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Abstract

Automated order picking systems fulfill and integrate many functions such as the storage, trans-
port, and retrieval of items. Robots are included to carry out tasks and need decision rules to
instruct them what to do next to operate autonomously. This study considers an automated or-
der picking system with two collaborative multi-robot teams positioned on shared guiding rails.
The two robot teams’ relationship can be characterized as main robot team and supportive robot
team. This study aims to develop a task planning tool enabling multi-robot teams to operate
autonomously. The task planning tool consists of three parts: task allocation, task sequencing,
and task synchronization. Essential performance parameters are defined as throughput and re-
source utilization. Task allocation is approached as strict work zones and task synchronization
is done using the main-supportive robot team characteristic. This study evaluates how different
number of robots, different task sequencing strategies, and different order picking system layout
settings affect the performance of the order picking system. A discrete event simulation model is
developed to replicate the order picking system and evaluate the task planning tool’s throughput
and resource utilization. Results show that a robot team consisting of four robots and using the
single-attribute dispatching rules first-in-first-out for the main robot team and shortest travel time
for the supportive robot team have the best performance.
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Executive Summary

This study focuses on developing a task planning tool for an automated order picking system in
which multiple robot types cooperate such that the throughput and robot utilization are max-
imized. The order picking system consists of three different robot types, namely the item bin
reshuffling robot (robot I), item picking robot (robot II), and the customer tote reshuffling robot
(robot III). In the initial setup, six robots per robot type are located on a shared guiding axis,
and their movements are limited to the movements possible on this axis. Other components in
the order picking system are two conveyor belts and three storage racks.

The locations of the components in the order picking system are described from left to right.
The first component on the left is a deep storage rack α. Then, robot I is located followed by
conveyor belt 1 and on top of that storage rack β. The next component is robot II. Conveyor
belt 2 is positioned and on top of that storage rack γ on robot II’s right side. The most right
component is robot III. Conveyor belt 2 works with a structured flushing principle. The conveyor
belt moves for 13 seconds, in which 24 new customer totes will arrive to the order picking system.
The conveyor belt contains 24 positions to place a customer tote on, therefore, every cycle the
conveyor belt is fully utilized at arrival. After these 13 seconds, the conveyor belt stands still
for 48 seconds. When the conveyor belt stands still, robot II can start item picking for the new
customer totes. For each customer tote, one or more items need to be picked. It is robot II’s task
to pick as many items as possible. The conveyor move time and conveyor standstill time combined
is referred to as a cycle and consists of 61 seconds.

If a customer tote cannot be completed in one cycle, robot III has to move the customer tote
to storage rack γ. At storage rack γ, the customer tote can be fulfilled, and once all items have
been picked and placed in the customer tote, and a free spot is available on conveyor belt 2, the
customer tote can be moved back on conveyor belt 2 and leave the order picking system at the
next cycle. Item bins can be stored at storage rack α, storage rack β, or conveyor belt 1. Robot
II can only reach item bins stored on storage rack β and conveyor belt 1. Conveyor belt 1 is used
for item bin replenishment. Robot I’s task is to shuffle item bins so that the required item bins
are in reach for robot II.

Problem definition

As each robot type performs dedicated tasks, it is essential to design a task planning tool con-
sidering task allocation, task sequencing, and task synchronization so that all customer totes are
completed in time or placed on storage rack γ in time. Task allocation defines which specific robot
within a robot type performs the task, while task sequencing defines the order of allocated tasks
for a single robot. Task synchronization takes care of the dependencies between the task sequence
of different robot types. This resulted in the following research question:

How can the order picking tasks be planned such that the throughput and robot
utilization are maximized considering a fixed order picking system setup?

Furthermore, two constraints are given for the order picking system. The first constraint indicates
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that robot II is not allowed to be idle unless all its tasks are completed. This robot needs to
perform tasks continuously when possible. The second constraint specifies that only 0.01% incom-
plete customer totes may leave the order picking system. These requirements are further referred
to as system requirements.

This research scope is limited to robot II, robot III, conveyor belt 2, and storage rack γ. Other
components and processes are not taken into account. This is because item bin reshuffling is
indicates as a separate research project that has not been studied yet. Furthermore, it is assumed
that all items are always on stock as the item bin replenishment is out of scope. Finally, as robot
I is out of scope it is assumed that the required item bins are in reach for robot II at the moment
they are needed.

Research methodology

The task planning tool consists of an environment where the different scenarios can be evaluated.
The environment is a discrete event simulation model that acts as a digital replica of the designed
order picking system. The simulation will run 240 cycles which is equivalent to four hours in sim-
ulation time. The task to be performed already determined which robot type is needed. Among
robots of the same type, zoning is used for task allocation. Only one robot is allowed per specific
work zone, and the work zones have hard boundaries along the guiding rail, which ensures that
the robots do not collide.

Task sequencing strategy is varied for robot II and robot III. To solve robot II and robot III
task sequencing problems, single-attribute dispatching rules are considered. First in first out is
used as default task sequencing strategy for robot II and robot III. As variation, the following
single-attribute dispatching rules are considered: last in first out, most operations remaining, least
operations remaining, random on service, and shortest travel time.

Task synchronization between robot II and robot III is approached as main and supportive
robots. Robot III adjusts its workload based on the progress robot II makes. Robot II is always
performing tasks if any are available. Immediately when robot II has insufficient time left to com-
plete the customer totes located on conveyor belt 2, robot III starts moving the customer totes to
storage rack γ. If there is sufficient time compared to the number of incomplete customer totes
located on conveyor belt 2 before it starts moving, robot III remains idle.

Results and conclusion

The initial setup passes the system requirements with high margin. However, robot II utilization
is under-utilized because of a lack of tasks. Therefore, the recommendation is to lower the number
of robots per axis. However, only six robots per axis meet both system requirements. The failure
limit was not met by a small margin when considering four and five robots per axis. Therefore,
the failure limit was temporarily raised. Four robots per axis passed all system requirements and
emerged as best.Implementing different task sequencing strategies led to improved order picking
system performance. The new task sequencing strategy is first in first out for robot II and shortest
travel time for robot III. Using the new task sequencing strategy lead to an increase of 58.22% in
robot II utilization, 0.22% more customer tote throughput per second and 0.12% more item picking
requests throughput per second compared to the initial setup. To obtain a higher storage rack
γ utilization without impacting the throughput and robot utilization, storage rack γ is reduced
from three to one level.
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Chapter 1

Introduction

The increasing number of e-commerce sales leads to a need to fulfill customer orders faster than
ever before. In today’s world, people are more demanding about timely and even same-day deliv-
ery of their products. This results in new challenges in warehouse management (eMarketer, 2021;
X. Li, Yang, Zhang, & Qi, 2012). Order picking is the process of retrieving items from stocking
locations in a warehouse to fulfill a given demand. Order picking, which includes task assignment,
path planning, and traffic control, is the most critical process in the warehouse. Low performance
during order picking results in unsatisfactory customers as processing and delivery times increase.
Manual order picking can take up to 60% of all labor activities done in the warehouse and account
for up to 65% of all operating expenses. Bartholdi and Hackman (2011) further divided the manual
order picking time into traveling, searching, extracting, and paperwork and other activities, which
take 55%, 15%, 10%, and 20% respectively of the total order picking time. Warehouse automation
can significantly reduce these numbers and provide many benefits for handling e-commerce sales.
The global warehouse automation market share was in 2018 equal to 12.6% and is expected to
double to 27.2% in 2025 (Messe Frankfurt, 2019), mainly because of increased e-commerce sales
and warehouse labor costs.

Automated warehouses fulfill and integrate many functions such as the storage, transport, and
retrieval of items. Automated warehouses often have extraordinary properties such as massive
storage capability and fast turnover speed (Chang, Liu, Xin, & Liu, 2007). Automation results in
many benefits like savings in labor costs, improved throughput level, and high flow-space utiliza-
tion compared to manual labor (Azadeh, de Koster, & Roy, 2017; Heungsoon, 1997). Furthermore,
automated warehouses provide high scalability and flexibility, both essential in e-commerce envi-
ronments where demand variability is high (Azadeh et al., 2017). Order picking automation is
accomplished with the help of robots who can travel along the (defined) areas in the warehouse
and extract items. The robots need decision-making rules to instruct them what to do next to
operate autonomously. The challenge gets bigger when multiple robots are involved to cooperate
to complete all orders. The way the orders are fulfilled is dependent on, but not exclusive to,
objectives and warehouse characteristics.

This master’s thesis is written as a part of the master’s study Manufacturing Systems En-
gineering in Operations Management and Logistics at the Eindhoven University of Technology
(TU/e). The master’s thesis is carried out within the Operations, Planning, Accounting & Con-
trolling group of the Industrial Engineering and Innovation Science department of the TU/e. This
research considers an automated order picking system designed and patented by Pickr.AI. The
goal of this master’s thesis is to design a task planning tool in which multiple robot types coop-
erate such that the throughput and robot utilization are maximized. This master’s thesis topic is
derived from the Ph.D. project - Design and Optimization of Automated Warehouse Processes of
B. M. Nataraja.
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1.1 Company background

Pickr.AI is the industry partner of the overarching Ph.D. research project Design and Optimization
of Automated Warehouse Processes. Pickr.AI is an automation company using computer vision,
artificial intelligence, and robotics technology to revolutionize online order fulfillment (Nataraja,
2019). The company is working on automating the entire warehouse (Pickr.AI, 2021) and their goal
is to increase profit and turnover on online sales and even make low-margin products profitable.

1.2 Report outline

The outline of this report is as follows. Chapter 2 describes the order picking system that is
considered during this research. Chapter 3 elaborates on the research assignment. Chapter 4
discusses related literature. The model definition is provided in Chapter 5. Chapter 6 describes
the research methodology. The simulation model used in this research is explained in detail in
Chapter 7 followed by the results in Chapter 8. Chapter 9 provides the conclusion and recommen-
dations.

2



Chapter 2

Order picking system

This chapter provides the information necessary to understand the order picking system considered
in this research. First, Section 2.1 describes the components in the order picking system. Second,
Section 2.2 explains the processes of the order picking system. Third, the associated robots are
described in Section 2.3. Fourth, the initial setup of the order picking system is given in Section 2.4.
Last, Section 2.5 demarcates this research project’s scope.

2.1 Components

The patented order picking system designed by Pickr.AI is made of various components. The
main components are listed in Table 2.1. The first column specifies the name of the components,
the second column specifies how the components are indicated in Figure 2.1, and the third column
specifies the components’ abbreviation for simplification purposes.

Table 2.1: Order picking system components

Name In Figure 2.1 indicated as Abbreviation
Item storage bin Dark green box Item bin

Customer tote Red box Customer tote

Item storage bin reshuffling robot Light blue robot I Robot I

Item picking robot Purple robot II Robot II

Customer totes reshuffling robots Pink robot III Robot III

Conveyor belt for item storage bin Orange rectangle 1 Conveyor belt 1

Conveyor belt for customer totes Orange rectangle 2 Conveyor belt 2

Gravity flow rack for item storage bins Dotted-lined rectangle α Storage rack α

Storage rack on top of conveyor belt for Dotted-lined rectangle β Storage rack β
item storage bins

Storage rack on top of conveyor belt for Dotted-lined rectangle γ Storage rack γ
customer totes

3



The order picking system consists of three robot types, namely robot I (light blue) for item bin
reshuffling, robot II (purple) for item picking, and robot III (pink) for customer tote reshuffling.
In addition, two bin types are included, namely item bins (dark green) and customer totes (red).
These bin types have designated areas where they can be stored. Item bins can be stored in
storage rack α, storage rack β, and on conveyor belt 1. Customer totes can be stored in storage
rack γ or conveyor belt 2.

 

SOLIDWORKS Educational Product. For Instructional Use Only. 

Storage rack α Storage rack β 

Conveyor belt 1 

Storage rack γ 

Conveyor belt 2 

Robot I 

Robot II 

Robot III 

A 

B 

C 

D 

Figure 2.1: Front view schematic of the order picking system

2.2 Processes

The item bins contain items that are stored in the warehouse and can be ordered by the customer.
All items are stored in uniform bins. Each item bin contains only one type of item (stock keeping
unit, SKU). Customer totes are used to collect all items ordered within a specific customer order.
A customer order consists of one or more items. One customer tote belongs to one customer order.

Robot I reshuffles item bins stored in storage rack α. Robot I can only access item bins that
are on the first row. An item may be needed whose item bin is not directly accessible as other
item bins are in front. In this case, robot I needs to reshuffle the item bins until the required
one is in reach. Item bin reshuffling is done by taking the first item bin in the same row as the
needed item bin and storing it differently. As storage rack α is a gravity flow rack, the next item
bin will move automatically to the foremost position and is in reach by robot I. This will be done
until the needed item bin is in reach. If an item bin is needed and in reach, robot I lifts the item
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bin and places it on conveyor belt 1 or in storage rack β. Conveyor belt 1 is used for item bin
replenishment. The item bin reshuffling process is illustrated in Figure 2.2.

Robot II picks items from the item bins on conveyor belt 1 or storage rack β and places the
picked item in the specific customer tote where the item is required. Customer totes can be stored
on conveyor belt 2 or storage rack γ. The conveyor belts work with a flushing principle. Conveyor
belt 2 flushes in a predefined number, for instance, 24 customer totes.

The conveyor belt stands still for a few seconds, e.g., 48 seconds. During that time, robot II
needs to pick and place as many items as possible. After 48 seconds, conveyor belt 2 starts moving
again until 24 new and empty customer totes are in. The conveyor belt stands again still for 48
seconds, in which the robot II picks and places as many items as possible. The conveyor standstill
time and conveyor move time form together one cycle. One work shift in the order picking system
consists of multiple cycles.

It might happen that one or more customer totes could not be fulfilled (completely) within 48
seconds. If this occurs, robot III needs to pick up the customer tote from conveyor belt 2 (level
A) and temporarily store it in the storage rack γ (level B, C, or D). To avoid incomplete customer
totes leaving the order picking system, robot III needs to move the customer tote to storage rack
γ before conveyor belt 2 starts moving. Robot II can also place items in the customer tote if the
customer tote is stored at storage rack γ.

When a stored customer tote is fulfilled, and there is an empty space available on conveyor
belt 2, robot III will move the customer tote back on conveyor belt 2. The fulfilled customer tote
will then leave the order picking system when the conveyor belt starts moving. .

Moreover, the described components are part of various processes performed by the three
different robot types. Table 2.2 gives an overview of the identified tasks in the order picking
system.

Table 2.2: Identified tasks in order picking system

From Action To Actor
Conveyor belt 1 or stor-
age rack α

Reshuffle item bin Conveyor belt 1 or stor-
age rack α

Robot I

Conveyor belt 1 or stor-
age rack α

Pick and place item bin Conveyor belt 1 or stor-
age rack α

Robot I

Conveyor belt 2 or stor-
age rack β

Pick and place item into
customer tote

Conveyor belt 2 or stor-
age rack γ

Robot II

Conveyor belt 2 Pick and place incom-
plete customer tote

Storage rack γ Robot III

Storage rack γ Pick and place complete
customer tote

Conveyor belt 2 Robot III
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Storage rack α Storage rack β

Required item bin

(a) Required item bin not in reach for robot II

Storage rack α Storage rack β

(b) First reshuffling action

Storage rack α Storage rack β

(c) Second reshuffling action

Storage rack α Storage rack β

(d) Required item bin in reach for robot II

Figure 2.2: Item bin reshuffling process

2.3 Robots

Three different robot types can be identified to perform dedicated tasks as described in Table 2.2.
Figure 2.1 shows the schematic side view, including robot III, conveyor belt 2 (level A), and cor-
responding storage rack γ (level B, C, and D). Robot III can move in the Z-axis along the vertical
guiding rail. In addition, the robot can move along the X-axis as it is connected to the guiding
rail at the top and the bottom. The robot can move synchronously in X and Z directions. The
robot can also move along the Y-axis within its individual robotics arms’ reach to pick an item
bin, customer tote, or item.

As can be seen in Figure 2.3, more than one robot shares the same horizontal guiding rail. It
must be prevented that similar robots on the same shared guiding rail collide. This is secured
by having its own work zones for each robot where it can move around and perform tasks. Work
zones are strictly dedicated per robot, meaning that only 1 robot is allowed to work in that area.
Figure 2.3 is an example of strictly dedicated work zones. The work zones may be different in
amount and size per robot type.

Figure 2.4 shows the general coordination system for Pickr.AI’s order picking system.
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Figure 2.3: Strictly dedicated work zones, side view of order picking system
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Figure 2.4: Coordinate system for order picking system

2.4 Initial setup

Numerous variables characterize the order picking system. The variable’s value can be changed
to mimic a specific situation or see its influence on the order picking system’s performance. If
not specified otherwise, this master’s thesis is based on the values in the initial setup shown in
Table 2.3.
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Table 2.3: Order picking system’s initial setup

Variable name Value initial setup
Number of robot II 6 [robots]
Number of robot III 6 [robots]
Robot speed X-direction 2 [m/s]
Robot speed Y-direction 1 [m/s]
Robot speed Z-direction 2 [m/s]
Robot acceleration X-direction 2 [m/s2]
Robot acceleration Y-direction 1 [m/s2]
Robot acceleration Z-direction 2 [m/s2]
Conveyor belt speed 1 [m/s]
Cycle time 61 [s]
· Conveyor standstill time 48 [s]
· Conveyor move time 13 [s]
Customer totes per cycle 24 [customer totes]
Cycles per shift 240 [cycles]
Length of item bins 0.4 [m]
Length of customer totes 0.4 [m]
Space between item bins 0.1 [m]
Fixed additional conveyor belt 2 length 1 [m]
Size storage rack γ 3 [height levels]

2.5 Scope

In this master’s thesis, not all parts of the order picking system are included in full detail. The
focus of this project lies on the components defined in Table 2.1 and Figure 2.1, excluding robot
I, conveyor belt 1, storage rack α, and storage rack β. This scope has been formulated mainly be-
cause of the complexity that comes along with the item bin (reshuffling) part of the order picking
system. Including these three components in full detail would imply that the item bin reshuffling
problem also needs to be addressed, while this is part of a different problem defined in the Ph.D.
research project Design and Optimization of Automated Warehouse Processes. For this reason,
the item bin reshuffling will be simplified in the model.

Robot II, robot III, conveyor belt 2, and storage rack γ and their corresponding processes are
considered in the scope of this research project. This research considers the robot allocation, task
sequence, and task synchronization for these parts. Task allocation defines which specific robot
within a robot type performs the task, while task sequencing defines the order of allocated tasks
for a single robot. Task synchronization takes care of the dependencies between the task sequence
of different robot types; for instance, robot III needs to pick the customer tote and place it at the
storage rack if robot II is not in time to pick all items.

Assumptions are made in the model to simplify specific processes. For example, maintenance
is not included, and as item bin replenishment is out of scope, it is assumed that all SKUs are
always sufficiently on stock. The assumptions made in the model are listed in Section 5.1.

The order picking system and the designed task planning tool are mimicked via simulation
models. It is not implemented in an actual physical warehouse setup. This master’s thesis focuses
on designing a planning tool for the given order picking system’s scope, including the deviation of
several variables.
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Chapter 3

Research assignment

This chapter describes the research assignment. Section 3.1 elaborates on the problem definition.
The research question and sub-questions arising from the problem definition are given in Sec-
tion 3.2. Furthermore, the research methodology and corresponding deliverables for this project
are discussed in Section 3.3

3.1 Problem definition

The order picking system described in Chapter 2 was recently developed and patented by Pickr.AI.
The next step is to develop the system in greater detail. The system consists of different com-
ponents that need to operate fully automated as one synergistic system. One crucial aspect is
the automated collaboration of the three robot types and other intrinsic components of the order
picking system. As each robot type performs dedicated tasks, it is key to design a task planning
tool considering task allocation, task sequencing, and task synchronization such that the orders
are completed or placed in storage rack γ in time. The problem statement for this research is:

No task planning tool is available for this order picking system capturing the
task allocation, task sequencing, and task synchronization

This research aims to design a task planning tool in which task allocation, task sequencing,
and task synchronization are captured. The objective of the design is to maximize the throughput
and robot utilization. Two constraints are given. The first constraint indicates that robot II is not
allowed to be idle unless all its tasks are completed. Therefore, this robot needs to perform tasks
continuously when possible. The second constraint is related to conveyor belt 2. Only completed
customer totes may leave the order picking system. This implies that conveyor belt 2 is not allowed
to have any incomplete customer totes stored when flushing starts. Besides, it is not allowed to
delay flushing because incomplete customer totes have not yet been stored in storage rack γ.

3.2 Research question

The main research question addressed throughout this master’s thesis arises from the problem
description and is as follows:

How can the order picking tasks to be planned such that the throughput and robot
utilization are maximized considering a fixed order picking system setup?

3.2.1 Sub-questions

Four sub-questions are formulated. The answers to these four sub-questions combined will lead to
the answer to the main research question.
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1. Which methods for task planning can be used to maximize the throughput and robot uti-
lization?

2. What is the effect on the throughput and robot utilization when multiple robots are located
per axis?

3. How to design a task planning tool to maximize the throughput and robot utilization when
similar robots perform tasks in strictly dedicated work zones?

4. What recommendations can be given regarding the automated warehouse system’s layout?

3.3 Research methodology

This report focuses on the task planning of Pickr.AI order picking system’s robots considering
several setups related to the research questions. A general task planning tool that works in every
scenario and setup needs to be developed. The performance is measured by two key performance
indicators: throughput and robot utilization. The task planning tool is theoretically supported
and evaluated via simulation modeling and analysis. Pickr.AI has done no previous research on a
task planning tool, so the solution needs to be derived from the ground up.

Firstly, a theoretical foundation is built through a literature review on task planning method-
ologies. Task allocation, task sequencing, and task synchronization are included, among other
topics in the literature review. The literature review provides an answer to sub-question 1.

Secondly, data needs to be gathered and validated. This is the preparation phase for creating
the simulation models. The requirements for the models need to be collected even as the input,
output, and decision variables. When this phase is finished, all information needed to build the
simulation models becomes available.

Thirdly, the simulation models are created. Simulation models will be used to mimic the
processes. Multiple models need to be developed. Sub-question 2, 3, and 4 are answered via
simulation and analysis.

Sub-question 2 requires a simulation model in which the number of robots can be adjusted.
This research question considers multiple quantities for robot II and robot III. For sub-question
3, a simulation model needs to be created in which similar robots are allocated to strictly dedi-
cated work zones and the input for the task planning tool can be adjusted. For sub-question 4,
a sensitivity analysis will be performed using the simulation model formulated in sub-question 3.
Various layout variables are defined, such as the number of incoming customer totes, the number
of storage rack γ levels, and conveyor belt standstill time. All used simulation models will be
validated and verified.

Next, the gathered simulation results are analyzed and compared, and sub-conclusions and rec-
ommendations can be made. All the gained knowledge is combined to answer the main research
question and will be documented in a report and presentation.

3.3.1 Deliverables

The described sub-questions and methodology in this chapter result in various deliverables. The
deliverables of this project are defined as follows:

• Literature review on task planning methodology (sub-question 1)
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• Simulation model in which the number of robots will vary, including analysis of the outcome
(sub-question 2)

• Approach for the task planning tool when the robots are allocated to strictly dedicated work
zones (sub-question 3)

• Simulation model in which the robots are allocated to strictly dedicated work zones, including
analysis of the outcome (sub-question 3)

• Simulation model in which the order picking system’s layout can be adjusted, including
analysis of the outcome (sub-question 4)
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Chapter 4

Literature review

This chapter provides relevant literature for designing a task planning tool for the order picking
system described in Chapter 2. At first, Section 4.1 introduces the literature review. Section 4.2
discusses literature related to task allocation. In Section 4.3 literature relevant for task sequencing
is presented. Section 4.4 discusses task synchronization methods used in related work. Performance
measures will be discussed in Section 4.5.

4.1 Introduction

In a static or offline situation, all tasks are known in advance, and the problem can be solved
simultaneously. The opposite case is called dynamic or online, in which the tasks are not known
in advance and are known when time passes, and the problem needs to be solved sequentially
(Hunsucker & Shah, 1994). In the considered order picking system, it is already known which
items need to be picked in advance. It can be considered as a static or offline situation. However,
the tasks for robot III are not known in advance, as they are dependent on the work done by robot
II at a specific time. This part of the order picking system can be considered an online situation.

In general, multi-robot teamwork is a complex problem and includes several topics such as
task sequencing, task allocation, coordination, and communication (Zaidi, Sahnoun, & Bettayeb,
2019). Solution goals are fast computation time, robustness, reliability, efficiency, and scalability
(Zaidi et al., 2019).

4.2 Task allocation

A complete task allocation taxonomy is provided by Gerkey and Matarić (2004). Task allocation
aims at allocating a set of tasks to a set of robots in the most optimal way regarding one or more
objectives (De Ryck, Pissoort, Holvoet, & Demeester, 2021). Task allocation influences the overall
automated warehouse system efficiency (Xue, Tang, Su, & and, 2019).

Task allocation can be solved in many ways. First, auction-based methods will be discussed,
followed by dispatching rules, bin packing and dual bin covering problems, and zoning.

4.2.1 Auction-based methods

Multiple studies use auction (based) methods for allocating tasks to robots (De Ryck et al., 2021;
Nanjanath & Gini, 2010; Nunes & Gini, 2015; Wei, Hindriks, & Jonker, 2016). Auction (based)
allocation methods use a winner determination mechanism to allocate tasks to a specific robot.
Robots bid on the tasks based on the effort it takes to complete the task. The effort can be

12



determined in many ways, but one common way is to include the robot’s location and the task’s
location plus the time spent doing the tasks itself (Nunes & Gini, 2015). The winning bid can
be determined by, for example, the lowest bid, fewest bid, or biggest bid difference (De Ryck
et al., 2021). The bidding and the winning bid selection process can be adjusted, making this
method applicable in many situations. Auctions (based) methods for allocation problems are ro-
bust because when one or more robots fail, the auctions can continue using the functioning robots
(Nanjanath & Gini, 2010). De Ryck et al. (2021) proposed a decentral task allocation method
based on sequential single-item actions considering the battery level constraint of the resources.
In the study of Nanjanath and Gini (2010), an auction-based method is presented for task allo-
cation in a cooperative robot team. They included dynamic events such as obstacles, delays, and
communication issues to be more realistic. Another method developed with more realistic compo-
nents is the auction method of Nunes and Gini (2015). Their study allocated tasks with temporal
constraints expressed as time windows to a cooperative robot team. There are no constraints on
the time windows, and they may overlap. Time windows are relevant for the considered order
picking system in this thesis as the conveyor belt starts moving after a certain number of seconds.
Besides, their developed model can come up with a solution relatively fast. The model takes 0.43
seconds to divide 100 tasks among ten robots, while the benchmarking greedy algorithm takes
98.9 seconds. Wei et al. (2016) proposed a dynamic auction-based task allocation method where
the cooperative robot team together searches for tasks and performs them.

4.2.2 Dispatching rules

Dispatching rules can be implemented for allocation problems. Dispatching rules give priority to
one task amongst other tasks at a specific stage (Wisniewski, Korytkowski, Zaikin, & Pesikov,
2012). Different dispatching rules can be used at different stages in the system. The priority
is determined based on one (single) or more (multi) attributes of the task. Single-attribute dis-
patching rules are most common in literature and have been evaluated by several researchers.
The study of Heger and Voß (2019) uses three single-attribute dispatching rules for allocation of
vehicles/servers, namely shortest travel time, longest idle time, and least utilized vehicle/server.

4.2.3 Bin packing and dual bin covering problem

Task allocation can also be approached via the bin packing or dual bin covering problem. The
robot’s queue can be seen as the bin. Traditional bin packing problems concern packing a set of
items into a set of bins using as few bins as possible (Stavrinides & Karatza, 2012). A considerable
amount of literature has been published on the bin packing problem (Epstein, 2016; Stavrinides
& Karatza, 2012; Witteman, Deng, & Santos, 2021). Several algorithms are described, such as
next fit (decreasing), first fit (decreasing), best fit (decreasing), and worst fit (decreasing). Next
fit checks if the item can be placed in the same bin as the previous item. If this is not the case,
a new bin will be opened. First fit places the item in the first bin that fits. Best fit places the
item in the bin where it leaves the least unused space possible and thus increases its utilization,
whereas worst fit places the item in the bin where it leaves the most unused space possible. In first
fit, next fit, and worst fit, a new bin is opened when the current item does not fit in any possible
bin according to that particular algorithm. Decreasing means that the item is sorted in a list on
descending item size (i.e., the largest item will be placed in a bin first). For most algorithms, sort-
ing in descending item size will improve the performance and thus use fewer bins. Traditional bin
packing problems are considered by Witteman et al. (2021) for task allocation problems related
to aircraft maintenance. In the study of Stavrinides and Karatza (2012), bin packing algorithms
are used to increase resource utilization if non-assigned tasks are fitted in schedule holes.

In the dual bin covering problem, a set of items needs to be packed into a predefined max-
imum number of bins (Csirik & Frenk, 1990). In literature, multiple algorithms are discussed
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to solve the dual bin covering problem. Csirik and Frenk (1990) mention in their research next
fit (decreasing) and iterated lowest fit decreasing. These algorithms are adjusted traditional bin
packing problems. For the dual bin covering problem, next fit and next fit decreasing have the
same performance. There is no advantage in sorting the items on size. Also, first fit (decreasing)
does have the same performance as next fit, while in the traditional bin packing problem first
fit has a higher performance than next fit. Besides this one, Assmann, Johnson, Kleitman, and
Leung (1984) proposed a sophisticated algorithm that takes into account the maximum possible
value for the minimum bin fill level while packing item set L into N bins. Csirik and Frenk (1990)
proposes two algorithms,“simple” and“improved simple”, that result in the same performance but
are less complex (O(n log2 n) vs. O(n log n)). Both “simple” and ”improved simple” sort the
items descending on item size. “Improved simple” creates three sub-lists from the original list
based on the descending item size. The three sub-lists consist of the 50% largest sized items, 17%
middle-sized items, and 33% smallest sized items. The sub-lists are used for determining which
item will be placed in a bin first.

Besides solving the task allocation problem, the dual bin covering problem can also solve the
task sequencing problem. The created order in the bin can be executed from top to bottom or
vice versa.

4.2.4 Zoning

Picker-to-parts systems use automated storage and retrieval systems with cranes to retrieve one
or more items and bring the item to a pick location (Koster, Le-Duc, & Roodbergen, 2007). Two
main variants of the picker-to-part system are batch picking and discrete picking. In batch pick-
ing, multiple orders are fulfilled simultaneously. In the case of discrete picking, only one order is
fulfilled at a time. Several in-between variants have been explored, such as the sort-while-pick,
where the order picking directly sorts the orders, or pick-and-sort, in which the order picker picks
multiple items and sorts them at the end. Another variant is zone picking. In zone picking, the
order picking area is divided into various work areas, having one or more pickers responsible for
fulfilling orders (Van Der Gaast, De Koster, & Adan, 2018). This approach is based on task loca-
tion and order picker dedication. Zone picking has significant advantages such as high throughput
ability, scalability, and flexibility in the number of orders and order pickers. A disadvantage of
zone picking is that the system suffers from congestion and blockings under heaving use, resulting
in increased cycle time (Van Der Gaast, De Koster, Adan, & Resing, 2020). Zone picking can be
done in parallel or sequential (Koster et al., 2007). Parallel zone picking means multiple pickers
in multiple zones can work simultaneously on picking items to fulfill one order. In the end, all
picked items will be sorted in one final customer tote. If the order picking system is sequential,
the order is assigned to a dedicated customer tote, and only one picker is picking items for that
particular order at a time. No sorting or consolidation is needed as the order is thoroughly picked
in the dedicated customer tote.

Zone picking systems can have many configurations. Variations can be created by varying the
number of workstations, workstation types, pick-face design, buffer length, storage system layout,
and conveyor belt configuration (Van Der Gaast et al., 2018). Van Der Gaast et al. (2018) studied
the conveyor belt configuration for different merged and isolated situations. The conveyor belt
is an essential aspect of the zone picking system as the orders enter and leave the zone picking
system via the conveyor belts. Their model can predict throughput loss given the congestion level
of the zone picking system.

Petersen (2002) performed a simulation analysis on zone picking systems considering different
configurations. This paper includes zone configuration, size of picking zone, storage location, and
picklist size in the simulation. Different zone shapes are defined between wide and shallow rect-
angles for zone configuration. Three storage policies are used, namely random, within-aisle, and
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across-aisle. To evaluate the configurations, mean route length is used. The analysis is done using
multiple comparison tests and Bonferroni t-tests. The paper concludes that the savings found by
using the correct zone configuration were substantial. Average order size, number of picking zones,
and batch size are three important factors contributing to the savings and choosing the proper
design.

4.3 Task sequencing

Task sequencing is the problem of prioritizing jobs. This problem aims to determine a tasks
sequence that minimizes specific measurements such as, idle time, waiting time, or traveling dis-
tance. By improper task sequencing, the opportunity is lost to improve the overall throughput
performance (Roodbergen & Vis, 2009). Another consequence of improper task sequencing is the
reduced pickers’ efficiency. This is because their main activity is traveling to the next item to be
picked (Moeller, 2011).

According to Coltin and Veloso (2014), a valid schedule has start and end actions and a valid
route for delivery and pickup. Besides, the scheduled times need to be feasible. Another aspect
to consider is the possible capacity constraints and time windows. The following subsections will
discuss dispatching rules, followed by the vehicle routing problem, including the traveling salesman
problem and the pickup delivery problem.

4.3.1 Dispatching rules

Dispatching rules can also be used for task sequencing. Dispatching rules give priority to one task
amongst other tasks at a specific stage (Wisniewski et al., 2012). Different dispatching rules can
be used at different stages in the system. The priority is determined based on one (single) or more
(multi) attributes of the task. Single-attribute dispatching rules are most common in literature
and have been discussed and evaluated by several researchers. Widely known single-attribute dis-
patching rules for task sequencing are first in first out (FIFO), last in first out (LIFO), random on
service (RoS), shortest processing time (SPT), longest processing time (LPT), earliest due date
(EDD), least operations remaining (LOR), most operations remaining (MOR), shortest travel
time (STT), shortest travel distance (SDD), job slack, and job slack per ratio (Gere, 1966; Heger
& Voß, 2019; Hunsucker & Shah, 1994; Jeong & Randhawa, 2001; Teghem, 1986; Teppan, 2019;
Wisniewski et al., 2012). Single-attribute dispatching rules are easy to understand and implement
(Hunsucker & Shah, 1994). For this reason, Gere (1966) advises not to use complex priority rules
in practice. Moreover, single-attribute dispatching rules can deal with large and complex schedul-
ing problems and computing in linear time (Le-Anh & de Koster, 2004; Teppan, 2019) which is
advantageous.

Multi-attribute dispatching rules tend to be more robust than single-attribute dispatching rules
(Jeong & Randhawa, 2001). They attempt to improve the overall system performance by includ-
ing multiple output measurements at once. Single-attribute dispatching rules tend to be better
compared to multi-attribute dispatching rules when it comes to the performance measures they
were initially designed for. However, several studies show that multi-attribute dispatching rules
outperform single-attribute dispatching rules in overall system performance (Guan & Dai, 2009;
Jeong & Randhawa, 2001; Le-Anh & de Koster, 2004; Teppan, 2019).

Guan and Dai (2009), Jeong and Randhawa (2001), and Teppan (2019) developed and analysed
multi-attribute dispatching rules using weights. Guan and Dai (2009) chooses traveling distance,
input buffer statuses, and output buffer statuses as dispatching rules. The weights are dynamically
adjusted according to the processing and transportation load of the system. Jeong and Randhawa
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(2001) uses the same dispatching rules as Guan and Dai (2009); however, the weight is determined
differently. In Jeong and Randhawa (2001) the weights are based on a neural network model based
on the status of input and output buffers. Teppan (2019) studied in total 33936 dispatching rules.
Twelve unique single-attribute dispatching rules are considered to create multi-attribute dispatch-
ing rules. All possible combinations between two or three single-attribute dispatching rules are
tested as weighted linear combinations. Teppan (2019) considers both long jobs and short jobs for
benchmark instances with known optima.

Le-Anh and de Koster (2004) developed Multi-Att, which is a multi-attribute dispatching rule
based on empty vehicle travel distance or time and balancing the workload between stations. The
Multi-Att is modified to obtain a new dispatching rule, Multi-Mod. This dispatching rule is cre-
ated by adding a power coefficient obtained by experiments.

4.3.2 Vehicle routing problem

Task sequencing can also be approached as a vehicle routing problem (VRP) with the pickup and
delivery of goods or passengers from different origins to different destinations (Battarra, Cordeau,
& Iori, 2014). The VRP and possible variations are extensively described by Bochtis and Sorensen
(2009) and Bochtis and Sorensen (2010). This approach also has the objective of minimizing the
travel distance. W. Sun, Yu, and Wang (2019) developed an exact algorithm for solving het-
erogeneous green pickup and delivery problem (GPDP), which is a variation of the VRP. The
developed method solves large-scale pickup and delivery problems (PDP) instances by cutting
the non-optimal trips of heterogeneous vehicles. Another exact algorithm is formulated by Aziez,
Cote, and Coelho (2020) for multi-pickup and delivery problems with time windows (MPDPTW)
and is also a variation on VRP. In this paper, a set of vehicles must be routed to satisfy deliveries
and pickups. One or more locations can have time windows. The article specifies three mixed
integer formulations. The model is solved by the branch-and-cut algorithm, an efficient method for
solving integer programming problems. Koc, Laporte, and Tukenmez (2020) performed a review
of VRP with simultaneous pickup and delivery. Several models and a heuristic for solving this
variant of the VRP are given. Also, in these models, the objective is to minimize travel costs.
An extensive overview provides papers that include VRPSPD and specifies whether the solution
is heuristic or exact.

Furthermore, PDPs may be extended to include time windows or deadlines (Coltin & Veloso,
2014). A distinction can be made between online and offline PDP. Offline PDPs can be solved
using meta-heuristics such as tabu search, large neighborhood search, genetic algorithm, or simu-
lated annealing (Parragh & Doerner, 2006). Godart, Manier, Bloch, and Manier (2019) considers
offline PDP, including time windows, multiple visits, and transfer operations. A hybrid meta-
heuristic based on an evolutionary algorithm is developed to obtain a solution. Online PDPs are
studied by Coltin and Veloso (2014) and Gutenschwager, Niklaus, and Voß (2004) among others.
Coltin and Veloso (2014) tackles the PDP with a new auction-based algorithm. The study of
Gutenschwager et al. (2004) approaches the solution by applying the meta-heuristics tabu search
and simulated annealing. Besides, in the paper of Gutenschwager et al. (2004), a short response
time is considered, something that has not been considered well in other literature. Their solution
provides an answer to the PDP within 0.1 seconds. This contributes to the realistic requirements
to be considered.

The traveling salesman problem (TSP) paradigm can be considered for task sequencing and is a
variation on the VRP. For example, Kurtser and Edan (2020) uses TSP to sequence tasks for their
fruit harvesting robot. The paper aims to develop a methodology for planning the sequence of jobs
for the robot harvester to optimize the average harvesting time. Two target sorting methods are
considered: the optimal target-sorting method (minimal distance) and the heuristic target-sorting
method (e.g., near-to-far, right-to-left). The described problem also includes target sensing, as it
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is unknown exactly where the fruit is. Their approach reduced the travel costs by 12% on average.
The paper of Laporte (1992) gives an overview of TSP exact and approximate algorithms, whereas,
in the article of Rosenkrantz, Stearns, and Lewis (1977), several heuristics for TSP are analyzed.

4.3.3 Exact method: Mixed Integer Linear Programming

Another way to solve the task sequencing problem is using exact methods. An exact method can
find an optimal solution to the optimization problem. Mixed Integer Linear Programming (MILP)
is the most widely used modeling approach for task sequencing problems (Guzman, Andres, &
Poler, 2021). MILP as a modeling approach is used in Fanti, Stecco, and Ukovich (2011). This
paper formulated a MILP to solve the distribution center’s internal processes categorized as de-
consolidate incoming goods, sorting goods, and consolidating outgoing goods. The objective is
to determine the optimal task sequence in the three categories to minimize the total operation time.

In addition, MILP as a modeling approach for sequencing problems is used by Meng, Zhang,
Ren, Zhang, and Lv (2020) to solve the flexible job-shop scheduling problem. Furthermore, a
MILP-based approach for scheduling is considered by Belil, Kemmoé-Tchomté, and Tchernev
(2018) in a single-stage multi-product environment with many manufacturing lines and storage
facilities. MILP is used to obtain an optimal solution for capacity allocation and resource sizing,
which determines the planning so that the total demand is satisfied for a given production, storage,
and distribution capacities.

4.4 Task synchronization

Task synchronization takes care of the dependencies between the task sequence of different robot
types. Therefore, task synchronization leads to coordinated decisions, which in turn could con-
tribute to improved overall efficiency of order fulfillment (Jiang, Leung, Lyu, & Huang, 2020).
In the following subsections, task synchronization related to transfer robots will be discussed,
followed by search and rescue robots and multi-robot task scheduling.

4.4.1 Transfer robots

Wang and Chen (2012) consider a semiconductor manufacturing system having a monorail trans-
port system and suggest simple dispatching rules for task synchronization. This is because the
transfer robots are mainly seen as supporting robots. They propose Heuristic Preemptive Dis-
patching methods that dispatch transport jobs defined as a macro of transfer commands. This
heuristic decreases the blocking time and traffic jam time. Besides, it increases loading proportion
by choosing, in case multiple transfer robots travel together, the last transfer robot available on
the monorail for the highest priority transport task. In this case, the other robots are not blocked
by the transfer robot who got the task assigned as there is only one rail available to travel on.
First come first serve will be applied if no highest priority transport tasks exist.

Ham (2020) also considers the semiconductor industry environment. This paper studies the
simultaneous scheduling of production and material transfer wherein transfer robots pick up jobs
and deliver them to pick machines for processing. This includes the simultaneous scheduling of
jobs, transfer robots, and machines. Scheduling the transfer robots and machines are two deci-
sions that are interrelated with each other and need to be synchronized. This paper approaches
the task synchronization problem by applying constraint programming. Satisfying the constraints
and finding feasible solutions is the focus of this method. This is in contrast with, for instance,
mixed integer programming, which focuses on optimizing the objective function. Another paper
that considers constrained programming is Ham (2019). This paper studied transfer robot task
scheduling in a flexible job shop. The transfer robots need to fetch pods and bring them to one of
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the available pick stations. The transfer robot’s schedule needs to be aligned with the pick stations
and other resources. The task synchronization problem is solved by constrained programming on
integer variables with global scheduling constraints.

The study of Coltin and Veloso (2014) uses an auction-based mechanism to plan online time-
constrained pickup and delivery schedules with transfers. This study is done in an office envi-
ronment where a fleet of robots pick up and deliver items requested by users. Transfers of items
between robots are planned to create deliveries at a lower cost. Robots bid to transfer a carried
item to another robot. The bid is determined by the cost of extra distance and possible time
window violations. Each robot’s schedule is updated after the bid round, and a winner has been
chosen.

4.4.2 Search and rescue robots

Collaborative search and rescue robot teams are studied by Beck, Teacy, Rogers, and Jennings
(2016, 2018). Both papers aim at creating a joint plan to optimize all robot’s actions incorpo-
rating the uncertainty about the future information gained from all robots. Beck et al. (2016)
investigated two robot teams, the search team, and the rescue team. The search team’s tasks are
known in advance, but the rescue teams’ tasks are uncertain and depend on the findings of the
other team. The paper considers semi-autonomous robot teams that can make their own decisions
and best use the combined resources. Three approaches are used to solve the task synchronization
between the search and rescue teams. First, the search and rescue planning are solved indepen-
dently. The second method uses hindsight optimization to solve the uncertain task planning by
incorporating the distribution of unknown tasks by Monte Carlo simulations. The third method
creates joint planning with hindsight optimization using a negotiation process. At each step of
the negotiation, one robot team, the search robot team or rescue robot team, optimizes their plan
according to the current plan of the other group.

In Beck et al. (2018), heterogeneous robots perform automated victim searches in complex
situations. Each search robot has a specific task set it can perform. The paper considers the
complex relations between the search robots capable of doing different tasks. Also, this paper uses
hindsight optimization to assign a task or motion direction for each search robot to approach the
task synchronization between search robots. The planning for the search robots is made over an
uncertain set of victim locations and is iterative optimized. For this latter part, Monte Carlo tree
search optimization creates the joint optimized plan for all robots.

4.4.3 Multi-robot task scheduling

Stavrinides and Karatza (2012) studied multi-robot task scheduling for two robot types in heteroge-
neous robotic order fulfillment systems. Robots can be either transport robots or pick robots. Each
robot type is capable of performing specialized and complementary tasks. This paper considers
coupled temporal-spatial relations between all robots and complex-schedule constraints between
orders. This problem is referred to as heterogeneous task scheduling. The article created a set-
theoretic formulation to describe the problem. Furthermore, mixed-integer linear programming is
formulated. To model the coupled temporal-spatial relations and complex-schedule constraints,
block sequence graphs are made. Genetic algorithms and rank minimal heuristic generate feasible
schedules within the block sequence graph.

Two collaborative robot types are also considered by Kamra, Kumar, and Ayanian (2018).
This paper focuses on multi-robot battery exchange systems, including task robots and delivery
robots. Task robots perform services at requested locations, and delivery robots deliver charged
batteries to task robots when needed. The problem is solved by several polynomial-time heuristic
algorithms that take into account spatial planning and temporal coordination.
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4.5 Performance measurements

The described methods in the previous sections are all evaluated in different ways. Evaluation is
done by calculating performance measurements or key performance indicators. Table 4.1 provides
an overview of the performance measures used in mentioned literature.
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Chapter 5

Model definition

This chapter describes the elements constitute the planning tool model. The planning tool consists
of an environment where the different scenarios can be evaluated. The environment is a discrete
event simulation model that acts as a digital replica of the designed order picking system. The
outline of this chapter is as follows. First, Section 5.1 describes the constraints and assumptions
considered in the model. Second, Section 5.2 lists the parameters used to describe the model and
its performance. Finally, Section 5.3 explains the processes included in the model in more detail.

5.1 Constraints and assumptions

The model will become a simplified version of the actual order picking system with several con-
straints and assumptions included.

5.1.1 Constraints

The following constraints are taken into account:

1. Each robot can only process only one task at a time.

2. The robots will always complete the ongoing task before starting a new task unless the task
is interrupted because the conveyor belt starts moving.

3. Robots of the same type have the same capabilities and properties.

4. Only one robot or customer tote can be positioned per XYZ coordinate position.

5.1.2 Assumptions

The following assumptions are made:

1. Robot I, storage space α and β, and conveyor belt 1 are not considered in detail.

2. The order picking system is operational 24 hours a day, seven days a week.

3. Maintenance and failures are not included, and therefore the efficiency over time and usage
remains the same.

4. The number of incoming customer totes per flush is always the same and all require at least
one SKU.

5. The (number of) SKUs used in the order picking system, including the distribution of item
bins per SKU, do not change over time.
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6. All to be picked SKUs fit inside the customer tote independent of picking order and order
size.

7. SKUs are always sufficiently on stock.

8. The demand per SKU is uniformly distributed.

9. The item bin reshuffling process is executed by robot I in such a way that robot II never has
to wait when it starts an item picking task.

Assumption 1 is made to align with this research’s scope. The mentioned parts are out of scope
for this research. Assumption 2 ensures the time does not affect the results. Hence, no difference
exists between morning, afternoon, evening, or night. Assumption 3 has been added to keep
the efficiency and availability of the system at the same level at any time. All parts are always
functional and maintain the same efficiency. Assumption 4 ensures that the conveyor belt always
enters fully utilized. If no items have to be picked for a customer tote, it enters the order picking
system without a purpose. The probability an item bin is in reach of robot II is kept the same
by implementing assumption 5. The customer tote dimensions are given, however, it is unknown
what kind of items are stored in the order picking system. To ensure no volume conflicts arise
in a customer tote, assumption 6 is formulated. Assumption 7 is formulated because the item
replenishment process is out of scope for this research. SKU details are not known. Therefore,
no difference is made between SKUs. Assumption 8 secures that each SKU ID has the same
probability of being picked. Assumption 9 is formulated because the item bin reshuffling process
is out of scope for this research.

5.2 Parameters

This section elaborates on the model input parameters and model output parameters. The model
input parameters are used to describe the layout of the considered order picking system. Moreover,
the model input parameters are also used to design the processes included in the order picking
system. As the name already displays, model input parameters serve as input to the discrete event
simulation model. Model output parameters are calculated using the simulation results. Model
output parameters are used to evaluate different scenarios. Besides, the model output parameters
serve as guidance for formulating recommendations.

5.2.1 Model input parameters

First, the order picking system’s layout need to be formulated. The defined model input parameters
are listed in Table 5.1.

Table 5.1: Model input parameters

Notation Description Unit
nri Number of robot i; i = {II,III} [robots]
nct Number of incoming customer totes per flush [customer totes]
Y Distribution order size [-]
lct Length of customer tote [m]
lesct Length of empty space between two customer totes [m]
lal Fixed additional length to conveyor belt [m]
lck Length of conveyor belt k; k = {1} [m]
lsrp Length of storage rack p; p = {γ} [m]
hsrp Number of floors in storage rack p; p = {γ} [levels]
dfck Flush (move) duration of conveyor belt k; k = {2} [s]
deck Standstill duration of conveyor belt k; k = {2} [s]
C Number of cycles per shift [cycles]
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x+
i,m X-axis upper limit work area for robot type i number m; i =

{II,III}, m = {1,2,...}
[m]

x−i,m X-axis lower limit work area for robot type i number m; i =
{II,III}, m = {1,2,...}

[m]

Some parameters are related to each other. For example, the length of the conveyor belt is
equal to the sum of customer totes, the space in between customer totes, and the fixed additional
length (Equation 5.1). The parameters regarding the dimensions of the conveyor belt, customer
totes, and storage rack are schematically represented in Figure 5.1. A timeline regarding the
flushing and standstill cycles can be found in Figure 5.2.

lc2 = (nct × (lct + lesct)) + lal (5.1)

 

SOLIDWORKS Educational Product. For Instructional Use Only. 

lct 
lesct 

 

lc2 

hsrγ 

 

lsrγ 

 

Figure 5.1: Schematic overview parameters

Two parameters are used to demarcate the work zone’s coordinates in which the robot can
perform tasks. Because of the shared guiding rail, only the x coordinate serves as a limit for
the work zone. If a particular x coordinate is included in the work zone, the robot can reach all
corresponding z and y coordinates. Equation 5.2 specifies the relationship between the upper and
lower work zone limit. The x coordinate of the upper work zone limit has to greater than the
lower work zone limit.

x+
i,m > x−i,m (5.2)

Flushing FlushingStandstill Standstill

dfc2 dec2

Time [s]

Figure 5.2: Timeline of flushing and standstill sequence

Robot I, storage space α and β, and conveyor belt 1 are not considered in detail. This excludes
the exact movements and duration of these resources and tasks. However, these resources and
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tasks cannot be entirely left out because the model would neither be complete nor realistic. Long
reshuffling happens if an item bin is required but stored in the storage rack α. No robot II can
access this item bin. Therefore, robot I need to reshuffle the item bins until the required one is
at the front row of storage rack α followed by placing it at a reachable location for that specific
robot II at conveyor belt 1 or storage rack β. Short reshuffling needs to occur if a required item
bin is placed at conveyor belt 1 or storage rack β but not in the specific robot II work zone. In
this case, robot I will move the required item bin to a location in the specific robot II work zone
where the item bin is needed. The actual movements of long and short reshuffling of item bins are
out of scope for this research. Therefore, task duration with probabilities mimics these activities.
Input parameters related to the item bin reshuffling process can be found in Table 5.2.

Table 5.2: Input parameters item bin reshuffling process

Notation Description Unit
P InReachu Probability of one or more item bins containing item u are acces-

sible
[-]

PLongReshuffleu Probability of no item bin containing item u is reachable by any
robot II without reshuffling; u = {1,2,...}

[-]

P InWorkZone
u,m Probability of one or more item bins containing item u are in the

work zone of robot II number m; ; u = {1,2,...}, m = {1,2,...}
[-]

PShortReshuffleu,m Probability of no item bins containing item u are in the work zone
of robot II number m; ; u = {1,2,...}, m = {1,2,...}

[-]

diblr Duration for long reshuffling bins to be able to access the required
SKU’s item bin

[s]

dibsr Duration for short reshuffling bins to be able to access the required
SKU’s item bin

[s]

nibu Number of item bins containing item u; u = {1,2,...} [item bins]
nib Total number of item bins in the order picking system [item bins]
nibir Total number of in reach item bin locations at conveyor belt and

storage rack
[item bins]

nibiwzm Total number of in work zone item bin locations at conveyor belt
and storage rack for robot type II number m; m = {1,2,...}

[item bins]

The following four inequalities and one equality holds:

nibu≥1 (5.3)

nib ≥ nibir (5.4)

nib ≥ nibiwzm (5.5)

nib =

u∑
1

nibu (5.6)

At least one item bin per item u is present in the system. This requirement is captured in
Equation 5.3. The number of in reach item bins are always equal or smaller than the total num-
ber of item bins present in the order picking system. This inequality is shown in Equation 5.4.
Furthermore, the number of item bins in robot II’s work zone is equal to or smaller than the
total number of item bins available in the order picking system. This requirement is captured in
Equation 5.5.
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The total number of item bins present in the system is equal to the sum of available item bins
containing item u for all item u (Equation 5.6).

The equation to calculate the probability that one or more item bins containing item u are
accessible can be found in Equation 5.7. The probability that the item bins need to be reshuffled
to reach an item bin containing item u is shown in Equation 5.8. The equation for the probability
that one or more item bins containing item u are accessible within the work zone can be found in
Equation 5.9. The probability that the item bin needs to be shortly reshuffled to end up in the
required work zone is shown in Equation 5.10.

P InReachu =
nibu
nib
× nibir (5.7)

PLongReshuffleu = 1− P InReachu (5.8)

P InWorkZone
u =

nibu
nib
× nibiwzm (5.9)

PShortReshuffleu = 1− PLongReshuffleu − P InWorkZone
u (5.10)

To calculate the travel time, additional parameters related to speed are needed. These param-
eters can be found in Table 5.3.

Table 5.3: Input parameters related to speed

Notation Description Unit
si,j Speed of robot i in direction j; i = {II,III}, j = {x, y, z} [m/s]
ai,j Acceleration of robot i in direction j; i = {II,III}, j = {x, y, z} [m/s]

Some parameters are related to each other. For example, the flush duration relates to the
length of the conveyor belt and the flushing speed (Equation 5.11). Also, the conveyor belt has
the same length as the storage rack located above (Equation 5.12).

dfck =
lck
sck

(5.11)

lc2 = lsrγ (5.12)

5.2.2 Model output parameters

Multiple model output parameters are tracked during simulation. These six model output param-
eters are throughput rate (customer tote and item picking request), resource utilization (robot II,
robot III, and storage rack γ), lead time (customer tote), percentage failures (customer tote and
item picking request), percentage completions (customer tote and item picking request), and fill
rate (customer tote and item picking request). These output parameters are calculated as follows:

Throughput rate of customer totes: The amount of customer totes that the system
completed within a specified period of time.

Throughput rate of customer totes = Number of completed customer totes
Period of time

[customer totes]
[s]

Throughput rate of item picking requests: The amount of items picked within a
specified period of time.

Throughput rate of item picking requests = Number of picked items
Period of time

[items]
[s]

25



Robot II utilization: The amount of time robot II is actually used for executing tasks.

Robot II utilization = Actual usage time robot II
Period of time

[s]
[s] × 100%

Robot III utilization: The amount of time robot III is actually used for executing tasks.

Robot III utilization = Actual usage time robot III
Period of time

[s]
[s] × 100%

Storage rack γ utilization: The amount of storage space that is being used.

Storage rack γ utilization = Occupied spaces
Total number of spaces

[space]
[space] × 100%

Average lead time: The average amount of time an customer tote spend in the its arrival
into the order picking system to its departure.

Lead time =
∑Customer tote(Departure time −Arrival time )

Number of customer totes
[s]

[customer totes]

Percentage customer tote failures: The percentage customer totes leaving the order
picking system incomplete.

Percentage customer tote failures = Number of customer tote failures
Number of incoming customer totes

[customer totes]
[customer totes] × 100%

Percentage item picking request failures: The percentage item picking requests leaving
the order picking system not picked.

Percentage item picking requests failures = Number of item picking request failures
Number of incoming item picking requests

[items]
[items]×100%

Percentage customer tote completions: The percentage customer totes fully completed.

Percentage customer tote completions = Number of customer tote completions
Number of incoming customer totes

[customer totes]
[customer totes]×100%

Percentage item picking request completions: The percentage item picking requests
executed successfully.

Percentage item picking requests completions = Number of picked items
Number of incoming item picking requests

[items]
[items] ×

100%

Fill rate customer totes: The percentage customer totes completed and left the order
picking system.

Fill rate customer tote = Number of customer totes completed and left the system
Number of customer totes

[customer totes]
[customer totes]×100%

Fill rate item picking requests: The percentage item picking requests completed and
left the order picking system

Fill rate item picking requests = Number of picked items completed and left the system
Number of item picking requests

[items]
[items] ×100%

All mentioned model output parameters except average lead time are snapshots of the perfor-
mance at the end of the shift. The data from the first cycle through the last cycle C is included.
The average lead time is calculated by dividing the number of completed customer totes by the
sum of lead times per complete customer tote. Given the research questions and this research’s
objective, throughput (customer totes and item picking requests), robot utilization (robot II),
storage rack γ utilization, and lead time (customer tote) are the four main model output param-
eters.

Throughput indicates the number of completed customer totes or item picking activities within
the predefined period. Throughput customer totes and throughput items indicate whether or not
the production system is performing at a high level or not. Throughput measurements are used
to (re)design, improve, and managing of production systems (J. Li, Blumenfeld, Huang, & Alden,
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2009; L. Li, 2009, 2018). Throughput is an essential output parameter as it helps to understand the
effect of decisions made and what is needed to meet a particular demand. Low throughput could
result from, for example, not enough workforce, equipment, or long waiting time. Throughput
item is more accurate than the throughput of customer totes if the order size differs per customer
tote. Throughput of customer totes is still valuable to determine the number of outgoing customer
totes per period relative to the incoming customer totes.

Robot (workforce) and storage rack (equipment) utilization represent the percentage of robots
and storage racks used over a given period. If these two output parameters are below 100%,
the workforce or equipment is not entirely used and not contributing to progress for a particular
time. If the workforce and equipment are always maximum utilized, no time or capacity is left for
unexpected events. Low utilization could indicate too many resources available for the activities.
Moreover, a high utilization could indicate the opposite: insufficient resources available for the
activities. Measuring utilization is essential to keep track of the workload within the system and
the system’s performance (Gu, Goetschalckx, & F.McGinnis, 2007; Karim et al., 2007; Kusrini,
Novendri, & Helia, 2018).

Lead time is a valuable measurement to understand the amount of time a work takes to flow
through the entire process, from entering the system to leaving the system. Lead time includes
everything, from processing time to waiting time and transportation time. Therefore, measuring
lead time is essential to keep track of the system’s performance (Gyulai et al., 2018). Besides, lead
time is an essential output parameter to evaluate and understand decisions made.

5.3 Model description

This section describes the model in more detail. First, the general model structure is described.
After that, the process model is given and discussed.

5.3.1 General model structure

This subsection describes the general model structure. Two cycles are described: the very first
and the second and onward cycles. The very first cycle only happens once per shift. The second
and onward cycle is repeated until the last cycle of the shift has been finished. The difference
between the two cycles is as follows. In the first cycle, storage rack γ is still empty. During the
first 13 seconds the conveyor belt is moving and the robots are not allowed to access customer
totes located on it. Therefore, the robots will also be idle. In the second and onward cycle, it
could be that there are open tasks for customer totes located at storage rack γ. In this case, the
robots are not necessarily idle during conveyor belt move time.

The first cycle

1. The conveyor belt starts moving, and new customer totes arrive in the system.

2. The conveyor belt stops moving.

3. In parallel to 2, Robot I starts checking if the required item bin is in reach for robot II to
pick the requested items.

(a) If so, the item will be queued in robot II’s queue.

(b) If not, the item will be queued in robot I’s queue. Item bin reshuffling (short or long)
will occur when a robot I becomes available, and it is the next item in the queue.

4. When the item bin is in reach of robot II, and the item is the next one in robot II’s queue,
robot II travels to the location of the required item bin.
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5. When robot II arrives at the storage location of the required item bin, it will pick up the
item and start traveling to the corresponding customer tote.

6. Steps 3 through 5 will be repeated until all customer totes are completed, or the conveyor
belt starts moving again.

7. In parallel to steps 3 through 6, incomplete customer totes that cannot be completed anymore
during the standstill period will be moved by robot III from conveyor belt 2 to storage rack
γ.

8. When the standstill duration is over, the conveyor belt starts moving. The customer totes
stored on the conveyor belt will leave the system. New customer totes will enter the system.

9. During the movement of conveyor belt 2, robot III is not allowed to execute tasks. Robot II
can only fulfill item picking tasks for customer totes located in storage rack γ.

10. The process continues at 1 in “The second cycle and onward”.

The second cycle and onward

1. The conveyor belt stops moving.

2. In parallel to 1, Robot I starts checking if the required item bin is in reach for robot II to
pick the incoming items and items in the storage rack γ.

(a) If so, the item will be queued in robot II’s queue.

(b) If not, the item will be queued in robot I’s queue. Item bin reshuffling (short or long)
will occur when a robot I becomes available, and it is the next item in the queue.

3. When the item bin is in reach of robot II, and the item is the next one in robot II’s queue,
robot II travels to the location of the required item bin.

4. When robot II arrives at the storage location of the required item bin, it will pick up the
item and starts traveling to the corresponding customer tote.

5. Steps 2 through 4 will be repeated until all customer totes are completed or the conveyor
belt moves again.

6. In parallel to steps 4 through 6, incomplete customer totes that cannot be completed anymore
during the standstill period will be moved by robot III from conveyor belt 2 to storage rack
γ. Moreover, robot III moves complete customer totes stored at storage rack γ to conveyor
belt 2 if space is available.

7. When the standstill duration is over, the conveyor belt starts moving. The customer totes
stored on the conveyor belt will leave the system. New customer totes will enter the system.

8. During the movement of conveyor belt 2, robot III is not allowed to execute tasks. Robot II
can only fulfill item picking tasks for customer totes located in storage rack γ.

9. The process will start at 1 again.

5.3.2 Process model

The order picking process model can be found in Figure 5.3. This figure shows the process per item
needed to complete a customer tote. The responsibilities per robot are also included. The order
picking process ends when all items are picked and the customer tote is located on the conveyor
belt.
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Figure 5.3: Process model (business process model and notation)
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Chapter 6

Research methodology

This study aims to develop a task planning tool for evaluating the allocation, sequencing, and
synchronization of tasks among collaborative robots under various system setups. This chapter
describes the research methodology used for analysis, task allocation, task sequencing, task syn-
chronization, warehouse layout parameter variations, and the simulation method used.

The method used for analysis is presented in Section 6.1. The task allocation, task sequencing,
and task synchronization methods used are explained in Section 6.2, Section 6.3, and Section 6.4,
respectively. Finally, Section 6.5 elaborates on the experimental setup and scenarios that are eval-
uated in this research.

6.1 Method of analysis

Simulation is a widely used technique for warehouse performance evaluation. Simulation mod-
els can be used for designing, verifying, validating, planning, and optimizing warehouse systems
(Gagliardi & Ruiz, 2007; Gu, M., & F., 2010). Discrete event simulation is a quantitative method
for decision making in complex systems and is widely used as a modeling approach in logistics and
supply chain management (Seay & You, 2016).

Discrete event simulation is a form of computer-based modeling of a system as a discrete
sequence of events in time. The modeling approach is characterized by dynamic (time-based),
stochastic (events have a probability of occurring), and rule-based by discrete events (A.Tako
& Robinson, 2012; Huerta-Torruco, Hernández-Uribe, Cárdenas-Robledo, & Rodŕıguez-Olivares,
2022). Discrete event simulation is known for its efficiency and flexibility to vary the level of
detail and complexity in the simulation model (Lugaresi & Matta, 2020). Moreover, discrete event
simulation helps evaluate different what-if scenarios without the expenses of field experiments
(Awuah-Offei, Anani, Hirschi, & Ewusie, n.d.)

Discrete event simulation is used in this research to assess the performance of the order picking
system. The entire simulation model is developed as part of this research. Simulation models
simplify reality, but by adding the processes, resources, and interactions they are involved in, a
digital twin is realized.

The simulation model is developed in Python and is mainly built using the package Simpy,
which is a process-based discrete-event simulation framework (SimPy: Discrete event simulation
for Python, 2022). This package includes processes built on the Python generator functions, re-
sources, containers, and stores. The robot types, storage racks, and conveyor belts are modeled as
different resources. All activities in the order picking system are modeled as processes. The steps
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taken towards building, validating, and using the simulation model are as follows:

1. Understanding the warehouse layout from the given description

2. Identification and modeling of resources and processes

• First, modeled only robot II and its involved processes (sequential tasks)

• Second, conveyor belt 2 movements were added (interrupt tasks)

• Finally, robot III and storage rack γ, including their involved processes, were added
(parallel tasks)

3. Implementing X, Y, and Z coordinates for robots, shelves, and customer totes.

4. Model validation

5. Definition and implementation of key performance indicators (model output)

6. Definition of decision variables

7. Preparing scenarios

8. Executing scenarios

Several simulation models are created. The model’s principles are the same, but parameter
values differ. This will be further described in Section 6.5. First, the base model is created using
the initial setup as shown in Section 2.4. After validating the base model, the variation models
are created.

The order picking system will be used in shifts of four hours. All functionalities of the or-
der picking system should operate for at least four hours sequentially. As breakdown or periodic
maintenance is not incorporated, the robots can perform tasks for an indefinite amount of time.
However, storage rack γ has a definite number of available spots; it is theoretically possible that
the storage rack will become fully utilized. Due to the design of the robot work zones and storage
rack, it is not possible to move customer totes around once the storage rack is fully utilized.

Each scenario is tested against the system requirements. Three system requirements have been
formulated. The first system requirement is related to the utilization of storage rack γ. If in a sce-
nario, the storage rack is 100% utilized at the end of the simulation run, the scenario is rejected as
a feasible scenario. The second system requirement is related to the number of incomplete outgo-
ing customer totes. The order picking system aims at having no incomplete customer totes leaving
the system. As mistakes or imperfections could happen, the allowed failure, when a customer tote
leaves the order picking system incomplete, is set to 0.01% of the incoming customer totes. The
third system requirement is similar to the second one, except for items instead of customer totes.
The robot system utilization requirement is already incorporated by the simulation design. The
robots will always start a task if a task is available and the robot is idle. Therefore, this is not
explicitly addressed as a system requirement for recommendations.

In addition, a performance analysis is performed using the model output parameters such as
throughput rate, percentage failure for customer totes and items, and average lead time.
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6.2 Task allocation

Tasks have to be divided among the available robots. The task already determines which robot
type is needed—for instance, item picking is done by robot II and customer tote reshuffling is done
by robot III. Furthermore, the task has to be divided among robots of the same type if there is
more than one robot.

In this research, task allocation is done by splitting the total work area of 24 positions up in
work zones. Only one robot is allowed per specific work zone and the zones have hard boundaries
equal to x-coordinate positions (x−i,m, x

+
i,m). Therefore, the work zones are strictly dedicated work

zones. This is true for both the customer tote’s and the robot’s perspective as they both cannot
leave the work zone they are assigned to. The work zone width is the same for all robots except
when five robots are used (24/5 = 4.8). The work zones boundaries apply to all robot types.
The assigned robot is responsible for all customer totes located in the same work zone, both on
conveyor belt 2 and storage rack γ.

In the default case of six robots per robot type, the work zone width is equal to four positions.
The robot is then responsible for four positions on conveyor belt 2 and twelve positions on storage
rack γ as the storage rack is three levels high. The exact boundaries per work zone are:

• (x−i,1, x
+
i,1) = (1, 4) for i = {II, III}

• (x−i,2, x
+
i,2) = (5, 8) for i = {II, III}

• (x−i,3, x
+
i,3) = (9, 12) for i = {II, III}

• (x−i,4, x
+
i,4) = (13, 16) for i = {II, III}

• (x−i,5, x
+
i,5) = (17, 20) for i = {II, III}

• (x−i,6, x
+
i,6) = (21, 24) for i = {II, III}

6.3 Task sequencing

The task sequencing problem is solved by applying single-attribute dispatching rules. The follow-
ing six dispatching rules are considered in this research:

1. First in first out (FiFo)

2. Last in first out (LiFo)

3. Least operations remaining (LOR)

4. Most operations remaining (MOR)

5. Shortest travel time (STT)

6. Random on service (RoS)

Besides STT, all dispatching rules are applied to robot II and robot III. This resulted in 30
strategy combinations. STT cannot be used as a task sequencing strategy for robot II as the travel
distance for this robot type involves a random component. This is needed because robot I and the
item bin locations are out of scope for this research. Instead, the item bin location is randomly
assigned to the item to be picked. As the location of the item bin can change over time because
of reshuffling tasks, its (random) location is only known when the picking task starts. For this
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reason, the decision was made to exclude STT for robot II as the travel distance and travel time
would be randomly chosen.

The dispatching rules are combined with a priority rule. The priority rule is implemented to
ensure the order picking system principles are correct. The priority rule per robot type is defined
as follows:

• Robot II: Item picking tasks for customer totes located on conveyor belt 2 have priority over
item picking tasks for customer totes located on storage rack γ

• Robot III: In case there is an available position on conveyor belt 2 within the same work
zone, movements from storage rack γ to conveyor belt 2 have priority over movements from
conveyor belt 2 to storage rack γ.

Giving priority to item picking tasks for customer totes located on the conveyor belt prevents
unnecessary movements by robot III and fewer incomplete customer totes and items leaving the
system. Applying the priority rule ensures that robot II is performing tasks for customer totes on
conveyor belt 2 during the conveyor belt standstill time period. If there are open picking tasks for
customer totes located on storage rack γ, robot II can perform these during the conveyor belt move
time period. If this rule were not implemented, robot II would perform tasks for the customer
tote on the storage rack. In contrast, incomplete customer totes on the conveyor belt could still
have the opportunity to be completed before the end of the cycle.

The priority rule for robot III ensures that an available position on conveyor belt 2 will be
filled immediately if a complete customer tote is located at storage rack γ within the same work
zone. If this rule is not implemented, the storage rack has a seriously higher chance of becoming
fully utilized before the end of the shift.

To select the next task to execute, the priority rule is applied to all available tasks in the
queue. Second, the dispatching rule is applied. Suppose multiple customer totes or items have the
same values for the first and second selection step. In that case, the third selection criteria are
the customer tote and item ID in ascending order.

Before task sequencing strategies are considered, the default robot task sequencing strategy is
set to FiFo for all robots.

Dispatching rule 1: FiFo

The first dispatching rule dispatches tasks based on the arrival time in the order picking system.
Customer totes that arrived at the order picking system at an earlier moment in time will be
prioritized over customer totes that have arrived at a later time. The dispatching parameter is
equal to “Arrival time” in ascending order.

Dispatching rule 2: LiFo

The second dispatching rule dispatches tasks opposite to dispatching rule 1. For example, the latest
customer tote that arrived in the order picking system will be prioritized over customer totes that
already arrived earlier. The dispatching parameter is equal to “arrival time” in descending order.

Dispatching rule 3: LOR

The third dispatching rule dispatches tasks based on the number of items still need to be picked for
the main customer tote. The task that has the least open item picking tasks will be prioritized.
The dispatching parameter equals “items still to be picked before completion of this customer
tote” in ascending order. This parameter is an absolute value and is calculated as Items still to
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be picked before completion of this customer tote = Total items required for this customer tote -
Items already picked.

Dispatching rule 4: MOR

The fourth dispatching rule dispatches tasks opposite to dispatching rule 3. The task that has the
most open item picking tasks will be prioritized. The dispatching parameter equals “items still
to be picked before completion of this customer tote” in descending order. This parameter is an
absolute value and is calculated as Items still to be picked before completion of this customer tote
= Total items required for this customer tote - Items already picked.

Dispatching rule 5: STT

The fifth dispatching rule dispatches tasks based on the travel time. The task with the short-
est travel time from the task’s location to the robot’s location is prioritized. The dispatching
parameter is “travel time” in ascending order.

Dispatching rule 6: RoS

The sixth dispatching rule dispatches tasks based on an assigned random number. This dispatching
rule is entirely random. Both customer totes and items receive a “random number” between 0
and 1,000,000. The dispatching parameter equals “random number” in ascending order.

6.4 Task synchronization

Task synchronization is the collaboration between robot II and robot III. Robot II is the main
robot in the order picking system. Robot III supports robot II in securing the order picking sys-
tem’s requirements, such as limiting the number of incomplete customer totes leaving the order
picking system.

Robot III adjusts its workload based on the progress robot II makes. Robot II is always
performing tasks if any are available. Immediately when there is insufficient time remaining to
move all incomplete customer totes located on conveyor belt 2 to storage rack γ, robot III starts
moving the next customer tote based on the applied dispatching rule to storage rack γ. There is
insufficient time left when it will take longer to move all incomplete customer totes from conveyor
belt 2 to storage rack γ than there is time left before the conveyor belt starts moving. If there is
sufficient time left compared to the number of incomplete customer totes located on conveyor belt
2 before it starts moving, robot III remains idle.

Suppose a customer tote is being moved to a new location by robot III and robot II starts item
picking for the same customer tote. In that case, robot III communicates the location where it
will place the customer tote in advance so that robot II can already travel to the exact location
with the picked item.

6.5 Experimental setup

The model principles remain the same in all model variations. The variations are based on param-
eter changes compared to the initial setup. Besides, new variants are built using the knowledge
acquired in previous variants. Each variant is described in more detail in the subsections below.
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6.5.1 Variant 1: number of robots

This model variant provides an answer to the second sub-question: “What is the effect on the
throughput and robot utilization when multiple robots are located per axis?”. In total, three pa-
rameters will change compared to the initial setup. The main change is the number of robots per
robot type. The work zone per robot needs to be adjusted based on the number of robots per
robot type. As strict work zones are implemented, the work zone demarcation parameters can-
not overlap with other zones. The parameters that change in this variant are displayed in Table 6.1.

Table 6.1: Changed parameters in variant 1

Notation Description Unit
nri Number of robot i; i = {II,III} [robots]
x+
i,m X-axis upper limit work area for robot type i number m;

i = {II,III}, m = {1,2,...}
[x-position]

x−i,m X-axis lower limit work area for robot type i number m;
i = {II,III}, m = {1,2,...}

[x-position]

The scenarios that will be considered are as follows. All robot types have the same amount of
robots per axis. The number of robots nri varies between one and six robots. Table 6.2 shows the
work zone limits for one to six robots.

Table 6.2: Work zone boundaries (x−i,m, x
+
i,m) using different number of robot nri values

nri (x−
i,1, x

+
i,1) (x−

i,2, x
+
i,2) (x−

i,3, x
+
i,3) (x−

i,4, x
+
i,4) (x−

i,5, x
+
i,5) (x−

i,6, x
+
i,6)

1 robot (1,24) - - - - -
2 robots (1,12) (13,24) - - - -
3 robots (1,8) (9,16) (17,24) - - -
4 robots (1,6) (7,12) (13,18) (19,24) - -
5 robots (1,5) (6,10) (11,15) (16,20) (21,24)
6 robots (1,4) (5,8) (9,12) (13,16) (17,20) (21,24)

6.5.2 Variant 2: task sequencing

This model variant will answer the third sub-question: “How to design a task planning tool to max-
imize the throughput and robot utilization when similar robots perform tasks in strictly dedicated
zones?”. The number of robots chosen in sub-question 2 will be used in variant 2 and following
variants. One parameter will be adjusted compared to the initial setup in order to answer this
sub-question. This parameter is related to the task sequencing strategy per robot type and is
shown in Table 6.3.

Table 6.3: Changed parameter in variant 2

Notation Description Unit
TSi Task sequencing strategy for robot type i; i = {II,III} [-]

All considered combinations of TSII and TSIII can be found in Table 6.4. In total, 30 strategy
combinations for robot II and robot III are created.

35



Table 6.4: Task sequencing strategy combinations for robot II and robot III

# TSII TSIII # TSII TSIII

1. FiFo FiFo 16. FiFo MOR
2. LiFo FiFo 17. LiFo MOR
3. LOR FiFo 18. LOR MOR
4. MOR FiFo 19. MOR MOR
5. RoS FiFo 20. RoS MOR
6. FiFo LiFo 21. FiFo STT
7. LiFo LiFo 22. LiFo STT
8. LOR LiFo 23. LOR STT
9. MOR LiFo 24. MOR STT
10. RoS LiFo 25. RoS STT
11. FiFo LOR 26. FiFo RoS
12. LiFo LOR 27. LiFo RoS
13. LOR LOR 28. LOR RoS
14. MOR LOR 29. MOR RoS
15. RoS LOR 30. RoS RoS

6.5.3 Variant 3: warehouse layout

Compared to the initial setup, layout parameters such as the number of incoming customer totes
or the number of levels in the storage rack will change in this model. Besides, the number of
robots changes individually to determine the effect on the layout parameters. In total, thirteen
parameters are modified:

The third model variation answers the fourth sub-question: “What recommendations can be
given regarding the automated warehouse system’s layout?”. The number of robots chosen in sub-
question 2 and the task sequencing strategy resulting from sub-question 3 will be used as input
for the third model variation. This model variation is used to perform seven independent analyses
on (a selection of) parameters. Other parameters do not change. The seven topics are:

• Items per customer tote

• Incoming customer totes

• Storage rack size

• Conveyor standstill time

• Robot I influence

• Number of robot II

• Number of robot III

Number of items per customer tote

The default number of incoming item picking requests per hour is 1515 items. For this analysis,
the the adjusted parameters are shown in Table 6.5

Table 6.5: Changed parameter in variant 3: number of items per customer tote

Notation Description Unit
Y Distribution order size [-]
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The number of items per hour is adjusted to −9.5%, +10%, +20%, and +30%. This results
in 1416, 1666.5, 1818, and 1969.5 items per hour, respectively. The minimum incoming items per
hour is 1416 items, as in this case, all customer totes require only one item. This analysis shows if
the order picking system can handle more tasks, and the performance when having the minimum
incoming items is determined. The order size distribution are shown in Table 6.6.

Table 6.6: Order size distribution

Number of items -9.5 % 0% (default) +10 % +20 % +30 %
1 item 100% 96.01% 89.29% 82.61% 75.91%
2 items 0% 1.99 % 5.72% 9.39 % 13.09%
3 items 0% 1 % 3 % 5% 7%
4 items 0% 1% 2% 3% 4%

Incoming customer totes

Besides varying the number of incoming items, the number of incoming customer totes is also
adjusted. This adjustment is made by adding more customer totes while other parameters remain
the same—moreover, this results in a longer conveyor belt and storage rack. As the conveyor flush
duration depends on the conveyor belt’s length, this parameter will also change. Furthermore, the
work zones per robot will change too. The default number of incoming customer totes is equal to
24 per cycle. The adjusted parameters are listed in Table 6.7.

Table 6.7: Changed parameters in variant 3: incoming customer totes

Notation Description Unit
nct Number of incoming customer totes per flush [customer totes]
lc2 Length of conveyor belt 2 [m]
lsrγ Length of storage rack γ [m]
dfc2 Flush duration of conveyor belt 2 [s]
x+
i,m X-axis upper limit work area for robot type i number m;

i = {II,III}, m = {1,2,3,4,5,6}
[x-position]

x−i,m X-axis lower limit work area for robot type i number m;
i = {II,III}, m = {1,2,3,4,5,6}

[x-position]

nct is set to -50%, -25%, +25%, and +50% of the default value. This results in nct equal to 12,
18, 30, and 36 incoming customer totes per cycle. Table 6.8 shows the values for lc2 , lsrγ , d

f
c2 , x

−
i,m, x

+
i,m

when nct is adjusted. Note that the work zone boundaries (x−i,m, x
+
i,m) are given in case of six

robots. This could change as the results from previous sub-questions are taken as input.

Table 6.8: Values for lc2 , lsrγ , d
f
c2 , x

−
i,m, x

+
i,m for adjusted nct

nct lc2 = lsrγ dfc2
(x−

i,1, x
+
i,1) (x−

i,2, x
+
i,2) (x−

i,3, x
+
i,3) (x−

i,4, x
+
i,4) (x−

i,5, x
+
i,5) (x−

i,6, x
+
i,6)

12 7 7 (1,2) (3,4) (5,6) (7,8) (9,10) (11,12)
18 10 10 (1,3) (4,6) (7,9) (10,12) (13,15) 16,18)
30 16 16 (1,5) (6,10) (11,15) (16,20) (21,25) (26,30)
36 19 19 (1,6) (7,12) (13,18) (19,24) (25,30) (31,36)
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Storage rack size

The default storage rack size is equal to 3 levels. The width is equal to the conveyor belt length.
To vary the storage rack height, the parameter shown in Table 6.9 is adjusted.

Table 6.9: Changed parameter in variant 3: storage rack size

Notation Description Unit
hsrγ Height of storage rack γ [levels]

For this analysis, hsrp is set to 0, 1, 2, and 4 levels. In the case of zero levels, the order picking
system does not have a storage rack for customer totes anymore.

Conveyor belt standstill time

The conveyor belt standstill time influences the amount of tasks that could be executed before
the conveyor belt starts moving again. The parameter adjusted to analyze the influence of the
conveyor standstill time on the order picking system performance is shown in Table 6.10

Table 6.10: Changed parameter in variant 3: conveyor belt standstill time

Notation Description Unit
dec2 Standstill duration of conveyor belt 2 [s]

The default value for dec2 is 48 seconds. For this analysis, conveyor standstill time is adjusted
to -50%, -25%, +25%, and +50% of the default value. This results in deck equal to 24, 36, 60, and
72 seconds.

Robot I influence

Robot I is out of scope for this research. Until now it is assumed that robot I has finished all
its tasks so that robot II does not have to wait or adjust its task sequencing schedule. In this
analysis, this assumption is relaxed. To carry out this analysis, the parameter listed in Table 6.11
is adjusted.

Table 6.11: Changed parameter in variant 3: robot I influence

Notation Description Unit
gI Influence robot I [%]

Robot I and its related processes are fully modeled, but the estimated task duration is modified.
An estimate of the task duration is made based on the possible travel locations and the time taken
for reshuffling is added. The modifications are done in percentage. The task duration gI is modified
to 25%, 50%, 75%, and 100% of the estimated task duration. For example, the minimum and
maximum default values for short item bin reshuffling are equal to 3.24 seconds and 9.31 seconds,
respectively (mentioned in subsection 7.3.1). Applying gI = 25% means that robot I will perform
the tasks in 25% of the default time which is in between 0.81 seconds and 2.33 seconds. Increasing
gI means robot I needs more time to reshuffle the item bins which could result into delays for
robot II as not all required item bins are available in time.
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Number of robot II

This analysis continues to study the effects of the number of robots present in the order picking
system. The number of robot III is kept equal to the value from sub-question 2, but the number
of robot II is adjusted. For this analysis, the parameters shown in Table 6.12 are changed.

Table 6.12: Changed parameters in variant 3: number of robot II

Notation Description Unit
nrII Number of robot II [robots]
x+
II,m X-axis upper limit work area for robot type II number m;

m = {1,2,...}
[x-position]

x−II,m X-axis lower limit work area for robot type II number m;
m = {1,2,...}

[x-position]

When changing the number of robots per axis, the work zones also change. For the work zone
demarcation (x−II,m, x

+
II,m) for a specific number of robot II per axis see Table 6.2. The number

of robot III nrII variation is dependent on the result of sub-question 2.

Number of robot III

Sub-question 2 determines the number of robots per robot type. For that sub-question, the number
of robots per robot type was equal. This analysis continues to study the effects of the number of
robots present in the order picking system. Therefore, the number of robot II is kept equal to the
value from sub-question 2, but the number of robot III is adjusted. The parameters adjusted can
be found in Table 6.13.

Table 6.13: Changed parameters in variant 3: number of robot III

Notation Description Unit
nrIII Number of robot III [robots]
x+
III,m X-axis upper limit work area for robot type III number m;

m = {1,2,...}
[x-position]

x−III,m X-axis lower limit work area for robot type III number m;
m = {1,2,...}

[x-position]

When changing the number of robots per axis, the work zones also change. For the work zone
demarcation (x−III,m, x

+
III,m) for a specific number of robot III per axis see Table 6.2. The number

of robot III nrIII variation is dependent on the result of sub-question 2.
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Chapter 7

Simulation model

This chapter provides information about the simulation model used in this research. The conveyor
belt and storage rack representation is shown in Section 7.1. The input for the item bin reshuffling
process is given in Section 7.2. Furthermore, Section 7.3 elaborates on the task duration estima-
tion. The method for determining the new location when moving a customer tote is described
in Section 7.4. The number of incoming item picking requests in the order picking system is de-
scribed in Section 7.5. Finally, Section 7.6 describes the validation and validation process of the
simulation model.

7.1 Conveyor belt and storage rack representation

Storage rack β, storage rack γ, conveyor belt 1, and conveyor belt 2 locations are represented with
a two-dimensional (x,z) notation. Figure 7.1 shows a conveyor belt and a three levels storage rack
with four incoming customer totes per cycle. The depth (Y-axis) is one customer tote or item bin.
Therefore, the Y-coordinate is not included in the location representation.
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Figure 7.1: Two dimensional location notation (x, z)

Storage rack α is a deep storage rack and therefore has a depth (Y-axis) of at least one item
bin. The exact depth of the storage rack is out of scope.
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7.2 Item bin reshuffling probability

Figure 7.2 illustrates an example with two robot II’s working in two equal strict work zones. Both
the left and the right robot II cannot reach any of the dark purple item bins as they are stored in
storage rack α. If one of the robot II’s needs an item from a dark purple item bin, robot I needs
to do long reshuffling.

For robot II in zone 1, only the pink item bins are accessible. If this robot needs an item stored
in a yellow item bin, robot I needs to perform short reshuffling to make it accessible for robot II in
zone 1. Vice versa applied to robot II in zone 2. Robot II in zone 2 can pick items from a yellow
item bin but cannot reach items in a pink item bin. In order to access an item stored in a pink
item bin, robot I needs to perform a short reshuffling, after which robot II in zone 2 can reach the
item bin.

Zone 1                 Zone 2

Figure 7.2: Item bins in and out reach for robot II

As conveyor belt 1, storage rack α, and storage rack β are not in the scope of this master’s
thesis, the content of these components is not tracked. However, the item bin reshuffling process
is included in the simulation models as this is part of a series of processes. The item bin locations
and their content, the SKU, are not tracked. The probability of short reshuffling, long reshuffling,
or no reshuffling taking place is calculated based on the warehouse’s layout. The order picking
system stores 175 SKUs, and each SKU has only one item bin. This means there are 175 item bins
in the entire order picking system. The probability that an item bin contains a specific SKU is 1

175 .

The long reshuffling process is started when there is no item bin containing the required SKU
stored on conveyor belt 1 or storage rack β. From the warehouse layout, it is known that 24
and 72 item bins can be stored in one of these locations, respectively. The probability that no
item bin containing the required SKU is stored on conveyor belt 1 or storage rack β is shown in
Equation 7.1.
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PItem bin in storage rack α = 1− PItem bin in storage rack β − PItem bin on conveyor belt 1 (7.1)

PItem bin stored in storage rack α = 1− 1

175
× 72− 1

175
× 24

PItem bin stored in storage rack α = 0.4514

The short reshuffling process occurs when the item bin is at storage rack β or conveyor belt 1,
but not in reach for the robot II that needs the item. This has to do with the defined work zones.
In this case, robot I will move the item bin from the out reach position to an in reach position.
As the item bin is already reachable by robot I, the process’s duration is shorter than when the
item bin is somewhere in the deep storage rack α. In case six equal strict work zones are defined
for robot II, robot II can access 1

6 of the item bins that are stored on conveyor belt 1 and storage
rack α. The calculation of the probability can be found in Equation 7.2.

PItem bin in storage rack β or conveyor belt 1 but out of reach robot II =
1

175
× 60 +

1

175
× 20 (7.2)

PItem bin in storage rack β or conveyor belt 1 but out of reach robot II = 0.4572

If an item bin is already stored in reach for robot II, item bin reshuffling is not necessary. This
probability is shown in Equation 7.3.

PItem bin in storage rack β or conveyor belt 1 and in of reach robot II = 1− PItem bin in storage rack α− (7.3)

PItem bin in storage rack β or conveyor belt 1 but out of reach robot II

PItem bin in storage rack β or conveyor belt 1 and in of reach robot II = 1− 0.4514− 0.4572

PItem bin in storage rack β or conveyor belt 1 and in of reach robot II = 0.0914

The probability that long item bin reshuffling is needed is equal to 0.4514. The probability
that short item bin reshuffling is needed is equal to 0.4572. Lastly, the probability that no item
bin reshuffling is needed equals 0.0914. These probabilities are valid if conveyor belt 1 and storage
rack β are fully occupied. If these two locations are not fully occupied, there is less chance that
the required item bin is stored.

7.3 Task duration estimation

The task duration differs per task as several different activities need to be performed. The task
duration is dependent on the travel distance, corresponding travel time, and y-direction move-
ments. In almost all cases, the travel time is the biggest contributor to the task duration. The
duration per task is constructed as follows (excluding waiting):

Short item bin reshuffling: (1) Travel from robot I current location to item bin location;
(2) Move twice in the y-direction to pick up item bin; (3) Travel from item bin location to
new item bin location; (4) Move twice in the y-direction to drop off item bin.
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Long item bin reshuffling: (1) Travel from robot I current location to item bin location;
(2) Reshuffle not required item bins until required item bin becomes reachable; (3) Move
twice in the y-direction to pick up item bin; (4) Travel from item bin location to new item
bin location; (6) Move twice in the y-direction to drop off item bin.

Item picking: (1) Travel from robot II current location to item bin location; (2) Move twice
in the y-direction to pick up an item from the item bin; (3) Travel from item bin location
to customer tote location; (4) Move twice in the y-direction to drop off an item in customer
tote.

Move customer tote from conveyor belt 2 to storage rack β: (1) Move from robot
III’s current location to customer tote location; (2) Move twice in the y-direction to pick up
customer tote; (3) Move to new customer tote location; (4) Move twice in the y-direction to
drop off customer tote.

Move customer tote from storage rack β to conveyor belt 2: (1) Move from robot
III’s current location to customer tote location; (2) Move twice in the y-direction to pick up
customer tote; (3) Move to new customer tote location; (4) Move twice in the y-direction to
drop off customer tote.

The (x, z) coordinates of all item bins, customer totes, and robots are tracked. These coordi-
nates are used to measure the distance to travel between the initial and end location. All robots
can move simultaneously in x and z directions. For this reason, the travel distance is calculated
as Chebyshev distance in x and z directions as δChebyshev = max {|xb−xa|, |zb− za|}. Travel time
t is given by δ

v where δ is the distance travelled and v is the velocity. As the robots accelerate at
the beginning and decelerate at the end, they do not have a constant velocity. Accelerating and
deceleration have to be considered to have a realistic travel time calculation. Therefore, travel
time is calculated based on Ben-Ari and Mondada (2018).

The instantaneous velocity of the robot at a single point in time t can be expressed as derivative

v(t) = dδ(t)
dt . The change in velocity v over a period of time is defined as acceleration a. The

instantaneous acceleration of the robot is defined as a(t) = dv(t)
dt . For constant acceleration, the

velocity can be obtained by integrating the derivative (Equation 7.4). Then the distance can be
obtained by integrating again (Equation 7.5).

v(t) =

∫
a dt = a

∫
dt = at, (7.4)

δ(t) =

∫
v(t)dt =

∫
at dt =

at2

2
. (7.5)

The time taken to cover a distance δ by the robot is equal to t =
√

2δ
a .

A weighted Chebyshev distance equation is used to calculate the total travel time from initial
to end location and is displayed in Equation 7.6.

Ta,b = max{tx(|xb − xa|), tz(|{zb − za)} (7.6)

Moreover, the weighted Chebyshev travel time calculation is also used to calculate the duration
in the y-direction. As this movement cannot be done simultaneously with moving into x and/or
z-direction, the y-direction travel time will be added separately as shown in Equation 7.7.

Ta,b = max{tx(|xb − xa|), tz(|{zb − za)}+ 2× ty(δy) (7.7)
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7.3.1 Random pick up and drop off locations

All possible values for task duration are calculated, and the weight per value is combined in a
histogram to understand the task duration better. This is done by using random pick-up and
drop-off locations to simulate the task duration. Each task consists of different sub-steps; the task
duration estimation is explained per task. The base setup means six equal work zones of 4 lanes
of customer totes or item bins for the picking robots and customer tote reshuffling robots.

For each task, three locations are used. The initial location is the robot’s current position
from where it needs to travel to the target at the intermediate location. The robot brings the
target from the intermediate location to the end location. For all initial, intermediate, and end
combinations, the task duration is estimated. Multiple combinations can have the exact task
duration estimation. The frequency per task duration estimation is used to formulate a task
duration estimation distribution per task. This distribution serves as input for the simulation
model.

Short item bin reshuffle

The initial location of robot I can be everywhere, as this robot does not has work zones, meaning
the initial x and z coordinates can be:

Possible x coordinates: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24]

Possible z coordinates: [1, 2, 3, 4]

Taken into account the definition of short reshuffling, the intermediate location is outside the
work zone of robot II. There are no limitations in z coordinates. This results in:

Possible x coordinates: [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]

Possible z coordinates: [1, 2, 3, 4]

Robot I moves the item bin into the work zone of robot II which requested this particular item
bin. The end x coordinates are mutually exclusive with the intermediate x coordinates. There are
no limitations in z coordinates. This results in:

Possible x coordinates: [1, 2, 3, 4]

Possible z coordinates: [1, 2, 3, 4]

In total, 122880 combinations can be made for traveling from an initial location to an inter-
mediate location to the end location. Short item bin reshuffling takes a minimum of 3.24 seconds
and a maximum of 9.31 seconds. Moreover, the mean task duration is equal to 6.72 seconds. The
median and mode are equal to 6.67 and 6.53 seconds, respectively. The task duration histogram
can be found in Figure 7.3a.

Long item bin reshuffle

The initial location of robot I can be everywhere, as this robot does not has work zones, meaning
the initial x and z coordinates can be:

Possible x coordinates: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24]

Possible z coordinates: [1, 2, 3, 4]

The intermediate location of the item bin within storage rack α can be anywhere, meaning the
intermediate x and z coordinates can be:
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Possible x coordinates: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24]

Possible z coordinates: [1, 2, 3, 4]

Robot I moves the item bin to a location within the work zone of robot II which requested the
item bin. There is no limitation in z. This results in:

Possible x coordinates: [1, 2, 3, 4]

Possible z coordinates: [1, 2, 3, 4]

In total, 147456 combinations can be made for traveling from an initial location to an interme-
diate location to the end location. Long item bin reshuffling takes a minimum of 6.23 seconds and
a maximum of 13.01 seconds. Moreover, the mean task duration is equal to 10.22 seconds. The
median and mode are equal to 10.22 and 8.45 seconds, respectively. The task duration histogram
can be found in Figure 7.3b.

Item picking

Robot II starts a new picking task from its own work zone. There are no limitations in z coordi-
nates. This results in:

Possible x coordinates: [1, 2, 3, 4]

Possible z coordinates: [1, 2, 3, 4]

The item bin is location in the same work zone, therefore the possible intermediate coordinates
are the same as the initial coordinates:

Possible x coordinates: [1, 2, 3, 4]

Possible z coordinates: [1, 2, 3, 4]

The customer tote requested the item is also located in robot II’s work zone. Therefore the
possible end coordinates are the same as the possible initial and intermediate coordinates:

Possible x coordinates: [1, 2, 3, 4]

Possible z coordinates: [1, 2, 3, 4]

In total, 4096 combinations can be made for traveling from an initial location to an intermediate
location to the end location. Item picking takes a minimum of 2.53 seconds and a maximum of
5.49 seconds. Moreover, the mean task duration is equal to 4.55 seconds. The median and mode
are equal to 4.53 and 4.53 seconds, respectively. The task duration histogram can be found in
Figure 7.3c.

Move customer tote from conveyor belt 2 to storage rack β

Robot III can start a new task from any location within its work zone. There are no limitations
in z. Therefore the possible initial coordinates are:

Possible x coordinates: [1, 2, 3, 4]

Possible z coordinates: [1, 2, 3, 4]

When robot III moves a customer tote from the conveyor belt to storage rack β, the customer
tote is initially stored at the conveyor belt within the robot III’s work zone. The conveyor belt is
z = 1. This results in:

Possible x coordinates: [1, 2, 3, 4]
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Possible z coordinate: [1]

After robot III picks up the customer tote, it will store it at an available location within storage
rack β with z coordinates 2, 3, or 4. The available location has to be within the work zone of
robot III. Therefore the possible end coordinates are:

Possible x coordinates: [1, 2, 3, 4]

Possible z coordinates: [2, 3, 4]

In total, 20736 combinations can be made for traveling from an initial location to an inter-
mediate location to the end location. Moving a customer tote from conveyor belt 2 to storage
rack β takes a minimum of 3.24 seconds and a maximum of 4.98 seconds. Moreover, the mean
task duration is equal to 4.50 seconds. The median and mode are equal to 4.53 and 4.75 seconds,
respectively. The task duration histogram can be found in Figure 7.3d.

Move customer tote from storage rack β to conveyor belt 2

Robot III can start a new task from any location within its work zone. There are no limitations
in z. Therefore the possible initial coordinates are:

Possible x coordinates: [1, 2, 3, 4]

Possible z coordinates: [1, 2, 3, 4]

When robot III moves a customer tote from storage rack β to conveyor belt 2, the customer tote
is initially stored at storage rack β within the robot III’s work zone. Storage rack β is indicated
with z = 2, 3 or 4. Therefore, the possible intermediate coordinates are:

Possible x coordinates: [1, 2, 3, 4]

Possible z coordinates: [2, 3, 4]

After robot III picks up the customer tote, it will store it at an available location at conveyor
belt 2 within its work zone. The conveyor belt is indicated with z = 1. This results in:

Possible x coordinates: [1, 2, 3, 4]

Possible z coordinate: [1]

In total, 768 combinations can be made for traveling from an initial location to an intermediate
location to the end location. Moving a customer tote from storage rack β to conveyor belt 2 takes
a minimum of 3.24 seconds and a maximum of 4.98 seconds. Moreover, the mean task duration
is equal to 4.44 seconds. The median and mode are equal to 4.46 and 4.24 seconds, respectively.
The task duration histogram can be found in Figure 7.3e.

7.3.2 Real pick up and drop off locations

To calculate the actual travel time, the actual travel distance is used. The possible x and z coordi-
nates for the initial, intermediate, and end locations are the same as explained in subsection 7.3.1.
These actual coordinates are used to calculate the travel time between the initial-intermediate
location and intermediate-end location according to Equation 7.7.
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(a) Short item bin reshuffling (b) Long item bin reshuffling (c) Item picking

(d) Moving from conveyor belt 1 to
storage rack γ

(e) Moving from storage rack γ to con-
veyor belt 2

Figure 7.3: Task duration estimation using random pick up and drop off locations

7.4 Determine new location when moving customer tote

A new storage location must be found if a customer tote needs to move from the conveyor belt
to the storage rack or vice versa. The exact location of customer totes is tracked, and therefore
also, an empty storage location must be found. The closest-open location storage policy is used to
determine the new storage location of the customer tote. The closest-open location is found via
Chebyshev’s distance calculations as shown in Equation 7.7.

Two additional rules are implemented for customer tote movements from the conveyor belt to
the storage rack. First, for Chebychev’s distance = 1 it is first checked if the storage rack location
directly positioned above the customer tote is free (x, z + 1). If not, the other locations with
distance = 1 are checked. For Chebychev’s distance = 2 and onward, the preference is given to
storage the customer tote in the lowest storage rack level possible (z as low as possible).

Customer totes that move from the storage rack to the conveyor belt always need to go to z =
1 and x position corresponding to robot III’s work zone. Therefore, no additional rules regarding
the x position are defined.

7.5 Required number of items per customer tote

Per cycle, 24 customer totes arrive in the order picking system. One or more items need to be
picked before the customer tote can be marked as complete. Pickr.AI designed the order picking
system with a capacity for 1500 item picking tasks per hour. The duration of one cycle is 61
seconds resulting in 59 cycles per hour. Therefore, in 59 cycles, 1416 customer totes will arrive
in the order picking system. A customer tote requires one to four items. The required item per
customer tote distribution can be found in Table 7.1.
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Table 7.1: Distribution number of items required per customer tote

Number of items Percentage Customer totes Items
1 96% 1359.36 1359.36
2 2% 28.32 56.64
3 1% 14.16 42.48
4 1% 14.16 56.64

Sum 100% 1416 1515.12

7.6 Simulation validation and verification

Model verification and validation are critical in the development of a simulation model (Sargent,
2011). In the verification and validation phase, concerns regarding the correctness of the model
are addressed. Model verification refers to determining if a model implementation accurately
represents the conceptual description of the model and its solution. Model validation is the
process of determining the degree to which a model is an accurate representation of the real world
from the perspective of the intended uses of the model (Thacker et al., 2004).

7.6.1 Verification

The simulation models used in this research were verified continuously in the model development
process. All simulation models were built by adding functionality after functionality. In between
additions, the simulation model was fully stress tested. Creating the simulation model step by step
could be checked if the new functionalities worked as intended, and it was possible to determine
what their effect is on the simulation model so far. Stress tests provide information about the model
behavior in extreme situations and provide insights for debugging. Before and after implementing
new functionality, model behavior was compared to detect errors or unintended behavior. When
the simulation was working as intended, the next functionality was added.

7.6.2 Validation

The simulation models in this research were subjected to model validation. No historical data is
available for this specific order picking system; therefore, the simulation model outcomes could
not be compared to real data. The model validation was performed by the following steps:

• Degenerate test: Adjust appropriate selection of input variables and test model’s behavior.

In this research, this was done by adjusting the processing times, processing windows (con-
veyor standstill time and conveyor move time), and arrival rate of item picking requests and
customer totes.

• Extreme condition test: Adjust model variables and structure for extreme testing.

In this research, all parameters are tested with extremely low and high values.

• Face validity: The model should be reasonable.

The assumptions and decisions made in the simulation model are based on relevant litera-
ture or discussed with the thesis supervisor knowledgeable about this specific order picking
system.

• Internal validity: Several replications are done to determine the stochastic variability of the
model.

In this research, the replications are determined based on a 95% confidence interval.
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• Operational graphics: Values of performance measures are shown graphically.

During individual shift simulations, several performance measures per cycle regarding through-
put, failures, and utilization were graphically displayed.
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Chapter 8

Results

Using the simulation model, the experiments explained in Chapter 6 are conducted, and data are
gathered. This chapter presents the obtained results. The objectives can be defined as follows:

• Determine the effect of the number of robots per robot type nri on the order picking system’s
throughput and robot utilization.

• Determine the effect of different task planning TSi methodologies on the order picking
system’s throughput and robot utilization.

• Analyze the given order picking system layout parameters concerning the order picking
system’s throughput and robot utilization.

Pseudo-random variables are used for multiple distribution functions so that each simulation
repetition is different. With this, it can be guaranteed that each scenario will receive the same
workload as simulation input. In order to exclude coincidence, the simulation is repeated until a
certain confidence level is reached. The number of replications is calculated via Burghout (2004)
where in order to obtain an estimate of the mean across simulation runs of a parameter, a confi-
dence interval for the mean is constructed. This is shown in Equation 8.1.

N(m) =

[
S(m)× tm−1,1−α/2

X̄(m)ε

]2

(8.1)

Where,
N(m) = The number of replications required, given m simulation runs (samples)
X̄(m) = The estimate of the real mean µ from m simulation runs (samples)
S(m) = The estimate of the real standard deviation σ from m simulation runs (samples)
α = Level of significance
ε = Allowable percentage error of the estimate X̄(m), ε = |X̄(m)− µ|/|µ|

tm−1,1−α/2 = Critical value of the two-tailed t-distribution at a level α of significance, given m-1
degrees of freedom.

For this research, the confidence interval is set to 95% for each scenario. Six sample runs were
performed. The initial performance setup and varying the number of robots resulted in 14 required
simulation replications. The 95% confidence interval is plotted in the figures as whiskers. The task
planning and sensitivity analysis need 30 replications to meet the set confidence interval. Each
simulation run simulates 240 cycles equal to one shift of four hours. The simulated results are
averages over all the simulation replications. Analyzing only one simulation run can give biased
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results because of randomness.

First, the performance of the initial setup is presented in Section 8.1. Second, the effect of
the number of robots per robot type nri is described in Section 8.2. Section 8.3 elaborates on the
task planning TSi results. Finally, the results of the sensitivity analysis on the given order picking
system layout parameters are presented in Section 8.4.

8.1 Performance initial setup

This section elaborates on the performance of the initial order picking setup as described in Sec-
tion 2.4. FiFo is used as task sequencing strategy for both robot II and robot III. Per shift, 5760
customer totes arrive at the order picking system. The number of incoming item picking tasks can
be described as mean µ = 6150.8571, standard deviation σ = 26.8218 and resulting in a coefficient
of variation CV = 0.0044. Table 8.1 shows the results were obtained.

When analyzing the initial order picking system setup’s performance, the following observations
are made while evaluating the performance of the initial setup:

1. The mean storage rack γ utilization is very low, 2.58%, not one failure occurred, and all
customer totes and item picking requests are completed. This indicates that robot II has
sufficient time to finish its tasks before the conveyor belt starts moving. This is confirmed
as all customer totes, and item picking requests are fulfilled. Moreover, the fill rate equals
99.97% of the incoming customer totes that have left the order picking system complete. For
item picking requests, the fill rate is equal to 99.93%.

2. The average lead time is only 0.6154% higher than the absolute minimum lead time of 61
seconds, which can only be reached if all customer totes leave the order picking system
complete within the same cycle as they have arrived.

3. Every second, the order picking system completed 0.3924 customer totes and 0.4201 item
picking requests.

4. The mean and variance of the number of completed item picking requests are equal to the
mean and variance of the number of incoming item picking requests. Therefore, the variance
in the number of completed item picking requests can be explained by the varying number
of incoming items per simulation run.

5. Robot II is only utilized on average for 30.73%. Therefore, the order picking system can
handle around 6 item picking tasks per 4.3861 seconds. Per cycle, the average item picking
capacity is equal to 65.66 items. For the entire shift, this results in 15758.8746 item picking
tasks. However, the mean incoming item picking tasks per shift equals 6150.8471, resulting
in idle time for the picking robots as there are no available tasks to perform.

In conclusion, the initial setup is performing very well. It passes the system requirements with
a large margin. The mean lead time of 61.3754 seconds is desirable as it is close to the lowest value
possible, and the storage rack γ is barely used while no failures have occurred and everything is
completed. One undesirable observation is that robot II is under-utilized because of a lack of tasks.
Therefore, fewer robots per axis are preferable if the system requirements can still be met. Based
on this analysis, the recommendation is to lower the number of robots nri per axis. Fewer robots
per axis would reduce the investment costs. Moreover, less robots per axis decreases operating
expenses as maintenance and repair, depreciation costs and utilities.
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Table 8.1: Model output parameters initial setup

Model output parameter Unit µ σ C.V.
Mean storage rack γ utilization x100% 0.0258 0.0181 0.7016
Mean customer tote failures x100% 0.0000 0.0000 0.0000
Mean item picking request failures x100% 0.0000 0.0000 0.0000
Mean number of completed customer totes x100% 1.0000 0.0000 0.0000
Mean fill rate customer totes x100% 0.9997 0.0002 0.0002
Mean number of completed item picking requests x100% 1.0000 0.0044 0.0044
Mean fill rate item picking requests x100% 0.9993 0.0040 0.0040
Mean lead time seconds 61.3754 0.7052 0.0115
Mean throughput of customer totes customer totes per

second
0.3924 0.0000 0.0000

Mean throughput of item picking requests item picking re-
quests per second

0.4201 0.0018 0.0043

Mean robot II utilization x100% 0.3073 0.0014 0.0046
Mean robot III utilization x100% 0.0003 0.0001 0.3333

8.2 Number of robots

This section elaborates on the effect of the number of robots used in the order picking system on
the throughput and robot utilization. As concluded in Section 8.1, the performance of the initial
setup using six robots per robot type satisfies all the given requirements. Moreover, the lead time
per order is very close to the minimum lead time possible. Furthermore, robot II utilization is
low, indicating that robot II is under-utilized. Because of these observations, the interesting to
evaluate the performance with fewer robots. Therefore, the number of robots per robot type nri
variations will only consider a lower number of robots than used in the initial setup. The number
of robots will be equal among all robot types in the variations. The following six scenarios are
obtained:

• nrII , nrIII = (1,1), (2,2), (3,3), (4,4), (5,5) and (6,6)

Per shift, 5760 customer totes arrive in the order picking system. The number of incoming
item picking tasks can be described as mean µ = 6150.8571, standard deviation σ = 26.8218 and
coefficient of variation CV = 0.0044.

The results from the number of robot variation are shown in Figure 8.1 The following obser-
vations are made to decide the number of robots (nrII , nrIII ) per axis.
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(a) Mean storage rack γ utilization (b) Mean robot II and robot III utilization

(c) Mean number of failures (d) Mean task completion and fill rate

(e) Mean throughput (f) Mean lead time

Figure 8.1: Model output parameters varying nrII and nrIII (nrII = nrIII )

1. In case nrII = nrIII = {1, 2, 3}, Figure 8.1a shows that the storage rack γhas reached its
maximum capacity before the end of the shift. Further, combining this with the observation
that the mean robot II utilization converged close to 78.67% in case nrII = nrIII = {1, 2} as
shown in Figure 8.1b, which is the maximum utilization during conveyor standstill period

( 48[s]
61[s] × 100%), it can be concluded that there is not enough time or resources available to

perform all item picking tasks. Figure 8.1c confirms this by showing high mean number of
failures between 2.84% and 73.61%. A reduction in robot II utilization is visible from three
or more robots per axis. Robot II utilization reduced from 79.27% to 30.73% when going
from nrII = 1 to nrII = 6. Besides, in Figure 8.1d and Figure 8.1e it can be seen that the
throughput and fill rate for having nrII = nrIII = {1, 2} is significantly lower compared to
nrII = nrIII ≥ 3. The customer tote throughput increases with almost a factor four from
0.1038 per second to 0.3924 per second for nrII = nrIII = 1 through nrII = nrIII = 6.
For item picking requests, the throughput goes up from 0.1102 per second to 0.4201 per

53



second which is roughly a factor four increase. nrII = nrIII = 3 perform slightly better
nrII = nrIII = {1, 2}, however, greater improvements can be achieved by nrII = nrIII > 3.

2. Storage rack γ utilization reduces when more robots are added per axis as shown in Fig-
ure 8.1a. The maximum storage rack γ utilization is 100% for nrII = nrIII = {1, 2, 3} and
reduces to 2.58% for nrII = nrIII = 6. nrII = nrIII = 4 is the lowest number of robots that
does not fully utilize the storage rack γ (80.16%), i.e., all components of the order picking
system are activated until the end of the shift. Also, this with the observation that robot
II utilization is not at its maximum. This implies sufficient time is available to pick items.
The lead time displayed in Figure 8.1f shows a peak at four robots per axis. This can be
explained by the storage rack γ utilization. If a customer tote which has been stored on
storage rack γ leaves the system, the lead time will increase as this customer tote was in the
order picking system for more than one cycle. Furthermore, having more than four robots
per axis does not significantly improve performance on throughput, customer tote and item
picking request completion, customer tote and item picking request fill rate, and customer
tote and item picking request failures.

3. Five and six robots per axis, nrII = nrIII = {5, 6}, have similar model output parameters
for failures (0.00% to 0.02%), completed customer totes (99.98% to 100%) and item picking
request completion (99.98% to 100%), throughput customer totes (0.3924 per second) and
throughput item picking requests (0.4201 per second). The lead time for five robots (74.39
seconds) per axis is higher than six robots (61.38 seconds) which is related to the higher
storage rack γ utilization in case of five robots (17.25% compared to 2.58%).

In conclusion, reducing the number of robots per axis to one, two, or three is not recommended.
In these scenarios, the order picking system loses full functionality before the end of the shift as
storage rack γ reaches 100% utilization earlier. Besides, all three scenarios do not meet the system
requirements. From four robots onward, most KPIs do not improve significantly. In Section 2.4, it
was already concluded that six robots per axis perform very well with the drawback of having low
robot II utilization, indicating having too many robots allocated. The only scenario that meets
all system requirements is six robots per axis. Four or five robots per axis have slightly worse
performance than the threshold values. As these scenarios are done with the default TSII =
TSIII = FiFo and given that both values are slightly out of limits, this system requirement limit
is raised. It could be possible that the performance changes if another sequencing strategy is
used for robot II and robot III. For scenarios that already perform well, the change in that task
sequencing is not well visible. Therefore, for further analysis of task planning and the warehouse
layout sensitivity study, (nrII , nrIII ) is set to (4, 4).

8.3 Task planning

The previous simulation scenarios use the dispatching rule FiFo as strategy TSi for task sequencing
for both robot II and robot III. In this section, the results are reported for the scenarios where
robot II and robot III strategies are adjusted independently. In total, 30 scenarios are formed by
using the following dispatching rules:

• Robot II task sequencing TSII = {FiFo, LiFo, RoS, LoR, MoR}

• Robot III task sequencing TSIII = {FiFo, LiFo, RoS, LoR, MoR, STT}

Per shift, 5760 customer totes arrive in the order picking system. The number of incoming
item picking tasks can be described as mean µ = 6150.8571, standard deviation σ = 26.8218 and
coefficient of variation CV = 0.0044. The results from the task sequencing variations are shown
in Figure 8.2. The following observations are made to decide on the task sequencing strategy for
robot II and robot III.
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1. For all scenarios it can be observed in Figure 8.2i that storage rack γ utilization remains
below 100%. However, there are significant differences noticeable within a range of 83.57%.
From these results, it can be seen that storage rack γ utilization is related to robot III
utilization shown in Figure 8.2h. If a scenario has a high storage rack γ utilization, it
also has a high robot III utilization. The lowest storage rack γ is seen for the scenario
TSII , TSIII = LOR,STT equal to 7.73%. Moreover, it can be seen that TSII = LOR and
TSIII = STT also result in low storage rack γ utilization when they are independently used
with different strategies.

2. Customer totes failures (Figure 8.2c) and item picking request failures (Figure 8.2d) have
similar results when comparing the scenarios to each other. In particular, having one or
two times RoS as task sequencing strategy provides in most scenarios favorable results. To
meet the system requirements, the failure percentage for both customer totes as item picking
requests should be below 0.01%. Not all scenarios pass these requirements. The 15 scenarios
that pass the system requirements are listed in Table 8.2. Scenarios that passes the system
requirements are italicized in Figure 8.2.

3. From the list above it is noticeable that many strategies include at least one time RoS. In
fact, nine out of the fifteen scenarios that passes the system’s requirements uses RoS for at
least one robot. Looking at the results for strategies that include RoS, it can be noticed
that they have best performances on percentage completed customer totes (Figure 8.2a) and
item picking requests (Figure 8.2b), percentage customer tote (Figure 8.2c) and item picking
requests failures (Figure 8.2d), and throughput for both customer totes (Figure 8.2l) as item
picking requests (Figure 8.2k). Moreover, these satisfying results cannot be extended to
the lead time (Figure 8.2j) and customer tote fill rate (Figure 8.2e). On these topics, other
strategy combinations perform better.

4. The highest lead times are observed in Figure 8.2j is when TSII = {FiFo, LiFo,MOR}
is combined with TSIII = {FiFo, LOR,MOR}. This is also reflected in the storage rack
γ utilization (Figure 8.2i) and the reduced customer totes fill rate (Figure 8.2e) for these
scenarios. Vice versa is true for TSII , TSIII = ({LOR}, {FiFo, LiFo,MOR,RoS, STT})
and TSII , TSIII = ({FiFo, LiFo, LOR}, {STT}) which are among the strategies with the
lowest lead time.

5. TSII = FiFo has exact the same results as TSII = LiFo for all scenarios for TSIII . Based
on this, it can be concluded that it does not matter if robot II starts item picking from the
beginning or end of the work zone. Also, combining TSII = {FiFo, LiFo} with TSIII =
{RoS, STT} gives above-average performance on all model output parameters. Especially
using TSIII = STT shows satisfying combined results for all model output parameters
such as lead time (76.63 seconds), percentage of customer tote and item picking request
completion (99.98% and 99.96%, respectively) , fillrate for customer totes and item picking
requests (99.76% and 99.64%, respectively), and storage rack γ utilization (16.76%). Robot
II and robot III utilization (48.62% and 2.55%, respectively) is the lowest among all scenarios.
However, with the strong performance on throughput, this does not result in issues as the
order picking system is designed so that it will start a task as soon as it becomes available.

Summarizing, from the 30 proposed scenarios for TSII and TSIII , 15 meet the system require-
ments. These 15 scenarios have varying (overall) performance measured by twelve model output
parameters. For best overall performance, the scenario TSII = {FiFo, LiFo} and TSIII = STT
emerged. As the default until now was TSII = FiFo, it was decided to not change this value as
TSII = FiFo performance is equal to TSII = LiFo.

The obtained improvements compared to TSII = TSIII = FiFo and nrII = nrII = 4 are
summarized in Table 8.3. Three significant improvement are visible, namely percentage customer
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Table 8.2: Scenarios that pass the system requirements

TSII TSIII

RoS FiFo
RoS LiFo
LiFo STT
MOR STT
FiFo STT
RoS STT
RoS MOR
LiFo LOR
MOR LOR
FiFo LOR
RoS LOR
LiFo RoS
MOR RoS
FiFo RoS
RoS RoS

failures (-82.35%), percentage item picking request failures (-76.47%) and lead time (-37.49%).
Besides robot utilization, no model output parameter noted a deteriorated value. The robot II
and robot III utilization results can be explained by the lower storage rack γ utilization.

For further analysis in this research the task sequencing strategy is set to TSII = FiFo and
TSIII = STT .

Table 8.3 also compares the obtained solution to the initial setup performance, using FiFo
as task strategy for robot II and robot III, and besides having six robots per axis (D.6). Most
model output parameters have similar results for D.4 (initial setup) and N.4 (new setup with four
robots). However, an essential model output parameter differs significantly, namely mean lead
time equal to 61.3754 seconds in D.4 and 76.6310 seconds in N.4. In addition, the storage rack
is 5.5 times more used in N.4 than D.4, which also leads to a higher robot III utilization, whose
value increased 84 times.

In conclusion, the order picking system’s performance can be significantly improved by adjust-
ing the task sequencing strategy. After changing the task sequencing strategy, having four robots
per axis approaches the performance of the initial setup using six robots per axis. However, the
essential model output parameter means lead time is significantly different. In the initial setup,
the mean lead time equals 61.3754 seconds. However, after adjusting the number of robots to four,
it went up to 122.5994 seconds and could, by adjusting the task sequencing strategy, be reduced
to 76.6310 seconds.
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(a) Mean percentage of completed customer totes
(x100%)

(b) Mean percentage of completed item picking requests
(x100%)

(c) Mean percentage of customer tote failures (x100%) (d) Mean percentage of item picking request failures (x100%)

(e) Mean fill rate customer totes (x100%) (f) Mean fill rate item picking requests (x100%)

(g) Mean robot II utilization (x100%) (h) Mean robot III utilization (x100%)

(i) Mean storage rack γ utilization (x100%) (j) Mean lead time (seconds)

(k) Mean customer tote throughput (completed customer
totes/second)

(l) Mean item picking requests throughput (completed item
picking requests/second)

Figure 8.2: Model output parameters varying TSII and TSIII
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Table 8.3: Model output parameters for default and new task planning strategy

Model output parame-
ter

TSII , TSIII

=
(FiFo,FiFo)
(D.6)

TSII , TSIII

=
(FiFo,FiFo)
(D.4)

TSII , TSIII

=
(FiFo,STT)
(N.4)

D.4 and
N.4 per-
centage
differ-
ence
(%)

D.6 and
N.4 per-
centage
differ-
ence
(%)

Mean percentage com-
pleted customer totes
(x100%)

1.0000 0.9983 0.9997 +0.0014 -0.0003

Mean percentage com-
pleted item picking
requests (x100%)

1.0000 0.9982 0.9996 +0.0014 -0.0004

Mean percentage cus-
tomer tote failures
(x100%)

0.0000 0.0017 0.0003 -0.8235 n.a.

Mean percentage item
picking request failures
(x100%)

0.0000 0.0017 0.0004 -0.7647 n.a.

Mean fill rate customer
totes (x100%)

0.9997 0.9880 0.9976 +0.0097 -0.0021

Mean fill rate item picking
requests (x100%)

0.9993 0.9817 0.9964 +0.0150 0.0029

Mean robot II utilization
(x100%)

0.3073 0.5119 0.4862 -0.050 +0.5822

Mean robot III utilization
(x100%)

0.0003 0.1541 0.0255 -0.8345 +84.0000

Mean storage rack γ uti-
lization (x100%)

0.0258 0.8310 0.1676 -0.7983 5.4961

Mean lead time (seconds) 61.3754 122.5994 76.6310 -0.3749 +0.2486
Mean throughput cus-
tomer tote (customer
totes/second)

0.3924 0.3928 0.3933 +0.0013 +0.0022

Mean throughput item
picking requests (item
picking requests/second)

0.4201 0.4200 0.4206 +0.0014 +0.0012

58



8.4 Sensitivity analysis

This section provides the results of the sensitivity analysis. The sensitivity analysis aims to de-
termine how different layout variables affect throughput and robot utilization. The sensitivity
analysis provides insights into three categories: robot influence, arrival rate, and order picking
system layout. Seven scenarios are created by adjusting the following parameters:

• Robot I delay

• Number of robot II (independent of other robot types)

• Number of robot III (independent of other robot types)

• Item picking request arrival rate

• Customer tote arrival rate

• Storage rack γ size

• Conveyor belt standstill period.

Each scenario will be analyzed and discussed separately.

Robot I delay

This analysis will relax the assumption that robot I has all the item bins ready before robot II
needs them. Now robot II might need to wait until robot I has completed item bin reshuffling.
Short item bin reshuffling will take on average gI × 7.0092 seconds and long item bin reshuffling
will take on average gI × 10.4356 seconds. Increasing gI leads to longer processing times for robot
I. The following observations are made:

1. When robot I influence gI increases, the overall order picking system performance decreases
as shown in Figure 8.3, especially storage rack γ utilization, and the number of failures
increases. This can be explained as robot II needs to wait before it can perform item
picking tasks and therefore has a shorter time frame in which the item picking tasks can
be performed. Furthermore, the completion percentage, fill rate, and throughput decreases
when robot I plays a more prominent part.

2. gI = 25% still leads to desirable results as this scenario meets the system requirements.
Furthermore, the performance on task completion for customer totes (99.97%) and item
picking requests (99.96%), fill rate for customer totes (99.76%) and item picking requests
(99.30%) , and throughput for customer totes (0.3933 seconds) and item picking requests
(0.4206 seconds) is equal to the default case. In contrast, it is visible that the lead time is
significantly higher when increased from default to gI = 25%, 76.6310 seconds compared to
102.3214 seconds. Also, gI = 25% results in storage rack γ utilization increase by factor 2.5
compared to the default scenario, from 16.76% to 43.33%.

3. When gI ≥ 50%, the order picking system is influenced so that the system requirements are
not met anymore. This means that robot I needs too much time to have all item bins ready
so robot II can pick the item.

To summarize, gI negatively influences the order picking system’s throughput performance.
Having gI = 25% still results in acceptable performance, but gI ≥ 50% is not recommended as it
does not meet the system requirements and has no good throughput performance.
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(a) Mean storage rack γ utilization (b) Mean robot II and robot III utilization

(c) Mean number of failures (d) Mean task completion and fill rate

(e) Mean throughput (f) Mean lead time

Figure 8.3: Model output parameters varying robot I influence

Robot II

Previously in this research, the effect of different numbers of robots per axis was explored. This
resulted in four robots per axis. In extension, nrII is varied while nrIII remains equal to four
robots per axis. The results are presented in Figure 8.4. The following observations are made:

1. Starting from nrII = 1, every additional robot II results into a decrease in storage rack
γ utilization. The storage rack γ utilization varies between 94.53% (nrII = 1) till 2.64%
(nrII = 6). Furthermore, adding more robots lead to a decrease in failures for customer totes
and item picking requests. Moreover, an increase is seen in completed tasks for customer
totes and item picking requests, and fill rate for customer totes and item picking requests.
The system requirements are met if nrII ≥ 4.

2. Large improvement is seen when increases from nrII = 1 to nrII = 3 for the throughput for
customer totes (0.1531 to 0.3857 per second) and item picking requests (0.1632 to 0.4121 per
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second), task completion for customer totes (38.91% to 98.04%) and item picking requests
(38.87% to 97.94%) , and fill rate for customer totes (37.73% to 97.24%) and item picking
requests (37.09% to 96.52%). The improvement in performance stagnates from three robots
onward.

3. No significant reduction in lead time is seen when nrI increases, although, six times robot
II reports the lowest lead time of 69.5559 seconds.

4. nrII does not have a straightforward relationship with robot II’s utilization. From nrII =
1 to 3, the robot II utilization increases, while for nrII = 4 it decreases by almost 40%, so
it can increase again for nrII = 5 whereafter for nrII = 6 the performance decreases to the
lowest value measured. A less strong copy of this behaviour can be seen in the lead time,
where it also goes up after four robots II and goes down again for six robots II.

Summarizing, setting nrII to a value lower than default decreases overall order picking sys-
tem’s performance. Moreover, the system requirements are met from nrII ≥ 4. The relationship
between nrII and robot II utilization is complex and the lead time does not change significantly
when nrII is varied.

Robot III

Previously in this research, the effect of different numbers of robots per axis was explored. This
resulted in four robots per axis. In extension, nrIII is varied while nrII remains equal to four
robots per axis. The results are presented in Figure 8.5. The following observations are made:

1. Reducing nrIII lead to a heavy increase in storage rack γ utilization. In the scenarios
nrIII = 1 and nrIII = 2, the storage rack γ reaches 100% utilization. For these scenarios, the
task completion and fill rate is low. The number of failures decreases when nrIII increases.
The system requirements are met for nrIII ≥ 4. Going up from nrIII = 1 to 4, these
performance measures will improve. From four and more robots, the improvement stagnates.

2. Throughput is not influenced by the nrIII . For all six scenarios, it is relatively stable for
customer totes (approximately 0.3912 per second) and item picking tasks (approximately
0.4182 per second).

3. From nrIII = 2 to nrIII6, robot III utilization decreases from 28.92% to 0.18%. The biggest
decrease is observed from three to four robot III as it went from 26.99% to 2.55%.

Summarizing, setting nrIII to a value lower than default decreases overall order picking sys-
tem’s performance. Moreover, the system requirements are met from nrII ≥ 4. The throughput
does not change significantly when nrII is varied.

Item picking requests

The results of varying the number of incoming picking requests are presented in Figure 8.6. The
number of incoming items distribution Y is adjusted while nct remains the same. This results in
more picking tasks required per customer tote. The following observations are made:

1. Reducing the number of item picking requests to one per customer tote leads to best per-
formance. No failures occur and the lead time is equal to the minimum value possible equal
to 61 seconds.
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(a) Mean storage rack γ utilization (b) Mean robot II and robot III utilization

(c) Mean number of failures (d) Mean task completion and fill rate

(e) Mean throughput (f) Mean lead time

Figure 8.4: Model output parameters varying number of robot II

2. Varying the number of item picking requests per cycle influences the order picking system’s
performance. For example, the mean lead time decreases for the scenarios +20% and +30%
item picking requests due to the high storage rack γ utilization. Furthermore, robot II
utilization increases when more item picking requests are made.

3. Increasing the number of item picking requests per cycle decreases overall order picking
system performance. In addition, more item picking requests results in higher storage rack γ
utilization - where +30% even reaches 100% utilization -, increased failures, decreased task
completion, fill rate, and lead time.

4. The system requirements are met for -9.5%. and +0% (default scenario).

In conclusion, reducing the number of item picking requests leads to optimal performance for
failures (0%) and lead time (61 seconds). In contrast, increasing the number of item picking
requests per cycle results in a decline in the overall order picking system’s performance.
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(a) Mean storage rack γ utilization (b) Mean robot II and robot III utilization

(c) Mean number of failures (d) Mean task completion and fill rate

(e) Mean throughput (f) Mean lead time

Figure 8.5: Model output parameters varying number of robot III

Customer totes

In contrast to the previous sensitivity analysis, in this sensitivity analysis, nct is adjusted while Y
remains the same. Figure 8.7 shows the order picking system performance for the different number
of incoming customer totes per cycle. The following observations are made:

1. Increasing nct highly influences the order picking system’s performance negatively. Storage
rack γ utilization seriously increases when more than 24 (default) customer totes arrive each
cycle. In both scenarios where nct has been increased, storage rack γ utilization reached
100% before the end of the shift. Another noticeable increase is the failure percentage,
which goes from 0.03% to 7.00% for customer totes and 0.04% to 7.27% for item picking
requests. Therefore, system requirements are not met if nct ≥ 32.

2. Both nct = 12 and nct = 16 show equal satisfactory performance on completion, fill rate,
failure percentage, and lead time. From this it can be concluded that nct = 12 is unnecessary
low for the nri present in the system.
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(a) Mean storage rack γ utilization (b) Mean robot II and robot III utilization

(c) Mean number of failures (d) Mean task completion and fill rate

(e) Mean throughput (f) Mean lead time

Figure 8.6: Model output parameters varying number of incoming item picking requests

Summarizing, lowering nct result into excellent results. However, no significant difference in
completion, fill rate, failure percentage and lead time is visible between nct = 12 and nct = 16.
Increasing nct result into a serious increase in storage rack γ and leading to not able to meet the
system requirements anymore.
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(a) Mean storage rack γ utilization (b) Mean robot II and robot III utilization

(c) Mean number of failures (d) Mean task completion and fill rate

(e) Mean throughput (f) Mean lead time

Figure 8.7: Model output parameters varying incoming customer totes
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Storage rack γ height

Figure 8.8 shows the performance for the scenarios where hsrγ is adjusted. The following obser-
vations are made:

1. The number of storage rack γ levels does not significantly influence the order picking system
performance. Robot II utilization (approximately 48.39%) and throughput per second (ap-
proximately 0.3933 customer totes per second and 0.4107 item picking requests per second)
do not significantly change among the four scenarios.

2. In case the storage rack γ is entirely removed (zero levels), the failure percentage is slightly
higher than allowed, namely 0.12% for customer totes and 0.14% for item picking requests.
The lead time equals the minimum lead time of 61 seconds, but this is because a customer
tote cannot stay longer than one cycle in the order picking system. Therefore, storage rack γ
seems significantly higher than the default case. However, this is because this measurement
is expressed in percentages. In percentage terms, the storage rack γ is more utilized when the
order picking system consists of fewer storage rack γ levels. However, the absolute numbers
are similar.

3. Reflecting on the system requirements, hsrγ = 0 is slightly out of limits on the failures namely
0.12% for customer totes and 0.14% for item picking requests. For all other scenarios, the
system requirements are met.

4. The observation that the number of storage rack γ levels does not influence the performance
of the order picking system a lot can be explained by the earlier observation that in the
default scenario the storage rack γ has low utilization. This order picking system does not
rely heavily on the storage rack γ to be able to execute tasks during a full shift.

To summarize, hsrγ does not have a significant impact on the order picking system performance.
The system requirements are not met in case storage rack γ is removed (hsrγ = 0). Reducing the
storage rack levels to one or two leads to a higher storage rack γ. Other than that, the order
picking system performance is similar to other scenarios.

Conveyor belt standstill period

Figure 8.9 shows the performance for the scenarios where dec2 is adjusted. The following observa-
tions are made:

1. A conveyor belt standstill period dec2 ≥ 60 result in no failures, maximum task completion,
and a maximum fill rate. Although this indicates high order picking system performance,
the conveyor belt standstill period is longer than needed. The throughput rate decreases as
the conveyor belt standstill period decrease. The lead time for a conveyor standstill period
dec2 ≥ 60 result into the minimum lead time possible. Moreover, robot II utilization decreases
to 34.76%. This indicates that there is plenty of time available to complete all customer totes
and item picking requests.

2. dec2 ≤ 36 result into a storage rack γ utilization of 100%. These scenarios cannot handle
the tasks within the shortened conveyor belt standstill period and do not meet the system
requirement. This is also visible in the increased number of failures (up to 25.82%) and
decreased task completion for customer totes (74.42% and 97.10%) and item picking requests
(73.66% and 96.94%), and fill rate for customer totes (72.29% and 95.84%) and item picking
requests (70.92% and 94.74%).

Summarizing, dec2 influences the order picking system significantly. Increasing dec2 leads to great
performance, only the robot utilization is lower. In contrast, dec2 ≤ 48 gives undesirable results
and do not meet the system requirements.
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(a) Mean storage rack γ utilization (b) Mean robot II and robot III utilization

(c) Mean number of failures (d) Mean task completion and fill rate

(e) Mean throughput (f) Mean lead time

Figure 8.8: Model output parameters varying storage rack γ levels
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(a) Mean storage rack γ utilization (b) Mean robot II and robot III utilization

(c) Mean number of failures (d) Mean task completion and fill rate

(e) Mean throughput (f) Mean lead time

Figure 8.9: Model output parameters varying conveyor standstill period
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Chapter 9

Conclusion

This chapter is dedicated to the conclusion. The research questions are answered in Section 9.1.
The contribution of this research to the literature is discussed in Section 9.2. Furthermore, the
limitations of this research and further research recommendations are presented in Section 9.3 and
Section 9.4, respectively.

9.1 Conclusion and recommendations

The main research question and the corresponding sub-questions have been formulated in Sec-
tion 3.2. Literature is found and described in Chapter 4 to formulate an answer to sub-question
1. The results for sub-question two through four have been presented in Chapter 8. This section
will reflect first on the sub-questions and finally answer the main research question.

1. Which methods for task planning can be used to maximize the throughput and
robot utilization?

Task planning can be divided into three problems to be solved, namely task allocation, task
sequencing, and task synchronization. It is critical to solve these problems as they influence au-
tomated warehouse performance. Task allocation influences the overall efficiency, task sequencing
influences resource efficiency and overall throughput performance, and task synchronization affects
the overall efficiency of order fulfillment.

To solve the task allocation problem in this research, literature was found on auction-based
methods, dispatching rules, bin packing methods, dual bin covering methods, or zoning. In
auction-based methods, the bidding and the winning bid selection process can be adjusted, making
this method applicable in many situations. Dispatching rules give priority to one task amongst
other tasks. Three single-attribute dispatching rules for allocation are the shortest travel time,
longest idle time, and least utilized vehicle. Bin packing or dual bin covering problems can be used
when the robot’s queue is seen as the bin. For bin packing, four algorithms were found, namely
next fit (decreasing), best fit (decreasing), first fit (decreasing), and worst fit (decreasing). For the
dual bin covering problem, next fit (decreasing), iterated lowest fit decreasing, first fit (decreas-
ing), algorithm “simple”, algorithm “improved simple.” The last method described to solve the
task allocation problem is zoning. In zoning, a work area is divided into various work zones. One
or more resources are allocated per work zone to fulfill the tasks. Several variants of zoning were
presented, such as parallel zoning or sequential zoning.

To solve the task sequencing problem, three topics were described: dispatching rules, vehicle
routing problem, and the exact modeling approach mixed-integer linear programming. Regularly
used single-attribute dispatching rules for task sequencing are first in first out, last in first out,
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random on service, shortest processing time, longest processing time, earliest due date, least op-
erations remaining, most operations remaining, shortest travel time, shortest travel distance, job
slack, and job slack per ratio. Furthermore, multi-attribute dispatching rules exist such as combin-
ing multiple single-attribute dispatching rules with assigned weights, Multi-Att, and Multi-Mod.
Task sequencing can also be solved by approaching the problem as a vehicle routing problem with
pickup and delivery from different origins to different destinations. This can be extended with
temporal constraints such as time windows or deadlines. The last possibility described is solving
the task sequencing problem exact via mixed-integer linear programming as a modeling approach.

The third problem is related to task synchronization between multiple robot types. In this
research, the task synchronization between different robot types can be approached as transfer
robots, search and rescue robots, and multi-robot task scheduling. A transfer robot is mainly seen
as a supporting robot. Transfer robots can be synchronized via simple dispatching rules, con-
straint programming, or an auction-based mechanism where all resources’ schedules are updated
after each bidding round. When approaching it as search and rescue robots, three possibilities
arise. First, two independent schedules can be made. Second, hindsight optimization could be
used to solve uncertain tasks by incorporating the distribution of unknown tasks by Monte Carlo
simulations. Finally, a task schedule can be made via a negotiating process. Possible methods
for multi-robot task scheduling are heterogeneous task scheduling with coupled temporal-spatial
relations between robots and complex-schedule constraints between orders. Mixed-integer linear
programming is used as a modeling approach to find a feasible schedule. Furthermore, collabora-
tive multi-robot scheduling can be created via polynomial-time heuristics, taking spatial planning
and temporal constraints into account.

The effectiveness of the solutions to the three main problems can be determined via perfor-
mance measures. The performance measures can be related to costs, throughput, make-span, open
jobs, traveled distance, and travel time.

In this research, the task allocation problem is solved via zoning. The task sequencing prob-
lem is solved by applying single-attribute dispatching rules. The task synchronization problem is
approached as one main robot (robot II) and one supporting robot (robot III). The main robots
create a task schedule independently, and the supporting robot adjusts the workload and timings
to the schedule of the main robot.

2. What is the effect on the throughput and robot utilization when multiple robots
are located per axis?

The throughput and robot utilization is analysed for nrII = nrIII = {1, 2, 3, 4, 5, 6}. The through-
put is positively influenced by the number of robots located per axis. Looking at the throughput
performance from nrII = nrIII = 1 through nrII = nrIII = 6, it was shown that nrII = nrIII = 1
has the lowest throughput performance and nrII = nrIII = 6 the highest throughput performance.
nrII = nrIII = 1 result in a throughput 0.1038 customer totes per second and 0.1102 item picking
requests per second. nrII = nrIII = 6 reported a higher throughput, namely 0.3924 customer
totes per second and 0.4201 item picking requests per second. However, model output parameters
such as percentage completion for customer totes and item picking requests, fill rate for customer
totes and item picking requests, and throughput rate for customer totes and item picking requests
stagnates from nrII = nrIII ≥ 3. At nrII = nrIII = 3 the throughput is to equal to 0.3829
customer totes per second and 0.4082 item picking requests per second. A very limited increase is
visible when more than three robots per axis are used. As storage rack γ reaches 100% utilization
before the end of the shift in the scenario nrII = nrIII = 3, this is not a feasible scenario. This
means that the scenarios nrII = nrIII ≥ 4 are feasible and can be considered.

The lead time fluctuates when adjusting the number of robots. There is no trend visible when
reducing the number of robots per axis from six to one. A fair lead time can be given when storage
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rack γ does not reach 100% before the end of the shift. As mentioned previously, this is true for
nrII = nrIII ≥ 4. From four robots and more, the lead time decreases when more robots are added
from 120.0833 seconds when four robots are located per axis to 61.3754 seconds if six robots are
located per axis.

The requirement that robot II is always performing picking tasks unless no one is available is
incorporated in the simulation model design. If robot II is idle and an item picking task becomes
available, the robot will immediately start. This principle already maximizes the robot II utiliza-
tion for a specific case. Robot II is not idle unless no tasks available to execute.

For nrII = nrIII = {1, 2}, robot II utilization is converging to maximum during conveyor
standstill period which is equal to 78.67%. Based on this observation, it can be concluded that
the workload per robot for nrII = nrIII ≤ 2 is too high. Robot II utilization lowers starting
from nrII = nrIII ≥ 3. Robot II utilization lowers starting from nrII = nrIII = 3 robot II
utilization is equal to 51.08% and reduced every time an additional robot is added. Eventually,
robot II utilization reduces to 30.73% when the order picking system consists of six robots per axis.

Combining the effects of the number of robots per axis on the throughput and robot II utiliza-
tion, it is recommended to reduce nrII = nrIII . In the initial setup, the model output parameters
have favorable outcomes except for robot II utilization. It is seen that for nrII = nrIII ≥ 3, most
model output parameters do improve very little while robot II utilization is significantly higher.
As nrII = nrIII = 3 is not a feasible scenario, the recommendation is to set nrII = nrIII = 4.

3. How to design a task planning tool to maximize the throughput and robot uti-
lization when similar robots perform tasks in strictly dedicated work zones?

The task planning tool requires three major decisions: task allocation, task sequencing, and task
synchronization. The task allocation problem is addressed via zoning with strict boundaries. Four
equal work zones have been created and one robot is assigned per work zone. Task synchronization
is done as follows. Robot II is the main robot in the order picking system and robot III is a sup-
portive robot. Robot III adjusts its workload and task schedule based on robot II’s progress and
the remaining time until conveyor belt 2 starts moving. If robot II did not fulfill enough customer
totes relative to the remaining time, robot III starts moving customer totes to the storage rack.
The task allocation and task synchronization strategy remain equal for all scenarios.

Task sequencing strategies were varied for robot II and robot III. In total, 30 combinations
were made. Above-average results were reported in scenarios with TSII = {FiFo, LiFo} com-
bined with TSIII = {RoS, STT} for most model output parameters. TSII = {FiFo, LiFo} have
exactly the same performance. As TSII = FiFo is the default task strategy, FiFo is preferred
over LiFo, and only this strategy is considered from now on. Especially STT for TSIII , gives
satisfying combined results for all model output parameters such as lead time for customer totes
and item picking requests, completion percentage for customer totes and item picking requests, fill
rate for customer totes and item picking requests, throughput for customer totes and item picking
requests, and storage rack γ utilization.

TSII = FiFo combined with TSIII = RoS gives slightly better performance for throughput
for customer totes and item picking requests than TSII = FiFo combined with TSIII = STT .
The first scenario results in 0.3934 customer totes and 0.4207 item picking requests per second,
while the second scenario leads to 0.3933 customer totes and 0.4206 item picking requests per sec-
ond. For both model output parameters, it can be seen that the difference is minimal and equals
0.01 per second. In contrast, the lead time difference between these two scenarios is four seconds
in favor of TSII = FiFo combined with TSIII = STT . The first scenario results in a lead time of
80.4577 seconds, while the second scenario reports 76.6310 seconds. The lead time decreased by
37.49% when comparing the second scenario with the default task sequencing strategy and four
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robots per axis.

Robot II utilization is not the highest in case TSII = FiFo combined with TSIII = STT . It is
the lowest value reported, which is equal to 48.62%. From the analysis, it could be concluded that
robot II utilization is positively related to storage rack γ utilization. For this specific scenario,
storage rack γ utilization value is one of the lowest reported from the scenarios that pass the
system requirements and equals 16.76%. Therefore, robot II does not execute tasks all the time
as there are no tasks available, resulting in lower robot II utilization.

Maximizing the throughput for customer totes and item picking requests within the feasi-
ble system requirement boundaries and taking into account the robot utilization and lead time,
TSII = FiFo and combined with TSIII = STT is the recommended task strategy to complete
the task planning tool decisions.

4. What recommendations can be given regarding the automated warehouse sys-
tem’s layout?

Seven independent analyses were done on the automated warehouse system’s layout. The following
recommendations can be made:

• Robot I delay: The maximum robot I delay that would let the order picking system pass
the system requirements is 25%. This means robot I has spare time to reshuffle item bins
during the conveyor belt standstill time.

• Number of robot II: Reducing the number of robot II below four (default) fails on the
system requirements for percentage failures. Having four robots or more results in satisfying
performance, but little difference can be noticed between four, five, or six robots. As it
brings only few advantages, it is recommended to set the number of robot II to default.

• Number of robot III: Reducing the number of robot III below default leads to failed system
requirements. Furthermore, increasing the number of robot III does not improve the order
picking system. Therefore, the recommendation is to keep the number of robot III to the
default value of four.

• Incoming item picking requests: The order picking system cannot deal with increased in-
coming item picking requests. Lowering the incoming picking requests leads to optimal lead
time and no failures. However, the throughput rate decreases, which is undesirable if not
explicitly required. Therefore, it is recommended not to change the number of incoming
item picking requests per cycle.

• Number of incoming customer totes: The order picking system cannot deal with increased
customer totes. Lowering the incoming customer totes lead to optimal lead time and no
failures. However, the throughput rate decreases, which is undesirable if not explicitly
required. Therefore, changing the number of incoming customers totes per cycle is not
recommended.

• Storage rack γ height: The selected task planning tool uses the storage rack for 16.75% per
shift. Therefore, more storage rack γ capacity is not needed. Achieving a higher storage rack
γ utilization can be accomplished by reducing the number of storage rack levels. Reducing
the storage rack levels to one level results in a storage rack γ utilization of 65.97%. In this
way, the storage rack γ is higher utilized. The utilization is still low enough to pass the
system requirements, and in this way, there are fewer redundant components in the order
picking system. Customer tote and item picking request throughput even as robot utilization
remain similar. Therefore, it is recommended in the current setup to reduce storage rack γ
to one level.
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• Conveyor belt standstill period: Decreasing the conveyor belt standstill period is not recom-
mended as this scenario results in too many failures causing failing in the system require-
ments. Increasing the conveyor belt standstill period to 60 seconds results in the lead time,
percentage completion, and fill rate having (close to) optimal performance. However, the
negative aspect is that the throughput per second decreases from 0.3933 customer totes and
0.4206 item picking requests per second to 0.3288 customer totes and 0.3516 item picking
requests per second.

The main research question addressed throughout this master’s thesis is as follows:

How can the order picking tasks be planned such that the throughput and robot
utilization are maximized considering a fixed order picking system setup?

Throughout this research, multiple decisions have been made to develop a task planning tool in
which the order picking tasks can be planned such that the throughput and robot utilization are
maximized. Comparing the initial setup, which consists of six robots and FiFo as task sequencing
strategy for both robots, to the new developed setup, where four robots per axis are included
using FiFo for robot II and STT for robot III, indeed the robot utilization and throughput are
improved. A significant improvement of 58.22% is visible in robot II utilization. The throughput
per second increased by 0.22% for customer totes and 0.12% for item picking requests.

Therefore, the task planning tool can be designed as follows. Implement strict dedicated zoning
as task allocation strategy in which robots are only allowed to perform tasks in their dedicated
work area. Approach task synchronization as main (robot II) and supportive robot (robot III).
The supportive robots adjust their workload to the task achievements by the main robots relative
to the remaining time before the conveyor belt starts moving. Reduce the number of robots per
axis from six to four. Furthermore, adjust the task sequencing strategy of robot III from FiFo to
STT. Moreover, reduce storage rack γ height from three to one level. Finally, all other settings
remain equal to the initial setup.

9.2 Contribution to the literature

This research described the considered order picking system for the first time in full detail. A
substantial amount of literature could be found on task allocation, task sequencing, and task
synchronization. However, literature considering these topics in an environment with multi-robot
collaborative teams positioned on shared guiding rails was not found. This research contributes
to these topics by considering a new setup in which they are combined and applied. During this
research, a model is created to determine the effect of several design parameters on the defined
model output parameters. Furthermore, the effects of the number of resources per shared guiding
rail on the throughput and resource utilization are studied. Moreover, it was demonstrated that
going beyond the simple and widely used single-attribute dispatching rule FiFo is advantageous.
Although FiFo is still selected as task sequence strategy for robot II, it was shown that implement-
ing other single-attribute dispatching rules for main robots and supporting robots could improve
the order picking system performance.

9.3 Limitations

This research has the following limitations:

• No company data was available to serve as input during the development and test phase of
the models and scenarios. Instead, pseudo-random input data was created and used.

• SKU demand details are not taken into account. It is assumed that demand is uniformly
distributed among all SKUs. Therefore, bundling, tying, cross-selling, or upselling SKUs are
not included.
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• It is assumed that robot I finishes item bin reshuffling before robot II starts picking items.

• Movements and utilization related to storage rack α, storage rack β, conveyor belt 1, and
robot I are excluded from this research scope. Therefore, all task execution or movements
considering these components are assumed to be possible at any moment in time.

• No component failure can occur and the efficiency over time and usage remains the same.

• Robots are only capable of moving in strictly dedicated work zones.

9.4 Future research suggestions

In this section, four future research suggestions are described.

First, it would be interesting to test the scenarios with real company data and analyze the
obtained results compared to the achieved results in this research. In addition, studying real de-
mand data could reveal relationships between SKU demand which could be interesting to consider
during task allocation and task sequencing.

Second, by extending the order picking system with the components currently out of scope for
this research, namely storage rack α, storage rack β, conveyor belt 1, and robot I would complete
the order picking system. In order to achieve this, future research has to be done on the item bin
reshuffling process and combine the solution with the findings of this research.

Third, another interesting topic for future research would be the consideration of preventive
and corrective maintenance for all components and the consequences for task allocation, task se-
quencing, and task synchronization. Including maintenance would make the model more realistic
and, therefore, more valuable.

The final suggestion for future research is the implementation of shared work zones for all
robot types. Multiple robots of the same type can enter the same areas in shared work zones.
Therefore, a collision between robots should be avoided. Collision avoidance between in a multi-
robot environment is considered by Notomista, Mayya, Hutchinson, and Egerstedt (2019) and
D. Sun, Kleiner, and Nebel (2014). Furthermore, a suggestion is to approach the multi-robot col-
lision avoidance problem as a cyclic hoist scheduling problem with multiple robots. Cyclic hoist
scheduling problems are considered by Chtourou, Manier, and Loukil (2013), Zhou and Liu (2008),
and Lei and Wang (1991). A similarity between the cyclic hoists and this order picking system is
that several robots move on the same shared axis.
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