised and approved
by P. Maessen (personal communication, March 9, 2022). However, it appeared that the LTS
was misunderstood: the inputs and outputs within one layer of the system (the components
controlled by the supervisory controller) were mistaken for the inputs and outputs between
two system layers (the layer with the components controlled by the supervisory controller and
the layer with the components controlled by the resource controllers). Therefore, the LTS
compatible model was changed after the first validation took place, to model the correct inputs
and outputs. A second validation is performed in the same manner, but without the supervision
of Rijkswaterstaat. This is in agreement with P. Maessen (personal communication, April 25,
2022).
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Chapter 6

Model 2023 - Renovation phase I

In this chapter, the first renovation phase of the lighting system and the corresponding model
are discussed. In 2023, the hardware of the lighting system is renovated. The new hardware
installations are conform the LTS. This renovation and its implications are explored with the
synthesis-based integration method, which is proposed in Section 3.1. The CIF code of the
plant and requirement models can be found in Appendix E.

6.1 Renovation interface

To determine if there are discrepancies in the interface of the existing system and new compo-
nent, the renovation interface is determined. In 2023, the lighting system hardware is replaced
with hardware which is conform the LTS. The lighting hardware which dates back to 2010 is
removed, the resource controllers however stay in place, as these are considered to be part of the
control system. In Figure 4.5, this renovation interface is marked with the dashed line between
the supervisory/resource controllers and the lighting system of the zones. As can be seen in
Figure 4.5, the outputs of this existing system are:

� Light level outside lighting in entrance and exit zone: 0%, night, 100%.

� High/Low signal groups of pre-transition zone (6 groups): 0 (false), 1 (true).

� High/Low signal groups of transition zones 1, 2, and 3 (6 groups): 0 (false), 1 (true).

� Light level general lighting (3 times, for pre-transition zone, transition zone 1 and 2 and
transition zone 3): 0%, night, twilight, day, 100%.

The new hardware is conform the LTS, and also includes resource controllers. The interface of
the new components is indicated in Figure 5.4 with the dashed line between the supervisory
controller and resource controllers. The inputs for the outside lighting system in the entrance
and the exit zone, the additional lighting in the transition zone and the general lighting in the
traffic tube, are:

� Automatic operation of the zone: true, false.

� Light level: the possible levels depend on the specific zone.

From the above stated outputs and inputs, it can be concluded that the outputs of the existing
system do not match with the inputs of the new components. Rijkswaterstaat requires that the
current control system is not changed until the second renovation phase in 20XX. Moreover, the
new hardware components and their resource controllers are also not allowed to be changed later
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on. As the interfaces do not match, and changes to these interfaces are not allowed, adapters
are required to solve these discrepancies.

6.2 Adapters

An overview of the total system configuration in 2023 is given in Figure 6.1. The existing
system is depicted above the adapters. This system is controlled by the supervisory controller
(the resource controllers of the existing system are considered to be part of the supervisory
controller). This supervisory controller is not replaced until 20XX. The components below the
adapters are the new components. These components are controlled by resource controllers.
The components in the bottom layer represent the physical lighting system components, which
are included in the model via the hybrid simulation model.
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Figure 6.1: Structure of model 2023. The components in the green layers are controlled by
the supervisory controller, the components in the purple layers are controlled by the resource
controllers, and the components in the orange layer are part of the adapters. The components
in the bottom layer are the physical lighting system components, which are included via the
hybrid simulation model.

The adapters convert the outputs of the existing system to the correct light level input for the
new components. In the remainder of this section, the adapter specifications and models are
explained in detail.
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6.2.1 Outside lighting entrance & exit zones

The supervisory controller of the existing system controls the lighting in the entrance and the
exit zone as one system. The input of the adapter for the outside lighting, which is the output
of the supervisor, is the light level of the outside lighting. The possible levels are 0%, night,
100% level.

From 2023 on, the entrance and exit zone are controlled separately, and these zones also have
a separate resource controller. 0% and 100% are the possible light levels of the new lighting
system hardware in the entrance and exit zone.

The input and the outputs of the adapter are:

� Input 1: Light level outside lighting, determined by the supervisory controller of existing
system (0%, night, 100%).

� Output 1: Automatic operation entrance zone enabled (false).

� Output 2: Light level entrance zone (0%, 100%).

� Output 3: Automatic operation exit zone enabled (false).

� Output 4: Light level exit zone (0%, 100%).

Initially, the automatic operation (outputs 1 and 3) could be true or false. When the automatic
operation is enabled, the resource controller controls the light level of the new component based
on the measured outside light level. However, when the traffic tube state requires a specific
light level, this light level could conflict with the light level based on the measured outside
light level. For example, when the outside light level is 50%, the lights will turn off based on
the automatic operation executed by the resource controller. However, when the traffic tube
state is calamity, the lights are required to be fully on. As long as the automatic operation is
enabled, the lights will stay off, which could result in very dangerous situations. For this reason,
it is chosen to set the automatic operation by default on false. This means that the resource
controller controls the light level based on the light level (outputs 2 and 4) determined by the
supervisory controller and provided by the adapter. The only responsibility of the adapter is to
convert this light level determined by supervisory controller (input 1) to the correct input light
level for the resource controllers (outputs 2 and 4). The plant automaton depicted in Figure
6.2 is used for this conversion, with i ∈ {0, 1}. The light levels (outputs 2 and 4) are linked to
the discrete integer stand of this automaton.

c i when stand != i

do stand := i

Figure 6.2: Plant automaton for light level conversion.

The conversion from input 1 to outputs 2 and 4 is controlled with the following requirements:

c 0 =⇒ SC level = 0

c 1 =⇒ SC level = 1 ∨ SC level = 2

The lights turn off (event c 0) when the light level from the supervisory controller (input 1 =
SC level) is equal to 0 (0%). The lights turn on (event c 1) when the light level from the
supervisory controller is equal to 1 (night level) or 2 (100%).
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6.2.2 Additional lighting transition zone

In the existing system, the transition zone is divided into the pre-transition zone and the
transition zones 1, 2, and 3. In 20XX, there is however no division, and these four zones are
grouped into one zone, called the transition zone. In the existing system, the pre-transition zone
and the transition zones 1, 2, and 3 have low-level control as well, executed by the resource
controllers. These resource controllers control the High and Low signal groups of the existing
system, as can be seen in Figure 6.1. For the adapter, it is decided to only use the outputs of
the resource controller of the pre-transition zone. It is assumed that the light level determined
for this zone aligns with the light level of the total transition zone.

The inputs and the outputs of the adapter are:

� Input 1: Group 1 Low (0, 1)

� Input 2: Group 2 Low (0, 1)

� Input 3: Group 1&2 High (0, 1)

� Input 4: Group 3 Low (0, 1)

� Input 5: Group 4 Low (0, 1)

� Input 6: Group 3&4 High (0, 1)

� Output 1: Automatic operation enabled (false)

� Output 2: Light level (0, .., 8)

For this adapter, it is also chosen to set the automatic operation (output 1) by default on false,
to prevent conflicts between the light level required by the supervisory controller and the light
level based on the outside light level. With the automatic operation by default on false, the
resource controller controls the light level based on the light level (output 2) provided by the
adapter. The adapter converts the false (0) and true (1) High and Low signals (inputs 1 through
6) to an actual light level (output 2). The plant automaton depicted in Figure 6.2 is used for
this conversion, with i ∈ {0 (0%), 1 (12, 5%), 2 (25%), 3 (37, 5%), 4 (50%), 6 (75%), 8 (100%)}.
The light level (output 2) is linked to the discrete integer stand of this automaton. Although
light levels 5 (62,5%) and 7 (87,5%) are possible in the new lighting system, these do not exist
in the existing system. These light levels can never be received as input by the adapter, and
are therefore not included in this conversion.

The conversion of the inputs of the adapter to the light level outputs is controlled by require-
ments. For every possible light level i ∈= {0, 1, 2, 3, 4, 6, 8}, inputs 1 until 6 are evaluated. The
corresponding light level (output 2) is determined based on the values for the High and Low
signal groups given in Table 4.1. As an example, the logical expression for the light level 0 (0%)
is given below.

c 0 =⇒ Group 1 Low = 1 ∧ Group 2 Low = 1 ∧ Group 1&2 High = 0 ∧
Group 3 Low = 1 ∧ Group 4 Low = 1 ∧ Group 3&4 High = 0

The logical expressions for light levels i ∈= {1, 2, 3, 4, 6, 8} have the same structure. Consult
the CIF code for these requirements, which can be found in Appendix E.3.

6.2.3 General lighting traffic tube

In the existing system, the general lighting in the pre-transition zone, transition zones 1 and 2,
and transition zone 3 is controlled separately. This results in three identical outputs, which can
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be seen in Figure 6.1. Since the new component controls the general lighting of the total traffic
tube, only one of these three outputs is required. The level determined for the general lighting
system in the pre-transition zone is used in the adapter for the new general lighting system.

The input and the outputs of the adapter are:

� Input 1: Light level general lighting transition zone 3, determined by the supervisory
controller of existing system (0%, night, twilight, day, 100%).

� Output 1: Automatic operation enabled (true, false).

� Output 2: Light level (0%, 100%).

The new general lighting system has in total four light levels: 0%, day, night, and 100%. As
explained in Subsection 5.1.1, the lights can only be off (0%) or completely on (100%) when the
zone is operated manually, and thus when the automatic operation (output 1) is disabled. As
the light levels day and night are only possible when the automatic operation is on, the output
automatic operation cannot be false by default. Therefore, it is chosen that the automatic
operation is enabled when the light level determined by the supervisory controller (input 1)
equals 1 (night level), 2 (twilight level), or 3 (day level). The plant model depicted in Figure
6.3 is used to switch the automatic operation on or off.

Uit Aanc aan

c uit

Figure 6.3: Plant automaton of automatic operation.

The location On (Dutch: Aan) is to linked output 1. When the automatic operation is disabled
(location Off), the output is false. Otherwise, the output is true. The events are controlled
with the following requirements:

c aan =⇒ SC level = 1 ∨ SC level = 2 ∨ SC level = 3

c uit =⇒ SC level = 0 ∨ SC level = 4

The automatic operation is enabled (event c on (Dutch: c aan)) when the light level from the
supervisory controller (input 1 = SC level) is equal to 1 (night level), 2 (twilight level), or 3
(day level). The automatic operation is disabled (event c off (Dutch: c uit)) when the light
level from the supervisory controller is equal to 0 (0%) or 4 (100%), as these levels can only be
realized by the resource controller when the automatic operation is disabled.

The plant automaton depicted in Figure 6.2, with i ∈ {0, 1}, is used to convert the light level
from the supervisory controller for the manual light levels (0% and 100%). The light level
(output 2) is linked to the discrete integer stand of this automaton. The light level conversion
from input 1 to output 2 for the light levels 0 (0%) and 1 (100%) is controlled with the following
requirements:

c 0 =⇒ SC level = 0

c 1 =⇒ SC level = 4

The lights turn off (event c 0) when the light level from the supervisory controller (input 1 =
SC level) is equal to 0 (0%). The lights turn fully on when the light level from the supervisory
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controller is equal to 4 (100%). When SC level is equal to 1 (night level), 2 (twilight level) or
3 (day level), the automatic operation is enabled.

6.3 Supervisor synthesis

The plant and requirement models of model 2010 are presented in Appendix E. The plant
model consists of 6 automata and the requirement model of 13 requirements. From these
models, a supervisory controller can be synthesized, using data-based synthesis in the ESCET�
environment. The size of the uncontrolled state space, which entails the state space with none
of the requirements applied, is 6,22 · 105 states. The possible values of the input variables are
included in this state space, as these also contribute to the computational costs of synthesis. The
controlled state space, which entails the state space when the requirements are imposed on the
plant model, has exactly the same number of states as the uncontrolled state space. The state
space is not reduced in the controlled state, as the adapter solely converts the outputs to the
correct inputs, for which only the order of events is important. This means that although the
state space is not reduced, transitions might be blocked. It is however not possible to determine
the number of transitions in the uncontrolled and controlled state space with the CIF explorer
in ESCET�, as this tool does not support input variables [35].

As explained in step 7 of the synthesis-based integration method in Section 3.1, it is important to
check if the system as a whole is non-blocking, by synthesizing the total system. Therefore, the
system as depicted in Figure 6.1, is synthesized. As there are no additional guards introduced
during synthesis for this total system, it can be concluded that the merged system is non-
blocking. The controlled state space of the total system is 2,07 · 1023 states.

6.4 Simulation and validation

The adapters are validated using simulation, extended with a visualization. The inputs and
outputs of adapters are linked by merging the adapters with the supervisors of the existing
system and the new lighting system components. The simulation model interface, which is
presented in Subsection 6.4.1, is a combination of the simulation interface models of model 2010
and model 20XX. The validation of the adapters is described in Subsection 6.4.2.

6.4.1 Simulation model interface

The simulation model interface of model 2023 is shown in Figure 6.4. The situation is depicted
where the traffic tube state is operational, the outside light level is twilight (Dutch: schemer),
the outside lighting (Dutch: openbare verlichting) is operated automatically, and the traffic
tube lighting (Dutch: tunnel verlichting) is operated manually. The manual light level is 50%.

Since the supervisory controller of model 2023 is from the existing system (model 2010), the first
and second layers of the visualization are identical to the simulation model interface of model
2010. The third layer represents the lighting system hardware, which is conform model 20XX.
The fourth layer contains the general lighting. This layer is almost identical to the simulation
model interface of model 20XX, however in 20XX the general lighting system can be operated
separately from the traffic tube lighting system. This is however not possible in model 2010,
which means the supervisory controller of model 2010 would have to be changed to enable a
separate operation of the general lighting. As changes to the supervisory controller are not
allowed, the general lighting cannot be controlled separately in model 2023.
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Figure 6.4: Simulation model interface of model 2023.

6.4.2 Validation

The validation of model 2023 is carried out in the same manner as the validation of model 2010,
which is described in Subsection 4.4.2. The textual requirements have been approved by P.
Maessen (personal communication, April 25, 2022). The validation of model 2023 was supervised
by P. Maessen (personal communication, April 25, 2022), and no errors were encountered.
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Chapter 7

Conclusions and Recommendations

In this project, it is investigated how synthesis techniques can be combined with the model-
based integration method of [2]. In Section 7.1, the conclusions on the proposed method and
performed research are given. In Section 7.2, recommendations for further research are given.

7.1 Conclusions

The objective of this project is to propose a method which combines the model-based integration
method of [2] with synthesis techniques. This proposed method is called the synthesis-based
integration method, and is introduced in Chapter 3. This method is specifically designed for the
replacement of a component in an existing system, where interface discrepancies can emerge.

The synthesis-based integration method is applied on the renovation of the Swalmen tunnel.
In 2023, the first renovation phase, the hardware of the lighting system is replaced. The new
hardware is conform to the LTS and is controlled by low-level resource controllers. Interface
discrepancies emerge between the existing control system and new hardware systems, as Rijk-
swaterstaat prefers that no changes are made to either systems. These interface discrepancies
are identified and resolved using the synthesis-based integration method.

First, the plant and the requirements of the new component are modeled. This model is de-
scribed in Chapter 5. The model not only includes the new hardware of the lighting system, but
also the corresponding controller. This controller is also included as it creates the possibility to
validate the final system configuration as a whole. Supervisory control theory, introduced in [5]
and [6], provides a synthesis method to automatically obtain the supervisory controller, which
is correct-by-construction. The synthesized supervisor of the new component is validated by
using a hybrid simulation model and visualization.

The second system that is considered is the existing system, presented in Chapter 4. Determin-
ing the specifications of the current lighting system of the Swalmen tunnel was the most time
consuming step. These specifications are scattered over many disconnected documents, and do
not contain all the information required to develop a complete model of the system. To some
extent, assumptions have been made to fill in the gaps of missing requirements.

In total three models are made: the third and final model, presented in Chapter 6, is associated
with the first renovation phase. In this phase, interface discrepancies emerge between the
existing system and the new component. Adapters are designed to solve these discrepancies.
The controller of the adapter is obtained with synthesis-based engineering. By merging the
models of the existing system, the adapter and the new component, their inputs and outputs
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are linked. Then, validation of the adapter solution can be performed. Currently, this validation
is only performed by means of simulating the supervisory control models on a computer.

The contribution of this project is the synthesis-based integration method, where synthesis tech-
niques are combined with the model-based integration method of [2]. Synthesis has enhanced
this method in several manners. First and foremost, the manual modeling effort is reduced
as the supervisory controller is automatically generated. Since this supervisor is correct by
construction, model verification is not required anymore. Moreover, synthesis enables to start
with a model with a small set of specifications and iteratively validate and adjust the model,
whilst maintaining a system which is safe, non-blocking, controllable, and maximally permis-
sive. When the behavior of the model is as intended, the model can incrementally be extended
with new specifications, again whilst maintaining the properties guaranteed by synthesis. These
attributes are specifically useful for systems which are not clearly documented, as one can start
with the specifications which are known, and extend these step by step. Furthermore, the syn-
tax and semantics of the formal automata models result in unambiguous and clear plant and
requirement models. Besides these general advantages of synthesis-based engineering, the power
of the synthesis-based integration method is that once the models of the existing system and
new component are obtained, the possible implications of the integration of this new component
in the existing system can easily be explored, resolved, and validated. Although the proposed
method is demonstrated for a case study where only a single component is replaced and only
nominal behavior is considered, the potential and feasibility of combining the model-based in-
tegration method of [2] with synthesis techniques is shown. Although it is not quantified, based
on the results of the case study, it is expected that with the synthesis-based integration method
the mean and variance of the integration time of a new component is decreased.

7.2 Recommendations

The recommendations for future research are twofold: first, a recommendation for model de-
velopment in general is presented, followed by specific recommendations for the synthesis-based
integration method.

During this project, determining the specifications of the current lighting system of the Swalmen
tunnel was the most time-consuming step, as the documents did not provide enough understand-
ing of the working principles of the system. Since the system specifications are the foundation of
every system engineering process, and unclear specifications are a common problem for existing
systems [38], it is advised that alternative methods are explored to determine the system behav-
ior. In [39], a method is presented to construct the system behavior based on IO logging. This
method is proposed specifically for the reconstruction and analysis of unwanted system behav-
ior. However, the method could also support the reconstruction of the system specifications, by
comparing the model based on the documented specifications with the model constructed based
on IO logging. By doing so, requirements which are missing and incorrect in the specifications,
and thus which are also missing or incorrect in the model based on these specifications, can be
identified. Another research field that is interesting to investigate, is model learning [40].

Regarding the synthesis-based integration method, an important step is to check if the existing
system and the new component (and if applicable the adapter) are non-blocking as a whole.
This is currently checked by performing monolithic synthesis for this total system, since the
non-conflicting check for data-based systems is not yet available in ESCET�. The state space
of the system is however, for both monolithic synthesis and the non-conflicting check, a limiting
factor. For the case study, no problems were encountered with the state space of the system
as a whole. However, the considered model is a reduced version of an industrial sized problem.
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Therefore, before the proposed method is applied on an industrial size case study, it is advised
to research the implications for the non-blocking check when the state space is too large to
perform monolithic synthesis.

One of the main aspects that are not considered in the method and case study, is fault-tolerant
behavior. It is expected that the method also works for systems with fault-tolerant control, as
the functionality of the adapter is mainly to convert inputs to the correct outputs, and vice
versa. However, when there is, for instance, loss of communication between the new component
and the existing system, the adapter possibly must be extended with fault-tolerant control to
diagnose this fault. For future research, it is recommended to extend the case study of the
Swalmen tunnel with fault-tolerant control to investigate the implications for the proposed
method.

Moreover, the supervisory control models of the case study are only validated by means of
simulating the models on a computer. For future work, it is recommended to perform hardware-
in-the-loop (HIL) simulation, as these tests enable the validation of the implementation of the
supervisor on control hardware and the communication with other subsystems [41]. With HIL
simulation, the realized controllers of the existing system, the adapter, and the new component
are connected to a plant model of the new component and the existing system, or when available,
the physical existing system. In relation to this future work, [2] proposes nine tests with different
combinations of models of components and realized components to test different integration
aspects of the system. As these different test configurations are not investigated in this project,
it is recommended to explore their relevancy in combination with synthesis-based integration.

Finally, another aspect that is not considered in this project, is the determination of the inte-
gration and testing sequence of several components. The model-based integration method of
[2] also incorporates the sequencing method of [42]. This method can be used to determine
the optimal sequence for integration and testing of components, and for a trade-off analysis
between using component models or realizations. For this-trade off, the modeling effort and
the potential leadtime reduction using models is analyzed. As stressed by [2], this trade-off is
important as making models requires additional investment in terms of time and costs with
respect to integrating realized components. However, there are cases where this investment can
be profitable with respect to using component realizations, for instance when the component
realization is available only late in the process, or when testing with realizations is expensive.
Although the plant and requirement models are still manually modeled with synthesis-based
integration, the supervisory controller is automatically obtained and correct-by-construction.
For these reasons, it is therefore expected that this trade-off between the modeling effort and
the potential leadtime reduction is less important with synthesis-based integration. Further
research is recommended on the relevance of an optimal integration and testing sequence for
synthesis-based integration.
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Appendix A

General components

In this appendix the components which are used in all four models are presented. The outside
light sensor is discussed in Section A.1. The operation mode is presented in Section A.2. For the
traffic tube state, the buttons and setauto automata representations are given, in Subsections
A.3.1 and A.3.2 respectively. In Section A.4, the buttons which are required for the manual
operation of the lighting systems are introduced. Then, in Section A.5, the automaton is
presented which represents the possible light levels.

A.1 Outside light sensor

Description
The outside light sensor, measuring the outside light level, is placed at the entrance of the traffic
tube. The light level is modeled with a discrete integer with a range of i ∈ {0, .., 8}. The initial
level is 0. There is an output defined, as can be seen in the CIF code below. This output is
linked to the discrete integer stand.

Automaton

i ∈ {0, .., 8}u i when stand != i

do stand := i

CIF code

1 alg int [0..8] BuitenlichtSensor = Buitenlichtsensor.stand;

2
3 plant Buitenlichtsensor:

4 uncontrollable u_0 , u_1 , u_2 , u_3 , u_4 , u_5 , u_6 , u_7 , u_8;

5 disc int [0 .. 8] stand = 0;

6 location:

7 initial; marked;

8 edge u_0 when stand !=0 do stand := 0;

9 edge u_1 when stand !=1 do stand := 1;

10 edge u_2 when stand !=2 do stand := 2;

11 edge u_3 when stand !=3 do stand := 3;

12 edge u_4 when stand !=4 do stand := 4;

13 edge u_5 when stand !=5 do stand := 5;

14 edge u_6 when stand !=6 do stand := 6;

15 edge u_7 when stand !=7 do stand := 7;

16 edge u_8 when stand !=8 do stand := 8;

17 end
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A.2 Operation mode

Description
The lighting systems of the traffic tube are operated manually or automatically. The initial and
marked operation mode is auto. Both locations, auto and manual (Dutch: hand), are reached
by means of controllable events.

Automaton

auto handc hand

c auto

CIF code

1 plant def Bediening ():

2 controllable c_auto , c_hand;

3 location auto:

4 initial; marked;

5 edge c_hand goto hand;

6 location hand:

7 edge c_auto goto auto;

8 end

A.3 Traffic tube state

The traffic tube state is a group definition and consists of three automata. The first automaton
represents the possible traffic tube state. The second automaton represents the buttons to
control the traffic tube state, and is presented in Subsection A.3.1. The third automaton
keeps track of changes in the traffic tube state, and is introduced in Subsection A.3.2. The
automaton which represents the possible traffic tube states differs per model, and is therefore
not presented as general component. In Subsections B.1.1 and C.1.1, the traffic tube state
definition is instantiated for model 2010 and model 20XX respectively.

A.3.1 Buttons

Description
The user is able to control the traffic tube state via the buttons. The number of buttons
depends on the possible traffic tube states. Besides a location for each traffic tube state, the
automaton also includes the additional location released (Dutch: los). This latter location is
the initial and marked location. By pushing one of the buttons, the related uncontrollable event
is triggered if the condition to push (conditieIndrukken) is true. This condition differs per
model and traffic tube state. Consult Subsections B.1.1 and C.1.1 for the conditions to push
the buttons of model 2010 and model 202XX respectively. The controllable event to return to
the location released, c i klaar, is executed when the traffic tube state i is realized. This
condition is evaluated with location Stand.i. Stand is the automaton which represents the
possible traffic tube states. This automaton differs per model, and is therefore not defined as
general component.
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Automaton

los i

u i when
conditieIndrukken

c i klaar when
Stand.i

CIF code

1 plant Knoppen:

2 uncontrollable u_i;

3 controllable c_i_klaar;

4 monitor u_i;

5 location los:

6 initial; marked;

7 edge u_i when conditieIndrukken goto i;

8 location i:

9 edge c_i_klaar when Stand.i goto los;

10 end

A.3.2 SetAuto

SetAuto is used for keeping track of changes in the traffic tube state. It has two locations,
the initial and marked location is normal. The second location, setauto, is reached when the
traffic tube state changes, by using the controllable events c i declared in the automaton Stand,
which keeps track of the traffic tube state. From the second location, the initial location can
be reached by executing the controllable event c klaar.

Automaton

normaal setautoStand.c i

c klaar

CIF code

1 plant SetAuto:

2 controllable c_klaar;

3 location normaal:

4 initial; marked;

5 edge Stand.c_i goto setauto;

6 location setauto:

7 edge c_klaar goto normaal;

8 end
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A.4 Buttons

Description
Buttons are defined for the user to control the operation mode of the lighting systems. There
is a button for manual operation and for automatic operation of the lighting system. In case of
manual operation, the buttons to set the light level in the traffic tube are enabled. The number
of buttons depends on the number of possible light levels nlevels.

The automaton includes the aforementioned buttons, and the additional location released

(Dutch: los). This latter location is the initial and marked location. By pushing one of
the buttons, the related uncontrollable event is triggered if the condition to push the button
(conditieIndrukken) is true. By pushing the button, the location si, which corresponds to
the light level i, is reached. Then, the initial location released is reached when the condition
conditieLos is true. The conditions differ per model, consult Appendices B and C for the
conditions for model 2010 and model 20XX respectively.

Automaton

los

i ∈ {0, .., nlevels − 1}

si

auto

hand

u i when
conditieIndrukken

c i klaar when
conditieLos

u
auto

u
auto

klaar
w
hen

Bediening.auto
u
h
a
n
d

c
h
a
n
d
k
l
a
a
r
w
h
e
n

B
e
d
i
e
n
i
n
g
.
h
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n
d

CIF code

1 plant Knoppen:

2 uncontrollable u_i;

3 controllable c_i_klaar;

4 monitor u_i;

5 location los:

6 initial; marked;

7 edge u_i when conditieIndrukken goto si;

8 edge u_auto goto auto;

9 edge u_hand goto hand;

10 location si:

11 edge c_i_klaar when conditieLos goto los;

12 location auto:

13 edge c_auto_klaar when Bediening.auto goto los;

14 location hand:

15 edge c_hand_klaar when Bediening.hand goto los;

16 end
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A.5 Light level

Description
The possible light levels are modeled with a discrete integer with a range of {0, .., nlevels − 1},
with nlevels the number of possible light levels. The initial level is 0.

Automaton

i ∈ {0, .., nlevels − 1}c i when stand != i

do stand := i

CIF code

1 plant StandVerlichting:

2 controllable c_i;

3 disc int [0 .. i] stand = 0;

4 location:

5 initial; marked;

6 edge c_i when stand != i do stand := i;

7 end
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Appendix B

Model 2010 - Supervisory control
model

The supervisory control model of model 2010 is presented in this appendix. The model is
structured as depicted in Figure 4.5. This appendix is structured in the same manner. First, all
components in the model are presented in Section B.1. Then, the first layer of the CIF model
is discussed in Section B.2. In Section B.3, the second layer of the model, the lighting system,
is presented. Finally, in Section B.4, the components controlled by the resource controllers are
discussed, which define the fourth layer of the model.

The requirements are modeled with a logical expression or an automaton. Requirements that
are formulated with logical expressions, are split when modeled in CIF code. As argued by [18],
by splitting the requirements, more elementary requirements are created. Moreover, it allows
to decompose the system differently, such that smaller subsystems are identified.

B.1 Components

The components of the model are presented in this section. For each plant component a textual
description is provided, as well as an automaton model and the CIF code. For each requirement,
the textual requirement is given, as well as the logical expression or automaton, and the CIF
code.

B.1.1 Traffic tube state

State
Description
An automaton keeps track of the traffic tube state. The initial tunnel state is operational

(Dutch: operationeel). The second state, calamity (Dutch: calamiteit), is reached with
controllable event c calamiteit, which can be executed if the related state button is pushed.

In this model, where only the lighting system in one traffic tube is considered, it is always
possible to change the tunnel state. When the total Swalmen tunnel, including other components
such as the ventilation system, is considered, then the traffic tube state cannot always be
changed. The traffic tube state is then also dependent on the state of the other traffic tube and
the state of other components in the tunnel. In this model, components other than the lighting
system are not considered, and therefore the traffic tube state is only affected by the user input.
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Automaton

operationeel calamiteitc calamiteit

c operationeel

CIF code

1 plant Stand:

2 controllable c_operationeel , c_calamiteit;

3 location operationeel:

4 initial; marked;

5 edge c_calamiteit goto calamiteit;

6 location calamiteit:

7 edge c_operationeel goto operationeel;

8 end

Buttons
Description
The buttons to control the traffic tube state are modeled according to the automaton pre-
sented in Subsection A.3.1, with i ∈ {operationeel, calamiteit}. The uncontrollable events
u operationeel and u calamiteit are enabled when the conditions for these events are true.
These conditions enable that the button can only be pushed when the corresponding traffic
tube state can be reached, which depends on the automaton State (Dutch: Stand). Therefore,
these conditions refer to locations of the automaton State. Consult the CIF code below for
these conditions.

CIF code

1 plant Knoppen:

2 uncontrollable u_operationeel , u_calamiteit;

3 controllable c_operationeel_klaar , c_calamiteit_klaar;

4 monitor u_operationeel , u_calamiteit;

5 location los:

6 initial; marked;

7 edge u_operationeel when Stand.calamiteit goto operationeel;

8 edge u_calamiteit when Stand.operationeel goto calamiteit;

9 location operationeel:

10 edge c_operationeel_klaar when Stand.operationeel goto los;

11 location calamiteit:

12 edge c_calamiteit_klaar when Stand.calamiteit goto los;

13 end

SetAuto
Description
SetAuto is used for keeping track of changes in the traffic tube state. This component is
modeled according to the automaton presented in Subsection A.3.2, with i ∈ {operationeel,
calamiteit}.
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CIF code

1 plant SetAuto:

2 controllable c_klaar;

3 location normaal:

4 initial; marked;

5 edge Stand.c_operationeel , Stand.c_calamiteit goto setauto;

6 location setauto:

7 edge c_klaar goto normaal;

8 end

Definition
All these components are grouped in the definition Stand Verkeersbuis.

CIF code

1 group def Stand_Verkeersbuis ():

2 plant Knoppen:

3 ...

4 end

5
6 plant Stand:

7 ...

8 end

9
10 plant SetAuto:

11 ...

12 end

13 end

B.1.2 Outside lighting entrance/exit zone

Operation mode
Description
The outside lighting system is operated in either automatic or manual mode. The operation
mode group definition presented in Subsection A.2 is instantiated for the outside lighting system.

CIF code

1 Bediening: ^Bediening ();

Buttons
Description
Buttons are defined for the user to control the operation mode of the outside lighting system of
the traffic tube. This component is modeled according to the automaton presented in Section
A.4, with nlevels = 5. The possible buttons are: auto, manual (Dutch: hand), s0 (off), s1 (night
level), s2 (100%).

CIF code

1 plant Knoppen:

2 uncontrollable u_0 , u_nacht , u_100 , u_auto , u_hand;

3 controllable c_0_klaar , c_1_klaar , c_2_klaar , c_auto_klaar , c_hand_klaar;

4 monitor u_0 , u_nacht , u_100 , u_auto , u_hand;

5 location los:

6 initial; marked;
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7 edge u_0 when Bediening.hand goto s0;

8 edge u_nacht when Bediening.hand goto s1;

9 edge u_100 when Bediening.hand goto s2;

10 edge u_auto goto auto;

11 edge u_hand goto hand;

12 location s0:

13 edge c_0_klaar when StandVerlichting.stand = 0 or Bediening.auto goto los;

14 location s1:

15 edge c_1_klaar when StandVerlichting.stand = 1 or Bediening.auto goto los;

16 location s2:

17 edge c_2_klaar when StandVerlichting.stand = 2 or Bediening.auto goto los;

18 location auto:

19 edge c_auto_klaar when Bediening.auto goto los;

20 location hand:

21 edge c_hand_klaar when Bediening.hand goto los;

22 end

Light level
Description
The light level in the entrance and exit zone is either off, night level or 100%. This light level
is modeled according to the automaton presented in Section A.5, with nlevels = 3.

CIF code

1 plant StandVerlichting:

2 controllable c_0 , c_1 , c_2;

3 disc int [0..2] stand = 0;

4 location:

5 initial; marked;

6 edge c_0 when stand != 0 do stand := 0; // Off

7 edge c_1 when stand != 1 do stand := 1; // Night

8 edge c_2 when stand != 2 do stand := 2; // 100%

9 end

Requirements
1. The operation mode may only be manual when the manual button is pushed and the traffic
tube state is not changed.

setauto is a formal parameter, the actual parameter is defined when the module is instantiated,
see Subsection B.2.1.

Logical expression

Bediening.c hand =⇒ Knoppen.hand ∧ ¬setauto

2. The operation mode may only be automatic when the automatic button is pushed or when
the traffic tube state changes.

setauto is a formal parameter, the actual parameter is defined when the module is instantiated,
see Subsection B.2.1.

Logical expression

Bediening.c auto =⇒ Knoppen.auto ∨ setauto
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Definition
All these components and requirements are grouped in the definition Openbare Verlichting.
The actual parameter for setauto is defined when the module is instantiated, see Subsection
B.2.1.

CIF code

1 import "Bediening.cif";

2
3 group def Openbare_Verlichting(alg bool setauto):

4
5 Bediening: ^Bediening ();

6
7 plant Knoppen:

8 ...

9 end

10
11 plant StandVerlichting:

12 ...

13 end

14
15 requirement Bediening.c_hand needs Knoppen.hand;

16 requirement Bediening.c_hand needs not setauto;

17 requirement Bediening.c_auto needs Knoppen.auto or setauto;

18 end

B.1.3 Buttons lighting system within traffic tube

Description
Buttons are defined for the user to control the operation mode of the outside lighting system of
the traffic tube. This component is modeled according to the automaton presented in Section
A.4, with nlevels = 9. The possible buttons are: auto, manual, s0 (off), s1 (night level), s2
(twilight level), s3 (12,5%), s4 (25%), s5 (37,5%), s6 (50%), s7 (75%) and s8 (100%).

It is only possible to execute one of the controllable events and returning to the initial location
when the condition to execute the event is true. In case of changing the light level, this condition
is true when the light level in the three zones is equal to the manually requested light level.

CIF code
The actual paramters for Bediening auto, Bediening hand, stand Drempelzone,

stand Overgangszone 1 2, and stand Overgangszone 3 are defined when the definition is
instantiated, see Section B.3.

1 plant def Knoppen(alg bool Bediening_auto , Bediening_hand; alg int

stand_Drempelzone , stand_Overgangszone_1_2 , stand_Overgangszone_3):

2 uncontrollable u_0 , u_1 , u_2 , u_3 , u_4 , u_5 , u_6 , u_7 , u_8 , u_auto , u_hand;

3 controllable c_0_klaar , c_1_klaar , c_2_klaar , c_3_klaar , c_4_klaar , c_5_klaar

, c_6_klaar , c_7_klaar , c_8_klaar , c_auto_klaar , c_hand_klaar;

4 monitor u_0 , u_1 , u_2 , u_3 , u_4 , u_5 , u_6 , u_7 , u_8 , u_auto , u_hand;

5 location los:

6 initial; marked;

7 edge u_0 when Bediening_hand goto s0;

8 edge u_1 when Bediening_hand goto s1;

9 edge u_2 when Bediening_hand goto s2;

10 edge u_3 when Bediening_hand goto s3;

11 edge u_4 when Bediening_hand goto s4;

12 edge u_5 when Bediening_hand goto s5;

13 edge u_6 when Bediening_hand goto s6;
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14 edge u_7 when Bediening_hand goto s7;

15 edge u_8 when Bediening_hand goto s8;

16 edge u_auto goto auto;

17 edge u_hand goto hand;

18 location s0:

19 edge c_0_klaar when (stand_Drempelzone = 0 and stand_Overgangszone_1_2 = 0

and stand_Overgangszone_3 = 0) or Bediening_auto goto los;

20 location s1:

21 edge c_1_klaar when (stand_Drempelzone = 0 and stand_Overgangszone_1_2 = 0

and stand_Overgangszone_3 = 0) or Bediening_auto goto los;

22 location s2:

23 edge c_2_klaar when (stand_Drempelzone = 0 and stand_Overgangszone_1_2 = 0

and stand_Overgangszone_3 = 0) or Bediening_auto goto los;

24 location s3:

25 edge c_3_klaar when (stand_Drempelzone = 1 and stand_Overgangszone_1_2 = 0

and stand_Overgangszone_3 = 0) or Bediening_auto goto los;

26 location s4:

27 edge c_4_klaar when (stand_Drempelzone = 2 and stand_Overgangszone_1_2 = 1

and stand_Overgangszone_3 = 0) or Bediening_auto goto los;

28 location s5:

29 edge c_5_klaar when (stand_Drempelzone = 3 and stand_Overgangszone_1_2 = 2

and stand_Overgangszone_3 = 1) or Bediening_auto goto los;

30 location s6:

31 edge c_6_klaar when (stand_Drempelzone = 4 and stand_Overgangszone_1_2 = 2

and stand_Overgangszone_3 = 1) or Bediening_auto goto los;

32 location s7:

33 edge c_7_klaar when (stand_Drempelzone = 5 and stand_Overgangszone_1_2 = 3

and stand_Overgangszone_3 = 2) or Bediening_auto goto los;

34 location s8:

35 edge c_8_klaar when (stand_Drempelzone = 6 and stand_Overgangszone_1_2 = 4

and stand_Overgangszone_3 = 3) or Bediening_auto goto los;

36 location auto:

37 edge c_auto_klaar when Bediening_auto goto los;

38 location hand:

39 edge c_hand_klaar when Bediening_hand goto los;

40 end

B.1.4 Additional lighting pre-transition zone

Description
The possible light levels in the pre-transition zone are seven light levels (off, 12.5%, 25%, 37.5%,
50%, 75%, 100%). This light level is modeled according to the automaton presented in Section
A.5, with nlevels = 7.

CIF code

1 plant def Drempelzone ():

2 controllable c_0 , c_1 , c_2 , c_3 , c_4 , c_5 , c_6;

3 disc int [0..6] stand = 0;

4 location:

5 initial; marked;

6 edge c_0 when stand != 0 do stand := 0; // Off

7 edge c_1 when stand != 1 do stand := 1; // 12.5%

8 edge c_2 when stand != 2 do stand := 2; // 25%

9 edge c_3 when stand != 3 do stand := 3; // 37.5%

10 edge c_4 when stand != 4 do stand := 4; // 50%

11 edge c_5 when stand != 5 do stand := 5; // 75%

12 edge c_6 when stand != 6 do stand := 6; // 100%

13 end
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B.1.5 Additional lighting transition zone

Light level transition zone 1&2
Description
The possible light levels in transition zone 1 and 2 are five light levels (off, 25%, 50%, 75%,
100%). This light level is modeled according to the automaton presented in Section A.5, with
nlevels = 5.

Light level transition zone 3
Description
The possible light levels in transition zone 3 are four light levels (off, 50%, 75%, 100%). This
light level is modeled according to the automaton presented in Section A.5, with nlevels = 4.

Definition
CIF code

1 group def Overgangszone ():

2 plant automaton Zone_1_2:

3 controllable c_0 , c_1 , c_2 , c_3 , c_4;

4 disc int [0..4] stand = 0;

5 location:

6 initial; marked;

7 edge c_0 when stand != 0 do stand := 0; // Off

8 edge c_1 when stand != 1 do stand := 1; // 25%

9 edge c_2 when stand != 2 do stand := 2; // 50%

10 edge c_3 when stand != 3 do stand := 3; // 75%

11 edge c_4 when stand != 4 do stand := 4; // 100%

12 end

13
14 plant automaton Zone_3:

15 controllable c_0 , c_1 , c_2 , c_3;

16 disc int [0..3] stand = 0;

17 location:

18 initial; marked;

19 edge c_0 when stand != 0 do stand := 0; // Off

20 edge c_1 when stand != 1 do stand := 1; // 50%

21 edge c_2 when stand != 2 do stand := 2; // 75%

22 edge c_3 when stand != 3 do stand := 3; // 100%

23 end

24 end

B.1.6 General lighting

Description
The possible light levels of the general lighting are five levels (off, night, twilight and day level,
100%). This light level is modeled according to the automaton presented in Section A.5, with
nlevels = 5.

CIF code

1 group def Basis_Verlichting ():

2 plant StandVerlichting:

3 controllable c_0 , c_1 , c_2 , c_3 , c_4;

4 disc int [0..4] stand = 0;

5 location:

6 initial; marked;

7 edge c_0 when stand != 0 do stand := 0; // Off

8 edge c_1 when stand != 1 do stand := 1; // Night

9 edge c_2 when stand != 2 do stand := 2; // Twilight
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10 edge c_3 when stand != 3 do stand := 3; // Day

11 edge c_4 when stand != 4 do stand := 4; // 100%

12 end

13 end
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B.2 Traffic tube

In this section, the components, the requirements, and the outputs of the traffic tube are
presented.

B.2.1 Components

Traffic tube state
Description
The traffic tube state is defined per traffic tube. The group definition presented in Subsection
B.1.1 is instantiated once.

CIF code

1 StandVerkeersbuis: Stand_Verkeersbuis ();

Lighting system instantiation
Description
The lighting system is instantiated for the traffic tube. This lighting system module is presented
in Appendix B.3. The definitions of the formal parameters are presented below.

Actual parameters

setauto = StandVerkeersbuis.SetAuto.setauto

stand operationeel = StandVerkeersbuis.Stand.operationeel

stand calamiteit = StandVerkeersbuis.Stand.calamiteit

CIF code

1 Tunnelbuis_Verlichting: Verlichting(StandVerkeersbuis.SetAuto.setauto ,

StandVerkeersbuis.Stand.operationeel , StandVerkeersbuis.Stand.calamiteit);

B.2.2 Requirements

1. The traffic tube state may only change when the related button is pushed.

Logical expression
With i ∈ {operationeel, calamiteit}.

StandVerkeersbuis.Stand.c i =⇒ StandVerkeersbuis.Knoppen.i

2. When the traffic tube state is changed, first the operation mode of each zone must be
automatic before manual operation is possible again.

Logical expression

StandVerkeersbuis.SetAuto.c klaar =⇒
Tunnelbuis Verlichting.TunnelVerlichting.Bediening.auto ∧
Tunnelbuis Verlichting.OpenbareVerlichting.Verlichting.Bediening.auto ∧
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B.2.3 Outputs

The supervisory controller which controls the traffic tube and lighting system, provides the light
levels for the pre-transition zone and transition zones. These light levels are communicated to
the resource controllers via the following outputs, which can also be seen in the CIF code below.

� Pre-transition zone additional lighting: seven light levels (off, 12.5%, 25%, 37.5%, 50%,
75%, 100%).

� Transition zones 1 and 2 additional lighting: five light levels (off, 25%, 50%, 75%, 100%).

� Transition zone 3 additional lighting: four light levels (off, 50%, 75%, 100%).

B.2.4 Definition

CIF code

1 import "Verlichting.cif", "Definitions/Stand_Verkeersbuis.cif";

2
3 StandVerkeersbuis: Stand_Verkeersbuis ();

4
5 Tunnelbuis_Verlichting: Verlichting(StandVerkeersbuis.SetAuto.setauto ,

StandVerkeersbuis.Stand.operationeel , StandVerkeersbuis.Stand.calamiteit);

6
7 requirement StandVerkeersbuis.Stand.c_operationeel needs

8 StandVerkeersbuis.Knoppen.operationeel;

9 requirement StandVerkeersbuis.Stand.c_calamiteit needs

10 StandVerkeersbuis.Knoppen.calamiteit;

11
12 requirement StandVerkeersbuis.SetAuto.c_klaar needs

13 Tunnelbuis_Verlichting.TunnelVerlichting.Bediening.auto;

14 requirement StandVerkeersbuis.SetAuto.c_klaar needs

15 Tunnelbuis_Verlichting.OpenbareVerlichting.Verlichting.Bediening.auto;

16
17 alg int [0..6] SC_Drempelzone_stand =

18 Tunnelbuis_Verlichting.TunnelVerlichting.Drempelzone.stand;

19 alg int [0..4] SC_Overgangszone_1_2_stand =

20 Tunnelbuis_Verlichting.TunnelVerlichting.Overgangszone.Zone_1_2.stand;

21 alg int [0..3] SC_Overgangszone_3_stand =

22 Tunnelbuis_Verlichting.TunnelVerlichting.Overgangszone.Zone_3.stand;
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B.3 Lighting system

In this section, the components and requirements of the lighting system are presented. An
overview of the CIF code of the lighting system is given below. Every component and related
requirements are discussed in more detail in the subsections of this section.

CIF code lighting system

1 import "Definitions/Bediening.cif", "Definitions/Drempelzone_Verlichting.cif",

"Definitions/Overgangszone_Verlichting.cif", "Definitions/Knoppen.cif", "

Definitions/Basis_Verlichting.cif", "Definitions/Openbare_Verlichting.cif";

2
3 input int [0..8] BuitenlichtSensor;

4
5 group def Verlichting(alg bool setauto , stand_operationeel , stand_calamiteit):

6 group OpenbareVerlichting:

7 Verlichting: Openbare_Verlichting(setauto);

8
9 requirement 1 Openbare verlichting

10 ...

11 requirement 3 Openbare verlichting

12 end

13
14 group TunnelVerlichting:

15 Bediening: ^Bediening ();

16 Knoppen: ^Knoppen(Bediening.auto , Bediening.hand , Drempelzone.stand ,

Overgangszone.Zone_1_2.stand , Overgangszone.Zone_3.stand);

17
18 Drempelzone: ^Drempelzone ();

19 Overgangszone: ^Overgangszone ();

20
21 requirement 1 Bediening

22 ...

23 requirement 3 Bediening

24
25 requirement 1 Drempelzone

26 ...

27 requirement 7 Drempelzone

28
29 requirement 1 Overgangszone 1&2

30 ...

31 requirement 5 Overgangszone 1&2

32
33 requirement 1 Overgangszone 3

34 ...

35 requirement 4 Overgangszone 3

36 end

37
38 BasisVerlichting_Drempelzone: BasisVerlichting ();

39 BasisVerlichting_Overgangszone_1_2: BasisVerlichting ();

40 BasisVerlichting_Overgangszone_3: BasisVerlichting ();

41
42 group def BasisVerlichting ():

43 Verlichting: Basis_Verlichting ();

44
45 requirement 1 Basis verlichting

46 ...

47 requirement 6 Basis verlichting

48 end

49 end
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B.3.1 Inputs

The only input is the outside light sensor. This outside light sensor has nine light levels (off,
night, twilight, 12.5%, 25%, 37.5%, 50%, 75%, 100%). When this model is merged with the
model of the outside light sensor, this input is linked to the output defined in the model of the
outside light sensor, see Subsection A.1.

B.3.2 Outside lighting entrance zone/exit zone

Description
The entrance and exit zone are controlled as one zone, therefore, the group definition presented
in Subsection B.1.2 is instantiated once. setauto is a formal parameter, the actual parameter
is defined when the module is instantiated, see Subsection B.2.1.

CIF code

1 Verlichting: Openbare_Verlichting(setauto);

Requirements
1. The lights may only be off when the operation mode of the outside lighting is automatic and
it is day and the traffic tube state is operational, or when the operation mode of the outside
lighting is manual and the off button of the outside lighting s0 is pushed.

Logical expression

Verlichting.StandVerlichting.c 0 =⇒
(Verlichting.Bediening.auto ∧ ¬ (BuitenlichtSensor = 0 ∨
BuitenlichtSensor = 1 ∨ BuitenlichtSensor = 2) ∧ stand operationeel) ∨
(Verlichting.Bediening.hand ∧ Verlichting.Knoppen.s0)

2. The light level night is only allowed when the operation mode of the outside lighting is
automatic and it is night and the traffic tube state is operational, or when the operation mode
of the outside lighting is manual and the night button of the outside lighting s1 is pushed.

Logical expression

Verlichting.StandVerlichting.c 1 =⇒
(Verlichting.Bediening.auto ∧ BuitenlichtSensor = 1 ∧ stand operationeel) ∨
(Verlichting.Bediening.hand ∧ Verlichting.Knoppen.s1)

3. The lights may only be fully on when the operation mode of the outside lighting is automatic
and it is twilight and the traffic tube state is operational, or when the traffic tube state is
calamity, or when the operation mode of the outside lighting is manual and the maximum light
level button of the outside lighting s2 is pushed.

Logical expression

Verlichting.StandVerlichting.c 2 =⇒
(Verlichting.Bediening.auto ∧ ((BuitenlichtSensor = 2 ∧ stand operationeel) ∨
stand calamiteit) ∨ (Verlichting.Bediening.hand ∧ Verlichting.Knoppen.s2)
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Definition
CIF code

1 group OpenbareVerlichting:

2 Verlichting: Openbare_Verlichting(setauto);

3
4 requirement Verlichting.StandVerlichting.c_0 needs

5 (Verlichting.Bediening.auto and not (BuitenlichtSensor = 0 or

BuitenlichtSensor = 1 or BuitenlichtSensor = 2) and stand_operationeel)

6 or (Verlichting.Bediening.hand and Verlichting.Knoppen.s0);

7 requirement Verlichting.StandVerlichting.c_1 needs

8 (Verlichting.Bediening.auto and BuitenlichtSensor = 1 and

stand_operationeel)

9 or (Verlichting.Bediening.hand and Verlichting.Knoppen.s1);

10 requirement Verlichting.StandVerlichting.c_2 needs

11 (Verlichting.Bediening.auto and (( BuitenlichtSensor = 2 and

stand_operationeel)

12 or stand_calamiteit)) or (Verlichting.Bediening.hand and

Verlichting.Knoppen.s2);

13 end

B.3.3 Operation mode of the traffic tube

Description
The lighting systems in the traffic tube are operated in automatic or manual mode. The
operation mode component presented in Subsection A.2 is instantiated for the lighting system
of the traffic tube.

CIF code

1 Bediening: ^Bediening ();

Requirements
1. The operation mode may only be manual when the manual button is pushed and the traffic
tube state is not changed.

setauto is a formal parameter, the actual parameter is defined when the module is instantiated,
see Subsection B.2.1.

Logical expression

Bediening.c hand =⇒ Knoppen.hand ∧ ¬setauto

2. The operation mode may only be automatic when the automatic button is pushed or when
the traffic tube state changes.

setauto is a formal parameter, the actual parameter is defined when the module is instantiated,
see Subsection B.2.1.

Logical expression

Bediening.c auto =⇒ Knoppen.auto ∨ setauto
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Definition
CIF code

1 Bediening: ^Bediening ();

2
3 requirement Bediening.c_hand needs Knoppen.hand;

4 requirement Bediening.c_hand needs setauto;

5 requirement Bediening.c_auto needs Knoppen.auto or setauto;

B.3.4 Additional lighting pre-transition zone

Description
There is one pre-transition zone per traffic tube, therefore the group definition for the additional
lighting in the pre-transition zone presented in Subsection B.1.4 is instantiated once.

CIF code

1 Drempelzone: ^Drempelzone ();

Requirements
The requirements for the light levels off, 12,5%, 25%, 37,5%, 50%, and 75% all have the same
format. The logical expression for these light levels is given first. Then, for every of these
light levels, the parameters are given. The actual parameters for stand operationeel and
stand calamiteit are defined when the module is instantiated, see Subsection B.2.1.

Logical expression

Drempelzone.c i =⇒
(Bediening.auto ∧ stand operationeel ∧ (BuitenlichtSensor = i)) ∨
(Bediening.hand ∧ Knoppen.si)

1. The lights must be off (i = 0) when the operation mode of the traffic tube is automatic and
the traffic tube state is operational and the outside light level is either 0% (j = 0), night (j =
1), or twilight (j = 2), or when the operation mode of the traffic tube is manual and one of the
buttons s0, s1 or s2 is pushed.

2. The light level may be equal to i when the operation mode of the traffic tube is automatic,
the traffic tube state is operational and the outside light sensor measures level j, or when the
operation mode of the traffic tube is manual and the button sj is pushed.

With:

� Light level 12,5%: i = 1 and j = 3

� Light level 25%: i = 2 and j = 4

� Light level 37,5%: i = 3 and j = 5

� Light level 50%: i = 4 and j = 6

� Light level 75%: i = 5 and j = 7

70



Logical expression

Drempelzone.c i =⇒
(Bediening.auto ∧ stand operationeel ∧ (BuitenlichtSensor = i)) ∨
(Bediening.hand ∧ Knoppen.si)

3. Requirement 2 holds for outside light level 100% (8) as well, however, when the traffic tube
state is calamity and the traffic tube is operated automatically, then the maximum light level
must be realized.

Logical expression

Drempelzone.c 8 =⇒
(Bediening.auto ∧ stand operationeel ∧ (BuitenlichtSensor = i)) ∨
(Bediening.hand ∧ Knoppen.si) ∨ Bediening.auto ∧ stand calamiteit

Definition
CIF code

1 Drempelzone: ^Drempelzone ();

2
3 requirement Drempelzone.c_0 needs

4 (Bediening.auto and stand_operationeel and (BuitenlichtSensor = 0 or

BuitenlichtSensor = 1 or BuitenlichtSensor = 2))

5 or (Bediening.hand and (Knoppen.s0 or Knoppen.s1 or Knoppen.s2));

6 requirement Drempelzone.c_1 needs

7 (Bediening.auto and stand_operationeel and (BuitenlichtSensor = 3))

8 or (Bediening.hand and Knoppen.s3);

9 requirement Drempelzone.c_2 needs

10 (Bediening.auto and stand_operationeel and (BuitenlichtSensor = 4))

11 or (Bediening.hand and Knoppen.s4);

12 requirement Drempelzone.c_3 needs

13 (Bediening.auto and stand_operationeel and (BuitenlichtSensor = 5))

14 or (Bediening.hand and Knoppen.s5);

15 requirement Drempelzone.c_4 needs

16 (Bediening.auto and stand_operationeel and (BuitenlichtSensor = 6))

17 or (Bediening.hand and Knoppen.s6);

18 requirement Drempelzone.c_5 needs

19 (Bediening.auto and stand_operationeel and (BuitenlichtSensor = 7))

20 or (Bediening.hand and Knoppen.s7);

21 requirement Drempelzone.c_6 needs

22 (Bediening.auto and stand_operationeel and (BuitenlichtSensor = 8))

23 or (Bediening.hand and Knoppen.s8)

24 or (stand_calamiteit and Bediening.auto);

B.3.5 Additional lighting transition zone

Description
There is one transition zone per traffic tube, therefore the group definition for the additional
lighting in the transition zone presented in Subsection B.1.5 is instantiated once.

CIF code

1 Overgangszone: ^Overgangszone ():
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Requirements transition zone 1&2
The requirements for transition zones 1 and 2 have the same format for all possible light levels.
The logical expression which holds for the light levels off, 25%, 50%, and 75% is presented first.
Then, for every light level, the parameters are given.

Logical expression
For i = {0, .., 3}.

Overgangszone.Stand 1 2.c i =⇒
(Bediening.auto ∧ stand operationeel ∧ (BuitenlichtSensor = j)) ∨
(Bediening.hand ∧ (Knoppen.sj))

1. The lights must be off (i = 0) when the operation mode of the traffic tube is automatic and
the traffic tube state is operational and the outside light level is either 0% (j = 0), night (j =
1), twilight (j = 2) or 12,5% (j = 3), or when the operation mode of the traffic tube is manual
and one of the buttons s0, s1, s2 or s3 is pushed.

2. Light level 25% (i = 1) is required when the outside light level is 25% (j = 4) and the
operation mode of the traffic tube is automatic and the traffic tube state is operational, or
when the operation mode of the traffic tube is manual and the button s4 is pushed.

3. Light level 50% (i = 2) is required when the outside light level is 37,5% (j = 5) or 50% (j = 6)
and the operation mode of the traffic tube is automatic and the traffic tube state is operational,
or when the operation mode of the traffic tube is manual and button s5 or s6 is pushed.

4. Light level 75% (i = 3) is required when the outside light level is 75% (j = 7) and the
operation mode of the traffic tube is automatic and the traffic tube state is operational, or
when the operation mode of the traffic tube is manual and button s7 is pushed.

5. Light level 100% (i = 4) is required when the outside light level is 100% (j = 8) and the
operation mode of the traffic tube is automatic and the traffic tube state is operational, or when
the operation mode of the traffic tube is manual and button s8 is pushed, or when the traffic
tube state is calamity and the traffic tube is operated automatically.

Logical expression

Overgangszone.Stand 1 2.c 4 =⇒
(Bediening.auto ∧ stand operationeel ∧ (BuitenlichtSensor = 8))∨
(Bediening.hand ∧ Knoppen.s8) ∨ (Bediening.auto ∧ stand calamiteit)

Definition transition zone 1&2
CIF code

1 requirement Overgangszone.Zone_1_2.c_0 needs

2 (Bediening.auto and stand_operationeel and (BuitenlichtSensor = 0 or

BuitenlichtSensor = 1 or BuitenlichtSensor = 2 or BuitenlichtSensor = 3))

3 or (Bediening.hand and (Knoppen.s0 or Knoppen.s1 or Knoppen.s2 or

Knoppen.s3));

4 requirement Overgangszone.Zone_1_2.c_1 needs

5 (Bediening.auto and stand_operationeel and (BuitenlichtSensor = 4)) or (

Bediening.hand and (Knoppen.s4));

6 requirement Overgangszone.Zone_1_2.c_2 needs

7 (Bediening.auto and stand_operationeel and (BuitenlichtSensor = 5 or

BuitenlichtSensor = 6))
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8 or (Bediening.hand and (Knoppen.s5 or Knoppen.s6));

9 requirement Overgangszone.Zone_1_2.c_3 needs

10 (Bediening.auto and stand_operationeel and (BuitenlichtSensor = 7))

11 or (Bediening.hand and (Knoppen.s7));

12 requirement Overgangszone.Zone_1_2.c_4 needs

13 (Bediening.auto and stand_operationeel and (BuitenlichtSensor = 8))

14 or (Bediening.hand and Knoppen.s8)

15 or (stand_calamiteit and Bediening.auto);

Requirements transition zone 3
The requirements for transition zone 3 have the same format for all possible light levels. The
logical expression which holds for the light levels off, 50%, and 75% is presented first. Then, for
every light level, the parameters are given.

Logical expression
For i = {0, .., 2}.

Overgangszone.Stand 3.c i =⇒
(Bediening.auto ∧ stand operationeel ∧ (BuitenlichtSensor = j)) ∨
(Bediening.hand ∧ (Knoppen.sj))

1. The lights must be off (i = 0) when the operation mode of the traffic tube is automatic and
the traffic tube state is operational and the outside light level is either 0, night, twilight, 12,5%
or 25% (j = {0, .., 4}). Or, when the operation mode of the traffic tube is manual and one of
the buttons s0, s1, s2, s3 or s4 is pushed.

2. Light level 50% (i = 1) is required when the outside light level is 37,5% or 50% (j = {5, .., 6})
and the operation mode of the traffic tube is automatic and the traffic tube state is operational,
or when the operation mode of the traffic tube is manual and button s5 or s6 is pushed.

3. Light level 75% (i = 2) is required when the outside light level is 75% (j = 7) and the
operation mode of the traffic tube is automatic and the traffic tube state is operational, or
when the operation mode of the traffic tube is manual and button s7 is pushed.

4. Light level 100% (i = 3) is required when the outside light level is 100% (j = 8) and the
operation mode of the traffic tube is automatic and the traffic tube state is operational, or when
the operation mode of the traffic tube is manual and button s8 is pushed, or when the traffic
tube state is calamity and the traffic tube is operated automatically.

Logical expression

Overgangszone.Stand 3.c 3 =⇒
(Bediening.auto ∧ stand operationeel ∧ (BuitenlichtSensor = 8)) ∨
(Bediening.hand ∧ Knoppen.s8)

Definition transition zone 3
CIF code

1 requirement Overgangszone.Zone_3.c_0 needs

2 (Bediening.auto and stand_operationeel and (BuitenlichtSensor = 0 or

BuitenlichtSensor = 1 or BuitenlichtSensor = 2 or BuitenlichtSensor = 3 or

BuitenlichtSensor = 4))
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3 or (Bediening.hand and (Knoppen.s0 or Knoppen.s1 or Knoppen.s2 or

Knoppen.s3 or Knoppen.s4));

4 requirement Overgangszone.Zone_3.c_1 needs

5 (Bediening.auto and stand_operationeel and (BuitenlichtSensor = 5 or

BuitenlichtSensor = 6))

6 or (Bediening.hand and (Knoppen.s5 or Knoppen.s6));

7 requirement Overgangszone.Zone_3.c_2 needs

8 (Bediening.auto and stand_operationeel and (BuitenlichtSensor = 7))

9 or (Bediening.hand and (Knoppen.s7));

10 requirement Overgangszone.Zone_3.c_3 needs

11 (Bediening.auto and stand_operationeel and (BuitenlichtSensor = 8))

12 or (Bediening.hand and (Knoppen.s8))

13 or (stand_calamiteit and Bediening.auto);

B.3.6 General lighting

Description
The general lighting is present in the pre-transition zone, transition zone 1&2 and transition
zone 3. The requirements for these three zones are identical. For this reason, the general
lighting including the requirements is modeled as a group definition. In this group definition
the component template presented in Subsection B.1.6 is instantiated once. Moreover, five
requirements are modeled. This group definition, including the five requirements, is instantiated
for the pre-transition zone, transition zone 1&2 and transition zone 3, see the CIF code.

Requirements
1. The lights may only be off when the operation mode of the traffic tube is manual and the
light level button s0 of the traffic tube is pushed.

Logical expression

Bediening.c 0 =⇒ TunnelVerlichting.Bediening.hand ∧ Tunnelverlichting.Knoppen.s0

The requirements for light level night, twilight and day have the same format. The logical
expression which holds for these light levels is presented first. Then, for every light level, the
textual requirement including the parameters, is given.

Logical expression

Verlichting.c i =⇒
(Tunnelverlichting.Bediening.auto ∧ i ∧ stand operationeel) ∨
(Tunnelverlichting.Bediening.hand ∧ (Tunnelverlichting.Knoppen.sj))

2. The light level night (i = 0) is only allowed when the operation mode of the traffic tube is
automatic and the traffic tube state is operational and it is night (j = 1), or when the operation
mode of the traffic tube is manual and the light level button s1 of the traffic tube is pushed.

3. The light level twilight (i = 2) is only allowed when the operation mode of the traffic tube
is automatic and the traffic tube state is operational and it is twilight (j = 2), or when the
operation mode of the traffic tube is manual and the light level button s2 of the traffic tube is
pushed.

4. The light level day (i = 3) is only allowed when the operation mode of the traffic tube is
automatic and the traffic tube state is operational and it is day (j = {3, .., 8}), or when the
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operation mode of the traffic tube is manual and one of the light level buttons s3, s4, s5, s6
or s7 of the traffic tube is pushed.

5. The lights may only be fully on (i = 4) when the operation mode of the traffic tube is
automatic and the traffic tube state is calamity, or when the operation mode of the traffic tube
is manual and the light level button s8 of the traffic tube is pushed.

Logical expression

Verlichting.c 4 =⇒
(Tunnelverlichting.Bediening.auto ∧ stand calamiteit) ∨
(Tunnelverlichting.Bediening.hand ∧ (Tunnelverlichting.Knoppen.s8))

Definition
CIF code

1 BasisVerlichting_Drempelzone: BasisVerlichting ();

2 BasisVerlichting_Overgangszone_1_2: BasisVerlichting ();

3 BasisVerlichting_Overgangszone_3: BasisVerlichting ();

4
5 group def BasisVerlichting ():

6 Verlichting: Basis_Verlichting ();

7
8 requirement Verlichting.c_0 needs TunnelVerlichting.Bediening.hand;

9 requirement Verlichting.c_0 needs TunnelVerlichting.Knoppen.s0;

10 requirement Verlichting.c_1 needs

11 (TunnelVerlichting.Bediening.auto and BuitenlichtSensor = 1 and

stand_operationeel)

12 or (TunnelVerlichting.Bediening.hand and TunnelVerlichting.Knoppen.s1);

13 requirement Verlichting.c_2 needs

14 (TunnelVerlichting.Bediening.auto and BuitenlichtSensor = 2 and

stand_operationeel)

15 or (TunnelVerlichting.Bediening.hand and TunnelVerlichting.Knoppen.s2);

16 requirement Verlichting.c_3 needs

17 (TunnelVerlichting.Bediening.auto and not (BuitenlichtSensor = 0 or

BuitenlichtSensor = 1 or BuitenlichtSensor = 2) and stand_operationeel)

18 or (TunnelVerlichting.Bediening.hand and (TunnelVerlichting.Knoppen.s3 or

TunnelVerlichting.Knoppen.s4 or TunnelVerlichting.Knoppen.s5 or

TunnelVerlichting.Knoppen.s6 or TunnelVerlichting.Knoppen.s7));

19 requirement Verlichting.c_4 needs

20 (TunnelVerlichting.Bediening.auto and stand_calamiteit)

21 or (TunnelVerlichting.Bediening.hand and TunnelVerlichting.Knoppen.s8);

22 end
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B.4 Resource controllers

In this section, the resource controllers for the additional lighting in the pre-transition zone and
transition zone are presented, respectively in Subsections B.4.2 and B.4.3. For every High and
Low signal, the same automaton is instantiated, presented in Subsection B.4.1.

B.4.1 Signal level

Description
The signals High and Low of the light groups in the resource controllers are modeled with a
discrete integer with two values: 0 and 1. Zero corresponds to the signal being false and one
corresponds to the signal being true. The initial location is 0.

Automaton

c 1 when stand != 1

do stand := 1

c 0 when stand != 0

do stand := 0

CIF code

1 plant def Stand():

2 controllable c_0 , c_1;

3 disc int [0 .. 1] stand = 0;

4 location:

5 initial; marked;

6 edge c_0 when stand != 0 do stand := 0;

7 edge c_1 when stand != 1 do stand := 1;

8 end

B.4.2 Resource controller additional lighting pre-transition zone

In the pre-transition zone, the four light groups all have an individual Low signal and a shared
High signal (group 1&2 and group 3&4). This results in six signals, which are divided into two
groups: NB and NET. When there is a loss of power, the NB group will keep running, where the
NET group will shut off. This loss of power is not modeled, however this distinction between
NB and NET is made. These signals are modeled with the automaton presented in Subsection
B.4.1. In the CIF code below, the instantiations for these six groups are given.

Requirements
The requirements for the values of the High and Low signals of the light groups are based on
the switching pattern figures and corresponding tables discussed in Subsection 4.1.2. In the
lighting system module the required light level is determined, which is communicated to the
resource controller. The switching pattern corresponding to this light level is then executed.
The rationale behind these requirements is the same for every High and Low signal. Consult
the CIF code below for the requirements.

Inputs
The resource controller requires the light level for the pre-transition zone determined by the
supervisory controller. This light level is provided with by an input, as can be seen in the CIF
code below. When this model is merged with the traffic tube model, the input is linked to the
output provided by the supervisory controller.
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Definition
CIF code

1 import "Subgroep_Verlichting.cif";

2
3 input int [0..6] SC_Drempelzone_stand;

4
5 Resource_Contr_Drempelzone: Res_Contr_Drempelzone ();

6
7 group def Res_Contr_Drempelzone ():

8 group NB:

9 subgroep_1_laag: Stand();

10 subgroep_2_laag: Stand();

11 subgroep_1_2_hoog: Stand ();

12 end

13 group NET:

14 subgroep_3_laag: Stand();

15 subgroep_4_laag: Stand();

16 subgroep_3_4_hoog: Stand ();

17 end

18
19 requirement NB.subgroep_1_laag.c_0 needs

20 SC_Drempelzone_stand != 0;

21 requirement NB.subgroep_1_laag.c_1 needs

22 SC_Drempelzone_stand = 0;

23 requirement NB.subgroep_2_laag.c_0 needs

24 SC_Drempelzone_stand = 4

25 or SC_Drempelzone_stand = 6;

26 requirement NB.subgroep_2_laag.c_1 needs

27 SC_Drempelzone_stand != 4

28 and SC_Drempelzone_stand != 6;

29 requirement NB.subgroep_1_2_hoog.c_0 needs

30 SC_Drempelzone_stand != 5

31 and SC_Drempelzone_stand != 6;

32 requirement NB.subgroep_1_2_hoog.c_1 needs

33 SC_Drempelzone_stand = 5

34 or SC_Drempelzone_stand = 6;

35 requirement NET.subgroep_3_laag.c_0 needs

36 SC_Drempelzone_stand != 0

37 and SC_Drempelzone_stand != 1;

38 requirement NET.subgroep_3_laag.c_1 needs

39 SC_Drempelzone_stand = 0

40 or SC_Drempelzone_stand = 1;

41 requirement NET.subgroep_4_laag.c_0 needs

42 SC_Drempelzone_stand = 3

43 or SC_Drempelzone_stand = 4

44 or SC_Drempelzone_stand = 5

45 or SC_Drempelzone_stand = 6;

46 requirement NET.subgroep_4_laag.c_1 needs

47 SC_Drempelzone_stand != 3

48 and SC_Drempelzone_stand != 4

49 and SC_Drempelzone_stand != 5

50 and SC_Drempelzone_stand != 6;

51 requirement NET.subgroep_3_4_hoog.c_0 needs

52 SC_Drempelzone_stand != 5

53 and SC_Drempelzone_stand != 6;

54 requirement NET.subgroep_3_4_hoog.c_1 needs

55 SC_Drempelzone_stand = 5

56 or SC_Drempelzone_stand = 6;

57 end
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B.4.3 Resource controller additional lighting transition zone

In the transition zone, the three zones each have two light groups. For zone 1 and 2, the Low
signal is combined, and the High signal for all three zones is combined. This results in six
signals, which are divided into two groups: NB and NET. When there is a loss of power, the
NB group will keep running, where the NET group will shut off. This loss of power is not
modeled, however this distinction between NB and NET is made. These signals are modeled
with the automaton presented in Subsection B.4.1. In the CIF code below, the instantiations
for these six signals are given.

Requirements
The requirements for the values of the High and Low signals of the light groups are based on
the switching pattern figures and corresponding tables discussed in Subsection 4.1.2. In the
lighting system module the required light level is determined, which is communicated to the
resource controller. The switching pattern corresponding to this light level is then executed.
The rationale behind these requirements is the same for every High and Low signal. Consult
the CIF code below for the requirements.

Inputs
The resource controller requires the light level for the transition zone 1 and 2 and transition
zone 3 which is determined by the supervisory controller. These light levels are provided by
inputs, as can be seen in the CIF code below. When this model is merged with the traffic tube
model, the inputs are linked to the outputs provided by the supervisory controller.

Definition
CIF code

1 import "Subgroep_Verlichting.cif";

2
3 input int[0..4] SC_Overgangszone_1_2_stand;

4 input int[0..3] SC_Overgangszone_3_stand;

5
6 Resource_Contr_Overgangszone: Res_Contr_Overgangszone ();

7
8 group def Res_Contr_Overgangszone ():

9 group NB:

10 zone_1_2_laag: VerlichtingStand ();

11 zone_3_laag: VerlichtingStand ();

12 zone_1_2_3_hoog: VerlichtingStand ();

13 end

14
15 group NET:

16 zone_1_2_laag: VerlichtingStand ();

17 zone_3_laag: VerlichtingStand ();

18 zone_1_2_3_hoog: VerlichtingStand ();

19 end

20
21 requirement NB.zone_1_2_laag.c_0 needs

22 SC_Overgangszone_1_2_stand != 0;

23 requirement NB.zone_1_2_laag.c_1 needs

24 SC_Overgangszone_1_2_stand = 0;

25 requirement NB.zone_3_laag.c_0 needs

26 SC_Overgangszone_3_stand != 0;

27 requirement NB.zone_3_laag.c_1 needs

28 SC_Overgangszone_3_stand = 0;

29 requirement NB.zone_1_2_3_hoog.c_0 needs

30 SC_Overgangszone_1_2_stand != 4;

31 requirement NB.zone_1_2_3_hoog.c_1 needs

78



32 SC_Overgangszone_1_2_stand = 4;

33
34 requirement NET.zone_1_2_laag.c_0 needs

35 SC_Overgangszone_1_2_stand != 0

36 and SC_Overgangszone_1_2_stand != 1;

37 requirement NET.zone_1_2_laag.c_1 needs

38 SC_Overgangszone_1_2_stand = 0

39 or SC_Overgangszone_1_2_stand = 1;

40 requirement NET.zone_3_laag.c_0 needs

41 SC_Overgangszone_3_stand != 0;

42 requirement NET.zone_3_laag.c_1 needs

43 SC_Overgangszone_3_stand = 0;

44 requirement NET.zone_1_2_3_hoog.c_0 needs

45 SC_Overgangszone_1_2_stand != 3

46 and SC_Overgangszone_1_2_stand != 4;

47 requirement NET.zone_1_2_3_hoog.c_1 needs

48 SC_Overgangszone_1_2_stand = 3

49 or SC_Overgangszone_1_2_stand = 4;

50 end
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Appendix C

Model 20XX - Supervisory control
model

The supervisory control model of model 20XX is presented in this appendix. The model is
structured as depicted in Figure 5.2. This appendix is structured in the same manner. First, all
components in the model are presented in Section C.1. Then, the first layer of the CIF model,
the traffic tube, is discussed in Section C.2. In Section C.3, the second layer of the model, the
lighting system, is discussed. Finally, in Section C.4, the components which are controlled by
resource controllers are discussed, which define the fourth layer of the model.

C.1 Components

The components of the model are presented in this section. For each plant component a textual
description is provided, as well as an automaton model and the CIF code. For each requirement,
the textual requirement is given, as well as the logical expression or automaton, and the CIF
code.

C.1.1 Traffic tube state

State
Description
An automaton keeps track of the traffic tube state. The possible states are: operational,
standby, calamity, evacuation, recovery, support and maintenance. The initial tunnel state is
operational (Dutch: operationeel). The other states are reached with controllable events,
which can be executed if the related state button is pushed.

In this model, where only the lighting system in one traffic tube is considered, it is always
possible to switch the tunnel state. The only prerequisite is that the corresponding button in
the user interface must be pushed. When the total Swalmen tunnel, including other components
such as the ventilation system, is considered, then the tunnel state cannot always be switched:
it is then also dependent on the state of the other traffic tube and the state of other components
in the tunnel. In this model, components other than the lighting system are not considered,
and therefore the traffic tube state is only affected by the user input.

Automaton
A graphical representation is not provided because of the large number of transitions making
the graphical representation incomprehensible.
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CIF code

1 plant Stand:

2 controllable c_operationeel , c_calamiteit , c_standby , c_ondersteunend ,

c_onderhoud , c_herstel , c_evacuatie;

3 location operationeel:

4 initial; marked;

5 edge c_calamiteit goto calamiteit;

6 edge c_standby goto standby;

7 edge c_ondersteunend goto ondersteunend;

8 edge c_onderhoud goto onderhoud;

9 location standby:

10 edge c_operationeel goto operationeel;

11 edge c_calamiteit goto calamiteit;

12 edge c_ondersteunend goto ondersteunend;

13 location calamiteit:

14 edge c_herstel goto herstel;

15 edge c_evacuatie goto evacuatie;

16 location evacuatie:

17 edge c_calamiteit goto calamiteit;

18 location herstel:

19 edge c_operationeel goto operationeel;

20 edge c_calamiteit goto calamiteit;

21 edge c_ondersteunend goto ondersteunend;

22 edge c_onderhoud goto onderhoud;

23 location ondersteunend:

24 edge c_herstel goto herstel;

25 location onderhoud:

26 edge c_operationeel goto operationeel;

27 edge c_herstel goto herstel;

28 edge c_ondersteunend goto ondersteunend;

29 edge c_calamiteit goto calamiteit;

30 end

Buttons
Description
The buttons to control the traffic tube state are modeled according to the automaton presented
in Subsection A.3.1, with i ∈ {los, operationeel, standby, calamiteit, evacuatie, herstel,

ondersteunend, onderhoud}. The uncontrollable events are enabled when the conditions for
these events are true. These conditions enable that the button can only be pushed when the
corresponding traffic tube state can be reached, which depends on the automaton State (Dutch:
Stand). Therefore, these conditions refer to locations of the automaton State. Consult the CIF
code below for these conditions.

CIF code

1 plant Knoppen:

2 uncontrollable u_operationeel , u_calamiteit , u_standby , u_ondersteunend ,

u_onderhoud , u_herstel , u_evacuatie;

3 controllable c_operationeel_klaar , c_calamiteit_klaar , c_standby_klaar ,

c_ondersteunend_klaar , c_onderhoud_klaar , c_herstel_klaar , c_evacuatie_klaar;

4 monitor u_operationeel , u_calamiteit , u_standby , u_ondersteunend , u_onderhoud

, u_herstel , u_evacuatie;

5 location los:

6 initial; marked;

7 edge u_operationeel when Stand.standby or Stand.herstel or Stand.onderhoud

goto operationeel;

8 edge u_calamiteit when Stand.operationeel or Stand.standby or
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Stand.evacuatie or Stand.herstel or Stand.onderhoud goto calamiteit;

9 edge u_standby when Stand.operationeel goto standby;

10 edge u_ondersteunend when Stand.operationeel or Stand.standby or

Stand.herstel or Stand.onderhoud goto ondersteunend;

11 edge u_onderhoud when Stand.operationeel or Stand.herstel goto onderhoud;

12 edge u_herstel when Stand.calamiteit or Stand.ondersteunend or

Stand.onderhoud goto herstel;

13 edge u_evacuatie when Stand.calamiteit goto evacuatie;

14 location operationeel:

15 edge c_operationeel_klaar when Stand.operationeel goto los;

16 location standby:

17 edge c_standby_klaar when Stand.standby goto los;

18 location calamiteit:

19 edge c_calamiteit_klaar when Stand.calamiteit goto los;

20 location evacuatie:

21 edge c_evacuatie_klaar when Stand.evacuatie goto los;

22 location ondersteunend:

23 edge c_ondersteunend_klaar when Stand.ondersteunend goto los;

24 location onderhoud:

25 edge c_onderhoud_klaar when Stand.onderhoud goto los;

26 location herstel:

27 edge c_herstel_klaar when Stand.herstel goto los;

28 end

SetAuto
Description
SetAuto is used for keeping track of changes in the traffic tube state. This component is
modeled according to the automaton presented in Subsection A.3.2, with i ∈ {operationeel,
standby, calamiteit, herstel, evacuatie, ondersteunend, onderhoud}.

CIF code

1 plant SetAuto:

2 controllable c_klaar;

3 location normaal:

4 initial; marked;

5 edge Stand.c_operationeel , Stand.c_standby , Stand.c_calamiteit ,

Stand.c_herstel , Stand.c_evacuatie , Stand.c_ondersteunend ,

Stand.c_onderhoud goto setauto;

6 location setauto:

7 edge c_klaar goto normaal;

8 end

Definition
All these components are grouped in the definition Stand Verkeersbuis.

CIF code

1 group def Stand_Verkeersbuis ():

2 plant Knoppen:

3 ...

4 end

5
6 plant Stand:

7 ...

8 end

9
10 plant SetAuto:
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11 ...

12 end

13 end

C.1.2 Outside lighting entrance/exit zone

The entrance zone and exit zone are identical, therefore a group definition is used and instan-
tiated for the entrance and exit zone.

Operation mode
Description
The zone is operated in either automatic or manual mode. The operation mode group definition
presented in Section A.2 is instantiated.

CIF code

1 Bediening: ^Bediening ();

Buttons
Description
Buttons are defined for the user to control the operation mode of the outside lighting system of
the traffic tube. This component is modeled according to the automaton presented in Section
A.4, with nlevels = 2. The possible buttons are: auto, manual (Dutch: hand), s0 (0%) and s1

(100%).

CIF code

1 plant Knoppen:

2 uncontrollable u_0 , u_100 , u_auto , u_hand;

3 controllable c_0_klaar , c_1_klaar , c_auto_klaar , c_hand_klaar;

4 monitor u_0 , u_100 , u_auto , u_hand;

5 location los:

6 initial; marked;

7 edge u_0 when Bediening.hand goto s0;

8 edge u_100 when Bediening.hand goto s1;

9 edge u_auto goto auto;

10 edge u_hand goto hand;

11 location s0:

12 edge c_0_klaar when StandVerlichting.stand = 0 or Bediening.auto goto los;

13 location s1:

14 edge c_1_klaar when StandVerlichting.stand = 1 or Bediening.auto goto los;

15 location auto:

16 edge c_auto_klaar when Bediening.auto goto los;

17 location hand:

18 edge c_hand_klaar when Bediening.hand goto los;

19 end

Light level
Description
The light level in the entrance and exit zone is either off or 100%. This light level is modeled
according to the automaton presented in Section A.5, with nlevels = 2.
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CIF code

1 plant StandVerlichting:

2 controllable c_0 , c_1;

3 disc int [0 .. 1] stand = 0;

4 location:

5 initial; marked;

6 edge c_0 when stand != 0 do stand := 0; // Off

7 edge c_1 when stand != 1 do stand := 1; // 100%

8 end

Requirements
1. The operation mode may only be manual when the manual button is pushed and the traffic
tube state is not changed.
setauto is a formal parameter, the actual parameter is defined when the module is instantiated,
see Subsection C.2.1.

Logical expression

Bediening.c hand =⇒ Knoppen.hand ∧ ¬setauto

2. The operation mode may only be automatic when the automatic button is pushed or when
the traffic tube state changes.
setauto is a formal parameter, the actual parameter is defined when the module is instantiated,
see Subsection C.2.1.

Logical expression

Bediening.c auto =⇒ Knoppen.auto ∨ setauto

Definition
All these components and requirements are grouped in the definition OpenbareVerlichting.

CIF code

1 import "Bediening.cif";

2
3 group def OpenbareVerlichting(alg bool setauto):

4
5 Bediening: ^Bediening ();

6
7 plant Knoppen:

8 ...

9 end

10
11 plant StandVerlichting:

12 ...

13 end

14
15 requirement Bediening.c_hand needs Knoppen.hand;

16 requirement Bediening.c_hand needs not setauto;

17 requirement Bediening.c_auto needs Knoppen.auto or setauto;

18 end
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C.1.3 Additional lighting transition zone

Operation mode
Description
The zone is operated in either automatic or manual mode. The operation mode group definition
presented in Section A.2 is instantiated.

CIF code

1 Bediening: ^Bediening ();

Buttons
Description
Buttons are defined for the user to control the operation mode of the zone. In case of manual
operation, it is possible to enter the light level by pushing one of the 9 light level buttons. In
total there are 11 buttons: auto, manual (Dutch: hand), and for each light level from 0 until
8 there is one button. By pushing one of the 11 buttons, the related uncontrollable event is
triggered, if the condition to push the button is true. There are no conditions to push the auto
and hand button. The condition to push light level 0 is that the traffic tube state must be
maintenance or recovery. For light level 1 until 8 the condition is that the operation mode must
be manual.

Automaton
This component is modeled according to the automaton presented in Section A.4, with nlevels

= 9. The automaton is extended with the discrete variable GewensteHandStand, which is
updated when a light level button is pushed. This variable is used to store the entered light
level in the form of a discrete integer. When the automatic button is pushed, the variable
GewensteHandStand is set to 1. In reality, when the operation mode becomes manual, the
current light level in the tunnel is maintained, until the user changes the light level manually.
This is defined as a bump less transfer from automatic to manual operation. This is not modeled
currently, but to mimic in some way this bump less transfer, the manual light level is always
set to 1 when the operation mode becomes automatic.

A graphical representation is not provided because of the large number of transitions and
conditions, making the graphical representation incomprehensible.

CIF code
stand onderhoud is a formal parameter, the actual parameter is defined when the module is
instantiated, see Subsection C.2.1.

1 plant Knoppen:

2 uncontrollable u_0 , u_1 , u_2 , u_3 , u_4 , u_5 , u_6 , u_7 , u_8 , u_auto , u_hand;

3 controllable c_0_klaar ,c_1_klaar ,c_2_klaar ,c_3_klaar ,c_4_klaar ,c_5_klaar ,

c_6_klaar ,c_7_klaar ,c_8_klaar ,c_auto_klaar ,c_hand_klaar;

4 monitor u_0 , u_1 , u_2 , u_3 , u_4 , u_5 , u_6 , u_7 , u_8 , u_auto , u_hand;

5 disc int [0 .. 8] GewensteStandHand = 0;

6 location los:

7 initial; marked;

8 edge u_0 when Bediening.hand and stand_onderhoud do GewensteStandHand := 0

goto s0;

9 edge u_1 when Bediening.hand do GewensteStandHand := 1 goto s1;

10 edge u_2 when Bediening.hand do GewensteStandHand := 2 goto s2;

11 edge u_3 when Bediening.hand do GewensteStandHand := 3 goto s3;

12 edge u_4 when Bediening.hand do GewensteStandHand := 4 goto s4;

13 edge u_5 when Bediening.hand do GewensteStandHand := 5 goto s5;
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14 edge u_6 when Bediening.hand do GewensteStandHand := 6 goto s6;

15 edge u_7 when Bediening.hand do GewensteStandHand := 7 goto s7;

16 edge u_8 when Bediening.hand do GewensteStandHand := 8 goto s8;

17 edge u_auto do GewensteStandHand := 1 goto auto;

18 edge u_hand goto hand;

19 location s0:

20 edge c_0_klaar when StandVerlichting.stand = 0 or Bediening.auto goto los;

21 location s1:

22 edge c_1_klaar when StandVerlichting.stand = 1 or Bediening.auto goto los;

23 location s2:

24 edge c_2_klaar when StandVerlichting.stand = 2 or Bediening.auto goto los;

25 location s3:

26 edge c_3_klaar when StandVerlichting.stand = 3 or Bediening.auto goto los;

27 location s4:

28 edge c_4_klaar when StandVerlichting.stand = 4 or Bediening.auto goto los;

29 location s5:

30 edge c_5_klaar when StandVerlichting.stand = 5 or Bediening.auto goto los;

31 location s6:

32 edge c_6_klaar when StandVerlichting.stand = 6 or Bediening.auto goto los;

33 location s7:

34 edge c_7_klaar when StandVerlichting.stand = 7 or Bediening.auto goto los;

35 location s8:

36 edge c_8_klaar when StandVerlichting.stand = 8 or Bediening.auto goto los;

37 location auto:

38 edge c_auto_klaar when Bediening.auto goto los;

39 location hand:

40 edge c_hand_klaar when Bediening.hand goto los;

41 end

Current light level
Description
The possible light levels in the transition zone correspond to the number of light levels of the
outside light sensor, which means that there are 9 light levels. The current light level is modeled
according to the automaton presented in Section A.5, with nlevels = 9.

CIF code

1 plant StandVerlichting:

2 controllable c_0 , c_1 , c_2 , c_3 , c_4 , c_5 , c_6 , c_7 , c_8;

3 disc int [0 .. 8] stand = 0;

4 location:

5 initial; marked;

6 edge c_0 when stand != 0 do stand := 0; // Off

7 edge c_1 when stand != 1 do stand := 1; // 12,5%

8 edge c_2 when stand != 2 do stand := 2; // 25%

9 edge c_3 when stand != 3 do stand := 3; // 37,5%

10 edge c_4 when stand != 4 do stand := 4; // 50%

11 edge c_5 when stand != 5 do stand := 5; // 62,5%

12 edge c_6 when stand != 6 do stand := 6; // 75%

13 edge c_7 when stand != 7 do stand := 7; // 87,5%

14 edge c_8 when stand != 8 do stand := 8; // 100%

15 end

Requirements
1. The operation mode may only be manual when the manual button is pushed and the traffic
tube state is not changed.
setauto is a formal parameter, the actual parameter is defined when the module is instantiated,
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see Subsection C.2.1.

Logical expression

Bediening.c hand =⇒ Knoppen.hand ∧ ¬setauto

2. The operation mode may only be automatic when the automatic button is pushed or when
the traffic tube state changes.
setauto is a formal parameter, the actual parameter is defined when the module is instantiated,
see Subsection C.2.1.

Logical expression

Bediening.c auto =⇒ Knoppen.auto ∨ setauto

Definition
All these components and requirements are grouped in the definition Zone Ingang.

CIF code

1 import "Bediening.cif";

2
3 group def Ingang_Verlichting(alg bool setauto , stand_onderhoud):

4
5 Bediening: ^Bediening ();

6
7 plant Knoppen:

8 ...

9 end

10
11 plant StandVerlichting:

12 ...

13 end

14
15 requirement Bediening.c_hand needs Knoppen.hand;

16 requirement Bediening.c_hand needs not setauto;

17 requirement Bediening.c_auto needs Knoppen.auto or setauto;

18 end

C.1.4 General lighting

Operation mode
Description
The zone is operated in either automatic or manual mode. The operation mode group definition
presented in Section A.2 is instantiated.

CIF code

1 Bediening: ^Bediening ();

Buttons
Description
Buttons are defined for the user to control the operation mode of the outside lighting system
of the traffic tube. The possible buttons are: auto, manual (Dutch: hand), s0 (0%), and s100

(100%). By pushing one of the four buttons, the related uncontrollable event is triggered if the
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condition is true. Moreover, for button s0 the additional condition holds that the traffic tube
state must either be maintenance or recovery, before the light level may turn off.

Automaton
This component is modeled according to the automaton presented in Section A.4, with nlevels

= 2. The bump less transfer from automatic to manual operation is in this case however not
included since there are only two manual light levels, of which light level off is only allowed in
case of maintenance or recovery.

CIF code
stand onderhoud is a formal parameter, the actual parameter is defined when the module is
instantiated, see Subsection C.2.1.

1 plant Knoppen:

2 uncontrollable u_0 , u_100 , u_auto , u_hand;

3 controllable c_0_klaar , c_1_klaar , c_auto_klaar , c_hand_klaar;

4 monitor u_0 , u_100 , u_auto , u_hand;

5 location los:

6 initial; marked;

7 edge u_0 when Bediening.hand and stand_onderhoud goto s0;

8 edge u_100 when Bediening.hand goto s1;

9 edge u_auto goto auto;

10 edge u_hand goto hand;

11 location s0:

12 edge c_0_klaar when StandVerlichting.stand = 0 or Bediening.auto goto los;

13 location s1:

14 edge c_1_klaar when StandVerlichting.stand = 3 or Bediening.auto goto los;

15 location auto:

16 edge c_auto_klaar when Bediening.auto goto los;

17 location hand:

18 edge c_hand_klaar when Bediening.hand goto los;

19 end

Light level
Description
The light level in the entrance and exit zone is either off, night, day or 100%. This light level
is modeled according to the automaton presented in Section A.5, with nlevels = 4.

CIF code

1 plant StandVerlichting:

2 controllable c_0 , c_dag , c_nacht , c_100;

3 disc int [0 .. 3] stand = 0;

4 location:

5 initial; marked;

6 edge c_0 when stand != 0 do stand := 0; // Off

7 edge c_1 when stand != 1 do stand := 1; // Night

8 edge c_2 when stand != 2 do stand := 2; // Day

9 edge c_3 when stand != 3 do stand := 3; // 100%

10 end

Requirements
1. The operation mode may only be manual when the manual button is pushed and the traffic
tube state is not changed.
setauto is a formal parameter, the actual parameter is defined when the module is instantiated,
see Subsection C.2.1.
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Logical expression

Bediening.c hand =⇒ Knoppen.hand ∧ ¬setauto

2. The operation mode may only be automatic when the automatic button is pushed or when
the traffic tube state changes.
setauto is a formal parameter, the actual parameter is defined when the module is instantiated,
see Subsection C.2.1.

Logical expression

Bediening.c auto =⇒ Knoppen.auto ∨ setauto

Definition
All these components and requirements are grouped in the definition Basis Verlichting.

CIF code

1 import "Bediening.cif";

2
3 group def Basis_Verlichting(alg bool setauto , stand_onderhoud):

4
5 Bediening: ^Bediening ();

6
7 plant Knoppen:

8 ...

9 end

10
11 plant StandVerlichting:

12 ...

13 end

14
15 requirement Bediening.c_hand needs Knoppen.hand;

16 requirement Bediening.c_hand needs not setauto;

17 requirement Bediening.c_auto needs Knoppen.auto or setauto;

18 end

89



C.2 Traffic tube

In this section, the components and the requirements of the traffic tube are presented.

C.2.1 Components

Traffic tube state
Description
An automaton keeps track of the traffic tube state. The module presented in Section C.1.1 is
instantiated.

CIF code

1 StandVerkeersbuis: Stand_Verkeersbuis ();

Lighting system traffic tube
Description
The lighting system is instantiated for the traffic tube. This lighting system module is presented
in Appendix C.3. The definitions of the formal parameters are presented below.

Actual parameters

setauto = StandVerkeersbuis.SetAuto.setauto

stand operationeel = StandVerkeersbuis.Stand.operationeel

stand calamiteit = StandVerkeersbuis.Stand.calamiteit

stand onderhoud = StandVerkeersbuis.Stand.onderhoud

stand standby = StandVerkeersbuis.Stand.standby

stand ondersteunend = StandVerkeersbuis.Stand.ondersteunend

stand herstel = StandVerkeersbuis.Stand.herstel

CIF code

1 Tunnelbuis_Verlichting: Verlichting(StandVerkeersbuis.SetAuto.setauto ,

StandVerkeersbuis.Stand.operationeel , StandVerkeersbuis.Stand.calamiteit ,

StandVerkeersbuis.Stand.onderhoud , StandVerkeersbuis.Stand.standby ,

StandVerkeersbuis.Stand.ondersteunend , StandVerkeersbuis.Stand.herstel);

C.2.2 Requirements

1. The traffic tube state may only change when the related button is pushed.

Logical expression
With i= {operationeel, calamiteit, standby, ondersteunend, onderhoud, evacuatie,

herstel}.

StandVerkeersbuis.Stand.c i =⇒ StandVerkeersbuis.Knoppen.i

2. When the traffic tube state is changed, first the operation mode of each zone must be
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automatic before manual operation is possible again.

StandVerkeersbuis.SetAuto.c klaar =⇒
Tunnelbuis Verlichting.Toegangs zone.Verlichting.Bediening.auto ∧
Tunnelbuis Verlichting.Ingangs zone.Verlichting.Bediening.auto ∧
Tunnelbuis Verlichting.Basisverlichting.Verlichting.Bediening.auto ∧
Tunnelbuis Verlichting.Verlatings zone.Verlichting.Bediening.auto

C.2.3 Outputs

The supervisory controller which controls the traffic tube and lighting system, provides the light
levels for the pre-transition zone and transition zones. These light levels are communicated to
the resource controllers via the following outputs, which can also be seen in the CIF code below.

� Entrance and exit zone outside lighting: two light levels (0%, 100%).

� Transition zone additional lighting: nine light levels (0%, 12.5%, 25%, 37.5%, 50%, 62,5%,
75%, 87,5%, 100%).

� General lighting: four light levels (0%, day, night, 100%).

C.2.4 Definition

CIF code

1 import "Verlichting.cif", "Definitions/Stand_Verkeersbuis.cif";

2
3 StandVerkeersbuis: Stand_Verkeersbuis ();

4
5 Tunnelbuis_Verlichting: Verlichting(StandVerkeersbuis.SetAuto.setauto ,

StandVerkeersbuis.Stand.operationeel , StandVerkeersbuis.Stand.calamiteit ,

StandVerkeersbuis.Stand.onderhoud , StandVerkeersbuis.Stand.standby ,

StandVerkeersbuis.Stand.ondersteunend , StandVerkeersbuis.Stand.herstel);

6
7 requirement StandVerkeersbuis.Stand.c_operationeel needs

8 StandVerkeersbuis.Knoppen.operationeel;

9 requirement StandVerkeersbuis.Stand.c_calamiteit needs

10 StandVerkeersbuis.Knoppen.calamiteit;

11 requirement StandVerkeersbuis.Stand.c_standby needs

12 StandVerkeersbuis.Knoppen.standby;

13 requirement StandVerkeersbuis.Stand.c_ondersteunend needs

14 StandVerkeersbuis.Knoppen.ondersteunend;

15 requirement StandVerkeersbuis.Stand.c_onderhoud needs

16 StandVerkeersbuis.Knoppen.onderhoud;

17 requirement StandVerkeersbuis.Stand.c_evacuatie needs

18 StandVerkeersbuis.Knoppen.evacuatie;

19 requirement StandVerkeersbuis.Stand.c_herstel needs

20 StandVerkeersbuis.Knoppen.herstel;

21
22 requirement StandVerkeersbuis.SetAuto.c_klaar needs

23 Tunnelbuis_Verlichting.Toegangs_zone.Verlichting.Bediening.auto;

24 requirement StandVerkeersbuis.SetAuto.c_klaar needs

25 Tunnelbuis_Verlichting.Ingangs_zone.Verlichting.Bediening.auto;

26 requirement StandVerkeersbuis.SetAuto.c_klaar needs

27 Tunnelbuis_Verlichting.Basis_Verlichting.Verlichting.Bediening.auto;

28 requirement StandVerkeersbuis.SetAuto.c_klaar needs

29 Tunnelbuis_Verlichting.Verlatings_zone.Verlichting.Bediening.auto;

30
31 alg int [0..1] SC_Toegangs_zone_Stand =
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32 Tunnelbuis_Verlichting.Toegangs_zone.Verlichting.StandVerlichting.stand;

33 alg int [0..8] SC_Ingangs_zone_Stand =

34 Tunnelbuis_Verlichting.Ingangs_zone.Verlichting.StandVerlichting.stand;

35 alg int [0..3] SC_Basis_verlichting_Stand =

36 Tunnelbuis_Verlichting.Basis_Verlichting.Verlichting.StandVerlichting.stand;

37 alg int [0..1] SC_Verlatings_zone_Stand =

38 Tunnelbuis_Verlichting.Verlatings_zone.Verlichting.StandVerlichting.stand;
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C.3 Lighting system

In this section, the components and requirements of the lighting system are presented. An
overview of the CIF code of the lighting system is given below. Every component and related
requirements are discussed in more detail in the subsections of this section.

CIF code lighting system

1 import "Definitions/Basis_Verlichting.cif", "Definitions/

Openbare_Verlichting.cif", "Definitions/Ingang_Verlichting.cif";

2
3 input int [0..8] BuitenlichtSensor;

4
5 group def Verlichting(alg bool setauto ,stand_operationeel ,stand_calamiteit ,

stand_onderhoud ,stand_standby ,stand_ondersteunend ,stand_herstel):

6
7 Toegangs_zone: Openbare_Verlichting ();

8 Verlatings_zone: Openbare_Verlichting ();

9
10 group def Openbare_Verlichting ():

11 Verlichting: ^Openbare_Verlichting(setauto);

12
13 requirement 1 Openbare verlichting

14 ...

15 requirement 3 Openbare verlichting

16 end

17
18 group Ingangs_zone:

19 Verlichting: Ingang_Verlichting(setauto ,( stand_onderhoud or stand_herstel))

;

20
21 requirement 1 Ingang verlichting

22 ...

23 requirement 9 Ingang verlichting

24 end

25
26 group Basis_Verlichting:

27 Verlichting: ^Basis_Verlichting(setauto ,( stand_onderhoud or stand_herstel))

;

28
29 requirement 1 Basis verlichting

30 ...

31 requirement 10 Basis verlichting

32 end

33 end

C.3.1 Inputs

The only input is the outside light sensor. This outside light sensor has nine light levels (off,
12.5%, 25%, 37.5%, 50%, 62,5% 75%, 87,5%, 100%). When this model is merged with the
model of the outside light sensor, this input is linked to the output defined in the model of the
outside light sensor, see Subsection A.1.

C.3.2 Outside lighting entrance/exit zone

Components
Description
There is one entrance and one exit zone per traffic tube, the requirements and automata are for
both zones identical. Therefore, this lighting system is modeled as a group definition. In this
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group definition, the component template presented in Section C.1.2 is instantiated. The actual
parameter for the formal parameter setauto is defined when the lighting system is instantiated.
This actual parameter is presented in Subsection C.2.1.

This group definition is instantiated for the outside lighting in the entrance and exit zone.

CIF code

1 Toegangs_zone: Openbare_Verlichting ();

2 Verlatings_zone: Openbare_Verlichting ();

Requirements
1. The lights may only be off when operation mode of the zone is automatic and the day and
night switch is switched to day, or when operation mode of the zone is manual and the off
button s0 is pushed.

Logical expression

Verlichting.StandVerlichting.c 0 =⇒
(Verlichting.Bediening.auto ∧ ¬ (BuitenlichtSensor = 0 ∨
BuitenlichtSensor = 1 ∨ BuitenlichtSensor = 2) ∧ stand operationeel) ∨
(Verlichting.Bediening.hand ∧ Verlichting.Knoppen.s0)

2. The lights may not be off when the traffic tube state is calamity, standby or supportive.

Logical expression
stand calamiteit, stand standby and stand ondersteunend are formal parameters, the ac-
tual parameters are defined when the lighting system module is instantiated, see Subsection
C.2.1.

StandVerlichting.c 0 =⇒ ¬ stand calamiteit ∨ ¬ stand standby ∨ ¬ stand ondersteunend

3. The lights may only be on when operation mode of the zone is automatic and it is night, or
when the operation mode is manual and the on button s1 is pushed or when the traffic tube
state is calamity, standby or supportive.

Logical expression
stand calamiteit, stand standby and stand ondersteunend are formal parameters, the ac-
tual parameters are defined when the lighting system module is instantiated, see Subsection
C.2.1.

Verlichting.StandVerlichting.c 1 =⇒
(Verlichting.Bediening.auto ∧ BuitenlichtSensor = 1) ∨
(Verlichting.Bediening.hand ∧ Verlichting.Knoppen.s1) ∨
stand calamiteit ∨ stand standby ∨ stand ondersteunend
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Definition
CIF code

1 Toegangs_zone: Openbare_Verlichting ();

2 Verlatings_zone: Openbare_Verlichting ();

3
4 group def Openbare_Verlichting ():

5 Verlichting: ^Openbare_Verlichting(setauto);

6
7 requirement Verlichting.StandVerlichting.c_0 needs

8 (Verlichting.Bediening.auto and BuitenlichtSensor != 0 and

BuitenlichtSensor != 1)

9 or (Verlichting.Bediening.hand and Verlichting.Knoppen.s0);

10 requirement Verlichting.StandVerlichting.c_0 needs

11 not (stand_calamiteit or stand_standby or stand_ondersteunend);

12 requirement Verlichting.StandVerlichting.c_1 needs

13 (Verlichting.Bediening.auto and BuitenlichtSensor = 1)

14 or (Verlichting.Bediening.hand and Verlichting.Knoppen.s1)

15 or (stand_calamiteit or stand_standby or stand_ondersteunend);

16 end

C.3.3 Additional lighting transition zone

Description
There is one transition zone per traffic tube, therefore the module presented in Section C.1.3 is
instantiated once. The actual parameter for the formal parameter setauto is defined when the
lighting system is instantiated. This parameter is presented in Subsection C.2.1. The formal
parameter stand onderhoud is in this case stand onderhoud or stand herstel.

CIF code

1 Verlichting: Ingang_Verlichting(setauto , (stand_onderhoud or stand_herstel));

Requirements
1. The lights may only be off when the operation mode of the zone is automatic, the traffic
tube state is operational and it is night, or when the operation mode of the zone is manual, the
traffic tube state is maintenance or recovery and the light level off button s0 is pushed.

Logical expression
stand operationeel, stand onderhoud, and stand herstel are formal parameters, the ac-
tual parameters are defined when the lighting system module is instantiated, see Subsection
C.2.1.

Verlichting.StandVerlichting.c 0 =⇒
(Verlichting.Bediening.auto ∧ stand operationeel ∧ BuitenlichtSensor = 1) ∨
(Verlichting.Knoppen.s0 ∧ Verlichting.Bediening.hand ∧
(stand onderhoud ∨ stand herstel))

2. Light level one is only allowed when the zone is operated manually and the button s1 is
pushed.
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Logical expression

Verlichting.StandVerlichting.c 1 =⇒
Verlichting.Knoppen.s1 ∧ Verlichting.Bediening.hand

3. For light levels i = {2, 3, 5, 6, 7}, the light level may be equal to i when the zone is
operated automatically, the outside light sensor measures light level i and the traffic tube state
is operational, or when the zone is operated manually and the button si is pushed.

Logical expression
stand operationeel is a formal parameter, the actual parameter is defined when the lighting
system module is instantiated, see Subsection C.2.1. For i = {2, 3, 5, 6, 7}:

Verlichting.StandVerlichting.c i =⇒
(Verlichting.Bediening.auto ∧ stand operationeel ∧ BuitenlichtSensor = i) ∨
(Verlichting.Knoppen.si ∧ Verlichting.Bediening.hand)

4. Requirement 3 holds for light level four as well, however, this light level is also the pre-
configured light level for when the traffic tube state is either maintenance or recovery and the
operation mode is automatic. When this condition holds, the light level may be four as well.

Logical expression
stand operationeel, stand onderhoud, and stand herstel are formal parameters, the ac-
tual parameters are defined when the lighting system module is instantiated, see Subsection
C.2.1.

Verlichting.StandVerlichting.c 4 =⇒
(Verlichting.Bediening.auto ∧ stand operationeel ∧ BuitenlichtSensor = 4) ∨
(Verlichting.Knoppen.s4 ∧ Verlichting.Bediening.hand) ∨
((stand onderhoud ∨ stand herstel) ∧ Verlichting.Bediening.auto)

5. Requirement 3 holds for light level eight as well, however, when the traffic tube state is
calamity, standby or supportive and the zone is operated automatically, then the maximum
light level must be realized.

Logical expression
stand operationeel, stand calamiteit, stand standby, and stand ondersteunend are for-
mal parameters, the actual parameters are defined when the lighting system module is instan-
tiated, see Subsection C.2.1.

Verlichting.StandVerlichting.c 8 =⇒
(Verlichting.Bediening.auto ∧ stand operationeel ∧ BuitenlichtSensor = 8) ∨
(Verlichting.Knoppen.s8 ∧ Verlichting.Bediening.hand) ∨
((stand calamiteit ∨ stand standby ∨ stand ondersteunend) ∧
Verlichting.Bediening.auto)
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Definition
CIF code

1 group Ingangs_zone:

2 Verlichting: Ingang_Verlichting(setauto , (stand_onderhoud or stand_herstel));

3
4 requirement Verlichting.StandVerlichting.c_0 needs

5 (Verlichting.Bediening.auto and stand_operationeel and

BuitenlichtSensor = 1)

6 or (Verlichting.Knoppen.s0 and Verlichting.Bediening.hand and (

stand_onderhoud or stand_herstel));

7 requirement Verlichting.StandVerlichting.c_1 needs

8 Verlichting.Knoppen.s1 and Verlichting.Bediening.hand;

9 requirement Verlichting.StandVerlichting.c_2 needs

10 (Verlichting.Bediening.auto and stand_operationeel and

BuitenlichtSensor = 2)

11 or (Verlichting.Knoppen.s2 and Verlichting.Bediening.hand);

12 requirement Verlichting.StandVerlichting.c_3 needs

13 (Verlichting.Bediening.auto and stand_operationeel and

BuitenlichtSensor = 3)

14 or (Verlichting.Knoppen.s3 and Verlichting.Bediening.hand);

15 requirement Verlichting.StandVerlichting.c_4 needs

16 (Verlichting.Bediening.auto and stand_operationeel and

BuitenlichtSensor = 4)

17 or (Verlichting.Knoppen.s4 and Verlichting.Bediening.hand)

18 or (( stand_onderhoud or stand_herstel) and Verlichting.Bediening.auto);

19 requirement Verlichting.StandVerlichting.c_5 needs

20 (Verlichting.Bediening.auto and stand_operationeel and

BuitenlichtSensor = 5)

21 or (Verlichting.Knoppen.s5 and Verlichting.Bediening.hand);

22 requirement Verlichting.StandVerlichting.c_6 needs

23 (Verlichting.Bediening.auto and stand_operationeel and

BuitenlichtSensor = 6)

24 or (Verlichting.Knoppen.s6 and Verlichting.Bediening.hand);

25 requirement Verlichting.StandVerlichting.c_7 needs

26 (Verlichting.Bediening.auto and stand_operationeel and

BuitenlichtSensor = 7)

27 or (Verlichting.Knoppen.s7 and Verlichting.Bediening.hand);

28 requirement Verlichting.StandVerlichting.c_8 needs

29 (Verlichting.Bediening.auto and stand_operationeel and

BuitenlichtSensor = 8)

30 or (Verlichting.Knoppen.s8 and Verlichting.Bediening.hand)

31 or (( stand_standby or stand_calamiteit or stand_ondersteunend) and

Verlichting.Bediening.auto);

32 end

C.3.4 General lighting transition zone

Description
The general lighting is present in the transition and central zone of the tunnel, therefore the
module presented in Section C.1.4. The actual parameter for the formal parameter setauto

is defined when the lighting system is instantiated. This actual parameter is presented in
Subsection C.2.1. The formal parameter stand onderhoud is in this case stand onderhoud or
stand herstel.

CIF code

1 Verlichting: ^Basis_Verlichting(setauto ,( stand_onderhoud or stand_herstel));
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Requirements
1. The lights may only be off when the operation mode of the zone is manual, the traffic tube
state is maintenance or recovery and the light level off button s0 is pushed.

Logical expression
stand onderhoud and stand herstel are formal parameters, the actual parameters are defined
when the lighting system module is instantiated, see Subsection C.2.1.

Stand Verlichting.c 0 =⇒
Verlichting.Bediening.hand ∧ Verlichting.Knoppen.s0 ∧
(stand onderhoud ∨ stand herstel)

2. Light level one is only allowed when the operation mode of the zone is automatic and it is
night.

Logical expression

StandVerlichting.c 1 =⇒ Verlichting.Bediening.auto ∧ BuitenlichtSensor = 1

3. Light level two is only allowed when it is day and when the traffic tube state is not calamity,
standby or supportive.

Logical expression

StandVerlichting.c 2 =⇒
Verlichting.Bediening.auto ∧ ¬(BuitenlichtSensor = 0 ∨ BuitenlichtSensor = 1)

4. The lights may only be fully on when the operation mode is manual and the on button s1 is
pushed.

Logical expression

Stand Verlichting.c 3 =⇒ Verlichting.Bediening.hand ∧ Verlichting.Knoppen.s1

Definition
CIF code

1 group Basis_Verlichting:

2 Verlichting: ^Basis_Verlichting(setauto ,( stand_onderhoud or stand_herstel))

;

3
4 requirement Verlichting.StandVerlichting.c_0 needs

5 Verlichting.Bediening.hand;

6 requirement Verlichting.StandVerlichting.c_0 needs

7 Verlichting.Knoppen.s0;

8 requirement Verlichting.StandVerlichting.c_0 needs

9 (stand_onderhoud or stand_herstel);

10 requirement Verlichting.StandVerlichting.c_1 needs

11 Verlichting.Bediening.auto;

12 requirement Verlichting.StandVerlichting.c_1 needs

13 BuitenlichtSensor = 1;

14 requirement Verlichting.StandVerlichting.c_2 needs

15 Verlichting.Bediening.auto;

16 requirement Verlichting.StandVerlichting.c_2 needs
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17 BuitenlichtSensor != 0;

18 requirement Verlichting.StandVerlichting.c_2 needs

19 BuitenlichtSensor != 1;

20 requirement Verlichting.StandVerlichting.c_3 needs

21 Verlichting.Bediening.hand;

22 requirement Verlichting.StandVerlichting.c_3 needs

23 Verlichting.Knoppen.s1;

24 end
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C.4 Resource controllers

In this section, the resource controllers for the outside lighting in the entrance and exit zone,
the additional lighting in the transition zone and the general lighting system are presented.

C.4.1 Resource controller entrance zone/exit zone

Inputs
The inputs of the resource controller are the light level for the outside lighting in the entrance
and exit zone determined by the supervisory controller.

Current light level of resource controller
Description
An automaton is used to keep track of the current light level of the resource controller. In case
of the entrance and exit zones, two light levels are possible (0% and 100%), which results in
nlevels equal to two.

Automaton

c min when stand < nlevels − 1
do stand := stand - 1

c plus when stand > 0

do stand := stand + 1

CIF code

1 plant HuidigeStand:

2 controllable c_plus , c_min;

3 disc int [0..1] stand = 0;

4 location:

5 initial; marked;

6 edge c_plus when stand <1 do stand :=stand +1;

7 edge c_min when stand >0 do stand :=stand -1;

8 end

Timer
Description
The timer has three locations: off (Dutch: uit), running (Dutch: lopend) and finished

(Dutch: afgelopen). The initial and marked location is off. Starting, restarting and resetting
of the timer are controllable events. However, stopping the timer is an uncontrollable event,
since this event is time dependent.

Automaton

uit

lopend afgelopen

c
aa
nc

re
se
tL
op
en
d

u timeout

c herstart

c
resetUit
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CIF code

1 plant Timer:

2 controllable c_aan , c_resetUit , c_resetLopend , c_herstart;

3 uncontrollable u_timeout;

4 location uit:

5 initial; marked;

6 edge c_aan goto lopend;

7 location lopend:

8 edge c_resetLopend goto uit;

9 edge u_timeout goto afgelopen;

10 location afgelopen:

11 edge c_resetUit goto uit;

12 edge c_herstart goto lopend;

13 end

Requirements
SCstand is a formal parameter, the actual parameter is defined when the resource controller
is instantiated. This actual parameter is the light level output signal from the supervisory
controller.

1. The current light level may only be increased when the current light level in the zone is lower
than the required light level in the zone.

Logical expression

HuidigeStand.c plus =⇒ HuidigeStand.stand < SCstand

2. The current light level may only be increased when the timer is finished.

Logical expression
HuidigeStand.c plus =⇒ Timer.afgelopen

3. The current light level may only be decreased when the current light level in the zone is
higher than the required light level in the zone.

Logical expression

HuidigeStand.c min =⇒ HuidigeStand.stand > SCstand

4. The current light level may only be decreased when the timer is finished.

Logical expression
HuidigeStand.c min =⇒ Timer.afgelopen

5. The timer must only start when the current light level is not equal to the required light level.

Logical expression

Timer.c aan =⇒ HuidigeStand.stand ¬= SCstand

6. When the timer is running, it can only be reset when the current light level in the zone is
equal to the required light level in the zone.
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Logical expression

Timer.c resetLopend =⇒ HuidigeStand.stand = SCstand

7. When the timer is finished, it can only be reset when the current light level in the zone is
equal to the required light level in the zone.

Timer.c resetUit =⇒ HuidigeStand.stand = SCstand

8. The timer can only restart when the current light level in the zone is not equal to the required
light level in the zone.

Logical expression

Timer.c herstart =⇒ HuidigeStand.stand ¬= SCstand

9. After changing the light level, the timer needs to start to prevent that the light levels can be
changed too quickly, hindering the traffic.

Automaton
This requirement is modeled by means of an automaton with two locations. The initial location
is l1, from here the location l2 is reached when the current light level of the resource controller
is changed (Huidigestand.c plus and Huidigestand.c min). Before it is possible to change
the current light level again, and thus execute this controllable event, first the timer is either
restarted or reset (Timer.c herstart and Timer.c resetUit).

l1 l2

HuidigeStand.c plus, HuidigeStand.c min

Timer.c herstart, Timer.c resetUit

Definition
CIF code

1 input int [0..1] SC_Toegangs_zone_Stand;

2 input int [0..1] SC_Verlatings_zone_Stand;

3
4 Toegangs_Zone_Resource_Contr:

5 Res_Contr_Openbare_Verlichting(SC_Toegangs_zone_Stand);

6 Verlatings_Zone_Resource_Contr:

7 Res_Contr_Openbare_Verlichting(SC_Verlatings_zone_Stand);

8
9 group def Res_Contr_Openbare_Verlichting(alg int SCstand):

10 plant HuidigeStand:

11 ...

12 end

13
14 plant Timer:

15 ...
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16 end

17
18 requirement HuidigeStand.c_plus needs HuidigeStand.stand < SCstand;

19 requirement HuidigeStand.c_min needs HuidigeStand.stand > SCstand;

20
21 requirement HuidigeStand.c_plus needs Timer.afgelopen;

22 requirement HuidigeStand.c_min needs Timer.afgelopen;

23
24 requirement Timer.c_aan needs HuidigeStand.stand != SCstand;

25 requirement Timer.c_resetLopend needs HuidigeStand.stand = SCstand;

26 requirement Timer.c_resetUit needs HuidigeStand.stand = SCstand;

27 requirement Timer.c_herstart needs HuidigeStand.stand != SCstand;

28
29 requirement Alterneer:

30 location l1:

31 initial; marked;

32 edge HuidigeStand.c_plus , HuidigeStand.c_min goto l2;

33 location l2:

34 edge Timer.c_herstart , Timer.c_resetUit goto l1;

35 end

36 end

C.4.2 Resource controller transition zone

The resource controller of the transition zone is almost identical to the resource controller of
the outside lighting in the entrance and exit zone, presented in Subsection C.4.1. The first
difference is, that the number of light levels in the transition zone, nlevels is nine instead of two.
Secondly, the input differs, as it is now the light level for the transition zone determined by the
supervisory controller. When this model is merged with the traffic tube model, the input and
output are linked. Since this resource controllers is almost identical to the resource controller
presented in Subsection C.4.1, only the CIF code is provided.

CIF code

1 input int [0..8] SC_Ingangs_zone_Stand;

2
3 Ingangs_Zone_Resource_Contr:Res_Contr_Verlichting_Ingang(SC_Ingangs_zone_Stand)

;

4
5 group def Res_Contr_Verlichting_Ingang(alg int SCstand):

6 plant HuidigeStand:

7 controllable c_plus , c_min;

8 disc int [0..8] stand = 0;

9 location:

10 initial; marked;

11 edge c_plus when stand <8 do stand :=stand +1;

12 edge c_min when stand >0 do stand :=stand -1;

13 end

14
15 plant Timer:

16 ...

17 end

18
19 requirement 1

20 ...

21 requirement 9

22 end
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C.4.3 General lighting

The resource controller of the general lighting is almost identical to the resource controller of
the outside lighting in the entrance and exit zone, presented in Subsection C.4.1. The first
difference is, that the number of light levels in the transition zone, nlevels is three instead of
two. Secondly, the input differs, as it is now the light level for the general lighting determined
by the supervisory controller. When this model is merged with the traffic tube model, the
input and output are linked. Since this resource controllers is almost identical to the resource
controller presented in Subsection C.4.1, only the CIF code is provided.

CIF code

1 input int [0..3] SC_Basis_verlichting_Stand;

2
3 Basis_Verlichting_Resource_Contr: Res_Contr_Verlichting_Basis(

SC_Basis_verlichting_Stand);

4
5 group def Res_Contr_Verlichting_Basis(alg int SCstand):

6 plant HuidigeStand:

7 controllable c_plus , c_min;

8 disc int [0..3] stand = 0;

9 location:

10 initial; marked;

11 edge c_plus when stand <3 do stand :=stand +1;

12 edge c_min when stand >0 do stand :=stand -1;

13 end

14
15 plant Timer:

16 ...

17 end

18
19 requirement 1

20 ...

21 requirement 9

22 end
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Appendix D

Model 20XX LTS compatible -
Supervisory control model

The supervisory control model of model 20XX which is compatible to the LTS is presented
in this appendix. With respect to model 20XX, presented in Appendix C, the coordinating
tasks are now allocated to both the supervisory controller and the resource controllers. This
introduces additional automata and requirements. In this appendix, only the automata and
requirements which differ from or are additional to model 20XX are presented. The formal
parameters which are used, are defined in Subsection C.2.1.

D.1 Components

The components of the model are presented in this section. For each plant component a textual
description is provided, as well as an automaton model and the CIF code. For each requirement,
the textual requirement is given, as well as the logical expression or automaton, and the CIF
code.

D.1.1 Automatic operation mode

Description
The lighting systems of the traffic tube are operated manually or automatically. When the
traffic tube state is operational or evacuate, the automatic operation is executed by the resource
controllers. When the traffic tube state is not operational or evacuation, the automatic operation
is executed by the supervisory controller. An additional automaton is defined for the mode of
the automatic operation executed by the resource controller. The initial and marked location
is off (Dutch: uit). Both locations, off and on (Dutch: aan), are reached by means of
controllable events.

Automaton

uit aanc aan

c uit
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CIF code

1 plant def Bediening_AutoRegeling ():

2 controllable c_aan , c_uit;

3 location uit:

4 initial;marked;

5 edge c_aan goto aan;

6 location aan:

7 edge c_uit goto uit;

8 end

D.1.2 Outside lighting entrance/exit zone

Automatic operation mode
Description
The outside lighting system in the entrance and exit zone, presented in Subsection C.1.2 is
extended with the automatic operation mode presented in D.1.1.

CIF code

1 Bediening_AutoRegeling: ^Bediening_AutoRegeling ();

Requirements
The automatic operation mode also introduces additional requirements with respect to the
requirements presented in Subsection C.1.2.

1. The automatic operation executed by the resource controller is enabled when the traffic tube
state is operational or evacuate, the zone is operated automatically, and the traffic tube state
is not changed.

Bediening AutoRegeling.c aan =⇒ (stand operationeel ∨ stand evacuatie) ∧
¬ setauto ∧ Bediening.auto

2. The automatic operation executed by the resource controller is disabled when the traffic tube
state is not operational or evacuate, or when the traffic tube state is changed, or when the zone
is operated manually.

Bediening AutoRegeling.c uit =⇒ ¬(stand operationeel ∨ stand evacuatie) ∨
setauto ∨ Bediening.hand

Definition
CIF code

1 import "Bediening_AutoHand.cif", "Bediening_AutoRegeling.cif";

2
3 group def OpenbareVerlichting(alg bool setauto , stand_operationeel ,

stand_evacuatie):

4
5 Bediening: ^Bediening_AutoHand ();

6 Bediening_AutoRegeling: ^Bediening_AutoRegeling ();

7
8 plant Knoppen:

9 ...

10 end
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11
12 plant StandVerlichting:

13 ...

14 end

15
16 requirement Bediening.c_hand needs Knoppen.hand;

17 requirement Bediening.c_hand needs not setauto;

18 requirement Bediening.c_auto needs Knoppen.auto or setauto;

19 requirement Bediening_AutoRegeling.c_aan needs

20 (stand_operationeel or stand_evacuatie);

21 requirement Bediening_AutoRegeling.c_aan needs not setauto;

22 requirement Bediening_AutoRegeling.c_aan needs Bediening.auto;

23 requirement Bediening_AutoRegeling.c_uit needs

24 (not stand_operationeel and not stand_evacuatie)

25 or setauto

26 or Bediening.hand;

27 end

D.1.3 Additional lighting transition zone

The additional lighting system in the transition zone, presented in Subsection C.1.3, is extended
with the same automaton and requirements as the outside lighting as presented in Subsection
D.1.1. Therefore, only the CIF code is given.

Definition
CIF code

1 import "Bediening_AutoHand.cif", "Bediening_AutoRegeling.cif", "

VerlichtingStand.cif";

2
3 group def Zone_Ingang(alg bool setauto , stand_operationeel , stand_onderhoud ,

stand_herstel , stand_evacuatie):

4
5 Bediening: ^Bediening_AutoHand ();

6 Bediening_AutoRegeling: ^Bediening_AutoRegeling ();

7
8 plant Knoppen:

9 ...

10 end

11
12 StandVerlichting: VerlichtingStand ();

13
14 requirement Bediening.c_hand needs Knoppen.hand;

15 requirement Bediening.c_hand needs not setauto;

16 requirement Bediening.c_auto needs Knoppen.auto or setauto;

17 requirement Bediening_AutoRegeling.c_aan needs

18 (stand_operationeel or stand_evacuatie);

19 requirement Bediening_AutoRegeling.c_aan needs not setauto;

20 requirement Bediening_AutoRegeling.c_aan needs Bediening.auto;

21 requirement Bediening_AutoRegeling.c_uit needs

22 (not stand_operationeel and not stand_evacuatie)

23 or setauto

24 or Bediening.hand;

25 end
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D.1.4 General lighting

The general lighting system in the traffic tube, presented in Subsection C.1.4, is extended with
the same automaton and requirements as the outside lighting as presented in Subsection D.1.1.
Therefore, only the CIF code is given.

Definition
CIF code

1 import "Bediening_AutoHand.cif", "Bediening_AutoRegeling.cif";

2
3 group def Basis_Verlichting(alg bool setauto , stand_operationeel ,

stand_onderhoud , stand_herstel , stand_evacuatie):

4
5 Bediening: ^Bediening_AutoHand ();

6 Bediening_AutoRegeling: ^Bediening_AutoRegeling ();

7
8 plant Knoppen:

9 ...

10 end

11
12 plant StandVerlichting:

13 ...

14 end

15
16 requirement Bediening.c_hand needs Knoppen.hand;

17 requirement Bediening.c_hand needs not setauto;

18 requirement Bediening.c_auto needs Knoppen.auto or setauto;

19 requirement Bediening_AutoRegeling.c_aan needs

20 (stand_operationeel or stand_evacuatie);

21 requirement Bediening_AutoRegeling.c_aan needs not setauto;

22 requirement Bediening_AutoRegeling.c_aan needs Bediening.auto;

23 requirement Bediening_AutoRegeling.c_uit needs

24 (not stand_operationeel and not stand_evacuatie)

25 or setauto

26 or Bediening.hand;

27 end
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D.2 Traffic tube

The differences with respect to the plant model of the traffic tube components in model 20XX,
presented in Section C.2, are the outputs. These are presented in the remainder of this section.

D.2.1 Outputs

The control hardware outputs are determined by the LTS. The outputs are defined for the
outside lighting of the entrance and exit zone, the additional lighting in the transition zone and
the general lighting in the traffic tube. The following outputs are added with respect to model
20XX:

� Enabling automatic operation outside lighting entrance zone: true, false.

� Enabling automatic operation additional lighting transition zone: true, false.

� Enabling automatic operation general lighting traffic tube: true, false.

� Enabling automatic operation outside lighting exit zone: true, false.

CIF code

1 import "Verlichting.cif", "../Definitions/Stand_Verkeersbuis.cif";

2
3 StandVerkeersbuis: Stand_Verkeersbuis ();

4
5 Tunnelbuis_Verlichting: Verlichting(StandVerkeersbuis.SetAuto.setauto ,

StandVerkeersbuis.Stand.operationeel , StandVerkeersbuis.Stand.calamiteit ,

StandVerkeersbuis.Stand.onderhoud ,

6 StandVerkeersbuis.Stand.standby , StandVerkeersbuis.Stand.ondersteunend ,

StandVerkeersbuis.Stand.herstel , StandVerkeersbuis.Stand.evacuatie);

7
8 requirement 1 Stand verkeersbuis

9 ...

10 requirement 7 Stand verkeersbuis

11
12 requirement 1 SetAuto

13 ...

14 requirement 4 SetAuto

15
16 alg bool SC_Toegangs_zone_SetZoneAutomatischeRegeling =

Tunnelbuis_Verlichting.Toegangs_zone.Verlichting.Bediening_AutoRegeling.aan;

17 alg int[0..1] SC_Toegangs_zone_Stand =

Tunnelbuis_Verlichting.Toegangs_zone.Verlichting.StandVerlichting.stand;

18
19 alg bool SC_Ingangs_zone_SetZoneAutomatischeRegeling =

Tunnelbuis_Verlichting.Ingangs_zone.Verlichting.Bediening_AutoRegeling.aan;

20 alg int[0..8] SC_Ingangs_zone_Stand =

Tunnelbuis_Verlichting.Ingangs_zone.Verlichting.StandVerlichting.stand;

21
22 alg bool SC_Basis_verlichting_SetZoneAutomatischeRegeling =

Tunnelbuis_Verlichting.Basisverlichting.Verlichting.Bediening_AutoRegeling.aan;

23 alg int[0..1] SC_Basis_verlichting_Stand =

Tunnelbuis_Verlichting.Basisverlichting.Verlichting.StandVerlichting.stand;

24
25 alg bool SC_Verlatings_zone_SetZoneAutomatischeRegeling =

Tunnelbuis_Verlichting.Verlatings_zone.Verlichting.Bediening_AutoRegeling.aan;

26 alg int[0..1] SC_Verlatings_zone_Stand =

Tunnelbuis_Verlichting.Verlatings_zone.Verlichting.StandVerlichting.stand;
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D.3 Lighting system

The allocation of coordinating tasks to both the supervisory controller and the resource con-
troller results in changes in the lighting system module. As the resource controllers execute the
automatic operation based on the outside light level, these requirements are removed from the
lighting system module. The requirements that are related to manual operation and the traffic
tube states other than operational and evacuate are not removed. Since no new requirements
are introduced, only the CIF code is provided.

D.3.1 Outside lighting entrance/exit zone

CIF code

1 Toegangs_zone: OpenbareVerlichting ();

2 Verlatings_zone: OpenbareVerlichting ();

3
4 group def OpenbareVerlichting ():

5 Verlichting: ^OpenbareVerlichting(setauto , stand_operationeel ,

stand_evacuatie);

6
7 requirement Verlichting.StandVerlichting.c_0 needs

8 Verlichting.Bediening.hand;

9 requirement Verlichting.StandVerlichting.c_0 needs

10 Verlichting.Knoppen.s0;

11 requirement Verlichting.StandVerlichting.c_0 needs

12 not (stand_calamiteit or stand_standby or stand_ondersteunend);

13 requirement Verlichting.StandVerlichting.c_100 needs

14 (Verlichting.Bediening.hand and Verlichting.Knoppen.s100)

15 or (Verlichting.Bediening.auto and (stand_calamiteit or stand_standby or

stand_ondersteunend));

16 end

D.3.2 Additional lighting transition zone

CIF code

1 group Ingangs_zone:

2 Verlichting: Zone_Ingang(setauto , stand_operationeel , stand_onderhoud ,

stand_herstel , stand_evacuatie);

3
4 requirement Verlichting.StandVerlichting.c_0 needs Verlichting.Bediening.hand

;

5 requirement Verlichting.StandVerlichting.c_0 needs Verlichting.Knoppen.s0;

6 requirement Verlichting.StandVerlichting.c_0 needs stand_onderhoud

7 or stand_herstel;

8
9 requirement Verlichting.StandVerlichting.c_1 needs Verlichting.Knoppen.s1;

10 requirement Verlichting.StandVerlichting.c_1 needs Verlichting.Bediening.hand

;

11
12 requirement Verlichting.StandVerlichting.c_2 needs Verlichting.Knoppen.s2;

13 requirement Verlichting.StandVerlichting.c_2 needs Verlichting.Bediening.hand

;

14
15 requirement Verlichting.StandVerlichting.c_3 needs Verlichting.Knoppen.s3;

16 requirement Verlichting.StandVerlichting.c_3 needs Verlichting.Bediening.hand

;

17
18 requirement Verlichting.StandVerlichting.c_4 needs

19 (Verlichting.Knoppen.s4 and Verlichting.Bediening.hand)
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20 or (( stand_onderhoud or stand_herstel) and Verlichting.Bediening.auto);

21
22 requirement Verlichting.StandVerlichting.c_5 needs Verlichting.Knoppen.s5;

23 requirement Verlichting.StandVerlichting.c_5 needs Verlichting.Bediening.hand

;

24
25 requirement Verlichting.StandVerlichting.c_6 needs Verlichting.Knoppen.s6;

26 requirement Verlichting.StandVerlichting.c_6 needs Verlichting.Bediening.hand

;

27
28 requirement Verlichting.StandVerlichting.c_7 needs Verlichting.Knoppen.s7;

29 requirement Verlichting.StandVerlichting.c_7 needs Verlichting.Bediening.hand

;

30
31 requirement Verlichting.StandVerlichting.c_8 needs

32 (Verlichting.Knoppen.s8 and Verlichting.Bediening.hand)

33 or (( stand_standby or stand_calamiteit or stand_ondersteunend) and

Verlichting.Bediening.auto);

34 end

D.3.3 General lighting traffic tube

CIF code

1 group Basisverlichting:

2 Verlichting: Basis_Verlichting(setauto , stand_operationeel , stand_onderhoud ,

stand_herstel , stand_evacuatie);

3
4 requirement Verlichting.StandVerlichting.c_0 needs

5 Verlichting.Bediening.hand;

6 requirement Verlichting.StandVerlichting.c_0 needs

7 Verlichting.Knoppen.s0;

8 requirement Verlichting.StandVerlichting.c_0 needs

9 stand_onderhoud or stand_herstel;

10
11 requirement Verlichting.StandVerlichting.c_100 needs

12 Verlichting.Bediening.hand;

13 requirement Verlichting.StandVerlichting.c_100 needs

14 Verlichting.Knoppen.s100;

15 end
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D.4 Resource controllers

The allocation of coordinating tasks to both the supervisory controller and the resource con-
troller results in changes for the components controlled by the resource controllers. In the
subsections below, the changes for each of the three resource controllers with respect to model
20XX, presented in Appendix C, are given.

D.4.1 Resource controller entrance zone/exit zone

The resource controller of the outside lighting in model 20XX, presented in Subsection C.4.1,
is extended with a plant model of the automatic operation. This automaton corresponds to
the automaton explained in Subsection D.1.1. Moreover, to execute the automatic operation,
the resource controller is extended with a plant model to keep track of the required light level.
This automaton corresponds to the automaton presented in Section A.5, with nlevels = 2. The
discrete integer stand is used to determine if the current light level must be increased or not.

Requirements
The requirements which are added with respect to the resource controller presented in C.4.1
are listed below.

1. The automatic operation may only be enabled when the supervisor enables it.

Logical expression

AutoRegeling.c aan =⇒ SC SetZoneAutomatischeRegeling

2. The automatic operation may only be disabled when the supervisor disables it.

Logical expression

AutoRegeling.c uit =⇒ ¬ SC SetZoneAutomatischeRegeling

3. The required light level may only be equal to off when the automatic operation is enabled
and it is not night, or when the automatic operation is disabled and the light level determined
by the supervisor is equal to off.

Logical expression

GewensteStand.c 0 =⇒ (AutoRegeling.aan ∧ ¬(BuitenlichtSensor = 1)) ∨
(AutoRegeling.uit ∧ SC Stand = 0)

4. The required light level may only be equal to fully on when the automatic operation is enabled
and it is night, or when the automatic operation is disabled and the light level determined by
the supervisor is equal to fully on.

Logical expression

GewensteStand.c 1 =⇒ (AutoRegeling.aan ∧ BuitenlichtSensor = 1) ∨
(AutoRegeling.uit ∧ SC Stand = 1)
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Definition
CIF code

1 import "../Definitions/Bediening_AutoRegeling.cif";

2
3 input bool SC_Toegangs_zone_SetZoneAutomatischeRegeling;

4 input int [0..1] SC_Toegangs_zone_Stand;

5
6 input bool SC_Verlatings_zone_SetZoneAutomatischeRegeling;

7 input int [0..1] SC_Verlatings_zone_Stand;

8
9 input int [0..8] BuitenlichtSensor;

10
11 Toegangs_zone_Resource_Contr: Openbare_Verlichting_Resource_Contr(

SC_Toegangs_zone_SetZoneAutomatischeRegeling , SC_Toegangs_zone_Stand);

12 Verlatings_zone_Resource_Contr: Openbare_Verlichting_Resource_Contr(

SC_Verlatings_zone_SetZoneAutomatischeRegeling , SC_Verlatings_zone_Stand);

13
14 group def Openbare_Verlichting_Resource_Contr(alg bool

SC_SetZoneAutomatischeRegeling; alg int SC_Stand):

15
16 AutoRegeling: Bediening_AutoRegeling ();

17
18 plant GewensteStand:

19 controllable c_0 , c_1;

20 disc int [0 .. 1] stand = 0;

21 location:

22 initial; marked;

23 edge c_0 when stand != 0 do stand := 0;

24 edge c_1 when stand != 1 do stand := 1;

25 end

26
27 plant HuidigeStand:

28 controllable c_plus , c_min;

29 disc int [0..1] stand = 0;

30 location:

31 initial; marked;

32 edge c_plus when stand <1 do stand :=stand +1;

33 edge c_min when stand >0 do stand :=stand -1;

34 end

35
36 plant Timer:

37 controllable c_aan , c_resetUit , c_resetLopend , c_herstart;

38 uncontrollable u_timeout;

39 location uit:

40 initial; marked;

41 edge c_aan goto lopend;

42 location lopend:

43 edge c_resetLopend goto uit;

44 edge u_timeout goto afgelopen;

45 location afgelopen:

46 edge c_resetUit goto uit;

47 edge c_herstart goto lopend;

48 end

49
50 requirement AutoRegeling.c_aan needs

51 SC_SetZoneAutomatischeRegeling;

52 requirement AutoRegeling.c_uit needs

53 not SC_SetZoneAutomatischeRegeling;

54
55 requirement GewensteStand.c_0 needs
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56 (AutoRegeling.aan and BuitenlichtSensor != 1)

57 or (AutoRegeling.uit and SC_Stand = 0);

58 requirement GewensteStand.c_1 needs

59 (AutoRegeling.aan and BuitenlichtSensor = 1)

60 or (AutoRegeling.uit and SC_Stand = 1);

61
62 requirement HuidigeStand.c_plus needs HuidigeStand.stand <GewensteStand.stand;

63 requirement HuidigeStand.c_min needs HuidigeStand.stand >GewensteStand.stand;

64
65 requirement HuidigeStand.c_plus needs Timer.afgelopen;

66 requirement HuidigeStand.c_min needs Timer.afgelopen;

67
68 requirement Timer.c_aan needs HuidigeStand.stand != GewensteStand.stand;

69 requirement Timer.c_resetLopend needs HuidigeStand.stand=GewensteStand.stand;

70 requirement Timer.c_resetUit needs HuidigeStand.stand=GewensteStand.stand;

71 requirement Timer.c_herstart needs HuidigeStand.stand != GewensteStand.stand;

72
73 requirement Alterneer:

74 ...

75 end

76 end

D.4.2 Resource controller transition zone

The resource controller of the additional lighting in model 20XX, presented in Subsection C.4.2,
is changed in the same manner as the resource controller of the outside lighting system. The
difference is that the automaton of the required light level is modeled with nlevels = 9.

Requirements
The requirements which are added with respect to the resource controller presented in C.4.2
are listed below.

1. The automatic operation may only be enabled when the supervisor enables it.

Logical expression

AutoRegeling.c aan =⇒ SC Ingangs zone SetZoneAutomatischeRegeling

2. The automatic operation may only be disabled when the supervisor disables it.

Logical expression

AutoRegeling.c uit =⇒ ¬ SC Ingangs zone SetZoneAutomatischeRegeling

3. For i ∈ {0, .., 8}: The required light level may only be equal to i when the automatic operation
is enabled and the outside light level is equal to i, or when the automatic operation is disabled
and the light level determined by the supervisor is equal to i.

Logical expression

GewensteStand.c i =⇒ (AutoRegeling.aan ∧ BuitenlichtSensor = i) ∨
(AutoRegeling.uit ∧ SC Ingangs zone Stand = i)
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Definition
CIF code

1 import "../Definitions/VerlichtingStand.cif", "../Definitions/

Bediening_AutoRegeling.cif";

2
3 input bool SC_Ingangs_zone_SetZoneAutomatischeRegeling;

4 input int [0..8] SC_Ingangs_zone_Stand;

5
6 input int [0..8] BuitenlichtSensor;

7
8 group Ingangs_zone_Resource_Contr:

9 AutoRegeling: Bediening_AutoRegeling ();

10 GewensteStand: VerlichtingStand ();

11
12 plant HuidigeStand:

13 ...

14 end

15
16 plant Timer:

17 ...

18 end

19
20 requirement AutoRegeling.c_aan needs

21 SC_Ingangs_zone_SetZoneAutomatischeRegeling;

22 requirement AutoRegeling.c_uit needs

23 not SC_Ingangs_zone_SetZoneAutomatischeRegeling;

24
25 requirement GewensteStand.c_0 needs

26 (AutoRegeling.uit and SC_Ingangs_zone_Stand = 0)

27 or (AutoRegeling.aan and BuitenlichtSensor = 1);

28 requirement GewensteStand.c_1 needs

29 (AutoRegeling.uit and SC_Ingangs_zone_Stand = 1);

30 requirement GewensteStand.c_2 needs

31 (AutoRegeling.uit and SC_Ingangs_zone_Stand = 2)

32 or (AutoRegeling.aan and BuitenlichtSensor = 2);

33 requirement GewensteStand.c_3 needs

34 (AutoRegeling.uit and SC_Ingangs_zone_Stand = 3)

35 or (AutoRegeling.aan and BuitenlichtSensor = 3);

36 requirement GewensteStand.c_4 needs

37 (AutoRegeling.uit and SC_Ingangs_zone_Stand = 4)

38 or (AutoRegeling.aan and BuitenlichtSensor = 4);

39 requirement GewensteStand.c_5 needs

40 (AutoRegeling.uit and SC_Ingangs_zone_Stand = 5)

41 or (AutoRegeling.aan and BuitenlichtSensor = 5);

42 requirement GewensteStand.c_6 needs

43 (AutoRegeling.uit and SC_Ingangs_zone_Stand = 6)

44 or (AutoRegeling.aan and BuitenlichtSensor = 6);

45 requirement GewensteStand.c_7 needs

46 (AutoRegeling.uit and SC_Ingangs_zone_Stand = 7)

47 or (AutoRegeling.aan and BuitenlichtSensor = 7);

48 requirement GewensteStand.c_8 needs

49 (AutoRegeling.uit and SC_Ingangs_zone_Stand = 8)

50 or (AutoRegeling.aan and BuitenlichtSensor = 8);

51
52 requirement HuidigeStand.c_plus needs HuidigeStand.stand <GewensteStand.stand;

53 requirement HuidigeStand.c_min needs HuidigeStand.stand >GewensteStand.stand;

54
55 requirement HuidigeStand.c_plus needs Timer.afgelopen;

56 requirement HuidigeStand.c_min needs Timer.afgelopen;

57
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58 requirement Timer.c_aan needs HuidigeStand.stand != GewensteStand.stand;

59 requirement Timer.c_resetLopend needs HuidigeStand.stand=GewensteStand.stand;

60 requirement Timer.c_resetUit needs HuidigeStand.stand=GewensteStand.stand;

61 requirement Timer.c_herstart needs HuidigeStand.stand != GewensteStand.stand;

62
63 requirement Alterneer:

64 ...

65 end

66 end

D.4.3 Resource controller general lighting

The plant model of the resource controller of the general lighting in model 20XX, presented in
Subsection C.4.3, are changed in the same manner as the resource controllers of the outside and
additional lighting systems. The difference is that the automaton of the required light level is
modeled with nlevels = 4.

Requirements
The requirements which are added with respect to the resource controller presented in C.4.3
are listed below.

1. The automatic operation may only be enabled when the supervisor enables it.

Logical expression

AutoRegeling.c aan =⇒ SC Basis verlichting SetZoneAutomatischeRegeling

2. The automatic operation may only be disabled when the supervisor disables it.

Logical expression

AutoRegeling.c uit =⇒ ¬ SC Basis verlichting SetZoneAutomatischeRegeling

3. The required light level may only be equal to off when the automatic operation is disabled
and the light level determined by the supervisor is equal to off.

Logical expression

GewensteStand.c 0 =⇒ AutoRegeling.uit ∧ SC Basis verlichting stand = 0

4. The required light level may only be equal to one when the automatic operation is enabled
and it is night.

Logical expression

GewensteStand.c 1 =⇒ AutoRegeling.aan ∧ BuitenlichtSensor = 1

5. The required light level may only be equal to two when the automatic operation is enabled
and it is day.

Logical expression

GewensteStand.c 1 =⇒ AutoRegeling.aan ∧
¬(BuitenlichtSensor = 0 ∨ BuitenlichtSensor = 1)
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6. The required light level may only be equal to fully on when the automatic operation is
disabled and the light level determined by the supervisor is equal to fully on.

Logical expression

GewensteStand.c 3 =⇒ AutoRegeling.uit ∧ SC Basis verlichting stand = 1

CIF code

1 import "../Definitions/Bediening_AutoRegeling.cif";

2
3 input bool SC_Basis_zone_SetZoneAutomatischeRegeling;

4 input int [0..1] SC_Basis_verlichting_Stand;

5
6 input int [0..8] BuitenlichtSensor;

7
8 group Basis_verlichting_Resource_Contr:

9 AutoRegeling: Bediening_AutoRegeling ();

10
11 plant GewensteStand:

12 controllable c_0 , c_1 , c_2 , c_3;

13 disc int [0 .. 3] stand = 0;

14 location:

15 initial; marked;

16 edge c_0 when stand != 0 do stand := 0;

17 edge c_1 when stand != 1 do stand := 1;

18 edge c_2 when stand != 2 do stand := 2;

19 edge c_3 when stand != 3 do stand := 3;

20 end

21
22 plant HuidigeStand:

23 ...

24 end

25
26 plant Timer:

27 ...

28 end

29
30 requirement AutoRegeling.c_aan needs

31 SC_Basis_verlichting_SetZoneAutomatischeRegeling;

32 requirement AutoRegeling.c_uit needs

33 not SC_Basis_verlichting_SetZoneAutomatischeRegeling;

34
35 requirement GewensteStand.c_0 needs AutoRegeling.uit;

36 requirement GewensteStand.c_0 needs SC_Basis_verlichting_Stand = 0;

37
38 requirement GewensteStand.c_1 needs AutoRegeling.aan;

39 requirement GewensteStand.c_1 needs BuitenlichtSensor = 1;

40
41 requirement GewensteStand.c_2 needs AutoRegeling.aan;

42 requirement GewensteStand.c_2 needs BuitenlichtSensor != 0;

43 requirement GewensteStand.c_2 needs BuitenlichtSensor != 1;

44
45 requirement GewensteStand.c_3 needs AutoRegeling.uit;

46 requirement GewensteStand.c_3 needs SC_Basis_verlichting_Stand = 1;

47
48 requirement HuidigeStand.c_plus needs HuidigeStand.stand <GewensteStand.stand;

49 requirement HuidigeStand.c_min needs HuidigeStand.stand >GewensteStand.stand;

50
51 requirement HuidigeStand.c_plus needs Timer.afgelopen;
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52 requirement HuidigeStand.c_min needs Timer.afgelopen;

53
54 requirement Timer.c_aan needs HuidigeStand.stand != GewensteStand.stand;

55 requirement Timer.c_resetLopend needs HuidigeStand.stand=GewensteStand.stand;

56 requirement Timer.c_resetUit needs HuidigeStand.stand=GewensteStand.stand;

57 requirement Timer.c_herstart needs HuidigeStand.stand != GewensteStand.stand;

58
59 requirement Alterneer:

60 ...

61 end

62 end

118



Appendix E

Model 2023 - Supervisory control
model

In this appendix the CIF code of the three adapters is presented. In Chapter 6 the plant and
requirement models of each adapter are introduced and explained.

E.1 Adapter outside lighting

CIF code

1 // Adapter inputs

2 input int [0..2] SC_OpenbareVerlichting_stand;

3
4 // Adapter outputs

5 alg bool Adapter_Toegangs_zone_SetZoneAutomatischeRegeling = false;

6 alg int [0..1] Adapter_Toegangs_zone_Stand =

7 Adapter_Openbare_Verlichting_GewensteStand.stand;

8
9 alg bool Adapter_Verlatings_zone_SetZoneAutomatischeRegeling = false;

10 alg int [0..1] Adapter_Verlatings_zone_Stand =

11 Adapter_Openbare_Verlichting_GewensteStand.stand;

12
13 plant Adapter_Openbare_Verlichting_GewensteStand:

14 controllable c_0 , c_100;

15 disc int [0..1] stand = 0;

16 location:

17 initial; marked;

18 edge c_0 when stand != 0 do stand := 0;

19 edge c_100 when stand != 1 do stand := 1;

20 end

21
22 requirement Adapter_Openbare_Verlichting_GewensteStand.c_0 needs

23 SC_OpenbareVerlichting_stand = 0;

24 requirement Adapter_Openbare_Verlichting_GewensteStand.c_100 needs

25 SC_OpenbareVerlichting_stand = 1 or SC_OpenbareVerlichting_stand = 2;

E.2 Adapter additional lighting

CIF code

1 // Adapter inputs

2 input int [0..1] SC_Drempelzone_NB_subgroep_1_laag;
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3 input int [0..1] SC_Drempelzone_NB_subgroep_2_laag;

4 input int [0..1] SC_Drempelzone_NB_subgroep_1_2_hoog;

5
6 input int [0..1] SC_Drempelzone_NET_subgroep_3_laag;

7 input int [0..1] SC_Drempelzone_NET_subgroep_4_laag;

8 input int [0..1] SC_Drempelzone_NET_subgroep_3_4_hoog;

9
10 // Adapter outputs

11 alg bool Adapter_Ingangs_zone_SetZoneAutomatischeRegeling = false;

12 alg int [0..8] Adapter_Ingangs_zone_Stand =

13 Adapter_Ingangszone_GewensteStand.stand;

14
15 plant Adapter_Ingangszone_GewensteStand:

16 controllable c_0 , c_1 , c_2 , c_3 , c_4 , c_6 , c_8;

17 disc int [0..8] stand = 0;

18 location:

19 initial; marked;

20 edge c_0 when stand != 0 do stand := 0;

21 edge c_1 when stand != 1 do stand := 1;

22 edge c_2 when stand != 2 do stand := 2;

23 edge c_3 when stand != 3 do stand := 3;

24 edge c_4 when stand != 4 do stand := 4;

25 edge c_6 when stand != 6 do stand := 6;

26 edge c_8 when stand != 8 do stand := 8;

27 end

28
29 requirement Adapter_Ingangszone_GewensteStand.c_0 needs

30 SC_Drempelzone_NB_subgroep_1_laag = 1 and

31 SC_Drempelzone_NB_subgroep_2_laag = 1 and

32 SC_Drempelzone_NB_subgroep_1_2_hoog = 0 and

33 SC_Drempelzone_NET_subgroep_3_laag = 1 and

34 SC_Drempelzone_NET_subgroep_4_laag = 1 and

35 SC_Drempelzone_NET_subgroep_3_4_hoog = 0;

36 requirement Adapter_Ingangszone_GewensteStand.c_1 needs

37 SC_Drempelzone_NB_subgroep_1_laag = 0 and

38 SC_Drempelzone_NB_subgroep_2_laag = 1 and

39 SC_Drempelzone_NB_subgroep_1_2_hoog = 0 and

40 SC_Drempelzone_NET_subgroep_3_laag = 1 and

41 SC_Drempelzone_NET_subgroep_4_laag = 1 and

42 SC_Drempelzone_NET_subgroep_3_4_hoog = 0;

43 requirement Adapter_Ingangszone_GewensteStand.c_2 needs

44 SC_Drempelzone_NB_subgroep_1_laag = 0 and

45 SC_Drempelzone_NB_subgroep_2_laag = 1 and

46 SC_Drempelzone_NB_subgroep_1_2_hoog = 0 and

47 SC_Drempelzone_NET_subgroep_3_laag = 0 and

48 SC_Drempelzone_NET_subgroep_4_laag = 1 and

49 SC_Drempelzone_NET_subgroep_3_4_hoog = 0;

50 requirement Adapter_Ingangszone_GewensteStand.c_3 needs

51 SC_Drempelzone_NB_subgroep_1_laag = 0 and

52 SC_Drempelzone_NB_subgroep_2_laag = 1 and

53 SC_Drempelzone_NB_subgroep_1_2_hoog = 0 and

54 SC_Drempelzone_NET_subgroep_3_laag = 0 and

55 SC_Drempelzone_NET_subgroep_4_laag = 0 and

56 SC_Drempelzone_NET_subgroep_3_4_hoog = 0;

57 requirement Adapter_Ingangszone_GewensteStand.c_4 needs

58 SC_Drempelzone_NB_subgroep_1_laag = 0 and

59 SC_Drempelzone_NB_subgroep_2_laag = 0 and

60 SC_Drempelzone_NB_subgroep_1_2_hoog = 0 and

61 SC_Drempelzone_NET_subgroep_3_laag = 0 and

62 SC_Drempelzone_NET_subgroep_4_laag = 0 and
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63 SC_Drempelzone_NET_subgroep_3_4_hoog = 0;

64 requirement Adapter_Ingangszone_GewensteStand.c_6 needs

65 SC_Drempelzone_NB_subgroep_1_laag = 0 and

66 SC_Drempelzone_NB_subgroep_2_laag = 1 and

67 SC_Drempelzone_NB_subgroep_1_2_hoog = 1 and

68 SC_Drempelzone_NET_subgroep_3_laag = 0 and

69 SC_Drempelzone_NET_subgroep_4_laag = 0 and

70 SC_Drempelzone_NET_subgroep_3_4_hoog = 1;

71 requirement Adapter_Ingangszone_GewensteStand.c_8 needs

72 SC_Drempelzone_NB_subgroep_1_laag = 0 and

73 SC_Drempelzone_NB_subgroep_2_laag = 0 and

74 SC_Drempelzone_NB_subgroep_1_2_hoog = 1 and

75 SC_Drempelzone_NET_subgroep_3_laag = 0 and

76 SC_Drempelzone_NET_subgroep_4_laag = 0 and

77 SC_Drempelzone_NET_subgroep_3_4_hoog = 1;

E.3 Adapter general lighting

CIF code

1 // Adapter inputs

2 input int [0..4] SC_BasisVerlichting_stand;

3
4 // Adapter outputs

5 alg bool Adapter_Basis_verlichting_SetZoneAutomatischeRegeling =

Adapter_Basis_verlichting.AutoRegeling.Aan;

6 alg int [0..1] Adapter_Basis_verlichting_Stand =

Adapter_Basis_verlichting.GewensteStand.stand;

7
8 group Adapter_Basis_verlichting:

9 plant AutoRegeling:

10 controllable c_aan , c_uit;

11 location Uit:

12 initial; marked;

13 edge c_aan goto Aan;

14 location Aan:

15 edge c_uit goto Uit;

16 end

17
18 plant GewensteStand:

19 controllable c_0 , c_1;

20 disc int [0..1] stand = 0;

21 location:

22 initial; marked;

23 edge c_0 when stand != 0 do stand := 0;

24 edge c_1 when stand != 1 do stand := 1;

25 end

26 end

27
28 requirement Adapter_Basis_verlichting.AutoRegeling.c_aan needs

SC_BasisVerlichting_stand = 1 or SC_BasisVerlichting_stand = 2 or

SC_BasisVerlichting_stand = 3;

29 requirement Adapter_Basis_verlichting.AutoRegeling.c_uit needs

SC_BasisVerlichting_stand = 0 or SC_BasisVerlichting_stand = 4;

30
31 requirement Adapter_Basis_verlichting.GewensteStand.c_0 needs

SC_BasisVerlichting_stand = 0;

32 requirement Adapter_Basis_verlichting.GewensteStand.c_1 needs

SC_BasisVerlichting_stand = 4;
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