
 Eindhoven University of Technology

MASTER

Community detection on random graphs using Potts models
How random graphs with Potts models behave as random graphs with embedded community
structure

Miltenburg, Steven J.G.

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/3fac8ecc-7af0-4dc8-9d35-1e424b923936

Community detection on
random graphs using

Potts models

How random graphs with Potts models
behave as random graphs with embedded

community structure

SJG Miltenburg
Student number 0959623

60 EC

Department of Mathematics and Computer Science (MCS) & Applied Physics (AP)
Master track (AP) Bio/Nanoscience and Technology

Research Groups Statistics, probability and operations research (SPOR) & Soft matter and
biological physics (SMB)

Supervisors:
Prof. Dr. Remco van der Hofstad (SPOR, MCS)

Dr. Wouter Ellenbroek (SMB, AP)
Dr. Pim van der Hoorn (SPOR, MCS)

Committee memebers:
Prof. Dr. Remco van der Hofstad

Dr. Wouter Ellenbroek
Dr. Pim van der Hoorn
Prof. Dr. Kees Storm

This is a public thesis which follows the TU/e code of scientific integrity

Eindhoven, March 2022

Abstract

In this paper, we investigate the stochastic block model on n vertices, which first assigns a community from
{1, ..., q} = [q] to every vertex and then connects two vertices based on their communities. Two vertices in the
same community are connected with probability pin while two vertices of different communities are connected
with probability pout. The community detection problem is to reconstruct the original community assignment
based on the edge structure of the resulting graph and the connection probabilities, better than a random guess.

In particular, we investigate the sparse stochastic block model, where pin = a/n and pout = b/n, for a, b ∈ R+.
This way, when n → ∞, the average degree remains finite. When n → ∞, the stochastic block model can be
investigated using the local limit, which represents the neighbourhood of a random vertex ρ. For the stochastic
block model, this is a random tree.

Physicists have tackled the community detection problem using belief-propagation algorithms. Using these
algorithms and non-rigorous arguments, the authors of [1] have established a threshold for when this detection
can be done in polynomial time.

We aim to connect these different fields of community detection and show why the assumptions made by
the physicists are reasonable and why their algorithm should detect communities.

We observe the marked local limit of a sparse stochastic block model, where community i is assigned to
vertices with probability 1

q . We show that this object is equal to a Potts model on a specific random tree.
This tree is the local limit of the Erdös-Rényi random graph, which connects two vertices with probability
λ/n. The constraints for which these models are equal are λ =

∑
j∈[q] cijnj∀i ∈ [q], the magnetic field ~B = 0

and the inverse temperature β = − 1
2 log((q−1)b

a). We do this by showing the equivalence of both models to a
broadcasting process. A broadcasting process is defined on trees by the authors of [2]. We also show that both
equivalences with the broadcasting process can be generalized further.

We show that using these constraints of the parameters, the community detection threshold on graphs and
that of a broadcasting process on trees are the same. Using these constraints, the threshold for community
detection on random graphs and the Potts model on trees do not match, but we think this is caused by our
misinterpretation of the results in the literature.

We extend all of these results to degree-corrected graphs, where each vertex is also assigned a weight φ.
Thus, two vertices u, v are connected with probability φ(u)φ(v)pin, if they have the same community, and
φ(u)φ(v)pout otherwise.

We then discuss the origin of belief propagation algorithms. We explain in what ways approximations are
taken when applying these algorithms to random graphs whose local limit is a tree. We explain why intuitively
the algorithm of the authors of [1] should detect communities.

Finally, we discuss a more mathematical description of these algorithms, which have been shown to calculate
many physical properties exact on trees by the authors of [3]. One of these properties, the free energy density,
can be used to determine the quality of a guess of the original communities, when the algorithm of the authors
of [1] gives multiple results.

2 Community detection on random graphs using Potts models

Contents

1 Introduction 4

2 Random graph background 6
2.1 Probability theory notation . 6
2.2 Random graph models . 7
2.3 Local limits . 9
2.4 Giant component . 14
2.5 Successful community detection . 15
2.6 Broadcasting process . 15

3 Statistical physics background 18
3.1 Ising model . 18
3.2 Statistical Physics notation . 19
3.3 Phase transition . 20
3.4 Potts model . 21

4 How Potts models impose a community structure on random graphs 23
4.1 Intuition Ising on trees . 23
4.2 Equivalence local limit stochastic block model and Ising model on local limit Erdös–Rényi graph 25
4.3 Comparing successful community detection results . 27
4.4 Extension to q types . 27
4.5 General broadcasting process and inhomogeneous random graph 31
4.6 Type-transitive broadcasting process and adjusted spin glass Potts models 32
4.7 Extension to degree corrected models . 33
4.8 Conclusions . 34

5 Detecting communities using belief propagation algorithms 35
5.1 Belief propagation algorithms . 35
5.2 Exact belief propagation on trees . 37
5.3 Decelle et al.’s belief propagation algorithm . 41
5.4 Intuition behind community detection on random graphs . 45
5.5 Relation of critical parameters . 46

6 Towards a mathematical description of belief propagation algorithms 48
6.1 Factor graphs . 48
6.2 Belief propagation on factor trees . 49
6.3 Properties in terms of local quantities . 50
6.4 The cavity method . 52
6.5 The cavity method in Decelle’s algorithm . 52
6.6 Results on treelike graphs . 53

7 Summary and outlook 54
7.1 Summary . 54
7.2 local minima in antiferromagnetic regime . 55
7.3 Finite random graphs . 55

A Appendix 58

Community detection on random graphs using Potts models 3

Chapter 1

Introduction

Suppose we are given a graph of all people in Belgium, who are connected if they have ever called each other.
Can we now figure out who lives in french-speaking Wallonia and who in dutch-speaking Flemish region? This
example has been studied and is called community-detection. We say a graph has a community structure if it
divides into groups which have more connections within their groups than outside of it. In the Belgian calling
graph we expect such a structure, as the assumption is that people are more likely to call someone with the same
native language. There is also another type of community structure, where there are more connections between
different groups than within one. One example of this is a graph containing all marriages, where we want to
guess the sex. We call the Belgian community structure assortative and the marriage community structure
disassortative. We dedicate most of our work to the assortative case.

Now in this problem the question is usually when a community structure can be detected. For this the
original communities need to be known, so that a guess of the communities can be compared to it. One random
graph model that fulfills this requirement is the stochastic block model. It creates a graph by first dividing
nodes into their original community structure by giving them a type. Then it connects edges between nodes
based on their type. We will look at assortative graphs where the probability of connecting to the same type pin

is larger than the probability of connecting to other types pout. It has been defined that community detection
is successful if, based on the structure of the resulting graph, the original communities can be guessed better
than with a random guess.

In most practical cases we are interested in large networks. We will therefore investigate the limit case where
the amount of vertices n goes to infinity and investigate if this limit behaviour is present for large finite n. In
order for such a limit to be nicely behaved, we will need sparse graphs, where pin = a/n and pout = b/n with
a, b constant, such that the average degree is finite as n→∞.

In this limit we can quantify the graph models we are interested in, by looking at the neighbourhood of
a random vertex. We call this object a local limit. These local limits help us, not only rigorously, but also
intuitively better understand these graph models.

Mathematicians have mainly focused on theoretically determining when a the structure of a graph does
not give enough information to successfully detect communities. It has been proven by the authors of [4] that
community detection in a model of q communities is impossible for (a− b)2 < q(a+ b).

Also physicists have tried to tackle this problem of community detection on sparse graphs. They mainly
use algorithms which try to guess the original communities. These algorithms are called belief-propagation
algorithms, and are based on properties of the Boltzmann distribution of statistical physics models, which can
be calculated iteratively on trees. They then take these iterative calculation as the basis for an iterative algorithm
on locally treelike graphs. Using these algorithms they empirically find that they can detect communities above
a threshold. We show that this threshold corresponds to (a− b)2 > q(a+ (q − 1)b).

In this thesis we investigate when community detection is successful on sparse random graphs. We make a
distinction between when successful community community detection is theoretically possible, and when there
is an algorithm which can detect it easily, in polynomial time of n. Both mathematicians and physicists have
tackled this problem of community detection. We therefore try to couple the parameters of the models used by
mathematicians to those used by physicists, and couple results for community detection gained in one field to the
other field. We also try to explain why the algorithms created by physicists should indeed detect communities.

We shall now give an overview of what we discuss in what chapter of this thesis. In chapter 2 we will give
the background knowledge required for both the mathematical and physical arguments. We define the graph
models used. We show that these models can for n → ∞ be described as the neighbourhood of a random

4 Community detection on random graphs using Potts models

CHAPTER 1. INTRODUCTION

vertex, the local limit. Next we describe the kind of object this local limit is, a Galton Watson Tree. This
will be important, as our physical models will have a much simpler local description on trees. Next, we talk
about when our random graph models have a nonzero fraction of nodes in the largest connected component, a
so-called Giant. This is called percolation in physics. This is important as the physical models will only have
a phase transition, when the graph they are applied to has nonzero percolation, a Giant. This is important as
the phase transition separates the regime where community detection is impossible and the regime where it is
successful.

We then explain the Ising and Potts models and their properties on aforementioned graph models in chapter
3. We show that physics has developed many quantities to quantify these systems. In particular the free energy,
which in minimized at constant temperature, can give us information. Furthermore we show when there is phase
transition, the moment when the type of one node in the system tells us something about the entire system.
This is important because we later try to relate this with the threshold of community detection.

We need all this in order to understand the significance of the equivalences we prove in chapter 4. We
show that the local limit of the stochastic block model and using a Potts model on the local limit of a random
graph without pre-defined types, where each vertex has equal probability λ of connecting to another node, the
Erdös-Renyi random graph, are equivalent. We do this by first showing the equivalence on trees and then using
the fact that the local limit is a tree. This allows us to link the temperature of a Potts model and the average
degree of the random graph it is defined on, to pin and pout in a stochastic block model. This means that we
can express the results found by physicists and mathematicians in the same notation, so that we can compare
them.

We then show why using our method, we cannot use the same method to extend this equivalence from the
stochastic block model to a model where the probability of connecting can be dependent of the incoming and
outgoing type, the inhomogeneous graph model.

In chapter 5 we look at algorithms that have been developed for community detection on finite but large
graphs. We look in particular at the algorithm of [1] and give a detailed explanation of how this method was
developed on trees. We then show how it can be applied to locally treelike graphs. We explain that this method
uses only approximations of O(1/n) and therefore should give accurate results for large n.

In chapter 6 we use factor graphs, which originally come from problems in computer science, to have a more
rigorous way of describing the belief propagation algorithms explained in the previous chapter. This way we are
also able to iteratively calculate the free energy of a Boltzmann distribution. As the free energy is minimized
in this distribution for constant temperature, this allows us to compare the quality of multiple different guesses
of the communities without needing the original communities.

In chapter 7 we summarize our results and their limitations. We also show a few directions where new
research for community detection can be done.

Community detection on random graphs using Potts models 5

Chapter 2

Random graph background

In order to understand this thesis, some probability theory knowledge will be required. First we discuss random
variables and types of convergence in section 2.1. In section 2.2 we define the random graph models usually
used in community detection. We will see that as n → ∞, the typical neighbourhood of a random vertex in a
random graph can be described. We call this description a local limit, which we discuss in section 2.3. For the
considered random graph models, these local limits will usually be a Galton-Watson tree. These are random
trees from a population model where each vertex is seen as a parent which either dies out or has an offspring.
The extinction of these typical neighbourhoods can be related to the size of the largest connected component
of a graph. When this largest component contains a positive fraction we call it a giant, which is the subject of
section 2.4. The existence of the giant is necessary because it impacts when there is a phase transition of the
statistical physics models that we will discuss in the next chapter. The phase transition in turn will impact the
threshold for community detection. In section 2.5 we define when community detection is successful both on
graphs and on trees. We give community detection results of the mentioned graph models. In section 2.6 we
describe a process that imposes a community structure on a tree, and when successful community detection is
possible in this setting.

2.1 Probability theory notation

In this thesis we will work with discrete random variables. As these definitions can get quite technical, we will
use an example.

Suppose we want to model the throwing of a balanced 6-sided dice. In this case we can take our random
variable X to be able to take the integer values 1 through 6. We call the set of states which X can have the
state space Ω = {{1}, {2}, {3}, {4}, {5}, {6}}. In particular, as the dice is balanced, we want the probability
of being equal to any one of these values to be 1/6. For example, the probability of X = 1 is 1/6, which we
denote as P(X = 1) = 1

6 . When we roll the die, the probability of rolling any result is 1. We can also ask
ourselves what the chances are of rolling a number ≤ 4, which we denote as FX(4) = P(X ≤ 4) = 4

6 . Another
probability of interest is probability of rolling a 2 or a 5 is. Let A = {{2}, {5}}, then we denote this probability
as P(X ∈ A) = P(X = 2) + P(X = 5) = 2

6 . Also a very important property is the expected value of a roll. In
this case we say that the expected value E[X] = 1

6 + 2
6 + 3

6 + 4
6 + 5

6 + 6
6 = 3 1

2 . We also introduce a useful tool,
the probability-generating function, G(z) = E(zX), which can be used to calculate the moments E[Xk]. Given
this intuitive example, we can now introduce the formal definitions.

Definition 2.1.1 (State space, (discrete) random variable, probability measure, cumulative distribution func-
tion, expected value, probability-generating function). Let Ω be a set of states, the state space. X is a random
variable with respect to a measure P, if X takes values of Ω with probability P(X = x) ≥ 0 for x ∈ Ω. Also for
any countable set of disjoint events {xi} with xi ∈ Ω we have

P(X ∈ ∪i(xi)) =
∑
i

P(X = xi). (2.1)

P is called a probability measure if

P(X ∈ Ω) =
∑
x∈Ω

P(X = x) = 1. (2.2)

6 Community detection on random graphs using Potts models

CHAPTER 2. RANDOM GRAPH BACKGROUND

FX is called the cumulative distribution function. When Ω ⊆ R , there is a natural ordering of the states and
we can define

FX(x) = P(X ≤ x). (2.3)

Otherwise we must first create an ordering, using a mapping φ : Ω→ R. Then one can define

FX(x) = P(X ∈ A), with A = {ω ∈ Ω|φ(ω) ≤ x}. (2.4)

The expected value of a random variable X is then

E[X] = 〈X〉 =
∑
x∈Ω

φ(x)P(X = x). (2.5)

The probability-generating function is defined as

G(z) = E(zX) =

∞∑
x=0

P(X = x)zx. (2.6)

Two random variables with equal probability-generating function have the same distribution.

Throughout this thesis measures are called µ, though P may occur occasionally. Mostly we look at graphs
of n vertices, where each vertex has a type in [q] ≡ {{1}, ..., {q}}. Ω will therefore usually be [q]n, denoting all
different qn states the graph can have.

We are interested in what happens to graphs when the number of vertices grows very large, n → ∞. In
order to nuance results in this limit, we need to distinguish different strengths of convergence. We start with
the weakest convergence, convergence in distribution.

Definition 2.1.2. Let {Xn}n≥1 be a sequence of random variables. Let Fn denote the cumulative distribution

function of Xn. Then we say {Xn}n≥1 converges in distribution to X, {Xn}
d−→ X, when

lim
n→∞

Fn(x) = F (x) (2.7)

for every point x ∈ R at which F (x) is continuous.

This definition is a weaker form of convergence, thus the limit can behave unusually. For example, for n > 0
let Xn be uniform in (0, 1

n), then this sequence converges in distribution to a degenerate random variable X = 0.
Checking (2.7), Fn(x) = 0 for all n when x ≤ 0, and Fn(x) = 1 for all x ≥ 1

n . However, for this limiting random
variable we have F (0) = 1, even though Fn(0) = 0 for all n. Thus the convergence of the cumulative distribution
function fails at the point x = 0 where F is discontinuous. This is no problem for convergence in distribution,
as (2.7) is only required on continuous point of F (X).

Now we take a look at convergence in probability.

Definition 2.1.3. Let {Xn}n≥1 be a sequence of random variables. {Xn} converges in probability towards the

random variable X, {Xn}
P−→ X if for all ε > 0

lim
n→∞

P(|Xn −X| > ε) = 0. (2.8)

We can see that the previous example, where Xn is uniform in (0, 1
n) still works, as Xn <

1
n , so for n > 1

ε
we have P(|Xn −X| > ε) = 0.

2.2 Random graph models

In this subsection we define several random graph models on which community detection is interesting and look
at their properties. In order to be able to test community detection algorithms, we want random graph models
which have a community structure built into them, so that we can compare the results of the algorithm with
the ’true’ community structure. However, we start by introducing the underlying random graph model without
community structure, the Erdős–Rényi (ER) random graph. Even these random graphs without community
structure can be interesting to us, as we later show that we can use statistical physics methods to introduce a
community structure.

Community detection on random graphs using Potts models 7

CHAPTER 2. RANDOM GRAPH BACKGROUND

After introducing the ER random graph, we show a random graph which has a community structure by
itself, the Inhomogeneous random graph (IRG). We mention one specific case of the inhomogeneous random
graph, on which much research has been done and many results are known, the stochastic block model (SBM).

As we are mostly interested in large graphs, where n→∞, we want this limit to be well-behaved. Therefore
we introduce the sparse case of random graphs. Intuitively this means that the degrees are of constant, O(1/n),
size even as n → ∞. For the rest of this thesis, we shall denote ∂u for the set of all vertices connected to u.
Thus |∂u| denotes the degree of u.

Definition 2.2.1 (sparse graphs). Let Gn = (Vn, En), then we say Gn is (uniformly) sparse when

lim
l→∞

lim sup
n→∞

1

n

∑
u∈Vn

|∂u|1(|∂u| ≥ l) = 0. (2.9)

Here 1 is the indicator function which is 1 when its argument is true and 0 otherwise.

Or in words, when the amount of edges connected to a node with degree ≥ l scales at most linear with n. We
shall discuss only graphs where the degree of nodes is distributed using a poisson distributed random variable
with parameter λ, Poi(λ), defined as

P(Poi(λ) = x) =
λxe−λ

x!
. (2.10)

For this distribution we will have Gn sparse when λ = O(1).

The Erdős–Rényi model (ER)

An Erdős–Rényi random graph on n vertices ERn(p) is created by creating an edge between 2 vertices with
probability p for every pair of vertices independently. Thus the creation of edges is independent of any a priori
defined community structure. Thus even if a set of original communities would be put onto the vertices of
ERn(p), they could never in any way be deduced from the edges of the graph, as these edges are completely
independent of said communities. Therefore the ER graph is said to not have any community structure.

We will only investigate the sparse case, where even in the limit n → ∞ the average degree is finite. Thus
p = λ

n . We shall therefore denote the model with ERn(λ/n), where we are mostly interested in the limit
n→∞. The subscript n will often be omitted. We would like to quantify these graphs for large n. One way to
do this is to look at a random vertex in ERn(λ/n). Let Bin(n, p) denote the binomial distribution simulating
n experiments with success probability p, defined as

P(Bin(n, p) = x) =

(
n

x

)
px(1− p)n−x. (2.11)

For the degree Dn of a random vertex in ERn(λ/n) we obtain

P(Dn = k) =

(
n− 1

k

)
(
λ

n
)k(1− λ

n
)k = P

(
Bin(n− 1,

λ

n
) = k

)
. (2.12)

As n→∞, we know that

Dn
d−→ Poi(λ). (2.13)

As poisson random variables have neat properties, this helps us in our description of ERn(λ/n) as n→∞. We
are interested in the behaviour of the graph as n→∞, in particular the neighbourhood of a random vertex ρ.
A more complete picture of this will be given in section 2.3.

Now we would like to introduce graphs with a natural community structure. We can do this by by extending
the ER random graph model such that it has different types of nodes. For this we introduce the Inhomogeneous
random graph model.

Inhomogeneous random graph model

We look at the inhomogeneous random graph model on n vertices. Here first each node is assigned a type,
which represents its community. Then each edge is formed independently with a probability that is based on
the types of the nodes it would connect. For community detection we would sometimes like to keep track of the
type of each node that was used to create the graph. When the original types are stored in the graph we call a
graph marked. More precisely,

8 Community detection on random graphs using Potts models

CHAPTER 2. RANDOM GRAPH BACKGROUND

Definition 2.2.2 ((Marked) inhomogeneous random graph). Let S = [q] = {1, ..., q} be the type space. Let c be
a q×q symmetric non-negative matrix, called a kernel. Let µS(i) ≡ ni be the probability of a node having type i.
Then IRGn,µS (c) is a random graph G = (V (G), E(G)) with n = |V (G)| vertices created in the following way.
Each node u is assigned a type tu with probability ntu independently. Then, an edge (u, v) ∈ E(G) is created
with probability

ctu,tv
n independently for each of the

(
n
2

)
possible edges.

We call this graph the marked IRGn,µS (c) if the type tu of each vertex u is stored in ~t ∈ Sn ≡ Ω at the
u’th index, so G = (V (G), E(G),~t(G)). We usually omit µS and mention what is known about ~n = {n1, ..., nq}
instead.

Note that if we set S = {1} and c = λ, then IRGn(c) = ERn(λ/n). Also, when c contains only values of
order O(1) then IRGn(c) is sparse.

The Stochastic block model (SBM)

The stochastic block model SBMn(q, pin, pout) is a specific case of the IRG model where n vertices are partitioned
into q clusters, where the probability of a node having type i, ni = 1

q . The random graph is created by
connecting two vertices of the same type with probability pin and vertices of a different type with pout. In the
sparse case that we are interested in, pin = a/n and pout = b/n, with constants a, b > 0. More precisely, we find
SBMn(q, a, b) = IRGn(c) with

c =

. . . b

a

b
. . .

 (2.14)

a q × q matrix with a on each diagonal entry and b everywhere else.

Degree-corrected SBM (DSBM)

Furthermore there is the degree-corrected SBM (DSBM). Degree-corrected means that the degree of the vertices
is changed (corrected) by adding a weight to vertices. This way a the degree distribution of the model can be
made to fit the degree distribution of a real-world network. In this version, in addition to the properties of
SBMn(q, a, b), each vertex u is assigned a weight φu governed by a distribution ν (with a minimum weight
φmin > 0) and moments Φ(k) =

∫
W
xkdν(x). The probability of connecting two vertices becomes φuφva

n if u and

v share the same type and φuφvb
n otherwise. We write this model as DSBMn(q, a, b, ν). When q = 1 and a = λ

this reduces to the degree-corrected ER model, called DERn(λ/n, ν).
The IRG can also be extended by having arbitrary connection probabilities pij between types, with in the

sparse case cij = pij/n. As our results unfortunately don’t apply to such a general model we won’t further work
it out here.

2.3 Local limits

We are often interested in graphs G in the limit n→∞, the thermodynamic limit. In this limit, it is important
to know how the neighbourhood looks from ”typical vertex” ρ (i.e. ρ chosen uniformly at random). It turns
out that for the sparse graphs we have defined in the previous section 2.2, there are no cycles up to distance
R −−−−→

n→∞
∞. Thus these neighbourhoods can be described as trees.

In this section we introduce the ’local limit’ as the convergence of the neighbourhood of a local root ρ chosen
uniformly at randomfrom V (Gn) to a graph G. In order to understand this local limit we will use the definitions
and an introduction to local limits from [5]. The version here will be shorter, so if anything is still unclear, look
at [5].

We start by introducing rooted graphs, which allow us to better study the neighbourhood of the root.

Definition 2.3.1 (Locally finite and rooted graphs). A rooted graph is a pair (G; ρ), where G = (V (G);E(G))
is a graph with vertex set V (G) and edge set E(G), and ρ ∈ V (G) is a vertex. Further, a rooted or non-rooted
graph is called locally finite when each of its vertices has finite degree.

In definition 2.3.1, graphs can have finitely or infinitely many vertices, but we will have graphs that are
locally finite in mind.

Community detection on random graphs using Potts models 9

CHAPTER 2. RANDOM GRAPH BACKGROUND

Definition 2.3.2 (Neighborhoods as rooted graphs). For a rooted graph (G; ρ), we let Br(ρ) = B
(G)
r (ρ) denote

the (rooted) subgraph of (G; ρ) of all vertices at graph distance at most r away from ρ. Formally, this means

that Br(ρ) = ((V (B
(G)
r (o)), E(B

(G)
r (ρ)), ρ), where

V (B(G)
r (ρ)) = {u : dG(ρ, u) ≤ r}

E(B(G)
r (ρ)) = {(u, v) ∈ E(G) : dG(ρ, u), dG(ρ, v) ≤ r} (2.15)

.

We continue by introducing the notion of isomorphism between graphs, which basically describes that graphs
‘can be drawn to look the same’, when the precise indexing of vertices is ignored. Here is the formal definition:

Definition 2.3.3 (rooted Graph isomorphism). Two rooted (finite or infinite) graphs (G1, ρ1) and (G2; ρ2)
where Gi = (V (Gi), E(Gi)) for i ∈ {1, 2} are called isomorphic, which we write as (G1; ρ1) ' (G2; ρ2),
when there exists a bijection φ : V (G1) → V (G2) such that φ(ρ1) = ρ2 and {u, v} ∈ E(G1) precisely when
{φ(u), φ(v)} ∈ E(G2).

We let G∗ denote the space of rooted graphs modulo isomorphisms, introduced by Aldous and Steele [6]. This
means that G∗ contains the set of equivalence classes of rooted connected graphs. We will omit the equivalence
classes, and write (G, o) ∈ G∗, as all (G′, ρ′) such that (G′; ρ′) ≡ (G; o) are considered to be the same. Thus,
formally we deal with equivalence classes of rooted graphs. In the literature, the equivalence class containing
(G, ρ) is sometimes denoted as [G, ρ].

Now we finally have all the ingredients needed to define a local limit. Intuitively this local limit should be
the object such that building up the graph G from the root ρ has the distribution that looking at a random
root ρn in the finite graph Gn converges to. In this case the distribution is up to graph isomorphisms and the
convergence is in probability.

Definition 2.3.4 (local convergence of random graphs). we say that Gn converges locally in probability to (G, ρ)
having (possibly random) distribution µ when

E[h(Gn, ρn)|Gn]
P−−−−→

n→∞
Eµ[h(G, ρ)] (2.16)

for every bounded and continuous function h : G∗ → R. On the left-hand side the expectation E is w.r.t. the
random vertex ρn, as the sequence of graphs Gn is given for all n. Whilst on the right-hand side we consider a
random graph (usually a tree), generated from some starting root ρ. The expectation is taken over the randomness
of this graph, Eµ[X] =

∫
Ω
X(ω)dµ(ω).

We write Gn
P−loc−−−−→ (G, ρ) and say that Gn has local limit (G, ρ) or that Gn converges locally in probability

to (G, ρ) .

Random trees from population dynamics We have already foreshadowed that the local limit of many
of these graphs will be random trees. Here we describe properly what random trees are, in the terminology of
Galton-Watson trees (GWT). These were originally invented for population dynamics. Therefore we refer to
nodes u as having a parent node v which is the node closer to root node ρ. We also say u has or generates
children nodes, which are the nodes connected to them which are further from root ρ.

A Galton Watson process is a stochastic process {Xh} where the starting population is one, X0 = 1 and the
population on time h+ 1, Xh+1, is calculated using

Xh+1 =

Xh∑
i=1

Y
(h)
i . (2.17)

Where Y
(h)
i are i.i.d. random variables, independent of the time step h, which will be omitted. In other words,

in one time step each individual gives birth to a Y distributed amount of children and dies itself. Throughout
this thesis the random variable Y will be Poisson distributed with parameter λ. This is denoted as Y ∼ Poi(λ),
for which we have

P(Y = x) =
λxe−λ

x!
. (2.18)

This model can very naturally be extended to trees by drawing edges between each individual and their
children.

10 Community detection on random graphs using Potts models

CHAPTER 2. RANDOM GRAPH BACKGROUND

Definition 2.3.5 (Galton Watson Tree (GWT)). Let (T, ρ) be a distribution of rooted trees. Then (T, ρ) is
called a Galton-Watson tree with offspring Y , denoted GWT(Y), when a realization of (T, ρ), is generated by
taking a root ρ and letting every node generate a Y distributed number of children, which are connected with
their parent.

This definition is connected to the Galton Watson process, as the number of nodes at height h of the tree is
equal to Xh.

The extinction probability of the Galton-Watson process is

ex(X) = lim
n→∞

P[Xn = 0]. (2.19)

This is precisely the probability that the GWT is a finite tree. It greatly impacts the behaviour of community
detection when ex(X) < 1, as this means that there are realizations which are infinite trees. We are interested
in such graphs, as we shall see that statistical physics model have a phase transition which can be related to
community detection on such trees 3.3. For E[Y] > 1 we find that ex(X) < 1. When E[Y] ≤ 1 and Y 6= 1 we
find that this probability is ex(X) = 1. In physics this survival probability can be identified as the probability
of percolation.

GWT’s turn out to be the local limit for the ER graph as we show in the next section. However, for the
graphs with community structure the local limit also has this community structure. Therefore we introduce
multi-type GWT’s, where each vertex u is assigned a type tu ∈ [q] and the distribution of children Ytu,i is
dependent on both the type of vertex u, tu, as the type of the produced children, i.

As we want to be able to express the local limit of marked objects, we also introduce the marked multi-type
GWT, where each vertex keeps track of their type.

Definition 2.3.6 ((marked) multitype GWT’s). Let (T, ρ, ~tρ) be a distribution of rooted trees. Then (T, ρ, ~tρ)
is called a multitype Galton-Watson tree with q× q offspring matrix Y , denoted GWT(Y, ~tρ), when a realization
of (T, ρ, ~tρ), is generated by taking a root ρ and giving it type i with probability tρ,i. Then let every node generate
children. A node of type i generates a Yi,j distributed number of children of type j, which are connected with
their parent. We call this multi-type Galton Watson tree marked if the type of every vertex is stored.

We are interested in the extinction and survival of multitype GWT’s, as statistical physics models have
interesting properties once there is a survival probability > 0. Van der Hofstad [5] proved the following about
the survival probability.

Theorem 2.3.7. Let GWT(Y,~n) be a multitype GWT with ni the fraction of nodes of type i. Let ci,j denote
the expected offspring of type j of a single individual of type i, divided by ni, such that K is the matrix with
expected offsprings,

Kij = E[Yi,j] = ci,jnj . (2.20)

Let ζ be the survival probability of GWT(Y,~n). Then the largest eigenvalue of K, ||K|| can be computed and we
have ζ > 0 precisely when ||K|| > 1.

The local limit of the IRG We have almost all the ingredients to be able to give the local limit of the IRG.
We continue with the definition of a graphical and irreducible kernel, before showing this local limit. These
definitions are as introduced by [5], but simplified for our case where the set of types is S = [q] = {1, ..., q}.
Reducibility of c in the IRGn(c) roughly means that c can be split into two smaller matrices c1 and c2, as
there are guaranteed to be no connections between these two sets of types. Therefore we could have equally
well started with two separate random graphs with two kernels of smaller dimension. As we can always create
reducible random graphs by combining multiple irreducible ones, we will look at irreducible random graphs
only. We discuss graphicality after its definition.

Definition 2.3.8 (Graphical and irreducible kernels). A kernel c (a q × q matrix defining the connecting
probabilities of the IRG from section 2.2.2) is graphical if the following conditions hold:

1. (a) ∑
i,j∈[q]

ci,jninj <∞ (2.21)

Community detection on random graphs using Potts models 11

CHAPTER 2. RANDOM GRAPH BACKGROUND

(b)
1

n
E[|E(IRGn(c))|]→ 1

2

∑
i,j∈[q]

ci,jninj (2.22)

And a sequence (cn)n≥1 of kernels is called graphical with limit c when cn(i, j) → c(i, j), where c
satisfies (a) as above, and

1

n
E[|E(IRGn(cn))|]→ 1

2

∑
i,j∈[q]

ci,jninj (2.23)

2. A kernel c is called reducible if ∃A ⊆ S with 0 < µS(A) < 1 such that c = 0 almost everywhere on
A× (S \A), otherwise c is irreducible.

As discussed before irreducibly simply means that c is really a q × q martix and cannot be written as two
smaller matrices c1 and c2. We now discuss the graphicality. The assumptions in (2.21) and (2.22) imply that
the expected number of edges is proportional to n, and that the proportionality constant is precisely equal to∑
i,j∈[q] ci,jninj . In the case of a constant kernel c, assumption (2.22) is satisfied. In that case every node of

type ni generates precisely
∑
j ∈ [q]

ci,j
n nj(n− 1) edges, but every edge can be generated from 2 nodes but will

only be generated once, so this is divided by 2. Note that if c is graphical then we also have that IRGn(c) is
sparse.

We extend the setting to n-dependent sequences (cn)n≥1 of kernels in (2.23), as in some natural cases the
kernels do indeed depend on n, which is to say that only when n→∞ do the group probabilities stop fluctuating.

All these definitions allow us to understand the following theorem from [5] about the local limit of the IRG,
which we rewrite slightly for our purposes.

Theorem 2.3.9 (Locally tree-like limit IRGn(cn)). Assume that cn is an irreducible graphical kernel converging
to some limiting kernel c. Then IRGn(cn) converges in probability in the local sense to the multi-type Galton-
Watson tree, where

• the root has type distribution

~tρ = {n1, ..., nq}. (2.24)

• a vertex of type i has offspring distribution Poi(λ(i)), with

λ(i) =
∑
j∈[q]

ci,jnj . (2.25)

Each of its offspring receives an independent type with distribution Q(i) given by

P(Q(i) = j) =
ci,jnj∑
j∈[q] ci,jnj

. (2.26)

Arithmetic with Poisson distributed random variables We would like to be able to write this in terms
of an offspring matrix Y . We can express Yij , the offspring an individual of type i generates whose children have
type j, as an experiment which is done Poi(λ(i)) times independently and has success probability P(Q(i) = j).
A binomial distribution, with n trials and success probability p, denoted as Bin(n, p), calculates precisely that
distribution. Remember it is defined as

P(Bin(n, p) = x) =

(
n

x

)
px(1− p)n−x. (2.27)

Thus we find

Yij = Bin(Poi(λ(i)),P(Q(i) = j)). (2.28)

We will rewrite this formula as a Poisson distributed variable. For this we prove the following lemma.

Lemma 2.3.10. Bin(Poi(a+ b), a
a+b) and Poi(a) have the same distribution.

12 Community detection on random graphs using Potts models

CHAPTER 2. RANDOM GRAPH BACKGROUND

Proof. The probability generating function (defined in (2.6)) of Bin(n, p) is (pz + (1 − p))n. The probability
generating function of Poi(λ) = exp{λ(z − 1). The probability generating function of Bin(Poi(a+ b), a

a+b), is

GX(z) =

∞∑
k=0

(
a

a+ b
z +

b

a+ b
)k

(a+ b)k exp{−(a+ b)}
k!

= exp{−(a+ b)}
∞∑
k=0

((a
a+bz + b

a+b)(a+ b))k

k!

= exp{−(a+ b)} exp{az + b} = exp{az − a} = exp{a(z − 1)}

(2.29)

which is the probability generating function of Poi(a).

Now we can use lemma 2.3.10 with a = ci,jnj and b =
∑
j 6=i∈[q] cijnj to show that equations (2.25) and

(2.26) correspond to offspring matrix Y with

Yij = Bin(Poi(λ(i)),P(Q(i) = j)) = Bin(Poi(a+ b),
a

a+ b
) = Poi(a) = Poi(ci,jnj). (2.30)

In the following paragraph we show what this implies for the local limit of ERn(λ/n), SBMn(q, a, b) and
DSBMn(q, a, b, ν).

The Local limit of the ER, the SBM and the DSBM In ERn(λ/n) we have the situation as described
in the IRCn(c), with S = {1} and c(1, 1) = λ. Thus we find a that ERn(λ/n) has as local limit a (single type)
GWT where every vertex has offspring Poi(λ),

GWT (Poi(λ)). (2.31)

For the SBM we have SBMn(q, a, b) = IRGn(c) with kernel c as in (2.14). Thus we find for a SMB with

ni = 1
q for i ∈ [q], that λ(i) = a+(q−1)b

q = d for all i. Then for the local limit of a SBM we then find a multi-type
GWT with

1. root ρ has type distribution ~tρ = (1
q , ...,

1
q) and offspring distribution Poi(d).

2. a vertex has offspring Poi(d) with type distribution Q(i)

P(Q(i) = j) =

{
a

a+(q−1)b for i = j
b

a+(q−1)b for i 6= j.
(2.32)

Which corresponds to

Yi,j =

{
Poi(ad

a+(q−1)b) = Poi(aq) for i = j

Poi(bd
a+(q−1)b) = Poi(bq) for i 6= j.

(2.33)

Where a marked SMB has a local limit the same multi-type GWT, but then marked.

Gulikers et al. [4] show what the local limit is of the degree-corrected SBM (defined in section 2.2).

Theorem 2.3.11 (local limit DSBM). DSBMn(q, a, b, ν) converges in the local sense in probability to the
multitype GWT, where

1. root ρ has type distribution ~tρ = (1
q , ...,

1
q) and weight φρ distributed as ν.

2. every vertex u has Poi(a+(q−1)b
q Φ(1)φu) offspring with type distribution Qi as in (2.32) and size-biased

weight distribution

ν∗([0, x]) =
1

Φ(1)

∫ x

φmin

ydν(y). (2.34)

Community detection on random graphs using Potts models 13

CHAPTER 2. RANDOM GRAPH BACKGROUND

2.4 Giant component

An interesting property of graphs is their connectivity. In particular for the limit n→∞ we look at when there
is a nonzero fraction of the nodes ζ in the largest connected component. When there is, we call this largest
connected component the giant. In physics the existence of a giant is called percolation and zeta is often plotted
as the probability of a node being inside the giant to find the threshold for percolation. For us it is necessary to
quantify this behaviour, as the statistical physics models that we use behave differently when ζ > 0, portraying
a phase transition. More information on this will be given in section 3.3.

We will see that this is related to the extinction of the local limit. [5] prove the following theorem, which
couples the fraction of nodes inside the giant to the survival probability of the local limit of the graph, also
denoted ζ.

Theorem 2.4.1 (Relation giant and local limit). Let Gn = (V (Gn), E(Gn)) denote a finite (possibly discon-
nected) random graph. Let u, v ∈ V (Gn) vertices and let C (u) denote the connected component of u. Let u= v
denote that there is no possible path using edges e ∈ E(Gn) from u to v, i.e. u and v are not in the same
connected component. Assume that Gn −−−−→

P−loc
(G, ρ) having distribution µG. Assume that

lim
k→∞

lim sup
n→∞

1

n2
E[#{(u, v) ∈ V (Gn) : |C (u)|, |C (v)| ≥ k, u= v}] = 0. (2.35)

This means that there are no multiple separate giants.

Then, with Cmax and C(2) denoting the largest and second largest connected components (with ties broken
arbitrarily),

|Cmax|
n

P−→ ζ = µG(|Cρ| =∞),
|C(2)|
n

P−→ 0. (2.36)

This means that when we can prove that vertices are likely to be connected, the size of the giant and the
survival of the local limit are connected. In other words, we can identify the survival probability of the local
limit ζ 2.3.7, with the probability of the random root ρ being chosen inside the giant. Therefore a giant exists
when ζ > 0.

Thus we look back at the survival probabilities of the local limits of our described model, to see when they
have a giant component.

Lemma 2.4.2 (Existence of giant for ER, SBM, DSBM, IRG). Let us exclude the case every individual has
precisely expected offspring of 1. Then the following holds.

1. For the ER(λ/n) graph we use that ζ > 0⇔ E[Y] > 1 and find

ζ > 0⇔ E[Poi(λ)] > 1⇔ λ > 1. (2.37)

2. For the SBM(q, a, b) we have λ(i) = a+(q−1)b
q for all types i, hence

ζ > 0⇔ E

[
Poi

(
a+ (q − 1)b

q

)]
> 1⇔ a+ (q − 1)b > q. (2.38)

3. For the DSBM(q, a, b, ν) similarly we find

ζ > 0⇔ E

[
Poi

(
a+ (q − 1)b

q
Φ(1)φu

)]
> 1⇔ (a+ (q − 1)b) Φ(2) > q. (2.39)

4. Finally for the IRG{n1,...,nq}(cij) we use theorem 2.3.7 and find that

ζ > 0⇔ ||K|| > 1 (2.40)

Where ||K|| is the largest eigenvalue of Kij = ci,jnj.

14 Community detection on random graphs using Potts models

CHAPTER 2. RANDOM GRAPH BACKGROUND

2.5 Successful community detection

In this section we define what it means to successfully detect communities in different contexts. Successful
community detection is in literature also referred to as successful reconstruction of communities. We look at
community detection on random graphs, where the goal is to correctly reconstruct the original type assignment.
Also on rooted trees community detection is useful, as these are the local limits of random graphs, On trees the
goal will be to reconstruct the type of the root.

We say communities have not been detected (successfully), when the graph yields no information about the
communities. This can still be dependent on the type of field. On an IRG this is when guessing that every
node belongs to the largest type i has the highest expected overlap with the original types. On a rooted tree
this is when knowing the types of all the leaves, the best guessing method of the type of the root is guessing
the largest type i. We will say communities have been (successfully) detected when there is a method which
is strictly better than simply guessing the largest type. This may seem like a weak definition, as the guess
could be only very slightly better than random. However, even when it is only slightly better than random,
the fact that some configuration has higher probability than simply guessing the largest type means that that
configuration contains information about the true communities. Hence we say that communities have been
successfully detected. In practice we shall see that the threshold for community detection to be successful and
the threshold for it being successful in linear (polynomial) time shall differ 7.2. As for large graphs exponential
calculation takes too much time, there is thus a difference between successful community detection being possible
and it being feasible, as we will see in Section 7.2.

Definition 2.5.1 ((successful) community detection on random graphs). Let Gn be a random graph which
first assigns a type i ∈ [q] to each vertex using probabilities ni, resulting in original type assignment to, before
connecting edges based on these types. Let t∗ be a guess of the assignment. In order to be able to check the
quality of this guess, we introduce the overlap

Q(to, t∗) = max
π

1
n

∑
u δtou,π(t∗u) −maxini

1−maxini
, (2.41)

with π a permutation over [q], the types. For finite n, communities have been detected when for some guess t∗

we have E[Q(to, t∗)] > 0. For n→∞, we say communities have been detected if there is a sequence of guesses
{t∗}n≥1 such that

P(Q(ton, t
∗
n) > 0)→ 1. (2.42)

We show in chapter 6 that in the belief propagation algorithm of Decelle [1], the quality of a resulting guess
can be checked without using to. Thus this ’best guess’ is uniquely defined.

trees In Section 2.3 we have seen that the graph models we investigate are locally treelike. On trees one
can also define community detection. Here we call community detection successful if the root ρ can be guessed
better than simply guessing the largest type, based on the types at any distance from ρ.

Definition 2.5.2 ((successful) community detection on random trees with equal group sizes (free boundary, +
boundary)). Let (T, ρ) be a realization of GWT (Y, ~tρ) with ~tρ = (1

q , ...,
1
q). Let Th denote the nodes at distance

h from ρ. Then we say communities have been detected successfully if there is a type i with

inf
h≥1

E[P(tρ = i|tTh)] >
1

q
. (2.43)

With no added constraints we call this the free boundary community detection. When one conditions on tTh = +++
then it is called a + boundary condition. When no boundary is mentioned, we refer the free boundary case.

This means that no matter at what distance of ρ we are given the types of the nodes at this distance, we
are always able to extract some information about the type of ρ, as there is a type for which it has probability
higher than 1

q .

2.6 Broadcasting process

In this section we look at community detection on trees. In particular we look at successful community detection
in a broadcasting process on trees, described by Evans et al [2]. This process assigns communities to every node
in the tree.

Community detection on random graphs using Potts models 15

CHAPTER 2. RANDOM GRAPH BACKGROUND

The broadcasting process can be applied to a rooted tree (T, ρ). Then the broadcasting process first assigns
a type σρ ∈ S = {−1, 1} uniformly at random to the root. We use the symbol σ as later these types will coincide
with the spins from the Ising model, which are also denoted σ. The children of ρ are given the same type as ρ
with probability 1 − ε and the other type with probability ε, with 0 < ε < 1

2 . An edge which connects nodes
with different type is called a flip, and ε is called the flipping probability.

This assignment of types can also be done by labeling every edge (u, v) ∈ E(T) with a random variable
η(u,v). For each edge, let

P(η(u,v) = −1) = ε

P(η(u,v) = 1) = 1− ε. (2.44)

Using this we can calculate the type of each vertex u using

σu = σρ
∏

(u′,v′)

η(u′,v′), (2.45)

where the product is over all edges (u′, v′) on the path from ρ to u. We let {ηe} denote the set of random
variables labeling all edges e ∈ E(T). Then we define Pη as the probability measure that assigns a probability
to each state according to

Pη(σσσ) = P(σρ)P

{ηe} : σu = σρ
∏

(u′,v′)

η(u′,v′)∀u ∈ V (T)

 . (2.46)

We call this a broadcasting process. As the distribution of η (2.44) is independent of the type σu, we can express
Pη of a state solely in terms of the number of flips in that state. Let k be the number of flips in σσσ and let
n = |V (T)|. An added bonus of the identification of a flip with ηe = −1 and no flip with ηe = +1, satisfying
(2.45), is that we have ∑

e∈E(T)

ηe = (n− k)− k = n− 2k (2.47)

k =
1

2

n− ∑
e∈E(T)

ηe

 . (2.48)

Then Pη can be simplified as

Pη(σσσ) =
1

2
εk(1− ε)n−k. (2.49)

The critical conditions for successful community detection are coupled with the branching factor v̄. This
branching factor can be thought of as the expected number of branches each vertex creates. On GWT(Y) we
can define the branching factor

v̄ ≡ E[Y]. (2.50)

Then Evans et al [2] show the following theorem.

Theorem 2.6.1 (Succesful community detection on trees). Community detection is successful for 1−2ε > v̄−1/2

and unsuccessful for 1− 2ε < v̄−1/2.

Where successful community detection on trees was defined in 2.5.2. We later try to compare these results
to the results of community detection on graphs.

q types For our own purposes we extend the broadcasting process on (T, ρ) to q types. In this case the
broadcasting process first assigns a type tρ ∈ [q] to the root uniformly at random. For {ηe} we can define this
in multiple ways. An intuitive way is to define a flipping matrix A where Aij is the probability of an edge (u, v)
with tu = i flipping to type j. This matrix is then

A =

. . . εεε

1− (q − 1)ε

εεε
. . .

 . (2.51)

16 Community detection on random graphs using Potts models

CHAPTER 2. RANDOM GRAPH BACKGROUND

However, we wish to keep identification 2.45, where each η(u,v) can be seen as a multiplication. Thus we define

P(η(u,v) =
i

tu
) =

{
1− (q − 1)ε for i = tu

ε for i 6= tu.
(2.52)

This has the same distribution as A, and the type of any node in T can still be calculated using (2.45). We let
Pη be defined as in (2.46) and call it a q-type broadcasting process. Even though the η(u,v) are now dependent
on the tv, we show in section 4.4 that Pη(t) can again be simplified in terms of n = |V (T)| and the number of
flips in t, k, as

Pη(t) =
1

q
εq(1− (q − 1)ε)n−k. (2.53)

This is less strong as in the 2-type case, as now the number of flips k can no longer easily determined by a sum
and n as in (2.47). Instead it has to be counted manually as

k = #{ηe|ηe 6= 1}. (2.54)

We have now seen some random graph models, and how communities can be detected on them. We have
seen that these models are locally treelike. We have therefore also looked at community detection on trees.
We also described the giant component for these graph models, which is necessary for the behaviour of the
statistical physics models of the next Chapter.

Community detection on random graphs using Potts models 17

Chapter 3

Statistical physics background

Ising and Potts models are models created by physicists in order to better understand phenomena which include
magnetism and spin in quantum mechanics. Magnetic systems are at the core lattices where every node has
either spin +1 or spin −1. In ferromagnets, the fact that a node has spin +1 will increase the probability of
other nodes to also have spin +1. However, the interaction strength of this influence rapidly decays with the
distance. Therefore the Ising models approximates this interaction by only taking neighbours of the lattice into
account. When the temperature T is constant, the Ising model assigns a probability to every state of the entire
system, using the Boltzmann distribution. The Potts model is a generalization of the Ising model where there
are ≥ 3 different types of spin.

These models can easily be applied to graphs, where every vertex is seen as a node in the lattice, and an edge
between two nodes signifies that they are neighbours. We can identify each spin type as a community. This
allows us to relate these models to community detection, as the expected spin of a node is now the probability
of it belonging to that community. In physics, there are three types of systems which can be described using
the Ising model. In the ferromagnetic case the only interaction is that a particle is more likely to have the same
type as their neighbours. This corresponds to the ferromagnetic community detection of the native language
of people in the graph of the Belgian phone network. In the antiferromagnetic case a particle is less likely to
have the same type as their neighbours, which corresponds to the community detection of sex in the graph of
marriages. In a glassy system each edge has its own interaction strength which determines both the strength
of the interaction, as well as if it is ferromagnetic or antiferromagnetic. Few exact results are known about the
behaviour of glassy systems. The connection with community detection here is for example the political vote of
people in the USA, where the graph is people who are connected when they know each other on Facebook, and
the interaction strength is determined by the type of relation (i.e. friend, colleague, family, etc). We mainly
investigate the ferromagnetic case.

In this chapter we start by introducing the Ising model on graphs. We then show what physical quantities
are used for quantifying an Ising model in physical problems. We then look at when there is a phase transition,
which is when the change of a single spin affects a positive fraction of all other spins. This phase transition
is important for us, as one of the main points of this thesis is that it is exactly the threshold for community
detection on graphs.

We then show the Potts model, which extends the Ising model to ≥ 3 types. Much less is known about the
phase transition in Potts models, but we present the results thus far. The reason behind the lack of knowledge
will become clear in chapter 6.

3.1 Ising model

The Ising model is a model designed for magnetic states on grids. Every node has a spin, σu ∈ {+1,−1}. The
model assigns probabilities of all states based on how many spins align with their neighbours. The type of
system is determined by the coupling constant J . For J > 0 the system is ferromagnetic and for J < 0 it is
antiferromagnetic and for edge-dependent Juv it is called a spin-glass. We only consider the ferromagnetic case
and therefore look at positive J . The direct interaction of non-neighbours is neglected as these interactions
decay very rapidly with distance. We look at this model at constant inverse temperature β. Furthermore there
is a magnetic field which incorporates some external preference for one of the spins. This model can be defined
identically on graphs. For this thesis we use the graph notation vertices and types indistinguishable with nodes
and spins.

18 Community detection on random graphs using Potts models

CHAPTER 3. STATISTICAL PHYSICS BACKGROUND

The model is based on the universal Boltzmann relation from thermodynamics of a system with constant
temperature which can transfer energy with a large thermal reservoir (its surroundings). In this case the
probabilities of each state can be described as

µβ(σσσ) =
1

Z
exp{−βE(σσσ)} (3.1)

where E is the energy of a state, and Z is the called the partition sum, which normalizes µ. In this setting E
is called the Hamiltonian, and is then usually denoted with H. We will also use the Hamiltonian notation to
avoid confusion with the edge set E(G). These systems have been studied thoroughly, and we will make use of
quantities for this system in section 3.2. In the Ising model setting we define the energy

H(σσσ) = −

 ∑
(u,v)∈E

Jσuσv +B
∑
u∈V

σu

 (3.2)

with B ∈ R the magnetic field and J the the coupling constant. The magnetic field B signifies a bias towards a
type, where in this case a positive B is a bias towards the type {+1} and a negative B a bias towards {−1}. The
sign of the coupling constant J determines if the behaviour is ferromagnetic or anti-ferromagnetic. We work
with ferromagnetic J > 0, for which we can take J = 1 because we can always rescale β and B to Erdös–Rényi.
For spin glasses the coupling constant is also dependent on the specific edge, so Juv. This model we will slightly
adjust and use in chapter 4.

An Ising model of two types on a finite graph G is thus defined as follows. Let u ∈ V be a vertex, then
σu ∈ S = {+1,−1} is the type of u. Every state σσσ ∈ Ω = Sn containing the types of all u ∈ V has a probability

µ(σσσ) = µβ,B(σσσ) =
1

Z(β,B)
exp{β

 ∑
(u,v)∈E

σuσv +B
∑
u∈V

σu

}. (3.3)

At β = 0, the T → ∞ limit, every state has an equal probability. As β grows, states where the type of a
vertex aligns with the type of its neighbours have a growing probability.

We introduce an extension to the Ising model with a magnetic field at every vertex, Bu. We do this because
later we can show that probabilities of this model can be calculated iteratively on trees. Let B = {B1, ..., Bn}.
In this model each state σσσ has a probability

µ(σσσ) = µβ,B(σσσ) =
1

Z(β,B)
exp{β

 ∑
(u,v)∈E

σuσv +
∑
u∈V

Buσu

}. (3.4)

The partition function Z has many practical uses in statistical physics because it contains all necessary inform-
ation to derive some thermodynamic quantities. We show these quantities in the next section.

3.2 Statistical Physics notation

Models with a Boltzmann measure have been thoroughly studied for physical applications. We can use the
quantities and notation devised for these studies on graphs as well, and will introduce them here.

One quantity that helps us quantify a system in statistical physics is the internal energy U . This is nothing
more than the expected energy of the system. In the Ising model this corresponds to the expected probability
of a state

U ≡ E[E(t)] =
∑
t

µ(t)E(t). (3.5)

Another quantity that can help us is the entropy of a measure,

Sµ ≡ −
∑
t∈µ

µ(t) log(µ(t)). (3.6)

Entropy is a measure of uncertainty. It tells us how certain we are about which state we will encounter. The
higher the entropy, the less information we have on which state a random variable will get. A very intuitive
example is the Boltzmann distribution (3.4) we have just seen. As β grows, states with more clustering of types

Community detection on random graphs using Potts models 19

CHAPTER 3. STATISTICAL PHYSICS BACKGROUND

have a much higher probability, thus increasing the knowledge about which states we are likely to encounter,
decreasing the entropy.

The third quantity we discuss is the free energy of the system. In Boltzmann distributions (3.1) we get

Fµ ≡ −
1

β
(Sµ − βUµ) = − 1

β

∑
t

µ(t)(− log(µ(t))− βE(σσσ)) (3.7)

= − 1

β

∑
t

µ(t)(log(Z) + βE(σσσ)− βE(σσσ))

= − 1

β

∑
t

µ(t)(log(Z)) = − 1

β
log(Z).

Calculating the partition function can be computationally hard. We will see that we can calculate the internal
energy U and the entropy S computationally easy using iterative calculation on trees. We can extend this to
an approximation using the same methods on graphs, allowing us to approximate log(Z).

The free energy is so important because physical systems will minimize this quantity at constant temperature
(i.e. constant β). Similarly for our purposes, we will be able to distinguish which guess of communities is
thermodynamically favoured by having the lower free energy, thus being the better guess.

3.3 Phase transition

Phase transition

A phase transition has this name because it stems from a transition of one phase to the other, for example
solid to liquid. In physical systems, the reason for this is that the free energy of one state surpasses the other
for some critical inverse temperature βc, therefore the system will choose the state with the lowest free energy.
Usually this transition is accompanied by a discontinuity in the i’th derivative of the free energy. We then call
this an i’th order phase transition.

The free energy (3.7) is an extensive quantity i.e. it scales with the size of the system. We therefore introduce
the free energy density

φn(β,B) =
1

n
log(Zn(β,B)). (3.8)

We see that for finite n the free energy density is the logarithm of a sum of exponentials, which is analytic
and therefore will have no singularities, thus no phase transition. In order to obtain a phase transition we
therefore need to apply the Ising model to a graph which has a giant component as n→∞. As we have seen in
section 2.4, this is true when |Cmax|/n → ζ > 0. Note that if ζ = 0 we only have finite connected components
a.s. and therefore the Ising model on the entire graph can be reduced to the multiplication of the Ising models
on these finite components, which have no phase transition.

Thus when a phase transition exists it will appear as a discontinuity of the limit of the free energy density
of n→∞. We thus look at this limit

lim
n→∞

φn(β,B) = lim
n→∞

1

n
log(Zn(β,B)) = φ∗(β,B). (3.9)

For models with a Boltzmann measure, this limit exists, as the free energy is a so-called extensive quantity,
meaning that it scales with the size of the system n.

First we look at phase transitions of the Ising model (3.4) on trees. According to the statistical physics
derivation [7], the model (3.3) has a line of first-order phase transitions for B = 0 and β > βc, (where specifically
the continuous function B → φ(β,B) has a discontinuous derivative). The critical temperature βc depends
on the graph only through the average branching factor v̄. This branching factor can be thought of as the
expected number of branches each vertex creates, which is 1 lower than the degree of such a vertex. Thus let
vk = P(deg(u) = k) be the degree distribution of (T, ρ), then we can define the branching factor

v̄ ≡
∞∑
k=1

(k − 1)vk. (3.10)

Then the authors of [7] show that the critical temperature is determined by the condition

v̄ tanh(βc) = 1. (3.11)

20 Community detection on random graphs using Potts models

CHAPTER 3. STATISTICAL PHYSICS BACKGROUND

In the case of trees, ζ > 0 corresponds to v̄ > 1. Thus we need v̄ > 1 as an additional condition for phase
transition. Using this condition, we can see that βc is positive and well-defined.

We now look at the slightly more general case of locally treelike graphs, where the authors of [8] prove that
the free energy density converges and we have the same phase transition. The main takeaway of the theorem
below is that for the treelike graphs we look at, the free energy density exists even in the limit n→∞. Therefore
we can look for a phase transition in this regime. However, the resulting limit has a very convoluted expression,
even for the Ising model.

Theorem 3.3.1 (convergence free energy on locally treelike graphs). Let Gn be uniformly sparse (2.9) and

Gn
P−loc−−−−→ (G, ρ) as in (2.16) with offspring distribution of the root P = {Pk : k ≥ 0}. Let

vk =
kPk∑∞
l=1 lPl

(3.12)

its size-biased version with finite first moment, with averages

v̄ ≡
∞∑
k=1

(k − 1)vk P̄ =

∞∑
k=0

kPk. (3.13)

Let further the Ising model be given by equation (3.3).
Then for any B ∈ R and β ≥ 0, the following limit exists.

lim
n→∞

1

n
log[Zn(β,B)] = φ(β,B), (3.14)

where for B > 0 the limit is given by

φ(β,B) ≡ P̄

2
log cosh(β)− P̄

2
E[log(1 + tanh(β) tanh(h1) tanh(h2))] (3.15)

+ E[log

(
eB

L∏
i=1

[1 + tanh(β) tanh(hi)] + e−B
L∏
i=1

[1− tanh(β) tanh(hi)]

)
] (3.16)

where L has distribution Pl and is independent of the “cavity fields” hi that are i.i.d. copies of the fixed point
h∗ of

h(t+1) d
= B +

K−1∑
i=1

arctanh[tanh(β) tanh(h
(t)
i)] (3.17)

with K distributed as v̄. Also, φ(β,B) = φ(β,−B) and φ(β, 0) is the limit of φ(β,B) as B → 0.

For general graphs no direct coupling to βc has been made and the only criterion we know is that we need
ζ > 0 for a phase transition.

3.4 Potts model

The Potts model is the Ising model extended to q ≥ 3 types, so S = [q]. A magnetic preference for each type i
is needed, so there are q magnetic fields Bi. Then we define the energy of each state t ∈ Ω as

H(t) = −2{
∑

(u,v)∈E

J1(tu = tv) +
∑
u∈V

q∑
i=1

Bi1(tu = i)} (3.18)

We multiply this by 2 in order to maintain the property that the Ising measure is the Potts measure with q = 2.
Again we look at ferromagnetic systems and set J = 1 because we can rescale β,B. This leads to the probability
measure

µ(t) = µβ, ~B(t) =
1

Z
exp{2β

 ∑
(u,v)∈E

1(tu = tv) +
∑
u∈V

q∑
i=1

Bi1(tu = i)

}. (3.19)

Community detection on random graphs using Potts models 21

CHAPTER 3. STATISTICAL PHYSICS BACKGROUND

As we did for the Ising model in (3.4), this model can be extended to have a magnetic field B at every
vertex. Then the probability of each state t becomes

µ(t) = µβ, ~B(t) =
1

Z(β, ~B)
exp{2β

 ∑
(u,v)∈E

1(tu = tv) +
∑
u∈V

q∑
i=1

Bui1(tu = i)

}. (3.20)

For the Potts model we also show some results for a slightly adjusted spin glass model. In the spin glass the
interaction strength Juv is dependent on the edge (u, v), so

µ(t) =
1

Z
exp{2β

 ∑
(u,v)∈E

Juv1(tu = tv) +
∑
u∈V

q∑
i=1

Bi1(tu = i)

}. (3.21)

Much less is known about spin glasses, but we show in section 4.6 that we can identify an adjusted spin glass
Potts model on trees as a broadcasting process.

Phase transition

For the Potts model there are also some exact results of phase transitions on trees. In [7] is shown that (3.19)
also has a line of first-order phase transitions for B = 0 and β > βc The critical temperature depends on the
graph only through the average branching factor v̄ (3.10) and is determined by the condition

v̄
eβc − e−βc

eβc + (q − 1)e−βc
= 1 (3.22)

with v̄ > 1 s.t. ζ > 0. Notice that for q = 2 this reduces to the critical temperature for the Ising model (3.11).
In the Potts model much less is known about the exact phase transitions on more general graphs. However,

we know that when there is a giant, so ζ > 0, such phase transitions can arise.
In the next chapter we shall show that the Potts model introduces a community structure of q types on the

local limit of an ERn(λ/n). This can be described the same way as a q-type broadcasting process on trees. This
broadcasting process on the local limit of an ERn(λ/n) can then be described as the local limit of a marked
SBMn(q, a, b). This way we will be able to couple the parameter of the Potts model, β and the average degree
λ to the parameters a and b.

22 Community detection on random graphs using Potts models

Chapter 4

How Potts models impose a community
structure on random graphs

We want to be able to compare statistical physics results of community detection using Ising and Potts models
on graphs with community detection results on mathematical graph models. This could lead to new insights in
either field that have been discovered in the other. It can also help to understand the models even better.

In this chapter we show that for very large graphs, in the limit n→∞, a comparison can be made. First we
start with some intuition on the mapping of Ising models to trees and a broadcasting process in 4.1. In section
4.2 we show that there is an equivalence between the local limit of a 2-type marked SBM and an Ising model on
the local limit of an ER graph. After proving this equivalence we couple the community detection results of the
critical parameters found for successful reconstruction of communities on a tree found in both statistical physics
and mathematics in section 4.3. We extend this equivalence to the local limit of a marked SBM with the local
limit of an ER graph with a Potts model in section 4.4. In section 4.5 we show how far we can generalize the
identification between the broadcasting process on the local limit of an ER graph with the marked local limit
of an IRG. We shall see that this is only possible if the average offspring degree of the IRG is equal to λ for all
types. In section 4.6 we show how far we can generalize the identification of the Potts model as a broadcasting
process on trees. We further show that introducing a magnetic field complicates matters and does not lead to
the same equivalence using our method. We further extend all our previous results to degree-corrected graphs
in section 4.7, before giving a small conclusion of all the results of this chapter in section 4.8.

4.1 Intuition Ising on trees

A mapping we will make is that an Ising model on a tree can be described as a broadcasting process. We will
familiarize ourselves with an Ising model on a graph and show intuitively why and when such a mapping is
possible. The rest of the chapter we make this intuition rigorous.

Let us apply an Ising model (3.3) with B = 0 to a small tree T , from now on referred to as our favourite
small tree, in figure 4.1. Intuitively, for low β, all states have about equal probability and thus the system is
dominated by states with low total magnetization |m|, m =

∑
u∈T σu, so about the same amount of both types.

This is the case, as there are simply much more of such states than states with many of the same spin. As
β grows, the alignment of the spins becomes more important. For β > βc we have reached the point where
alignment is so important, that knowing a single spin σu gives us at least some information about all spins in
T , no matter how far away. Thus the system is dominated by states where many spins align, for which the
magnetization |m| is high.

The calculation of the probability of a single state in the Ising model, equation (3.3), requires the computation
of the partition function Z. For general graphs this requires the calculation of 2n states. For small trees, such
as our favourite T , this is completely fine. For trees with very large n this computation becomes problematic.
We therefore look for a way to calculate the probability of a state in linear time, using an iterative method.

When we look back at figure 4.1a, we can ask ourselves what the probability of the shown state is when
v is blue versus the probability that v is red. Since v only has one edge to u, which is blue, (3.3) shows that
µ(σv = blue) = exp (2β)µ(σv = red). This is only based on the type of u and the fact that there is an edge
(u, v).

For non-leaves k we can use a similar argument. Suppose we know σρ but nothing about the sub-tree of k

Community detection on random graphs using Potts models 23

CHAPTER 4. HOW POTTS MODELS IMPOSE A COMMUNITY STRUCTURE ON
RANDOM GRAPHS

ρ

u

? v

k

(a) β � βc

ρ

u

? v

k

(b) β � βc

Figure 4.1: Our favourite small tree T with a typical state from an Ising model on T for β � βc (a) and β � βc
(b). We discuss in the text ways to determine the type of v.

(k and all nodes connected to k without ρ). Then for each configuration of the subtree of k with σk = blue we
can flip all spins in the subtree of k and find that the flipped state is precisely exp(2β) times less likely.

Knowing this, it feels intuitive that we can calculate the probability of a single state for B = 0. We can do
this by simply taking P(ρ = blue) = P(ρ = red) and then working our way down every edge, multiplying with

1
1+exp(2β) when the type flips and with exp 2β

1+exp(2β) when the type stays the same. By using these fractions we

indirectly compute Z. We shall see in Chapter 6 that on trees this calculation of Z is exact and can be used to
approximate Z on treelike graphs.

ρ

uk

1
2

×
1

1+exp(2β)

×
1

1+exp(2β)

×
exp(2β)

1+exp(2β)

v

Figure 4.2: The iterative calculation of the probability of a state in the Ising model on a very small tree T . The

state shown has probability exp(2β)
2(1+exp(2β))3 .

As there are only n vertices, and every edge one node is updated, this only takes n calculations, which is a
huge improvement compared with the 2n we had before.

We have intuitively seen that on any tree we can write the Ising model as an iterative calculation of the
probabilities of the edges. Thus we can also do this on random (Galton-Watson) trees 2.3.5. In the rest of this
chapter we investigate the Ising (and Potts) model to the local limits from section 2.3. In particular we apply
the Ising model to the local limit of ER(λ/n), a graph without communities. We show under which parameters
and conditions this is equivalent to the local limit of a marked SBM.

24 Community detection on random graphs using Potts models

CHAPTER 4. HOW POTTS MODELS IMPOSE A COMMUNITY STRUCTURE ON
RANDOM GRAPHS

4.2 Equivalence local limit stochastic block model and Ising model
on local limit Erdös–Rényi graph

In this section we will show that there is an equivalence between two graph models. The first is the Ising model
µβ as defined in (3.3) on the local limit of an ER random graph with parameter λ, GWT(Poi(λ)) (see Section
2.3). We show this is equivalent with the local limit of a two-type marked SBM with parameters a, b as defined
in section 2.3, T2.

Let us first go over the intuition behind comparing these models. In the SBM, vertices have a probability
of a/n to connect with vertices of equal type and b/n < a/n to connect with vertices of the other type. In an
Ising model β imposes a preference of neighbours having equal spin, which we associate as their type. Higher β
means more chance of being connected to the same type. Higher a and b means a higher degree, for which we
need to compentsate in the Ising model with a higher λ. The intuition is thus that we can express connecting
probabilities a, b in terms of some average degree λ and a preference β. For this ”average degree graph” we
choose the ER graph, as it handles connecting to a neighbour similar to the SBM, namely by having a probability
to connect with each other node separately. The reason we use the limit of n → ∞ is because then the local
limit of these objects become Galton-Watson trees (GWT’s), which are trees, on which Ising (and Potts) models
are easier to describe.

Theorem 4.2.1. Let GWT(Poi(λ)) be the local limit of ERn(λ/n) and let µβ be an Ising model with B = 0
imposed on GWT(Poi(λ)). Let the marked Galton-Watson tree GWT(Y, (1

2 ,
1
2)) (as defined in (2.3.5)) with Y

as in (2.33) be the local limit of a marked SBM(2, a, b). Let λ = a+b
2 and β = 1

2 log(ab), then these two objects
have equal distribution.

This equivalence will be done in two steps. First we will identify an Ising model on a rooted tree (T, ρ)
as a broadcasting process on (T, ρ) which is described in section 2.6. Secondly we will show that using this
identification we can prove equivalence of the distribution of a broadcasting process on GWT(Poi(λ)) with the
marked GWT(Y, (1

2 ,
1
2)).

First [2] show that a broadcasting process and an Ising model with B = 0 on (T, ρ) have equal distribution,
which we show in the following lemma.

Lemma 4.2.2 (Equivalence Ising measure with B = 0 and probability measure broadcasting process on trees).
Let (T, ρ) be a finite rooted tree with T = (V (T), E(T)) and |V (T)| = n. Let S = {−1, 1}, Ω = Sn. Let ε, β
satisfy

ε

1− ε
= exp(−2β). (4.1)

Then using the probability measure µβ of the Ising model (3.3) with B = 0 on T and assigning probabilities
using {ηe} as in (2.44) and (2.46) on T lead to the same type distribution a.e..

Proof. First note that in both distributions, the probability of a state σσσ is dependent only on the distribution
of σρ and the total amount of edges (u, v) with σu 6= σv, called flips.

For both models we have P(σρ = 1) = P(σρ = −1) = 1/2. In the broadcasting process (2.46) this is by
definition. In the Ising measure (3.3) with B = 0, only the amount of flips influence the probability of a state,
which is not influenced by σρ.

Let (u, v) ∈ E(T) and let Tv denote the subtree of v, v and all its descendants. Let σσσ ∈ Ω be a state with
σu = σv and consider what happens in both models when flipping all types in Tv, creating σσσflip, as can be seen
in figure 4.3. For the broadcasting process this means that in the realization of {ηe}, only η(u,v) is different,
and for the probability of this flip we find using (2.44) that

εP(η(u,v) = 1) = (1− ε)P(η(u,v) = −1)

εPη(σσσ) = (1− ε)Pη(σσσflip). (4.2)

For the Ising model with B = 0 we can use the definition (3.3). Let k be the total number of flips in σσσ. We find

µβ(σσσ) =
1

Z
exp{β((n− k)− k)}

µβ(σσσflip) =
1

Z
exp{β[(n− (k + 1))− (k + 1)]}

µβ(σσσ) = exp(2β)µβ(σσσflip). (4.3)

Community detection on random graphs using Potts models 25

CHAPTER 4. HOW POTTS MODELS IMPOSE A COMMUNITY STRUCTURE ON
RANDOM GRAPHS

Thus both measures assign probabilities in the same ratio when (4.1) is satisfied. Since both measures are
probability measures (P(Ω) = µβ(Ω) = 1) and therefore normalized, this implies that

Pη(σσσ) = µβ(σσσ)∀σσσ ∈ Ω ⇔ ε

1− ε
= exp(−2β). (4.4)

ρ

u

v

(a) t

ρ

u

v

(b) tflip

Figure 4.3: A tree T with a state t with Tu = tv in (a) and the state in which all vertices of Tv have opposite
type with respect to t, state tflip in (b).

We believe this result can be extended to infinite trees, but this won’t be done in this thesis.

Now that we described the Ising model on rooted trees as a broadcasting process, it is much easier to compare
with local limits. Thus we can now prove the following result.

Lemma 4.2.3 (equivalence local limit of a marked 2-type SBM and Ising broadcasting process on local limit
ER). Let the marked GWT(Y, (1

2 ,
1
2)) with Y as in (2.33) be the local limit of a marked SBM(2, a, b), denoted

as (T1, ρ). Let GWT(Poi(λ)) be the local limit of ERn(λ/n) and let Pη be a broadcasting process imposed on
GWT(Poi(λ)). Call the resulting (marked) tree (T2, ρ). Then (T1, ρ) and (T2, ρ) have equal distribution when

λ =
a+ b

2
(4.5)

and

ε =
b

a+ b
. (4.6)

Proof. For the root we find that σρ is distributed uniformly at random for both trees by definition. For the
offspring of every vertex of T1 we find Poi(a+b

2) = Poi(λ), the offspring of every vertex of T2. For the type
distribution of T2, Q2(i), we find using (2.52) that

P(Q2(i) = j) = Pη(η(u,v) =
j

i
) =

{
1− ε = a

a+b for i = j

ε = b
a+b for i = −j (i 6= j),

which is equal to type distribution Q(i) of T1 from (2.32) with q = 2.

Lemma 4.2.2 shows that the Ising model on ERn(λ/n) is equivalent to a broadcasting process and lemma
4.2.3 proves that the local limit of SBMn(2, a, b) and that broadcasting process are equivalent, when λ = a+b

2

26 Community detection on random graphs using Potts models

CHAPTER 4. HOW POTTS MODELS IMPOSE A COMMUNITY STRUCTURE ON
RANDOM GRAPHS

and

ε =
b

a+ b

exp(−2β) =
ε

1− ε
=

b
a+b

1− b
a+b

=
b

a

β =
1

2
log(

a

b
), (4.7)

which proves theorem 4.2.1.

4.3 Comparing successful community detection results

Now that there is an equivalence between these models, we can compare results found for community detection
found for SBM’s, broadcasting processes and Ising models. We show that parameters which determine when
community detection is successful in these different fields can be coupled to each other.

In the local limit of ERn(λ/n), λ is precisely the branching factor v̄. Intuitively this may be strange, as
the average degree is λ, so then shouldn’t the branching factor be λ− 1? However, you can think about it like
this. Being connected to a parent v means that the expected number of edges to be connected to beside v, the
branching factor, is λn−1

n . As n→∞, this converges to λ.

Corollary 4.3.1 (Equivalence reconstruction results). Let G be a graph created from SBMn(2, a, b), then as
n → ∞, reconstruction of original communities is successful if (a − b)2 > 2(a + b) [9] and unsuccessful if
(a− b)2 < 2(a+ b). Consider GWT (Poiλ)), equipped with a broadcasting process Pη with {eta(u,v)} satisfying

equations (2.44) and (2.46). Then reconstructing σρ is successful when n→∞ if 1−2ε > v̄−1/2 and unsuccessful
if 1−2ε < v̄−1/2 [2]. Now let λ, ε, β, a, b satisfy relations (4.5),(4.6) and (4.1), then these critical values coincide.

Proof. We find

(a− b)2 =

(
a− b
a+ b

)2

(a+ b)2 = (1− 2ε)2(a+ b)2 = 2(a+ b)

(1− 2ε)2 =
2

a+ b

1− 2ε =

√
2

a+ b
= λ−1/2 = v̄−1/2 (4.8)

We can express this in terms of β as

tanhβc =
−1 + e2βc

1 + e2βc
=

1−ε
ε − 1

1 + 1−ε
ε

=
1−2ε
ε
1
ε

= 1− 2ε =

√
2

a+ b
= v̄−1/2. (4.9)

This unfortunately is still a sqrt factor of of the result of Pemantle [7] on the phase transition of Ising models
on trees. This would be explained with a simple factor 2 missing in their definition of the ising model, which
would be a misinterpretation on our side. Otherwise the difference could lie in the fact that they look at a
robust phase transition, which is stronger than the usual phase transition.

4.4 Extension to q types

In this section we show that the result section 4.2 can be extended to q types. Let us now look at the local
limit of SBM(q, a, b) and a Potts model measure as in (3.19) on the local limit ERn(λ/n). We show that these
are again equivalent using the right parameters.

Now this equivalence will be done in three steps. First we show when a broadcasting process assigns
probabilities independent of its root type tρ. Then we identify that a q-type broadcasting process satisfies this
property and is equivalent to a Potts model on trees. Finally we show that a broadcasting process on the local
limit of ER(λ/n) is equivalent to the local limit of a marked SBM(q, a, b).

Community detection on random graphs using Potts models 27

CHAPTER 4. HOW POTTS MODELS IMPOSE A COMMUNITY STRUCTURE ON
RANDOM GRAPHS

In order to have exactly the same probability distribution starting from every type in a broadcasting process,
we somehow need all the types to be able to be permuted onto any other type, without the probabilities of ηe
changing. In graph theory such a relation has been defined, and is called vertex transitive.

Definition 4.4.1 (Automorphism, vertex transitive graph). Let G = (V (G), E(G)) be a graph where every edge
has a weight φ. Then permutation π of the vertex set V (G) is an automorphism if

(π(u), π(v)) ∈ E(G)⇔ (u, v) ∈ E(G) (4.10)

and

φ((π(u), π(v))) = φ((u, v))∀(u, v) ∈ E(G). (4.11)

Now G is called vertex transitive if for any two vertices u, v, there is an automorphism π with π(u) = v.

Lemma 4.4.2 (type transitive broadcasting process). Let Pη be any broadcasting process satisfying (2.46) with
root type distribution ~tρ = (1

q , ...,
1
q). Define q × q matrix A as

Aij = P(η(u,v) =
j

i
) (4.12)

and assume that {ηe} is distributed such that A is symmetric. Let G be a graph of q vertices where each edge
(i, j) has weight Aij = Aji.

Then if G is vertex transitive, then for any state t and any type j there is permutation π with π(tρ) = j,
such that

Pη(t) = Pη(π(t)). (4.13)

We call Pη a type-transitive broadcasting process

Proof. First note that the root type is chosen uniformly at random. G is vertex transitive. Thus for any two
vertices i, j, there is an automorphism π with π(i) = j. We take i = tρ. Once the root type is chosen, the
probability of a state is entirely dependent on the matrix A. Since π is an automorphism, all edges in π(G) have
the exact same weight and thus its adjacency matrix Aπ(G) satisfies Aπ(G) = A. Therefore (4.13) holds.

Note that this constraint has still quite a large set of matrices containing it. An example of an adjacency
matrix A for which G is still vertex transitive is

A1 =

4 1 0 2 0 0
1 4 0 0 2 0
0 0 4 1 0 2
2 0 1 4 0 0
0 2 0 0 4 1
0 0 2 0 1 4

 . (4.14)

This is more easily visible by drawing the corresponding graph G1, which we do in figure 4.4. Suppose we have
a permutation which has π1(1) = 2, then we can turn this into an automorphism using π1({1, 2, 3, 4, 5, 6}) =
{2, 1, 6, 5, 4, 3}. For π2(1) = 3 we have automorphism π2({3, 4, 5, 6, 1, 2}) and for π3(1) = 4 we have automorph-
ism π3({4, 3, 2, 1, 6, 5}). We leave the rest of the automorphisms as an exercise to the reader as they can all be
done using the symmetry present in G.

Note that for a type-transitive broadcasting processes, A is a matrix composed of probabilities. Therefore it
also needs to satisfy the property that it is doubly stochastic, which is that the sums of the rows and columns
add up to 1. Note that 1

7A1 is such a matrix.
For the q-type broadcasting process we have

A =

. . . εεε

1− (q − 1)ε

εεε
. . .

 , (4.15)

as it was defined in (2.51). For this matrix G is symmetric, which implies it is vertex transitive and therefore
Pη is type-transitive.

With this result for the q-type broadcasting process we can expand theorem 4.2.2.

28 Community detection on random graphs using Potts models

CHAPTER 4. HOW POTTS MODELS IMPOSE A COMMUNITY STRUCTURE ON
RANDOM GRAPHS

1 1

1

2

2 2

2 1

3

4 5

6

Figure 4.4: The vertex transitive graph G1 with adjacency matrix A1. We left out the edges from nodes to
themselves as they are all equal to 4.

Theorem 4.4.3 (equivalence Potts measure and probability measure broadcasting process). Let (T, ρ) be a
finite rooted tree with T = (V (T), E(T)) with |V (T)| = n. Let Ω = [q]n. Let ε, β satisfy

(q − 1)ε

1− (q − 1)ε
= exp(−2β). (4.16)

Then using the probability measure µβ of the Potts model (3.19) on T and using the q-type broadcasting
process Pη satisfying (2.46) and (2.52) on T lead to the same type distribution a.s..

Proof. First note that in both distributions, the probability of a state t is dependent only on the distribution
of tρ and the total amount of edges (u, v) with tu 6= tv, called flips. For both models we have P(tρ = i) = 1/q.
In (2.46) this is by definition, whilst we reach this conclusion in (3.3) by noting that only the amount of flips
influence the Potts measure, which is not influenced by tρ a priori.

Let (u, v) ∈ E(T). Let t ∈ Ω be a state with tu = tv and consider what happens in both models when all
types on one side of the edge (u, v), the subtree Tv, are permuted. For this a permutation π : [q]→ [q] is used,
which interchanges types tv with any other type i, with tv 6= i. This creates tflip. Let tTv denote the state t,
restricted to subtree Tv. The key to this theorem will be that for the broadcasting process, we have that

Pη(tTv) = Pη(π(tTv)) = Pη(tTv,flip). (4.17)

Because we are only considering Tv, we can identify v as the root of Tv. Since Pη is a type transitive broadcasting
process, (4.17) holds.

Thus only the impact of η(u,v) is felt in the probability of t and we find using (2.52) that

P(η(u,v) = 1) = 1− (q − 1)ε

P(η(u,v) 6= 1) = (q − 1)ε

(q − 1)εP(η(u,v) = 1) = (1− (q − 1)ε)P(η(u,v) 6= 1)

(q − 1)εPη(t) = (1− (q − 1)ε)Pη(tflip). (4.18)

For the Potts model we again take the definition (3.19). Let k be the total number of flips in t then we have

µβ(t) =
1

Z
exp(2β(n− k))

µβ(tflip) =
1

Z
exp(2β(n− (k + 1)))

µβ(t) = exp(2β)µβ(tflip). (4.19)

Community detection on random graphs using Potts models 29

CHAPTER 4. HOW POTTS MODELS IMPOSE A COMMUNITY STRUCTURE ON
RANDOM GRAPHS

Thus both measures assign probabilities in the same ratio when (4.16) is satisfied. Since both measures are
probability measures (P(Ω) = µβ(Ω) = 1) and therefore normalized, this implies that

P(t) = µβ(t)∀t ∈ Ω iff
(q − 1)ε

1− (q − 1)ε
= exp(−2β). (4.20)

Theorem 4.4.4 (equivalence local limit of SBM and Potts broadcasting process on local limit ER). Let S = [q].
Let (T1, ρ) be the local limit of a marked SBMn(q, a, b).
Let GWT (Poi(λ)) be the local limit of ERn(λ/n). Now assign types to GWT (Poi(λ)) by a q-type broadcasting

process Pη satisfying (2.46), with {ηe} satisfying (2.52) and giving the root type tρ ∈ [q] uniformly at random.
Denote the resulting (marked) tree as (T2, ρ).

Then (T1, ρ) and (T2, ρ) have the same distribution when

λ =
a+ (q − 1)b

q
(4.21)

and

ε =
b

a+ (q − 1)b
. (4.22)

Proof. For the root we find that tρ uniformly at random in both models. For the offspring of every vertex we

find Poi(λ) = Poi(a+(q−1)b
q). For the type distribution Q2(i) in T2 we find that

P(Q2(i) = j) = Pη(η(u,v) =
j

i
) =

{
1− (q − 1)ε = a

a+(q−1)b for i = j

ε = b
a+(q−1)b for i 6= j

which is equal to type distribution Q(i).

Combining theorem 4.4.4 and 4.4.3 we find equivalence of the local limit of the SBMn(q, a, b) and a Potts

measure on the local limit of ERn(a+(q−1)b
n) when

exp(−2β) =
(q − 1)ε

1− (q − 1)ε
=

(q − 1)b

a
β = −1

2
log(

(q − 1)b

a
), (4.23)

which reduce to the relations we found between the parameters when q = 2 in (4.7).

Corollary 4.4.5 (Equivalence successful community detection results). Let G be a graph created from SBMn(q, a, b),
then as n→∞, reconstruction of original communities with positive correlation, i.e. better than random guess-
ing, is possible iff (a− (q − 1)b)2 > q(a+ (q − 1)b) [9]. Let (T, ρ) be a GWT with tρ uniformly at random and
offspring distribution Poi(λ), where the types are determined using Pη, {ηe} satisfying (2.52) and (2.46). Then
reconstructing σρ from the spins at the n’th level of T , Tn, is possible when n→∞ if 1− (q − 1)ε > λ−1/2 and
not possible if 1 − (q − 1)ε < λ−1/2. For the critical β of the phase transition on the Potts models [7] find the

relation eβc−e−βc
eβc+(q−1)e−βc

= v̄−1. (3.22)

Now let λ, ε, β, a, b satisfy relations (4.21),(4.22) and (4.16), then these critical values coincide.

Proof. We find

(a− (q − 1)b)2 =

(
a− (q − 1)b

a+ (q − 1)b

)2

(a+ (q − 1)b)2 = (1− 2(q − 1)ε)2(a+ (q − 1)b)2 = q(a+ (q − 1)b)

(1− 2(q − 1)ε)2 =
q

a+ (q − 1)b
= λ−1

1− 2(q − 1)ε = λ−1/2

(4.24)

This results in the critical βc with

tanh(βc) =
−1 + e2βc

1 + e2βc
=

1−(q−1)ε
(q−1)ε − 1

1 + 1−(q−1)ε
(q−1)ε

=

1−2(q−1)ε
(q−1)ε

1
(q−1)ε

= 1− 2(q − 1)ε =
a− b(q − 1)

a+ b(q − 1)
(4.25)

tanh(βc) = λ−1/2 = v̄−1/2 (4.26)

30 Community detection on random graphs using Potts models

CHAPTER 4. HOW POTTS MODELS IMPOSE A COMMUNITY STRUCTURE ON
RANDOM GRAPHS

This does not correspond to the result of Pemantle [7] of (3.22) on the robust phase transition of Potts
models on trees. One can even redefine β in terms of flipping away to a specific type,

exp(−2β) =
ε

1− (q − 1)ε
. (4.27)

Then

eβc − e−βc
eβc + (q − 1)e−βc

=
−1 + e2βc

(q − 1) + e2βc
=

1−(q−1)ε
ε − 1

(q − 1) + 1−(q−1)ε
ε

=
1−qε
ε
1
ε

= 1− qε (4.28)

which also does not correspond to the branching factor. This difference could lie in the fact that they look at
a robust phase transition, which is stronger than the usual phase transition. Else we may have misinterpreted
their results.

4.5 General broadcasting process and inhomogeneous random graph

We would like to extend the results from the previous section to be as general as possible. From theorems 4.4.3
and 4.4.4 we conclude that there are two main components to the equivalence. The first is the equivalence
between a type-transitive broadcasting process and a Potts-model, which we work out more in-depth in the
next section 4.6. The second is the relation between a broadcasting process applied to the local limit of an ER
graph with the local limit of the more general IRG, which we discuss in this section.

We show in this section that the local limit of the IRG and a broadcasting process on the local limit of an ER
graph can be mapped onto each other, as long as the IRG has the same total expected number of connections for
every type. This is a necessary assumption, as a broadcasting process only assigns types and cannot compensate
for changes in the distribution of the offspring of the tree. These can only be coupled with an ER graph with
parameter λ if the expected offspring of every type is really λ.

Thus we look at q × q kernels for which

λ = λ(i) =
∑
j∈[q]

cijnj . (4.29)

In other words, the expected number of connections of a node of type i, λ(i), is equal to λ for all the different
types. Now as cij can be different for specific i, j, we need to define separate probabilities of flipping from type
i to type j, εij to contain this information. We define

εi,j =
cijnj
λ

. (4.30)

We also redefine η(u,v) accordingly so that

P(η(u,v) =
i

tu
) = εtui =

ctuini
λ

(4.31)

We call the resulting Pη satisfying (2.46) an inhomogenious broadcasting process.
Using these definitions we prove the following lemma.

Lemma 4.5.1 (Equivalence local limit IRG and inhomogenious broadcasting process on local limit ER). Let
(T1, ρ) be the local limit of a marked IRG(c), where c satisfies (4.29) and have type probabilities ~n.

Let GWT(Poi(λ)) be the local limit of ER(λ/n) 2.3. Equip GWT(Poi(λ)) with an inhomogenious broadcasting
process Pη with {ηe} which satisfy (2.46) and (4.31). Distribute the type of the root tρ using type probabilities
~tρ = ~n. Denote this marked tree as (T2, ρ).

Then these objects have the same distribution.

Proof.

P(tρ = i) = ni (4.32)

for both models by definition.

Community detection on random graphs using Potts models 31

CHAPTER 4. HOW POTTS MODELS IMPOSE A COMMUNITY STRUCTURE ON
RANDOM GRAPHS

The total offspring of (T1, ρ) of type i is distributed with Poi(λ(i)), where we copy this result from (2.25).
We find

λ(i) =
∑
j∈[q]

cijnj = λ. (4.33)

The offspring of (T2, ρ) is also Poi(λ) distributed, as the underlying tree is GWT(Poi(λ)).
For the type distribution of (T1, ρ) we copy the result from (2.26), which is that

P(Q1(i) = j) =
cijnj∑
j∈[q] cijnj

=
cijnj
λ

. (4.34)

For the broadcasting process we find

P(Q2(i) = j) = Pη(η(u,v) =
j

i
) = εi,j =

cijnj
λ

. (4.35)

Thus the offsprings and types are distributed same and thus both trees (T1, ρ) and (T2, ρ) have the same
distribution.

4.6 Type-transitive broadcasting process and adjusted spin glass
Potts models

In this section we generalize the coupling of a broadcasting process to a Potts model. Let L denote the property
that the probability of a state which is permuted on all types of sub-tree Tv is independent of the sub-tree Tv.
In section 4.4 we have seen that for broadcasting processes, L holds as long as the broadcasting process is type-
transitive. In this section we show how much we can generalize the Potts model such that L still holds. When
property L holds for both models, we can prove the equivalence of their type distributions on trees analogous
to theorem 4.4.3.

We investigate multiple extensions to the Potts model. First we show that applying a magnetic field ~B 6= 000
(and not rescalable to 000), property L does not hold. Afterwards we show that we can adjust the spin glass Potts
model in such a way that it is more general than the Potts model and L still holds.

For simplicity we look at the Ising model on a tree T with a magnetic field B 6= 0, as described in (3.3).
Let (u, v) ∈ E(T). We investigate what happens to the probability of a state σσσ with σu = σv, when we flip all
types of Tv, called σσσflip. Without loss of generality, let B > 0. Let k denote the number of flips in state σσσ and
let r denote the number of vertices u with σu = +1 in σ. Let |Tv| denote the number of vertices in Tv and s
denote the number of vertices u in Tv with σu = +1. Using the definition of the Ising model we find

µβ(σσσ) =
1

Z
exp{β ((n− k)− k +B(r − (n− r)))} (4.36)

µβ (σσσflip) =
1

Z
exp{β ((n− (k + 1))− (k + 1) +B(2r − n+ (|Tv| − 2s)))} (4.37)

µβ(σσσ) = exp(2β + βB(2s− |Tv|)µβ(σσσflip). (4.38)

This is dependent on s and |Tv| therefore not independent of the subtree Tv. This argument also extends to q

types and thus Potts models with magnetic field ~B 6= 0 do not satisfy property L.
Now we extend the Potts model such that it still satisfies property L. We can do this by adding an interaction

strength Juv to every edge, as is done in the spin glass Potts model. We repeat here the definition of the spin
glass Potts model with ~B = 0 as we will need it to show that property L still holds.

µglass(t) =
1

Z
exp{2β

 ∑
(u,v)∈E

Juv1(tu = tv)

}. (4.39)

Using the definition of µg (4.39) we find

µglass(t) =
1

Z
exp{2β

 ∑
(u′,v′)∈E

Ju′v′1(tu′ = tv′)

} =

= exp(2βJuv)
1

Z
exp{2β

 ∑
(u′,v′)∈E\{(u,v)}

Ju′v′1(tu′ = tv′)

} = exp(2βJuv)µglass(πTv (t)). (4.40)

32 Community detection on random graphs using Potts models

CHAPTER 4. HOW POTTS MODELS IMPOSE A COMMUNITY STRUCTURE ON
RANDOM GRAPHS

This is independent of the specific tree Tv, therefore property L holds.
However, in order to couple the Potts model to inhomogeneous type-transitive broadcasting models we need

the interaction strength Juv to depend on the types of tu and tv. Therefore we define

H(t) = −2
∑

(u,v)∈E

Jtu,tv , (4.41)

with Jtu,tv the type-dependent interaction strength. This leads to an adjusted spin glass Potts model

µg(t) =
1

Z
exp{2β(

∑
(u,v)∈E

Jtu,tv)}. (4.42)

Now we apply µg to a tree (T, ρ) with (u, v) ∈ E(T). We investigate what happens to the probability of a
state t with tu = tv when permuting all types of subtree Tv using a permutation πTv with πTv (tu) = i 6= πTv (tv),
resulting in the state πTv (t). As now these Jtu,tv in principle impact the rest of the tree. We therefore also need
type-transitivity for the adjusted Potts model. We say µg is type-transitive when the graph G with adjacency
matrix J is vertex-transitive. When this is satisfied we find

µg(t) = exp(2β(Jtutu − Jtui))µg(πTv (t)). (4.43)

Using this we can now show the following theorem.

Theorem 4.6.1. Let (T, ρ) be a finite tree. Let µβ be a q-type spin glass Potts model as in (4.42) with ~B = 0
and let Pη be a type-transitive broadcasting process as in (4.13), with Aij > 0 for all i, j. The root is assigned
a type from [q] uniformly at random. Let Juv be dependent on the type tu, such that

Jij = log(εij). (4.44)

Then equipping (T, ρ) with µg and Pη lead to the same distribution.

Proof. Note that the type of the root is distributed uniformly at random from [q] in both models, in the
broadcasting process by definition and in µg by We now use the results of equation (4.43) for the ratio of µg.
For the ratio of probabilities of a state t with tu = tv and state πTv (t) for which all types of Tv are permuted
using πTv with πTv (tu) = i 6= tu, we find in the type-transitive broadcasting model that

P(η(u,v) = 1) = εtutu

P(η(u,v) =
j

i
) = εtui

P(t) =
εtu,tu
εtui

P(πTv (t)). (4.45)

For this we which coincide when
exp(2β(Jii − Jij)) =

εii
εij
, (4.46)

which is satisfied with constraint (4.44).

We realize that by making the coupling factor Juv dependent on the types tu, tv, there is no longer much
physical intuition of Potts models that applies. However, we merely wanted to show in what direction the Potts
model has to be changed in order to match the broadcasting description even better.

4.7 Extension to degree corrected models

Here we extend the result of section 4.4 to degree-corrected models. This is possible, because degree-correcting
only affects the underlying graph structure. Thus it is something we can do to both both the ER model and the
SBM, which changes both models in precisely the same way such that the equivalences still hold. This result is
very nice, as many real-world problems are degree-corrected.

We can use the same identification of β, λ as (4.23), (4.21). We find that the local limit of a degree-corrected
SBMn(q, a, b) is equivalent to a Potts model µβ as (4.23) on the local limit of a degree-corrected ERn(λ/n).

Community detection on random graphs using Potts models 33

CHAPTER 4. HOW POTTS MODELS IMPOSE A COMMUNITY STRUCTURE ON
RANDOM GRAPHS

We use the notation described in [4]. Every node u has a weight φu given by a distribution ν with some
minimal weight φmin > 0 and this weight has moments Φ(k) =

∫
W
xkdν(x).

The local limit of a DSBM was given in section 2.3, which we repeat here. It is a GWT, with root type
tρ ∈ {1, ..., q} taken uniformly at random and root weight φρ taken random according to ν. Now a vertex u

produces Poi(aΦ(1)φu
q) children of the same type σu and Poi(bΦ

(1)φu
q) of each of the other types. The weights of

the children are i.i.d. distributed with size-biased distribution

ν∗([0, x]) =
1

Φ(1)

∫ x

φmin

ydν(y) (4.47)

.
We define the degree-corrected ER as DERn(λ/n) as a DSBM with q = 1 and a = λ.
Notice that theorem 4.4.3 is true on any tree, so also degree-corrected trees. We can thus immediately

continue with the equivalence of the local limits.

Theorem 4.7.1 (equivalence local limit of DSBM and q-type broadcasting process on local limit degree-cor-
rected ER). Let (T1, ρ) be the local limit of DSBMn(q, a, b, ν).

Let (T3, ρ) be the local limit of DERn(λ/n, ν), a GWT where each vertex u has offspring distribution
Poi(λΦ(1)φu) with the offspring weight distributed as ν∗. Now equip (T3, ρ) with a q-type broadcasting pro-
cess, which assigns the root type tρ uniformly at random from [q] and distributes types of other vertices using
Pη and {ηe} satisfying (2.52) and (2.46). Call the resulting marked graph (T2, ρ).

Then (T1, ρ) and (T2, ρ) yield the same distribution when

λ =
a+ (q − 1)b

q

and

ε =
b

a+ (q − 1)b
.

Proof. For the root we find that tρ uniformly at random for both trees. For the offspring of every vertex in
(T2, ρ) is

Poi(λΦ(1)φu) = Poi(
a+ (q − 1)b

q
Φ(1)φu) = Poi(

a

q
Φ(1)φu) + (q − 1)Poi(

b

q
Φ(1)φu). (4.48)

Where we use the special property of poisson variables that the sum of two poisson variables is again poisson
distributed with the sum of the parameters. The right-hand side of (4.48) is precisely the offspring of (T1, ρ).

For the type distribution Q2(i) in T2 we find that

P(Q2(i) = j) =

{
1− (q − 1)ε = a

a+(q−1)b for i = j

ε = b
a+(q−1)b for i 6= j

which is equal to type distribution Q1(i) from (2.32). Also both weight distributions of the root and the
size-biassed weight of each offspring are equal.

4.8 Conclusions

Thus we have seen in this chapter that in the thermodynamic limit n → ∞, describing a graph locally from a
random root ρ, by taking a local limit of random graph models with communities, the SBM, is the same thing

as applying a Potts model to the local limit of an ER with the same total degree distribution λ = a+(q−1)b
q ,

when β = − 1
2 log((q−1)b

a). This is even the case for degree-corrected models.
We have seen that applying a magnetic field complicates matters in the equivalence between the Potts model

and the broadcasting process, and cannot be proven using our method. This does not mean that no equivalence
exists. Further research could be done on this subject, trying to couple a skewed matrix A with a magnetic
field ~B. We conjecture that this is possible only if it is possible to find root probabilities in the magnetic Potts
model that only depend on the size of the tree and not its specific structure.

We also showed that some specially adjusted Potts model is equivalent to a broadcasting tree on a larger
space of type flipping matrixes A.

34 Community detection on random graphs using Potts models

Chapter 5

Detecting communities using belief
propagation algorithms

In the previous chapter we have focused on coupling Potts models and random graphs in the limit n → ∞.
This way we could compare results which state when community detection is possible. In this chapter we focus
on a more practical question, which is when communities can be detected succesfully in polynomial time using
an algorithm. Community detection is in practice usually done using belief propagation (bp) algorithms. In
this chapter we explain what a belief propagation algorithm is and how it works. We then intuitively show
where the idea of such an algorithm comes from and give the intuition of why and when these algorithms can
accurately detect communities.

To do this, in section 5.1 we show what a general belief propagation algorithm is and how such algorithms
could help us detect communities. In section 5.2, we show a bp algorithm TreeBP which calculates exact
conditional probabilities on trees. In section 5.3 we explain the bp-algorithm of Decelle et al.[1] line by line,
which we abbreviate as BPAD. We explain how BPAD was created to make it suited for community detection on
IRG’s. We expand on this in section 5.4 by showing under which conditions communities will be detected using
BPAD. We then finish in section 5.5 by coupling these conditions with the critical parameters of community
detection which were encountered in chapter 4.

5.1 Belief propagation algorithms

When is an algorithm a belief propagation algorithm? We call it so when a vertex passes on its belief about itself
and other vertices to their neighbours in a message. These messages are then iterated on until they converge,
such that the belief of all the nodes is stable. The stable belief of a node is then taken as a guess of the true
state. These algorithms can be used to extrapolate information about unobserved nodes using observed nodes,
which is for example done in some neural networks. When all the messages have converged, we will convert
these messages into the probability of a vertex belonging to a type, which we can use to see if communities have
truly been detected.

Why would such an algorithm be helpful for detecting communities? What use are the probabilities of
vertices belonging to a type for the detection of communities? When all the type distributions of each vertex
are known, we can simply categorise a vertex as the type it has the highest probability of having. Furthermore,
a vertex has a probability of having type i which is unequal to the global expected probability of that type,
we know that some information has been gained above guessing at random. Thus intuitively, ending in a fixed
point where any vertex defers from this global expected distribution is the condition for detecting communities.

In community detection we attempt to use the message passing to tell us something about the structure of
the graph itself, without knowing anything about types in advance. The idea here is that well-connected groups
amplify their initially random belief inside their group, thereby splitting into communities. Thus we want to
know how to create messages which we can convert into type probabilities. We start with the calculation of
a single type distribution of a vertex. In a Potts model, the type distribution νu(~q) = (νu(1), ..., νu(q)) of an
unknown node u can be calculated by calculating all the marginal probabilities νu(i). We define

νu(i) =
∑

t|tu=i

µ(t). (5.1)

Community detection on random graphs using Potts models 35

CHAPTER 5. DETECTING COMMUNITIES USING BELIEF PROPAGATION
ALGORITHMS

as the marginal probability of type i of vertex u. Here µ(t) is defined as the Potts model (3.19). Note that in this
case we have that νu(i) is precisely the probability that tu = i. Therefore νu(~q) is the exact type distribution
of vertex u, so the best guess of the type of node u, t∗u we can make is

t∗u = arg max
i

νu(i), (5.2)

where t∗u is chosen uniformly at random between multiple types satisfying the maximum when the maximum of
νu(i) is not unique.

Note that equation (5.1) can take much calculation, as there are qn−1 different configurations t|tu = i to
consider. On a tree however, we shall see in section 5.2 that these marginals can be calculated iteratively from
leaves to the unknown node, leaving only O(n) calculations.

A belief propagation algorithm starts from some initial position, where each vertex is given an initial type
distribution. Then in the calculation of the set of marginal probabilities for the next time step, it uses the
current marginal probabilities of a node (which are approximations) as if they are the exact type distribution
of that node. Using this calculation it starts iterating the marginal probabilities until these converge to a fixed
point. At first it may not be intuitive that this leads to good approximations of the exact type distributions.
However, in the next section we prove that on a tree, in the Potts model, this assumption leads to convergence
of the marginal probabilities to the correct type distribution!

As our graphs are locally treelike, it is to be expected that as n→∞, these algorithms will also give accurate
type distributions on graphs, not just trees. We will give some non-rigorous arguments for this in section 5.4.

In order to intuitively understand where bp-algorithms come from, we will first look at a way to calculate
νu iteratively on a tree in a Potts model. Let the root ρ be our unknown node and let (T, ρ) be our rooted tree.
Now suppose we know the exact type distribution of all leaves u ∈ T .

For this calculation, messages can be used. In this calculation, every node u sends a message ψu−→v to each
of its parents v. A visual representation of this can be seen in figure 5.1. Here a message will represent the type
distribution of the node u in the subtree rooted at u without its parent v, Tu\v. Initially, each message ψu−→v

will contain the known type distributions of u, which in the leaves is equal to our wanted representation. Then
we update each message from leaves up to the root by calculating he type distribution of the node u in the
subtree rooted at u. Then in the end the marginals of ρ can be calculated using only messages ψu−→ρ, which is
explained in section 5.2.

ρ

l

m1 m2

ψ
m1→l

ψ
m2→l

(a)

ρ

l

m1 m2

ψ
m1→l

ψ
m2→l

ψ
l→ρ

(b)

ρ

l

m1 m2

ψ
m1→l

ψ
m2→l

ψ
l→ρ

(c)

Figure 5.1: The iterative calculation of the marginal of the root ρ when the type distribution of all other nodes is
known, using messages. From left to right we see how every iteration step the messages one layer closer to ρ are
calculated, until νρ can be calculated using the messages in the final iteration. In (a) we see the messages of the
leaves m1 and m2 to their parent are simply their (known) type distributions. In (b) the marginal probability of
l in the subtree Tl is calculated and stored in the message ψl→ρ. In (c) the marginal of ρ in T can be calculated
by calculating the marginal of ρ in the smaller tree containing only ρ and its neighbours r where all neighbours
have type distribution ψr→ρ.

In general, one iteration a belief propagation algorithm is analogue to the previous calculation using messages,
except that nodes u send a message to every neighbour v. Note that this way, the message ψu−→v is directed
from u to v and works on a directed arc {u, v}. This way every edge (u, v) ∈ E will contains 2 messages, one

36 Community detection on random graphs using Potts models

CHAPTER 5. DETECTING COMMUNITIES USING BELIEF PROPAGATION
ALGORITHMS

in each direction. When an iteration no longer significantly changes the messages, the algorithm is said to have
converged. Important to note is that in this calculation three choices need to be made.

1. First we chose that the messages represented type distributions of node u in Tu\v. We could have also
chosen a magnetisation or something else, as long as messages can be calculated using the messages of
neighbours and the objective of the algorithm (in our case the marginals) can be calculated using the
converged messages.

2. The second choice was to choose the initial messages. In the previous case they were intuitive, as what
we wanted to represent was already known. This is not the case for all bp-algorithms we will see.

3. The third choice was the order in which the messages are updated. We will show that on trees the order
of the messages heavily impacts the convergence time. On graphs the order is even more important, as it
can impact the final solution of the algorithm.

As we have seen throughout this section, many of these arguments come from the exactness of bp-algorithms
on trees. Thus we will spend the next section proving this and gaining more intuition for these algorithms.

5.2 Exact belief propagation on trees

In this section we show that all marginal probabilities of a Potts model can be calculated iteratively simultan-
eously on trees. We then show a specific belief propagation algorithm that calculates these marginals exact with
finite convergence time on finite trees. We use an algorithm with a specific order to emphasize the importance
of the order in which the messages are calculated with respect to the convergence time.

In order to show that marginals can be calculated iteratively, we use theorem 5.2.1, which comes directly
from [8]. In an Ising model on trees T where every node has its own magnectic field, as defined in equation
(3.4), the marginal of a subtree U in T is defined as

νTU (t∗U) =
∑

t|tU=t∗U

µT (t). (5.3)

Here tU is the vector consisting of all types tu ∈ t with u ∈ U . µT is the Ising model defined on tree T . Now
the theorem shows that νTU (t∗U) can be expressed as a separate Ising model on U , where each of the leaves of U
has an adjusted magnetic field. This result helps us show that we can calculate the marginal of a single node u
itereatively, because we can start with U = T and take U smaller and smaller around node u.

Theorem 5.2.1. Let U be a subtree of a finite tree T , where δ∗U are vertices of U connected to W = T\U .
Let µT (t) denote the Ising model distribution with β > 0 on T , where each vertex has its own magnetic field
Bu, as defined in (3.4). For u ∈ δ∗U look at Tu, the maximal subtree Tu of W ∪ {u} rooted at u. A visual
representation is given in figure 5.2. Let

〈tu〉W =
∑

t|tu=+

µTu(t)−
∑

t|tu=−

µTu(t) (5.4)

be the expected value of the type of this root u in Tu.

Then the marginal of U of the Ising measure on T, denoted νTU , is then also an Ising measure on U with
another magnetic field B′u = 1

β arctanh(〈tu〉W) for u ∈ δ∗U

Proof. This proof was given by the authors of [8]. We give it here with slightly more explanation, as it illustrates
the key point to why belief propagation is exact on trees. Furthermore it shows the way the magnetic field is
connected to the type distribution.

This proof will have two main steps. In the first step we show that we can write the marginal using only
vertices in U . In the second step we rewrite this marginal as the usual distribution of a full tree on an Ising
model, with a different magnetic field.

We want to calculate the effects of Tu on u, for all u ∈ δ∗U . For this we calculate the marginal probabilities
of u in the subtree of Tu, defined as (5.1). Since U is a subtree of T , all subtrees Tu are disjoint. Therefore the
vertices of different Tu are not connected, thus their Ising measures are independent. Thus the joint probability

Community detection on random graphs using Potts models 37

CHAPTER 5. DETECTING COMMUNITIES USING BELIEF PROPAGATION
ALGORITHMS

of the type distribution of all u ∈ δ∗U in their subtree Tu equals the product of their type distributions µTu(tu).
Let tU denote a state of all vertices u ∈ U , then

νTU (tU) =
1

Ẑ
exp{β

∑
uv∈U

tutv +
∑

u∈U\δ∗U

Butu

} ∏
u∈δ∗U

µTu(tu). (5.5)

Now we want to write this as a marginal of U as the usual Ising distribution on a tree U . Thus we need to find
a function B′(u) such that ∏

u∈δ∗U

µTu(tu) = cu exp[β
∑
u∈δ∗U

B′(u)tu] (5.6)

with cu ∈ R+ constants. This is possible since µTu(tu) > 0.
For a single node Tu = u, the expected value 〈tu〉 behaves as tanh(βBu), so

1

β
arctanh(〈tu〉{u}) =

1

β
arctanh(

exp{β(Bu)} − exp{β(−Bu)}
exp{β(Bu)}+ exp{β(−Bu)}

) =
1

β
arctanh(tanh(βBu)) = Bu. (5.7)

The magnetic field for bigger trees will no longer satisfy this relation, but using constants cu can be expressed
in a similar way.

Since the arctanh(〈tu〉) is an odd function in 〈tu〉, multiplying it with tu = sign(〈tu〉) will turn it into an
even function with range [0,∞). Since µTu(tu) is a probability it has range [0, 1]. As both functions are ≥ 0 we
can find a constant cu ∈ R+ such that

µTu(tu) = cu exp(β
1

β
arctanh(〈tu〉W)tu). (5.8)

By incorporating the constants cu into the partition sum Z such that Ẑ = Z
∏
u∈∂∗U cu we find that βB′u =

arctanh(〈tu〉W) and we can write

νTU (tU) =
1

Ẑ
exp{β

∑
uv∈U

tutv +
∑

u∈U\δ∗U

Butu +
∑
u∈δ∗U

B′utu

} (5.9)

which proves our claim.

In statistical physics terms, the theorem tells us that if we consider an Ising measure on a tree, we can
exactly construct the Ising measure on any subtree U by integrating out the degrees of freedom not included
in the subtree U . The netto effect of doing this amounts to adding a local magnetic field to the nodes of the
subtree U that connect it to the rest of the tree, ∂∗U .

ρ

u

v

kl

U

m

∂∗U

(a) U

ρ

u

v

kl

m

Tρ

Tl

(b) Tρ and Tl

Figure 5.2: Our favourite small tree T with a subtree U , for which we can calculate the marginal probabilities
of U in the Ising model (3.4) using theorem 5.2.1

The marginal of a single node u in the Ising model on T can be reduced to the marginal of u on an Ising
model on the subgraph containing u and its neighbours U = {u} ∪ δu. This can also be done by starting
with U = T and then iteratively reducing U to {u} ∪ δu vertex by vertex by removing a leaf every reduction.
Essentially this is what a bp-algorithm does. We work out such a bp-algorithm in the rest of this section.

38 Community detection on random graphs using Potts models

CHAPTER 5. DETECTING COMMUNITIES USING BELIEF PROPAGATION
ALGORITHMS

Let us now consider our first specific bp-algorithm on a rooted tree (T, ρ), which we will denote as bp-ordered.
We use φ instead of ψ for messages to better distinguish which algorithm is used. Bp-ordered calculates the
magnetic field B′v that a node u receives from a subtree rooted at neighbour v in a message φv−→u, by only
considering neighbours 6= u. Then B′v ≡ arctanh(〈tv〉W) with W = δv \ {u} and the magnetic field of the
neighbours k ∈W considered is φk−→v. This can be compared to the reduction of U = T to U = {u}∪ δu, when
the messages of leaves are calculated first and then the messages are calculated inwards. Theorem 5.2.1 then
shows that when calculating the messages in this order, this leads to the exact marginal of a specific node u.

ρ

u

v1

l

v2 v3m1 m2

ψ
m1→l

ψ
m2→l

(a) t = 2 up

ρ

u

v1

l

v2 v3m1 m2

ψ
m1→l

ψ
m2→l

ψ
l→ρ

(b) t = 1 up
ρ

u

v1

l

v2 v3m1 m2

ψ
l→ρ

ψ
ρ→u

(c) t = 1 down

ρ

u

v1

l

v2 v3m1 m2

ψ
v1→u

ψ
v2→u

ψ
u→v3

ψ
ρ→u

(d) t = 2 down

Figure 5.3: Some schematic figures of the calculation of the messages at time step t. We did not draw all arrows
to avoid a crowded figure, but each leaf at the same distance from ρ is treated equally. In figure (a) we see that
the initial messages are recalculated using only the magnetic field of the leaves. In the other figures we see that
the calculation of the new message is done using only the incoming messages and the magnetic field of the node
in between. Remember that during one time step t all messages at depth t are calculated.

Consider rooted tree (T, ρ) = Tρ = (V,E), with at each node u ∈ V magnetic field Bu. Now let depth(Tρ) be
the maximal distance from any vertex to the root ρ. Let Uu,v denote the subtree U = (V = {u}∪{∂u\{v}}, E =
{(u, k)|k ∈ {∂u \ {v}}) consisting of u and its neighbours except v. As initial messages we choose φu−→v = Bu.
A message φu−→v is only updated once all messages in Tu\v are updated. This is possible by, in a rooted tree,
starting at all the leaves, updating upwards towards the root and then updating back down starting from the
root, as visible in figure 5.3.

Community detection on random graphs using Potts models 39

CHAPTER 5. DETECTING COMMUNITIES USING BELIEF PROPAGATION
ALGORITHMS

Algorithm 1 ordered algorithm similar to bp exact on trees

1: procedure ordered-marginal-calculation(Tρ, β, ~B, depth(Tρ))
2: Start by setting φu−→v = Bu for all u ∈ V
3: t = depth(Tρ)
4: while t > 0 do
5: For every node u at distance t with parent v, update φu−→v using

φu−→v =
1

β
arctanh(〈tu〉Uu,v)

〈tu〉Uu,v =
∑

t|tu=+1

1

ZUu,v)
exp{β(

∑
k 6=u

[tktu + φk−→utk] + φu→vButu)}

−
∑

t|tu=−1

1

ZUu,v)
exp{β(

∑
k 6=u

[tktu + φk−→utk] + φu→vButu)}. (5.10)

In the right-hand side of this calculation we use magnetic field Bu for vertex u and magnetic field B′u = φk−→u

for k ∈ {∂u \ {v}.;
6: t = t− 1;

7: while t ≤ depth(Tρ) do
8: For every node u at distance t with child v, update φu−→v using (5.10). In the right-hand side of this

calculation we again use magnetic field Bu for vertex u and magnetic field B′u = φk−→u for k ∈ {∂u \ {v}.;
9: t = t+ 1;

10: for u ∈ V do
11: calculate φu(t) =

∑
t|tu=t µ̂u∪δu(t). In this Ising model µ̂ we again use magnetic field Bu for vertex

u and magnetic field B′u = φk−→u for k ∈ {∂u}.;

Now we show that bp-ordered can calculate the marginal probabilities of all nodes u ∈ T simultaneously. We
emphasize the impact of the order on the convergence time by showing that with the right order, the algorithm
converges after a single iteration of both loops! Thus we need to prove that a bp-algorithm converges to a fixed
point and that the steady-state is in fact all the marginal probabilities. For this next lemma we make use of
theorem 5.2.1.

Lemma 5.2.2 (Marginals are a fixed point of bp-ordered (on a tree)). Suppose for every message we have that
φv−→u = B′v = arctanh(〈tv〉Tv\u), with Tv\u the subtree rooted at v excluding u, then this will be a fixed point of
bp-ordered.

Proof. Let u be a leaf, with parent v, then in the next iteration we find

φu−→v ≡ 1

β
arctanh(〈tu〉{u}) =

=
1

β
arctanh(

exp{β(φu→v)} − exp{β(−φu→v)}
exp{β(φu→v)}+ exp{β(−φu→v)}

) =
1

β
arctanh(tanh(βφu→v)) = φu→v. (5.11)

Let u not be a leaf, with neighbour k. Let W2 = δu\{k}. We use the result of theorem 5.2.1, with T = Tv\u
and U = {u}∪∂u, which shows that when B′u is the marginal of u in T , it can be calculated using the marginals
of k ∈ ∂u in their respective subtree Tk\u, which is precisely what φk→u is.

Now that we know marginals are a fixed point we can show that we reach this fixed point in one iteration.

Lemma 5.2.3. Bp-ordered calculates the exact marginal probabilities of all nodes on a tree and converges after
one iteration of both while loops.

Proof. With this order of updates no message φu−→v is ever updated before all of the messages it depends on
are. Thus, after both while loops, we have φu−→v = 〈tu〉Tu\v with Tu\v the maximal subtree of u that does not
include {v}, as is desired. The marginals φu are calculated after the while loops and therefore only use these
correct marginals. Theorem 5.2.1 with U = {u} ∪ ∂u tells us that indeed φu is the exact marginal probability
of u in T

40 Community detection on random graphs using Potts models

CHAPTER 5. DETECTING COMMUNITIES USING BELIEF PROPAGATION
ALGORITHMS

Thus using this specific order, the algorithm reaches a fixed point in one iteration. We call this converging
in one iteration. On graphs with cycles, there are no well-defined leaves and thus bp-ordered cannot be defined.
Thus a different order must be chosen. One order that is used much in practice is an order chosen uniformly
at random each iteration. To be more precise, instead of the two while loops producing the order as visualized
in figure 5.3, the 2|E(T)| messages of T are updated in a random order. Then the updating cycle is run again
until a fixed point is reached. We investigate the convergence speed of the random order on trees.

Corollary 5.2.4. Let T = T (V,E), then diam(T) = maxu,v∈V d(u, v). Then updating all messages as in bp-
ordered, but in a uniform random order each iteration, called bp-random, calculates the marginal probabilities
exactly and converges (almost surely) after at most diam(T)− 1 iterations.

Proof. All messages are defined on an arc u −→ v. Now define the in-distance din of φu−→v as the depth of the
maximal subtree Tu\v. Now we use induction.

Before the algorithm starts, we have φu−→v = Bu for all u ∈ V . This is the correct expression for all nodes
with in− distance 0. Then the induction hypothesis is that

∀φu−→v : din(φu−→v) ≤ k it holds that φu−→v = 〈tu〉Tu\v . (5.12)

Now let φu−→v = 〈tu〉Tu\v on all arcs with in−distance ≤ k, then after one iteration of the algorithm, every arc
is updated in a random order. Regardless of the order, all arcs with in− distance ≤ k are still correct as their
calculation only involves other arcs with in−distance ≤ k, which are a fixed point by Lemma 5.2.2. Furthermore
all arcs with in−distance k+1 were updated. Those messages only use messages with in−distance ≤ k which
satisfy φu−→v = 〈tu〉Tu\v . Thus Lemma 5.2.2 shows that φu−→v = 〈tu〉Tu\v for all φu−→v with in-distance ≤ k+ 1.

Now as edge (u, v) is not part of subtree Tu\v, all arcs in T have in − distance ≤ diam(T) − 1. Therefore
the algorithm converges to the exact marginals after diam(T)− 1 iterations.

Thus we have seen that belief propagation algorithms can calculate the exact marginals on trees in a
linear amount of time. Even when a random order is used, the calculation takes at most quadratic time
since diam(T) ≤ n. This is much better than the exponential O(2n) that the straightforward calculation of
the marginals gives us. As we have seen in section 2.3, many random graph models are locally treelike, and
thus belief propagation is intuitively thought to be a good approximation for the true marginals when n is
large. This is mostly because cycles are large and therefore the subtree of a message is for a direct calculation
almost independent of itself. In the next section we explain a community detection algorithm which uses belief
propagation on treelike graphs.

5.3 Decelle et al.’s belief propagation algorithm

Decelle et al. [1] use a bp-algorithm based on the intuition of calculating marginals on trees we have just
seen. In this section we explain how they got to their update rules and why intuitively this algorithm correctly
calculates marginals on treelike graphs. We then explain line-by-line how this algorithm functions. We will try
to also explain intuitively why this algorithm should give results that detect communities. To remain consistent
with notation across this thesis we have re-indexed some variables.

Let there be a graph G = (V,E) of n nodes generated from the IRG, so let ci,j = npi,j with pi,j the
probability of a node of type i connecting to a node of type j. Let G have adjacency matrix Au,v. q is the
amount of types, ni the expected fraction of nodes of each type. During this section we shall talk about the
diffent ideas of the algorithm, referring to the specific line in the pseudocode of BPAD, algorithm 2.

First we start with the philosophy of the algorithm. The algorithm does not intend to compute exact
marginals given initialization, but rather compute a set of marginals that maximize the probability of G being
generated from an IRG with connecting probabilities c. Thus these are marginals that correspond to a different
measure with a different Hamiltonian. Then, if the estimated marginals of type i are different from ni for
any vertex u and type i, there will be positive overlap as defined in (2.41). Thus communities will have been
successfully detected. The state where the estimation of the marginals νu(i) = ni for all u, i will be a fixed
point of the algorithm and will be denoted the trivial fixed point.

We will now discuss the three different choices that can be made in a bp-algorithm.

initialization As the aim is no longer coupled to the initial state, the importance of the choice of the initial-
ization decreases. Now the only remaining impact of the initialization is to which fixed point of the messages it
converges. As we will see in section 7.2, there are regimes where different initializations lead to different fixed

Community detection on random graphs using Potts models 41

CHAPTER 5. DETECTING COMMUNITIES USING BELIEF PROPAGATION
ALGORITHMS

points. In section 6.4 we show that we can locally compute a free energy density (which was defined in (3.8)),
which the system minimizes at constant β. In section 6.5 we show how Decelle et al. calculate the free energy
density in this specific case. Thus the quality of the fixed points can be compared, where the best fixed point
has the lowest free energy density. The aim is therefore to find as many fixed points as possible.

Thus one should try many different initializations. Decelle et al. therefore choose to initialize with random
(normalized) marginals in line 2.

For the initial messages, only the word random is used to describe the initialization. Uniform randomness
is usually implied in such a statement in physics papers. For 2 types uniform randomness is nicely defined. Let
X uniformly random on [0, 1] then letting t1 = x and t2 = 1− x has the same distribution as t1 = (1/2− 1/2u)
with U ∈ [−1, 1] uniformly random distributed. Both these methods have clear symmetry and each state (t1, t2)
in Ω = {t|

∑
i ti = 1} has the same probability. When q > 2, a uniform distribution from all states t ∈ Ω

can be created by taking a random permutation π of the q types and then letting tπ(1) be uniform in [0, 1],
then tπ(k) uniform in [0, 1 −

∑
i:pi(i)<q−1 ti] and finally tπ(q) = 1 −

∑
i:pi(i)<q ti. Also the symmetric method

needs n − 1 random variables where each computations depends on the results of the random variables before
it. This is quite elaborate to code for arbitrary q. However, the important thing this randomness is used for
is to find different fixed point of the algorithm. Therefore uniformity is not essential. Thus we opted in our
code for a distribution where each type i at vertex u is assigned weight wu,i ∈ [0, 1] uniformly at random. This
is then normalized per vertex into a type distribution. This distribution favours states which are close to the
trivial fixed point over the uniform distribution. However, every different distribution can be chosen using this
method. As this is also how this algorithm was implemented by the authors of [10] online we expect this is
what Decelle et al. have implemented as well.

order of updating messages There are 2|E(G)| messages that need to be updated. The order of the
computation of messages is taken uniformly at random from all 2|E(G)|! permutations each iteration, as can
be seen in line 7. Now the authors of [1] do not explain why they have chosen for a random order, but we can
think of a reason. When we look back at bp-ordered, algorithm 1, on a tree, we see that the order in which the
messages are updated can change the amount of messages being reached by a message in that iteration from
one to the entire graph. This is a property that persists for graphs with cycles, and a particular order that
repeats could increase the reach of some messages over others, significantly. Thus the order is chosen randomly
each time, in the hope that when there are enough iterations, by the law of large numbers, the average reach
of all messages over all iterations is comparable. This way, as n→∞, the bias towards any direction vanishes.
Thus the solution will only depend on the graph G and the initial condition.

messages As mentioned before, the algorithm computes a set of marginals that maximize the probability of
G being generated from an IRG with connecting probabilities c. Thus these are marginals that correspond to a
different measure with a different Hamiltonian. We shall now explain how Decelle et al. get this Hamiltonian.

Finding the Hamiltonian In the IRGn, defined in section 2.2.2, when we know all the parameters θ =
{q, ni, pij =

cij
n }, we can write that the probability of a graph G with adjacency matrix Auv and type distribution

t given θ is

P(G, t|θ) =
∏
u6=v

pAuvtu,tv (1− ptu,tv)1−Auv
∏
u

ntu (5.13)

Where u 6= v denotes all unique pairs u, v ∈ V (G)|u 6= v. But we are interested in the probability of t, given
{G, θ}. For this we can now write

P(t|G, θ) =
P(G, t|θ)∑
t P(G, t|θ)

=
1

Z
exp[−(−

∑
u

log(ntu)−
∑
u6=v

[Auv log(
ctu,tv
n

) + (1−Auv) log(1− ctu,tv
n

)])].

(5.14)

Since G is known, we know∑
u 6=v

[Auv log(
ctu,tv
n

) = [
∑
u6=v

[Auv log(ctu,tv)]− |E(G)| log(n). (5.15)

Since |E(G)| log(n) is a constant which every probability is multiplied by, we can leave it out of the Hamiltonian,
since the probabilities will be normalized and that leads to the same Boltzmann distribution as including it.

42 Community detection on random graphs using Potts models

CHAPTER 5. DETECTING COMMUNITIES USING BELIEF PROPAGATION
ALGORITHMS

Thus we can write the distribution of t (5.14) as a Boltzmann distribution with β = 1 and Hamiltonian

H(t|G, θ) = −
∑
u

log(ntu)−
∑
u6=v

[Auv log(ctu,tv) + (1−Auv) log(1− ctu,tv
n

). (5.16)

For the rest of this chapter, let µ denote the Boltzmann distribution (3.1) with this Hamiltonian (5.16). Note
that in (5.16), the last term is nonzero for pairs of vertices that are not connected in the graph. This means
that there are contributions to the probability between unconnected nodes. This will make the problem unlike
a tree.

Defining messages and marginal probabilities on a complete graph Just as we did in the previous
chapter for the Ising model, the marginals of the Bolzmann distribution with this Hamiltonian can be calculated
iteratively on trees. As there is no inherent magnetic field we get that messages are only dependent on messages.
Instead of having messages contain the magnetization of their subtree as in (5.4), which contains the marginals
of both types, we instead calculate the marginal of each of the q types on that subtree separately. Thus ψu→vi

represents
∑

t|tu=i µTu\v (t), the current estimate of the type of u when v is excluded from G. The assumption
for the update rule of the messages is that they are exact if G is a tree. In that case the marginals can be
computed by updating the marginals based on neighbours Diam(G) times. The assumption that G is a tree is
not far-fetched for large n, as the local limit of G, an IRG, is a tree.

However as the Hamiltonian (5.16) is dependent on both neighbours and non-neighbours, at first the complete
graph needs to be considered. This is of course not very treelike. Fortunately we shall see that the influence of
all non-edges can be approximated without using messages, to retain the intuition that iterating these update
rules approximate the exact marginals.

For this update, the same way as we updated messages in (5.10) from the Ising model, we get

νu→vi =
∑

t|tu=i

µTu\v (t) ≈
∑

t|tu=i

1

Z
exp{log(ni) +

∑
u,k|k∈∂u\v

[Auk log(ci,tk) + (1−Auk) log(1− ci,tk
n

) + log(νk→utk
)}.

(5.17)

Where we use that locally we can better approximate the type distribution of a vertex k excluding the presence
of u as ψk→u then the global estimation ntk . We find as update definition

ψu−→v
tu =

1

Zuv
ntu

∏
k∈∂u\v

[
∑
tk

cAuktu,tk
(1− ctu,tk

n
)1−Auvψk→utk

]. (5.18)

Then the marginal probability of u is estimated using all its neighbours, as

ψutu =
1

Zu
ntu

∏
k∈∂u

[
∑
tk

cAuktu,tk
(1− ctu,tk

n
)1−Auvψk→utk

]. (5.19)

Approximating the messages and marginal probabilities for more tree-like graph behaviour As
mentioned before, every vertex u is in theory connected to every vertex v 6= u. This does not only imply O(n2)
updates per iteration but also very non-tree-like behaviour. Luckily the influence of non-edges is very small and
can be approximated globally without considering every non-edge.

Now we have the approximation that∏
k/∈∂u\v

[1− 1

n

∑
tk

ctu,tkψ
k→u
tk

] =
∏

k/∈∂u\v

[
∑
tk

(1− ctu,tk
n

)ψk→utk
] +O(

1

n
). (5.20)

Thus when (u, v) /∈ E we can express a message ψu−→v as

ψu−→v
tu =

1

Zuv
ntu

∏
k/∈∂u\v

[1− 1

n

∑
tk

ctu,tkψ
k→u
tk

]
∏
k∈∂u

[
∑
tk

ctu,tkψ
k→u
tk

] = ψutu +O(
1

n
), (5.21)

As this to leading order of n only dependent on the type, Decelle et al. choose to approximate ψu−→v
tu ≈ ψutu .

With this approximation, for (u, v) ∈ E we can write

ψu−→v
tu =

1

Zuv
ntu

∏
k/∈∂u

[1− 1

n

∑
tk

ctu,tkψ
k→u
tk

]
∏
k∈∂u

[
∑
tk

ctu,tkψ
k→u
tk

]

≈ 1

Zuv
ntu

∏
k/∈∂u

[1− 1

n

∑
tk

ctu,tkψ
k
tk

]
∏
k∈∂u

[
∑
tk

ctu,tkψ
k→u
tk

] (5.22)

Community detection on random graphs using Potts models 43

CHAPTER 5. DETECTING COMMUNITIES USING BELIEF PROPAGATION
ALGORITHMS

When the IRG is sparse, so the degree distribution does not scale with n (2.9), and n is large, almost all nodes
are not connected to u. Thus we can approximate

∏
k/∈∂u

[1− 1

n

∑
tk

ctu,tkψ
k
tk

] ≈
∏
k

[1− 1

n

∑
tk

ctu,tkψ
k
tk

] ≈ 1

Zuv
ntu exp{− 1

n

∑
k

∑
tk

ctu,tkψ
k
tk

]}. (5.23)

Here we can identify an auxiliary external field of type tu,

htu ≡
1

n

∑
k

∑
tk

ctu,tkψ
k
tk
. (5.24)

This field is used for the calculation of the messages and the marginals and therefore updated every message
update in line 10. For the messages we then find

ψu−→v
tu ≈ 1

Zuv
ntu exp{−htu}

∏
k∈∂u

[
∑
tk

ctu,tkψ
k→u
tk

]. (5.25)

This is taken as the definition of the update rules in BPAD in line 7. As the influence of non-edges are
incorporated using the auxiliary field, only along edges the algorithm will need to update. For a sparse graph
and large n this results in O(n) computations per iteration and a locally treelike graph. Using the same
approximation on ψutu results in

ψutu ≈
1

Zu
ntu exp{−htu}

∏
k∈∂u

[
∑
tk

ctu,tkψ
k→u
tk

]. (5.26)

This is taken as the update rule for the marginals in line 9. For the updating of the messages the auxiliary field
needs to be initiated. This is done by computing ψutu with the initialized messages and the expected auxiliary
field htu = ntu and then computing htu using these initialized marginals in line 3 and line 4.

We have seen how the auxiliary field was derived from the definition of the IRG and approximations for
large treelike graphs. We discuss here how to intuitively explain the function of this field. When we know the
group fractions ni, the field h pushes the messages towards a state where the average of the marginal of all
nodes u being type i, ψui , is close to ni. This is done because for n→∞, due to the law of large numbers, this
is where the types of G are very likely to be, even though it is only a small part of the solution space.

convergence Here we discuss when the algorithm decides to stop iterating. The idea is that the iteration
only stops once a fixed point is reached. As the calculations are done numerically, being a fixed point is checked
by having marginal probabilities which do not change significantly anymore. How significantly they are still
allowed to change is determined by the parameter ‘crit’. In order to exclude the edge-case where the algorithm
does not reach a fixed point or takes very long to get close to one, tmax is a very large number which is the
maximal number of iterations. In line 6 we can see that an iteration starts when conv > crit and t < tmax,
which is true for the first iteration due to line 5. The parameters tmax ∈ N+ and crit ∈ R+ are inputs of the
algorithm. In practice tmax will be chosen very large and crit will be chosen as a small number > 0, such that
crit
n is still much larger than numerical errors. This is necessary, as we can see in line 8 that conv is the sum of

2|E(G)| update differences |ψu−→v
new − ψu−→v

old |, and we want that conv < crit when the algorithm reaches close to
a fixed point, so that it stops iterating.

Now there are two things from the algorithm that have not been discussed yet. The first is the computation
of the free energy, which will be discussed in section 6.5. The second is that groups are guessed using the
argument that maximizes their marginal probability as described in (5.2) and that communities have been
successfully detected if the overlap described in (2.41) is Q > 0.

In the next section we discuss when this algorithm successfully detects communities. The full algorithm 2
in pseudocode can be found below.

44 Community detection on random graphs using Potts models

CHAPTER 5. DETECTING COMMUNITIES USING BELIEF PROPAGATION
ALGORITHMS

Algorithm 2 bp algorithm used to infer parameters, BPAD

1: procedure bp-Inference(q, ni, ci,j , Au,v, crit, tmax)
2: initialize a random q-component normalized vector ψu−→v for each edge (u, v);
3: For each node u and type tl compute estimation ψutl = 1

Zuntue
−htu

∏
v∈δu(

∑
tv
ctvtlψ

v−→u
tv) with htu =

ntu ;
4: compute for each type tl auxiliary field htl = 1

N

∑
k

∑
tk
ctktlψ

k
tk

;
5: conv ←− crit+ 10; t←− 0;
6: while conv > crit and t < tmax do; conv ←− 0; t←− t+ 1;
7: for every edge (u, v) in a random order do; update all q components of ψu−→v using ψu−→v

tu =
1

Zu−→v ntue
−htu

∏
k∈δu\v(

∑
tk
ctktuψ

k−→u
tk

);

8: conv ←− conv + |ψu−→v
new − ψu−→v

old |;
9: Update ψv using the new value of ψu−→v;

10: Update h (by subtracting the old ψv and adding the new value);

11: compute the free energy fbp(q, {na}, {cab}) = −1
N

∑
i logZu + 1

N

∑
(u,v)∈E logZuv − c

2

12: return free energy density fbp, converged messages {ψu−→v}, guessed group assignment q∗u =

argmaxiψ
u
i , overlap Q =

1
N

∑
u ψ

u
q∗u−maxini

1−maxini ;

5.4 Intuition behind community detection on random graphs

In this section we show when the algorithm from Decelle et al. produces successful community detection.
As a thought experiment we first look at what happens when we apply BPAD to a tree T . Of course this

does not make much sense, as the algorithm is designed for IRG’s but we will gain some insight from it. There
are no cycles on a tree. As all the messages are directed, no message has any influence on itself in any of the
future iterations. Thus eventually all messages will be determined by the messages of all leaves which lead to
said message. In case of ni = 1

q each of the leaf messages will be distributed as 1
Z e
−hi . As the auxiliary field

pushes towards a distribution closer to uniform, eventually all leaf messages will be uniformly distributed. As
any update of messages with only uniformly distributed incoming messages is itself uniformly distributed, this
leads to convergence to the fixed point where every message and thus every marginal is uniformly distributed
and therefore we know nothing about the communities.

On graphs with cycles however, a message will affect itself by affecting messages along this cycle back
towards itself. When this effect is strong enough, it allows the stability of states where the type distribution of
individual nodes is not dominated by the auxiliary field. This means BPAD will converge to a useful solution
and community detection is possible.

Thus a definition of stability of fixed points is required.

Definition 5.4.1 (stability fixed point). Let t∗ be a fixed point of all message update equations (5.25) and
therefore of BPAD. Then it is called stable if after a small perturbation in t∗, BPAD converges back to t∗ and
unstable otherwise.

Now the trivial fixed point, the fixed point where every message has their type distributed according to the
sizes of the types,

∀u, v ∈ V (G) : ψu−→v
i = ni, (5.27)

is a fixed point. This is precisely the fixed point that gives us no successful community detection. As soon as
the trivial fixed point is unstable, BPAD converges to some other fixed point and there is successful community
detection. We will paraphrase the authors of [1] to show when the trivial fixed point becomes unstable.

intuition stability condition trivial fixed point

Intuition 5.4.1 (criterion instability trivial fixed point). Let G be a sparse (2.9) IRG with kernel c, cij = O(1)
and ni the probability of a node having type i. Let d =

∑q
i=1(ni

∑q
j=1 cij) the average degree.

Let L be a matrix with Lij = ni(
cij
d − 1)). Let λ be the largest eigenvalue of L.

Then the trivial fixed point is stable if dλ2 < 1 and unstable if dλ2 > 1.

Explanation. We know from 2.3.9 that locally, the IRG converges to a tree. Thus there is an R of Olog(n)
s.t. the shortest loop a vertex u belongs to is > R. Now we consider a specific subgraph which is such a tree

Community detection on random graphs using Potts models 45

CHAPTER 5. DETECTING COMMUNITIES USING BELIEF PROPAGATION
ALGORITHMS

(T, ρ) which contains ρ and all vertices within distance R, excluding paths using one neighbour v, called the
parent of ρ. We consider what happens when R→∞.

Now we perturb the trivial fixed point on all of the leaves of (T, ρ) such that

ψv−→u
i = ni + εvi . (5.28)

Now we shall compute the influence of this perturbation on the root. When the influence dies out the fixed
point will be stable, while when it gets stronger and stronger the fixed point will be unstable.

As the influence of leaves is independent, we first look at the influence a single leaf kR. Let vertex kR have
a path to the root kR, kR−1, ..., k1, ρ. We now define a transfer matrix Lri,j which shows the influence of the
change in message j of a node at depth r + 1 to depth r on the message of type i of its parent on depth r to
depth r − 1.

Lri,j ≡
∂ψkr→kr−1

∂ψkr+1→kr
|ψi=ni (5.29)

= (
ψ
kr→kr−1

i cij∑
l cilψ

kr+1→kr
l

− ψkr→kr−1

i

∑
s

ψ
kr→kr−1
s csj∑
l cilψ

kr+1→kr
l

)|ψi=ni (5.30)

= ni(
cij
d
− 1) +O(1/n) (5.31)

where the simplification was derived using (5.25). This does not depend on distance r. Therefore we can write
Lij instead. Now the total perturbation of the message ψρ→v, ερ, due to the perturbation of message ψkR→kR−1 ,
εkR can be written as

ερ = LRεkR . (5.32)

Let λ be the largest eigenvalue of L. Then when R→∞, LR will be dominated by λR.
Now we go back to considering the influence of perturbing all leaves of (T, ρ). When E[εkR] = 0 we find

E[ερ] = 0. For the second moment, however, we get

< (εu0
t0) >≈< (

dR∑
r=1

λRεut)2 >≈ (dλ2)R < (εut)2 > . (5.33)

leading to the stated conjecture. This statement is not quite rigorous for finite n, as most of the calculations
are approximations at finite n.

This corresponds to the Kesten-Stigum bound for community detection [11], which stems from 1966 and has
been confirmed for q = 2. Decelle et al. empirically show that their algorithm does in fact detect communities
successfully when dλ2 > 1 and generally not when dλ2 < 1. We discuss the exceptions where specific initial
conditions still lead to community detection even for dλ2 < 1 in section 7.2.

5.5 Relation of critical parameters

In the previous section we have seen under which conditions we can expect BPAD to detect communities. In
this section we will relate this with detection results known on the SBM.

When we apply the SBM 2.2 to theorem 5.4.1, then we find

T ij =

{
a−d
dq for i = j

ε = b−d
dq for i 6= j

(5.34)

This matrix has eigenvalues λ1 = 0 for eigenvector (1, 1, ..., 1) and λ2 = a−b
dq with multiplicity q − 1 for each

eigenvector of the form (0, ..., 0, 1,−1, 0, ..., 0). Thus the trivial fixed point is unstable when

dλ2 =
(a− b)2

dq2
> 1 (5.35)

(a− b)2 > q2d = q2(a+ (q − 1)b)/q = q(a+ (q − 1)b). (5.36)

46 Community detection on random graphs using Potts models

CHAPTER 5. DETECTING COMMUNITIES USING BELIEF PROPAGATION
ALGORITHMS

Thus when this criterion is satisfied BPAD successfully detects communities on the SBM. This is the same
result that [4] get for the possibility of detection at q = 2. At higher q, it has been show that there can be no
successful community detection at (a− b)2 < q(a+ b), which is smaller than (5.36). This predicts that there is
a regime where community detection is possible, but not easy using BPAD.

Thus we have seen in this chapter some examples of belief propagation. We have seen that on trees, belief
propagation calculates marginal probabilities exact. On random graphs which are locally treelike, we can use
this property to apply belief propagation in order to detect communities, by approximating the messages as
done by [1]. This algorithm shows successful community detection when the trivial fixed point is unstable. This
prediction matches the critical condition for detection found by rigorous mathematical analysis [4] for q = 2
and gives an upper bound for the critical condition of successful community detection for q ≥ 2.

Community detection on random graphs using Potts models 47

Chapter 6

Towards a mathematical description of
belief propagation algorithms

In this section we will formulate a more mathematical description to describe belief propagation. This is done
using a tool from computer science, factor graphs. This will be useful, as the result is that the partition function
Z, and with it the free energy F = − 1

β log(Z) can be calculated iteratively. This is useful as the free energy is
minimized for constant β, which is the type of systems we look at. Thus the local free energy of multiple fixed
points can be compared, and the fixed point with the best guess of the communities will be the fixed point with
the lower local free energy.

In section 6.1 we define factor graphs and explain what we can do with them. In section 6.2 we define belief
propagation on factor graphs which are trees. We show that also in this description there is a belief propagation
which calculates marginals exact. In section 6.3 we show that on a tree, many physical properties properties
of Boltzmann distributions can be calculated using only local quantities. In section 6.4 we show how using
the same local computations on graphs lead to the cavity equations, which can compute the partition function
iteratively. In section 6.5 we show how Decelle et al [1] adapt these equations. In section 6.6 we show how for
some algorithms the tree approximation is exact on random graphs. However, this is not the case for BPAD.

6.1 Factor graphs

We introduce factor graphs, as introduced by the authors of [3], as they are a framework in which many
properties of belief propagation have been proven rigorously.

Factor graphs are bipartite graphs, consisting of a group of variable nodes u ∈ V which can have any type
i ∈ [q] and a group of constraints (factor nodes) F . Intuitively, each factor node a ∈ F is connected to variable
nodes u ∈ V , and forces a constraint on those neighbours through weight function ψa. The variable nodes u
can be seen as the regular nodes of graphs we have looked at until now. The factor nodes a with its weight
function ψa represents the impact that the types of nodes u adjacent to a, have on their joint probability. This
is a generalization of the graphs we have seen before, in the sense that when every factor node has precisely two
neighbours, we are back at the case where every factor node represents an edge e in the regular graph. Thus
using this representation we are able to incorporate the influence of non-neighbouring nodes!

Definition 6.1.1 (Factor graph). Let [q] be a finite set of q types. Then G = (V, F, (∂a)a∈F , (ψa)a∈F) is a
[q]-factor graph, where

• V a set of variable nodes with |V | = n,

• F a set of factor nodes with |F | = m,

• ∀a ∈ F an amount of neighbours of a, k(a), with order ∂a = (∂1a, ..., ∂k(a)a) ∈ V k(a), defining the edges
of the factor graph

• a weight function (ψa) : [q]k(a) → [0,∞)∀a ∈ F .

Factor graphs are designed to be able to calculate probabilities of the nodes u ∈ V based on the weight
functions and the graph structure.

48 Community detection on random graphs using Potts models

CHAPTER 6. TOWARDS A MATHEMATICAL DESCRIPTION OF BELIEF
PROPAGATION ALGORITHMS

u1

u2

u3

u4

a1

a2

(a)

(b)

Figure 6.1: Two factor graphs. In (a) we have ∂a1 = (u1, u2, u3) and ∂a2 = (u2, u3, u4). In (b) we have arranged
a factor graph in its bipartite representation. In this case we can identify every factor node as an edge, as every
factor node has only 2 neighbours.

We are interested in the results on factor graphs because normal graphs can be written as factor graphs.
Since the model of the community detection algorithm of the previous chapter was based on a Boltzmann
distribution, we are interested in applying a Boltzmann distribution to factor graphs. The energy will be the
product of the weight functions of all the nodes.

Let tu denote the type of u in [q]. Let t = {t1, ..., tn} ∈ Ω = [q]n and t∂a = {tu|u ∈ ∂a}. Then the joint
Boltzmann probability distribution of all nodes u ∈ V is given by

µG(t) =
1

Z(G)

∏
a∈F

ψa(t∂a) (6.1)

With Z(G) =
∑

t∈Ω

∏
a∈F ψa(t∂a) > 0 the normalizing partition function. We shall usually omit G when it is

clear which graph is being used. We call this a Boltzmann distribution, as we can rewrite the weight functions
to the form

ψ(t∂a) = exp(−βEa(t∂a)), (6.2)

with Ea(t∂a) the energy function characterizing constraint a. In this case (6.2) reduces back to a Boltzmann
distribution (3.1). Such a rewriting is of the weight functions is possible when one allows that Ea(t∂a) =∞, to
correspond with ψa(t∂a) = 0.

We are again interested in the marginal probabilities, which can help us guess the type of a variable node.
Thus we define

µG,u(i) =
∑

t|tu=i

µG(t) (6.3)

as the marginal probability of type i of variable node u.

6.2 Belief propagation on factor trees

As we have seen in section 5.2, when a regular graph is a tree T , the calculation of marginal of v ∈ V can
be reduced to the product of the marginals of all neighbours on v. Just as in section 5.2 we use messages on
edges to calculate such marginals on trees. However, now there are two types of messages. First there are the
messages νu→a going from variable nodes u to factor nodes a, and the messages ν̂→u going from factor nodes to
variable nodes. The choice we make for the messages is again to be equal to the subtree marginals. Identify Tu\a

Community detection on random graphs using Potts models 49

CHAPTER 6. TOWARDS A MATHEMATICAL DESCRIPTION OF BELIEF
PROPAGATION ALGORITHMS

as the subtree rooted at variable u, which does not feature edge {u, a} and the subtree rooted at a. Similarly
let Ta→u be {u} ∪G \Gu\a.Then we define the messages

νu→a(i) := µTu→a,u(i) (6.4)

ν̂a→u(i) := µTa→u,u(i). (6.5)

As these are probabilities, we shall denote νu→a and ν̂a→u as the distribution of those probabilities. As all
of these need to be normalized, we stop writing the normalization constant Z explicitly and introduce a new
notation ∼=, which means ’equal up to normalization’

With T being a tree, these messages again allow us to calculate the marginals of T in an iterative way. Let
k denote the iteration number. Then the belief-propagation update rules (sometimes also called sum-product
rules) are

ν(k+1)
u→a (i) := µGu→a,u(i) ∼=

∏
b∈∂u\{a}

ν̂b→u(i) (6.6)

ν̂(k)
a→u(i) := µGa→u,u(i) ∼=

∑
τ∈Ω∂a

1{tu = i}ψa(τ)
∏

v∈∂a\{u}

νv→a(i). (6.7)

As the empty product is one, for leaves u, νu→a is uniformly distributed. The iteration number k is only
updated after either the variable nodes or factor nodes have updated, but not both. Thus, in one iteration, first
all variable nodes are updated and then all factor nodes are. Since the variable nodes depend only on factor
nodes and vice versa, thus the specific order in which messages are updated no longer matters.

We let these messages run until a fixed point is reached, where we have ν
(k)
u→a = ν∗u→a, ν̂

(k)
a→u = ν̂∗a→u which

satisfy equations (6.6), (6.7).
After k iterations we can estimate the marginal distribution µT,u using its incoming messages, using

ν(k)
u (i) =

∏
a∈∂u

ν̂(k−1)
a→u (i). (6.8)

Now, exactly as in regular graphs, on trees T the messages converge and all marginals of T are calculated
exactly.

Theorem 6.2.1. Let u, v ∈ V (T) have distance one when there is a factor node a with u, v ∈ ∂a. Let ν
(0)
u→a be

any normalized initialization on all edges {u, a} ∈ T . Then using update rules (6.6), (6.7) leads to a fixed point

after diam(T) iterations. For this fixed point we have ν
(k)
u (i) = µT,u(i).

Proof. The proof is almost analogous to the proof of 5.2.4, where induction is used on the diameter of the tree
T . The difference is that now it takes one iteration for the leaves to obtain the correct messages, which were
correct in 5.2.4 by the initialization. Thus the resulting convergence time is 1 iteration slower.

6.3 Properties in terms of local quantities

The calculation of physical quantities can help us grasp better what is going on in the system. We will see that
on tree factor graphs, many physical quantities can be calculated locally. This is great news, as this allows us
on graphs which are locally treelike to take the same local calculation as the estimate of that quantity.

Until now we have only considered the marginals of the variable nodes. We can also define the marginals of
factor nodes, by considering all their adjacent variable nodes. Let

µG,a(t∂a) =
∑
t∈Ω

µG(t)1{t = t∂a}. (6.9)

It turns out that on trees, it is possible to express both the joint distribution of all variables u, µG(t), as well
as the partition function Z in terms of the marginals µT,u(i) and µT,a(t∂a). These marginals can be calculated
with the messages νx→a and ν̂a→x.

The authors of [3] show that

Theorem 6.3.1 (local joint probaility distribution). Let T be a finite factor graph tree. then

µ(t) =
∏
a∈F

µa(t∂a)
∏
u∈V

µu(tu)1−|∂u| (6.10)

50 Community detection on random graphs using Potts models

CHAPTER 6. TOWARDS A MATHEMATICAL DESCRIPTION OF BELIEF
PROPAGATION ALGORITHMS

The proof of Mezard et al. uses induction on the number of factors M . There is also an intuitive way to
understand this. Each µa(t∂a) is the joint probability distribution of ∂a. When multiple factor nodes a are
connected to a variable node u, we are thus using the distribution of u twice. Therefore we need to compensate
in the joint distribution by dividing by the marginal distribution of u, µu(tu). Thus we need to divide the joint
distribution by µu(tu)|∂u|−1, which is the same as multiplying with µu(tu)1−|∂u|.

In particular we are interested in the free energy F = − 1
β logZ = − 1

β (Sµ−βUµ), as this quantity is minimized
under constant temperature. We shall now show the many steps that lead to expressing this quantity locally.

We start with the internal energy U . Using the rewriting of the weight functions in terms of an energy (6.2)
and the definition of U (3.5), we find

U = −
∑
t

µ(t)

M∑
a=1

log(ψa(t∂a)). (6.11)

We want to calculate µ(t) locally. This is possible using the fixed-point messages ν̂∗a→u with

µ(ta) =
1

ZR
ψa(t∂a)

∏
a∈∂∂a

ν̂∗a→u(a)(tu(a)). (6.12)

Here Za is the partition function and where ∂∂a represents the factor nodes connected to a via only one variable
node u(a). Using this (6.12) and the definition of the messages from factor to variable nodes 6.7, we can rewrite
the internal energy U (6.11) as a locally computed quantity, as

U = −
M∑
a=1

1

Za

∑
t∂a

ψa(t∂a) log(ψa(t∂a))
∏
u∈∂a

ν∗u→a(tj). (6.13)

Also the entropy can be rewritten as a local quantity. For this we use the definition of entropy (3.6) and the
local expression of the joint probability function (6.10) to find

Sµ = −
∑
a∈F

µa(t∂a) log(µa(t∂a))−
∑
u∈V

(1− |∂u|)µu(tu) log(µu(tu)). (6.14)

Then the authors of [3] take β = 1 fixed and find a local computation of log(Z). Remember that in Boltzmann
distributions, log(Z) = (Sµ − βUµ) 3.7. They define F as the local computation of log(Z), so F ≡ (Sµ − βUµ).
For F they find the following expression.

Theorem 6.3.2. Let {µa, µi} denote local marginals. Let ~ν∗ = {ν∗u→a, ν̂∗a→u}
Let

Fa(~ν) = log[
∑
t∂a

ψa(t∂a)
∏
u∈∂a

νu→a(tu)], Fu(~ν) = log[
∑
tu

∏
b∈∂u

ν̂b→u(tu)] (6.15)

Fau(~ν) = log[
∑
tu

νu→a(tu)ν̂a→u(tu)]

and

F∗(~ν) =
∑
a∈F

Fa(~ν) +
∑
u∈V

Fu(~ν)−
∑

(a,u)|u∈∂a

Fau(~ν). (6.16)

Then on trees we have

log(Z) = F[µ] = F∗(~ν
∗). (6.17)

Having expressed log(Z) in terms of local quantities, it can be computed iteratively. This can then be used
to calculate the free energy F = − 1

β log(Z), which is minimized for fixed β. Using this local calculation of F on
graphs which are not trees as the estimate of F , leads to different values of F for different fixed points. Thus
the quality of different fixed points of the message equations (6.7) and (6.6) on graphs can be compared by the
result of their locally computed free energies. This is called the cavity method, which we explain in the next
section.

Community detection on random graphs using Potts models 51

CHAPTER 6. TOWARDS A MATHEMATICAL DESCRIPTION OF BELIEF
PROPAGATION ALGORITHMS

6.4 The cavity method

We have seen that on trees, many properties can be calculated locally on factor graphs. We shall now use these
local calculations as the estimates of these properties on locally treelike graphs.

Even on general graphs a very nice link between the free entropy F∗(~ν) and bp-algorithms exists. The
authors of [3] show that

Lemma 6.4.1. The stationary points of the free energy F∗(~ν) are fixed points of belief propagation. Conversely,
any fixed point ~ν s.t. F∗(~ν) is finite is also a stationairy point of F∗(~ν).

This is great, as it means that fixed points correspond to local extreme values of the free energy − 1
βF. Thus

the global minimum will be a fixed point, so only the free energies of the fixed points themselves need to be
considered.

Now the Replica symmetric cavity method computes the partition function iteratively. The cavity method
is a method where an iterative method is used where every step a node is added, to in this case compute the
partition sum Z,

Zv→a(tv) =
∏

b∈∂v\a

[
∑
t∂b\v

ψb(t∂b)
∏

k∈∂b\v

Zk→b(tk)]. (6.18)

Using this locally computed partition function we can calculate the local free energy. As the free energy is
minimized at constant β, the fixed point with the lowest free energy is the one with higher likelihood, therefore
the correct fixed point.

6.5 The cavity method in Decelle’s algorithm

We now take a look at what free energies the cavity approach yields for the messages on a regular graph in
BPAD, (5.25). They rewrite the equations (6.16) in order to define a locally computed free energy density fbp,
as defined in (3.8).

Zuv =
∑
i<j

cij(ψ
u−→v
i ψv−→u

j + ψu−→v
j ψv−→u

i) +
∑
i

cii(ψ
u−→v
i ψv−→u

i) for (u, v) ∈ E (6.19)

Ẑuv =
∑
i,j

(1− cij
n

)ψui ψ
v
j for (u, v) /∈ E (6.20)

Zu =
∑
tu

ntue
−htu

∏
v∈∂u

∑
tv

ctvtuψ
v→u
tv (6.21)

fbp(q, {ni}, c) = − 1

n

∑
u

logZu +
1

n

∑
(u,v)∈E

logZuv − d

2
(6.22)

with
∑
u,v log(Ẑuv) = d/2 +O(1/n)

Decelle et al. [1] look at an IRGn which satisfies that the expected outgoing degree is equal for every type,

d =

q∑
k=1

ciknk =

q∑
k=1

cjknk∀i, j ∈ [q]. (6.23)

If this is the case then we cannot base the guess of types based on the degrees of a node, which makes the
community detection problem less trivial. In this case the trivial fixed point

ψu−→v
tu = ntu , (6.24)

leads to the free energy density using (6.22) of

Zuv =
∑
i<j

cij(2ninj) +
∑
i

ciin
2
i =

∑
i<j

2ni(cijnj) +
∑
i

ni(ciini). (6.25)

Using fbp (6.22) as the local computation this simplifies to

ftrivial =
c

2
(1− log(c)). (6.26)

Therefore fixed points can now be compared using these free energies. It turns out that on anti-ferromagnetic
models this gives rise to a whole new regime, where community detection is possible, but takes exponential time.
We discuss this in section 7.2.

52 Community detection on random graphs using Potts models

CHAPTER 6. TOWARDS A MATHEMATICAL DESCRIPTION OF BELIEF
PROPAGATION ALGORITHMS

6.6 Results on treelike graphs

We discuss here the density evolution equations and some results on treelike graphs which make a case for the
approximations done by in Decelles algorithm. However, we then also show that these results do not apply to
BPAD.

The density evolution equations are the equations which describe νtu→a (6.7) and ν̂ta→u (6.6). Usually this is
done for more general models than the Boltzmann distribution (6.1), but we stick with those models here. As
the updates of the messages are only dependent on incoming messages, it is natural to introduce the directed
neighbourhood of height h.

Definition 6.6.1 (directed neighbourhood). Let G be a factor graph, let E = (∂a)a∈F be the edge set of this
factor graph. Then the directed neighbourhood of a directed edge u→ a of height h is denoted Bu→a,h(G) and is
defined as the subtree including all factor nodes and variable nodes reachable from u in G′ = G \ (u, a) by using
at most 2h edges. As the graph is bipartite this shall result in a subtree with as root u, h layers of factor nodes
and the h other layers of variable nodes,

An example can be seen in figure 6.2.

u

a

Figure 6.2: The directed neighbourhood Bu→a,1. We have drawn the edge (u, a) dotted as it itself is not part
of the neighbourhood.

Using this directed neighbourhood we can see that for graphs which are locally treelike, as n grows large,
there is an R s.t. Bu→a,R is a tree for any u ∈ V , a ∈ F . For iterations t < R we therefore have that the
messages νtu→a, ν̂ta→u depend only on updates in trees. Thus if a belief propagation algorithm converges with
t < R then its results are exact. When n→∞ then R→∞, so for the local limit these results hold.

Unfortunately for us, BPAD functions only on finite graphs. The convergence of BPAD to a fixed point that
is not trivial requires the information from loops, as was shown in section 5.4. Thus for our purposes the tree
approximation remains an approximation.

Intuitively this can be explained as the fact that log(Z) should be constant for a given graph, but the locally
computed free energy is dependent on the specific messages. However, in this chapter we have seen that the
global minimum of the locally computed free energy corresponds to a fixed point of belief propagation messages.
As the free energy is minimized for constant β, this global minimum should approximate the correct free energy,
cycles are large and therefore the incoming messages can be approximated as coming from independent trees.

Community detection on random graphs using Potts models 53

Chapter 7

Summary and outlook

In this chapter we first summarize our conclusions and then go into some questions that can be researched
further.

7.1 Summary

Here we discuss our results and their significance.

We have seen in chapter 4 that on trees, Potts models with a magnetic field ~B = 0 on trees can be described
as a branching process, since the probability of a state is only dependent on the type probabilities of the root

and the amount of flips. These descriptions are equivalent for exp(−2β) = (q−1)ε
1−(q−1)ε . We have also seen that

the Potts model can be adjusted to have a type-dependent interaction strength Jtutv to match a larger class of
broadcasting processes. Using our proof method, it was not possible to describe a Potts model with nonzero
magnetic field to a broadcasting process, because then the probability of a state in the Potts model becomes
dependent on the size of the tree after a flip. We predict that it is impossible to couple these models, without
letting the root probabilities of the broadcasting process depend on the branching factor tree. Our intuition for
this is based on the fact that very branching trees have much smaller sub-trees after flips than less branching
trees. Thus the root probability of the Potts model will depend on the size of the tree, the branching factor
of the tree and the magnetic field. As in the broadcasting process the root probabilities need to be defined by
hand it will therefore need to be dependent on the branching factor.

The other thing we have seen in chapter 4 is that a broadcasting process on the local limit of an ERn(λ/n)
can be described as the local limit of a marked IRGn(c), as long as the expected offspring of each of the types
in the IRG is equal to λ. In this case we find equivalence when P(η(u,v) = Aij =

cijnj
λ . This is the largest

equivalence we can get using this method, as the ER graph simply has a offspring of λ for all vertices.

We combine these results to identify the parameters of a marked SBM with that of the Potts model on ER

in the local limit. We find that when λ = a+(q−1)b
q and β = − 1

2 log((q−1)b
a), these models coincide. We fail to

show that the critical parameters for community detection are equal using this identification, but we think this
is due to a misinterpretation of the results of [7] on our part.

Our final result of chapter 4 was that all of these results can be extended to degree-corrected models. This
is very nice, as it allows for much more freedom when trying to model a real problem realistically.

In chapter 5 we show how belief propagation algorithms were created from the property that they calcu-
late exact marginals on trees. We showed that applying these algorithms to locally treelike graphs should
approximate the marginals. Using this approximation of marginals and a Hamiltonian which maximizes the
probability of being generated from the IRG, the algorithm of Decelle et al. detects communities on the IRG.
Their order of message calculation is chosen randomly in order not to bias the algorithm and the initial values
are chosen randomly in order to find as many fixed points as possible. We show that the critical condition of
when this algorithm performs successful community detection in linear time on the SBM can be rewritten as
(a− b)2 > q(a+ (q− 1)b). This creates a gap between the result of community detection being impossible when
(a − b)2 < q(a + b) from the authors of [4]. In section 7.2 we show that this gap can partly be explained by a
regime where community detection takes exponential time.

In chapter 6 we show that using the description of factor graphs it can be proven that even more physical
quantities can be computed iteratively on trees. Again these local computations can be generalized to algorithms
which approximate those quantities on locally treelike graphs. This way we can approximate the free energy of

54 Community detection on random graphs using Potts models

CHAPTER 7. SUMMARY AND OUTLOOK

the system by the local calculation of the free energy of the fixed points. As the free energy is minimized for
constant β in Boltzmann distributions, which is used, this global minimum should approximate the correct free
energy, Also we can use this approximated free energy to compare different fixed points and find the one which
detects communities best. One thing that can still be researched and would help improve the understanding of
these algorithm is to quantify how good this approximation is for cycles of length r in locally treelike graphs.

One other way to go about identifying the parameters of a marked SBM with that of the Potts model on
ER is to not use local limits at all, but instead prove equivalence on finite graphs We show our attempts at this
in section 7.3.

7.2 local minima in antiferromagnetic regime

We have left the situation where pin < pout, the anti-ferromagnetic case, completely out of our scope. In the
Potts models this is achieved by using negative J . Less research has been done in this regime, though many
results from the ferromagnetic regime still apply.

The marginal calculation on trees is still exact. Thus, the same belief propagation can still be tried. Fur-
thermore, the same Kesten-Stigum bound is found for detection using the non-rigorous analysis of section 5.4.
Using pin = 0 [1] they let pout grow, which corresponds with letting β increase. They find very interesting
behaviour of the cavity method for β < βc. For ββcd , they find that the algorithm always converges to the fixed
factorized point as expected.

But then for βcd ≤ β ≤ βcc there is a phase where starting at precisely the original communities leads to
convergence unequal to the factorized fixed point. The free energy of this state can be calculated locally using
(6.22) and for β ≤ βcc we have fbp < ffactorized, so the correct guess would be the factorized fixed point.

For βcc ≤ β ≤ βcl we have the same behaviour with fbp > ffactorized. Thus the correct guess is the one
created with very specific initial conditions. Thus in this regime there is enough information to detect com-
munities. Finding the right communities, however, would take exponential time as almost all initial conditions
converge to the factorized fixed point.

For β > βcl , every initial condition converges to the same fixed point unequal to the factorized fixed points,
which has positive overlap with the original communities.

The βcc ≤ β ≤ βcl regime explains the discrepancy between the mathematical results for the SBM, which
claim that no detection is possible for (a− b)2 < q(a+ b), and the Kestem-Stigum conjecture which claims that
detection is possible for (a−b)2 > q(a+(q−1)b). In between these regions there is, for anti-ferromagnetic systems,
a regime where detection is possible but not easy using this algorithm. [1] conjecture that no polynomial-time
algorithm can achieve positive overlap, based on the physics of glassy systems.

7.3 Finite random graphs

Since the Potts model on the local limit of an ER is equivalent to the local limit of the SMB, the question arises:
”how local is the local limit?”. Thus we investigate the equivalence on finite graphs.

It has been proven that the marked local limit of a two-type SBM with parameters a, b is equal to the Ising
model on the local limit of ERn(λ/n), GWT(Poi(a+b

2)), when β = 1
2 log(ab) (4.7). It makes sense to ask the

question if this equivalence can hold on finite random graphs too.
In this case we shall restrict ourselves to the case where the Ising model only assigns probabilities to states

which have exactly n/2 type +1 vertices and n/2 type −1 vertices, also denoted as states with 0 magnetization.
Let Pa,b be the probability distribution of this SBMn(q, a, b) and let Pλ denote the graph distribution of

ERn(λ/n)
What we would like to find is parameters λ, β in terms of a, b such that

Pa,b(G, σ) = Pλ(G)µβ(G, σ). (7.1)

Where µβ is an Ising model as defined in equation (3.3). We did not find such a result. However, with a slightly
adjusted Ising model such a result is possible.

We adjust the Ising model such that equation 7.1 holds. We define

µβ,γ(G, σ) =
1

Zn(β, γ)
exp

β ∑
(i,j)∈E

σiσj + γ
∑
i 6=j∈V

σiσj

 (7.2)

Community detection on random graphs using Potts models 55

CHAPTER 7. SUMMARY AND OUTLOOK

This γ can be seen as the parameter controlling long-ranged interactions caused by the finite size of the graph.
Now we wish to average out over the randomness of the graph. Thus we take the average over the randomness
both in the numerator as well as the denominator, giving rise to the annealed measure

µaβ,γ(G, σ) =
1

E[Zn(β, γ)]
E[exp

β ∑
(i,j)∈E

σiσj + γ
∑
i 6=j∈V

σiσj

] (7.3)

Then the authors of [5] obtain the following result:

Theorem 7.3.1. Take a SBMn(2, a, b) with parameters a and b with n even and precisely n/2 nodes with type
+1 and n/2 types −1. Let µaβ,γ(G, σ) be an annealed Ising model conditioned on having n/2 types of +1. Then
the SBM has the same law as µaβ,γ(G, σ) on an Erdős–Rényi graph G with parameters

λ = λn(a, b) =

√
ab

(1−a/n)(1−b/n)

1 +
√

ab
(1−a/n)(1−b/n)/n

(7.4)

γ = γn(a, b) =
1

2
log(

1− a/n
1− b/n

) (7.5)

and

β = βn(a, b) =
1

2
log(a/b)− γn(a, b) (7.6)

Note that this result can be extended to q groups.
Now we take the limit n → ∞ of in order to compare the limit behaviour to our equivalence of chapter 4.

We see that when n→∞, we get γ → 0, β → 1
2 log(a/b) and λ→

√
ab. Then these results do not correspond

to our results for the regular Ising model, where we get the same equivalence for λ = a+b
2 .

Thus further research could look if this result on finite graphs can be extended to a larger set of Ising models,
which are not annealed or restricted to having n/2 nodes having type +1.

56 Community detection on random graphs using Potts models

Bibliography

[1] Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová. Asymptotic analysis of
the stochastic block model for modular networks and its algorithmic applications. Physical Review E,
84(6):66106, 2011. 2, 5, 15, 35, 41, 42, 45, 47, 48, 52, 55

[2] William Evans, Claire Kenyon, Yuval Peres, and Leonard J Schulman. Broadcasting on trees and the Ising
model. Annals of Applied Probability, pages 410–433, 2000. 2, 15, 16, 25, 27

[3] Marc Mezard and Andrea Montanari. Information, physics, and computation. Oxford University Press,
2009. 2, 48, 50, 51, 52

[4] Lennart Gulikers, Marc Lelarge, and Laurent Massoulie. An impossibility result for reconstruction in the
degree-corrected stochastic block model. Ann. Appl. Probab., 28(5):3002–3027, 2018. 4, 13, 34, 47, 54

[5] Remco van Der Hofstad. Random graphs and complex networks. Volume 2.(2020+). Cambridge Series in
Statistical and Probabilistic Mathematics., available at https://www. win. tue. nl/˜ rhofstad/NotesRGCNII.
pdf. 9, 11, 12, 14, 56

[6] David Aldous and J Michael Steele. The objective method: probabilistic combinatorial optimization and
local weak convergence. In Probability on discrete structures, pages 1–72. Springer, 2004. 10

[7] Robin Pemantle and Jeffrey E Steif. Robust phase transitions for Heisenberg and other models on general
trees. Annals of Probability, pages 876–912, 1999. 20, 22, 27, 30, 31, 54

[8] Amir Dembo and Andrea Montanari. Ising models on locally tree-like graphs. The Annals of Applied
Probability, 20(2):565–592, 2010. 21, 37

[9] Elchanan Mossel, Joe Neeman, and Allan Sly. Reconstruction and estimation in the planted partition
model. Probability Theory and Related Fields, 162(3-4):431–461, 2015. 27, 30

[10] Mateusz Wilinski, Piero Mazzarisi, Daniele Tantari, and Fabrizio Lillo. Detectability of macroscopic struc-
tures in directed asymmetric stochastic block model. Physical Review E, 99(4):42310, 2019. 42

[11] Harry Kesten and Bernt P Stigum. A limit theorem for multidimensional Galton-Watson processes. The
Annals of Mathematical Statistics, 37(5):1211–1223, 1966. 46

Community detection on random graphs using Potts models 57

Appendix A

Appendix

Here we show all the abbreviations that are used throughout this thesis.

Abbreviation Full notation Reference
ER Erdős–Rényi random graph 2.2
DER Degree-corrected Erdős–Rényi random graph 2.2
IRG Inhomogeneous random grapth 2.2.2
SBM Stochastic block model 2.2
DSBM Degree-corrected stochastic block model 2.2
GWT Galton Watson Tree 2.3.5
BPAD Decelle et al.’s belief propagation algorithm 2

Here we show many of the variables that are used throughout this thesis such that they can easily be looked
up.

58 Community detection on random graphs using Potts models

APPENDIX A. APPENDIX

Variable Definition (in this thesis)
G A (possibly random) graph G = (V (G), E(G)) with vertex set V (G) and edge set E(G)
V (G) A set containing all the vertices of G, with |V (G)| = n
u, v vertices of G, so u, v ∈ V (G)
∼ used to indicate that two vertices are adjacent (in G), for example u ∼ v
∂u used to indicate all neighbours of u, in both a normal and factor graph
E(G) A set containing all edges of G, E(G) = {e = {u, v}|u ∼ v}, with |E(G)| = m
n n = |V (G)| the number of vertices of G
m m = |E(G)| the amount of edges of G
q The number of different types
S the space of types [q] = {1, ..., q}
i, j i, j ∈ [q] are specific types
σu, σv the types of vertices u, v respectively in an Ising model or the two-type SBM
tu, tv the types of vertices u, v respectively
Ω The set of all possible ways to assign types to all vertices in G, Ω = Sn
ω a single result ω ∈ Ω, usually ω = ~t
µ a probability measure 2.1.1 that assigns a probability to every result ω ∈ Ω
X,Y used as random variables. The distribution is defined in the section itself
P(A) The probability of a set A
E(X) The expectation of random variable X 2.1.1
ν a continuous random variable used for the weight distribution in degree-corrected cases
v̄ the branching factor (3.10)
Z The partition function which normalizes Boltzmann measures
H the Hamiltonian which defines the energy of a state in a Boltzmann measure
U The internal energy (3.5)
S The entropy (3.6)
F The free energy (3.7)
Pη a probability measure called a broadcasting process (2.46)
{ηe} a set of discrete random variables defined on every edge of a tree T such that (2.45) is satisfied
A The q × q flipping matrix coupled with a general broadcasting process via (4.12)
a a factor node in a factor graph (defined in 6.1.1)

Community detection on random graphs using Potts models 59

	Introduction
	Random graph background
	Probability theory notation
	Random graph models
	Local limits
	Giant component
	Successful community detection
	Broadcasting process

	Statistical physics background
	Ising model
	Statistical Physics notation
	Phase transition
	Potts model

	How Potts models impose a community structure on random graphs
	Intuition Ising on trees
	Equivalence local limit stochastic block model and Ising model on local limit Erdös–Rényi graph
	Comparing successful community detection results
	Extension to q types
	General broadcasting process and inhomogeneous random graph
	Type-transitive broadcasting process and adjusted spin glass Potts models
	Extension to degree corrected models
	Conclusions

	Detecting communities using belief propagation algorithms
	Belief propagation algorithms
	Exact belief propagation on trees
	Decelle et al.'s belief propagation algorithm
	Intuition behind community detection on random graphs
	Relation of critical parameters

	Towards a mathematical description of belief propagation algorithms
	Factor graphs
	Belief propagation on factor trees
	Properties in terms of local quantities
	The cavity method
	The cavity method in Decelle's algorithm
	Results on treelike graphs

	Summary and outlook
	Summary
	local minima in antiferromagnetic regime
	Finite random graphs

	Appendix

