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Abstract

Extrusion is a common production technique in the polymer processing indus-
try to obtain products with a desired cross-section. In this process a polymer is
molten and pushed through a die with a certain cross-sectional shape, to obtain
a product (extrudate) with a desired cross-sectional shape. A common require-
ment on the extrudate is dimensional precision. However, the dimensions of the
extrudate are highly influenced by a phenomenon called extrudate swell, where
the extrudate starts to expand due to internal stresses in the polymer once it
leaves the die. Die shape optimization is the term for finding a die shape that
corresponds to the desired extrudate shape once the swelling process is com-
plete and the extrudate shape remains constant. Examples of products that
are produced with polymer extrusion are pipes, tubes, sheets, films, structural
parts and tires.

Recently published research focuses on die shape optimization using feedback
control, where the die shape is adjusted online to obtain the desired extrudate
shape. The employed controller is in the form of an integrator, where the
difference between the desired and measured extrudate shape is added at discrete
time intervals. The control scheme is implemented in a digital environment and
uses the Finite Element Method to calculate the extrudate shape.

The shape of the extrudate is measured at a different location than the die
exit, as to allow the extrudate to settle to a constant shape. This results in
a significant transportation delay between input and output. In addition, the
nonlinear underlying dynamics of the extrudate shape are treated as black box,
such that the assumption is imposed that the process is stable. These challenges
resulted in the need for a controller that is conservatively tuned.

As such, there is a need for improvements of the existing control structure,
to either guarantee stability and/or improve the rate of convergence to the die
shape that results in the desired extrudate shape. Three optimization methods
are applied in this research: (1) extremum seeking, a method that perturbs
the input such that local gradient estimation of a cost function can be ob-
tained, guaranteeing stability under certain conditions, (2) surrogate modeling
identifies input-output relations using a limited number of constant inputs and
subsequently estimates the optimal die shape, and (3) the Smith Predictor, a
dead-time compensation control structure that seeks to diminish the effect of
the transportation delay, and as such is able to converge to the optimum die
shape more quickly.
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Experimental simulation results show a significant increase in rate of con-
vergence for surrogate modeling and the Smith Predictor. Surrogate modeling
reduces the convergence time by approximately 60% and the Smith Predictor
by 82%. The Smith Predictor does however require a model of the system and
needs to be conservatively tuned for the best convergence rate, robustness and
to allow the same model to be used on different polymers. Extremum seeking
however, is very slow compared to surrogate modeling, the Smith Predictor and
even the integrative controller from the state of the art. On the other hand, the
extremum seeking scheme guarantees stability and convergence.
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Chapter 1

Introduction

Extrusion is a common production technique in the polymer processing indus-
try to obtain products with a desired cross-section. In this process a polymer
is molten and pushed through a die with a certain cross-sectional shape, to
obtain a product (extrudate) with this same cross-sectional shape. A common
requirement on the extrudate is dimensional precision. However, the dimensions
of the extrudate are highly influenced by a phenomenon called extrudate swell,
where the extrudate starts to expand due to internal stresses in the polymer
once it leaves the die [1]. Examples of products that are produced with polymer
extrusion are pipes, tubes, sheets, films, structural parts and tires.

In industry, a regularly applied practice is to adjust the dimensions of the die
by trial-and-error until the desired extrudate shape is obtained. Due to internal
stresses the resulting extrudate to a given die shape may be difficult to predict.
Therefore, especially for complex extrudate shapes, this is a time consuming and
therefore costly process resulting in a desire to streamline this process in the form
of a numerical optimization procedure without the need for actual experiments.
Various articles have been published on die shape optimization, both using
heuristic techniques, i.e. rules of thumb that limit extrudate deformation, such
as die temperature and extrudate velocity through the die [2], and e.g. in
a numerical environment that optimize finite element method (FEM) models
while simulating extrudate behavior [3, 4].

Although the optimization methods presented here are applicable to the
general die optimization problem, this thesis will relate to the works resulting
from [1]. In this article, an extrudate model that is based on a FEM model is
presented, and the die shape is optimized using feedback control, such that the
die shape is optimized online. Furthermore, this article’s introduction contains
an extensive review of previous works that treat die optimization. The article
presents a FEM framework for extrudates with one or more design variables that
determine the die shape, i.e. inputs. In the case of just one design variable the
extrusion process is modeled in two dimensions and only the height of the die is
subject to optimization, see Fig. 1.1 [1]. The goal of this optimization process is
to obtain an extrudate with a desired height, i.e. output. The polymer is pushed
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CHAPTER 1. INTRODUCTION

Figure 1.1: Side view of SISO extrusion process for a fixed flowrate Q with die
height u and resulting extrudate height y. Due to internal stresses, the extrudate
height is not constant and reaches steady state only after it has traveled a certain
distance.

Figure 1.2: Control loop of the die shape optimization problem as implemented
in [1]. The control action resembles an I-controller, such that the error is
summed over time and multiplied by a gain to update the control action.

through the die, after which internal stresses make the extrudate deform until
it reaches a steady state. For three dimensional extrudates, this optimization
problem is extended to multiple inputs and multiple outputs. Rather than just
the die height, the die corners and the die surface are also subject to optimiza-
tion, see e.g. Fig. 1.3. 4-fold rotational symmetry around the desired extrudate
center is assumed, as shown in the figure. In the simulations, the extrusion par-
ticles exiting the die that are in contact with an input position u1, u2, u3 and u4

(red dots in Fig. 1.3) travel in longitudinal direction. After a specified distance
from the die, the polymer is assumed to be relaxed and therefore has reached
a steady state shape. The particles that have traveled that distance are then
measured and treated as the outputs of the system: y1, y2, y3 and y4. For both
single-input single-output (SISO) and multiple-input multiple-output (MIMO)
optimization problems, this transportation delay causes a significant time de-
lay between inputs and measured outputs, a so-called dead time, resulting in
conservatively tuned control parameters for the feedback controllers in [1], see
Fig. 1.2.

Although [1] is able to successfully optimize the die shape to achieve the
desired extrudate shape, the stability analysis is only observation based, and
not based on any control theory. Multiple simulations are performed for differ-
ent control parameters and their effect on stability and performance is depicted
in the form of extrudate dimensions as a function of time. Moreover, although
relations between inputs and outputs, i.e. die shape and extrudate shape respec-
tively, are assumed, they are not used to form any mathematical relations, such
as differential equations. Additionally, the work only explores a conservatively
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CHAPTER 1. INTRODUCTION

Figure 1.3: Front view of a MIMO die shape optimization process. In black, a
cross section of the original die and desired extrudate shape, and in blue, the
optimized die shape. The resulting optimal inputs/design variables are u1, u2,
u3 and u4.

tuned I-controller as control structure, limiting rate of convergence.
In this thesis, the above mentioned shortages are addressed, meaning that

the relation between inputs and outputs are explored and identified in the form
of low-order approximations. This identification is then used to increase the per-
formance compared to that of the existing solution. Model-based performance
enhancements are achieved via dead-time compensators using PID control [5].
Dead-time controllers account for the transportation delay that is present in
the control loop, but require knowledge of the system dynamics. More accurate
knowledge of these dynamics, allows for a more aggressive controller, and thus
faster convergence speed. Furthermore, several data-driven control methods are
employed that, have a trade-off of decreased performance, but can guarantee
stability under certain assumptions without the need for an estimate of the sys-
tem. Data-driven control methods are attractive, since an accurate model may
not always be available.

Although the MIMO die shape optimization problem is described in this the-
sis, the optimization methods are not applied to the MIMO problem. However,
these methods are described in a general sense, such that they can be applied
to the MIMO problem under validity of certain assumptions.

The outline of this thesis is as follows. In Chapter 2 the optimization prob-
lems are formulated. Next, in Chapter 3 the chosen optimization methods and
algorithms are described, for which the implementation is then given in Chap-
ter 4. In this chapter the simulation comparisons and results are also provided.
Lastly, in Chapter 5 conclusions and a discussion for future work can be found.
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Chapter 2

Problem formulation

In this chapter, the control problem for die shape optimization is introduced.
First, the die shape optimization problem is described, after which the state of
the art solution is briefly summarized. Finally, the design goals of this work are
presented.

Die shape optimization in the environment described in [1] is considered.
This environment uses partial differential equations (PDE’s) to calculate the
extrudate shape, such that it matches a finite element method (FEM) model.
In [1], two scenario’s are considered: (1) SISO die shape optimization such that
only the die height is optimized, i.e. a single design variable and (2) MIMO
die shape optimization such that 4 design variables are subject to optimization.
In the second case, these 4 variables determine the cross section of the die. In
both cases, the shape of the extrudate needs to be steered to a desired shape
by adjusting the design variables. However, only SISO die shape optimization
is considered in this thesis.

However, there is a significant delay between an adjustment of the design
variables and the resulting effect on the extrudate shape at the measurement
position. This is the result of not measuring the extrudate shape at the same
location as that of the die, see Fig. 1.1. Instead, after the polymer is pushed
through the die, it will be transported in the longitudinal direction, where it is
subject to internal stresses, such that the shape of the extrudate changes as it
is being transported. Only after a given distance, is the shape of the extrudate
measured, after which the shape remains fairly constant. As will become ap-
parent in the later chapters, this delay is the main challenge in achieving fast
convergence to the optimal die shape.

The FEM is a novel and complex model to simulate polymer extrusion, with
partial differential equations being solved to form the shape of the extrudate.
The optimization of the die shape is not being directly integrated in this FEM
model, by means of e.g. topology optimization. Rather, die shape optimization
is treated as a separate problem. As such, the inputs where chosen to be posi-
tions on the die that can be changed freely, and the outputs are a position on
the extrudate surface positioned at a specified distance from the die exit. The
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CHAPTER 2. PROBLEM FORMULATION
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Figure 2.1: Surface of operating points for a single design variable.

FEM model is a discrete-time process with the following dynamics:

x(k + 1) = fFEM(x(k),u(k)), (2.1)

y(k) = hFEM(x(k)) (2.2)

where x ∈ Rnx is the state vector of unknown dimension, u ∈ Rn is the input
vector and y ∈ Rn is the output vector, with n the number of inputs and outputs
in the die shape optimization problem.

The dynamics of the FEM model are treated as unknown, resulting in a
black box problem, where only the inputs and outputs can be controlled and
measured respectively. Due to the transportation delay, this black box problem
is expensive to evaluate, and certain assumptions will have to be imposed to find
a control law that is able to let the system converge to the desired extrudate
dimensions quickly and robustly.

The SISO die optimization problem is the simpler of the two problems. In
this situation, only one input u is subject to optimization of which the effect
can be measured by the single output y, see Fig. 1.1. This extrusion process
is a stable process, in the way that for any bounded input, the output is also
bounded. Figure 2.1 shows the surface of operating points for this SISO prob-
lem. This surface was obtained by providing multiple linearly spaced inputs to
the FEM model in the interval [0.5, 1.5] with steps of 0.1 for a given polymer.
Obviously, this surface of operating points may differ for different polymers, but
it is assumed that this surface is one-to-one for each polymer, i.e. monotonically
increasing, in the sense that each input can be linked to a unique output. The
polymer for which the surface is depicted, will be referred to as the standard
polymer

Since the extrudate is transported in longitudinal direction, and the output
is measured at a different location than the input, the corresponding output
to a given input will be measured only after some time. This phenomenon is
referred to as dead-time and is fairly common in the process industry, such as a
heating system or traffic control systems, even to the extent that dead-times are

14



CHAPTER 2. PROBLEM FORMULATION

considered as an integral part of process control [5]. Dead-time compensators
aim to reduce the effect of the delay. This is achieved by model based control,
such that both a system estimate without delay and an estimate of the dead-
time are available. Linear controllers of this class for SISO systems are well
analyzed and robustness margins are available for PID-controllers. A mismatch
of the estimated dead-time and the actual dead-time has a far greater influence
on robustness than a mismatch of the system’s estimate and the true system [5].

The numerical environment is subject to the limitation that, adjusting the
die height too rapidly, results in a numerical instability associated to the way
the PDE’s are solved, and thereby the FEM simulation will terminate. Conse-
quently, there is a constraint on the die height adjustment rate. Since this FEM
simulation runs in discrete time, the following constraint is imposed:

|u(k + 1)− u(k)| ≤ δumax, (2.3)

where δumax is a conservatively chosen parameter or it is obtained through
trial-and-error.

The control loop in the state of the art [1] is depicted in Fig. 1.2 [1]. The
controller resembles an I-controller, such that the error is summed over time
and multiplied by a gain to update the control action, i.e.

u(k + 1) = u(k) +Kie(k) (2.4)

where Ki is the user-configured control gain for the integrator action, e(k) =
yr−y(k) and k is a FEM step. However, this control action does not necessarily
take place every FEM step. Instead, the interval between control actions is
a user-configured parameter. Since this interval directly relates to the rate of
convergence and stability of the system, the control gain Ki should be chosen
accordingly, i.e. smaller gain for shorter intervals and vice versa.

Due to the transportation delay present in the system, the gain should be
smaller than the case where there would be no transportation delay. That is to
say, dead-time compensators can be more efficient and robust than controllers
without this characteristic [5]. Moreover, the controller in [1] is tuned without
any concern for the dynamic behavior of the extrudate height. As such, the
controller has been tuned conservative to prevent instability of the dynamic
process, while sacrificing convergence speed.

Figure 2.2 shows the control performance of the state of the art as presented
in [1]. For a different polymer, the performance may be different, and the
transportation delay is also not constant, but depends on e.g. fluid velocity and
die height. The interval between each control actions 1 second and the loop
has a control gain Ki = 0.05. With these parameters, the extrudate height
takes 146 seconds to reach within 1% of the desired extrudate height, i.e. 1.01.
It is desired to find one or more solutions that can reduce the time needed to
reach the desired extrudate height, while still being confident that the solution
is robust to errors in knowledge about the system dynamics.
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Figure 2.2: State of the art extrudate height optimization for the standard
polymer, with a start height of the die u(t0) = 1.0 at time t0 = 0 and desired
extrudate height yr = 1.0.
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Chapter 3

Optimization

In this chapter, several methods are presented to solve the die shape optimiza-
tion problem, thereby resulting in the cross section of the die that achieves
the desired extrudate shape. These methods are divided into two main ap-
proaches, namely data-driven control and model based control. Furthermore,
Subsection 3.1.2 discusses a hybrid between data-driven control and model based
control. The data-driven optimization methods are described for general opti-
mization problems, to aid in extension to MIMO die shape optimization. For the
model based control method, the extension is straightforward, and not described
here.

3.1 Data-driven optimization

Data-driven optimization is a model-free approach to minimize an objective
function with just experimental data. As such, it has applications in situations
where a model is not available, i.e. black box such as die optimization prob-
lem in [1]. Still, data-driven approaches usually rely on assumptions such as
convexity and continuity to guarantee stability of the convergence.

In this section, the control problem is translated from a black box problem
to a mathematical problem that can be solved using data-driven control meth-
ods. As such, some mathematical concepts are presented, which will later be
linked to the die optimization problem, and thus providing a method to achieve
the desired extrudate dimensions. This is presented in the following way. At
first, assumptions about the objective function are given and two data-driven
methods are presented to solve the die shape optimization problem. Then, the
first method, extremum seeking control, estimates the derivatives of an objec-
tive function to locate its optimizer, i.e. the design variables that result in the
optimal die shape. The second method tries to create an estimate of the objec-
tive function that is to be optimized and subsequently find the argument that
optimizes the objective function estimate.

17



3.1. DATA-DRIVEN OPTIMIZATION CHAPTER 3. OPTIMIZATION

3.1.1 The objective function

For the data-driven optimization methods that are utilized to solve the die
optimization problem, the goal will be to find the minimizer of an objective
function. As such, the optimization problem needs to be translated into this
structure. That process is described below, along with some assumptions on the
behavior of the FEM model such that convergence can be guaranteed.

Consider the optimization problem

min
u

f(u), (3.1)

where f : Rn → R is the objective function to be minimized, and u ∈ Rn are
the design variables. In the context of die shape optimization, the objective
function f is a function that maps the design variables to a scalar, with the aim
that a minimizer of f coincides with the desired extrudate dimensions. To aid
this process, f is a composite function such that

f(u) = g ◦ h(u), (3.2)

where g : Rn → R, and h : Rn → Rn is a function that maps the design variables
to the measured outputs y ∈ Rn, i.e. measured steady state extrudate shape.
Note that this is also the surface of operating points, see e.g. Fig. 2.1. To this
end, the following is assumed.

Assumption 3.1.1. For each input ueq there exists an equilibrium state xeq

such that x(k+1) = fFEM(xeq,ueq) = x(k). Moreover, for each ueq, the equilib-
rium xeq is asymptotically stable. As such, each ueq can be directly linked to a
system output that corresponds to the equilibrium via the function h, such that
yeq = h(ueq).

The function g is a user-defined function, e.g. the quadratic cost function

g(y) = (y − yr)
⊤(y − yr), (3.3)

with yr ∈ Rn the desired, or reference, measured outputs.
The goal of this data-driven optimization approach is to let the design vari-

ables u converge to the minimizer u∗ of (3.1), i.e.

u→ u∗ = argmin
u

f(u). (3.4)

Proper selection of g may result in u∗ being unique, such that

f(u) > f(u∗), ∀u ̸= u∗. (3.5)

In the case of the SISO optimization problem where n = 1, this can be shown
by imposing the following assumption.

Assumption 3.1.2. In the case of a single design variable, i.e. n = 1, the
function h is concave.
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Note that y is a measured function. Consequently, defining functions

h−(u) := −h(u), and g(h−(u)) := (h−(u) + yr)
⊤(h−(u) + yr), (3.6)

where h− is convex and therefore g is strictly convex. Next, it is shown that,
for n = 1, the composition of these functions is also strictly convex, i.e. that for
all x, y ∈ Ω, with x ̸= y, (g ◦h)(λx+(1−λ)y) < λ(g ◦h)(x)+ (1−λ)(g ◦h)(y),
where Ω = R is the domain of both g and h and λ ∈ (0, 1).

(g ◦ h)(λx+ (1− λ)y) = g(h(λx+ (1− λ)y)) (3.7)

≤ g(λh(x) + (1− λ)h(y)) (3.8)

< λg(h(x)) + (1− λ)g(h(y)) (3.9)

= λ(g ◦ h)(x) + (1− λ)(g ◦ h)(y). (3.10)

With f = g◦h being strictly convex, it has a global and unique minimizer at
the argument that corresponds to the desired die height. This is an important
property since extremum seeking, presented in the next section, aims to locate
that minimizer.

3.1.2 Extremum seeking control

Extremum seeking (ES) control is an optimization method that uses deriva-
tive information to let the input converge to the objective function’s optimizer.
Typically, the following three elements are present in the control loop: (1) The
objective function, possibly containing a dynamic process and measurement
disturbance, (2) derivative estimation of the objective function, and (3) the
optimizer, see Fig. 3.1. Although not always the case, e.g. [6, 7], most often si-
nusoidal perturbation is used to collect the local derivative information. In the
analysis of most ES frameworks, the timescale separation principle is used to
show stability. Three timescales are considered ordered from slowest to fastest:
(1) the objective function, possibly containing a dynamic process, (2) derivative
estimation, and (3) the optimizer. This means that convergence speed is lim-
ited by the process’ phase at the frequency of the perturbation signal. Although
implementations vary, the proofs of stability and convergence in many schemes
are based on the tuning of certain parameters, typically leading to slow conver-
gence. However, using such implementations eliminates the need for models of
the system.

In [8] a classical extremum seeking scheme for single variable optimization
with local stability properties is presented. This scheme uses a low-pass and
high-pass filter to extract local gradient information of the objective function.
However, this scheme is unable to asymptotically converge to the exact opti-
mizer [9]. Various variations of this scheme have appeared, e.g. [10] [11] [12] [9],
see Appendix A, some of which can handle several variables, as opposed to a sin-
gle variable. Various variations of this scheme have appeared. For instance, [10]
presents a framework where that results in convergence to the true optimizer as
time goes to infinity. In [13] non-local stability properties of [8] are explored.
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Derivative
estimatorOptimizer

Figure 3.1: Typical scheme of an extremum seeking loop.

Recently, several ES implementations have appeared in literature that converge
in finite time [14, 15]. Extensions of [8] utilize a bank of filters to obtain more
accurate gradient information , e.g. low-pass filters [11] and moving average
(MA) filters [12] [9], some of which can handle several variables, as opposed to
a single variable.

The framework presented in [12] is summarized here. To ensure convergence
of the optimization process, Assumption 3.1.1 is required.

Assumption 3.1.3. The mapping f : Rn → R is N + 1, N ≥ 2 times contin-
uously differentiable with respect to the control input u ∈ Rn and there exist a
constant input u∗ ∈ Rn such that the gradient equals

g̃(u) :=

[
∂f(u)

∂u1
,
∂f(u)

∂u2
, ...,

∂f(u)

∂un

]⊤
= 0, (3.11)

if and only if u = u∗. Here, N ∈ N≥2 is a user-defined parameter.

Definition 3.1.1. Let f be a function of many variables defined on the set S.
For any a ∈ R, the set

Pa = {u ∈ S | f(u) ≤ a} (3.12)

is called the lower level set of f for a.

Definition 3.1.2. The function f of many variables defined on a convex set S
is quasiconvex if every lower level set of f is convex, i.e. Pa is convex for every
a.

Assumption 3.1.4. The objective function f : Rn → R is quasiconvex.

The requirement of Assumption 3.1.3 and Assumption 3.1.4 ensures that u∗ is
the unique minimizer of f .

Derivative estimation framework

This subsection presents a framework to estimate the derivatives of the objective
function f . With the above mentioned assumptions the objective function f is
quasiconvex and maps the design variables u to a scalar, with u∗ being the
unique minimizer of f(u). This map f = g ◦ h is a composite of (1) the surface
of operating points h, see e.g. Fig. 2.1 and (2) a user-defined cost function. In
essence

f : u→ R,u = [u1, u2, ..., un]
⊤ ∈ Rn (3.13)
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at the constant input û. The (higher-order) derivatives of f are denoted by:

Dαk
uk

:=
∂αkf

∂uαk

k

∣∣∣∣
û

. (3.14)

To clarify this notation, e.g. the third-order derivative with respect to input u2

is denoted as D3
u2
.

Sinusoidal perturbation, also called dithering, is assumed

d(t) = [d1(t), d2(t), ..., dn(t)]
⊤ ∈ Rn, (3.15)

where dk(t) = ak cos(ωdk
t) and ak, ωdk

∈ R>0, k = 1, 2, ..., n are the dither
amplitude and frequency respectively. This yields the inputs u(t) = û + d(t).
This extremum seeking framework assumes timescale separation, meaning that
the dither frequencies should be chosen small enough to have a negligible phase
lag between h(t) and the dither signal dk(t) for all k. Under Assumption 3.1.3,
Taylor’s theorem states that f(u(t)) can be expressed as

f(u(t)) = f(û) +

N∑
r=1

1

r!

(
n∑

k=1

D1
uk
dk(t)

)r

+RN , (3.16)

with RN the remainder term, which is a function of the derivatives of order
> N . Now, the following expression is introduced

f(u(t)) = p(t)Agû +RN (3.17)

to describe (3.16), with p(t) ∈ R1×ng a function of d(t), A a constant diagonal
matrix, and gû ∈ Rng×1 the derivative vector, which contains the map output
and derivatives at u = û, up to order N .

Example 3.1.1. For n = N = 2, it holds that ng = 6, and one can select

p⊤(t) =


1

cos (ωd1t)
cos (ωd2

t)
cos2 (ωd1

t)
cos (ωd1

t) cos (ωd2
t)

cos2 (ωd2t)

 , gû =


f(û)
D1

u1

D1
u2

D2
u1

D1
u1
D1

u2

D2
u2

 ,

A = diag(1, a1, a2, 1/2a
2
1, a1a2, 1/2a

2
2), (3.18)

to let (3.17) correspond with (3.16) for d(t).

To obtain an estimate g̃û of gû, the objective function is multiplied with the
demodulation signal m(t), such that

m(t)f(u(t)) = m(t)p(t)Agû +m(t)RN , (3.19)
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with m(t) selected as

m(t) =


cos(ωm1

t)
cos(ωm2

t)
...

cos(ωmng
t)

 ,m(t) ∈ Rng (3.20)

with ωmj
∈ R>0, j = 1, 2, ..., ng related to the dither frequencies wdk

, k =
1, 2, ..., n. Under the assumption that RN is small, it follows from (3.19) that
the derivative estimate g̃û could be obtained by pre-multiplying m(t)f(u(t))
with the inverse of matrix m(t)p(t)A. However, the matrix m(t)p(t) is singular
by construction. To cope with this problem, consider the integral of (3.19) over
a finite time period T∫ t

t−T

m(τ)f(u(τ)) dτ −
∫ t

t−T

m(τ)RN dτ =

∫ t

t−T

m(τ)p(τ) dτ︸ ︷︷ ︸
K

Agû. (3.21)

When T is equal to the smallest common period time of all harmonic signals in
the matrix m(t)p(t), the matrix K is constant.

Example 3.1.2. Take n = N = 1 and p(t) =
[
1 cos(ωd1

t)
]
accordingly. With

m(t) =
[
1 cos(ωm1t)

]⊤
, matrix m(t)p(t) is singular by construction. Matrix

K in (3.21) is

K =

∫ t

t−T

[
1 cos (ωd1

τ)
cos (ωm1

τ) cos (ωm1
τ) cos (ωd1

τ)

]
dτ. (3.22)

For ωm1 = ωd1 = 2π and T = 2π/ωd1

K =

[
1 0
0 1/2

]
(3.23)

which is full rank.

WhenK is full rank and constant, and assuming estimation error
∫ t

t−T
m(τ)RN dτ

to be small, the estimate g̃û is obtained according to the derivative estimation
framework derived from (3.21):

g̃û(t) = G0

∫ t

t−T

m(τ)f(u(τ)) dτ, G0 = A−1K−1, (3.24)

with G0 ∈ Rng×ng a constant matrix.

Converging to the optimizer of f

˙̂u = −KDE g̃û, û(t0) = û0, t0 = 0, (3.25)

where KDE is a matrix with the individual elements positive if an only if that
element corresponds to a first derivative. All other elements are zero.
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System (FEM model) Cost function 

Surrogate 
creation (polynomial

fitting)

Search for the
minimizer  of  and

new input selection

Step 1Step 2

Figure 3.2: Schematic overview of the surrogate modelling algorithm. This loop
resembles one iteration of the loop, where the input u remains constant until
the system reaches steady-state after the transportation delay. Only then is the
output f(u) measured.

Example 3.1.3. For gû in (3.18) in Example 3.1.1, the matrix

KDE =

[
0 k1 0 0 0 0
0 0 k2 0 0 0

]
, (3.26)

where k1, k2 > 0.

3.1.3 Surrogate modeling

Surrogate modeling is the term for algorithms where the outcome of a system is
estimated with a so called surrogate model, e.g., based on polynomial or cubic
splines, using very little evaluations of the objective function, typically without
derivative information. This method is useful when the system output is not
subject to noise, deterministic, and the system is a black box model that is ex-
pensive to evaluate, e.g., in the economical sense, time duration [16]. Moreover,
algorithms that achieve global optimization exist, e.g. univariate [17] and mul-
tivariate [18]. Generally, surrogate modeling algorithms consist of two phases:
(1) surrogate construction, and (2) searching for a minimum of the surrogate.
The method summarized below is a relatively straightforward algorithm that
(1) uses polynomial regression to estimate the objective function and create the
surrogate. Then (2) the optimizer of the surrogate model is located such that it
estimates the optimizer of the real objective function. This routine is depicted
schematically in Fig. 3.2.

The first step is to construct the surrogate model s, that approximates the
objective function f . Consider the polynomial surrogate model, a so-called
response surface model

s(c,u) := c⊤s(u) (3.27)

where c = [c0, c1, ..., cK−1]
⊤ ∈ RK is a coefficient vector, sk : Rn → R is a

monomial and s(u) = [s0(u), s1(u), ..., sK−1(u)]
⊤ ∈ RK , with K ∈ N. The

structures of monomials used are a design choice. The goal is to find the coef-
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Table 3.1: Number of output measurements for the number of design variables
for a central composite design. With the exception for a single design variable,
the number of required output measurements equals 2n + 2n+ 1 ≤M .

# Variables n # Measurements
1 3
2 9
3 15
4 25

ficient vector c such that the surrogate model s is the best estimate of the real
objective function f . Therefore, again, assume that Assumption 3.1.1 holds.

The best estimate is obtained by minimizing the linear least squares residuals
of the surrogate model to the objective function, i.e. a linear least squares fit.
Define the cost function

J(c) :=

i∑
m=j

[f(um)− s(c,um)]
2
, (3.28)

wherem ∈ 0, 1, ..., i is an evaluation of the objective function, i ∈ {0, 1, ..., N−1}
is the current objective function evaluation, N the total number of objective
function evaluations and j = max{0, i−M +1}, with M the desired number of
objective function evaluations to contribute to the fit. Note that the objective
function is evaluated by giving an input ui to the system and waiting for the
output f(ui) to converge to a steady state value, taking the transport delay into
account. For this cost function J , it is required that N ≥ M ≥ K. From this
requirement it follows that J should only be evaluated when i− j +1 ≥M . To
find the parameter vector c∗ that minimizes J , the following should hold.

∂J(c)

∂ck
= 0, ∀k = 0, 1, ...,K − 1 (3.29)

Define the following matrix:

S := [s(uj), s(uj+1), ..., s(ui)]
⊤, (3.30)

where again j = max({0, i + 1 −M}), and M ∈ N≥K is the chosen number of
function evaluations that are used to create the fit. Then, if S has rank larger
than or equal to K − 1, the following unique coefficients will minimize the cost
function.

c∗ = argmin
c

J(c) = (S⊤S)−1S⊤fj:i, (3.31)

where f = [f(u0), f(u1), ..., f(ul−1)]
⊤. Note that this is only possible after at

least K − 1 evaluations of the objective function. As a result, the surrogate
model s(c,u) evaluated at the point (c∗,ui) is the surrogate’s best estimate of
f(ui).
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Figure 3.3: Example of a 3D central composite design, captured from [16].

Subsequently, the minimizer of the surrogate s(c∗,u) will be the best es-
timate of the minimizer of f(u) and step 2 of the algorithm can commence,
namely searching for the minimizer of the surrogate. The choice of the opti-
mization algorithm should depend on the optimization problem. In the case of
surrogate modeling, it is attractive that Assumptions 3.1.3 and 3.1.4 also hold,
since this allows for the use of local optimization techniques, which are gener-
ally faster than algorithms that look for a global optimum, especially in case of
multiple design variables. For now, it is assumed that both assumptions hold.

Depending on the number of objective function evaluations, the algorithm
may jump back to step 1 using a new input. This input is chosen as the mini-
mizer of s(c∗,u) obtained in step 2. Possibly, a disturbance can be added to this
new input to avoid singularities. Next, revisiting step 1, the process is repeated
until objective function evaluation l − 1, or an optimality criterion is reached.

Example 3.1.4. Assume one design variable, i.e. SISO optimization, and a
quadratic surrogate model s(c, u), then the following form for s could be chosen:
c = [c0, c1, c2]

⊤ and s(u) = [s0(u), s1(u), s2(u)]
⊤ = [u2, u, 1] This means that

K = 3. When using a central composite design, at least 3 measurements are
required, see Fig. 3.3 and Table 3.1. Let’s say that the minimizing argument u∗

for f is expected to lie on the interval [a, b], such that a < u∗ < b, then a central
composite design would yield the following three initial inputs: u0 = a, u1 =
a+b
2 , u2 = b. It is desired that, directly after evaluating the objective function

f(u) to these inputs, the argument c∗ that uniquely minimizes J(c) is found,
leading to M = 3. For this example, the initial guess of c∗ is satisfactory,
so N = 3. Then, using c∗, the minimizing argument u∗ for s(c∗, u) can be
found using a suitable optimization method. For this case, with s quadratic, the
complete algorithm is presented in Algorithm 1 (page 26).

Remark 3.1.1. From Table 3.1 it follows that the number of objective function
evaluations needed becomes significantly larger when the number of dimensions
increases, making this method less suitable for the MIMO die shape optimization.

Remark 3.1.2. One could alter this algorithm, by only trying to get an estimate
of the function h instead of the function f = g ◦ h, but then still locating the
minimum of the estimate of f . This is advantageous, since a polynomial fit of
h will, generally, be more accurate than a polynomial fit of the composition f .
However, by experiments, it was found that for this application the advantage is
marginal.
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Algorithm 1 Optimization of the die shape using surrogate modeling

U ← central composite design with 2n + 2n + 1 rows and n columns, where
n is the number of design variables. Each row of this matrix contains the
corresponding input vector, i.e. Ui = u⊤

i

f ← 0N

for i← 0 to N − 1 do ▷ Start of step 1.
ui ← Ui,:

fi ← f(ui) Evaluate the objective function.
if i ≥M − 1 then

j ← max({0, i+ 1−M})
S ← [0]N×K

for m← j to i do
for k ← 0 to K − 1 do

Sm,k ← sk(Um,:)
end for

end for
c∗ ← (S⊤S)−1S⊤f ▷ Find the optimal coefficients for s(c,u).
u∗ ← argminu s(c∗,u) ▷ Start of step 2.
if i ≥ 2n + 2n+ 1 then

ui+1 ← u∗ + small random value
Ui+1,: ← u⊤

i+1

if Optimality criterion met then
break

end if
end if ▷ End of step 2.

end if
end for

▷ End of step 1.
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3.2 Model based control

As opposed to data-driven optimization, in model based control, a suitable
controller is designed using an estimate of the system’s behavior. An estimate
of the system can be procured in various ways, e.g. first principles design or
system identification techniques. Once the system estimate is available, this
allows for a design process in which the system’s behavior can be simulated to
obtain the desired system robustness and performance, without the need for the
real system.

In control theory, there is a vast selection of model based control techniques,
both linear and nonlinear. Examples of linear control are Linear Quadratic
Regulators (LQR) using state feedback [19], root locus [20], model predictive
control [21] and design in the frequency domain [20]. Examples of nonlinear
model based control are (1) feedback linearization and (2) feedback control
using a linear model of the system [22].

Another type of a linear model based control technique is called the dead-
time compensator. These techniques are suitable for processes exhibiting trans-
portation delays. Typically, dead-time compensators try to steer a copy of the
system to the desired set-point. The dynamics of this copied system are then
split into (1) the non-delayed dynamics and (2) the delay itself. Moreover, the
actual system with dead-time receives the exact same input. In this way, with
a correct system estimate, both the true system and the copied system will be
steered towards the reference faster compared to regular feedback control.

In this section, first the process of acquiring an estimate of the system is
explained. Then the use for a type of dead-time compensator, a so-called Smith
Predictor, is motivated. Lastly, an extension to the extremum seeking controller
is presented, that uses an estimate of the systems dead time to shorten one of
the timescales of the loop.

3.2.1 Acquiring a system estimate

It is assumed that the nonlinear dynamical FEM system can be represented in
the form of a Wiener model structure, such that a (discrete-time) linear system
is followed by a static nonlinearity placed in series, i.e. a transformation from
x(k + 1) = fFEM(x(k),u(k)) to

x(k + 1) = Ax(k) +B∆u(k) (3.32)

∆y(k) = Cx(k) +D∆u(k) (3.33)

y(k) = hw(yl(k)), (3.34)

where x ∈ Rnx is the state vector of the linearized model with transfer function
G, ∆u ∈ Rn is the input vector, ∆y ∈ Rn and is the output vector, with n
the number of inputs and outputs of the die shape optimization problem. Also,
∆u(k) = u(k)− ueq and yl(k) = ∆y(k) + yeq and hw : Rn → Rn is the static
nonlinearity. This complete Wiener is depicted in Fig. 3.4. To estimate a model
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Linear system Static nonlinearity 

Figure 3.4: Structure of a Wiener system. A linear model is composed with a
static nonlinearity.

of the true system, both the dynamic behavior needs to be linearized around an
operating point and the static nonlinearity need to be estimated.

In case of just a single design variable, and the static nonlinearity being
a on-to-one function, the following identification procedure will identify the
discrete-time Wiener system.

1. Choose a linearization point. Figure 2.1 contains a map with a surface of
operating points for the SISO case. The selected operating point yields
the parameters ueq and yeq, see Fig. 3.4.

2. A model set M for the discrete-time linear model G(z, θ) has to be se-
lected. No noise and disturbances are used in the FEM system, and any
disturbances are regarded as nonlinear, and will therefore not be mod-
eled. This leaves two viable options for the model structures: (1) Finite
Impulse Response (FIR), and (2) Output Error (OE). The model set has
the following structure:

M = {(G(z, θ), H(z, θ)) | θ ∈ Θ ⊂ Rd}, (3.35)

where θ is the coefficient vector of the polynomial models G and H. Since,
as just mentioned, the errors are not modeled for a FIR and OE polynomial
model, the error dynamics are selected as 1, i.e. H(z, θ) = 1.

3. One has to design an input signal to feed to the true FEM system. Due
to the nonlinear nature of the FEM system, and also the transportation
delay, a slow multisine signal is desired. This will minimize any averaging
effect of the extrudate height caused by the transportation delay. More-
over, (2.3) mentions a maximum change in input signal value in between
samples. The Matlab function idinput has an input parameter that al-
lows the user to specify this maximum change in signal value. It is required
that the multisine contains at least half the number of frequencies of the
number of parameters to be estimated in θ [23]. In essence, if ffreq ∈ Rz

>0

were a vector of frequencies of the multisine, with every element of ffreq
unique, then for d in (3.35) it is required that d ≤ 2z. This is caused by
the criterium for persistence of excitation.

4. The selected operating input point is then added to the generated input
signal: if ∆u(k) is the generated multisine, then the input to the FEM
system would be u(k) = ∆u(k) + ueq. When subjecting the system to
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this input signal u(k), the output of the system y(k) is captured. For this
signal, the operating point xeq is subtracted from the output signal y(k),
such that ∆y(k) = y(k)− yeq.

5. Now that this data ∆u and ∆y is available, the model G(z, θ) can be iden-
tified using an appropriate algorithm, e.g. using the System Identification
Toolbox from Matlab. For convenience of writing, from now on, the model
G(z, θ) is denoted by G.

6. The last step in the identification process is the estimation of the static
nonlinearity hw. As discussed in Chapter 2, the surface of operating points
depicted in Fig. 2.1 was obtained by giving the constant inputs u in the
sequence 0.5, 0.6, ..., 1.4, 1.5 to the FEM system and measuring the steady
state output y for each of those inputs. As such, using these 11 input-
output pairings, it is possible to fit a polynomial with a maximum order of
10 through these points. However, it is not the relation from u to y that is
of interest, but the relation from yl to y to form the static nonlinearity h,
see again Fig. 3.4. In order to obtain the values for yl, one could simulate
the output of G to the inputs ∆u = u− ueq, with the sequence of u given
above, and then measuring yl = ∆y + yeq. Another approach, one that
does not require any simulations, would be to use following, related to the
final value theorem.

If it is desired to calculate the steady state gain of a discrete time transfer
function to a constant input signal, this is essentially measuring the output
of the system to a step function when time goes to infinity. Take the
discrete-time step signal u(k) defined as follows:

u(k) =

{
a, if k ≥ 0.

0, else.
(3.36)

This signal has the z-transform

U(z) =

∞∑
k=0

u(k)z−k = a

∞∑
k=0

z−k =
a

1− z−1
. (3.37)

Now taking the z-transform of the output y(k):

Y (z) = U(z)G(z) =
aG(z)

1− z−1
. (3.38)

Then applying the final value theorem to the output y(k) gives

lim
k→∞

y(k) = lim
z→1

(1− z−1)Y (z) = lim
z→1

aG(z). (3.39)

Example 3.2.1. Assume the discrete-time transfer function of a first-
order low-pass filter.

G(z) =
0.00995z−1

1− 0.99005z−1
. (3.40)

29



3.2. MODEL BASED CONTROL CHAPTER 3. OPTIMIZATION

Applying a step signal with gain a and using (3.39) gives that the steady
state value of 0.00995a

1−0.99005 = a, which is expected from a low-pass filter.

In essence, since the inputs ∆u = u−ueq are known from the above defined
sequence, the outputs ∆y can be directly computed using the final value
theorem. In turn, yl = ∆y + yeq is also known. Note that in the above
example a = ∆u.

Now that this information is available, the input-output pairings yl and y
can be used to estimate the static nonlinearity h, using e.g. least squares fit
to obtain h in the form of a polynomial. Although least squares polynomial
fits are fairly straightforward, Matlab provides the function polyfit to
accomplish this. Note again that it is assumed that h is strictly increasing
in its argument.

3.2.2 Dead-time compensation using a Smith Predictor

Although the previously presented solutions have the advantage that they are
data-driven, and thus robust to uncertainties, they can be slow. Where Surro-
gate Modeling is only slow for the MIMO case, Extremum Seeking will be slow
for both the SISO and the MIMO case. Consequently, there is a need for a ro-
bust method that will have comparable speed for both the SISO and the MIMO
case, that is robust to model uncertainties as well. As a reminder, the speed
limitation for both data-driven optimization methods is mainly caused by the
transportation delay. As it turns out, transportation delays are fairly common
in process control, and is said to even be an integral part of this subject [5].
As was the case in the state of the art die shape optimization [1], controllers
that steer systems exhibiting dead-times to a desired reference need to be tuned
conservatively, to allow for smooth convergence and prevent instability.

Controllers that attempt to overcome this limitation are so-called Dead-
time compensators (DTC), where dead-time refers to transportation delay. One
such DTC is a linear controller called the Smith Predictor. The concept of a
Smith Predictor is fairly straightforward. Instead of only steering the actual
system to a desired reference, two other systems are present in the control loop
as well: (1) a copy of the model where the transportation delay is removed
G, and (2) a model of the plant Ge−Ls, where e−Ls is the delay and L is
the delay in seconds, see Fig. 3.5. Additionally, a low-pass filter FLP can be
added to improve robustness, making this control loop a so-called Filtered Smith
Predictor. Intuitively, the control loop of the Smith Predictor can be interpreted
as follows. A reference yr is selected by the user, after which the controller, which
may be tuned based on the model G, instead of the system P , will attempt to
steer the model G to the reference. Since G is the only of the three systems that
is not subject to a transportation delay, it can be expected to react the quickest.
Essentially, it is the aim of the Smith Predictor to steer the non-delayed model
G to the reference, after which the other two models will follow. If the model is
correct, the error ep, which is the difference in the measured output of the actual
system P and the model of the system Ge−Ls will always be zero. If the model
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Figure 3.5: SISO control loop of a type of dead-time compensators called the
Filtered Smith Predictor.

is incorrect however, this error will not be zero and is added to the error e.
When one has to choose whether DTC’s are a viable option to control a process
containing a transportation delay, the knowledge about the transportation delay
should play the biggest role in that decision. That is, not the length, but the
variability of the delay. As it turns out, the mismatch between the true and
estimated delay is a far greater cause for instability than a mismatch between
the non-delayed transfer functions of P and G [5].

Remark 3.2.1. Although there is literature available on DTC’s for nonlinear
processes, e.g. [24, 25], most literature on the Smith Predictor is based on linear
controllers. The presented DTC implementation in this thesis is also based on
a linear system. As such, only the linear part G of the Wiener model is used to
control the die shape.

This description of the Filtered Smith Predictor is for SISO control. How-
ever, the MIMO case is a generalization of the SISO case, and the condition for
robust stability of the MIMO case are derived from those of the SISO case [5].
To describe this robustness condition, first the following concepts about model
uncertainty in the frequency domain are introduced. To account for model un-
certainty, it is assumed that the system P (jω) can be described by a family
of transfer functions, in such a way that the magnitude and phase can vary in
a disk with radius of maximum ∆P (ω), as shown in Fig. 3.6. As such, each
system P (s) can be written in the frequency domain as

P (jω) = Pn(jω) + ∆P (jω), |∆P (jω)| ≤ ∆P (ω) ∀ω ≥ 0, (3.41)

where Pn(jω) is the nominal model and ∆P (jω) is defined as the additive
description of the modeling errors. Equivalently

P (jω) = Pn(jω)(1 + δP (jω)), |δP (jω)| ≤ δP (ω) ∀ω ≥ 0, (3.42)

where δP (jω) is a multiplicative description of the modeling errors and

δP (jω) =
∆P (jω)

Pn(jω)
, δP (ω) =

∆P (ω)

|Pn(jω)|
∀ω ≥ 0. (3.43)
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Figure 3.6: Model uncertainty disk in the frequency domain, obtained from [5].

Now that these concepts have been introduced, the robust stability condition
for the Filtered Smith Predictor can be presented:

δP (ω) <
|1 + C(jω)G(jω)|
|C(jω)G(jω)FLP(jω)|

, ∀ω > 0. (3.44)

From this condition, it becomes clear why the low-pass filter adds robustness.
For higher frequencies, the gain of this filter will decrease, and in turn making
the bound on δP (ω) in (3.44) increase. Moreover, the addition of this filter does
not decrease performance in case Ge−Ls is a perfect representation of P , since
the error ep will be zero, and therefore the filter output will remain zero as well.

The properties of the Filtered Smith Predictor suggest the following two-step
general procedure for tuning the controller:

1. Compute C(s) in order to obtain the desired closed-loop performance of
the model G(s).

2. Estimate the uncertainties of the system and compute the filter FLP in
order to obtain robust stability or robust performance. The filter can be
defined using known filter design techniques.

Obviously, the FEM model P is not exactly known, and the assumption is
made that this model can be represented as a Wiener system. As such, it can
never be verified whether the condition in 3.44 is met. However, by tuning the
filter FLP conservatively, robustness can be added to the control loop.
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Chapter 4

Implementation and results

The methods presented in Chapter 3 are applied to the die optimization prob-
lem. In this chapter, both the implementation of these methods and the results
are presented and compared to the original results presented in [1]. At first,
the system that results from the system identification procedure is presented.
Next, the implementation and results of the data-driven optimization methods
are discussed. Lastly, the model-based Smith Predictor is treated.

4.1 System identification

Although the identified system only serves a function for the model-based Smith
Predictor, which is covered last in this chapter, an identified system will bene-
fit the data-driven optimization methods as well. For example, identifying the
static nonlinearity of the Wiener model helps to verify the concavity of the
surface of operating points as shown in Fig. 2.1. Moreover, it presents an in-
sight into the transportation delay, which may help to select suitable extremum
seeking parameters to ensure time scale separation. An additional advantage of
having an identified model early on in the process, is to aid in simulating the
response of the system. Implementing and simulating the different controllers
in the FEM system requires common Matlab functions and Simulink blocks to
be rewritten in Fortran. This is a time consuming process, that is aggravated
by the time needed to run a simulation in the FEM environment. By imple-
menting the controllers in the Matlab/Simulink environment on the identified
model, this process is more streamlined while showing similar performance to
the true FEM system.

The Wiener system is identified using the steps that are laid out in Sec-
tion 3.2.1. This same outline is followed again here, where the choices for these
steps are motivated and the results depicted.

1. The system is linearized around the operating point (ueq, yeq)
= (1.000, 1.455). Again, see Fig. 2.1.
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2. An Output Error model structure is selected, that has the following form.

G(z, θ) = z−nk
B(z, θ)

F (z, θ)
= z−nk

b0 + b1z
−1 + ...+ bnb−1z

−(nb−1)

1 + f1z−1 + ...+ fnf
z−nf

, (4.1)

H(z, θ) = 1, (4.2)

θ = [bnb−1, bnb−2, ..., b0, fnf
, fnf−1, ..., f1]

⊤ ∈ Θ ⊂ Rbb+nf , (4.3)

where G(z, θ) is monic, nk is the number of delay samples, nb and nf are
the number of parameters in the numerator and denominator of G(z, θ)
respectively.

3. A multisine input signal ∆u(k) is generated using the Matlab function
idinput. Using this function, it is possible to select the normalized fre-
quency range for the input signal, where a normalized frequency of 1 rep-
resents the Nyquist frequency. Due to the desire for a slow input signal,
the generated multisine is a sum of 4 sine waves such that for this signal the
normalized frequencies contained in the set F = {0.00314, 0.01257, 0.01885,
0.02827} are all represented exactly one time, that minn ∆u(k) ≥ −δumax

= −0.1 and maxn ∆u(k) ≤ δumax, see (2.3), and that the mean of ∆u(k) is
0. Note again, that since ∆u(k) contains 4 sine waves with each a unique
frequency, a maximum of 8 parameters can be estimated, i.e. nb+nf ≤ 8.
The FEM system has a sampling time of Ts = 0.005 seconds. Multiplying
each element in F by π

2πTs
yields the frequencies in Hz.

4. The resulting input signal is

u(k) =

 ueq, if 0 ≤ k < 3000 or k ≥ 5000,
ueq +∆u(k − 3000), if 3000 ≤ k < 5000,
0, else.

(4.4)

In essence, at first the input signal is constant to allow the system to
settle to a constant value. After 3000 samples = 15 seconds the multisine is
added to the signal. This signal has a length of 2000 samples = 10 seconds.

The signal y[n] is collected from which ∆y[n] is then derived, such that

∆y(k) =

{
y(k + 3000)− yeq, if 0 ≤ k < 2000,
0, else.

(4.5)

5. Now that ∆u(k) and ∆y(k) are available, the linear part G(z, θ) from the
Wiener system can be estimated. From experiments it follows that the
input-output delay around the selected operating point is approximately
4 seconds. For the FEM system a short sampling time of Ts = 0.005 s is
selected, ensuring that the dynamics accurately represent their continuous-
time counterparts [26]. As such, a delay of 4 seconds amount to the number
of delay samples nk = 800. By trial-and-error it was found that the the
number of estimation parameters nb = 4 and nf = 4 returned parameters
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that best fitted the measured data to the simulated data, see Fig. 4.2a.
Table 4.1 gives these parameters and Fig. 4.1 also depicts the Bode plot
and pole-zero map of G.

6. Section 3.2.1 mentioned that the FEM system was subjected to the con-
stant inputs uss from the sequence 0.5, 0.6, ..., 1.5 and the corresponding
constant outputs yss were measured. The surface of operating points de-
picted in Fig. 2.1 was obtained from these measurements. With this in-
formation, the static nonlinearity hw can be derived. The constant input
sequence follow from uss and ueq, such that ∆uss = uss−ueq. Using (3.39),
where a = ∆u, and the above identified G gives the steady state ∆yss.
Note that for G(z, θ) with the optimal parameters

∆yss = lim
k→∞

∆y(k) = lim
z→1

aG(z) = ∆uss

∑3
i=0 bi

1 +
∑4

j=1 fj
≈ 0.8189∆uss.

(4.6)
Now that ∆yss and yss are available, the static nonlinearity hw can be fitted
using the Matlab function polyfit. The following 5th order polynomial
was obtained:

hw(yl) = −0.6517y5l +4.5896y4l −12.4226y3l +15.8551y2l −8.1645yl+1.7149,
(4.7)

see Fig. 4.1c. One should be careful extrapolating using this fitted poly-
nomial, and attempt to only evaluate this polynomial on the appropri-
ate domain, i.e. [0.8, 1.8]. On this domain, the derivative of hw has no
real-valued roots, and as such is positive everywhere. This confirms the
concavity required for the system identification process and the imple-
mented extremum seeking and surrogate modeling schemes, at least when
the identified Wiener model is used.

The identified model is validated by the following: (1) Subjecting the iden-
tified linear part G to the multisine input and comparing the output with the
output of the true FEM system, and (2) applying the I-controller from the state
of the art [1] on the identified Wiener system and comparing output and con-
vergence properties. The outputs of these simulations have been depicted in
Fig. 4.2. The dynamics of the Wiener system exhibit non-minimum phase be-
havior, as can be derived from Fig. 4.2a and can be explained by the zeros of G
that lie outside the unit circle, see Fig. 4.1b.

4.2 Extremum seeking control

The data-driven optimization method Extremum seeking control is a robust op-
timization method, should the parameters be chosen correctly. As such, stability
can be guaranteed, provided one accepts the principle of time-scale separation.
Due to the delay between input and output, the system take a long time to
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Figure 4.1: Identified Wiener model. (a) Bode plot of the linear part G, (b)
pole-zero map of G, and (c) static nonlinearity hw.
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Figure 4.2: Model validation of the identified Wiener model. (a) Output from
the multisine to identify the system, and (b) the identified Wiener model sub-
jected to the I-controller from the state of the art [1].
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Table 4.1: Optimal parameters for the model from (4.1) to (4.3). Only 4 signif-
icant figures are shown.

Parameter Optimal value
b0 -0.004637
b1 0.01408
b2 -0.01425
b3 0.004812
f1 -3.965
f2 5.897
f3 -3.899
f4 0.9667

+ x

Figure 4.3: Extremum seeking derivative estimation based on a moving average
filter. The gradient g̃ma of f is estimated at û.

reach steady state, resulting in the necessity for slow derivative estimation and
even slower optimization.

Moreover, the cost function that is subject to minimization needs to be qua-
siconvex to avoid converging to local minima, with its minimum at the system’s
reference output. However, if certain assumptions about the system can be
made, this condition can still be guaranteed without the need for a model of
the system, resulting in guaranteed convergence the reference output.

In the case of SISO optimization, there is just a single design variable that
needs to be optimized. In this case, the following extremum seeking parameters
are chosen: dither amplitude a = 0.1, dither frequency ωd = π

20 rad/s and
integrator gain KDE = 0.01. It is chosen that for this numerical case study only
the first derivative of the function f is of interest. Consequently the derivative
estimation equals that of the loop presented in Fig. 4.3. This loop uses a moving
average filter, which is not standard for extremum seeking, see Appendix A.

The following quadratic cost function g : R→ R is selected:

g(y) = (−y + yr)
2, (4.8)

where y = h(u). Note that this is a strictly convex cost function with a global
minimum at yr and let Assumption 3.1.2 hold, stating that h is concave. Con-
sequently, as shown in Section 3.1.1 the composite function f = g ◦ h is convex.
Then, if a, ωd and KDE are selected sufficiently small, the estimated optimizer
û will converge to the true optimizer u∗ when time goes to infinity.
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Numerical case study

This extremum seeking loop is implemented on the SISO identified Wiener sys-
tem as presented in Section 4.1. However, due to extremum seeking being a
data-driven optimization method, this system is treated as black box. The ef-
fect of extremum seeking parameters with respect to time scale separation and
convergence is investigated, and expectations for practical use of extremum seek-
ing are discussed. Revisiting the three time scales in extremum seeking from fast
to slow: (1) the dynamic system, (2) derivative estimation, and (3) optimiza-
tion. To conform to the time scale separation requirement, it is necessary that
the phase difference between the sinusoidal input to the system and sinusoidal
output of the system, i.e. the delay of the frequency response, is as small as
possible. In this case, the system mapping the die height to the extrudate height
has a significant transportation delay, resulting in a quickly decreasing phase
of the system for increasing dither frequency ωd. Below, three simulations with
the presented extremum seeking framework are depicted and discussed. These
simulations differ in the choice of extremum seeking parameters, i.e. dither
amplitude, dither frequency and integrator gain, as to illustrate the effect of
time scale separation. For these simulations both the initial condition û0 = 1.0
and the desired extrudate height yr = 1.0 are consistent. Although of course
unknown to the extremum seeking scheme, it follows from the Wiener system
that for this reference the true optimizer u∗ ≈ 0.517.

Remark 4.2.1. The extremum seeking control scheme is implemented in discrete-
time in Simulink. This environment facilitates the conversion of a continuous-
time process to a discrete-time process, and as such, this section does not elab-
orate on this conversion, except for the following. An integrator is needed to
obtain the gradient estimate g̃û of the objective function f(u) at û in (3.24).
This integrator is implemented in discrete-time using the forward-Euler method.

Slow extremum seeking This first case upholds the time scale separation
principle is good as possible. This means that for the first time scale the dither
frequency is chosen in such a way that there is minimal phase difference with
the plant output. For the second time scale this means that the demodulation
signal is also in phase with the plant output, and for the third time scale this
means that the optimizer is slow enough as to not disrupt the system output too
much or cause significant overshoot with respect to the set point. To achieve
this, the following parameters were chosen for the simulation: dither amplitude
a = 0.1, dither frequency ωd = 0.01 rad/s and integrator gain KDE = 0.0002.
Although the identified Wiener system is treated as unknown, its linear systems
frequency response has a phase delay of approximately 30 degrees at the dither
frequency, which is sufficiently small to maintain time scale separation.

Remark 4.2.2. In the context from the matrices and vectors introduced in
Section 3.1.2, these extremum seeking parameters would result in the following.

A = 0.1, p(t) = m(t) = cos(ωdt) =⇒ K = 100π =⇒ G0 = 1/10π,KDE = 0.0002.
(4.9)
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Figure 4.4a depicts the output of the extremum seeking loop û(t), i.e. ex-
pected optimal die height, over time. This simulation shows that it takes more
than 10000 seconds to converge to the optimum die height. This is very slow
compared to the state of the art solution, see Fig. 2.2. However, the choice of
extremum seeking parameters has ensured the conservation of time scale sepa-
ration, and as such, convergence to the optimizer is guaranteed.

Relaxation of third time scale For this simulation, the third time scale is
relaxed, such that the integrator gain is selected higher than withe the previous
simulation. Consequently, the system output may not closely resemble a sinu-
soid and therefore, the derivative estimation may fail. The following extremum
seeking parameters are chosen: a = 0.1, ωd = 0.01 rad/s and KDE = 0.0007.
Figure. 4.4b shows the extremum seeking output for this simulation. It shows
that although convergence to the optimal die height is achieved much faster
in comparison to the first simulation, the output is much less smooth. This is
the result of the relaxation of the third time scale, leading to poor derivative
estimation. Even higher integrator gains would eventually result in instability
of the loop.

Relaxation of the first time scale For this third and final simulation, the
dither frequency is increased to ωd = π rad/s. Again, the identified Wiener sys-
tem is treated as black box, but inspecting the frequency response of the linear
system, it is found this system has a phase lag of approximately 184 degrees at
the dither frequency. This poses a significant problem for the time scale separa-
tion, in the sense that the derivative estimation is completely disturbed, because
the system and output and demodulation signal are completely out of phase. In
practice, means that a positive derivative of the system output with respect to
the system input would be measured as a negative derivative and vice versa. On
the other hand, a higher dither- and demodulation frequency can decrease the
time needed to get an estimate of the derivative, since the derivative is estimated
over the dither period, and as such converge to the optimizer faster. In [27] the
estimated phase lag between the sinusoidal input and output of the dynamic
system is used as a phase for the demodulation signal. That same procedure
is followed in this simulation, i.e. each element in the vector m(t) gets a phase
shift of approximately −184 degrees, but it is noted that for the calculation of
the matrix K, the vector m(t) with no phase shift is used. The other extremum
seeking parameters are as follows: a = 0.1 and KDE = 0.07. From Fig. 4.4c
it becomes clear that this procedure allows for considerably faster convergence
to the desired die height. In essence, if the phase lag of the system at the
dither frequency is known, the dither frequency can be chosen much larger, and
faster convergence can be achieved. Unfortunately, this phase lag needs to be
estimated from e.g. a low order model, making this extremum seeking loop a
hybrid between data-driven and model based optimization.

However, the Wiener model is estimated around an operating point, i.e. die
height. Around this operating point, the transportation delay can be considered
constant. Around a different operating point, the dimensions of the die are either
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larger or smaller. For a constant flow speed of the polymer going into the die,
this means that the same volume of the polymer is pushed through a larger
or smaller die, resulting in the extrudate flowing slower or faster respectively
when exiting the die. This means that the transportation is not and cannot be
considered as constant.

Figure 4.1a contains the Bode plot of the linear part G of the identified
Wiener system. It shows that the phase quickly reduces when the frequency
increases, caused by the transportation delay. As such, any model mismatch
between true system and identified system may result in a phase estimation
that is completely off. For the most accurate extremum seeking, it is necessary
that the phase is estimated as good as possible.

In Fig. 4.8 the output of the true system to multiple tuning configurations
of a Smith Predictor is depicted. Figure 4.8 shows that the more aggressive
controllers initially show a shorter transportation delay. A more aggressive
controller will decrease the die height quicker compared to a less aggressive con-
troller. As such, the fluid with a constant flow speed will have to travel through
the die faster and will therefore reach the measurement point quicker. From
this figure it becomes clear that the transportation delay cannot be accurately
captured with the identified Wiener model. As a result, unless the phase lag
can be properly estimated, this last extremum seeking implementation is not a
viable solution.

4.3 Surrogate modeling

Just as extremum seeking, surrogate modeling is a data-driven control approach.
In extremum seeking, the input signal that perturbs the system is slow, and as
such the measured output signal is close to being steady state. In surrogate
modeling, the input does not perturb the system, but remains constant for a
period of time, as to ensure an output that is in steady state. After collecting
multiple steady state input-output pairings, a pattern is estimated, e.g. in
the form of a polynomial that explains the measured input-output pairings. In
turn, this pattern allows for an estimation of the optimal input to let the system
converge to the desired output.

Surrogate modeling is implemented as described in Section 3.1.3 on the es-
timated Wiener model from Section 4.1. It should be noted that, since the
transient behavior does not contribute to the measured input-output pairings,
implementing this solution on the Wiener model should be almost identical to
implementing the solution on the true FEM system in Fortran. Essentially,
only a mismatch in the estimated static nonlinearity h has an influence on the
difference between the true and estimated performance, since the steady state
inputs uss can be directly linked to the steady state outputs yss, see again Sec-
tion 3.1.3. The selected reference yref = 1.0 is the same as with extremum
seeking. The monomials sk are chosen as s0(u) = u2, s1(u) = u, s0(u) = 1, such
that s(c, u) = c0u

2 + c1u + c2, i.e. a quadratic polynomial. This leads to the
number of monomials K = 3 in s. The number of evaluations of the objective
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Figure 4.4: Implementation of Extremum Seeking on the SISO optimization
problem. (a) Slowest simulation, but time scale separation holds and stability is
thus guaranteed. (b) Relaxation of the second time scale. Faster than simulation
(a), but nears instability, and (c) shows the fastest convergence to the desired
die height. However, this method required accurate knowledge of the system’s
phase lag for the dither frequency. For higher frequencies, the phase is very
sensitive to an estimation error of the transportation delay.
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function f that contribute to the fit is chosen as M = 3. Although the objective
function f is convex, it is not quadratic, and as such s will not be an exact fit
of f . By increasing the number of objective function evaluations, i.e. N > M ,
the domain on which s is estimated is reduced as N increases. Subsequently,
earlier objective function evaluations that are essentially outliers are ignored.
The total number of objective function evaluations is chosen as N = 10. The
initial inputs are chosen by means of a central composite design on the interval
[a, b] = [0.5, 1.0], as it is expected that the optimal input u∗ will lie in this
interval. This leads to u0 = 0.5, u1 = 0.75 and u2 = 1.0. For each iteration,
the constant input is held for 10 seconds. This should give the system sufficient
time to reach steady state. After M iterations, the optimal coefficients c∗ for
J(c) can be found. Then using the Matlab function fmincon, the optimal input
û ≈ u∗ can be estimated. Then based on û, a new input u can be selected as
ui+1 = ûi + ϵi, where ϵi is a small random value to prevent singularity of the
matrix S. For these simulations, ϵi is selected to lie on the interval [−0.01, 0.01]
for all i.

Remark 4.3.1. Note that, since s(c, u) is quadratic in u, the optimizer u∗ could
be found in a similar fashion as the optimizer c∗ of J(c) is found, i.e. by using
the pseudo-inverse of the matrix S as in Algorithm 1. However, the function
fmincon allows to set a lower- and upper bound, which can be selected as a and
b respectively.

Remark 4.3.2. Since h is concave and g is quadratic, making f convex, the
quadratic polynomial s that approximates f can be assumed to be convex as well.
However, to guarantee convexity of s, bounds can be set on the coefficients c∗

using e.g. fmincon to estimate s(c∗, u).

Figure 4.5 shows the estimated optimal input û after each simulation. Note
that, since M = 3, it takes 3 simulations to obtain a first estimate. After 5
simulations, û is estimated sufficiently well, and after 6 simulations, û converges
to the true optimum input u∗ and remains tolerably constant. Compared to
the state of the art die shape optimization which takes 146 seconds to converge,
this is a significant reduction in convergence time.

4.4 Dead-time compensation using a Smith Pre-
dictor

The Smith Predictor attempts to steer an estimated model of the true system
to the desired reference. This estimated model has the transportation delay
removed, and as such, if the model is correct, convergence to the reference should
be faster. This section covers the implementation of the Smith Predictor. The
tuning parameters are explained and the performance on not only the identified
model, but also the true FEM model is shown.

The Smith Predictor is implemented according to Section 3.2.2. As men-
tioned, this controller uses linear estimation G and the delay e−Ls of the system
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Figure 4.5: Estimated optimal die height as a function of the number of simu-
lations run for SISO optimization. The reference extrudate height is 1.0. Each
simulation takes 10 seconds, meaning that 5 simulations take 50 seconds. Since
the objective function f is fitted using a quadratic polynomial, 5 objective func-
tion evaluations are necessary and as such, the optimum die height can be
estimated after 50 seconds.

P . Consequently, when looking at the estimated Wiener model in 4.1 of the
true system P , the static nonlinearity h is omitted.

The main focus of this implementation of the Smith Predictor is an analysis
on its convergence properties, rather than the selction of a controller type that
maximizes the convergence rate of the die shape. As such, the controller C is
chosen as a PID controller that is tuned based on the model G using the Matlab
command pidtune (sys,type,wc), that tunes the model sys with a controller
of type type (e.g. PID) with a crossover frequency of wc radians per second for
the open-loop response. This command uses an algorithm that has the following
three objectives: (1) closed-loop stability, (2) adequate performance, and (3)
adequate robustness. For a process that is modeled as a transfer function, there
always exists a state feedback law that stabilizes the closed loop system. The
cutoff frequency wc needs to be chosen sufficiently small to prevent numerical
instability, see 2.3.

Since the Smith Predictor is implemented on the true FEM system in For-
tran, a discrete-time environment, the PID controller C needs to be discretized.
A discretization of the PID controller is given here. The overall control function
is

u(t) = Kpe(t) +Ki

∫ t

0

e(τ) dτ +Kd
de(t)

dt
, (4.10)

where the control parameters Kp, Kd and Ki are obtained with the function
pidtune as mentioned above. A discrete time implementation of this controller,
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obtained using backward finite-differences approximations [26], is

u (n) = u (k − 1) +

(
Kp +KiTs +

Kd

Ts

)
e (k) +

(
−Kp −

2Kd

Ts

)
e (k − 1)

+
Kd

Ts
e (k − 2) , (4.11)

where Ts is the sampling time. Note that the tuning parameters Kp, Kd and
Ki remain unchanged.

The Smith Predictor is implemented on the following three systems: (1) just
the identified linear model, i.e. in Fig. 3.5 the system P is chosen as G, (2) the
identified Wiener model, i.e. P is set to G followed by the static nonlinearity h,
and (3) on the true FEM system. All these systems used the controller obtained
from the function pidtune (sys,type,wc) with sys chosen as the model G,
type chosen as PID and cutoff frequencies wc chosen as 0.05, 0.1, 0.2, 0.3. From
numerical simulations it follows that these cutoff frequencies are small enough
that no numerical instabilities occur, see 2.3. The desired extrudate height is
selected as yr = 1.0. For all models, a low-pass filter is included to increase
robustness to modeling errors. This is a first-order filter with the following
transfer function in both continuous-time and discrete-time respectively:

FLP(s) =
kLPωLP

s+ ωLP
, FLP(z) =

kLPωLP
z−1
Ts

+ ωLP

, (4.12)

where FLP(z) is the result of the discretization of FLP(s) using the Forward
Euler Method. The cut-off frequency ωLP is chosen as 0.1 rad/s and the gain
kLP = 1. The choice of these parameters is motivated later in this section.

Remark 4.4.1. As to remain consistent with [5] and the introduction of the
Smith Predictor in Section 3.2.2, the analysis for the Smith Predictor on the die
shape optimization problem will be treated in continuous-time. As such, all units
are in e.g. rad/s and seconds, rather than rad/sample and samples respectively.
The effect on robustness is given in Remark 4.4.2.

Remark 4.4.2. The robustness of the Smith Predictor has been investigated
in Section 3.2.2, and will be complimented in this section, for continuous-time
processes. However, the Smith Predictor is implemented in discrete-time for
the die shape optimization problem. The work [5] discusses the usage of these
continuous-time robustness properties for discrete-time processes. It concludes
that these concepts remain valid, and that the focus of maintaining robustness
should lie on the magnitude of the modeling errors resulting from the discretiza-
tion process. For this die shape optimization problem, both the controller C and
low-pass filter FLP are converted from continuous-time to discrete time, while
the G is already a discrete-time process.

Situation 1: Linear model At first, the system P in Fig. 3.5 is chosen as just
the identified linear model G, i.e. P = Ge−Ls. This is also the model to which
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the controller C has been tuned. As such, using this implementation, the Smith
Predictor can be expected to have the best performance when an aggressive
controller is used, compared to the other two implementations. Figure 4.6a
depicts Smith Predictor’s performance for different crossover frequencies and in
Table 4.2 in terms of time needed to converge to a region of a maximum error of
1% of the reference. From both the figure and the table it can be concluded that
the higher the open-loop crossover frequency, the shorter is the time needed to
converge to the desired reference.

Section 3.2.2 mentions that the cause that contributes the most to decreased
robustness is a mismatch between the transportation delay present in P and the
estimated delay L for the estimation of P ≈ Ge−Ls. In Fig. 4.7a this effect is
investigated.

In support of these simulations, and using the concepts from (3.41) to (3.43),
the robustness condition (3.44) can be expanded as follows:

|∆P (jω)|
|Pn(jω)|

≤ δP (ω) <
|1 + C(jω)G(jω)|
|C(jω)G(jω)FLP(jω)|

, ∀ω > 0, (4.13)

where ∆P (jω) = P (jω) − Pn(jω). Using this expanded robustness condition,
the robustness of the simulations in Fig. 4.7a can be analyzed. Note that the
right-hand side of (4.13) only depends on the estimated model G, the controller
C and the filter FLP. As such, the controller and filter can be tuned indepen-
dently of the actual system to increase robustness.

It is desirable to have the right-hand side of this equation to be as large as
possible to guarantee robustness. If FLP is a low-pass filter, this right hand side
will be larger for ω above the cutoff frequency ωLP of FLP. As such, it would
make sense to have ωLP as small as possible. However, having a conservatively
tuned filter results in a lower rate of convergence. Therefore, one must attempt
to find a filter that makes the right hand side of (4.13) as small as possible,
while satisfying the sufficient robustness condition. Note that the robustness of
the Smith Predictor is also influences by the controller. However, the tuning of
the controller will always influence the convergence rate, while the filter tuning
will only have an influence if there is a model mismatch, i.e. P ̸= Ge−Ls.

Using a numerical case study, (4.13) is numerically validated, and the effect
of different parameters ωLP and kLP for FLP in (4.12) is investigated. From
Fig. 4.7b it follows that the system dynamics become unstable when the left-
hand side and right-hand side of (4.13) cross. Choosing different filter param-
eters ωLP and kLP will however alter the right-hand side of (4.13), resulting in
stable system dynamics.

Situation 2: Wiener model In this situation, the system P in Fig. 3.5 is
chosen as the identified Wiener model which includes both the identified linear
model G and the identified static nonlinearity h. Consequently, the models P
and G are not the same and as such ep(t) in Fig. 3.5 will not always be zero,
resulting in the need for a conservatively tuned filter FLP. Unfortunately, no
literature was discovered that treats robustness of a Wiener system on a Smith
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Predictor. It is expected however, that a filter gain kLP = 1 and crossover
frequency ωLP = 0.1 rad/s will deliver the expected robustness.

As shown in both Table 4.2 and Fig. 4.6b , convergence of y(t) to the desired
reference yr is slower than when only the linear model is used, i.e. P = G. This
happens since the system output P is different than that of the model G, and a
correction has to be made. The figure shows a clear contrast between Situation
1 and Situation 2: where Situation 1 has no overshoot and is able to converge
to the desired die height in an efficient manner, Situation 2 needs to correct for
the overshoot, ultimately leading to slower convergence.

Situation 3: FEM model The Smith Predictor has been implemented on the
true FEM system, such that the true FEM system is P . Although the linear
dynamics of the estimated Wiener model was found to behave fairly similar tot
the true FEM system close to the linearization point, this does not have to be the
case when looking at the global system behavior. Moreover, the Smith Predictor
uses the linear model G as its main model to be controlled, and the difference
between the actual output P and the expected output Ge−Ls to correct any
model mismatch. The fact that the model G is linear, will only make this
model mismatch between P and G larger, compared to Situation 2. However,
for this situation, the low-pass filter keeps the original tuning parameters, such
that kLP = 1 and ωLP = 0.1 rad/s. Again, Table 4.2 shows the time needed for
the output to converge to the reference extrudate height yr and Fig. 4.8 shows
the simulations for different open-loop bandwidths ωc.

Interestingly, convergence time does not necessarily decrease when ωc in-
creases, which was the case for the other two situations. Instead, the conver-
gence time appears to be decreasing at first for an increase ωc, but seems to
increase again when ωc > 0.1 rad/s. When looking at Fig. 4.8b, it is observed
that the transportation delay seems to get shorter for increasing ωc. This is most
likely caused by the aggressiveness of the controllers with a higher bandwidth,
resulting in the die height to decrease more rapidly than is the case with the
more conservative controllers. Consequently, since the fluid flow velocity of the
polymer is constant, the same volume of polymer is pushed through a smaller
die, resulting in a higher fluid velocity of the polymer once it exits the die. As
such, the polymer reaches the measuring point for the extrudate height faster
then it would with the more conservative controllers with a smaller bandwidth.
As mentioned in Section 3.2.2, the negative control performance resulting from
a difference between the estimated transportation delay and the actual trans-
portation delay far outways the negative performance resulting from a mismatch
in the expected dynamics of the model.

Figure 4.8b shows that the controller with an open-loop bandwidth of ωc =
0.1 rad/s initially approximates the estimated transportation delay best, i.e.
4 seconds. Although this may not be the case later on in the simulation, when
the die height has decreased and the transportation delay is therefore different,
the initial control action does not disrupt the estimated output of the Smith
Predictor in such a way that a large correction has to be made, resulting in
oscillatory behavior [5], as is the case with the more aggressive controllers.
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Table 4.2: Performance in the form of time needed to converge to the reference
yr = 1.0 for the Smith Predictor on both the estimated Linear model, Wiener
model and the true FEM system.

ωc [rad/s] Time Linear [s] Time Wiener [s] Time FEM [s]
0.05 77 48 33
0.1 38 46 26
0.2 19 33 28
0.3 12 27 32

Remark 4.4.3. Robustness to modeling errors must be considered a requirement
in the application of the Smith Predictor. As shown above, the transportation
delay is not constant and is dependent on the current shape of the die, i.e. the
area of the die through which the polymer is pushed. Furthermore, the identified
Wiener model from Table 4.1 and (4.7) is to play a key role in the die shape
optimization for other polymers. Namely, it is not desired to identify a Wiener
model for each polymer subject to optimization, as the desired die shape can be
directly derived from the surface of operating points, see Fig. 2.1. As such, for
each polymer and using the identified Wiener model from Table 4.1 and (4.7),
the Smith Predictor will quickly steer the die shape close to the optimal one,
and the robustness properties ensure it will eventually converge to the optimal
die shape.
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Figure 4.6: The Smith Predictor simulated on the estimated Wiener model. (a)
Only the linear model G is used and the static nonlinearity h is omitted. The
open-loop bandwidth is depicted in the legend in rad/s. (b) Simulations on
the full Wiener model, such that the static nonlinearity h is no longer omitted.
Again, the legends shows the open-loop bandwidths in rad/s.
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Figure 4.7: Numerical case study on the effect of a mismatch between the esti-
mated transportation delay L for G and the true transportation delay of P and
the effect of a low-pass filter to add robustness. (a) Effect of the transportation
delay mismatch with a controller bandwidth wc of 0.3 rad/s, low-pass filter cut-
off frequency ωLP = 0.1 rad/s and gain kLP = 1. The legend contains the delay
mismatch in seconds for each simulation, where a positive mismatch means the
true delay is longer than L. (b) Effect of filter parameters on robustness. Here
too, wc is 0.3 rad/s. 50
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Figure 4.8: Simulation of multiple tuning configurations of the Smith Predictor
on the SISO FEM system. The number in the legend means the bandwidth of
the closed loop for that simulation. (a) All simulations fully captured, and (b)
all simulations only captured for the first 15 seconds.
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Chapter 5

Conclusion and future work

In this final chapter, the main conclusions of this thesis are presented and rec-
ommendations for future work are given. These conclusions focus on the control
problem and how certain assumptions and process knowledge are used to guar-
antee stability or improve performance. The recommendations for future work
regard extensions to higher dimension control problems, such that MIMO die
shape optimization can be improved upon as well.

5.1 Conclusions

Die shape optimization using classic feedback control is limited by slow dynam-
ics and a significant transportation delay. These properties result in a need for
conservative tuning parameters to prevent instability of the optimization pro-
cess. Moreover, the dynamics of the extrudate process are not exactly known,
and rely on assumptions. The work on which the state of the art was based
did not utilize or explicitly state any assumptions of the process, apart from
it being a stable process, to guarantee stability or improve convergence speed.
The research conducted for this thesis, explored three types of optimization
techniques, each with their own advantages and disadvantages.

The first method, extremum seeking, perturbs the system to obtain local
derivative information of a cost function that describes the location of the input
that optimizes the process, and subsequently let the system converge to that
point. The applied method utilizes the principle of timescale separation, making
it a relatively slow optimization method. However, under certain assumptions
which are valid for the die shape optimization problem and with the tuning
parameters chosen conservatively, convergence to a small neighborhood of the
optimizing input is guaranteed. Precise knowledge on the transportation delay
could be used to significantly improve convergence time.Extremum seeking is
also suitable for higher dimension control problems, i.e. MIMO optimization
problems, since the highest possible convergence rate depends on the speed of
the process dynamics, rather than the number of objective function evaluations.
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However, the applied extremum seeking method relies on the objective function
having a single extremum, which may not be guaranteed for the MIMO die
shape optimization problem.

Surrogate modeling, the second method, estimates the optimal input by
evaluating the objective function a limited number of times, and subsequently
estimates the optimal input using assumptions on the system’s steady state
input-output pairings. As such, this process will not smoothly converge to the
true optimizer, but is able to guess the optimizer with sufficient accuracy in a
relatively short time span compared to extremum seeking. However, in contrast
to extremum seeking, the applied surrogate modeling method lacks a stability
guarantee. Furthermore, surrogate modeling is less suitable for scaling to higher
dimensions, since the number of required objective function evaluations to iden-
tify the input-output pairings increases drastically with each added dimension,
to ensure uniqueness of the solution. However, it is expected that this process
is still acceptably fast for a 4-dimensional problem.

The Smith Predictor is the third applied method. Where extremum seeking
and surrogate modeling only rely on process assumptions, the Smith Predictor
needs a model of the system. The requirement of a model limits flexibility in
the use of different polymers for the die shape optimization. However, with an
available robustness requirement and the usage of a low-pass filter in the control
loop, the controller and filter can be tuned conservatively to gain robustness,
at the trade-off of decreased performance. In this sense, a controller that was
tuned for a standard polymer, can be used for other polymers as well, limiting
the required process knowledge just as with extremum seeking and surrogate
modeling. However, to guarantee robustness, the modeling errors have to be
known, and this is not the case for this problem. In terms of convergence speed,
this process was the fastest of the three solutions, but required more efforts in
tuning the controller. If a higher dimension model is available, this method is
also suitable for the MIMO die shape optimization, since the MIMO robustness
properties are an extension of the SISO robustness properties.

5.2 Recommendations for future work

From the conclusions drawn above, the conducted research can be followed up
by:

� For the MIMO die shape optimization problem, the surface of operating
points is multivariate and is not necessarily convex. In that case, op-
timization methods that rely on the objective function having a unique
extremum, e.g. extremum seeking, are not suitable for MIMO die shape
optimization. Future research could entail the design of a cost function
that composites the surface of operating points, such that the overall ob-
jective function is made convex, and thus contains a local minimum.

� From applying extremum seeking, it was found that the transportation
delay has a significant impact on the first timescale, and as such, the
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entire optimization loop is slow. Future research could focus on applying
extremum seeking where convergence time is improved in the presence of
a transportation delay.

Knowledge on the phase shift between the perturbation signal and de-
modulation signal can potentially be used to significantly increase the
frequency of the perturbation signal, and increasing the speed with which
the gradient of the objective function can be estimated, thereby ignoring
the first timescale. An attempt to estimate this phase shift could be made
by real time knowledge of (1) the flow rate of the polymer, and (2) the area
of the die opening. As such the transportation speed of the polymer can
be calculated resulting in the transportation delay, and consequently the
phase shift. A method to identify a model using this concept is described
in [5].
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Recursive Least Squares Derivative Estimation for Fast and Accurate
Extremum Seeking Control

Martijn Kortenhoeven1 and Thijs van Keulen1,2

Abstract— This paper investigates accurate and fast online
optimization of unknown nonlinear systems in the presence
of measurement noise. Classical Extremum Seeking (ES) ap-
proaches seek an average system to guarantee convergence to
a neighborhood of the extremum. The convergence speed is
limited due to time-scale separation requirements associated to
averaging while precise convergence to the true optimizer is
limited by a trade-off between the signal-to-noise ratio and the
steady-state error. This paper advocates to employ a Moving
Average (MA) filter for Derivative Estimation (DE) in ES.
An analysis demonstrates that the MA filter approach can
achieve superior DE accuracy compared to finite-order DE
filtering and avoids the need for averaging with the associated
delay. Also, the analysis shows that the DE with a MA filter
coincides with a recently developed DE based on linear Least-
Squares (LS) fitting. By further exploiting this insight, this
paper provides a novel DE based on high-order LS fitting in
a receding horizon fashion which reaches superior steady-state
convergence accuracy in the presence of measurement noise. A
numerical case study demonstrates the strength of the approach
in terms of accuracy and convergence speed.

I. INTRODUCTION

Extremum Seeking (ES) is a data-driven control method
for online performance optimization of systems. A typical ES
feedback interconnection consists of the following elements:
An unknown mapping of the system input to a scalar objec-
tive function output, an online Derivative Estimation (DE)
algorithm that estimates the local gradient of the measured
output with respect to the input, and an online optimization
method that utilizes the gradient information to find the
optimizer of the unknown objective function, see Fig. 1.

The ES framework in [10] exploits time-scale separation
to achieve convergence towards a neighborhood of the true
optimizer in the sense that the optimizer update rate is
low compared to the delay introduced by the DE. A key
ingredient for the proper functioning of ES is thus to obtain
accurate and fast estimation of local gradient information
of the unknown objective function. In practice, however,
the system output measurement is corrupted with external
disturbances which reduce the correlation between system
input and measured cost output.

To provide robustness of the DE, to, e.g., measurement
noise, a sinusoidal perturbation signal is commonly added to
the system input. While injection of a sinusoidal dither signal
improves the signal-to-noise ratio between input and output,
there are unfortunately also disadvantages to the use of active

1Martijn Kortenhoeven and Thijs van Keulen are with the Eindhoven
Univ. of Tech., Dep. of Mechanical Engineering, Control Systems Technol-
ogy group, The Netherlands. t.a.c.v.keulen(at)tue.nl

2Thijs van Keulen is also with ASML, Veldhoven, The Netherlands.
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Fig. 1: Overview of the ES implementation with cost map-
ping QJ , perturbation signal d, and noise disturbance w.

perturbation. Firstly, the frequency of the dither signal is
directly related to the delay introduced by the DE and,
therefore, limits the convergence speed of the optimization.
Secondly, continuous perturbation in the neighborhood of
the optimum can lead to a steady-state error in case the
unknown objective function is not symmetric around the
optimizer, which occurs in various applications, such as anti-
lock braking systems [2].

Against this background, the DE approach in classic ES
[10] employs, subsequently, high-pass filtering, demodula-
tion, and low-pass filtering to the measured objective output.
Generalizations of the classical ES approach exist, both to
multiple input ES and to ES using higher-order derivatives,
see, for instance [11]. Recent developments includes exten-
sions of [11] to non-local stability properties [13] and to the
area of gradient descents with finite-time convergence [3,
12]. The stability analysis in all these approaches seek an
average system to guarantee convergence to a neighborhood
of the extremum. The application of averaging, however,
requires time-scale separation and thus causes delay in the
DE.

Regarding the steady-state error due to continuous per-
turbation, it is shown in [10] that, small dither amplitudes
will reduce the steady-state error. The tuning of the dither
amplitude, hence, introduces a trade-off between the signal-
to-noise ratio and the achievable steady-state error bound.
Hence, multiple ES schemes are designed with the aim
to deliver asymptotic convergence to the true optimizer by
reducing the perturbation amplitude while converging to the
optimum. For example, [15] proposed an extension to the
classical ES scheme by adapting the amplitude of the dither
signal based on the estimated derivative. However, in [1] it
is shown that, this extended scheme does not posses a single
equilibrium, but rather an equilibrium manifold, meaning
that, if the scheme starts in, or close to, this manifold, it
can never converge to the true optimum.

An extension of the scheme presented in [10] to remove
the steady-state error is proposed in [4], which includes a
convex uncertainty estimation set with a radius that con-



verges to zero. Subsequently, the perturbation signal am-
plitude gets reduced recursively such that it roughly equals
the radius of the convex uncertainty set. While this scheme
can achieve precise convergence to the true optimizer of a
measured unknown objective function, the scheme is still
subject to the undesired delay in the DE and trade-off in
the presence of measurement noise due to its dependency on
perturbation amplitude reduction.

In sharp contrast to the classical ES scheme, a Moving
Average (MA)-based DE framework is introduced in [5].
In this DE implementation, MA filtering is applied to the
measured cost output modulated with the perturbation signal.
Simulations in [5] indicate that the MA design leads to
an improved performance with respect to a comparable ES
controller with a low-pass filter. In [16], a generalization
to both multiple-input and higher-order derivatives of this
MA filtered DE is provided. Besides the modulation-based
DE, the MA filter framework can also apply iterative DE by
the local fitting of a polynomial functional on the measured
input-output data. A linear Least-Squares (LS) fitting frame-
work is proposed in [6]. It is shown in [14] that, the linear
LS filter framework is equivalent to the modulation-based
MA filter implementation.

In conclusion, the MA filter DE demonstrates significant
improvements in transient performance over the classic DE
implementation. However, until now, an analysis of the faster
convergence has not been presented. Moreover, an analysis of
the steady-state error dynamics of the MA-based DE imple-
mentation is not known to the authors. Also, the fundamental
trade-off between signal-to-noise ratio and steady-state error
is not removed by both classic or MA filtered ES.

The first contribution of this paper is to provide a stability
and error analysis that shows that MA filter based DE does
not require the application of averaging and hence avoids
time delay in the DE. Also, it is shown that the steady-
state error of the MA filter framework based on linear LS
approaches the same steady-state error limit as classic ES.
A second contribution of this paper is to extend the DE
based on first-order LS with a MA filter implementation to
higher-order polynomial fitting in a LS framework. In sharp
contrast to existing ES methods, a high-order polynomial
fit reduces the negative effect on the convergence efficiency
caused by an increased perturbation amplitude. Finally, a
third contribution of this paper is to provide a numerical case
study that compares different ES schemes regarding their
convergence speed and steady-state error for non-symmetric
objective functions in the presence of measurement noise.

This paper is organized as follows. In Section II the
problem is formulated. Section III gives an overview of the
DE schemes including the novel high-order LS DE. Next,
in Section IV, a numerical case study is presented. Finally,
Section V provides conclusions.

II. PROBLEM FORMULATION

Consider the optimization problem

min
u∈R

J(u, t), (1)

with the unknown static cost functional:

J(u, t) = QJ(u) +w(t). (2)

Here, J(u, t) is the measured cost as a function of the control
input u∈R, and w(t)∈R is the measurement disturbance at
time t ∈ R≥0, and QJ ∶ R→ R an unknown nonlinear static
mapping. The white noise signal w is assumed to have zero
mean and a constant power spectral density.

The goal of the ES framework is to let the input u(t)
converge to the optimizer of (1), i.e.:

u(t)→ u∗ = argmin
u∈R

QJ(u), when t→∞. (3)

To ensure convergence of the optimization process, the
following assumption is required.

Assumption 1 The mapping QJ ∶ R→ R is N, N ≥ 2 times
continuously differentiable with respect to the control input
u and there exists a constant input u∗ ∈ R such that the
gradient equals

g̃(u) ∶= dQJ(u)
du

= 0, (4)

if and only if u = u∗. Moreover

d2QJ(u)
du2

> 0, for all u ∈ R. (5)

Assumption 1 ensures that QJ(u∗) is a global minimum and
u∗ is the unique minimizer of QJ .

III. EXTREMUM SEEKING FRAMEWORK

This section outlines three ES implementations: classical
DE, MA based DE, and LS based DE. Figure 1 provides a
generic schematic overview of an ES framework.

Sinusoidal perturbation of the system input is assumed for
each ES framework

d(t) = a cos (ωt), (6)

in which, a > 0 is the dither amplitude, and ω the frequency.
The dither signal d is added to the input of the performance
map, leading to

u(t) = û(t) + d(t), (7)

where, û is the output of the optimization algorithm. Given
that the optimizer u∗ of QJ applies and û is the actual output
of the optimizer at time instance t, the optimization error is
defined as:

ũ(t) ∶= û(t) − u∗. (8)

The objective is to adapt input u such that the steady-state
cost QJ is minimized, i.e., to let ũ(t) → 0 if t → ∞. As
such, the cost QJ can be minimized using a continuous
steepest-descent approach, where the local gradient of QJ
with respect to u is estimated and this function value is
integrated, i.e., the differential equation

˙̂u(t) = −kg̃(t), (9)

applies, where k > 0 is the optimizer gain, and g̃ is the
gradient estimate at time instance t.



In the following subsections the different approaches to
obtain g̃ are discussed. These approaches are later compared
in a numerical case study.

A. Classical derivative estimation

Figure 2 depicts the DE of a classical ES scheme as given
in [10]. This scheme employs a high-pass filter to remove the
static contribution QJ(u) from J(u, t) and thereby attempts
to avoid distortion of the demodulation. For example, a first-
order high-pass filter can be applied

HHP (s) = s

s + ωHP
, (10)

where, s is the Laplace variable and ωHP > 0 the tune-able
filter pole.

Next, the high-pass filtered signal is demodulated to
locally estimate the objective function’s gradient. Subse-
quently, a low-pass filter is included to smooth the behavior
of û. For example, a first-order low-pass filter can be applied:

HLP (s) = ωLP
s + ωLP

. (11)

Here, ωLP > 0 is the tune-able filter pole. The stability
analysis in [10] requires ωHP and ωLP small compared to
dither frequency ω. Hence, the DE takes the following form

˙̃gcl(t) = ωLP (−g̃cl(t) + (J(u, t) − η(t))a cos(ωt)), (12)
η̇(t) = ωHP (−η(t) + J(u, t)), (13)

where η is the approximated static contribution of QJ(û).
The estimated gradient g̃cl is a scaled version of the true
gradient. For the gradient estimate g̃cl to be in the correct
scale, g̃cl should be divided by a2

2
. However, one could

choose to correct this deviation in the integrator gain k.
Moreover, due to the oscillating behavior of J(u, t), η in (13)
is unable to track J(u, t), i.e. J(u, t) − η(t) /= 0. As a
consequence, g̃cl(t) in (12) shows oscillating behavior and,
therefore, compromises the DE of J(u, t).

It is shown in [10] that, the steady-state error ũ in (8) is
approximated by

ũ ≈ − Q
′′′
J (u∗)

8Q′′
J(u∗)

a2, (14)

in which, Q
′′
J(u∗) and Q

′′′
J (u∗) denote the second and third

derivative of QJ with respect to u at the optimizer u∗

respectively. This error bound shows that, since a > 0, the
error can not converge to zero when the third derivative of
QJ with respect to the input u is not equal to zero.

The approach can be generalized to higher-order deriva-
tives, see [11]. Here, DE of QJ are obtained by the applica-
tion of a bank of low-pass filters. Let the function glp(a, η)
provide the DE

glp(a, η) ∶= A−1
N A

−1
α A

−1η, (15)

+ x

Fig. 2: Derivative estimation of a classical ES scheme.

with the matrices AN , Aα, and A defined by:

A ∶= diag (1 a a2 ⋯ aN) , (16)

Aα ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α0 α1 ⋯ αN
α1 α2 ⋯ αN+1
⋮ ⋮ ⋱ ⋮
αN αN+1 ⋯ α2N

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (17)

AN ∶= diag ( 1
0!

1
1!

1
2!
⋯ 1

N !
) . (18)

Here, N is the highest derivative order, and α indicates
the static contribution of each entry in η to the derivatives
in glp. Opposed to the implementation (12) and (13), this
implementation estimates the gradient with the correct scale.

B. Moving average based derivative estimation

Although the ES scheme presented in [10, 11] is intuitive
and well analyzed, applying an MA filter instead of a
high-pass filter provides more accurate DE and, therefore,
can achieve faster convergence. See Fig. 3 for a depiction
of the first-order DE implementation using MA filtering.
This section provides a frequency domain analysis that this
scheme obtains more accurate DE. Furthermore, an analysis
demonstrates that convergence is guaranteed without time-
scale separation between DE filter frequency and dither
frequency.

Using Assumption 1, and for constant û, a Taylor approx-
imation of the steady-state response of QJ is given by

Q̂J(û + d(t)) =
N

∑
r=0

( 1

r!
(d(t)Du)rQJ(û)) +RN , (19)

in which RN is the remainder term and the derivative of QJ
with respect to the input argument is defined by:

Dr
u ∶= ( ∂

∂u
)
r

= ∂r

∂ur
. (20)

It is convenient to rewrite (19) as

Q̂J(û + d(t)) =m⊺(t)AANgma(û) +RN , (21)

where the harmonics with the dither frequency
up to order N are collected in vector m(t) =
[1, cos (ωt), cos2 (ωt), . . . , cosN (ωt)] and the constant
matrices A and AN , as defined in (16) and (18), collect the
dither amplitude information.

Next, consider demodulation by multiplication of the
measured cost with signal vector m(t) and subsequent
application of an MA filter:

∫
t

t−T
m(τ)Q̂J(û + d(τ))dτ =

∫
t

t−T
m(τ)m⊺(τ)AANgma(û)dτ + ∫

t

t−T
m(τ)RN dτ.

(22)



Rearranging of (22) provides the DE

gma ≈K−1
MA ∫

t

t−T
m(τ)Q̂J(û + d(τ)) dτ, (23)

in which KMA = ∫
t
t−T m(τ)m⊺(τ)AAN dτ . Note that,

the matrix m(t)m⊺(t) is singular by construction unless
the product is integrated over the perturbation time period
T = 2π

ω
. Hence, KMA is full rank if T = 2π

ω
.

1) Frequency domain analysis: Inspired by the work in
[5, 7, 9], the higher accuracy of MA based DE over classic
DE is studied in the context of frequency-based system
identification. Using the fact that QJ(u) is approximately
linear on the interval u ∶ [û− a, û+ a] for small a and using
the common ES assumption that k is sufficiently small such
that û can be viewed as a constant, the signal QJ(u(t)) can
be approximated as follows:

Q̃J(u(t)) ≈ QJ(û) + g̃maa cos(ωt). (24)

Using the complex exponential Fourier transform the signal
Q̃J(u(t)) can be transformed into

Q̃J(u(t)) =
∞
∑
n=−∞

Cn e
j2πnt
T , (25)

where, T = 2π
ω

and:

Cn =
1

T
∫

T /2

−T /2
Q̃J(u(t)) cos(

2πnt

T
) dt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Re(Cn)

− j

T
∫

T /2

T /2
Q̃J(u(t)) sin(2πnt

T
) dt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Im(Cn)

∀n ∈ Z.
(26)

Here, the coefficients are ordered according to:

Cn =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

QJ(û) for n = 0,
1
2
g̃maa for n = ±1,

0 for ∣n∣ ≥ 2.
(27)

Note that, the Fourier series coefficients Cn in (26) only
produce real-valued constants. Therefore, it can be concluded
that, the imaginary part Im(Cn) in (26) is zero for all n and,
that as a result, (26) can be simplified to:

Cn =
1

T
∫

T /2

−T /2
Q̃J(u(t)) cos(2πnt

T
) dt, ∀n ∈ Z. (28)

Using this insight, and provided that Q̃J(u(t)) has the
form (24), it can be shown that the scheme presented in
Fig. 3 is able to extract the true gradient of QJ at û and the
true constant QJ(û) and it is able to do so on an arbitrarily
short time interval T = 2π

ω
provided that an integer number of

samples n fit in the time interval T . As such, it is concluded
that the DE is more accurate than the classical DE, for
which the DE exhibits oscillating behavior. Consequently,
MA based DE leads to better transient behavior and is able
to achieve faster convergence compared to the classical DE.

2) Stability and error analysis: of an ES scheme adopting
an MA filter for first-order DE does not seem to appear in
literature and is presented here. In this context, consider the
MA based ES scheme described in Fig. 3 for which the DE
takes the form

˙̂u = − 2k

aT
∫

t

t−T
QJ(û + a cos(ωτ)) cos(ωτ) dτ, (29)

with T = 2π
ω

. In contrast to [10, 11], the application of the
MA filter provides a closed-form solution for the perturbed
system. Note that, the system description is similar to the
average system description in [8, 10], but, crucially, without
the need for an approximate solution hinging on time-scale
separation. Now implementing the coordinate transformation
(8), the ES dynamics are described with:

˙̃u = − 2k

aT
∫

t

t−T
QJ(ũ + u∗ + a cos(ωτ)) cos(ωτ) dτ. (30)

This system has an equilibrium ũe that satisfies:

∫
t

t−T
QJ(ũe + u∗ + a cos(ωτ)) cos(ωτ) dτ = 0. (31)

Note that, since QJ(u∗) is a constant and for T = 2π
ω

,
that ∫

t
t−T −QJ(u∗) cos(ωτ) dτ = 0. Hence, define the error

function

v(ũ+ a cos(ωt)) = QJ(ũ+u∗ + a cos(ωt))−QJ(u∗), (32)

and rewrite (31) to:

∫
t

t−T
v(ũe + a cos(ωτ)) cos(ωτ) dτ = 0. (33)

By Assumption 1, this implies that v(0) = 0 and v′(0) =
0. Also, following the approach in [10] assuming that ũe
can be approximated by a polynomial of the form ũe(a) =
b1a + b2a2 + Rn(a), where a is the dither amplitude and
approximating v(ũe+a cos(ωt)) by a Maclaurin series, using
the time-scale σ = ωt and selecting t = T , giving:

∫
2π

0
v(ũe + a cosσ) cosσ dσ =

∫
2π

0

v′′(0)(b1a + b2a2 + a cosσ)2 cosσ dσ

2

+ ∫
2π

0

v′′′(0)(b1a + b2a2 + a cosσ)3 cosσ dσ

6
= 0. (34)

Due to the presence of cosσ, multiple terms in (34) equal
zero, resulting in:

∫
2π

0
v(ũe + a cosσ) cosσ dσ = πv′′(0)(b1a2 + b2a3)

+
πv′′′(0)(b1 + 3

4
)a3

6
+Rn(a) = 0. (35)

This concludes to b1 = 0 and b2 = − v′′′(0)
8v′′(0) , such that:

ũe(a) = −
v′′′(0)
8v′′(0)a

2 +Rn(a). (36)

So, to summarize, the classic ES presented in Section III-
A and the MA filter ES presented in Section III-B, share the
same approximated steady-state error bound, i.e. (14).



+ x

Fig. 3: Derivative estimation of a moving average filter.

Next, it is shown that the structure of the well-known
stability analysis for the classical ES is also applicable to
MA filtered ES.

Heretofore, rewrite the error dynamics (30) to

˙̃u = − 2k

aT
∫

t

t−T
v(ũ + a cos(ωτ)) cos(ωτ) dτ, (37)

that has the Jacobian evaluated at ũe:

J = − 2k

aT
∫

t

t−T
v′(ũe + a cos(ωτ)) cos(ωτ) dτ. (38)

This Jacobian J will be Hurwitz if and only if:

∫
t

t−T
v′(ũe + a cos(ωτ)) cos(ωτ) dτ > 0. (39)

Again using that v′(0) = 0 and also that v′′(0) > 0 and
performing similar Maclaurin approximation as in (34), it
can be concluded that:

∫
t

t−T
v′(ũe + a cos(ωτ)) cos(ωτ) dτ = πv′′(0)a +Rn(a2).

(40)
As such, it can be concluded that the equilibrium ũe is
asymptotically stable for sufficiently small a.

C. Least squares based derivative estimation

A third implementation for DE in ES is given by [6],
such that, by using a first-order LS polynomial fit to locally
estimate the performance map, a DE can be achieved by
taking the gradient of the fitted polynomial, see Fig. 4.
Consider the following LS objective function

WLS(t) =

∫
t

t−T

⎛
⎜⎜⎜
⎝
QJ(u(τ))−[c0(t) c1(t) . . . cN(t)]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
d(τ)
⋮

dN(τ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟
⎠

2

dτ,

(41)

with, N ≥ 1 the selected polynomial order, d(t) the pertur-
bation signal according to (6) and T = 2π

ω
, for the following

optimization problem:

min
c0,c1,c2,...,cN

WLS . (42)

If the parameters c0, c1, c2, . . . are optimal, then the following
conditions should hold: ∂WLS

∂c0
= 0, ∂WLS

∂c1
= 0, etc..

Next, the polynomial p(u) = c0 + c1u+⋯+ cNuN is fitted
using the input- and output data in the time interval [t−T, t].
Taking the common assumption in ES that the integrator gain
k in the optimizer (9) is sufficiently small, this polynomial
locally approximates the performance map QJ on the interval
[û−a, û+a] shifted by −û, where a is the dither amplitude,

Least squares fit
gradient estimation+

 buffer

Fig. 4: Derivative estimation by recursive LS fitting.

i.e. p(e) ≈ QJ(û + e) for −a ≤ e ≤ a. Subsequently, the DE
is obtained by:

g̃ls =
dp

du
(0) = c1. (43)

Note that, p(0) ≈ QJ(û) implies that g̃ls ≈ dQJ
du

(û).
The equivalence between the LS based and MA based

DE is shown. Revisit the cost function (41). Rewrit-
ing c(t) = [c0(t), c1(t), c2(t), ..., cN(t)]⊺ and Am(τ) =
[d0(τ), d1(τ), d2(τ), ..., dN(τ)]⊺ and taking out the con-
stant A matrix defined in (16), the unique minimizing
argument c∗ to this cost function is

c∗=A−1 (∫
t

t−T
m(τ)m(τ)⊺ dτ)

−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
K−1

LS

∫
t

t−T
QJ(u(τ))m(τ) dτ,

(44)
where the matrix KLS is a constant Hankel matrix if and only
if the integration time T = 2π

ω
. As such, equivalence between

the MA DE and LS DE is demonstrated and a generalization
of the LS DE from [16] is obtained.

Fitting an N th order polynomial allows for N th order
DE of QJ making it possible to use, e.g., Newton based
optimization. However, higher-order polynomial fitting is
also advantageous in an ES scheme employing steepest-
descent optimization, which is the focus of this paper. In
particular, since the polynomial order may affect the opti-
mum polynomial coefficients, employing a higher-order fit
with N > 2 can result in more accurate first-order DE in
case of a performance map which is non-symmetric around
its extremum. However, an even polynomial order does not
yield an advantage compared to the previous odd order. This
is due to the following.

Matrix KLS in (44) is a Hankel matrix in which each
element Ki,j in row i and column j is larger than zero if i+j
is an even number and equals zero if i+ j is an odd number.
The inverse of KLS has the same structure. Since only the
second row of K, i.e. KLS2,[1,2,...,N] ∈ R1×N contributes to
the first order DE g̃ls = c1 in (43), rather than all rows
in KLS, only odd polynomial orders increase the accuracy
of the polynomial fit. This also shows why a higher-order
polynomial fit is more accurate than a first-order fit.

IV. NUMERICAL CASE STUDY

In this section, a case study is provided to compare the
performance of the DE schemes presented in Section III. For
each scheme, both the transient- and steady-state behavior is
evaluated for the objective function J(u, t) = −u sinu+w(t)
with initial estimate û(t0) = 1.5 at time t0 = 0. This static
map has an extremum at u∗ ≈2.0288 and is non-symmetric
around the optimizer since J(u∗+e) /=J(u∗−e) for 0 < e≪ 1.



Fig. 5: Results of the investigated ES schemes: (left) without measurement noise, and (right) with measurement noise.

TABLE I: Extremum seeking parameters for simulations.
Without noise With noise

a ω k a ω k ωLP ωHP T

Cl DE 1 0.1 40π 350 0.2 40π 100 10 20 -
Cl DE 2 0.1 40π 5 0.2 40π 5 2.5 - -
LS DE 0.1 40π 5 0.2 40π 5 - - 0.05

Each ES scheme is implemented with a sampling fre-
quency Fs = 1000 Hz, both with and without measurement
noise w(t), see Fig. 1. The measurement noise is white
Gaussian noise, i.e. zero mean with constant power spectral
density, with variance σ2

w = 1 ⋅ 10−7 and is a pre-generated
time series, such that the same disturbance is applied to each
ES scheme as to create a fair comparison.The selected ES
parameters are provided in Table I and inspired by the results
provided in the corresponding cited articles, see Section III.

A. Classical derivative estimation

The classical DE has been implemented according to
both the scheme represented in Fig. 2 (Cl DE 1) and
the generalized classical DE (Cl DE 2) as described in
Section III-A. For Cl DE 1, the first derivative of QJ(û) is
estimated using both a high-pass filter and a low-pass filter.
It is emphasized that, as discussed in Section III-A, the DE is
scaled, resulting in a differently tuned integrator gain k. For
Cl DE 2, only low-pass filtering is applied. As a consequence
of these filters, the DE is inaccurate when comparing it
to the LS DE implementation. Moreover, the classical DE
shows steady state oscillations around the approximated error
according to (14). In the presence of measurement noise, the
scheme provides robustness to these disturbances. However,
since the steady-state error is, according to (14), a function
of the dither amplitude, the classical DE implementation is
unable to converge to the true optimum in the presence of
measurement noise.

B. Least-Squares based derivative estimation

The LS DE is implemented with different polynomial
orders N . As is shown in Section III, the first-order LS
scheme converges to the same approximation error as the
classical DE, however faster. Selecting a higher polynomial
order allows for a better fit of the input to output data and,

in turn, allows for a more accurate DE. As becomes evident
from Fig. 5, choosing a higher-order polynomial results in a
reduced approximation error. In the presence of measurement
noise, this allows for a higher dither amplitude, while the DE
remains more accurate than the classical DE.

V. CONCLUSIONS

This article advocates derivative estimation (DE) for ex-
tremum seeking (ES) based on recursive high-order least-
squares (LS) fitting implemented with a receding horizon
equal to the perturbation period. It is demonstrated through
analysis and a numerical case study that this DE provides
faster convergence compared to classical ES while is able
to achieve superior steady-state accuracy on non-symmetric
objective functions in the presence of measurement noise.
Future work will focus on enhancing the convergence speed
further by exploiting self excitation of the converging ES
loop.
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control for nonlinear systems with periodic steady-state outputs”. In:
Automatica 49 (2013), pp. 1883–1891.

[6] B.G.B. Hunnekens, M.A.M. Haring, N. van de Wouw, and H.
Nijmeijer. “A dither-free extremum-seeking control approach using
1st-order least-squares fits for gradient estimation”. In: 53rd IEEE
Conference on Decision and Control. 2014, pp. 2679–2684.

[7] T. van Keulen, R. van der Weijst, and T. Oomen. “Fast extremum
seeking using multisine dither and online complex curve fitting”. In:
Proceedings of the 21st IFAC World Congress. 2020, pp. 5362–5367.

[8] H. Khalil. Nonlinear Systems. Pearson, 2014.
[9] D. Krishnamoorthy. “On the design and analysis of multivariable ex-

tremum seeking control using fast fourier transform”. arXiv preprint
arXiv:2104.14365.
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