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Abstract

Objective: The present study investigates how timing plan changes, late in the process, im-
pact production planning. Methods: A greedy algorithm has been developed that is stylized
according to the production planning procedures within a company in the semiconductor indus-
try. The algorithm operates based on a weekly rolling horizon. Each week, the algorithm plans
jobs from the Master Production Schedule (MPS) at the end of the horizon; generates demand,
supply, and process uncertainty; and reschedules the planning according to the uncertainty. We
collected MPS data for 287 jobs and we estimated uncertainty levels based on quantitative and
qualitative data between Q3 2016 and Q2 2021. We simulate the greedy algorithm between Q3
2019 and Q2 2021 with varying levels of uncertainty to measure Key Performance Indicators
(KPIs), such as schedule stability, on-time delivery, and production output. Results: Increases
in uncertainty levels negatively impact the KPIs. The individual types of uncertainty impact
the performance of the model differently. There is an interplay between the individual types of
uncertainty as the impact of holistic uncertainty is different than the sum of its parts. Con-
clusion: Uncertainty becomes increasingly troublesome the more it is present in production
planning and yields significant amounts of schedule instability. Rescheduling for uncertainty
bears a significant cost that must not be excluded from scheduling decisions, especially if pro-
duction planning is done manually.
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Chapter 1

Introduction

Over the last decades, much effort has been directed towards optimizing production processes
and planning. Unfortunately, there are many forms of uncertainty that impact the production
within organizations. Uncertainty that impacts the production processes can originate from
different sources. For example, external sources such as demand uncertainty and supply delays
or internal sources, such as operator absence or machine breakdown. As a consequence of
uncertainty, it might be necessary to revise previously generated production schedules. These
revisions are often referred to as plan changes. By allowing frequent plan changes to schedules
to account for uncertainty, companies experience what is called schedule nervousness or schedule
instability. In the current manufacturing environment, where markets are becoming increasingly
volatile, and where globalization of demand and supply leads to long and uncertain lead times,
changes to production schedules have become the norm in many companies (Pujawan & Smart,
2012). Frequent plan changes to a production schedule can be especially disruptive in multi-level
production systems that use Material Requirements Planning (MRP) logic for their production
planning. In MRP systems, changes to the Master Production Schedule (MPS) subsequently
result in changes in lower levels of the product’s sub-structure (e.g. sub-assemblies, components,
and materials). While plan changes in production schedules can reflect increased responsiveness
to uncertainty, they also lead to negative impacts, such as less effective operations (Blackburn
et al., 1986), loss in planning confidence (De Kok & Inderfurth, 1997), higher inventory and
production costs (Xie et al., 2003), resource idleness, a higher WIP inventory (Herroelen &
Leus, 2005), ineffective relationships with suppliers (Sahin et al., 2008), high costs associated
with production changeovers (Pujawan & Smart, 2012), less productivity, loss of morale of the
employees on the work floor and in the planning department, and a worse on-time delivery
performance (Atadeniz & Sridharan, 2020).

Due to the large impact that uncertainty has on production processes, it has gained much
traction in the literature. The conclusions about the effectiveness of rescheduling in the liter-
ature tend to differ between the MPS and MRP planning, shop floor scheduling, and supply
chain scheduling sub-streams (Hozak & Hill, 2009). This can be explained by the different sets
of assumptions made between the sub-streams. In practice, production processes and planning
are complex and do not fit seamlessly within the mathematical and simulation models present in
the literature. Therefore, we present an empirical study that transcends the boundaries of the
different sub-streams in the literature which addresses rescheduling. Moreover, while reschedul-
ing has always been very much a practical problem, few empirical studies are presented in the
literature (Pujawan & Smart, 2012). The negative impact of schedule instability on supply
chain performance is widely recognized in different industries though. It has been reported as a
major concern in a survey of 116 executives in the airline industry (Law, 2011), 230 executives
in various manufacturing industries (Pujawan & Smart, 2012), and 180 executives in consumer
electronics and electronic components manufacturers (Law & Gunasekaran, 2010). This gave
rise to the notion that, in order to optimize production processes, uncertainty must be con-

9



CHAPTER 1. INTRODUCTION

sidered when designing and operating these processes. ASML, a manufacturer of lithography
machines for the semiconductor industry, also recognizes the impact of schedule instability on
its production planning. This research aims to provide empirical insights for both the literature
and industry into how uncertainty impacts production planning. Furthermore, most current
literature tries to give remedies for single types of uncertainty in the form of scheduling poli-
cies and methods. In practice however, multiple sources of uncertainty can impact production
planning and processes. To this end, we take a holistic approach to uncertainty by studying
how multiple sources of uncertainty impact production planning. By doing so, we help in the
provision of a cause-and-effect structure of uncertainty in the semiconductor industry. A clear
cause-and-effect structure can help organizations gain a better understanding of the impact of
their plan changes (Koh et al., 2002). In order to guide this study, we define a set of research
questions. The answers to these questions will give more insights into the impact of (late) plan
changes. The main research question reads:

How do timing plan changes inside the frozen horizon impact production planning?

To answer the main research question, we draw the following sub-research questions:

1 What types of uncertainty cause these changes?

2.1 How does uncertainty impact the schedule instability?

2.2 How does uncertainty impact the on-time delivery performance?

2.3 How does uncertainty impact the production output?

3 How do the results vary for the different types of uncertainty that cause these changes?

4 What is the difference in impact between preponing orders and postponing orders?

5 Is there a relation between the timing of a timing plan change inside the frozen horizon
and its impact?

Schedule instability can result both from changes in the timing and quantity of planned
and open orders (Steele, 1975). The demand in the semiconductor industry is higher than the
production capacity. In a make to order context, this yields long pipelines with orders waiting
to be processed (i.e. little uncertainty in the quantity of planned and open orders). Therefore,
we limit our analysis to changes in the timing of orders (i.e. timing plan changes). Finally, since
plan changes become more problematic the closer they occur to the execution date of orders, we
only study plan changes that occur late in the production planning process. In order to prevent
these troublesome late changes, many organizations use a frozen horizon in which no further
changes to schedules should be made. While research assumes that these frozen horizons are
strictly adhered to, in practice this is unlikely (Pujawan & Smart, 2012). This is also the case
for the production planning department of ASML.

To answer the research questions, we use an empirical research design that mainly uses
quantitative data, but also some qualitative data where quantitative data lacks. We develop a
greedy scheduling algorithm that is stylized according to the production planning procedures
present at ASML’s TwinScan Factory (TF). The algorithm greedily finds the first possible
order start in time against a set of constraints. The algorithm includes both a scheduling and
rescheduling step. The scheduling step adds new input from the MPS to the end of the frozen
horizon due to the rolling of the horizon. The rescheduling step accounts for the different types
of uncertainty, that are generated by the algorithm, by rescheduling the production schedule
generated by the scheduling step. In order to derive insights from the algorithm, we simulate
the model over a period of two years, between Q3 2019 and Q2 2021. This is the longest period
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CHAPTER 1. INTRODUCTION

that is representative of the current market conditions in the semiconductor industry and the
current way of working within the production planning department of ASML’s TF. Furthermore,
the necessary data from different sources is available in this interval. To arrive at results for
the proposed schedule instability, on-time delivery, and production output Key Performance
Indicators (KPIs), we run the simulation 20 times per reported result. Each simulation run
plans the machine orders (n = 272) over the analysis horizon (n = 105 weeks) with different
uncertainty seeds. Every week, the greedy algorithm generates demand, supply, and process
uncertainty. This uncertainty is estimated from data within ASML. In order to assess the impact
of plan changes, we manipulate the level of uncertainty between low, medium, and high levels.
Here, the medium level is the estimated uncertainty based on uncertainty data from previous
years at ASML. Furthermore, we manipulate the presence of different types of uncertainty in the
analysis of the model to provide a holistic overview of how uncertainty impacts the production
planning.

The remainder of this report will be structured as follows. Chapter 3 will provide a theo-
retical background that summarizes the findings in the current literature on rescheduling under
uncertainty. Chapter 4 describes the methodology used to study the research questions. This
chapter contains four sections. Firstly, a model description is given (Section 4.1). Secondly,
Section 4.2 reports how the data is collected. Thirdly, a model verification step is outlined in
Section 4.3. Fourthly, Section 4.4 describes how the analysis of the model is executed. Chapter
5 reports on the results that stem from the analysis. And finally, Chapter 6 provides a dis-
cussion and conclusion that answers the research questions and provides managerial insights,
limitations, and future research directions.
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Chapter 2

Problem Definition

2.1 Empirical Context

This research is conducted within ASML. ASML is one of the world’s leading manufacturers
of chip-making equipment in the semiconductor industry, founded in 1984. The hardware,
software and services that ASML provides to its customers allows them to mass produce patterns
on silicon through lithography. ASML’s lithography machines perform an essential step in
the manufacturing process of integrated circuits, otherwise known as microchips. ASML has
over 60 locations in 16 countries and is headquartered in Veldhoven, The Netherlands. There
are over 32,000 ASML employees worldwide (in Full-time Equivalent (FTE)), from which the
headquarter comprises over half.

ASML assembles its final machines in two factories in Veldhoven: the TF and the EUV
Factory (EF). In the former, machines with Deep Ultraviolet (DUV) technology are being as-
sembled. In the latter, machines are assembled with new, groundbreaking Extreme Ultraviolet
(EUV). This research will focus on the TF. Generally speaking, ASML has a multi-level assem-
bly process: each machine (level 0) consists of multiple modules (level 1), of which some consist
of submodules (level 2) (Figure 2.1).

Figure 2.1

Part of ASML’s Multi-level Production Process in the TwinScan Factory

Note. IL = Illuminator, MF = MetroFrame, WS = WaferStage
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CHAPTER 2. PROBLEM DEFINITION

A general overview of the manufacturing process in the TF within ASML is given in Figure
2.2. Here the modules are assembled in the Module Build (MB) step, the final machine is as-
sembled in the System Integration (SI) step, the machine is tested in the System Performance
(SP) step, and prepared for transport (i.e. disassembled) in the PrePack (PP) step. After the
machine is packed, it is flown to the customer and installed at their location. At ASML, the
assembly of the modules and machines takes place at fixed locations (i.e. a project shop man-
ufacturing process). The modules are assembled in so-called work centers. All resources come
to these work centers until the module is finished. The SI, SP and PP steps are performed in
cabins. The same principle holds as for the work centers: all resources come to the cabin until
the SI, SP and PP steps are finished. The SI and PP can basically be seen as reverse steps.
At the SI the machine gets assembled, and at the PP the machine gets partly disassembled in
a reversed manner. Furthermore, the planning of these two steps is combined, as both use the
same resources (operators, cabin, tooling, etc.). The SP step on the other hand, is different in
nature and uses different resources. Therefore, we will use the abbreviation SI&PP to denote
the combined SI and PP steps in the remainder of this report. Furthermore, we will use the
term SYSTEM to refer to the combined SI, SP and PP steps.

Figure 2.2

Manufacturing Process TwinScan Factory ASML

According to ASML’s policy, customer is king. To serve the needs of their customers,
ASML’s TF offers two machine types (XT and NXT), each having multiple versions, with
multiple different configurations and options. Nearly all modules that ASML assembles, require
the chosen customer preferences in order to be finalized. Therefore, the modules can generally
be seen as Make-to-Order (MTO) products. The submodules are mostly stocked based on the
Kanban principle. Due to high demand for the machines of ASML, customers must place an
order well in advance of the agreed upon delivery date. To put this into perspective, all the
machines that ASML will assemble in the TF in 2022 had already been sold before the start
of 2022. Between the placement date of the order and some weeks prior to the start of the
assembly of the machine, a lot can change. Especially in the high-tech industry, which drives
on technological breakthroughs. This ever developing market is exemplified by Moore’s law,
which states: ”The number of transistors incorporated in a chip will approximately double every
24 months.” (Intel, n.d.). Hence, a formal agreement between ASML and the customer is
negotiated a few weeks prior to the start of the assembly. This agreement contains information
about the final configuration and the delivery date of the machine. Production orders for
SI can be opened if a Start GO is received. A Start GO includes three items: (1) a formal
agreement, (2) material availability according to the formal agreement and (3) capacity and
resource availability in the TF, which is denoted by a production start- and output date. This
output date is called the Independent Requirement Date (IRD). The IRD is the date on which
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CHAPTER 2. PROBLEM DEFINITION

the TF promises to have the machine ready for shipment.
The opening of the production orders for SI marks the transition of the yellow horizon to

the blue horizon. The yellow horizon lies between ten and four weeks prior to the start of the SI
and the blue horizon between four and zero weeks. In the yellow horizon the Start GO is pre-
pared. This is done by planning the allocation between supply (item 2 and 3 of Start GO) and
demand (item 1 of Start GO), and by looking ahead to the progress of the opened orders in the
blue horizon and Work-in-Progress (WIP). The blue horizon, also dubbed the frozen horizon,
lasts until the start of the SI. During this interval, no further changes to the formal agreement
(item 1 of Start GO) should be made to prevent troublesome rescheduling of material (item 2
of Start GO), capacity, and resources (item 3 of Start GO). Figure 2.3 gives a general overview
of the timeline between the placement of a customer order and the delivery of the machine,
including the yellow- and blue horizon (denoted in their respective colors). Part of the manu-
facturing process is roughly plotted above the timeline of Figure 2.3 to denote their interrelation.

Figure 2.3

Timeline Customer Order

The following paragraph will zoom in on the production planning activities in the timeline
of a customer order. Each four weeks, MPS is updated and sent to the production planning
departments. All the production planning departments in the TF (MB, long term SYSTEM,
short term SYSTEM and configuration SYSTEM) work off this MPS according to a weekly
drumbeat. Each week, the production planning departments update the planning for the part
of the manufacturing process that they are responsible for. The production planning sequence
generally follows a chronological order. From the MPS, the long term SYSTEM planners take
note of the machines that are nearing the blue horizon. At ASML, the start date of the SI (level
0 of the multi-level production process) is the date used for production planning. These dates
have to be planned inside their respective MPS week. For example, before week 36 starts, the
long term SYSTEM planners take note of the MPS planned starts for week 39. Let us say that
order numbers 2029, 2030, 2031 and 2032 have to be started in week 39. After Start GO’s are
given for the planned orders, the long term SYSTEM planners start to open the production
orders for these machines. This is done by planning them four weeks ahead in the blue horizon
according to material, capacity, and personnel constraints. The opened production orders are
planned to start on a specific day during the aforementioned week (e.g. order number 2029 is
planned to start on Monday in week 39, order number 2030 on Tuesday, etc.). If a start GO
is not finalized when an order nears the blue horizon, the order halts before the blue interval,
which can result in lead time delay. After the SI start has been planned in the blue horizon,
the MB planners start opening the production orders for the assembly of the modules against
material, capacity and personnel constraints. Currently, due to unexpected high demand, they
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CHAPTER 2. PROBLEM DEFINITION

use the planned SI start as due date for the modules that they plan. In the near future, the
aim is to plan both the SI starts and MB starts on the MPS. The start of the SI coincides with
the end of the blue horizon (Figure 2.3). Once an open production order of a machine nears the
start of the SI, the production order is updated by the short term SYSTEM planners. They
do so against more up-to-date material, capacity and personnel constraints. The short term
SYSTEM planners work in the same planning document as the long term SYSTEM planners.
Because the short term SYSTEM planners are planning on an operational level, they update
their planning on a daily basis. This extra short term planning step is required to account for
uncertainties that can occur inside the blue horizon. During the entirety of this production
planning process, the configuration SYSTEM planners update the planning for any changes
that occur in the configuration of machines. In short, the tactical level MPS transforms in an
operational level MRP during the blue horizon.

2.2 Problem Context

The problem that ASML faces is late plan changes in the production planning procedure of
the TF, as described in Section 2.1. These plan changes can be described and classified by the
timing of the occurrence of the changes due to uncertainty, and the possible causes and effects
of the changes within the company.

2.2.1 Timing of Plan Changes

Unfortunately, the production planning procedure as described in section 2.1, does not always
hold for ASML. The semiconductor industry, in which both ASML and its customers operate, is
fast changing by nature. This characteristic of the industry, combined with ASML’s ‘customer
is king’ policy, leads to uncertainty that affects the planning of the manufacturing process. This
uncertainty can cause plan changes and can occur anywhere between the initial placement of a
customer order and the final installation of the machine at the customer site (Figure 2.3).

In the phases before the Start GO is given (prior to the blue horizon), plan changes do
not pose much of a problem, since customer orders are only planned in the MPS based on a
Rough-Cut Capacity Planning (RCCP). Therefore, plan changes in these orders can easily be
accounted for without affecting the lead time of machines.

However, changes that occur after the Start GO is given, do pose a serious problem. After
the Start GO, the customer orders in the MPS are transformed into a MRP based on Capacity
Requirements Planning (CRP). This happens during the blue- or frozen horizon. As the name
suggests, scheduled orders should not be changed anymore in this time period. This can be
explained by the fact that during this horizon the production orders for SI and MB are opened.
Material, capacity and personnel are allocated to these opened production orders. Even worse,
production orders for MB might be in the WIP already when a plan change for a machine in the
blue horizon occurs. Therefore, plan changes that occur inside the blue horizon lead to serious
investments of manhours by the involved departments and can ultimately lead to increases in
lead time of the machine and other machines.

When the SI has started, no further changes to the planning of the machine can be made.
The start of the SI marks the end of the machine planning and the start of the WIP of the
machines. This does not take away from the fact that a machine in the WIP is also vulnerable
to uncertainties. These uncertainties can result in deviations from the planned cycle times in
the WIP, which in turn can cause plan changes in upcoming orders due to a chain reaction.

2.2.2 Plan Changes Defined

Plan changes that occur within a manufacturing process can have multiple causes. Koh et
al. (2002) classified these causes into external supply, external demand, internal supply, and
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internal demand. When we apply this structure to ASML’s context, we arrive at the following
categorization: (1) demand uncertainty, (2) supply uncertainty and (3) process uncertainty.
Note that these three categories roughly represent the contents of the Start GO. The plan
changes that result from these uncertainties can be divided into changes in the timing of orders
and changes in the configuration of orders. The timing plan changes can be caused by: (1)
customer disagreement with the provided IRD of their order, (2) supply uncertainty, and (3)
process uncertainty. Here, cause (1) is reflected by a customer changing its Customer Requested
Delivery (CRD) date. The configuration plan changes can be caused by configuration changes
requested by the customer (1). Figure 2.4 gives an overview of the classification of plan changes.
In this classification, the MPS Sequence Changes are handled by the long term SYSTEM plan-
ners and the Reallocations by the configuration SYSTEM planners. The information on the
remainder of the causes of timing plan changes (Delay in Order Start, Increase in Cycle Time,
and Decrease in Cycle Time) are passed to the long term SYSTEM planning department as
well, so that they can adapt the planning accordingly. The different types of plan changes and
uncertainties are discussed in more detail in the next paragraphs.

Figure 2.4

Classification of Plan Changes

Note. CRD = Customer Requested Delivery, MPS = Master Production Schedule, MB = Module
Build, SI = System Integration, SP = System Performance, PP = Prepack.

An MPS sequence change is defined as a change in the sequence of planned- or opened
orders’ start dates of the SI. A sequence change can occur anywhere between the placement of
the initial customer order and the actual start of the SI (see Figure 2.3). A change in the start
dates of SI in the sequence of planned orders does not affect the production planning much.
These generally occur before the blue horizon. At this time, MB has not opened the orders for
the modules of these machines yet, so the long term SYSTEM planners can switch them fairly
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freely according to capacity, resource, and CRD date constraints. These sequence changes do
not have to be communicated explicitly to the MB planning, as they occur before the planning
horizon of MB. Here, the only negative impact is on the manhours invested by the production
planning departments. As discussed in section 2.2.1, sequence changes do have a significant
negative impact on the manufacturing process when they occur after the Start GO (i.e. inside
the blue horizon). Sequence changes after the start GO generally take place when MB has
already opened (or even started) its orders. These sequence changes can have a negative impact
on lead time for the order itself as for other orders. This holds for both the situation in which
an order needs to be preponed (i.e. the planned start is moved closer to the actual date) and
one in which it needs to be postponed (i.e. the planned start is moved further away from the
actual date). This can be explained by the fact that the manufacturing process of the TF is
capacity constrained (in terms of personnel and cabins). Due to this capacity bottleneck, a
change in the timing of one order, always leads to a change in the timing of another order. If an
order is preponed another order has to be postponed to adhere to the capacity constraints at
any given time. Similarly, if an order is postponed, capacity is freed that allows another order
to be preponed. When a requested sequence change occurs after the start GO, an investigation
between MB and long term SYSTEM planning is required. In this investigation they check if
the sequence change can occur according to all constraints, and subsequently perform a scenario
analysis. When it appears that the requested sequence change cannot be executed due to time
constraints at MB, the possibility of switching an already started module to another machine
is investigated. When such a sequence change is implemented, lead times are further increased
as the already started module needs to be rebuilt. The extra time this takes depends on the
progress of the module and how much the current module configuration differs from the one it
needs to become.

A reallocation is defined as a change in the sales document of the formal agreement.
This entails both changes in the configuration plus options of the machine, and ownership of
the sales document (i.e. the sales document changes customer). When the sales document
changes ownership, the possibility of swapping the machines of two customers is investigated.
Generally, these machines are of the same, or nearly the same, type and configuration. By
swapping the ownership of orders, the production planners prevent changes in the production
schedule. Reallocations can occur anywhere between the Start GO and the installation of the
machine at the customer site (see Figure 2.3). Generally speaking, the later on a reallocation
occurs in the production process, the bigger the impact on manhours and lead time (see Section
2.2.1). Think of it this way: a configuration change after the completion of the SI, during the
testing phase of the machine, has a higher impact than a change in the configuration during
the blue horizon, where MB might or might not have started assembling the modules.

Supply uncertainties are another cause of timing plan changes. These are generally only
problematic when supplies arrive late. Most of the time, the department that is in charge of
supplies notifies the production planning departments well in advance when supply delays are
likely to occur. These supply delays can result in delays in order starts for both MB and SI.
In more extreme cases of supply delay, it might be beneficial to investigate possible sequence
changes. This can prevent later scheduled orders to be delayed as well or can prevent the idling
of capacity.

Process uncertainty is the third category that causes timing plan changes. Process un-
certainty can be divided into MB process uncertainty and SYSTEM (SI&PP, SP) process un-
certainty (see Figure 2.2 for an overview of the manufacturing process). The former can impact
the SI start date of an order, since the modules have to be finished before the SI can start.
The latter can only impact SI start dates of subsequent orders, since these process uncertainties
occur when the machine order has started already, i.e. the machine is in the WIP. In extreme
cases of process uncertainty, MPS sequence changes can occur.
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2.3 Problem Statement

The main problem that ASML wants to solve is plan changes that occur late in the planning
process of the TF. Plan changes that occur in the yellow horizon, prior to the blue horizon, are
not deemed as problematic, since their negative impact is minimal. The blue horizon (or frozen
horizon) should be devoid of plan changes though. By adhering to the production planning
in the blue horizon, a more stable manufacturing environment can be ensured. Nonetheless,
frequent plan changes do occur within the blue horizon at ASML. These plan changes are
deemed as problematic, since they significantly impact the manufacturing process in a negative
way. Therefore, this research will focus on plan changes that occur within the blue horizon. At
ASML the MPS is scheduled based on the start dates of the SI (level 0). During the blue horizon,
this MPS is transformed into a MRP, that includes the modules (level 1). The submodules (level
2) are generally stocked according to the Kanban method and are thus not directly linked to a
machine order. Therefore, to capture the problematic plan changes inside the TF, this research
will focus on plan changes that occur on the machine level (level 0) inside the blue horizon.
The MB planning (level 1), that is affected by these plan changes will be partly included in the
research as well. For the sake of simplification, we will only include four of the modules (level
1) that ASML makes in Veldhoven for the process uncertainty of MB: the MetroFrame (MF),
WaferStage (WS), Illuminator (IL), Lens (LE). Other modules on level one that ASML makes
in Veldhoven will be assumed to not create process uncertainty. Modules that ASML makes on
different locations in the world will be categorized under supply uncertainty. See Figure 2.1 for
an overview of the multi-level production process.

As discussed in Section 2.2.2, plan changes within ASML can be caused by three types
of uncertainty: demand, supply and process. Demand uncertainty can be divided in timing
plan changes and configuration plan changes. Supply- and process uncertainty both result
in timing plan changes (Figure 2.4). There is a high variety of configuration changes that
a machine can undergo. These changes are handled partly by the configuration SYSTEM
planners. During meetings with employees in this department, it has become clear that the
configuration changes that are requested vary substantially in their characteristics. There are
lots of different possible changes of the configuration, hardware, and software of the machine.
Furthermore, reconfigurations can take place anywhere between the placement of a customer
order and the installation at the customer site (Figure 2.3). While there are standardized
procedures in place to address these reallocations, the impact that they have on several relevant
key performance indicators (KPIs), such as number of assembly starts per period or on-time
performance, is very differentiated and up to now not measured and included in the reallocation
decision. Timing plan changes on the other hand, have less different characteristics as they can
only result in planned orders being preponed, postponed or in a change in the sequence of
planned orders. These changes are more tangible and historical data is easier to gather. This
allows the timing plan changes to be modelled more easily. While process uncertainty in the
WIP of the machines can cause delays or expeditions for upcoming orders in the MPS sequence,
they generally do not result in problematic timing plan changes. Reason behind this is that the
cycle times of the machines are fairly stable, and include buffer time. On the other hand, process
uncertainty in the WIP of MB can result in problematic timing plan changes as the SI cannot
start before the modules are finished. Finally, reallocations of the ownership of a machine due
to customer requested changes, do not impact the scheduling inside the blue horizon. They
only change which machine goes to which customer. The reasoning in this paragraph leads to
the inclusion of: (1) sequence changes due to demand uncertainty, (2) timing plan changes due
to supply delays, (3) timing plan changes due to process uncertainty at MB, in the scope of my
research (Figure 3). The remaining plan changes are excluded: (1) configuration changes due to
demand uncertainty, (2) reallocations due to CRD date changes, and (3) timing plan changes
due to process uncertainty at SI&PP and SP (Figure 2.4). For ease of notification, the changes
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included in the scope will be referred to as ‘timing plan changes’ in the remainder of this report
(previously, timing plan changes also included the changes due to process uncertainty at SI&PP
and SP). Inside the TF, two types of machines are assembled: XT and NXT. XT machines
are based on an older technique and are more volume-worthy and the assembly process is more
streamlined and mature. NXT machines are also volume-worthy, but the assembly process is
less routine. Therefore, the initial focus of this research will be on the XT machines. Currently,
there are six different versions of regular XT machines that are being manufactured in the TF,
each having their own cycle times for SI&PP and SP. All six versions will be included into the
scope of this study.

The timing plan changes that occur inside the scope, as described by the paragraphs above,
can have different impacts on the TF. Rescheduling of orders can result in extra work hours
and less motivation for the production planning, and other involved departments. It can also
result in other cost that would not have been incurred if no timing plan changes were present.
Furthermore, it can have an impact on cycle- and lead times of orders. These are just a small
subset of the possible impact categories of timing plan changes. For the sake of modelability
and usefulness, this research will focus on on-time start performance, number of SI starts, and
schedule stability as KPIs. Due to time constraints and the overall difficulty of measurement,
impact categories like invested manhours in the replanning and the monetary cost of timing
plan changes will be excluded from this research. However, by including a measure of schedule
stability as a Key Performance Indicator (KPI), the invested manhours get partially addressed
as well. This can be explained by the fact that the more stable a schedule is, the less plan
changes occur and thus the less manhours have to be invested in rescheduling.
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Chapter 3

Theoretical Background

It is widely known that manufacturing companies use production schedules to help plan their
processes. Lots of research has been conducted to generate optimal schedules. In the real world
however, optimal schedules rarely result in an optimal manufacturing process. This can be
explained by the fact that the world is dynamic and stochastic. Therefore, the manufacturing
companies that operate in it are subject to considerable uncertainties. These uncertainties often
result in the inevitable revision of manufacturing schedules, which in turn results in rescheduling
(i.e. plan changes). This led to the emergence of a literature stream that addresses production
scheduling under uncertainty.

3.1 Sources of Uncertainty

Uncertainties, otherwise known as unexpected events, are the main cause of plan changes.
Uncertainty in organizations and supply chains can originate from both operational factors and
non-operational factors. In their book on disruption management, Yu and Qi (2004) state several
non-operational factors: (1) Changes in the system environment. For example, snowstorms
may affect transportation. (2) Unpredictable events. For example, terrorist attacks, union
strikes, or the more recent COVID-19 pandemic. (3) New restrictions. For example, new
government laws and regulations.

Uncertainty, that originates from operational factors is more widely present in the current
literature. In their review of MRP systems under uncertainty, Koh et al. (2002) classified un-
certainty into two main categories: input (as external supply or external demand) and process
(as internal supply or internal demand). Figure 3.1 shows this categorization structure of un-
certainty and Figure 3.2 shows the interrelationships between the uncertainties. Of course, any
combination of input- and process uncertainty can exist as well.
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Figure 3.1

Uncertainty Categorization Structure

Note. Adapted from Koh et al., 2002, ES = External Supply, ED = External Demand, IS =
Internal Supply, ID = Internal Demand.

Figure 3.2

Interrelationships between External and Internal Supply and Demand

Note. Adapted from Koh et al., 2002, ES = External Supply, ED = External Demand, IS =
Internal Supply, ID = Internal Demand.

Uncertainty at external supply is mainly due to external suppliers that fail to deliver as
promised (Atadeniz & Sridharan, 2020; Koh et al., 2002; Vieira et al., 2003). The ordered
supplies can be both later than ordered or less than the ordered quantity. This can lead to
unplanned changes in the periods that lie within the scheduling horizon of an organization. In
more extreme cases, these supply uncertainties can even impact open orders, to which supplies
have already been assigned. These supply uncertainties can propagate to higher levels in the
manufacturing process and can cause costly adjustments and lead to indirect costs, such as
losing the confidence of buyers (Atadeniz & Sridharan, 2020). Furthermore, the market price in
a supply chain may change for (raw) materials, which also adds to external supply uncertainty
(Yu & Qi, 2004). External supply uncertainty at ASML is represented by delays in external
supply of suppliers. Here, suppliers can be both independent companies and ASML’s own
production facilities in different locations that supply to the headquarter in Veldhoven.

Uncertainty at External Demand can both be caused due to the uncertainty of future
demand (Atadeniz & Sridharan, 2020; Blackburn et al., 1985) and inaccurate forecasts of future
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demand (Koh et al., 2002). In rolling schedules, the scheduling horizon is rolled forward and
the forecasts of demand and the production schedule are updated with new information. If the
actual demand is less than the forecast predicted, orders may be rescheduled to a later date.
If actual demand is greater than the forecast predicted, an order might be rescheduled to an
earlier date to account for the extra time needed to manufacture the products. Another type
of uncertainty in external demand is the arrival of urgent-, rush-, or hot jobs (Vieira et al.,
2003). Besides the uncertainty in the quantity and timing of demand, the content of demand
might change as well. Hence, changes in the configuration of customer orders are a cause of
uncertainty in external demand as well (Koh et al., 2002; Yu & Qi, 2004). At ASML, external
demand uncertainty is present in the wishes of its customers, with regards to the configuration
and timing of the delivery of the machines, which are already ordered. Because the demand for
the machines is higher than the production capacity, uncertainty of future demand is hardly
present in the coming couple of years.

Uncertainties that occur within the boundary of a company’s system are grouped into the
internal supply and internal demand categories by Koh et al. (2002) (Figure 3.1 and 3.2).
Internal supply and demand uncertainty are interrelated and therefore discussed together in
this research. For example, parts can arrive late from a previous step in the manufacturing
process due to resource overload (Koh et al., 2002). The use of different lot-sizing rules can
also affect internal supply capability between workstations. Whenever there is a deviation
between the ordered lot size and the produced lot size, overages or shortages of products between
workstations are created if safety stock is not available (Blackburn et al., 1985; Koh et al., 2002).
Remaining sources of internal supply and demand uncertainty are given by Koh et al. (2002)
and Vieira et al. (2003) capacity loading, interoperation move time, queue waiting time, process
lead time, variability in set-up and run time, tooling unavailability, material unavailability,
operator absence, machine breakdown, late supply, variability in resource supply, prematurely
released orders, engineering changes, system uncertainty, lost work-in-progress (WIP), safety
stock changes, quality variation in the production process, yield loss, scrap, changes in job
priority, record errors and unplanned transactions. Yu and Qi (2004, p. 17) also state some of
these uncertainties under their Changes in availability of resources and Uncertainties in system
performance categories. Within the context of this research at ASML, internal demand and
supply uncertainty is present in the process uncertainty of the different levels of the multi-level
production process. Internal supply from ASML’s warehouse to the work floor is assumed to
be neglectable.

3.2 Impact of Plan Changes

3.2.1 Mixed Conclusions in the Scheduling Literature on Rescheduling

While there is a long-standing research base that addresses the advantages and disadvantages of
frequent rescheduling within a manufacturing context, their conclusions are mixed. Hozak and
Hill (2009) try to explain these mixed conclusions. To aid their explanation, they divided the
literature stream on scheduling under uncertainty into three sub-streams: (1) internal planning,
(2) shop floor scheduling, and (3) supply chain scheduling. Here, internal planning refers to the
planning of techniques such as the MPS and the MRP (i.e., what to produce when in which
quantities). The internal planning is used as input for the shop floor scheduling. Shop floor
scheduling is typically concerned with assigning jobs to different machines on the shop floor.
Both the internal planning and the shop floor scheduling sub-streams started to recognize the
importance of adopting a supply chain view, instead of the traditional isolated company view.
The supply chain sub-stream includes the papers that resulted from this shift and includes
research in novel supply chain scheduling areas as well. Hozak and Hill (2009) explain the
different modeling choices and assumptions that are made in the different sub-streams (Table
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Table 3.1

Modeling Choices that may affect Conclusions about the Frequency of Rescheduling

Supports more frequent (+)
Modeling choice or less frequent (-) rescheduling

Not modeling all system nervousness and instability costs +
(e.g., not modeling high non-linear ordering costs)

Modeling demand, production, and distribution that may mask +
instability costs (e.g., assuming non-lumpy demand that
requires production and distribution every period)

Not modeling instability costs related to ‘human factors’ +
(e.g., worker confusion and loss of morale)

Modeling that replanning always results in rescheduling (e.g., not -
filtering the rescheduling logic based on what is cost-effective)

Not modeling that forecasts are increasingly inaccurate further -
into the future

Not modeling lead time compression -
Modeling lead times that show less benefit from frequent -

replanning

Note. Adapted from Hozak and Hill (2009)

3.1). Generally, there seems to be a tendency in the literature to make the same set of as-
sumptions within the different sub-streams. This leads to the findings of Hozak and Hill (2009)
that, generally speaking: (1) the internal planning papers are critical of frequent rescheduling,
(2) the shop floor papers support rescheduling, although the conclusions are less consentient,
and (3) the supply chain papers endorse responding quickly to updated information (implying
frequent rescheduling). The authors conclude by stating that a general conclusion on frequently
rescheduling cannot be given, as there has been little effort to tie the different sub-streams of
literature together.

3.2.2 Impact Categories

Over the last decades, many studies investigated plan changes. In this literature, multiple
different performance measures have been used to assess the impact of plan changes. Atadeniz
and Sridharan (2020) provide a comprehensive review of the literature on MPS nervousness.
They state that when production orders are opened, resources are allocated to that order.
Rescheduling these orders is often on short notice and can be costly, ineffective, and confusing.
In particular, the authors found that rescheduling can lead to expediting, scheduling overtime or
undertime, and premature breakdown of a setup for another setup. These can lead to increased
costs, less productivity, and can have a negative impact on the morale of the employees on the
work floor and in the planning department. On top of this, the on-time delivery performance
towards customers suffers from rescheduling. To make matters worse, the negative impacts
of rescheduling mentioned above, might be amplified by nervousness-inducing rescheduling in
production processes with a multi-level Bill of Material (BOM) (Atadeniz & Sridharan, 2020).
The authors quantify the effect of capacity constraints on the effectiveness of different policies
for dampening schedule nervousness (such as freezing a portion of the MPS) under demand
uncertainty. We extend this paper by looking quantitatively at the effects of different types of
uncertainty in an environment with capacity constraints and a fixed policy (fixed frozen portion
of the MPS). In the shop floor scheduling literature disruptions can cause rescheduling when
they are sufficiently large. Disrupted schedules incur higher costs due to resource idleness,
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a higher WIP inventory, and missed due dates and an increased system nervousness due to
frequent rescheduling (Herroelen & Leus, 2005).

Most research on scheduling under uncertainty frequently uses a (sub)set of performance
measures consisting of (monetary) costs, schedule instability, and service level to study the
impact of plan changes. Cost is often composed of several from the following cost elements: setup
costs, inventory holding costs, ordering or raw material costs, shortage costs, and processing
costs. Tunc et al. (2013) state that the cost of MRP system nervousness is difficult to measure.
To this end, they presented a measure to assess this cost, in terms of ordering-, holding-,
and shortage costs for different inventory replenishment policies. Schedule instability in the
internal planning literature is often based on a measure provided by Sridharan et al. (1988), that
measures the difference in scheduled order quantities between subsequent planning cycles. In the
shop floor scheduling literature it is often measured in frequency of rescheduling interventions,
starting time deviations, and sequence deviations between initial and new schedules. Service
level is mostly expressed in fill rate, which is defined as the proportion of end-item demand that
can be satisfied from stock, or by a measure of maximum lateness.

Internal Planning Literature

Sridharan and Lawrence LaForge (1989) found that a small amount of safety stock improved
schedule stability and lowered cost. However, they also found that further increases in the safety
stock level often led to increases in schedule instability and always led to higher cost. Here the
lot-sizing costs consists of setup and holding cost and the schedule stability is an adaptation
of the measure provided by Sridharan et al. (1988). Atadeniz and Sridharan (2020) used the
same lot-sizing cost and a similar schedule instability measure, combined with a measure of fill
rate, to study the effect of capacity constraints on the effectiveness of policies for dampening
schedule nervousness. They found that the relative effectiveness of the policies, in terms of these
measures, was not impacted by a capacity constraint. Kadipasaoglu and Sridharan (1995)
investigated the effect of freezing a part of the MPS with similar cost, schedule instability,
and service level measures as Atadeniz and Sridharan (2020). They concluded that freezing
reduced cost, instability, and service level. Zhao and Lee (1993) investigated the impact of
several MPS freezing parameters on similar measures of cost (includes shortage cost as well),
stability and service levels. The results from their analysis under stochastic demand were as
follows: Increases in the proportion of the schedule that got frozen, increased cost (contrasting
the findings of Kadipasaoglu and Sridharan, 1995) but decreased the instability, and service
level. Here, a trade-off should be made between these criteria when determining the right
freezing proportion for one’s manufacturing process. Additionally, less frequent replanning
improved system performance. While most research focuses on the model costs before and after
rescheduling, a small amount of papers also includes the cost of changing the schedule. In
the research that included this cost, system nervousness would be tolerated as long as it was
economical to do so (Carlson et al., 1979; Kropp & Carlson, 1984; Kropp et al., 1983). This
approach was found to be effective in finding the right balance between the cost of sub-optimal
lot-sizing and cost of changing the schedule. In this research the cost of changing the schedule
entailed the cost of adding previously absent setups (Carlson et al., 1979; Kropp et al., 1983)
or the cost of adding and canceling setups (Kropp & Carlson, 1984).

Shop Floor Scheduling Literature

Shafaei and Brunn (1999) investigated the robustness of a number of shop floor scheduling
rules in a dynamic and stochastic environment using a rolling horizon approach. They used
a cost-based performance measure, that includes holding-, processing-, and raw material cost,
to evaluate the different rules. From the simulations, it became clear that frequent reschedul-
ing under a rolling horizon becomes more effective in providing robustness when uncertainty
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increases. Church and Uzsoy (1992) tried to answer the question on whether to reschedule at
every disruption event or not in a shop floor context. They did this by comparing periodic and
event-driven rescheduling policies on schedule stability (frequency of rescheduling interventions)
and maximum lateness performance measures. The former policy updates the schedule at a reg-
ular interval, the latter after certain disruption events occur. They found that both the periodic
and event-driven policies can outperform continuous rescheduling policies as the benefit of ex-
tra rescheduling diminishes quickly. The performance of both policies depends on the scenario
though, which introduces trade-offs between continuously rescheduling and the given policy.
Therefore, Church and Uzsoy (1992) present a hybrid policy that updates the schedule both
periodically and after certain disruption events occur. Abumaizar and Svestka (1997) compare
partial-, right-shift-, and complete rescheduling methods against makespan and stability perfor-
mance measures. The stability measure is composed of a starting time deviation measure and
a sequence deviation measure between initial and new schedules. Partial rescheduling only con-
siders rescheduling those tasks that are directly or indirectly affected by a disruption (Li et al.,
1993). Right-shift rescheduling simply postpones every remaining task by the amount needed
to make the schedule feasible again. Complete rescheduling reschedules all tasks that have not
been processed so far, including those that are not affected by the disruption (Abumaizar &
Svestka, 1997). They conclude that the partial rescheduling method reduces much of the devia-
tion and computational complexity of the total rescheduling method with no significant drop in
efficiency. Furthermore, they demonstrate the superior performance of the partial rescheduling
method over the other two in most scenarios. Similar to the internal planning research stream,
the shop floor scheduling research has also studied the inclusion of rescheduling cost, in the
field of disruption management. For example, Liu and Ro (2014) studied a single machine
scheduling problem with disruptions. Their model includes the rescheduling cost, composed of
changing delivery times to customers and rescheduling resources, and tries to minimize make
span and maximum lateness. While the shop floor scheduling literature is mainly concerned
with providing scheduling policies that try to omit the negative downsides of rescheduling, this
is not part of our thesis. This thesis is rather conducted to quantify the negative impacts that
different types of uncertainty have given a fixed scheduling policy.

Supply Chain Scheduling Literature

Impact measures like schedule instability and service level are also present in the supply chain
scheduling literature, albeit they are defined differently. Ganeshan et al. (2001) studied the
sensitivity of supply chain performance to the mode of communication between echelons, and
the planning frequency. They found that increasing the rescheduling frequency leads to bet-
ter service, lower cycle times, and better return on investment. Additionally, using a mode of
communication that facilitates information exchange yields higher service levels than a mode
which does not. Here, the service level is defined as the volume-weighted average of the pro-
portion of demand satisfied from inventory at each of the distribution centra. Sivadasan et
al. (2013) challenge the notion that information sharing is always beneficial. They present a
methodology for identifying complexity-adding information flows. They showed that schedule
instability can be decreased for both supply chains of commodity- and customizable products
by removing these complexity-adding information flows. For the measure of schedule instability,
they used an information-theoretic expression for measuring the operational complexity across
supplier-customer interfaces. Waller et al. (1999) state that most of the inventory reduction
achieved with Vendor Managed Inventory (VMI) can be attributed to reviewing the inventory
more frequently (i.e. an increased replanning frequency). Special attention in the supply chain
scheduling literature is directed at the bullwhip effect. The bullwhip effect is defined as the
amplification of demand variability through the entire supply chain. The nervousness in MRP
systems is one of the major factors contributing to the bullwhip effect (Atadeniz & Sridharan,
2020). Therefore, addressing and reducing the effect of system nervousness in MRP systems
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is not only beneficial for isolated companies, but for supply chains as a whole. This is further
backed by Pujawan and Smart (2012), who found that, among 230 manufacturing executives
in various industries, there is major concern about the negative effects of schedule instability
on the performance of supply chains. To this end, Lee et al. (1997) found that the bullwhip
effect can be decreased by information lead time reduction and quick replanning. Furthermore,
Pujawan (2008) investigated how different operating environments and different supply chain
policies impact schedule stability in a supply chain context. They found that schedule insta-
bility, in terms of estimated order times, is propagated up the supply chain and is affected
significantly by the degree of demand uncertainty from the end customer. Additionally, the
applied safety stock policy by the buyer has a large impact on the schedule instability of the
supplier. This impact is also affected by the degree of demand uncertainty.

3.3 Conclusion Theoretical Background

From the literature, we can make inferences on the impact of plan changes, as experienced by
for example ASML. Given the fact that manufacturing environments are becoming ever more
complex, it comes as no surprise that conflicting conclusions arise from the academic field on
rescheduling. Hozak and Hill (2009) recognized the inconsistent conclusions between the (1)
internal planning, (2) shop floor, and (3) supply chain literatures about ideal replanning and
rescheduling frequencies and provided several modelling choices that may affect those conclu-
sions (Table 3.1). The authors find that, generally speaking: (1) the internal planning papers
are critical of frequent rescheduling, (2) the shop floor papers support rescheduling, although
the conclusions are less consentient, and (3) the supply chain papers endorse responding quickly
to updated information (implying frequent rescheduling). The authors conclude by stating that
a general conclusion on frequently rescheduling cannot be given, as there has been little ef-
fort to tie the different sub-streams of literature together. This last statement applies to the
problem of ASML as well, as there are clear differences between the findings in the literature
and ASML’s context. At ASML, the internal planning and shop floor scheduling are tightly
integrated. Unlike in the literature, where the two streams seem to have strict boundaries and
conclusions on rescheduling, a plan change in the MPS at ASML has clear implications for the
shop floor scheduling. Here, the general idea seems to be that the closer an order is to its
execution date, the more severe the impact of rescheduling is. In order to prevent plan changes
from occurring too often too close to the execution dates, ASML uses time fencing systems for
both the internal planning and shop floor scheduling. In the literature, time fencing systems
are often considered in the internal planning literature, but not in the shop floor literature.
Vieira et al. (2003) recognize the problem that these mismatches exemplify. They emphasize
that more research is needed to better understand the interactions between rescheduling policies
and other production planning functions such as MRP- and capacity planning. Furthermore,
research in this field should extend to other decision-making systems under uncertainty, like
supply chain planning (Pujawan & Smart, 2012). Similar to the literature, ASML’s scheduling
system includes a frozen period in which no changes can be made. In this regard however, there
seems to be a mismatch between research and practice. Where the literature assumes that these
frozen periods are strictly adhered to, in practice this is unlikely. Pujawan and Smart (2012)
found from interviews that it is very difficult for companies not to make changes requested by
the customer, even though those changes occur in the frozen period. This is very much the case
for ASML, which operates in a highly dynamic environment and serves only a small customer
base.

While many papers in the literature on rescheduling try to find remedies to plan changes,
only a few recognize that the rescheduling itself bears a cost (e.g. Carlson et al., 1979; Ivanov
et al., 2017; Kropp and Carlson, 1984; Kropp et al., 1983; Liu and Ro, 2014). Unfortunately,
including the cost of rescheduling in complex manufacturing processes has not found much accep-
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tance from the industry (Atadeniz & Sridharan, 2020). Reasons behind this is that rescheduling
costs are difficult to determine, especially for different product/operation combinations (Atad-
eniz & Sridharan, 2020) and data collection on schedule changes is a difficult task (Pujawan,
2004). Accordingly, ASML does recognize the presence of (negative) impacts of rescheduling,
but fails to pinpoint how to incorporate these changes into the decision making. These plan
changes both have an effect on the scheduling system and on the morale of the employees, which
are involved in handling them (Atadeniz & Sridharan, 2020).

Another topic that is relevant to ASML’s problem of assessing the impact of plan changes,
is raised by Koh et al. (2002). They state that the provision of a cause-and-effect structure for
diagnosing uncertainty is needed to facilitate identification of underlying causes of uncertainty.
A clear cause-and-effect structure can help companies gain useful insights on the impact of
plan changes. Furthermore, Koh et al. (2002) argue that different organizations and industries
can have different cause-and-effect relationships. Research effort should be made on the ef-
fects between all possible relationships between uncertainties, to generalize the cause-and-effect
structure (Aytug et al., 2005; Koh et al., 2002; Vieira et al., 2003). Pujawan and Smart (2012)
also endorse studying schedule instability empirically. They state that, while schedule instabil-
ity has always been very much a practical problem, few empirical studies are presented in the
literature. The holistic approach to studying the effects of uncertainty is also highlighted as a
future research direction by Dolgui and Prodhon (2007). They found that while many studies
focus on uncertain demand, and some on uncertain lead time, few studies take them simulta-
neously into account. By looking at both forms of uncertainty practical value can be provided
to the industrial sector and research. Furthermore, Atadeniz and Sridharan (2020) found that
there are only a few studies that have examined the effectiveness of freezing- or rescheduling
the MPS when capacity is constrained. They add to this research gap themselves with their
study, but the field is still understudied. While textciteatadeniz2020effectiveness address how
capacity constraints impact the effectiveness of different nervousness dampening policies (such
as freezing a part of the MPS) under demand uncertainty, our study focusses on the effect of
different types of uncertainty in an environment with fixed capacity constraints and a fixed
frozen part of the MPS. Our research aims to address the gaps in the literature, as identified in
this paragraph, by empirically studying a holistic cause-and-effect structure of uncertainty at
ASML, which operates in the semiconductor industry.
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Methodology

4.1 Model

In order to generate more insight into the causes and effects of plan changes and to answer
the research questions, as proposed in Chapter 1, we develop a stylized greedy algorithm. This
algorithm is based on the production planning process of the machines within ASML’s TF.
This factory operates in the semiconductor industry. In recent years, demand is overwhelming
in this industry and this is believed to remain so for years to come. The insights gained from
this model can be applied to companies active in the semiconductor or similar industries, where
demand for high-complexity products is high and capacity constrained. We choose a greedy
algorithm as model, because the greedy behavior best describes the way of working at ASML.
Namely, a production planner tries to find the earliest possible start of a machine (i.e. SI
start), over all the cabins, in the blue horizon against several constraints. ASML’s interest
in the problematic nature of plan changes is mainly focused on the changes on the SYSTEM
level (level 0 in Figure 2.1). Therefore, the MB planning (level 1 in Figure 2.1) of the modules
included in this research (MF, WS, IL & LE), are only considered as an input to the greedy
algorithm rather than being modelled as well. How the MB planning is simplified will be
explained later on in this chapter. The current method of scheduling the machines is performed
manually by the different production planning roles (long term SYSTEM, short term SYSTEM,
and configuration SYSTEM). We will try to capture these activities as closely as possibly in the
greedy algorithm. The greedy algorithm will operate based on the weekly drumbeat present in
the production planning department (Figure 4.1).

Figure 4.1

Weekly Drumbeat Cycle
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The greedy algorithm that follows the weekly drumbeat (Figure 4.1) receives three forms
of input every week: (1) the updated schedule from the previous week, (2) new input for the
fourth week that has to be added to the end of the blue horizon, due to the rolling of schedule,
and (3) uncertainty that occurs during the week, which affects the planned orders in the blue
horizon. With the first two inputs, the greedy algorithm outputs the baseline schedule. The
third input, the uncertainty, affects the baseline schedule and requires a rescheduling step to
create the updated schedule. In turn, this updated schedule serves as part of the baseline sched-
ule for the next weekly cycle. An overview of the blue horizon over time after five sequential
runs of the greedy algorithm is given in Figure 4.2. As can be seen in Figure 4.1 and 4.2, a
Fill Up Schedule step is needed prior to the first run. This step fills the first three weeks of
the blue horizon with orders that were in the WIP or that were already planned during those
weeks. The weeks that lie in the past in Figure 4.2 contain the information on the actual start-
and end times of previously scheduled machines. Note that machines that have a SI start in
the past weeks, can still overlap the entire blue horizon. This is due to the fact that the cycle
times of the machines are greater than the blue horizon, which lasts four weeks. In the next
paragraphs of this section, we will elaborate further on the different inputs, outputs, and steps
in the model.

Figure 4.2

Rolling Scheduling of the Blue Horizon

The baseline schedule and the updated schedule are the outputs of the greedy algorithm.
Both schedules are work floor schedules that include the start- and end times of the SI, SP, and
PP for orders in the blue horizon, divided over the cabins. At ASML, the work floor operates
on a shift system: two shifts of eight hours per day on Monday through Friday and one shift of
eight hours on Saturday and Sunday. On holidays, the factory is closed. This shift system is also
used by the production planners to plan the machines. The baseline schedule is the same as the
updated schedule from the previous week minus the week that has passed, plus the new week at
the end of the horizon. For each of the runs in Figure 4.2, the white solid rectangles represent
the baseline schedule inherited from the previous week. The dotted rectangles represent the
past weeks, and the blue rectangles the newly added weeks.

Prior to the first simulated run of the greedy algorithm, we fill the blue horizon. We call this
the Fill Up Schedule step. Here, we manually fill the first three weeks of the blue horizon with
machines that were either in the WIP or planned during these weeks. To this end, we utilize
historic data on the starting time and cycle times for the SI, SP, and PP steps. We manually
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fill the schedule, rather than using the scheduling mechanism of the greedy algorithm. We make
this choice, in order to start the simulation of the greedy algorithm based on a realistic starting
point.

Every week new input arrives to the greedy algorithm, which is scheduled in the Schedule
New Machines step. This new input concerns the machines in the week that have to be
added to the end of the planning horizon. The MPS sequence provides us weekly with up to
five machines, sorted on increasing CRD date, that have to be scheduled. The greedy algorithm
schedules these machines based on the First In First Out (FIFO) rule. For example, Figures
4.3 and 4.4 show two consecutive planning cycles, of four machines each, in a completely empty
blue horizon (no Fill Up Schedule step). Figures 4.5 and 4.6 show two consecutive planning
cycles four weeks later, where we see new machines being scheduled after machines that are in
the WIP. We omit the Fill Up Schedule step purely for clarification of the scheduling behavior
of the greedy algorithm. We will not omit the Fill Up Schedule step in the analysis of the
model.

Figure 4.3

Four Planned Starts at the End of the Blue Horizon 1

Note. Blue = SI, grey = SP.

Figure 4.4

Four Planned Starts at the End of the Blue Horizon 2

Note. Blue = SI, grey = SP.
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Figure 4.5

Planned Starts at the End of the Blue Horizon 1

Note. Blue = SI, grey = SP, red = PP, dots = cabin empty.

Figure 4.6

Planned Starts at the End of the Blue Horizon 2

Note. Blue = SI, grey = SP, red = PP, dots = cabin empty.

We derive the new input from the MPS. In the MPS, each order contains data on the week
in which the SI needs to start and on the configuration of the ordered machine, as well as other
general information. After the Fill Up Schedule step, the algorithm plans these weekly orders
inside the fourth week of the horizon, marked as blue in Figure 4.2. Due to high demand for
the machines, the planned starts in the MPS are generally known 18 months in advance with
substantial accuracy. Therefore, we model the weekly MPS planned starts to be deterministic
(i.e. no demand uncertainty in the arrival of machine orders). Furthermore, there are guideline
cycle times for the assembly of the SYSTEM. These cycle times include buffer time to account
for the uncertainty in the SI, SP, and PP steps. While the cycle times are stochastic in practice,
we assume deterministic cycle times for the machines in our model, based on input from ASML.
Their problem mainly lies in the rescheduling of SI starts rather than uncertainty in the cycle
times of these machines, which is mostly captured by the buffer cycle time for XT machines.
In order to keep the scheduling of the baseline schedule as close to the historic data as possible,
the input of the deterministic cycle times will be based on historic cycle time data of machine
orders, rather than their guideline cycle times. Realistically speaking, the final cycle time is
not known before the start of the assembly. We justify the use of these deterministic historic

31



CHAPTER 4. METHODOLOGY

cycle times by the observation that when machines are planned four weeks ahead in a cabin,
the previously planned machine in that cabin has been in the WIP for at least some weeks
already (see Figures 4.5 and 4.6). Therefore, some information from the work floor about the
final cycle time of the system is already present. This behavior is present at ASML, due to the
ratio between the amount of cabins, the length of cycle times, and amount of machine starts
per week. The greedy algorithm produces a baseline schedule with the MPS input, that aims to
schedule the new machines as soon as possible in time. It greedily finds the first possible start
over all the shifts in the fourth week and over all the cabins. It does so against five constraints:
(1) Cabin Type; some cabins cannot be used for the assembly of all machine types, (2) Cabin
Empty ; the cabin has to be empty before a new machine can be assembled in that cabin, (3)
Maximum Starts per Day, (4) Maximum Starts per Shift, and (5) Operator Capacity ; a certain
amount of qualified operators must be present to assemble the machine. For the Cabin Empty
constraint, the cabin is empty at the latest point in time between the IRD and CRD date
(max(IRD,CRD)). The IRD is determined once a machine enters the WIP. This is possible
due to the assumed deterministic cycle times. The IRD is calculated by adding the cycle time
of a machine to the actual SI start date. The Operator Capacity constraint in the greedy
algorithm is a simplification of the real world. In the real world, there is a work floor schedule
that the production planners have, that shows how many operators are daily available for the
SI, SP and PP steps. In practice, machines in the WIP can be put on hold when there are not
sufficient qualified operators available (e.g. due to sickness). These irregularities are generally
captured by the buffer cycle time. In our model, putting orders on hold is not possible, due
to the assumption of deterministic cycle times. Furthermore, the operator capacity is generally
only considered for the SI step. The operator capacity for SP step generally does not pose
a problem and possible delays in the PP step due to operator shortage is generally captured
by the buffer cycle time. For these reasons, we developed a simplified version of the Operator
Capacity constraint, that constricts the maximum number of machines that are simultaneously
in the SI step. For example, no more than four machines are simultaneously in the SI step
at any given time in Figures 4.3, 4.4, 4.5, and 4.6. The calculation of this number will be
explained in the verification section (Section 4.3). After the greedy algorithm schedules a new
order, it consecutively schedules the MB starts for the four different modules based on the Just
in Time (JIT) principle with additional safety cycle time per module. For example the start
of the WS module for a specific order is calculated by: WSstart = SIstart – Guideline CTWS

– Safety CTWS . This is a simplification of the real world, where each MB work center has its
own scheduling rules and constraints. Finally, when the greedy algorithm cannot find a SI start
in the fourth week of the blue horizon, the respective machine order is postponed to the next
week. Due to the FIFO rule, this machine order will be the first to be scheduled in the next
week, followed by the orders that were initially planned to be scheduled in that week.

Uncertainty affects the baseline schedules generated in the Schedule New Machines step.
This uncertainty is generated in the Generate Uncertainty step. According to the classifi-
cation of plan changes (Figure 2.4), we generate demand-, supply-, and MB uncertainty.

Demand Uncertainty is in the form of customers disagreeing with the date on which
ASML promises to finish their machine (IRD). A customer can influence this date by changing
its CRD date. They can either request a later or sooner CRD date. Take note, that these new
CRD dates are not binding for the planning of the machines, but are mostly a customer push to
improve on the IRD. Namely, the demand for ASML’s machines is greater than the production
capacity and therefore the CRD dates are often not feasible. If ASML’s sales department agrees
on these changes, they are mostly handled by changing which machine goes to which customer
(reallocation in Figure 2.4). In rarer cases, the requested change is handled by postponements
or preponements of scheduled machines in the blue horizon. In our model we strictly look at
these changes, as they impact the timing of the planned machines in the blue horizon. These
changes are reflected by changes in the starts of the SI. In the greedy algorithm, these changes
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are handled by changing the MPS sequence of orders. This is done by adding the (positive or
negative) CRD date change to the MPS planned start, after which the new place in the sequence
is determined for the impacted order. This way the impacted orders gets a new place in the
FIFO sequence, but still has to undergo the rescheduling step according to all constraints. Due
to the many constraints present, it is fairly uncommon for a requested CRD date change to be
fully complied with. The generation of demand uncertainty is a two stage process: there is a
weekly chance of occurrence per machine in the blue horizon of a CRD date change, and the
sampling of the size of the CRD date change for the impacted machines. Data on the occurrence
and size of the CRD date changes is only scarcely present within ASML. Data on only 23 of such
changes has been gathered and used for constructing the histogram in Figure 4.7a. From the
available data, we estimate the weekly chance of occurrence to be 2.3%. The limited amount
of data makes it unreliable for distribution fitting on the length of the uncertainty. Therefore,
we asked production planners to give estimates on the distribution of CRD date changes. The
combination of the sparsely available data and the input of the production planners led to the
discrete piece-wise uniform distribution of CRD date changes that can be seen in Figure 4.7b.
Here; integer values in the interval [-36,-23] account for 10% of all changes; integer values in
the interval [-24,24] for 80%; and integer values in the interval [25,36] for 10%. We set the
boundaries of the size of the changes to plus/minus three weeks (36 shifts), since bigger changes
are nearly always handled by a reallocation.

Figure 4.7

Demand Uncertainty

(a) Histogram CRD Date Changes

Note. n = 23, number of bins = 6.

(b) Chance of Occurrence of CRD Date
Changes

Note. Each bar represents an integer value

Supply uncertainty results in supply delays for the SI start of machines. When there is a
delay of supply, the SI start of a machine will have to be postponed to a later date, on which
the supplies are planned to be available. We gathered estimates on the chance of occurrence
and the size of supply delays from the experience of production planners. The weekly chance of
occurrence per planned machine in the blue horizon is set to 2.5%, based on the input of these
production planners. The size of the delay in shifts is set to a discrete uniform distribution
between 2 and 6 shifts (U{2,6}). When a planned machine in the blue horizon is impacted by
the 2.5% chance on supply delay, we draw the size of the delay from the uniform distribution.
The drawn delay is added to the initial date of supply delivery. For simplicity, we assume that
this initial date is the first planned SI start in the blue horizon, which corresponds to a JIT
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management of supply. For subsequent supply delays, the new initial date is the initial SI start
in the blue horizon plus previous delays. Naturally, supply uncertainty can also impact MB
starts, as they also require external supply. However, we plan the MB starts based on the JIT
principle plus safety cycle time. This assumption removes the need to model supply delays for
MB.

MB uncertainty can be seen as uncertainty in cycle times of the MF, WS, IL, and LE
modules. The greedy algorithm plans the four modules based on guideline cycle times and
safety cycle time. When a module enters the WIP, we calculate the actual cycle time. We draw
the length of the actual cycle time from a fitted probability distribution. We fit this probability
distribution on historic cycle time data for each of the four modules and their four different
versions. Table 4.1 shows the result of the distribution fitting.

Table 4.1

Distribution Fitting Module Build

Module Type n Fitted σ median µ Location SSE KS test
Distribution p-value

MF 400 69 Lognormal 0.48 4.51 5.76 0.72 1.89 0.96
MF 860 248 Lognormal 0.52 4.47 6.16 1.04 0.10 0.90
MF 1060 12 Lognormal 0.61 7.04 8.99 0.50 2.34 0.99
MF 1460 46 Lognormal 0.65 3.87 6.79 2.01 0.66 0.99
WS 400 57 Lognormal 0.41 8.10 7.45 -1.35 0.47 0.91
WS 860 254 Lognormal 0.45 7.59 7.55 -0.83 0.07 0.76
WS 1060 10 Lognormal 0.02 199.11 6.96 -192.18 13.96 0.97
WS 1460 43 Lognormal 0.77 5.91 9.95 1.97 0.12 0.95
IL 400 62 Lognormal 0.65 4.56 6.96 1.31 1.21 0.61
IL 860 251 Lognormal 0.40 3.93 4.54 0.27 2.23 0.03
IL 1060 10 Lognormal 0.81 2.99 6.77 2.62 12.37 0.93
IL 1460 39 Lognormal 0.41 12.09 9.65 -3.48 1.04 0.97
LE 400 60 Lognormal 0.71 2.14 3.39 0.63 2.27 0.23
LE 860 229 Lognormal 0.66 1.68 2.71 0.62 4.58 0.00
LE 1060 10 Lognormal 0.31 8.14 6.45 -2.10 13.41 0.96
LE 1460 27 Lognormal 0.51 4.21 5.81 1.00 4.50 0.91

Note. n= number of data points, σ = standard deviation, µ = mean, SSE = sum squared error,
KS test = Kolmogorov-Smirnov test, MF = MetroFrame, WS = WaferStage, IL = Illuminator,
LE = Lens.

The distribution fitting in Table 4.1 is performed on the σ, median, and location parameters.
Here, median = eµnormal , the location parameter describes the horizontal shift of the distribution.

The mean of the lognormal distribution has been calculated as follows: µ = eµnormal+
σ2

2 + loc.
The lognormal distribution is the best fitting distribution for most modules, based on the Sum
Squared Error (SSE). Furthermore, some module types only have a few historic data points.
For these modules we assume the cycle times to be lognormally distributed as well. We expect
that the distribution of these modules will be lognormal when more data points were to be
gathered. We justify this modelling choice by the fact that the assembly process is roughly the
same as those of similar modules, for which the cycle times do follow a lognormal distribution.
Figures 4.8a and 4.8b show the fitting of a lognormal distribution on the cycle time data for

34



CHAPTER 4. METHODOLOGY

both a large (a) and small (b) sample. The remainder of the plots can be found in Appendix
A.

Figure 4.8

Module Build Uncertainty

(a) Lognormal Distribution Fitting MF 860

Note. n = 248, number of bins = 20, SSE =
0.10.

(b) Lognormal Distribution Fitting WS 1060

Note. n = 10, number of bins = 10, SSE =
13.96.

Due to the assumption that all probability distributions are lognormal, the fitted distribution in
Figure 4.8b does not look like a typical lognormal distribution. This is explained by the location
parameter for this distribution in Table 4.1, which shifts the distribution 192.18 shifts to the
left (location = -192.18). Furthermore, we apply the one-sample KS test to test whether the
historic data could have been drawn from the fitted lognormal probability distribution. Here,
the null hypothesis is that the historic data is drawn from the fitted distribution. From Table
4.1, we see that 14 out of the 16 distribution have a p-value above 0.05. For these distributions
we can conclude that we cannot reject that the historic data could have been drawn from the
fitted distribution. This is an additional yet small confirmation that the lognormal distributions
is a good distribution for estimating the MB cycle times. When a module enters the WIP, its
actual cycle time is drawn from the fitted distributions. If the drawn value is negative or above
the chosen upper limit of 1.5 · highest cycle time in historic data, we draw again. We set this
upper limit to prevent the small chance of drawing an unrealistically large cycle time from the
corresponding lognormal distributions. We round the drawn cycle time up towards the nearest
integer number of shifts. If the drawn cycle time of any of the four modules exceeds the guideline
cycle time plus safety cycle time, the corresponding machine SI start will be postponed by at
least the following amount of shifts: MB postponement = max(actual CTi – guideline CTi –
safety CTi), for i = MF,WS,IL,LE. If the actual cycle time of all four modules of a machine is
smaller than the guideline cycle time plus safety cycle time, the SI could be preponed by the
following amount of shifts: MB preponement = min((guideline CTi + safety CTi) – actual CTi
), for i = MF, WS, IL, LE.

The final step of the greedy algorithm is the Reschedule Uncertainty step. In this step,
we reschedule the planned machines in the blue horizon, according to the uncertainty that has
been generated during the current week. For the rescheduling, we apply the complete reschedul-
ing method. Complete rescheduling reschedules all tasks that have not been processed so far,
including those that are not affected by the disruption (Abumaizar & Svestka, 1997). The
authors found that the complete rescheduling method has greater computational complexity
than other methods that only consider a subset of the jobs to be rescheduled. Still, we opt for
this method in our greedy algorithm. We feel that this method best works for the production
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planning environment within ASML. In this context, machine orders that are affected by uncer-
tainty can have unforeseen impacts on the timing of other machines in the blue horizon. These
unforeseen effects are amplified by the fact that machine orders can be both pre- and postponed
due to MPS sequence changes. Furthermore, the complete rescheduling method is suitable, since
ASML would like to assembly as many machines as possible to serve the demand, that is greater
than ASML’s production capacity. To achieve this, every order should be checked on possible
pre- or postponements in the rescheduling step. Similar to the Schedule New Machines step,
the Reschedule Uncertainty step schedules the machine orders against several constraints. The
(1) Cabin Type, (2) Cabin Empty, (3) Maximum Starts per Day, (4) Maximum Starts per Shift,
and (5) Operator Capacity constraints from the Schedule New Machine step are also present in
the Reschedule Uncertainty step. However, the latter step has four additional constraints: (6)
MPS Start ; machines cannot start earlier than the first shift in their MPS week, because this
date is used company-wide to plan different aspects, such as external supply or sales reports, (7)
Module Build ; SI starts must account for the newly generated MB uncertainty, (8) Module Build
Earliest Start ; sets a maximum on the preponement of SI starts to prevent MB starts being
pushed into the past, and (9) Supply ; SI starts must account for the newly generated supply
uncertainty. In the Reschedule Uncertainty step, it is possible that SI starts are being pushed
outside of the blue horizon, due to occurrences of (large) delays. Figure 4.9 shows the baseline-
and updated schedule after uncertainty occurred. Note that the schedules do not look as clean
as in Figures 4.3, 4.4, 4.5, and 4.6, as we did fill the schedule at the start of the simulation run
that yields Figure 4.9.

Figure 4.9

Example of a Baseline Schedule and Updated Schedule

Note. Blue = SI, grey = SP, red = PP, dots = cabin empty, green = 6 shift delay machine
2940, yellow = 1 shift delay machine 2946, orange = 1 shift delay machine 2944.

For the development of the greedy algorithm, we made several assumptions. An overview
of these assumptions can be found in Table 4.2.
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Table 4.2

Model Assumptions
Assumption Comment

1 Machine orders planned in the Fill Up Schedule The Fill Up Schedule step aims to provide the
step are not vulnerable to uncertainty. These greedy algorithm with a starting schedule that
orders are included in rescheduling decisions is as realistic as possible. To this end, we used
though. historic data on actual cycle times of these

orders, which already includes uncertainty.
2 Uncertainty outside the blue horizon is Uncertainty that occurs just prior to the blue

handled outside the blue horizon. horizon could impact rescheduling decisions
inside the blue horizon. We assume that these
types of uncertainty are solved in the inputs of
the model.

3 The cycle times of the machines are Uncertainty in the cycle times of the machines
deterministic. lies outside of the scope of this research.

4 There is no demand uncertainty in the arrival The MPS is known with substantial accuracy is
of machine orders. as realistic as possible. To this end, we used 18

months ahead.
5 Machines cannot start before the first shift in This date is used company-wide for all sorts

their MPS week. of planning activities. In practice, it might
exceptionally occur that this assumption does
not hold.

6 Only the SI is constrained with regards to Operator capacity mainly impacts SI starts. SP
operator capacity. SP and PP are not capacity and PP capacity problems are generally solved
constrained. by buffers in cycle time.

7 The SI operator capacity constraint is a In practice, the operator capacity constraint is
maximum value of simultaneous machines in based on the amount of operators present
the SI stage. each shift.

8 Supply delays for machines are assumed to Based on experience of production planners.
follow a discrete uniform distribution (U{2,6}).

9 The initial date on which supply is scheduled is In practice, the initial date is the first day of the
the first planned SI start in the blue horizon. MPS week. However, the estimates given by

the production planners are based on the first
SI start, as this is how they experience the
supply delays that they have to handle.

10 CRD date changes for machines are assumed Based on experience of production planners
to follow a discrete piece-wise uniform and available historic data.
distribution (Figure 4.7b).

11 There is no tooling constraint on the work The tooling availability rarely causes delays in
floor. the TF.

12 The probability distribution for modules with Based on similar module types having the
limited data points is lognormal. same lognormal distribution as well.

13 MB starts are planned based on the JIT This simplification has been approved by
principle with additional safety cycle time. experienced employees of the production

planning department.
14 When a module is in the WIP and the The JIT planning of MB is not impacted by the

corresponding SI start gets delayed due to MB buffer capacity. This is confirmed by
other reasons, the module is finished as experienced production planners.
planned and is stored in a infinite buffer.

15 The laser, other modules, and submodules are These generally do not pose a problem for the
always on time for the machine start. assembly process of the machines.

16 The upper limit for drawing cycle times from The upper limit is set to prevent the small
the fitted lognormal distributions for MB is 1.5 chance of drawing an unrealistically large cycle
· highest recorded cycle time value in the time value from the fitted lognormal
historic data. distributions.
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4.1.1 Model Implementation

In order to answer the research questions, we have to simulate the model. We implemented the
greedy algorithm in Python 3.8. A simplified version of the pseudo code for the greedy algorithm,
as described in the previous section, is given in Figure 4.10. Here, the blue line numbers represent
the Schedule New Machines step, the green line numbers the Generate Uncertainty step, and
the orange line numbers the Reschedule Uncertainty step. The elaborate pseudo code can be
found in Appendix B.

Figure 4.10

Simplified Pseudocode Greedy Algorithm
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Note. blue line numbers = Schedule New Machines step, green line numbers = Generate Un-
certainty step, orange line numbers = Reschedule Uncertainty step.

4.2 Data Collection

In order to run and verify the model, as proposed in Chapter 4.1, we gathered data. The required
data can be grouped into the following categories: job-, cabin-, constraint-, uncertainty-, MB-,
and verification data. Below, we outline the different data sources and the data cleaning process.

We retrieved most of the data from ASML’s ‘Machine History’ data set (Figure 4.11). This
set contains daily timestamped machine information for all the machines that have been assem-
bled in the TF, including the XT machines (n = 2267 total machines, n = 1107 XT machines).
Unfortunately, no timestamps are made during weekend days. Per machine the information
includes, but is not limited to: a Work Breakdown Structure (WBS) element number and se-
quence number to identify the individual machine and its machine type; the machine status;
the MPS start week, that shows in which week the machine was supposed to start according
to the MPS schedule; dates on which the SI and PP were started and finished; the CRD date;
and the cabin number in which the machine has been assembled and tested. We filter the data
set to only include the relevant and complete data on XT machines between 2019 Q3 and 2021
Q2 (n = 273 machines). We choose this interval, because (accurate) data on the machine level
is available in this period across the different data sources. The period is also representative
of the current market in which ASML operates, where demand for the XT machines is larger
than ASML’s production capacity. We cut off the machine data after 2021 Q2, as it deviates
too much from data in ASML’s regular way of working for it to be included in the research.
The deviation resulted from internal problems at ASML after the opening of its new warehouse
in July 2017. Next, we use the SI and PP start- and end dates to calculate the SI, SP, and PP
cycle times. Cycle times for regular XT machines lie between 2.75 and 12.5 weeks. Cycle times
for special machines, such as prototypes, lie between 14.75 and 66 weeks. Note that these cycle
times are often larger than the length of the blue horizon (4 weeks). We employ the resulting
data to generate the list of machines (i.e. jobs) that the model uses as input to its scheduling
mechanism (n = 273). We also create a second list from the ‘Machine History’ data set, that is
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used to fill up the production schedule with jobs, prior to the jobs that the first run of the model
schedules. This second list contains all machines that were in the WIP somewhere between 2019
Q3 and 2021 Q2 (n = 287). Furthermore, we utilize the data set to explore feasible values for
the Operator Capacity constraint by computing the mean- and maximum amount of machines
that were simultaneously in the SI stage.

Figure 4.11

Snippet from the Machine History Dataset

Note. Manually generated data

From the ‘Machine History’ data set the Weekly Operational Planning Alignment (WOPA)
data set is made. The ‘WOPA’ data set is similar to the ‘Machine History’ data set, but
timestamped only once per week (i.e. the ‘WOPA’ data set is a subset of the ‘Machine history’
data set). We make use of the ‘WOPA’ data set for the verification of the model. The verification
requires the planned SI start of each individual order the first week it enters the blue horizon (the
fourth week from present day). For each individual XT machine order that has been planned
inside the blue horizon between 2019 and 2021 (n = 402) , we select these planned SI starts from
the ‘WOPA’ data set. By setting the interval between 2019 and 2021, we make sure that all
orders that the model simulates can be verified. The ‘WOPA’ data set also contains comments
on why certain XT jobs have been pre- or postponed. One of the reasons being priority setting
by the sales department (n = 20). The production planners also manually constructed a list,
between March 2020 and July 2021, that contains XT machines that were involved in sequence
changes due to priority setting by the sales department (n = 18). The union of these two sources
serves as input to the estimation of the parameters for the demand uncertainty (n = 28).

We estimate parameters for the MB uncertainty by using both the ‘Norm Review’ database
and start- and end dates of each individual module in SAP (ASML’s ERP system) between
June 2016 and July 2021. The ‘Norm Review’ database contains cycle time and labor hour
information for each individual module (n = 412, 563, 471, 468 for MF, WS, IL, LE). The
time period of the data differs from that of the machine data. After June 2016, ASML’s TF
started working according to the Lean factory principles. Up until July 2021 (the opening of the
warehouse), cycle times for the modules have been reasonably consistent, due to no significant
changes in their assembly process. We filter incorrect and missing data from both data sets
(n = 4, 168, 79, 101 for MF, WS, IL, LE). Furthermore, we exclude mismatches between SAP
and ‘Norm Review’ data (n = 26, 18, 19, 14 for MF, WS, IL, LE), as well as orders where the
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documented labor hours are at least 2.5 times above or below the target amount of labor hours
(n = 6, 13, 11, 26 for MF, WS, IL, LE). These orders signal an incorrect way of data recording.
This results in four data sets including 376, 364, 362, and 327 modules for the MF, WS, IL,
and LE work centers respectively. Finally, we transform the cycle times, that are expressed
in days, into cycle times that are expressed in shifts. In this transformation, we consider the
planning structure of the different module work centers (e.g. one shift per day versus two shifts
per day). Furthermore, we check whether any weekends (maximum one shift per weekend day)
or holidays (no shifts on holidays) lie between the starting- and end times from SAP.

We could not find the remaining input data for the model in existing data sets within
ASML. Therefore, we gathered this data through a combination of information in ASML’s
internal network and experienced employees with relevant domain knowledge. We sourced a
complete list of available XT cabins (n = 25) and each cabin’s compatible XT machine types in
the internal planning environment that the production planners use. Data on supply uncertainty
is dispersed across different departments within ASML, each having different data structures.
Therefore, we cannot draw coherent estimates of the supply uncertainty from these datasets
within the time window of the Thesis. We also sourced values of the maximum amount of starts
per day and week; guideline cycle times for the different modules of MB; and safety times for
the different modules of MB through the responsible production planners and the documents
that they use in their daily work.

4.3 Model Verification

In this section, we assess the validity of the proposed greedy algorithm. The outcome of the
verification will help in determining the extent to which the insights, gained from the analysis
of the model, are relevant for the production planning department of the TF. We compare
the scheduled SI starts of the model against the scheduled SI starts from historic data. The
uncertainty that we generate in the model is random. Thus, we cannot verify the Reschedule
Uncertainty step of the greedy algorithm against historic data, and therefore we exclude it from
the verification of the model. Since we exclude the uncertainty, the scheduled SI starts of each
machine will remain the same for the weeks that the machine is in the blue horizon. Without
uncertainty, this period is four weeks. Additionally, we do not allow the algorithm to reschedule
the machines that have been planned in the Fill Up Schedule step. In the analysis of the model,
we do allow these machines to be rescheduled, but in the verification we keep the filled up
schedule true to the historic data. By doing so, we allow for better verification of the scheduled
SI starts after the filled up schedule.

Before we start the verification, we have to decide which historic data we use as our bench-
mark. We can compare the greedy algorithm’s SI starts against: (1) the historic planned SI
starts when the machines entered the blue horizon or against (2) the historic actual SI start
when the machine entered the WIP. There is no definite best choice for this matter. When ex-
cluding the uncertainty from the model, the model’s planned SI start is the same as the model’s
actual SI start. Intuitively, comparing these model SI starts against the actual SI starts in the
historic data makes sense. However, the actual historic SI start has been impacted by the real
world uncertainty that occurred in the blue horizon. This real world uncertainty is less present
in the planned SI starts when the machine entered the blue horizon. On the other hand, we
use actual historic cycle times for filling up the schedule and planning the new orders in the
verification. In practice, these cycle times were not known exactly when the machine entered
the blue horizon. Here, we have to decide whether the cycle time uncertainty of the machines
or the rest of the uncertainty in the blue horizon impacts the planned SI starts more. Based on
input of production planners, we decide to compare the greedy algorithm’s planned SI starts
against the historic planned SI starts when the machine entered the blue horizon.

A second decision we have to make is on the value for the Operator Capacity constraint for
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different time periods in the verification. To help make this decision, we simulate the first eight
planned machines for different periods and for different values of the capacity constraint. We
compare the simulated SI starts against the historic planned SI starts when the machines entered
the blue horizon. From this comparison, we compute the average of the absolute difference
between the SI starts. We choose the first eight planned machines, since this represents at least
two weeks of scheduling for nearly every period between Q3 2019 and Q2 2021. We consider two
weeks as a sufficient base for determining the best value for the capacity constraint. We sample
eleven periods between week 26 2019 and week 22 2021, with a ten week interval between each,
to cover the entire interval between Q3 2019 and Q2 2021. We derive initial guesses for the
Operator Capacity value by computing the maximum and average amount of machines that
were simultaneously in the SI step from the SI Start and SI Finish timestamps in the Machine
History data set (Figure 4.11). The maximum value is 11 machines and the average value 3.4.
Here, the average value gives us a better estimate than the maximum value, as in the real
world the SI can be put on hold when there are insufficient operators available. Hence, the high
maximum value. From the results, we find that, generally speaking, a value of 3 for the Operator
Capacity constraint yields the lowest average absolute difference between SI starts for 2019 and
a value of 4 the lowest for 2020 and 2021. The increase from 3 to 4 can also be explained by
the real world data. For example, the number of weekly machine starts has increased steadily
between the last two quartiles of 2019 (1.96), 2020 (2.63), and the first two quartiles of 2021
(3.35). The bottleneck of the machine assembly process in the TF is mostly determined by the
amount of qualified operators. Between 2019 and 2021, the amount of operators for the SI step
has also increased.

We perform the verification of the scheduling mechanism of the greedy algorithm with the
design choices from the previous paragraph. The error measure we adopt for this verification is
the absolute SI start difference between the model SI starts and the historic SI starts when the
machines entered the blue horizon. For example, Figure 4.12 shows the results of the verification
for the planned starts in the first ten weeks after the start of the greedy algorithm, beginning
in week 2 of 2021.

Figure 4.12

Verification of SI Starts

Note. Starting point is week 2 2021, each cluster of bars represents starts planned in the same
week.
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From Figure 4.12, we see that the absolute SI start difference increases the further the simulation
runs into the future. We expected this behavior, because the historic data includes uncertainty
which the modeled SI starts do not account for. The further the simulation runs in the future,
the more uncertainty is accumulated on this historic data and the larger the difference with the
model’s planned starts. We repeated this simulation 105 times, where each simulation starts
in one of the 105 consecutive weeks between Q3 2019 and Q2 2021. We summarize the results
of these simulations in the boxplots shown in Figure 4.13a (without outliers) and 4.13b (with
outliers). Here, the first six weeks (e.g. the first six clusters in Figure 4.12) of scheduled orders
in the 105 simulations are shown in the boxplots. For example, the sixth week on the x-axis of
Figures 4.13a and 4.13b denotes the sixth cycle of the greedy algorithm in which the SI starts
are planned in the fourth week of the blue horizon.

Figure 4.13

Boxplots of Verification between Q3 2019 and Q2 2021
(a) Without Outliers (b) With Outliers

Note. Red line = median, blue dotted line = mean, box extends from first quartile to third
quartile, whiskers extend from the box by 1.5 times the inter-quartile range, n = 183, 246, 270,
267, 277, 280 for weeks 1, 2, 3, 4, 5, 6.

From Figure 4.13a we see that the average behavior of increased differences holds for the 105
simulations. Furthermore, we learn from Figure 4.13a that the differences of the SI start in the
first couple of cycles of the greedy algorithm remain under a week (12 shifts) for about three
quarter of the scheduled machine starts. Still, there are many outliers as shown in Figure 4.13b.
Possible explanations for the (large) differences are: incomplete, erroneous and/or outdated SI
start-, MPS-, or cycle time data; scheduling of special orders; uncertainty that is accounted for
in the historic SI start data, but not in the modeled SI starts; simplifications and assumptions
made in the greedy algorithm, for example the Operator Capacity constraint; and human de-
cision making that is excluded in the greedy algorithm, for example deviations from standard
procedures. Given the possible explanations of the (large) differences, we conclude that the
scheduling mechanism of our greedy algorithm is fairly accurate. We consider mismatches be-
tween SI starts of under a week acceptable in an uncertain environment where guideline cycle
times of the machines range between four to ten weeks. While the modeled SI starts should
remain fairly close to the reality, the point of our analysis is to show the relative impact of
rescheduling rather than perfectly scheduling SI starts. The results of the verification should
be considered when deriving insights from the results of the analysis of the model. Appendix
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C shows the results of the verification when comparing the model SI start against the actual
historic SI start rather than against the historic SI starts when the machines entered the blue
horizon.

4.4 Analysis

4.4.1 Performance Measures

In order to provide an answer to the research question “How do timing plan changes inside the
frozen horizon impact production planning?”, we define six KPIs. Since we are dealing with an
empirical study within ASML, these KPIs have to be in line with ASML’s context and data.
Therefore, these performance measures allow us to gain insights into plan changes for both
the literature and ASML. In this study, we take a comprehensive stance towards plan changes.
Therefore, we will not study the direct impact of plan changes on the defined KPIs, but rather
the impact of uncertainty, that causes these plan changes, on the KPIs.

The first three KPIs are defined to give insights into the schedule instability that arises
from the demand, supply, and MB uncertainty (sub research question 2.1). Schedule instability
is the difference between schedules of two subsequent planning cycles. In the proposed greedy
algorithm, this is reflected by the difference between the baseline schedule and updated sched-
ule for each week in the analysis horizon. Logically, in a week with no uncertainty there is no
difference between the schedules. In our research, we modify and extend the schedule instability
measure as defined by Wu et al. (1993). Their measure included: the starting time deviations
between the new schedule and the original schedule, and a measure of the sequence difference
between the two schedules. We add a third measure that quantifies the percentage of orders
in the blue horizon that are impacted by uncertainty. These three measures give us insights in
how uncertainty causes plan changes. Formulas 4.1 and 4.2 show how the (1) average weekly
percentage of orders in the blue horizon, that are impacted by uncertainty, is computed. We
consider a planned machine order to be impacted when its SI start has changed. Here, we use
SI to denote the start of the SI, nj as the number of machines in the blue horizon in week j
(i.e. in the baseline or updated schedule) with status Planned, and w as the number of weeks
in the horizon of the analysis.

impacted =

{
1, SIbaseline − SIupdated 6= 0

0, SIbaseline − SIupdated = 0
(4.1)

Percentage Impacted =
1

w

w∑
j=1

nj∑
i=1

1

nj
· impactedi · 100 (4.2)

Formula 4.3 shows how the (2) average amount of SI start deviation in shifts is calculated for
the machines that are impacted by uncertainty.

SI Start Deviation =

∑w
j=1

∑nj
i=1 |SIbaseline,i − SIupdated,i|∑w
j=1

∑nj
i=1 impactedi

(4.3)

44



CHAPTER 4. METHODOLOGY

Formulas 4.4 and 4.5 show how the (3) total number of machines over the entire horizon of the
analysis, that have been impacted by a sequence change, is calculated.

sequence change =

{
1, sequence numberbaseline − sequence numberupdated 6= 0

0, sequence numberbaseline − sequence numberupdated = 0
(4.4)

Sequence Deviation =
w∑
j=1

nj∑
i=1

sequence changei (4.5)

We also considered the Levenshtein distance as the measure for Sequence Deviation. The Lev-
enshtein distance between two sequences is the minimum number of insertions, substitutions
or deletions required to change one sequence into the other. However, we dropped this metric,
since it is more useful for the production planners to know the total amount of machine orders
that are included in a sequence change. This can be explained by the fact that the production
planners have to update the planning of all these planned machines manually.

We also use the first three KPIs to gather insights that can help answer the sub-research
questions that addresses the difference between preponing and postponing machine orders (sub-
research question 4) and the relation between the timing of a plan change and its impact
(sub-research question 5). The answers to these sub-question require the impact of individual
plan changes though. Therefore, we adapt KPIs 1,2, and 3 to only look at the impact on the
baseline schedule in the single week j where the plan change occurred. In order to prevent
intercorrelation in the impact of multiple plan changes in a single week, we only analyze these
adapted KPIs for weeks where a single plan change occurred. Formulas 4.6, 4.7, and 4.8 show
the adapted KPIs.

Percentage Impactedj =

∑nj
i=1 impactedi

nj
· 100 (4.6)

SI Start Deviationj =

nj∑
i=1

|SIbaseline,i − SIupdated,i| (4.7)

Sequence Deviationj =

nj∑
i=1

sequence changei (4.8)
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The next set of KPIs aim to give insights into how uncertainty impacts on-time start
performance . Note that the corresponding sub-research question (2.2) reads: “How does un-
certainty impact the on-time delivery performance?”. While most of the research and industry
uses its delivery performance as a KPI, we opt for start performance as our measure. We make
this choice for two reasons. Firstly, our model assumes deterministic cycle times, thus the on-
time start and finish performance of the machine orders in the simulated model tell the same
story. Secondly, ASML actively uses the SI starts to assess the performance of the TF. They
set goals based on the amount of SI starts and use these starts for the calculation of quarterly
financial figures. To elaborate, the customer deadlines are often not feasible due to demand
being greater than the production capacity. Therefore, basing the performance of the model on
these deadlines is not insightful. At ASML, an SI start is considered on time if the SI starts
inside the machine’s MPS week. To assess the on-time start performance we define two KPIs:
the (4) percentage of machines that were started in their MPS week, and the (5) average amount
of SI start deviation from the last shift in the MPS week, for the machines that were started
later than their MPS week. Formulas 4.9 and 4.10 show how the percentage of machines stared
in their MPS week is calculated. Formulas 4.11 and 4.12 show the calculation of the average
amount of SI start deviation from the MPS week. Here, m is used to denote the number of
machines with status WIP or Finished out of all the scheduled machines in the horizon of the
analysis (= number of machine starts).

in week =

{
1, week actual SI −MPS week = 0

0, week actual SI −MPS week 6= 0
(4.9)

Percentage in MPS week =

∑m
i=1 in weeki

m
· 100 (4.10)

SI delta =

{
SI − last shift, SI > last shift

0, SI ≤ last shift
(4.11)

MPS week Deviation =

∑m
i=1 SI deltai∑m

i=1 1− in week
(4.12)

The last KPI helps to answer how uncertainty impacts the production output (sub research
question 2.3). In the context of ASML, we measure the production output by the number
of SI starts over a period of time. Once again, we opt for measuring the start performance
rather than the output performance, for the same reasons given in the previous paragraph. We
define the KPI that measures this as follows: (6) the total number of machines with status WIP
or Finished out of all the scheduled machines in the horizon of the analysis. We also use this
measure in the calculation of the other KPIs, denoted as m.
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4.4.2 Parameters

We have to decide on the value of several parameters that the greedy algorithm uses as input.
Firstly, we decided to set the starting and ending week of the horizon of the analysis to week
27 2019 and week 26 2021 respectively. These weeks mark the start of Q3 2019 and the end
of Q2 2021. In this interval, sufficient data is available to run the model plus this interval is
representative for the market where ASML currently operates in. Secondly, we set the maximum
SI starts per shift and day both to 1. This basically implies that there is a maximum of one
machine start per day. We choose this value in collaboration with the production planners of
the TF. They state that the value of 1 has been used for the entirety of the chosen horizon of
analysis. Thirdly, we set the safety cycle time of the MF, WS, IL, and LE modules to 6, 12, 6,
and 6 shifts respectively. While the amount of safety time which the production planners use in
the different module work centers has varied quite a bit over the last years, these are the most
up-to-date guidelines. Fourthly, we set the Operator Capacity constraint to 4. This implies
that there is a maximum of 4 orders that can simultaneously be in the SI stage. In the Model
Verification section (4.3) we found that the best fitting values for this constraint are 3 for 2019,
and 4 for 2020 and 2021. We opt for a single value to lower the computational burden of the
analysis. We choose the value 4 over 3, since three quarter of the analysis horizon is optimal
under the value 4, against one quarter under the value 3.

The remaining parameters have to do with the uncertainty that we introduce in the model.
In order to examine how uncertainty impacts production planning and processes, we manipulate
the parameters of the demand-, supply-, and MB uncertainty. In Section 4.1 we estimated pa-
rameters for these three types of uncertainty based on historic data and input from production
planners. These estimations are based on the actual uncertainty levels that ASML experienced
over the analysis horizon. We manipulate these estimates to investigate the changes in impact
when these actual uncertainty levels increase or decrease. Table 4.3 shows the resulting uncer-
tainty levels with the manipulated parameters. Here, the medium level refers to the current
levels of uncertainty at ASML. The remaining parameters remain as estimated in Section 4.1.

Table 4.3

Uncertainty Levels

Level
no low medium high

Demand Uncertainty chance = 0 chance = 0.0115 chance = 0.023 chance = 0.046
(piecewise discrete Uniform
Supply Uncertainty chance = 0 chance = 0.0125 chance = 0.025 chance = 0.05
(discrete Uniform)
MB Uncertainty chance = 0 chance = 1 chance = 1 chance = 1
(lognormal) σnew = σ/2 σ σnew = σ · 2

Note. chance = weekly chance of occurrence per planned machine/module, σ = standard devi-
ation, MB = Module Build.

For the Demand Uncertainty and Supply Uncertainty in Table 4.3, we manipulate the weekly
chance of occurrence by a factor of 2 between the low, medium, and high levels. These uncer-
tainty levels give us insights into what the change in impact is when uncertainty would be twice
as low or high as current levels of uncertainty (medium). We choose not to increase or decrease
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boundary values of the size of the uncertainty in shifts for the Demand Uncertainty and Supply
Uncertainty. Increasing the positive or negative size of Demand Uncertainty is not useful for
analysis, since CRD date changes bigger or smaller than the current maximum and minimum
values (see Section 4.1) are handled via reallocations rather than via timing plan changes. Sim-
ilarly, we choose not to change the boundary values of the Supply Uncertainty as production
planners mention that the size of the supply delay is fairly consistent. We modeled the MB
Uncertainty differently than the other two uncertainties in our model. Since every module is
vulnerable to cycle time uncertainty, we set the weekly chance of occurrence per module to 1
for all three uncertainty scenarios. Here, we choose to manipulate the standard deviation of
the fitted lognormal distributions by a factor of 2. By changing the standard deviation, the
fitted distributions move closer to, or further away from their mean. Therefore, the drawn cycle
time values from these distributions are more likely to be either closer to the mean (low) or
further away from the mean (high). In the high level, this results in more postponements or
possible preponements of SI starts due to MB uncertainty. The opposite holds for the low level.
We choose a factor 2 for impacting the standard deviation as this seems reasonable given the
context. How this manipulation impacts the percentage of drawn cycle times that are on time
for the SI start is shown in Appendix D.

The final set of parameters that we set, are the random seeds for generating the three types
of uncertainty. We choose the Common Random Numbers (CRN) method for comparing the
different scenarios of the analysis. Glasserman and Yao (1992) state that variance reduction is
guaranteed whenever changing the order of some events does not radically change the evolution
of the system. This is the case for most standard queueing systems with a single class of jobs and
a first-come-first-served (FCFS) discipline. Our greedy algorithm also schedules a single class
of jobs, based on the FCFS policy, therefore we can use CRN to reduce variance in generated
uncertainty between different analysis scenarios. Furthermore, we feel that the amount of runs
we simulate per scenario in the analysis, does not make up for the variance in the generated
uncertainty when not using CRN.
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Results

5.1 Schedule Instability

The results of the first three KPIs give us insights into how uncertainty impacts schedule
instability. The results of the three KPIs are shown in Figure 5.1a, 5.1b, and 5.1c. To retrieve
these results, the demand, supply, and MB uncertainty are set at the low, medium, and high
levels. Here, each scenario is run 20 times with different random seeds.

Figure 5.1

Schedule Instability
(a) Percentage Impacted (b) SI Start Deviation (c) Sequence Deviation

Note. Number of runs per scenario = 20, blue dots = µ, error bars are set at the 95% confidence
interval.

Figure 5.1a shows the results of the average weekly percentage of planned machines impacted
by plan changes in the blue horizon, as defined in Formulas 4.1 and 4.2. This statistic shows
us the percentage of planned SI starts that have changed between the baseline and updated
schedules. Figure 5.1b reports on the average absolute number of shifts deviation for the
planned machine orders that are impacted by uncertainty in the blue horizon, as defined in
Formula 4.1 and 4.3. In other words, Figure 5.1a shows how many orders are impacted, and
Figure 5.1b by how much those orders are impacted. From the results we learn that the amount
of machines that are impacted by uncertainty roughly decrease or increase by a factor 2 when
going from the medium level to the low or high level respectively (Figure 5.1a). Furthermore,
we see that the average amount of shifts these impacted orders deviate between the baseline
and updated schedule also increases with the uncertainty level (Figure 5.1b). Note that the
decrease in deviation due to less uncertainty is lower than the increase in deviation due to more
uncertainty. So when uncertainty increases, both the quantity of plan changes and the size of
plan changes increases between the baseline- and updated schedules.

Figure 5.1c tells us the total amount of planned machine orders in the horizon of the analysis
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for which the sequence changed in the blue horizon, as computed by Formulas 4.4 and 4.5. Note
that the sequence of a planned machine order can change multiple times when it is in the blue
horizon. We see that the amount of orders that change sequence over the entire analysis horizon
increases with the level of uncertainty as well (Figure 5.1c). Dividing the 62.35 (low), 150.15
(medium), and 336.65 (high) values for the amount sequence changes by the analysis horizon
length of 105 weeks yields us the average amount of weekly sequence changes. This results in
0.59 (low), 1.43 (medium), and 3.21 (high) sequence changes per week. This indicates that for
both medium and high levels of uncertainty weekly changes to the MPS sequence have to be
investigated and made.

Summarizing, the results of the schedule instability KPIs show us how the amount of in-
stability increases with the amount of uncertainty. Notably, both the percentage of orders
impacted by uncertainty (Figure 5.1a) and the amount of orders included in sequence changes
(Figure 5.1c) increase substantially with uncertainty. The amount of shifts deviation between
schedules (Figure 5.1b), seems to be impacted less by uncertainty. However, there seems to be
exponential growth when uncertainty increases.

5.2 On-time Start Performance

The next two KPIs report on the on-time start performance of our greedy algorithm. Figure 5.2a
shows the results computed by Formulas 4.9 and 4.10. It shows us the percentage of machines in
the analysis horizon for which the actual SI start lies inside its MPS week. Figure 5.2b depicts
the results of the fifth KPI, that measures the average amount of SI start deviation from the
last shift in the MPS week, for those machines that were started later than their MPS week.
Formulas 4.9, 4.11, and 4.12 give the underlying calculations. As expected, we see a decline
in the percentage of orders planned inside their MPS week when uncertainty increases (Figure
5.2a). The drop in performance is quite significant. Compared to the no uncertainty statistic,
the amount of machines planned in their MPS week in the low, medium, and high uncertainty
scenario drop with 4.88, 14.25, and 36.52 percentage points respectively. Interestingly, the
average percentage of orders planned inside their MPS week when no uncertainty is present is
fairly low at 58.37%. Upon closer investigation, we learn that this is caused mainly by a backlog
in the scheduling of machine starts that starts in week 16 of 2020 and last all the way through
week 5 of 2021. This simulated backlog is also roughly present in the historic data on weekly
planned SI starts, where planned machine orders between these dates remain longer in the blue
horizon than the regular four weeks. Furthermore, we see that amount of shifts that machines
start too late increases with uncertainty (Figure 5.2b). For both KPIs we see diminishing
returns, as increases in uncertainty have a bigger negative impact on system performance than
decreases in uncertainty have a positive impact, compared to the medium level.
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Figure 5.2

On-time Start Performance
(a) Percentage in MPS Week (b) MPS Week Deviation

Note. Number of runs per scenario = 20, blue dots = µ, error bars are set at the 95% confidence
interval.

5.3 Number of Starts

The sixth KPI measures how the production output over the analysis horizon, as measured in
machine starts, is impacted by uncertainty. Figure 5.3 shows the results of the analysis. We
learn that, generally speaking, the amount of machine starts over the analysis horizon decrease
with the amount of uncertainty. Once again we see diminishing returns, where increases in
uncertainty impact the model more negatively than decreases in uncertainty impact it positively,
compared to the medium level. The difference in the number of machines that are started
between no and high uncertainty is only small: 257 versus 252.6 machines respectively. However,
the machines that ASML sell are costly and complex, so every extra machine that can be built
is significant.

Figure 5.3

Total Number of Machine SI Starts

Note. Number of runs per scenario = 20, blue dots = µ, error bars are set at the 95% confidence
interval.
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5.4 Different Types of Uncertainty

We are also interested in how different types of uncertainty impact the KPIs. To this end,
we analyze the difference between scenarios in which different types of uncertainty are present.
The uncertainty levels that we analyze, are the medium and high levels, since these allow us
to investigate the (small) differences between individual uncertainty types well. For each of
the sub-figures in Figures 5.4, 5.5, and 5.6, we only include the uncertainty that is denoted
on the x-axis with the amount of uncertainty that is indicated above the sub-figures. The
remainder of the uncertainty is set to 0. We include both a scenario with all three types of
uncertainty included (supply MB demand) and a scenario that only excludes demand uncertainty
(supply MB). We include the latter in the analysis, since employees in the production planning
department state that adapting the production planning to demand uncertainty requires a
significant amount of manhours. However, the impact that demand uncertainty (or rather the
exclusions of it) has on production output and on-time performance is not yet clear. Take note
that it is difficult to compare the individual types of uncertainty in the sub-figures, as different
probability distributions are used with different parameters that impact the model differently.
However, the medium level uncertainty is closest to the real world uncertainty, and therefore we
regard this as a significant base to draw conclusions from. Furthermore, we add the high level
of uncertainty in the analysis, as the individual differences between the scenarios are greater,
thus allowing us to better draw conclusions.

Figure 5.4 shows the percentage of machines that were started in their MPS week. In both
Figure 5.4a and 5.4b, we see that the more types of uncertainty we include in the model, the
less we score on this measure. On average, demand and supply uncertainty seem to impact the
on-time performance less than MB uncertainty. This could also be explained by the fact that
the MB uncertainty is manipulated differently than the other two (Section 4.4.2). Furthermore,
we see that by excluding demand uncertainty (supply MB vs. supply MB demand), the average
percentage of on-time starts improves by 1.65% (from 44.11% to 45.76%) under medium uncer-
tainty (Figure 5.4a) and improves by 2.50% (from 21.84% to 24.34%) under high uncertainty
(Figure 5.4b).

Figure 5.4

Percentage of Machines Started in their Planned MPS Week

Note. Number of runs per scenario = 20, blue dots = µ, error bars are set at the 95% confidence
interval.
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Figure 5.5 shows the average amount of SI start deviation from the last shift in the MPS
week, for the machines that were started later than their MPS week. In Figure 5.5a, we see that
the amount of shifts that machine starts deviate from the last shift of the MPS week changes
only marginally when analyzing different types of uncertainty under medium uncertainty. For
high uncertainty (Figure 5.5b), both supply and demand uncertainty do not increase much
when compared to medium uncertainty. This is likely the result of the manipulation of supply
and demand uncertainty. Namely, only the chance of occurrence is manipulated and not the
length of delays. The scenario with only MB uncertainty does increase significantly between the
medium and high levels of uncertainty. Once again, this can be explained by the manipulation
of the uncertainty, as MB uncertainty does increase in length between medium and high levels.
Furthermore, the scenarios with multiple types of uncertainty present (supply MB and supply
MB demand) increase more than the sum of their parts.

Figure 5.5

Average Number of Shifts Deviation from MPS Week

Note. Number of runs per scenario = 20, blue dots = µ, error bars are set at the 95% confidence
interval.

Figure 5.6 shows the output performance of the model, expressed in the number of machine
SI starts. From both Figure 5.6a and Figure 5.6b, we learn that the amount of machines starts
generally improves when excluding different types of uncertainty from the model. This effect is
minimal for medium levels of uncertainty (Figure 5.6a), but becomes greater for high levels of
uncertainty (Figure 5.6b). Notably, in both sub-figures we see a slight decrease in performance
when excluding demand uncertainty (supply MB demand vs. supply MB). We suspect this is
due to the negative demand uncertainty (i.e. preponement requests). Namely, these request
can sometimes fill up the freed capacity from postponements that arise from supply, MB, or
positive demand uncertainty.
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Figure 5.6

Total Number of Machine SI Starts

Note. Number of runs per scenario = 20, blue dots = µ, error bars are set at the 95% confidence
interval.

5.5 Preponing versus Postponing

Figures 5.7, 5.8, and 5.9 show how preponing and postponing affect the schedule instability KPIs
between the baseline and updated schedules. Here, we study demand uncertainty, as this type
of uncertainty includes both preponements and postponements. Supply- and MB uncertainty
generally lead to postponements, thus we exclude them from this analysis. We split each figure
into the four weeks of the blue horizon, as impacts of demand uncertainty are substantially
different depending on where they occur in the blue horizon. Furthermore, we only include
individual occurrences of demand uncertainty in the results, as we want to prevent intercorre-
lation in the impact of multiple occurrences of uncertainty. Figure 5.7 shows the percentage of
planned machines in the blue horizon that are impacted (Formulas 4.1 and 4.6). Figure 5.8 the
total number of shifts SI start deviation between the baseline and updated schedule (Formulas
4.1 and 4.7). Figure 5.9 the total number of machines for which the sequence changed between
the baseline and updated schedule (Formulas 4.4 and 4.8).

Figure 5.7

Percentage Impacted

Note. n = 63, 51, 68, 80, blhz = blue horizon, CRD = Customer Requested Delivery.
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Figure 5.8

SI Start Deviation

Note. n = 63, 51, 68, 80, blhz = blue horizon, CRD = Customer Requested Delivery.

Figure 5.9

Sequence Deviation

Note. n = 63, 51, 68, 80, blhz = blue horizon, CRD = Customer Requested Delivery.

The general behavior that we observe in the first week of the blue horizon (Figures 5.7a,
5.8a, and 5.9a), is that positive CRD date changes (i.e. a postponement request) impact the
baseline schedule more than negative changes (i.e. a preponement request). This is in line with
our expectations, as request for preponements of machine orders which are close to their start
can generally not be adhered to. In other words, machine starts cannot be rescheduled into
the past. We do however, see quite some negative CRD date changes in the first week that
do impact the schedule severely. Upon closer investigation, we found multiple reasons for this
behavior. Firstly, there are periods where there is only a small amount of planned machines in
the blue horizon. This can lead to a seemingly large percentual effect (Figure 5.7a) while the
actual amount of machines impacted is only small. Secondly, an error in the input data of a
single machine that allowed rescheduling to the past (see the extreme outlier in the first week
of Figure 5.8a and 5.9a). Thirdly, a planned machine in the first week can still have up to four
planned machines before it, for which the sequence number can be impacted by preponements
(see Figure 5.9a).

The general behavior that we observe in the second and third week of the blue horizon
(Figures 5.7b/c, 5.8b/c, and 5.9b/c), is represented by the parabolic trendlines. The larger
the negative or positive size of the demand uncertainty, the bigger the impact. Here, negative
uncertainty results more often in plan changes and these changes are generally more impactful
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on the baseline schedule. Take note, that the plotted trendlines in the figures do not represent
the actual behavior of the demand uncertainty, but merely the general behavior. For example,
in the actual behavior, a CRD date change of zero shifts would logically result in zero impact.

The general behavior, that we observe in the fourth week of the blue horizon (Figures 5.7d,
5.8d, and 5.9d), is that negative CRD date changes impact the baseline schedule more than
positive changes. This is the opposite behavior present in the first week of the blue horizon.

Remarkably, there are multiple datapoints in Figures 5.7, 5.8, and 5.9 that have zero impact
on the baseline schedule. There are several reasons behind this. Firstly, requested changes in
the CRD dates are not strictly adhered to. There are multiple constraints present in the greedy
algorithm that limit the free rescheduling of the impacted machines. This can lead to orders
not being rescheduled at all, hence zero impact. Secondly, some preponement requests in the
first week do not result in plan changes as they cannot be rescheduled to the past. Thirdly,
postponement requests at the end of the blue horizon do not impact the baseline schedule as
they are planned greedily and will not be delayed by the model until new machine orders arrive
as input. Fourthly, postponement requests do not impact the schedule if the planned machine
has already been planned at a later date, due to a backlog.

5.6 Timing of Uncertainty

The last part of the analysis will address the impact of the timing of demand uncertainty in the
blue horizon on schedule instability. This analysis serves as an extension to the previous section
(5.5) by looking more closely at the timing of uncertainty and less at the size of uncertainty.
Note that the same set of data points is used between the two analyses. Therefore, the expla-
nation for the data points with zero impact given in Section 5.5 also holds for this part of the
analysis. We will only analyze demand uncertainty, as plan changes due to this uncertainty are
experienced as the most impactful on the weekly blue horizon schedules, as mentioned by the
production planners. Furthermore, MB uncertainty is not fit for this analysis as it only occurs
at the beginning of the blue horizon, and supply uncertainty would only allow us to analyze
small delays. Moreover, we split the demand uncertainty into preponements (subfigures a) and
postponements (subfigures b), as they show differences in impact (see Section 5.5).

Figure 5.10 shows the percentage of planned machines in the blue horizon that are impacted
(Formulas 4.1 and 4.6). On the x-axis, we plot the timing inside the blue horizon of the machine
that is impacted by uncertainty. In other words, how far away the planned machine is from
entering the WIP in weeks. In Figure 5.10b, we see that the impact of positive uncertainty
decreases with the week of the blue horizon. The opposite does not hold for the negative
uncertainty in Figure 5.10a. We refer to the explanation of why negative CRD date changes at
the beginning of the blue horizon do significantly impact the baseline schedule given in Section
5.5.

Figure 5.11 shows the total number of shifts SI start deviation between the baseline and up-
dated schedule (Formulas 4.1 and 4.7). Figure 5.12 the total number of machines for which the
sequence changed between the baseline and updated schedule (Formulas 4.4 and 4.8). In both
figures, we do see opposite behaviors between negative (Figures 5.11a and 5.12a) and positive
(Figures 5.11b and 5.12b) occurrences of CRD date changes. Here, preponements increase in
impact when further away from the start of the blue horizon, while postponements decrease in
impact when moving away from the start of the blue horizon.
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Figure 5.10

Percentage Impacted

Note. n = 119, 143, blhz = blue horizon.

Figure 5.11

SI Start Deviation

Note. n = 119, 143, blhz = blue horizon.

Figure 5.12

Sequence Deviation

Note. n = 119, 143, blhz = blue horizon.
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Chapter 6

Discussion and Conclusion

6.1 Answers to Research Questions

The main goal of this research is to give insights into the hidden costs of late plan changes.
Following from this, the main research question reads: ”How do timing plan changes inside the
frozen horizon impact production planning?”. To be able to provide an elaborate answer to this
question, we drew several sub-research questions. These sub-questions have guided the analysis
of this study and will be answered in the next paragraphs.

The first sub-question reads: “What types of uncertainty cause these changes?”. In their
review of MRP systems under uncertainty, Koh et al. (2002) classified uncertainty that causes
changes in production planning. The authors divide uncertainty into two categories: input
and process uncertainty. Here, input uncertainty is further divided into external supply and
external demand uncertainty. After thorough investigation within ASML, we adhere to this
classification of uncertainty by categorizing the present uncertainty into supply uncertainty,
process uncertainty, and demand uncertainty. Here supply uncertainty can stem from both
independent companies as well as own production facilities located elsewhere. External demand
uncertainty is in the form of customers changing their previously placed orders. Currently, the
uncertainty of the quantity of future demand is fairly low in the semiconductor industry, given
the fact that the world-wide demand is greater than the present-day production capacity. The
main demand uncertainty lies in the configuration and the timing of demand. Note that in the
current study, we only investigate the latter. This uncertainty is high, given the continuously
evolving and highly complex nature of the industry. The process uncertainty is present at the
internal processes of the companies active in this industry, which carries uncertainty due to the
complexity of the processes.

The second sub-question reads: “How does uncertainty impact the schedule instability?”.
From the results, we learn that the higher the level of uncertainty, the more instability is
present in the schedules. Here, instability is expressed in the percentage of machines impacted,
the amount of machine start deviation, and the amount of sequence changes of machines. We
learn that the modelled uncertainty has a great negative impact on schedule stability. For
example, the weekly percentage of machines included in plan changes is already significant at
low uncertainty, and increases sharply with additional uncertainty (see Figure 5.1a). The sharp
increase might be a possible explanation for the negative connotation of schedule instability
in the literature that addresses rescheduling of MPS and MRP systems under uncertainty. In
this research stream, the general consensus is to eliminate schedule instability (i.e. system
nervousness). Furthermore, results show that for medium and high levels of uncertainty, weekly
changes to the MPS sequence have to be made. These changes have been shown to be especially
troublesome in multi-level production processes, due to their nervousness-inducing behavior
(Atadeniz & Sridharan, 2020).

The third sub-question reads: “How does uncertainty impact the on-time delivery perfor-
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mance?”. The results of this research report on the on-time start performance rather than
the delivery performance. Due to the assumption of deterministic cycle times, the conclusions
from these results are similar to the on-time delivery performance conclusions, which are widely
present in the literature. The results of the analysis show that increasing the amount of uncer-
tainty generally decreases the on-time start performance. Furthermore, the drop in performance
increases the higher the uncertainty becomes. Once again, we see that increases in uncertainty
can lead to drastic decreases in on-time start performance (Figure 5.2a). It is of importance
to prevent these decreases, especially in industries similar to the one ASML operates in, where
delivery of produced goods is critical. The high and sometimes unrealistic demand requirements
are reflected in the results, as on-time start performance is already low when no uncertainty is
present.

The fourth sub-question reads: “How does uncertainty impact the production output?”. In
this research, we expressed this in the number of machine starts over a two year period. While
the decrease in the number of machine starts becomes bigger when uncertainty becomes high,
the overall decrease remains fairly low. For low levels of uncertainty, this seems in line with the
findings of Aytug et al. (2005). They state that rescheduling more frequently is not negatively
affecting system performance significantly, but beyond a certain threshold it is not affecting
it positively either. However, most of the other findings in our study contradict this, since
increases in uncertainty (i.e. more rescheduling) negatively impact the performance. This might
be explained by the fact that the focus on uncertainty is extremely narrow in the literature,
while this study considers a holistic view of uncertainty. Furthermore, capacity constraints are
often not present in the literature on rescheduling (Atadeniz & Sridharan, 2020), but are present
in our model. These constraints might tamper with the effectiveness of rescheduling found by
Aytug et al. (2005).

The fifth sub-question reads: “How do the results vary for the different types of uncertainty
that cause these changes?”. Most literature on rescheduling is about providing remedies to
uncertainty rather than clarifying the cause-and-effect structure of uncertainty. By analyzing
the effects that different types of uncertainty have on system performance within ASML, we aim
to add to this literature gap as identified by Aytug et al. (2005), Koh et al. (2002), and Vieira
et al. (2003). In our study, it is difficult to compare the relative impact of different types of
uncertainty, as they are different in characteristics. Nonetheless, we deem a comparison based
on the medium and high levels of uncertainty a solid base for deriving insights. We found that
the three individual sources of uncertainty (demand, supply, and process) impact the system
performance measures differently in size and variance. Although, generally speaking, their
impact behavior is similar. Notably, the negative impact of MB uncertainty increases more
than supply and demand uncertainty when increasing the level of uncertainty from medium to
high. This effect likely rises from the fact that MB uncertainty is impacted on its length and
supply and demand uncertainty on their chance of occurrence. Interestingly, for some measures
the sum of the negative impact of the individual uncertainties is greater than the negative
impact when all three types of uncertainty are present in the model. This would imply that for
some performance measures, there is an interplay between the different types of uncertainties.
For example, postponements on a machine due to supply uncertainty, could potentially allow
preponements of other machines due to early finishes at previous steps in the process (process
uncertainty) or due to demand uncertainty. Furthermore, for some KPIs, there are multiple
instances in the data where the negative impact in scenarios with uncertainty is lower than in the
scenario without, indicating that some uncertainty can potentially improve system performance.
Finally, eliminating demand uncertainty has only a marginal positive effect on two measures of
system performance, and a marginal negative effect on the third measure. While these results
advocate for allowing demand uncertainty to fulfill customer needs, one must not forget the
cost of rescheduling that demand uncertainty entails.

The sixth and seventh sub-questions read: “What is the difference in impact between prepon-
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ing orders and postponing orders?”, and “Is there a relation between the timing of a timing plan
change inside the frozen horizon and its impact?”. Both these questions seem to have gotten
little attention in the literature so far. We aim to add to this scarce literature, by addressing
these questions through analysis of demand uncertainty on schedule stability. Namely, demand
uncertainty gives us the opportunity to investigate both preponements and postponements. We
limit the impact analysis to schedule stability, as we want to investigate individual occurrences
of demand uncertainty. These cannot be analyzed over the long run in our model, due to
interplay between occurrences of demand uncertainty. Our results show that, at the start of
a rolling-horizon schedule, postponements impact the schedule instability more than prepone-
ments. The opposite effect holds for the end of the rolling horizon schedule. In the middle of
the schedule, the impact increases with the absolute size of the demand uncertainty. Generally,
preponements impact the schedule more often and more drastic than postponements. The re-
sults for the timing of uncertainty are in line with those of preponement versus postponement.
For postponements, the impact becomes larger the closer to the start of the rolling horizon
schedule. And for postponements, the impact becomes generally smaller the closer to the start
of the rolling horizon.

6.2 Managerial Insights

We derive several insights from the outcomes of our study. While different organizations and
industries can have different cause-and-effect relationships (Koh et al., 2002), we believe that
most of the insights can be generalized across organizations and industries, especially those
that are close in behavior to the semiconductor industry. While most research on uncertainty in
production planning is experimental, we performed an empirical study. Therefore, our insights
aim to build upon, and challenge current insights by providing a practical analysis of a system
under uncertainty.

Firstly, we recommend that the focus within companies, which have an established produc-
tion process, should lie on preventing more uncertainty, rather than eliminating the current
levels of uncertainty. Our results generally show that increases in uncertainty have a bigger
negative impact on system performance, than decreases in uncertainty have a positive impact.
In other words, decreasing uncertainty has diminishing returns. This effect might be explained
by the fact that there seems to be an interplay between the different sources of uncertainty that
impact system performance. On the other hand, eliminating uncertainty becomes more attrac-
tive the more uncertainty an organization experiences. Therefore, companies should carefully
assess their levels of uncertainty to identify potentially substantial gains in system performance.
Unfortunately, it proves to be difficult to eliminate uncertainty in practice. This is also the case
for ASML, where the factory struggles with tackling the troublesome uncertainty that impacts
their production planning. Pujawan and Smart (2012) found from interviews that it is very dif-
ficult for companies not to make changes requested by the customer, even though those changes
occur in the frozen period. This is very much the case for ASML, which operates in a highly
dynamic environment and serves only a small customer base. Therefore, we pose that managers
learn to deal with marginal amounts of uncertainty rather than putting an emphasis on remov-
ing all uncertainty. This especially holds if uncertainty is inherent to the industry. For example
in the semiconductor industry, which handles cutting edge technology. This contradicts the
findings of the field-based research on schedule instability by Krajewski et al. (2005). They
found that suppliers with higher levels of annual revenue, that produce components with high
value and complexity, use uncertainty reducing strategies rather than strategies that help cope
with uncertainty. While increases of uncertainty have a negative impact on system performance,
a significant hidden impact category is schedule instability. This leads to our next insight.

Secondly, we advocate for the recognition of the cost of rescheduling, especially those that
require human intervention. From the results of the impact of uncertainty on schedule instabil-
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ity, we learn that even low amounts of uncertainty lead to very unstable schedules. Furthermore,
our results show that due to uncertainty, schedules have to be updated periodically (at least
weekly for medium and high levels of uncertainty). Both findings require scheduling interven-
tions that bear cost. Unfortunately, including the cost of rescheduling in complex manufacturing
processes has not found much acceptance from the industry, as rescheduling costs are difficult
to determine (Atadeniz & Sridharan, 2020). Nonetheless, we feel that tackling this challenge
holds invaluable benefits for organizations. Furthermore, the cost of human intervention in
rescheduling is absent in the literature. More and more automated systems are used to perform
production planning. However, there is still a significant portion of production planning in the
industry that is performed manually. This is even the case for large companies such as ASML,
where the production planning of the highly complex machines has lots of dependencies and ir-
regularities that require human input. In the literature, most studies focus on the effects of plan
changes on system performance, and not on human factors. We pose that the human factors
should be included in research on rescheduling as well, to achieve more complete models. There
is a limited amount of papers that do include the cost of rescheduling into their model (e.g.
Carlson et al., 1979; Ivanov et al., 2017; Kropp et al., 1983; Kropp and Carlson, 1984). In those
papers, rescheduling would be permitted, as long as it was economical to do so. However, the
cost of rescheduling is limited to adding or cancelling setups. More recently, including the cost
of uncertainty has gained momentum under the Disruption Management literature stream. For
example, Liu and Ro (2014) included rescheduling cost that consists of rescheduling resources
and changing delivery times. We would like to build on this literature stream, by emphasizing
that human aspects, such as invested manhours and motivation, can be seriously impacted by
uncertainty. In order to assess the human factors that handle the plan changes, appropriate
data must be gathered within organizations.

Thirdly, as introduced by the previous paragraph, we endorse the recording of data on
uncertainty that impacts production planning and processes. In the current study, we tried
to estimate the uncertainty as accurately as possible, based on data. Unfortunately, data on
uncertainty was scarce, and therefore qualitative date in the form of experience of production
planners was necessary. Nonetheless, we found that the level of uncertainty can have serious
impact on system performance. Therefore, to get accurate insights into how uncertainty impacts
performance, better data collection is a must. This would allow for models that are closer to the
reality. While data collection on schedule changes is a difficult task (Pujawan, 2004), we believe
that a clear cause-and-effect structure helps assessing the cost of uncertainty, and ultimately
can be taken advantage of to diminish or deal with uncertainty. To help establishing this
structure, data on the type of uncertainty and the impact on the production schedule (e.g. size
of preponement, postponement, sequence change, etc.) should be recorded. Additionally, as
highlighted before, accurate data on invested manhours (e.g. FTE) by the production planning
should be collected in parallel. This data can help in getting a grip on uncertainty and could
help quantify the cost of uncertainty.

Fourthly, the impacts of uncertainty should be discussed between different departments
within organizations and between organizations in the supply chain. It became clear that there
are different conclusions in the literature about the effectiveness of rescheduling (Hozak & Hill,
2009). These different conclusions can partly be explained by a misalignment between different
parties about rescheduling. For example, it became clear that plan changes often result from
a mismatch of interests between the marketing and production departments. Taylor III and
Anderson (1979) stated that the conflicting objectives of these departments are largely the
result of different evaluative criteria employed. For many organizations, plan changes can be
due to unforeseeable causes or choice. Here, unforeseeable causes can be material breakdown,
operator absence, material unavailability, etc. Plan changes due to choice can, amongst others,
be caused by trying to satisfy changing customer demands late in the process. In this scenario,
the customer and sales department would like to reach an agreement. This agreement will
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likely impact the production department negatively. Although, removing demand uncertainty
from our model did not unambiguously increase system performance, it does add to schedule
instability. Accordingly, Pujawan and Smart (2012) found that rescheduling open orders to serve
customer due dates can in turn lead to less overall profitability. Therefore, we put forward that
a comprehensive overview on the impact of uncertainty should be integrated in decision making
on plan changes. Here, the tradeoff between the negative impact of uncertainty on the internal
production and the benefits of accepting uncertainty should be made. For example, a cost-
benefit analysis could be done, which includes the negative impact of uncertainty that can be
estimated when a clear cause-and-effect structure is present.

6.3 Limitations

There are several limitations in the current research that might impact the results. The first
set of limitations has to do with the uncertainty that is present in the model. In our study,
we modelled the scheduling of the machines, and modelled the three types of uncertainty as
inputs to the model. For example, both the process uncertainty at MB and supply uncertainty
are modelled based on the JIT principle. In practice, MB uncertainty stems from the different
planning rules and constraints present at the individual work centers where the modules are
assembled. The same holds for the supply and demand uncertainty, behind which entire depart-
ments handle the incoming supplies and customer requests. All three of these departments work
in close cooperation with the production planning departments. The decision making around
uncertainty is a complex and context dependent process that requires inputs from the different
departments. In our model the uncertainty is simply fed as input to the production planning
department. This can lead to exaggerations of the impact of uncertainty in our model, as in the
real world custom solutions can prevent the need for drastic plan changes. Furthermore, supply
and demand uncertainty have been estimated with the use of experience of production planners,
rather than quantitative data. This might introduce human bias into the model. Lastly, the
manipulation and comparison of the different types of uncertainty has its limitations. Due to
time constraints, we limited the amount of uncertainty scenarios to three (low, medium, and
high). More scenarios would have allowed us to better analyze the behavior of increases and
decreases in uncertainty. The comparison of the different types of uncertainty is limited, since
they are modelled differently and impact the model differently. A more analogous implementa-
tion of the different types of uncertainty would have enabled us to investigate how increases or
decreases in uncertainty compare between the individual types.

There are also limitations in the amount of uncertainty included in the model. Although we
provide a complete classification of uncertainty within ASML in our study, some uncertainty had
to be excluded to keep the size of the model manageable. For example, the model only includes
uncertainty of four main modules of the machines. There are also modules that are manufactured
at different locations, and many submodules from suppliers. These are assumed to have no
uncertainty or to be included in the supply uncertainty. Furthermore, we assumed that internal
logistics incur no uncertainty. While the uncertainty that is included in the model has a greater
impact on the factory, according to experienced employees, the excluded uncertainty could also
impact scheduling. Additionally, the cycle times of the machines are stochastic in practice.
Machines in the WIP can be put on hold when, for example, work floor employees call in sick.
We assumed deterministic cycle times, and posed a simplified employee capacity constraint. All
these exclusions of uncertainty might have changed the results of our analysis, especially since
we concluded that there seems to be an interplay between the different types of uncertainty. We
expect that additional uncertainty would increase the negative impacts. However, in specific
scenarios, it could also increase performance by providing unforeseen flexibility that could help
diminish the effects of uncertainty.

Finally, we limit our research by only looking at periods in which the factory operated as
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usual. In the high tech sector, many technological breakthroughs, unpredictable events (e.g.
COVID-19), and restrictions can have disruptive effects on the supply chain. These disruptions
have very different effects on system performance than the operational uncertainty that we
included in our model. Furthermore, it is likely that there is an interplay between disruption
uncertainty and operational uncertainty.

6.4 Future Research Directions

Several interesting future research directions arise from our study. Firstly, one could build on
this research by addressing the limitations. Firstly, more consistent implementations of the dif-
ferent types of uncertainty could ensure a better analysis of the differences in impact. By doing
so, research could better relate manipulations in uncertainty parameters to differences in im-
pact. Secondly, our research includes multiple types of uncertainty, but some is left out. Future
research could address how a more complete inclusion of uncertainty within an organization
impacts system performance. By analyzing how different types of uncertainty and combina-
tions of uncertainty impact system performance, additional insights into the holistic behavior
of uncertainty could be found. Furthermore, this adds to the mapping of cause-and-effect struc-
tures within different organizations and industries. Thirdly, studying uncertainty in different
environments (e.g. with or without major disruptions) could provide useful insights into how
production processes and planning are impacted. For example, our results imply that changing
the size of uncertainty (i.e. more major disruptions) impacts system performance differently
than changing the chance of occurrence of uncertainty. Research that studies these different
environments and uncertainty types could provide useful insights that could be used to design
processes that are robust to different uncertainty environments.

We identified that the cost of rescheduling is hardly recognized in the literature, while in
practice the amount of rescheduling activities is heavily impacted by increases in uncertainty.
This is an interesting avenue for future research. By investigating a complete overview of the
monetary costs and work hours, that are required for plan changes, companies can better decide
on which uncertainty to accept and which to prevent or avoid. Furthermore, future research
could extend on this study by investigating how different types of uncertainty impact schedule
instability. In this research, schedule instability can be linked to the cost of rescheduling to gain
insights into how much the cost of rescheduling changes with uncertainty.

In order to generalize the results within ASML further to other companies in similar or dif-
ferent industries, research should be conducted in those contexts. This research should address
the cause-and-effect structures present in the specific organizations or industry, as they are
likely different from that of the current study. Here, research should not only consider impacts
within singular companies, but rather in a supply chain context. This is especially relevant for
high tech industries, where supply chain are becoming more integrated over time.

Moreover, research attention should be directed towards ways to integrate uncertainty into
the standard processes for handling production. Currently, most focus lies on the development
of policies and methods that minimize the amount of plan changes. However, as we see from
ASML, plan changes are inevitable in highly complex environments. In this context, plan
changes even occur in parts of the process that have explicitly been designed not to allow any
changes. Therefore, the focus should not only lie on diminishing uncertainty, but also on how
to internalize it. For example, future studies could investigate different levels of time that are
allocated to rescheduling within an organization. By studying how these varying levels impact
system performance, within a model that considers a holistic overview of all uncertainty, new
guidelines for process design could be found. Once again, this future research could benefit
greatly from studies that provide ways to estimate the cost of rescheduling.
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Appendix A

Distribution Fitting Module Build

Figure A.1

Module Build Uncertainty 1
(a) MF 400

Note. number of bins = 20.

(b) MF 860

Note. number of bins = 20.

Figure A.2

Module Build Uncertainty 2

(a) MF 1060

Note. number of bins = 12.

(b) MF 1460

Note. number of bins = 20.
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APPENDIX A. DISTRIBUTION FITTING MODULE BUILD

Figure A.3

Module Build Uncertainty 3
(a) WS 400

Note. number of bins = 20.

(b) WS 860

Note. number of bins = 20.

Figure A.4

Module Build Uncertainty 4
(a) WS 1060

Note. number of bins = 10.

(b) WS 1460

Note. number of bins = 20.

Figure A.5

Module Build Uncertainty 5

(a) IL 400

Note. number of bins = 20.

(b) IL 860

Note. number of bins = 20.
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APPENDIX A. DISTRIBUTION FITTING MODULE BUILD

Figure A.6

Module Build Uncertainty 6
(a) IL 1060

Note. number of bins = 10.

(b) IL 1460

Note. number of bins = 20.

Figure A.7

Module Build Uncertainty 7
(a) LE 400

Note. number of bins = 20.

(b) LE 860

Note. number of bins = 20.

Figure A.8

Module Build Uncertainty 8

(a) LE 1060

Note. number of bins = 10.

(b) LE 1460

Note. number of bins = 20.
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Appendix B

Model Implementation

Figure B.1

Elaborate Pseudocode Greedy Algorithm
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APPENDIX B. MODEL IMPLEMENTATION
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Appendix C

Model Verification

Figure C.1

Verification of SI Starts
(a) Against First Planned SI Start in Blue
Horizon

Note. Starting point is week 2 2021, each clus-
ter of bars represents starts planned in the same
week.

(b) Against Actual SI Starts

Note. Starting point is week 2 2021, each clus-
ter of bars represents starts planned in the same
week.
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APPENDIX C. MODEL VERIFICATION

Note. Red line = median, blue dotted line = mean, box extends from first quartile to third
quartile, whiskers extend from the box by 1.5 times the inter-quartile range, n = 183, 246, 270,
267, 277, 280 for weeks 1, 2, 3, 4, 5, 6.

Note. Red line = median, blue dotted line = mean, box extends from first quartile to third
quartile, whiskers extend from the box by 1.5 times the inter-quartile range, n = 183, 246, 270,
267, 277, 280 for weeks 1, 2, 3, 4, 5, 6.
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Appendix D

Distribution Manipulation Module
Build

Table D.1

Percentage of drawn Random Variates that are On-time

Percentage in interval
Module Type Interval low medium high

[0,guideline CT + safety CT]
in shifts

MF 400 [0,11] 99.97 95.80 80.71
MF 860 [0,11] 99.91 93.79 78.12
MF 1060 [0,11] 90.46 74.73 62.89
MF 1460 [0,11] 99.46 90.16 74.36
WS 400 [0,24] 100 99.74 90.51
WS 860 [0,24] 100 99.63 89.96
WS 1060 [0,24] 100 98.73 86.13
WS 1460 [0,24] 99.96 95.44 80.16
IL 400 [0,11] 98.94 87.66 71.88
IL 860 [0,11] 100 99.35 89.48
IL 1060 [0,11] 99.49 90.08 73.59
IL 1460 [0,12] 88.79 72.74 56.03
LE 400 [0,9] 99.92 97.30 82.76
LE 860 [0,9] 100 99.24 88.76
LE 1060 [0,9] 97.75 84.01 67.70
LE 1460 [0,10] 99.82 92.99 77.09

Note. number of random variates drawn = 100,000, MF = MetroFrame, WS = WaferStage, IL
= Illuminator, LE = Lens
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