
 Eindhoven University of Technology

MASTER

GPGPU interpolation of volumetric data for optimal motion planning

van de Schoot, Bas A.C.

Award date:
2018

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/5f2a6192-58d0-45e5-86d6-b5bf52da7c92

GPGPU interpolation of volumetric

data for optimal motion planning

B.A.C. van de Schoot

D&C 2018.016

Master's Thesis: Preperation Phase

Coach(es): dr. A Saccon,
dr. G. Dubbelman

Supervisor: prof. dr. H. Nijmeijer

Eindhoven University of Technology
Department of Mechanical Engineering
Dynamics & Control

Eindhoven, January, 2018

Abstract

There are multiple di�erent methods of motion planning. Two common methods are sampling-
based motion planning and optimal motion planning. This thesis is solely concerned with the optimal
motion planning and not with the sampling-based motion planning. These optimal motion planning
algorithms solve an optimal control problem in order to calculate the optimal trajectory. These op-
timal control problems can be solved using di�erent algorithms. This thesis wants to use a method
which minimize the optimal control problem using Newton-like minimization methods. Therefore, the
optimal control problem has to be a twice continuously di�erentiable function. This thesis researches
a fast interpolation method which results in a twice continuously di�erentiable description of the en-
vironment from a 3D scalar space.

This research focuses on a method of describing the environment by interpolating a discrete implicit
representation. Therefore, this research investigates fast interpolation methods which can interpolate
a 3D scalar space. The literature proposes to use a digital �lter method as the interpolation method
for optimal motion planning. However, no mathematical proof was given in the literature. Further-
more, di�erent interpolation methods and implementations are compared based on their calculation
time. The comparison has shown that a GPGPU (General-Purpose computing on Graphics Process-
ing Units) implementation of the digital �lter method is the fastest interpolation for optimal motion
planning.

The proposed GPGPU interpolation method is implemented into a discrete PRoject Operator-based
Newton method for Trajectory Optimization (dPRONTO) algorithm. The interpolation method is
used to interpolate synthetic and experimental data which describe the environment. The experimen-
tal descriptions are obtained using the KinectFusion framework with a Kinect camera v1. Unfortu-
nately, the default open-source implementation of KinectFusion (KinFu) does not result in a discrete
implicit representation of the environment. Therefore, some parameters of the KinFu algorithm are
tuned to provide a proper discrete implicit environment description. The interpolation method is
able to create a twice continuously di�erentiable function from these discrete implicit representations.
Moreover, the dPRONTO algorithm is able to calculate a locally optimal trajectory from the inter-
polated synthetic and experimental environment descriptions.

The proposed interpolation method has proven to be faster than other methods. The proposed
interpolation method can be used in an optimal motion planning algorithm. However, the proposed
interpolation is useless when the interpolated description of the environment does not accurately ap-
proximate the exact environment. Especially, the surfaces of the objects has to be approximated
accurately. The optimal motion planning algorithm calculates the trajectory based on the interpo-
lated description of the environment. Hence, a collision between the real environment and the robot
is plausible when the interpolated surface is not the same as the exact surface. Therefore, the inter-
polation method is validated based on its accuracy of approximating the surfaces of the obstacles.
The accuracy of the approximation of the surface is validated as a function of the obstacle radius
to grid size ratio. Therefore, the validation gives the grid size for scanning a certain environment
with a desired accuracy. Moreover, the error of the surface approximation can be compensated in the
optimal control problem.

i

CONTENTS

Contents

1 Introduction 1
1.1 Robot motion planning . 1
1.2 Environment descriptions . 1
1.3 Research challenges . 2
1.4 Research objective and methodology . 3
1.5 Contribution . 4
1.6 Report outline . 4

2 Mathematical preliminaries and background material 6
2.1 Implicit representation . 6
2.2 KinectFusion . 7
2.3 Background of interpolation methods . 9

2.3.1 One Dimensional interpolation . 9
2.3.2 Comparing basic multivariate interpolations . 12
2.3.3 Multivariate cubic b-spline . 13
2.3.4 Fast multivariate interpolation . 14
2.3.5 Summary . 15

2.4 Newton's method . 16
2.4.1 Convergence rate . 16
2.4.2 Convergence rate of an approximated function . 17
2.4.3 Terminal condition . 17
2.4.4 Backtracking line search . 18

2.5 Summary . 18

3 Proposing a fast interpolation method for optimal motion planning 20
3.1 Digital �lter vs tridiagonal interpolation . 20
3.2 The implementation of the proposed interpolation method 21
3.3 Veri�cation of the proposed interpolation method . 26

3.3.1 One dimensional CUDA interpolation . 26
3.3.2 Multivariate CUDA interpolation . 29

3.4 Zero level set interpolation error as function of the radius to grid size ratio 35
3.5 Summary . 41

4 Numerical experiments 42
4.1 Calculation time of the di�erent interpolation methods . 42
4.2 Optimal motion planning with collision constraints from point cloud data 45

4.2.1 OMP based on interpolated TSDF . 45
4.2.2 OMP based on KinectFusion data . 51

4.3 Summary . 55

5 Conclusions and recommendations 57
5.1 Conclusions . 57
5.2 Recommendations . 58

A B-splines is a special case of piecewise polynomial 64

B Convergence rate Newton's Method 65

ii

CONTENTS

C CUDA soure code 66
C.1 1D interpolation . 66
C.2 Interpolate 3D grid in x-direction . 67
C.3 Interpolate 3D grid in y-direction . 67
C.4 Interpolate 3D grid in z-direction . 68
C.5 Function which calculates the number of threads and blocks 69

D The addition images of the multivariate interpolation validation 71

E Signed Distance Field of an edge 76

F Parameters of dPRONTO algorithm 78

iii

Introduction

1 Introduction

1.1 Robot motion planning

A motion planning algorithm calculates a feasible path from a starting point to a desired endpoint. Where
a feasible path is de�ned as a path that does not collide with obstacles and can be accomplished by the
robot in terms of hardware restrictions. There are di�erent methodologies for motion planning.

A common method of motion planning is sampling-based motion planning. sampling-based motion plan-
ning chooses random positions to check whether these are free. All the free points are combined, resulting
in a free space. Next, the sampling-based motion planning algorithm searches for a feasible path. This
feasible path is found when the discrete positions of the path and connecting paths are entirely in the
free space. The main disadvantage of sampling-based motion planning is that the �nal trajectories often
contain unnecessary and jerky motions [1].

Another common method for motion planning is solving an optimal control problem. The algorithms
which solve motion planning using an optimal control problem are referred to as optimal motion plan-
ning algorithms. These methods describe the robot and the surrounding in a constraint optimal control
problem. These optimal control problems have an objective functional which should be minimized while
satisfying certain dynamics and constraints. Due to the fact that the dynamics are part of the optimal
control problem, these optimal motion planning algorithms result in much less jerky trajectories. The
optimal motion planning algorithms are able to avoid obstacles when the obstacles are de�ned via an
inequality constraint. The inequality constraint that describes the environment will be referred to as the
obstacle avoidance constraint.

Ideally, the optimal motion planning algorithm is able to plan the optimal trajectory while it is ex-
ploring and scanning the environment. Therefore, the obstacle avoidance constraint should be calculated
as fast as possible.

1.2 Environment descriptions

There are multiple di�erent optimal motion planning algorithm available (CHOMP [2], STOMP [3], Tra-
jOpt [4]). These optimal motion planning algorithms are already able to calculate a desired path while
describing a static environment. These methods use di�erent solutions for describing the environment.
The simplest solution for describing the environment is to create an occupancy map. However, the opti-
mal motion planning algorithm requires an inequality constraint to describe the environment. Therefore,
a common method is to use a Signed Distance Function (SDF) to describe the environment. An SDF
at point x is de�ned as the distance between point x with respect to the surface of the closest obstacle.
Moreover, the SDF of point x is negative when the point is inside of an obstacle. When point x is on
the outside of the obstacle it has a positive SDF. When the point is on the surface an obstacle it has a
value of zero in the SDF. All the points with value zero are referred to as the zero level set of the SDF.
The structure of the SDF results in an implicit representation of the environment. Concluding, an SDF
can be used as an inequality constraint which describes the environment.

Mainprice et al. [5] propose to use a di�erent method to describe the environment, namely to use an
Electric Potential Field instead of an SDF. The computation of the electric potential is an expensive
calculation. Consequently, [5] does not use the exact function to describe the environment but an inter-
polated version of a discrete Electric Potential Field (EPF), which seems to be a proper candidate to
describe the environment.

1

Introduction

1.3 Research challenges

The static environment should be implemented using inequality constraints in optimal motion planning.
Therefore, the environment has to be represented with a description which has a clear di�erence between
the inside and outside of an obstacle. First, the desired environment description is discussed. Second,
the two di�erent surrounding descriptions which have already been discussed are discussed with respect
to the desired description.

Mainprice et al. [5] compare three di�erent optimal motion planning algorithms: STOMP, CHOMP
and Gauss-Newton. All three optimal motion planning algorithms have a di�erent method of minimizing
the objective function. The STOMP algorithm uses solely the objective function to calculate the local
derivative. The CHOMP algorithm uses a �rst derivative of the objective function. The Gauss-Newton
uses the �rst and second derivative of the objective function. The results of the comparison of the three
optimizers show that using a �rst and second derivative of the objective function results in a faster
minimization over time. Therefore, the optimal motion planning should use a Newton-like minimization
method. The downside of using a Newton-like minimization method is that continuous �rst and second
derivatives of the environment are required. Therefore, the obstacle avoidance constraint should satisfy
this requirement.

As shown in case of the EPF, calculating the exact description can be expensive in terms of computation.
Moreover, an environment commonly is obtained using scanning methods. Therefore, an environment
commonly is represented discrete instead of a continuous. Therefore, an interpolation method is needed
in order to use the environment description in optimal motion planning. The simplest solution of trans-
forming the discrete representation into a continuous representation would be using a linear interpolation
method. Moreover, the continuous �rst and second derivatives can be obtained using a central di�erence
approximation with a linear interpolation. However, the book of Kelly [6] states that a central approxi-
mation in a Newton-like minimization might not converge. Therefore, an interpolation method is required
which has a continuous and an exact �rst and second derivative. This requirement will be referred to as
the smoothness requirement. A function which satis�es this requirement is commonly referred to as a
twice continuously di�erentiable function or a C2 function.

Previously, it was stated that a common method of obtaining a description of an environment is us-
ing a sensor. This research does not focus on dynamic environments which change fast over time but
focusses on static environments. However, most environments have not been scanned when a robot arrives
for the �rst time. Moreover, an environment might have changed when a robot revisit an environment.
Therefore, a robot should be able to scan and plan its environment simultaneously. As a result, the
interpolation method should be able to get a fast C2 description of the environment.

In Section 1.2, several optimal motion planning algorithms have been mentioned like CHOMP and
STOMP. Both methods use an SDF to describe the environment. However, these optimal motion plan-
ning algorithms do not require that the environment has to be described with a C2 function. Hence,
these methods of describing the environment cannot be used in a Gauss-Newton method. Mainprice et
al. [5] have investigated the possibility of using a Gauss-Newton method in optimal motion planning.
The Gauss-Newton method should satisfy the smoothness requirement. However, Mainprice et al. use a
default cubic interpolation method to interpolate a discrete EPF. This default cubic interpolation method
will not be fast enough. Therefore, research is desired into a fast interpolation method which results in
a C2 function.

2

Introduction

1.4 Research objective and methodology

The main goal of this thesis is to implement and validate a fast interpolation method of 3D scalar �elds for
optimal motion planning. Therefore, this thesis will research the fastest interpolation method currently
available in the literature. The fastest interpolation method will be implemented. The implemented
interpolation method will be validated to ensure it is correct and it is faster than other interpolation
methods. Moreover, the fast interpolation algorithm will be used to interpolate discrete Signed Distance
Fields to get a C2 function which describes the environment The interpolated Signed Distance Function
will be used in an optimal motion planning algorithm. First, the discrete Signed Distance Fields will be
created using synthetic data. Second, a 3D scanning technique will be used to create a sensor/experi-
mental Signed Distance Field. Therefore, the interpolation method will be validated for optimal motion
planning for synthetic and experimental data. However, interpolation of the discrete SDF (interpolated
SDF) will never be exactly the same as the exact SDF. Consequently, the interpolated SDF might give
a false representation of the obstacle in the optimal motion planning. This might results in a feasible
trajectory based on the interpolated SDF which is not feasible for the exact SDF. Hence, the optimal
motion planning algorithm �nds a trajectory which results in a collision with the actual obstacle. In
order to ensure no collisions due to the interpolation method, the zero level set of the interpolated SDF
is compared with the exact SDF. The di�erence between the zero level sets will be evaluated for di�erent
obstacle radius to grid size ratios.

As discussed before, the ideal optimal motion planning is able to calculate the trajectory in real time.
Hence, the interpolation method should be as fast as possible. This research investigates which inter-
polation method is the fastest. A possible solution to reduce the calculation time is using GPGPU
(General-Purpose computing on Graphics Processing Units) calculation. The advantage of GPU (Graph-
ics Processing Unit) calculations with respect to CPU (Central Processing Unit) calculations is the
number of cores available in the system. A GPU normally has a couple of hundred cores available while
a CPU commonly has 4 cores available. However, a GPU core is not as fast as a CPU core. Therefore,
GPGPU calculation is solely bene�cial when the interpolation method is able to run many calculations
in parallel. GPGPU calculations have been made easily accessible due to the introduction of NVIDIA's
CUDA (Compute Uni�ed Device Architecture). CUDA enables a programmer to execute c-code on an
NVIDIA GPU.

The interpolation method will be implemented in an optimal motion planning algorithm using the in-
terpolated SDF as an environment inequality constraint. The optimal motion planning algorithm that
is used in this research is a discrete PRoject Operator-based Newton method for Trajectory Optimiza-
tion (dPRONTO). The dPRONTO algorithm is an in-house optimal motion planning method. The
dPRONTO algorithm is able to calculate the optimal trajectory for a point mass. Moreover, it is as-
sumed that the entire static environment is known before the optimization.

This thesis investigates the interpolation of sensor data for optimal motion planning. In this research,
the experimental SDF is chosen to be obtained using a 3D scanning method. This research chooses to
use a Kinect camera version 1 together with KinectFusion to get a discrete 3D representation of the en-
vironment. The Kinect camera version 1 is a depth camera of the game console x-box and KinectFusion
is an algorithm which is able to combine the depth images into a 3D representation of the environment.
This 3D scanning technique has been chosen because of its low cost and the technique is easily accessible.
3D scanning will result in a discrete representation of the environment. In other words, 3D scanning
will not result in an obstacle avoidance constraint which satis�es the smoothness requirement. Therefore,
the 3D scanning output has to be interpolated with an interpolation method which creates a C2 function.

3

Introduction

Sensor data might contain noise resulting in an imperfect representation of the environment. The pres-
ence of noise can be reduced by using smoothing splines [7]. Schoenberg and Reisch are two examples
of researchers which have proposed to use smoothing spline to approximate the gridded data instead of
passing through the points exactly. The smoothing splines should result in a smoother function than
exact interpolation methods. However, the smoothing splines do not pass through the grid points but
approximate the gridded data. The KinectFusion algorithm combines multiple di�erent depth images
into a single global representation of the environment using volumetric integration. The volumetric inte-
gration [8] combines multiple depth images by weighting depth measurements for the same position from
di�erent images. Due to the weighting of di�erent depth images, the volumetric integration might already
�lter most of the noise out. The output of the KinectFusion algorithm is assumed to be accurate and
no smoothing splines will be applied. The requirement that the interpolation method should be exactly
equal to the discrete representation at the grid points is referred to as the pass-through requirement.

1.5 Contribution

The contribution of this research to the literature is the following:

1. This research proposes a fast interpolation method for optimal motion planning. In section 2.3,
a literature study provides a fast interpolation method. The fastest interpolation method of the
literature study is implemented into an algorithm which can be used for optimal motion planning
in Chapter 3. The proposed interpolation method is validated that it satis�es the smoothness and
pass-through requirements. Moreover, the calculation time of the proposed interpolation method
is compared with the calculation time of two di�erent interpolation methods. The comparison of
the calculation times can be found in section 4.1.

2. The accuracy of the proposed interpolation method is validated by investigating the zero level set
error of the interpolated space with respect to the exact zero level set. Moreover, this validation
investigates the accuracy of the zero level set approximation over di�erent obstacle radius to grid
size ratios. This validation can be found in section 3.4.

3. The proposed interpolation method is used to calculate an obstacle avoidance constraint for an
OMP algorithm. The proposed interpolation method is used to interpolate simulated obstacles for
an in-house optimal motion planning algorithm. Moreover, the proposed interpolation method is
combined with KinectFusion. The interpolated KinectFusion data is used as an obstacle avoidance
constraint in the same in-house optimal motion planning algorithm. The results of the implemen-
tation of the proposed interpolation method in OMP algorithm can be found in section 4.2.

1.6 Report outline

How obstacle surfaces can be described using implicit representation is explained in Chapter 2. Moreover,
Chapter 2 discusses how KinectFusion framework can be used to get a discrete implicit of an obstacle.
As discussed in this introduction, the discrete representation of an obstacle has to be interpolated fast.
Chapter 2 concludes which interpolated method is the fastest method according to the literature which
satis�es the requirements. Chapter 2 discusses exact Newton-like methods and Newton-like methods
based on di�erence approximation derivatives.

Chapter 2 concludes which interpolation method is the fastest, according to the literature. However,
the literature does not provide proof that the interpolation method is always faster. Therefore, Chap-
ter 3 shows that the chosen method is faster than other interpolation methods. Moreover, Chapter 3
validates that the interpolation method is accurate and satis�es the pass-through and smoothness re-
quirement. Chapter 3 discusses the implementation of the fast interpolation method. Chapter 3 ends

4

Introduction

with the validation of the zero level set approximation as a function of the obstacle radius to grid size ratio.

Although Chapter 2 shows that the chosen method is faster than other interpolation methods, Chapter
4 shows how much the proposed interpolation method faster is than other interpolation methods. The
main goal of this thesis is to propose a fast interpolation method for optimal motion planning. There-
fore, Chapter 4 shows results of an optimal motion planning algorithm based interpolated synthetic data.
Moreover, the KinectFusion framework is used as input for the obstacle avoidance constraint in Chapter 4.

Chapter 5 summarises the conclusions of this research. Moreover, Chapter 5 discuss some challenges
which still need to be tackled in order to use this method in real-time optimal motion planning. More-
over, some recommendations for future research are made.

5

Mathematical preliminaries and background material

2 Mathematical preliminaries and background material

This chapter will discuss the background of several di�erent topics which are used in this research. First,
this section explains how an implicit representation can be used to describe the surface of an obstacle.
Second, the KinectFusion framework is explained and how it can result in a discrete implicit representation
of an environment. Third, a literature study on interpolation methods discusses the fastest interpolation
method for optimal motion planning. Finally, this section discusses exact and inexact Newton's method
and the convergence rates of both methods.

2.1 Implicit representation

Chapter 1 states that the obstacle avoidance constraint is chosen to be an implicit representation of the
environment. The implicit representation is de�ned using three di�erent subspaces. The �rst subspace is
the set of points which de�ne the obstacle surface. This subspace is represented by a zero in the implicit
representation. This set of points is referred to as the zero-level set. The second subspace is the set
of points which are inside the obstacle. The implicit representation represents these set points with a
positive value. The third subspace de�nes the set of points outside the obstacles. These points are shown
with a negative value in the implicit representation. This implicit representation of the obstacle results
in the following equation

c(x) : R3 → R

= 0 , x is on the surface of an object,

< 0 , x is inside an object,

> 0 , x is outside an object,

(2.1)

where c is the obstacle avoidance constraint and x is a position. When the output of the obstacle
avoidance constraint represents the distance from the given position to the closest surface than the
obstacle avoidance constraint has a physical meaning. A Signed Distance Function (SDF) describes the
distance between position x and the closest surface to this position. Figures 2.1 shows a 1D and 2D
example of an SDF.

-4 -3 -2 -1 0 1 2 3 4
Position [m]

-4

-3

-2

-1

0

1

2

3

4

S
D

F
 v

al
ue

 [-
]

(a) (b)

Figure 2.1: Two examples of an SDF where the surface of the obstacles are shown in red. (a) shows a 1D obstacle
of a width of 4 [m]. (b) shows a 2D obstacle with a radius of 2[m].

6

Mathematical preliminaries and background material

The distance to an obstacle is not interesting when all the obstacles are not close to the point. When
this is the case, the SDF can be truncated using a truncation threshold resulting in a Truncated Signed
Distance Function (TSDF). The TSDF is a truncated and normalized version of the SDF. The truncation
thresholds transform the SDF to a TSDF using the following equation

TSDF (x) =

1 , SDF (x) > D̄

SDF (x)D̄−1 , |SDF (x)| < D̄

−1 , SDF (x) < −D̄
, (2.2)

here, D̄ is the truncation threshold. The TSDFs of the SDFs of Figure 2.1 are shown in Figure 2.2. In
Figure 2.2, the truncation threshold is set to 1[m].

-4 -3 -2 -1 0 1 2 3 4
Position [m]

-4

-3

-2

-1

0

1

2

3

4

T
S

D
F

 v
al

ue
 [-

]

(a) (b)

Figure 2.2: The TSDF of the two examples of Figure 2.1. Also here are the surface of the obstacles shown in
red. (a) shows a 1D obstacle of a width of 4 [m]. (b) shows a 2D obstacle with a radius of 2[m]. The
truncation threshold is 1[m] in both examples.

The TSDF of the examples used in Figure 2.2 are relatively simple. However, an autonomous robot
should also be able to cope with complex environments and should represent the environment in 3D. A
common method of obtaining the surrounding is scanning.

2.2 KinectFusion

A well-known 3D scanning method is KinectFusion with a moving depth camera [9]. This section explains
how KinectFusion determines the TSDF of an environment based on depth images. A depth camera
measures the distance between a pixel of an image and the closest surface with respect to that pixel. A
single image of the depth camera results in a Signed Distance from one point of view. Figure 2.3 shows
a side view of a single depth image.

7

Mathematical preliminaries and background material

Figure 2.3: A two-dimensional example of a Signed Distance (SD), where positive distances (d) are shown by
blue to green (d ∈ [0 ∞)), negative distances are shown by green to red (d ∈ (−∞ 0]) and the black
line represent the obstacle surface(d = 0). [10]

As can be seen in Figure 2.3, a pixel in front of the closest surface has a positive value and a pixel behind
the closest surface has a negative value. The closest surface of the obstacle to the camera is represented
by the value zero in the SDF. However, a single image does not give an accurate representation of
the obstacle. Volumetric integration can merge multiple depth images into a single 3D grid [8]. The
images are merged by using the pose and position of the camera to translate the relative positions of a
depth image to a global position within a prede�ned 3D grid. These global positions are used to combine
multiple depth images from di�erent points of view. The value of a global point is calculated by weighting
the measurements of di�erent depth images. The global Signed Distance is updated using the following
equations

D(x) =

∑
wi(x)di(x)∑
wi(x)

, (2.3)

W (x) =
∑

wi(x). (2.4)

However, volumetric integration solely works when the global position of the camera is known. In other
words, the global 3D space is relative to the starting pose of the camera. Moreover, the camera movement
is tracked in KinectFusion using the Iterative Closest Point algorithm (ICP) of Besl and McKay [11]. A
global SD can be computed based on the camera tracking of the ICP and the volumetric integration. A
grid point in the global 3D space is called as a voxel as a 2D image consists out of multiple pixels.

A single depth image stores all the distances between a pixel and the closest obstacle. All these distances
have to be converted into the 3D grid. This operation will take a long time and the most important
information is which pixels are close to an obstacle. Therefore, the SDF is Truncated (TSDF) in order
to reduce the information. KinectFusion calculates the discrete TSDF using the following equation

TSDF (x) =

1 , D(x) > D̄

D(x)D̄−1 , |D(x)| < D̄

−1 , D(x) < −D̄
, (2.5)

where D̄ is the truncation threshold in [m]. The bene�t of the truncation is that a voxel far from an
obstacle will never be updated. This TSDF will result in a 3D space where voxels have a value

� 1 when the voxel is farther from a surface than the truncation threshold and the voxel is outside
an obstacle.

8

Mathematical preliminaries and background material

� between (0 . . . 1) when the voxel is less than the TSDF value times the truncation distance away
from a surface and the voxel is outside an obstacle.

� 0 when the voxel is on a surface of an obstacle.

� between (−1 . . . 0) when the voxel is less than the TSDF value times the truncation distance away
from a surface and the voxel is inside an obstacle.

� −1 when the voxel is farther from a surface than the truncation threshold and the voxel is inside
an obstacle.

Newton-Like minimization requires a C2 function, as discussed in Chapter 1. However, the output of
the KinectFusion will be a discrete TSDF. Therefore, the discrete TSDF of KinectFusion has to be
interpolated in order to use the measurement in optimal motion planning.

2.3 Background of interpolation methods

As discussed in Chapter 1, the interpolation method has to satisfy two requirements. The interpolation
method has to result in a C2 function and has to pass through the grid points. Moreover, the interpolation
method should be as fast as possible. The literature study on interpolation methods starts with discussing
the basics of piecewise polynomial interpolation and the B-spline interpolation in 1D. Thereafter, this
section discusses the multidimensional interpolation of these two interpolation methods. A multidimen-
sional interpolation might be referred to as multivariate interpolation. Furthermore, a fast multivariate
interpolation method is discussed. Finally, a brief summary will discuss the best interpolation method
based on the literature.

2.3.1 One Dimensional interpolation

The basics of piecewise polynomial interpolation and B-spline interpolation are �rst explained 1D. Start-
ing with piecewise polynomial interpolation. Interpolating a discrete signal with a single polynomial
will result in a complex function in order to satisfy the pass-through requirement. In order to reduce
the complexity, a discrete signal will be interpolated using multiple polynomials which each describe the
interpolation between two grid points. Each polynomial has to be of order three to satisfy the smoothness
requirement. Therefore, a cubic piecewise polynomial will ensure that the interpolation output is a C2

function. Each cubic piecewise polynomial can be represented by the following equation

Si(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3, (2.6)

where ai, bi, ci and di are the coe�cients of a polynomial. Si(x) is the cubic spline which interpolates
the function between grid points xi and xi+1. The pass-through and smoothness requirements result in
the following requirements for the piecewise polynomial interpolation

Si(xi) = f(xi) = fi, (2.7)

Si(xi+1) = Si+1(xi+1), (2.8)

S′i(xi+1) = S′i+1(xi+1), (2.9)

S′′i (xi+1) = S′′i+1(xi+1), (2.10)

where fi is the value at the grid point at position xi. A piecewise cubic spline interpolation method is
proposed by Mathews [12]. Mathews uses these requirements to calculate the coe�cients of (2.6). Math-
ews combines (2.6), (2.7), (2.8), (2.9) and (2.10) which is a problem with four unknowns per polynomial.
The combination of the four equations result in a problem with solely one unknown per polynomial.

9

Mathematical preliminaries and background material

The resulting problem of combining (2.6), (2.7), (2.8), (2.9) and (2.10) is represented with the following
equation with the new unknowns Di

h1 2(h1 − h2) h2 0 0

0
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . . 0
0 0 hn−1 2(hn−1 − hn) hn

D2
...
...

Dn−1

 =

u1
...
...

un−1

 , (2.11)

where

ui = 6

(
fi+1 − fi

hi
− fi − fi−1

hi−1

)
, i ∈ [1 n] (2.12)

where hi is the grid size. These Di's can be used to calculate the unknown of (2.6) by

ai = fi, i ∈ [1n]

bi =
fi+1 − fi

hi
− hi(2Di +Di+1)

6
, i ∈ [1 n]

ci =
Di

2
, i ∈ [1 n]

di =
Di+1 −Di

6hi
. i ∈ [1 n]

These coe�cients together with (2.6) can be used to calculate an interpolation function which satis�es all
the requirements of the introduction. The tridiagonal linear system (2.11) is not able to calculate the �rst
D1 and lastDn coe�cients. These two last coe�cients are calculated with endpoint constraints. There are
multiple di�erent boundary conditions which can be used to add the two needed equations. De Boor [7]
gives a few examples of endpoints constraints. The �rst boundary condition is the complete interpolation,
complete interpolation assumes that the �rst or second derivative at the endpoints is known. Another
boundary condition is the free-end condition, free-end conditions assume that the second derivative at
the endpoints is zero. The free-end conditions are also known as natural spline interpolation. Third
boundary condition discussed by De Boor is the �not-a-knot� condition. The �not-a-knot� condition
chooses to approximate the coe�cients at the boundary using

c−1 = c0,

cn−1 = cn−2,

here n is the number of coe�cients. According to De Boor, the �not-a-knot� condition is the best choice
when no information is available on the derivatives at the endpoints. All unknown Di's can be calculated
when the boundary conditions are added to the tridiagonal linear system (2.11).

Thévenaz et al. [13] propose a di�erent interpolation method. Thévenaz et al. call their interpolation
method a generalized interpolation method. The di�erence between the traditional interpolation and
the proposed generalized interpolation is the di�erence in coe�cients. The formula of the generalized
interpolation is

f(x) =
∑
i

ciψi(x− xi) , (2.13)

where xi is a position on the grid, x can be any position in space, ψi is a chosen basis function around
grid point xi and ci is the coe�cients corresponding to the basis function at grid point xi. The output
of the interpolation method will be a C2 function when the basis functions are chosen to be second order

10

Mathematical preliminaries and background material

continuous. The paper [13] provides multiple basis functions, which satisfy the smoothness requirement.
A commonly used basis function is the b-spline. A b-spline function can be calculated using the De
Boor-Cox algorithm [7]. The De Boor-Cox algorithm uses a recursion to calculate a b-spline of a certain
order. The De Boor-Cox algorithm starts with a non-continuous function

Ni,0(u) =

{
1, if ui ≤ u < ui+1,

0, if otherwise,
(2.14)

where ui are the grid positions. The De Boor-Cox algorithm uses the following equation to determine a
b-spline of one order higher

Ni,p(u) =
u− ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u), (2.15)

where Ni,p is the desired b-spline of order p. For example, to create a �fth order b-spline, one needs to
have six input points, as shown in Figure 2.4.

Figure 2.4: An example of a recursion tree which is used by the De Boor-cox algorithm to calculate the shape of
a certain b-spline. This example is the recursion tree of a �fth order b-spline.

To satisfy the smoothness requirement of Chapter 1, the interpolated function f(x) needs to be at least
of an order three. According to De Boor [14], a combination of Ni,p−1 and Ni+1,p−1 produces a function,
which, in general, has one more continuous derivative than either one of them. Ni,0 is not a continuous
function and Ni,1 is a continuous function which has no continuous derivatives. Moreover, Ni,2 is a
continuous function and has one continuous derivative. In other words, when (2.15) is used, the function
Ni, p has p− 1 continuous derivatives. Therefore, a third order b-spline (p = 3) is needed to interpolate
the discrete grid in order to satisfy the smoothness requirement. To determine the third order b-spline,
the De Boor-Cox algorithm needs four input points. It is assumed the number of b-splines is equal to
the number of grid points. Moreover, the i-th b-spline is chosen to be symmetric on the i-th grid point.
Figure 2.5 shows an example of the cubic b-spline around point i = 5 with a grid size of one. Due to the
symmetry of the b-spline, the equation of the i-th b-spline can be written as a function of the distance
(|ui|) between the desired point x and the center of the b-spline xi divided by the grid size. The equation
of a third order b-spline, or cubic b-spline, is

φi(ui) =

2
3 −

1
2 |ui|

2(2− |ui|), 0 ≤ |ui| < h,
1
6(2− |ui|)3, h ≤ |ui| < 2h,

0, 2h ≤ |ui|,
(2.16)

11

Mathematical preliminaries and background material

2 3 4 5 6 7 8
Horizontal position

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.5: Example of a centred b-spline around point 5.

where h is equal to the grid size and ui = (x − xi)/h. The b-splines need accurate coe�cients in order
to satisfy the pass-through requirement. The proper coe�cient can be calculated using

f2
...
...
...

fn−1

=

φ1,3(x2) . . . φn,3(x2)
...

. . .
...

...
. . .

...
...

. . .
...

φ1,3(xn−1) . . . φn,3(xn−1)

c2
...
...
...

cn−1

=

1

6

1 4 1 0 0

0
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

0 0 1 4 1

c2
...
...
...

cn−1

, (2.17)

where φi,3 is the cubic b-spline around the position xi. Also here, the coe�cients can be calculated by
solving a tridiagonal linear system. Like the piecewise polynomial interpolation, the tridiagonal system
can not determine the coe�cients at the boundary. Therefore, the B-spline also need to applied endpoint
constraints. Barsky [15] describes the end constraints for b-spline interpolation. Barsky uses phantom
points to interpolate the endpoints properly. These phantom points are used determine the boundary
conditions with respect to the derivatives at the boundary. However, the gridded data does not have
derivatives boundaries. Barsky provides another method called double vertices. Here, the boundary
coe�cients c1 and cn are also used for coe�cients outside the scope (c0 and cn+1), resulting in the
following equation

f1
...
...
...

fn−1

=

1

6

5 1 0 0

1 4 1 0
. . .

. . .
...

0
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . . 0 1 4 1
0 0 1 5

c1
c2
...
...
...

cn−1
cn

. (2.18)

2.3.2 Comparing basic multivariate interpolations

The basics of two di�erent 1D interpolation method have been discussed in the previous section. This
section discusses how these interpolation methods can be used to interpolate a 3D grid. First, the 3D
interpolation of the piecewise polynomial interpolation is discussed. The tricubic piecewise polynomial
interpolation method is proposed by Lekien et al. [16], which uses the following equation to calculate the

12

Mathematical preliminaries and background material

piecewise polynomials

f(x, y, z) =
3∑

i,j,k

aijkx
iyjzk, (2.19)

where aijk the coe�cients of the tricubic interpolation. Therefore, each polynomial which describes the
interpolation between 8 voxels has 64 coe�cients. Lekien et al. chose to simplify the interpolation
because of computational complexity. However, the simpli�ed method of Lekien et al. does not provide
a C2 function as the output of the interpolation. The total number of unknown coe�cients in tricubic
interpolation is given by the following formula

Ncoef = 64(nx − 1)(ny − 1)(nz − 1), (2.20)

where Ncoef are the number of coe�cients, nx, ny and nz are the number of grid points in the x, y and
z direction. Where b-spline interpolation uses the following equation to interpolate a three-dimensional
space

f(x, y, z) =

n1∑
i=1

n2∑
j=1

n3∑
k=1

ci,j,kB(x− xi, y − yj , z − zk), (2.21)

where B(x, y, z) is the three dimensional b-spline. According to Schumaker [17], (2.21) can be reduced
when the point cloud is an uniform grid. The reduced equation of (2.21) is the following equation

f(xl, ym, zn) = flmn =

Nx∑
i=1

Ny∑
j=1

[
Nz∑
k=1

ci,j,kγk(zn)

]
︸ ︷︷ ︸

Wi,j,n

ψj(ym)

︸ ︷︷ ︸

Vi,m,n

φi(xl), (2.22)

where f(xl, ym, zn) is the interpolated function at points xl and ym and zn. The basis function φi(x)
is a 1D b-spline in x-direction around pointxi. ψj(y) is a basis function in y-direction around point yj .
γk(z) is a basis function z-direction around point zk. Nx, Ny and Nz are the number of grid points
and b-splines in respectively x-, y- and z direction, resulting in the following equation for the number of
unknown coe�cients

Ncoef,b = NxNyNz. (2.23)

As can be seen from (2.20) and (2.23), the total number of unknowns in cubic b-spline interpolation is
less than the total number of unknowns in cubic piecewise polynomial interpolation. Therefore, cubic
b-spline interpolation should have a lower calculation time than cubic piecewise polynomial interpolation.

2.3.3 Multivariate cubic b-spline

The coe�cients of cubic b-spline interpolation have to be calculated correctly in order to satisfy the
pass-through requirement. Schumaker [17], De Boor [7] and Bartels [18], all use (2.22) as the function to
interpolate a three-dimensional space. (2.22) can be rewritten into three equations

flmn =

Nx∑
i=1

Vi,m,nφi(xl), (2.24)

Vi,m,n =

Ny∑
j=1

Wi,j,nψj(ym), (2.25)

13

Mathematical preliminaries and background material

Wi,j,n =

Nz∑
k=1

ci,j,kγk(zn). (2.26)

These equations show that a three-dimensional cubic b-spline interpolation can be seen as multiple one-
dimensional interpolations. The above equation can be solved, by solving the following equations φ1(x1) . . . φNx(x1)

...
. . .

...
φ1(xNx) . . . φNx(xNx)

 V1,m,n...
VNx,m,n

 =

 f1,m,n...
fNx,m,n

 , ∀m ∈ [1 . . . Ny], ∀n ∈ [1 . . . Nz], (2.27)

 ψ1(y1) . . . ψNy(y1)
...

. . .
...

ψ1(yNy) . . . ψNy(yNy)

 Wi,1,n

...
Wi,Ny ,n

 =

 Vi,1,n...
Vi,Ny ,n

 , ∀i ∈ [1 . . . Nx], ∀n ∈ [1 . . . Nz], (2.28)

 γ1(z1) . . . γNz(z1)
...

. . .
...

γ1(zNz) . . . γNz(zNz)

 ci,j,1...
ci,j,Nz

 =

 Wi,j,1
...

Wi,j,Nz

 , ∀i ∈ [1 . . . Nx], ∀j ∈ [1 . . . Ny]. (2.29)

These equation shows that a 3D space can be interpolated with (Nx×Ny) 1D interpolations in z-direction,
(Nx × Nz) 1D interpolations in y-direction and (Nz × Ny) 1D interpolations in x-direction. In other
words, multivariate interpolation can be accomplished by multiple 1D interpolations. The coe�cients of
the multivariate interpolation can also be calculated by multiple 1D interpolation (2.18).

2.3.4 Fast multivariate interpolation

Chapter 1 discusses that a fast interpolation method is desired. Therefore, this section discusses a fast
multivariate interpolation method. The multivariate b-spline interpolation consists out of two parts.
First, calculating the correct coe�cients to interpolate the voxel grid. Second, the calculation of a value
in the space based on the coe�cients. The calculation of the correct value based on the coe�cients will
be referred to as the value calculation part. Therefore, the calculation time of the algorithm can be
improved in two parts. Both parts are evaluated on improvements.

Unser et al. [19] [20] propose a fast b-spline interpolation method. According to [20], the digital �l-
ter method interpolates faster than the tridiagonal matrix method (2.18). However, [20] does not provide
proof that the digital �lter method is always faster than other methods. [20] proposes to use a digital
�lter to calculate the coe�cients of the b-spline interpolation. Like in the multivariate interpolation of
the previous section, a multi-dimensional digital �lter can be seen as multiple one-dimensional digital
�lters. Therefore, the proposed method of [20] is explained solely in one-dimension. The digital �lter
interpolation rewrites (2.13) using discrete b-splines

fi = (φ ∗ c)(xi), (2.30)

where fi is the value of the gridded data at point xi, φ are the b-splines and c are the coe�cients around
point xi. Using the convolution theorem [21], the equation above can be rewritten as

F (z) = Φ(z)C(z), (2.31)

where F (z), Φ(z) and C(z) are the z-transforms of fi, φi and ci. Therefore, the coe�cients can be
calculated using the following equation

C(z) = Φ−1(z)F (z), (2.32)

14

Mathematical preliminaries and background material

where,

Φ−1(z) =
λ

z + 4 + z−1
= λ

(
1

1− zpz−1

)(
−zp

1− zpz

)
, (2.33)

where zp is the smallest root of the polynomial z2 + 4z+ 1 and λ is a gain. In case of the cubic b-splines,
zp is equal to

√
3 − 2 and λ is equal to 6. As can be seen in (2.33), the digital �lter consist of a causal

and an anti-causal �lter. These causal and anti-causal �lters are visualized in Figure 2.6.

Figure 2.6: Graphic representation of the causal and anti-causal �lter. [20]

Here c+i is the output of the causal �lter and c−i is the output of the anti-causal �lter. Usually, anti-causal
functions cause problems because the next point of the signal is not known. However, the anti-causal
�lter means that the current coe�cient depends on the next pixel, in this case. Therefore, the digital
�lter results in the following equations

c+i = fi + zpc
+
i−1, (2.34)

c−i = zp(c
−
i+1 − c

+
i), (2.35)

ci = λc−i . (2.36)

As in the previous interpolation methods, the interpolation needs a boundary condition. Paper [20]
imposes a zero derivative at the endpoints. Resulting in the following equation for boundary conditions

c+0 = f0 +
1

1− z2Np

N−1∑
k=0

(zk+1
p + z2N−kp)fk, (2.37)

and
c−N−1 = − zp

1− zp
c+(N − 1), (2.38)

where N are the number of b-splines. These coe�cients can then be used to calculate the value at
any point in space using (2.22). Ruijters et al. [22] show that the digital �lter method of [20] can be
implemented into CUDA. Therefore, the coe�cients of the b-splines can be calculated fast using the
digital �lter method. Calculating the desired output based on these coe�cients will be the same as in
(2.22).

2.3.5 Summary

A cubic b-spline interpolation has signi�cant fewer unknowns than a tricubic piecewise polynomial inter-
polation. Hence, it is assumed that b-spline interpolation is faster than a tricubic piecewise polynomial
interpolation. Moreover, a tricubic interpolation method is a much more complex interpolation method.
The coe�cients of the b-splines still need to be calculated while satisfying the pass-through requirement.
Unser et al. [19] state that their digital �lter method is much faster in calculating the b-spline coe�cients
than using (2.18). However, the paper of Unser et al. does not provide mathematical proof that their
method is faster than other methods. Consequently, the method of Unser et al. has to be veri�ed whether
the digital �lter is indeed faster than solving (2.18).

15

Mathematical preliminaries and background material

2.4 Newton's method

Newton's method or Newton-Raphson method is a root-�nding algorithm. Newton's method approxi-
mates the actual solution (x∗) by the two-term Taylor expansion [6]. Therefore, Newton's method results
in the following equation to �nd the root

xi+1 = xi − f ′(xi)−1f(xi), (2.39)

with xi is the point at iteration i and f(xi) is the function value of point xi. Newton's method iterates
over (2.39) resulting in an algorithm which approximates the actual root with

x∞ = x∗. (2.40)

The proof that Newton's method converges is given later in this thesis. Newton's method can solely be
used when the function satis�es three assumptions. First, the function f(x) has to have a solution which
results in

f(x∗) = 0. (2.41)

Second, the �rst derivative f ′ is Lipschitz continuous with Lipschitz constant γ. Third, the �rst derivative
f ′ is nonsingular. These three assumptions are referred to as the standard assumptions.

Newton's method can also be used to �nd a local minimum of a function g(x). Instead of solving
g(x) = 0, Newton's method is used to �nd

g′(x) = 0, (2.42)

where g′(x) is the �rst derivative of the function g(x). The minimizer is de�ned as x∗. (2.42) is not
su�cient to �nd a minimum or minimizer. Point x∗ is solely a minimum when it satis�es (2.42) and the
following equation

g′′(x∗) > 0, (2.43)

where g′′(x) is the second derivative of function g(x). The minimum �nding algorithm will iterate over
the following equation

xi+1 = xi − g′′(xi)−1g′(xi). (2.44)

2.4.1 Convergence rate

The bene�t of Newton's method is its convergence rate. Simpler root �nding algorithms, like gradi-
ent descent method, have a linear convergence rate. However, Newton's method has a local quadratic
convergence rate [6]. In other words, Newton's method has locally the following convergence rate

||ei+1|| ≤ K||ei||2, (2.45)

where K is a constant which is > 0 and
ei = xi − x∗. (2.46)

The proof that Newton's method satis�es the quadratic convergence rate locally is given in [6] and can
also be found in Appendix B. Newton's method has locally a quadratic convergence when the standard
assumptions hold. Newton's method is within the quadratic convergence rate when xi is close enough to
the actual solution.

16

Mathematical preliminaries and background material

2.4.2 Convergence rate of an approximated function

However, linear interpolation of the voxel grid is not reliable in Newton-Like minimization according
to Chapter 1. The Newtons method which has to calculate with a linear interpolation will be referred
to as inexact Newtons method. Due to the di�erence approximation for the derivatives, the di�erence
approximation is an approximation of the exact derivative of g(x). The inexact Newton's method does
not calculate with g′(x) but with

g′(x) + ε(x), (2.47)

where ε(x) is the error of the approximated derivative with respect to the exact derivative. Moreover, the
second derivative is also approximated with a central di�erence. The forward di�erence approximation
of g′′(x) is

g′(x+ h) + ε(x+ h)− g′(x)− ε(x)

h
, (2.48)

where h is the grid size. Let ε̄ be de�ned as ||ε(x)|| ≤ ε̄, ∀x then

g′′(x)− g′(x+ h) + ε(x+ h)− g′(x)− ε(x)

h
= O(h+ ε̄/h). (2.49)

This upper bound is minimized when h =
√
ε̄. Based on this information, the convergence rate of

Newton's method can be calculated, resulting in the following convergence rate

||ei+1|| ≤ Kd(ε̄+ (||ei||+ h)||ei||), (2.50)

where Kd is some positive constant. (2.50) shows that the inexact Newtons method might not conver-
gence. Hence, the convergence will stagnate and cease to decrease when ||e∞|| ≈ ε̄.

Therefore, the linear interpolation and di�erence approximation will not converge to the minimum.
Moreover, (2.50) solely holds in the case that the grid size satis�es

h =
√
ε̄. (2.51)

In case of an autonomous interpolation of an unknown environment, the linear interpolation might have
a signi�cant error for a certain grid size. Therefore, the combination of linear interpolation and di�erence
approximations is not desired in Newton-Like minimization.

2.4.3 Terminal condition

Because the actual minimizer is not known in most cases, Newton's method needs a terminal condition
which triggers when Newton's method is close to the exact solution. In the exact Newton's method has
local quadric convergence rate, as in (2.45). The Newton's method iterates over (2.39) resulting in

s =− f ′(xi)−1f(xi),

=xi+1 − xi,
=xi+1 − x∗ + x∗ − xi,
=ei+1 + ei.

Combining the results above with the quadratic convergence rate of (B.7), the size of the Newton step s
is equal to

||s|| ≤ ||ei+1||+ ||ei|| ≤ O(||ei||2) + ||ei||. (2.52)

As a result, the size of the Newton step gives a good indication of the size of the error.

17

Mathematical preliminaries and background material

However, (2.52) does not hold in the inexact Newton's method. In case of the inexact Newton's method,
the Newton's step is equal to

||s|| =||ei+1||+ ||ei|| (2.53)

≤||ei||+Kd(ε̄+ (||ei||+ h)||ei||) (2.54)

≤Kdε̄+ (Kd(||ei||+ h) + 1)||ei||. (2.55)

These equations imply the same problem as the convergence rate of the inexact Newton's method. When
||ei|| >>

√
ε̄ then the Newton's step will have the same property as the exact Newton's method. However,

the Newton's step will be O(ε̄) when ||ei|| ≤
√
ε̄. Therefore, Newton's step is not as reliable in the inexact

Newton's method as in the exact Newton's method. Therefore, Newton's step should still give an idea
of the error.

2.4.4 Backtracking line search

This section has brie�y described the literature on Newton's method. However, this thesis uses Newton's
method which di�ers as it has been discussed in this section. When this thesis refers to Newton's method,
it actually refers to Newton's method together with an Armijo-Goldstein backtracking. This research
uses the following equation instead of (2.44)

xi+1 = xi − αg′′(xi)−1g′(xi), (2.56)

where α is the step size. Moreover, the step size is assumed to be appropriate when the following condition
is satis�ed

g(xi + αisi) ≤ g(xi) + cα∇g′(xi)T si, (2.57)

where
si = g′′(xi)

−1g′(xi), (2.58)

and c ∈ [0 1] is a constant. When the minimization does not satisfy (2.57) than the step size is updated

αi+1 = αiβ, (2.59)

where β is the backtracking constant. The proof that this method still converges to a local minimum, is
given in the book of Nocedal and Wright [23].

2.5 Summary

This chapter has discussed the mathematical preliminaries and background information for this thesis.
The background of implicit representation are explained in Section 2.1. This thesis will use a Truncated
Signed Distance Field (TSDF) as an implicit representation for describing the obstacle avoidance con-
straint. An environment can be scanned using a depth camera and KinectFusion Framework to create
a 3D TSDF of it. The basic information on KinectFusion Framework has been explained in Section
2.2. The output the KinectFusion Framework is a discrete representation of the environment. However,
the obstacle avoidance constraint has to satisfy two requirements as discussed in Chapter 1. In order to
satisfy these requirements, the discrete TSDF has to be interpolated. In Section 2.3, several interpolation
methods have been research in order to �nd the fastest interpolation method which satis�es the require-
ments of Chapter 1. The literature study does not provide which interpolation method is the fastest.
Unser et al. [20] claim that their digital �lter method is the fastest method. However, the paper [20]
does not give a mathematical proof of being faster. Concluding, the method of Unser et al. has to be
compared with other interpolation methods. In Chapter 1, the interpolation method is stated to be a C2

function else it can not be used in Newton-Like minimization methods. The idea behind Newton-Like

18

Mathematical preliminaries and background material

minimization methods has been discussed in Section 2.4. The Newtons minimization method is discussed
for a function which is a C2 function and for a function which does not satisfy the smoothness require-
ment. The conclusion of Section 2.4 is that Newtons minimization methods with C2 function will always
convergence when certain assumptions are met. However, Newtons minimization might not convergence
when the function which is minimized is not C2.

19

Proposing a fast interpolation method for optimal motion planning

3 Proposing a fast interpolation method for optimal motion planning

This chapter discusses the interpolation method, which is proposed to interpolate the discrete TSDF. The
interpolation method has to satisfy two di�erent requirements as introduced in the introduction. The
�rst requirement is the smoothness requirement which states that the interpolation method provide a C2

function. The second requirement is the pass-through requirement which states that the interpolation
method should pass-through the discrete TSDF points. A third desired property of the interpolation
method was introduced in Section 2.3.2. Several interpolation methods require a uniform grid in order
to interpolate the point cloud. Last, the interpolation method should be as fast as possible. Unser et
al. [20] sates their method is the fastest interpolation method. this chapter will start with a comparison
of Unser's digital �lter with the tridiagonal method of calculating the coe�cients. Secondly, this chapter
will discuss the implementation of the chosen interpolation method. Thirdly, the proposed interpolation
method is veri�ed by means of numerical simulations that the proposed interpolation method satis�es
the above-mentioned requirements. Lastly, the interpolated TSDF can not be exactly the same as the
exact TSDF. Moreover, the optimal motion planning will be done on the interpolated TSDF. Therefore,
the optimal motion planning algorithm might �nd a feasible solution which is not feasible with respect
to the exact TSDF. The last section discusses this problem more in-depth. Furthermore, this section
validates the error of the zero level set of the interpolated TSDF with respect to the zero level set of the
exact TSDF. In this validation, the accuracy of the zero level set approximation is validated with respect
surrounding and the used grid size. The surrounding or obstacle is represented by the smallest radius
which is present.

3.1 Digital �lter vs tridiagonal interpolation

In Section 2.3.5, two di�erent methods of obtaining the coe�cients for cubic b-spline interpolation have
been discussed. According to Unser et al. [19], their digital �lter method is the fastest method to calcu-
late the coe�cients. This section compares the digital �lter method with a second interpolation method.
The second method, discussed in the background, is the tridiagonal matrix method for calculating the
coe�cients. The calculation time of the digital �lter method is compared with the calculation time of
the tridiagonal matrix method.

The digital �lter method is optimized for low calculation time. However, the tridiagonal interpola-
tion method is not optimized for calculation time. Hence, the comparison will solely be fair when the
tridiagonal method is optimized for calculation time as well. According to Conte and De Boor [24], the
Thomas algorithm is a fast solution to solve tridiagonal matrix systems. Thomas algorithm is used to
solve the tridiagonal method as fast as possible.

As discussed in the background, multivariate interpolation is the same as multiple 1D interpolation
methods when the point cloud is a uniform grid. As discussed in the introduction of this chapter, the
grid which is interpolated is required to be uniform. Therefore, the calculation times of the multivariate
method can be compared based on the calculation time of their 1D interpolations. The computation
time of an algorithm depends on which computer hardware and software is used. Table 3.1 shows which
computer hardware has been used in this thesis. The software which has been used can be seen in Table
3.2.

20

Proposing a fast interpolation method for optimal motion planning

Device Type

CPU Intel Core i7-4702MQ CPU @ 2.2GHZ 2.20

GPU Nvidia GeForce 940M, 2GB

RAM single 8GB DDR3 1600 GHz

Table 3.1: Computer hardware of this thesis.

Program Version

Ubuntu 14.04

CUDA 8.0

Matlab 2015b

Table 3.2: Software which have been used in this research.

The calculation time of both interpolation methods can be seen in Figure 3.1. Figure 3.1(a) shows that
average calculation time of the digital �lter method is lower than the tridiagonal method. Figure 3.1(b)
shows that the variance of both interpolation methods is negligible over the entire test. The interpolation
methods have interpolated 1000 di�erent white noise signal of a certain length. The reason for multiple
interpolations is to ensure brief delays in the processor do not in�uence the results. Moreover, the results
of this test give an idea of the consistency of the algorithms. Based on Figure 3.1, the digital �lter method
is signi�cantly faster in calculating the coe�cients than the tridiagonal method.

0 200 400 600 800 1000
Number of grid points

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A
ve

ra
ge

 c
al

cu
la

to
n

tim
e

[s
]

×10-4

Tridiagonal
Digital filter

(a)

0 200 400 600 800 1000
Number of grid points

0

1

2

3

4

5

6

V
ar

ia
nc

e
of

 th
e

ca
lc

ul
at

on
 ti

m
e

[s
]

×10-10

Tridiagonal
Digital filter

(b)

Figure 3.1: Comparing Unsers interpolation method with solving tridiagonal interpolation with Thomas algo-
rithm. Figure (a) shows the average calculation time of both interpolation methods. Figure (b) shows
the variance in calculation time of the interpolation methods.

3.2 The implementation of the proposed interpolation method

As shown in Section 2.3.5 and previous section, Unser's digital �lter method is the desired interpolation
method for optimal motion planning. The Section 2.3.4 discusses the formulas which can be used to
calculate the coe�cients of a cubic b-spline interpolation. The implementation of Unser's digital �lter

21

Proposing a fast interpolation method for optimal motion planning

method to calculate the coe�cients is discussed in this section. Moreover, the equations which describe
the interpolated version of the discrete TSDF are discussed. The interpolated version of the discrete
TSDF will be referred to as the interpolated TSDF.

Chapter 2 shows that multivariate interpolation can be accomplished by interpolation an N-dimensional
space with multiple 1-dimensional interpolations. Therefore, the 1D digital �lter is explained before
discussing the multivariate interpolation. Unser et al. [20] propose to use a zero �rst derivative at the
boundary as a boundary condition. Therefore, the �rst coe�cients of the one-dimensional digital �lter
interpolation is calculated using the following formula

c+0 = f0 +
1

1− z2Np

N−1∑
k=0

(zk+1
p + z2N−kp)fk, (3.1)

where f0 is the value of the �rst grid point, N is the number of grid size, zp is the pole of the cubic
b-spline and c+0 is the �rst coe�cient of the causal �lter. However, the machine precision of a computer
is not taken into account. A standard for �oating-point arithmetic is IEEE Std 754-2008 [25]. With this
method, a �oat stores a value with 16-bits precision. Resulting in an error relative to the absolute value.
For example, a �oat with the value of 1 has a �oating point precision of ±1.2e− 7 while a �oat value of
1000 has a precision of ±6.1e−5. Moreover, the signal fk has to be around the same order of magnitude.
In our case of a TSDF, the signal fk should always satisfy this requirement. Therefore, the updated value
is solely in�uential when

βk = |zk+1
p + z2N−kp | > 1.1921e−7, (3.2)

where βk is the updated value at iteration k.

0 5 10 15 20
Iteration k

10-10

10-5

U
pd

at
e

va
lu

e
[-

]

Update value
Float precision

Figure 3.2: The absolute updated value against k-th iteration.

Figure 3.2 shows the updated value with respect to the value of k. As can be seen, the updated value
is lower than the �oat precision when k > 12. Based on the same precision of the �oat, (3.1) can be

22

Proposing a fast interpolation method for optimal motion planning

simpli�ed. When the number of grid points is bigger than 12, the following equations hold

z2Np < 1.1921e−7, ∀N > 12, (3.3)

z2N−kp < 1.1921e−7, ∀N > 12, (3.4)

zk+1
p < 1.1921e−7, ∀k > 12. (3.5)

If the equations above are used together with the �oat point precision, (3.1) can be reduced to

c+0 = f0 +
N−1∑
k=0

zk+1
p fk. (3.6)

This �rst coe�cient can be used to calculated the other coe�cient

c+i = fi + zpc
+
i−1, (3.7)

where c+i is the causal coe�cient of the ith grid point and fi is the value of the discrete function at
the ith grid point. If the algorithm has looped over all grid points, the causal �lter has �nished. The
anti-causal �lter starts with the following boundary condition

c−N−1 = − zp
1− zp

c+N−1, (3.8)

where c−N−1 is the anti-causal coe�cient of the last grid point. The other anti-causal coe�cients are
calculated using

c−i = zp(c
−
i+1 − c

+
i). (3.9)

Last the anti-causal coe�cients are multiplied by a gain resulting in the interpolation coe�cients

ci = λc−i , (3.10)

where ci is the coe�cient corresponding to the i-th coe�cient and λ is the gain. In the cubic b-spline
interpolation, this gain is calculated using

λ = (1− zp)
(

1− 1

zp

)
. (3.11)

This 1D interpolation method is the proposed interpolation method for interpolating a point cloud. This
interpolation method will be referred to as the proposed 1D interpolation. The proposed 1D interpolation
is implemented in CUDA. The proof that the proposed method bene�ts from a GPU implementation
is given later in this report. However, a 1D interpolation does not in�uence another 1D interpolation.
Therefore, the interpolation could bene�t from a GPU implementation. A GPU with ngpu CUDA cores
can be faster than a CPU with ncpu cores when the GPU is able to run ngpu 1D interpolation faster than
a single CPU core can run ngpu/ncpu 1D interpolation. The CUDA code of the proposed 1D interpolation
can be found in Appendix C.1.

As discussed in the introduction, CUDA and MATLAB are used to calculate on the GPU. However,
before multivariate interpolation can be explained, a few CUDA de�nitions have to be introduced. A
CUDA core is a GPU core which can execute some CUDA code. The amount of CUDA cores available
on a GPU depends on the GPU version. In this thesis, Nvidia GeForce 940m is used and this GPU has
384 CUDA cores. These CUDA cores or threads are stored in a so-called grid on the GPU. In order to
run the CUDA code, this grid has to be divided into multiple blocks with each the same size. With each
block having its own block identi�cation. And each thread/CUDA core has its own identi�cation per

23

Proposing a fast interpolation method for optimal motion planning

block. Figure 3.3 shows the CUDA thread hierarchy in a 2D example. This thesis will not investigate
which number of threads and block result in the fastest interpolation. The reason for not investigating
this choice is the problem is complex and the in�uence of the choice is assumed to be minimal. For
all CUDA calculations, the number of threads per block and blocks is calculated with a function. This
function is given in Appendix C.5.

Figure 3.3: A visual representation of the CUDA thread hierarchy. [26]

A multivariate interpolation is accomplished by multiple 1D interpolation methods, as discussed in the
Section 2.3.5. To explain how a three-dimensional point cloud is interpolated, a discrete TSDF of size
(nx × ny × nz) is used. This point cloud is not stored with a three-dimensional tensor but with a vector.
This vector will be referred to as the coe�cient vector. The coe�cient vector is initialized with the
discrete TSDF. This coe�cient vector is �rst interpolated in the x-direction. The discrete TSDF can
be divided in (ny × nz) lines in x-direction. Each line consists out of nx number of points. Each line
is interpolated using the proposed 1D interpolation. Therefore, the discrete TSDF is interpolated in
x-direction by interpolating (ny × nz) a lines of nx points. As discussed before, the GPU can run these
(ny × nz) in parallel. Each CUDA core on the GPU will do a 1D interpolation. However, each CUDA
core needs to know where it can �nd the �rst point on the line, where it can �nd the next point on the
line and the last point on its line. In case of the interpolation in the x-direction, the next point on the
line can be found at the next point in the coe�cient vector. The 1D interpolation has found its last point
when it has visited nx points. These values are the same for each interpolation in the x-direction. The
sole di�erence between the interpolation is the starting point of the interpolation. A CUDA core knows
where to start because it starting position is determined based on its id. The index starting position in
the coe�cient vector calculated with the following equation

idx = (zny + y)nx, (3.12)

where
y = bx× bdx+ tx, (3.13)

z = by bdy + ty, (3.14)

where bx and by are the index of the block in x- and y-direction, bdx and bdy are the size of block in threads
and tx and ty are the index of a thread in x- and y-direction. The source code of the interpolation of the
discrete TSDF in x-direction can be found in appendix C.2. The output of the x-direction interpolation
is used as an input for the interpolation in y-direction. The idea of the interpolation is the same, however,
this time the interpolation is in y-direction. Consequently, the 3D grid has to be interpolated (nx × nz)
times using a 1D interpolation in y-direction. The length of each 1D interpolation in y-direction is ny.

24

Proposing a fast interpolation method for optimal motion planning

Moreover, if the point of the line is found at index i the next point of the line will be found at index
i+ nx in the coe�cient vector. The �rst point on the line is calculated using the following formulas

idy = znynx + x, (3.15)

where
x = bx bdx+ tx, (3.16)

z = by bdy + ty. (3.17)

The implementation of the interpolation of a three-dimensional grid can be found in Appendix C.3. The
interpolation in z-direction is the last interpolation. Here, the number of 1D interpolations is (nx × ny)
and the length of each interpolation is nz. If the point on the line has index j, the next point on the
line can be found at index j + nx ny of the coe�cient vector. The starting point of the interpolation is
calculated using

idz = yny + x, (3.18)

where
x = bx bdx+ tx, (3.19)

y = by bdy + ty. (3.20)

The source code of the z-direction interpolation can be found in Appendix C.4. If all these interpolation
methods are computed, the cubic b-spline coe�cients of the discrete TSDF has been calculated.

If the cubic b-spline coe�cients are known, the value of the interpolated TSDF can be calculated for
each point within the space. The desired position is de�ned as [xdes, ydes, zdes] and this corresponds with
the following index

[l,m, n] ≡
[⌊
xdes
h

⌋
,

⌊
ydes
h

⌋
,

⌊
zdes
h

⌋]
, (3.21)

where h is the grid size of the uniform grid, b c is the �oor operation. Based on (3.21), (2.22) can be
reduced to

f(xdes, ydes, zdes) =
l+2∑
i=l−1

m+2∑
j=m−1

n+2∑
k=n−1

ci,j,k γk(zdes) ψj(ydes) φi(xdes). (3.22)

This function does not take the boundary conditions into account. When k, l orm are zero or respectively
nx − 1 , ny − 1 or nz − 1 then (3.22) does not hold. (3.22) can not solve these cases because ci,j,k does
not exist for the cases

i = −1 ∧ nx,
j = −1 ∧ ny,
k = −1 ∧ nz.

As discussed in Section 2.3.4, the digital �lter method implies a zero �rst derivatives at the boundary.
The digital �lter mirrors the signal at the boundaries to imply a zero �rst derivative at the boundary.
Therefore, the following equations are used to calculate the unknown coe�cients

c−1,j,k = c1,j,k,

ci,−1,k = ci,1,k,

ci,j,−1 = ci,j,1,

cnx,j,k = cnx−2,j,k,

ci,ny ,k = ci,ny−2,k,

ci,j,nz = ci,j,nz−2.

25

Proposing a fast interpolation method for optimal motion planning

(3.22) can be used to calculate the interpolated TSDF value at a desired position. However, the optimal
motion planning has to know the derivatives at a desired position as well. The derivative of (3.22) solely
depend on the derivatives of the b-splines. Therefore, the Jacobian of (3.22) is given by

∇f(xdes, ydes, zdes) =
l+2∑
i=l−1

m+2∑
j=m−1

n+2∑
k=n−1

ci,j,k∇ (γk(zdes) ψj(ydes) φi(xdes)) . (3.23)

The Hessian of (3.22) is given by the following formula

∇2f(xdes, ydes, zdes) =

l+2∑
i=l−1

m+2∑
j=m−1

n+2∑
k=n−1

ci,j,k∇2 (γk(zdes) ψj(ydes) φi(xdes)) , (3.24)

3.3 Veri�cation of the proposed interpolation method

In the previous chapter, an interpolation method is proposed to interpolate the discrete TSDF. As dis-
cussed in the introduction, the interpolation method should satisfy two requirements in order to create an
interpolated TSDF which can be used in optimization. The �rst requirement is the smoothness require-
ment which requires the interpolated TSDF to be a C2 function. The proposed interpolation method
uses cubic b-spline, therefore, the basis function has an exact and continuous �rst and second derivative.
Hence, the smoothness requirement is satis�ed by de�nition and does not need a veri�cation. The second
requirement is the pass-through requirement which states that the interpolated TSDF should be exactly
the same at the grid points as the discrete TSDF at the grid points. The pass-through requirement is
satis�ed according to Unser et al. [20]. The method of Unser et al. is called a digital �lter, which implies
that the signal is altered. However, the pass-through requirement states the signal should not be altered.
This chapter veri�es whether the pass-through requirement is satis�ed. Moreover, the correctness of the
proposed interpolation is validated by comparing the proposed interpolation with a default MATLAB
interpolation method.

The proposed interpolation method is compared with a default MATLAB interpolation algorithm (`spapi')
[14]. Unser [19] states that the digital �lter indirectly imposes a zero �rst derivative at the endpoints.
To get a proper comparison, the MATLAB function should have exactly the same boundary condition.
The function `spapi' does not contain the desired boundary condition. However, the function can force
the derivative at the endpoints to have a desired value. MATLAB has a double precision by default and
the CUDA implementation has single precision. Therefore, the MATLAB interpolation is forced to use
single precision instead of double precision.

As discussed in the background, multivariate interpolation can be accomplished by multiple one-dimensional
interpolations. Therefore, the veri�cation and validation of the proposed interpolation are �rst done on
proposed 1D interpolation. Second, the proposed multivariate interpolation is validated.

3.3.1 One dimensional CUDA interpolation

As discussed in the introduction of this section, the proposed interpolation method is �rst veri�ed and
validated in 1D. The pass-through requirement of the proposed 1D interpolation is veri�ed by comparing
the recreation of the discrete TSDF with the interpolated TSDF at the grid positions. Second, the inter-
polation method is validated with respect to a MATLAB function. The MATLAB function should also
satisfy the pass-through requirement. Therefore, the MATLAB function will be veri�ed together with
the proposed 1D interpolation.

26

Proposing a fast interpolation method for optimal motion planning

The pass-through requirement states that the interpolated TSDF at the position of the grid points
should be exactly the same as the discrete TSDF. To verify whether the proposed and the MATLAB
interpolation satisfy this requirement, both interpolation methods have to calculate the value of the in-
terpolated TSDF at the grid points. The discrete TSDF is created by a 1D white noise signal. The
interpolation methods are used to interpolate the discrete TSDF and calculate the interpolated TSDF
values at the grid positions. The output of the interpolated TSDF at the grid positions determined by
the proposed interpolation will be referred to as the discrete proposed interpolation. The results of the
recreation of the discrete TSDF by the MATLAB function will be referred to as the discrete MATLAB
interpolation. Figure 3.4 shows the absolute error of the discrete proposed interpolation and the dis-
crete MATLAB interpolation with respect to the original discrete TSDF. As can be seen in Figure 3.4,
the absolute error of both interpolation methods is ±1e−7. A �oat has a precision (single precision) of
1.1921e−7, as discussed in Chapter 3.2. Therefore, both interpolation methods satisfy the pass-through
requirement, based on Figure 3.4.

0 10 20 30 40 50 60
Position [m]

0

0.5

1

1.5

2

2.5

3

3.5

E
rr

or
 [-

]

×10-7

spapi
CUDA

Figure 3.4: The absolute error of both interpolation methods with respect to original discrete TSDF.

It is proven that the proposed 1D interpolation and the MATLAB interpolation satisfy the pass-through
requirement, the proposed 1D interpolation can be compared with the MATLAB 1D interpolation. The
interpolation methods will be validated based three di�erent functions. First, the interpolated TSDFs
of both interpolation methods are compared whether they are the same interpolated TSDFs. Second,
the �rst derivative of the interpolated TSDF of both method should be identical. Third, the second
derivative in space should result in the same function.

The discrete TSDF in this test is again created by a 1D white noise signal. However, the interpo-
lation methods are used to create a discrete interpolated TSDF with a �ner grid than the grid of the
discrete TSDF. The re�ned grid is a factor 10 smaller than the grid size of the discrete TSDF. The re�ned
discrete 1D interpolation should be exactly the same as the re�ned discrete MATLAB interpolation.

27

Proposing a fast interpolation method for optimal motion planning

0 10 20 30 40 50 60
Position [m]

-0.5

0

0.5

1

1.5

F
un

ct
io

n
f [

-]

csape
CUDA

0 10 20 30 40 50 60
Position [m]

-4

-2

0

2

4

df
/d

x
[-

]

csape
CUDA

0 10 20 30 40 50 60
Position [m]

-20

-10

0

10

20

d
2
f/d

x
2
 [-

]

csape
CUDA

Figure 3.5: The re�ned interpolation of MATLAB interpolation and the proposed interpolation.

0 5 10 15 20 25 30 35 40 45 50
Position [m]

-0.1

0

0.1

F
un

ct
io

n
f [

-]

Diference between spapi and CUDA interpolation

0 5 10 15 20 25 30 35 40 45 50
Position [m]

-0.5

0

0.5

df
/d

x
[-

]

0 5 10 15 20 25 30 35 40 45 50
Position [m]

-5

0

5

d2 f/d
x2 [-

]

Figure 3.6: The absolute di�erence between MATLAB interpolation and the proposed interpolation.

Figure 3.5 shows the re�ned discrete MATLAB interpolation and the re�ned discrete proposed 1D interpo-
lation and their �rst and second derivatives. As can be seen, the re�ned discrete MATLAB interpolation
and the re�ned discrete proposed 1D interpolation seem to provide exactly the same interpolation. Fig-
ure 3.6 shows a signi�cant di�erence between the MATLAB interpolation and the proposed interpolation
method. The di�erence between the MATLAB and proposed interpolation is signi�cantly larger than
the single precision error. The di�erence between the interpolation method at the boundaries could be

28

Proposing a fast interpolation method for optimal motion planning

caused by a slight di�erence in imposing the zero �rst derivative at the boundaries. Figure 3.5 also
shows that both interpolation methods satisfy the endpoint condition of a zero �rst derivative at the
boundaries. Moreover, there is no proof that the boundary condition of the MATLAB interpolation
method is a better approximation than the boundary condition of the proposed interpolation method.
Hence, the di�erence between the interpolation methods will be compared without the points close to the
boundaries. Figure 3.7 shows the absolute di�erence between the interpolation methods without the �rst
and last 70 re�ned points. As can be seen in this Figure, the di�erence between the methods is negligible
when their di�erence is compared away from the boundaries. Therefore, the proposed 1D interpolation
algorithm is concluded to be correct.

5 10 15 20 25 30 35 40 45
Position [m]

-1

0

1

F
un

ct
io

n
f [

-] ×10-5 Diference between spapi and CUDA interpolation without the boundaries

5 10 15 20 25 30 35 40 45
Position [m]

-1
0
1

df
/d

x
[-

]

×10-4

5 10 15 20 25 30 35 40 45
Position [m]

-1

0

1

d2 f/d
x2 [-

]

×10-3

Figure 3.7: The absolute di�erence between `spapi' and CUDA interpolation without the �rst and last 70 values.

3.3.2 Multivariate CUDA interpolation

In the previous section, the proposed interpolation method is compared with a MATLAB interpolation
method in 1D. However, the optimal motion planning desires to have multi-dimensional obstacle avoidance
constraint. This section compares the same interpolation method, however, a three-dimensional space
will be interpolated instead of a 1D signal. The three-dimensional spaces or discrete TSDFs are created
using a 3D white noise signal. The size of these spaces should be set as close as possible to the KinFu
space but not too large for the MATLAB function. The MATLAB function is not able to cope with large
spaces due to memory overload. Therefore, the discrete TSDF has a size of 50x50x50 voxels. This is the
largest discrete TSDF volume which can be re�ned with a factor 2 by the MATLAB interpolation method.

The visualization of the absolute di�erence (e) between the MATLAB interpolation and proposed in-
terpolation can not be made with default plotting function of MATLAB. Therefore, a new plotting
method is introduced: the slice plotting. In slice plotting, the three dimensional voxel grid is replaced
by various slices: nz slices in x − y direction, ny slices in x − z direction and nx slices y − z direction.
Figure 3.8 shows the slices which represent a 3D tensor in the slice plotting.

29

Proposing a fast interpolation method for optimal motion planning

Position y-direction Position x-direction

2

10

4

8 10

6

P
os

iti
on

 z
-d

ire
ct

io
n

86

8

6

10

4 4
2 2

(a)

Position x-directionPosition y-direction

2

10

4

8 10

6

P
os

iti
on

 z
-d

ire
ct

io
n

86

8

6

10

4 4
2 2

(b)

Position x-directionPosition y-direction

2

10

4

8 10

6

P
os

iti
on

 z
-d

ire
ct

io
n

86

8

6

10

4 4
2 2

(c)

Figure 3.8: An 10x10x10 tensor diveded into three di�erent slice plots. The tensor is represented with 10 x− y
slices in (a). The tensor is represented with 10 x− z slices in (b). The tensor is represented with 10
y − z slices in (c).

In this slice plotting, the x-axis represents the index of the slice. Therefore, the �gure represents the
voxel grid in three directions. The slice plotting is used to plot the average and the maximum absolute
di�erence between the multivariate Matlab and proposed multivariate interpolation which can be found
in each slice. Figure 3.9 shows the error of the MATLAB interpolation at the grid points with respect to
the original data. As can be seen, the error of the MATLAB interpolation is slightly larger than the single
precision error. However, each voxel has been visited by three di�erent 1D interpolations. Therefore,
the error in multivariate interpolation might be slightly higher than in a 1D interpolation. The error
in Figure 3.9 can still be assumed to be caused by the single precision error. Figure 3.10 shows the
error of the proposed interpolation method when recalculating the discrete TSDF. Also here, the error
is bigger than in the 1D interpolation. However, the error of the proposed multivariate interpolation is
still assumed to be the result of the single precision error.

0 5 10 15 20 25 30 35 40 45 50
Slice [-]

10-7

10-6

10-5

F
un

ct
io

n
f [

m
]

Maximum e of y-z slice
Maximum e of x-z slice
Maximum e of x-y slice
Average e of y-z slice
Average e of x-z slice
Average e of x-y slice

Figure 3.9: The absolute di�erence (e) between MATLAB interpolation and the original discrete TSDF visualized
by a mean error and maximum error of a slice.

30

Proposing a fast interpolation method for optimal motion planning

0 5 10 15 20 25 30 35 40 45 50
Slice [-]

10-7

10-6

10-5

F
un

ct
io

n
f [

m
]

Maximum e of y-z slice
Maximum e of x-z slice
Maximum e of x-y slice
Average e of y-z slice
Average e of x-z slice
Average e of x-y slice

Figure 3.10: The absolute di�erence (e) between proposed interpolation and the original discrete TSDF visualized
by a mean error and maximum error of a slice.

The �gures above probe that both interpolation methods satisfy the pass-through requirement in mul-
tivariate interpolation. Therefore, the accuracy of the proposed interpolation method can be validated
using the MATLAB interpolation. The discrete TSDF is again of the size 50x50x50. Due to the small
memory available in the MATLAB interpolation, the re�ned grid size is half the size of the original grid
size. The MATLAB interpolation is not able to run this test with a smaller grid size.

Even though, the Hessian will be visualized by the slice plotting method. The Hessian will be too
large to visualize properly. In the three-dimensional voxel space, the Hessian will be a three by three
matrix. However, the Hessian has to satisfy the smoothness requirement and due to Schwarz's theo-
rem [27], the Hessian is symmetric. Hence, the visualisation of the Hessian will solely show: d2f/dx2,
d2f/dy2, d2f/dz2, d2f/dxdy, d2f/dydz and d2f/dzdx2. This section will solely show the �gures of f ,
df/dx, d2f/dydz and d2f/dy2 because all other derivatives show the same behaviour. The other �gures
are shown in Appendix D.

Figure 3.11 show the absolute di�erence in the proposed interpolation and the MATLAB interpola-
tion. The absolute di�erence between the two function is much larger than expected. Moreover, Figures
3.11 and 3.12 show a severe di�erence between derivatives of the two interpolation methods as well.
These di�erences indicate there is a signi�cant di�erence between the two function. However, as shown
in the one-dimensional case, the di�erence between the two interpolation methods are mostly around the
endpoints.

31

Proposing a fast interpolation method for optimal motion planning

0 10 20 30 40 50 60 70 80 90 100
Slice [-]

10-4

10-2

100

F
un

ct
io

n
f [

m
]

0 10 20 30 40 50 60 70 80 90 100
Slice [-]

10-10

100

1010

df
/d

x
[-

]

Avg e of y-z slice
Max e of y-z slice
Avg e of x-z slice
Max e of x-z slice
Avg e of x-y slice
Max e of x-y slice

Figure 3.11: The absolute di�erence between MATLAB and proposed interpolation visualized by a mean error
and the maximum error of a slice. The maximum value of function f is ±1 which results in a
�oating point precision of 1.191e−7. The maximum value of the derivative df/dx is ±20 which has
a �oating point precision of 1.9e− 6.

10 20 30 40 50 60 70 80 90 100
Slice [-]

100

102

d2 f/d
yd

y
[m

-1
]

10 20 30 40 50 60 70 80 90 100
Slice [-]

100

102

d2 f/d
yd

z
[m

-1
]

Avg e of y-z slice
Max e of y-z slice
Avg e of x-z slice
Max e of x-z slice
Avg e of x-y slice
Max e of x-y slice

Figure 3.12: The absolute di�erence between the second derivatives of MATLAB and proposed interpolation vi-
sualized by a mean error and the maximum error of a slice. The maximum value of d2f/dy2 is
±900 which results in a �oating point precision of 6.1e − 5. The maximum value of the derivative
d2f/dydz is ±500 which has a �oating point precision of 6.1e− 5.

32

Proposing a fast interpolation method for optimal motion planning

10 20 30 40 50 60 70 80 90
Slice [-]

10-8

10-6

10-4

F
un

ct
io

n
f [

m
]

10 20 30 40 50 60 70 80 90
Slice [-]

10-6

10-4

10-2

df
/d

x
[-

]

Avg e of y-z slice
Max e of y-z slice
Avg e of x-z slice
Max e of x-z slice
Avg e of x-y slice
Max e of x-y slice

Figure 3.13: The absolute di�erence between MATLAB and proposed interpolation visualized by a mean error
and the maximum error of a slice when the 14 re�ned points close to the boundary are neglected.
The maximum value of function f is ±1 which results in a �oating point precision of 1.191e − 7.
The maximum value of the derivative df/dx is ±20 which has a �oating point precision of 1.9e− 6.

20 30 40 50 60 70 80
Slice [-]

10-4

10-2

d2 f/d
yd

y
[m

-1
]

20 30 40 50 60 70 80
Slice [-]

10-4

10-2

d2 f/d
yd

z
[m

-1
]

Avg e of y-z slice
Max e of y-z slice
Avg e of x-z slice
Max e of x-z slice
Avg e of x-y slice
Max e of x-y slice

Figure 3.14: The absolute di�erence between the second derivatives of MATLAB and proposed interpolation vi-
sualized by a mean error and the maximum error of a slice when the 14 re�ned points close to the
boundary are neglected. The maximum value of d2f/dy2 is ±900 which results in a �oating point
precision of 6.1e− 5. The maximum value of the derivative d2f/dydz is ±500 which has a �oating
point precision of 6.1e− 5.

33

Proposing a fast interpolation method for optimal motion planning

As discussed in the one-dimensional case, the interpolation methods do not approximate the boundaries
exactly the same. Therefore, the multivariate case is validated by neglecting the �rst and last 14 re�ned
grid points in each direction. Resulting in comparing a smaller matrix of the original matrix. As can be
seen in Figures 3.13 and 3.14, the absolute di�erences between the two interpolation methods is smaller
when the outside voxels are neglected. The di�erence between the two methods is still larger than the
�oating point error. Changing one single coe�cient early on in the interpolation will result in a slightly
di�erent interpolation at the end. Hence, the boundary conditions are applied di�erent resulting in a
slightly di�erent interpolation. The proposed multivariate interpolation is concluded to be accurate based
in Figures 3.13 and 3.14.

As can be seen in the df/dx plot of Figure 3.13, the maximum di�erence in the y − z slice is sig-
ni�cantly smaller than the maximum of the other slices and the average di�erence is increases at the
boundaries. Which implies that the boundary conditions in x-direction still have a signi�cant in�uence
on the maximum error. The same trends can be seen in all the other plots of Figures 3.13 and 3.14.
As discussed before, the error caused by the boundary conditions is neglected in this comparison. The
Figures 3.13 and 3.14 show that the boundary conditions might still have in�uence. In Figure 3.15 and
3.16 show the same comparison of the same data while losing more points around the boundaries of the
scope. As can be seen in these �gures, there is no di�erence between the directions. Even though, the
di�erence is negligible when the �rst and last 14 points at the boundary are neglected. The di�erence is
minimal when the �rst and last 13 points are neglected.

20 30 40 50 60 70 80
Slice [-]

10-7

10-6

10-5

F
un

ct
io

n
f [

m
]

20 30 40 50 60 70 80
Slice [-]

10-6

10-4

10-2

df
/d

x
[-

]

Avg e of y-z slice
Max e of y-z slice
Avg e of x-z slice
Max e of x-z slice
Avg e of x-y slice
Max e of x-y slice

Figure 3.15: The absolute di�erence between MATLAB and proposed interpolation visualized by a mean error
and the maximum error of a slice when the 20 re�ned points close to the boundary are neglected.
The maximum value of function f is ±1 which results in a �oating point precision of 1.191e − 7.
The maximum value of the derivative df/dx is ±20 which has a �oating point precision of 1.9e− 6.

34

Proposing a fast interpolation method for optimal motion planning

25 30 35 40 45 50 55 60 65 70 75 80
Slice [-]

10-4

d2 f/d
yd

y
[m

-1
]

25 30 35 40 45 50 55 60 65 70 75 80
Slice [-]

10-4

d2 f/d
yd

z
[m

-1
]

Avg e of y-z slice
Max e of y-z slice
Avg e of x-z slice
Max e of x-z slice
Avg e of x-y slice
Max e of x-y slice

Figure 3.16: The absolute di�erence between the second derivatives of MATLAB and proposed interpolation vi-
sualized by a mean error and the maximum error of a slice when the 20 re�ned points close to the
boundary are neglected. The maximum value of d2f/dy2 is ±900 which results in a �oating point
precision of 6.1e− 5. The maximum value of the derivative d2f/dydz is ±500 which has a �oating
point precision of 6.1e− 5.

3.4 Zero level set interpolation error as function of the radius to grid size ratio

The proposed interpolation of Section 3.2 has been veri�ed and validated. However, this validation does
not provide any information on the performance of the proposed interpolation method in optimal motion
planning. The performance of the interpolation method has to be validated in optimal motion planning.
As discussed in the introduction, the collision avoidance constraint is used to �nd a feasible solution. The
collision avoidance constraint is created by interpolating a point cloud. However, the interpolated TSDF
is never exactly the same as the exact TSDF. Therefore, the zero level set of the interpolated TSDF is not
exactly the same as the zero level set of the exact TSDF. This might result in a feasible trajectory based
on the interpolate TSDF, however, this trajectory might collide with the real obstacle. This problem
can easily be explained with a 2D obstacle avoidance constraint. In this example, the obstacle which
has to be avoided is a circle with a certain radius. Figure 3.17 shows the same exact zero level set of
circle obstacle and the interpolated zero level set of this obstacle. In Figure 3.17a, the obstacle avoidance
constraint is sampled with a dense grid size. Figure 3.17c shows the same obstacle sampled with a very
coarse grid size. Moreover, Figure 3.17b shows again the same obstacle with a grid size in between the
grid sizes of the other �gures. As can be seen in these �gures, the smallest grid size results in the most
accurate zero level set in the interpolated avoidance constraint. If the obstacle avoidance constraint of
Figure 3.17c is used then it is possible that the feasible trajectory of OMP might collide with the real
obstacle. Therefore, the grid size severely in�uences the accuracy the zero level set approximation when
using the proposed interpolation method.

35

Proposing a fast interpolation method for optimal motion planning

-2 2 6
x position [m]

-2

2

6

y
po

si
tio

n
[m

]

Exact ZLS
Interpolated ZLS

(a)

-2 2 6
x position [m]

-2

2

6

y
po

si
tio

n
[m

]

Exact ZLS
Interpolated ZLS

(b)

-2 2 6
x position [m]

-2

2

6

y
po

si
tio

n
[m

]

Exact ZLS
Interpolated ZLS

(c)

Figure 3.17: The same obstacle sampled with di�erent grid sizes.

Figure 3.17 shows the accuracy of the interpolated zero level related to the grid size. However, the
accuracy of the interpolation method depends on the ratio of the radius to the grid size. Figure 3.18
shows three circle obstacle with each a di�erent radius but sampled with the same grid size. As can be
seen in the �gure, the zero level set of the interpolated TSDF is closer to the exact zero level set when
the radius is larger. Combining the results of Figure 3.17 and Figure 3.18, the interpolated zero level
set will be a more accurate approximation of the exact zero level set when the radius to grid size ratio
is larger. Therefore, the accuracy of the zero level set approximation is investigated with respect to the
grid size to radius ratio.

-6 0 8
x position [m]

-6

0

8

y
po

si
tio

n
[m

]

Exact ZLS
Interpolated ZLS

(a)

-6 0 8
x position [m]

-6

0

8

y
po

si
tio

n
[m

]

Exact ZLS
Interpolated ZLS

(b)

-6 0 8
x position [m]

-6

0

8

y
po

si
tio

n
[m

]

Exact ZLS
Interpolated ZLS

(c)

Figure 3.18: The same obstacle sampled with di�erent grid sizes.

The error of the interpolated zero level set has to be de�ned in order to validate the accuracy of the
interpolated zero level set. The error of the zero level set approximation is de�ned as

e =
max(d(Se, Si))

h
, (3.25)

where Se and Si are, respectively, the zero level sets of the exact and the interpolated TSDF, d(Se, Si) is
the distance between the two zero level sets and h is the grid size. The zero level set of the exact TSDF
can be calculated because it is created using an user-de�ned function. However, the zero level set of the
interpolated TSDF has to be calculated because there is no given formula for the zero level set. Therefore,

36

Proposing a fast interpolation method for optimal motion planning

the zero level set of the interpolated TSDF has to be determined. Here is chosen to use a root �nding
algorithm. In Section 2.4, Newton's method is discussed as a root �nding algorithm. The interpolated
TSDF does not satisfy the requirements for Newton's method. However, Newton's method might still be
able to �nd enough roots to determine zero level set of the interpolated TSDF. The absolute tolerance
of when a root has been found is set to 1e−4h. The absolute tolerance is dependent on the grid size to
ensure that error caused by the absolute tolerance has a constant in�uence in (3.25).

1.2 1.4 1.6 1.8 2 2.2
x-axis [m]

-0.2

0

0.2

0.4

0.6

y-
ax

is
 [m

]

Exact zero level set
Interpolated zero level set

(a)

0.5 1 1.5 2
x-axis [m]

-1

-0.5

0

0.5

1

y-
ax

is
 [m

]

Exact zero level set
Interpolated zero level sset

(b)

Figure 3.19: A visualisation of the worst cases of zero-level set of (a) the edge and (b) the circle. The worst case
is de�ned as the case with the least amount of points found on the interpolated zero level set.

0

0
1.5

0.5

0.5

x-axis [m]

1

y-axis [m]

z-
ax

is
 [m

]

1

1 0.5
1.5

1.5

0

Exact zero level set
Interpolated zero level set

Figure 3.20: A visualisation of the worst cases of the zero-level approximation of the sphere case. The worst case
is de�ned as the case with the least amount of points found on the interpolated zero level set.

Figures 3.19 and 3.20 show the worst cases of the interpolated zero level sets determined by Newton's
method for three di�erent obstacles. The worst cases are de�ned as the case in which the least amount

37

Proposing a fast interpolation method for optimal motion planning

of points have been found by Newton's method. As can be seen, the interpolated zero level sets have
enough points to approximate the zero level set. Moreover, the roots are spread out over the entire zero
level set domain. Therefore, Newton's method can be assumed to be a practical solution for calculating
the interpolated zero level set.

Newton's method is able to determine a discrete zero level set approximation of the interpolated zero
level set. (3.25) states that the error of the zero level set approximation is calculated by the distance
between the exact and the interpolated zero level set. A common method for determining the distance
between two sets is the Hausdor� distance. The Hausdor� distance is de�ned as

dh(X,Y) = max(h(X,Y), h(Y,X)), (3.26)

where
h(X,Y) = max

x∈X
min
y∈Y
||x− y||, (3.27)

where X is a �nite point set X = {x1, . . . , xn}, Y is a �nite point set Y = {y1, . . . , ym}, || · || is the
Euclidean norm and h(X,Y) is the directed Hausdor� distance [28] from X to Y . The directed Hausdor�
distance calculates the closest point y ∈ Y for a certain point x and this is done for all points x ∈ X.
Resulting in the distance between the two sets. The maximum distance between the two sets is assumed
to be the directed Hausdor� distance. The Hausdor� distance is the maximum of the directed Hausdor�
distance in both directions. Figure 3.21 shows both directed Hausdor� distances for a subproblem of
Figure 3.19b. As can be seen, the directed Hausdor� distance h(Si, Se) does not give an idea of the
error of the zero level set approximation but the error caused by Newton's method. The gap between the
interpolated zero level set has more in�uence on the directed Hausdor� distance (h(Si, Se)) than the error
of the zero level set approximation. Therefore, the undirected Hausdor� does not represent the distance
between the exact and interpolated zero level set when the interpolated zero level set is calculated with
Newton's method.

1.2 1.4 1.6 1.8 2

x-axis [m]

-0.2

0

0.2

0.4

0.6

0.8

y
-a

xi
s

[m
]

Exact zero level set

Interpolated zero level set

h(S
e
,S

i
)

h(S
i
,S

e
)

Figure 3.21: An example of the two directed Hausdor� distances between the exact and interpolated zero level
set.

The directional Hausdor� distance h(Se, Si) can be used to approximate the distance between the exact
and interpolated zero level set. The exact zero level set can be represented by a formula. If this continuous

38

Proposing a fast interpolation method for optimal motion planning

representation of the exact zero level set is used then (3.27) can be written as

h(Se, Si) = ||re − ri||, (3.28)

where re is the radius of the exact obstacle, ri is the distance between the position on the interpolated
zero level set and the center of the exact obstacle and || · || is again the Euclidean norm.

This validation is done on the three di�erent obstacles. Figure 3.24 shows the error of interpolating
an edge with respect to the radius to grid size ratio. Figure 3.23 shows the error of interpolating a
cylinder with respect to the radius to grid size ratio. Figure 3.22 shows the error of interpolating a sphere
with respect to the radius to grid size ratio. As be seen in Figures 3.23 and 3.22, these two cases show a
similar error. The error is smaller than the error of Newton's method when the radius to grid size ratio is
larger than 5. However, the edge case has a signi�cant larger zero level set approximation error than the
cylinder or sphere case. The main di�erence between the edge case and the other two is the fact that the
SDF of the edge is not a C2 function. This lack of smoothness results in an interpolated function that
overshoots the exact SDF. The overshoot is probably the cause of the higher error in the edge case. This
thesis proposed to use a 3D scanner to obtain the discrete obstacle avoidance constraint. Hence, there is
no guarantee that the exact SDF of the environment is C2 function. Nonetheless, the error in the edge
case is less than 1% of the grid size when the radius to grid size ratio is larger than 4. The error of a
3D scanner is probably signi�cantly larger than 1% of the grid size. Therefore, the error of the edge case
is already fairly accurate when the grid size to radius ratio is larger than 4. Figures 3.24, 3.23 and 3.22
show that the maximum zero level set error is not signi�cantly larger than the average error. However,
the di�erence is a large enough to state that the interpolation method has not the same accuracy over
the entire domain. In other words, the distance between the zero level set and the closest grid point
in�uences the accuracy of the interpolation method.

0 2 4 6 8 10
Radius/Grid size [-]

10-5

10-4

10-3

10-2

10-1

100

E
rr

or
 [-

]

Maximum r = 1
Maximum r = 5
Maximum r = 10
Average r = 1
Average r = 5
Average r = 10

Figure 3.22: The error of the interpolation method for the sphere case.

39

Proposing a fast interpolation method for optimal motion planning

0 2 4 6 8 10
Radius/Grid size [-]

10-5

10-4

10-3

10-2

10-1

100

E
rr

or
 [-

]

Maximum r = 1
Maximum r = 5
Maximum r = 10
Average r = 1
Average r = 5
Average r = 10

Figure 3.23: The error of the interpolation method for the cylindrical case.

0 2 4 6 8 10
Radius/Grid size [-]

10-2

10-1

100

E
rr

or
 [-

]

Maximum r = 1
Maximum r = 5
Maximum r = 10
Average r = 1
Average r = 10
Average r = 5

Figure 3.24: The error of the interpolation method for the edge case.

With this method, the error of the interpolated zero level set with respect to the exact zero level set can
be validated. The error as described above can be compensated in optimal motion planning in order to
ensure no collision. When the surrounding is implemented using an inequality constraint as discussed in
the book of Dreyfus [29], the error of the zero level set approximation can be implemented in the obstacle
avoidance constraint in order to avoid collisions. The inequality of the obstacle avoidance constraint has
to be changed to

csurrounding − csafety < 0, (3.29)

where csurrounding is the original obstacle avoidance constraint and csafety is the safety margin. This

40

Proposing a fast interpolation method for optimal motion planning

safety margin has to be chosen with respect to the smallest radius in the surrounding and the chosen
grid size. The Figures 3.23, 3.22 and 3.24 give an indication of how large one should chose their safety
margin.

3.5 Summary

This chapter discusses the proposed interpolation method for optimal motion planning. First, this chapter
compares the calculation time between the digital �lter method and another interpolation method. This
comparison shows that the digital �lter method is indeed the fastest interpolation method in the given
cases. Second, the CUDA implementation of proposed interpolation method has been discussed. Third,
the proposed method has shown that it veri�es the pass-through and smoothness requirement in the given
scenarios, as it should according to the literature. Fourth, the interpolation method has been validated
by comparing the proposed interpolation method with a default MATLAB interpolation. The validation
showed that the proposed interpolation method and the MATLAB interpolation did not result in the
exactly the same interpolation. The di�erence between the interpolation method was solely signi�cant
around the boundary points. Therefore, it is assumed that the boundary conditions are applied di�erently,
resulting in a di�erent interpolation. Fifth, the accuracy of the zero level set approximation of the
proposed interpolation method has been validated for a given radius to grid size ratio. This validation is
done for three di�erent obstacles: an edge, a cylinder and a sphere. The validation has shown that the
edge case had the largest error over the entire domain. However, this error is already smaller than 1% of
the grid size when the radius to grid size ratio is larger than 4.

41

Numerical experiments

4 Numerical experiments

Chapter 3 proposes an interpolation method for creating an obstacle avoidance constraint from a dis-
crete TSDF. This interpolation method has been validated and veri�ed on the pass-through and smooth
requirement. However, the interpolation method should be as fast as possible. This requirement has not
been veri�ed yet. This section starts verifying the calculation time of the proposed method with respect
to two other interpolation methods. The �rst method which is used to validate the calculation time of
the proposed method is a CPU version of the proposed method. The second method is the MATLAB
interpolation which has been used to validate the correctness of the proposed interpolation method in
Chapter 3. Thereafter, the proposed interpolation method is used to interpolate discrete TSDF in order
to use the discrete TSDF representation of an obstacle in optimal motion planning. First, an arti�cial
space is created as a discrete TSDF. Second, the Kinect camera and KinectFusion is used to create the
discrete TSDF.

4.1 Calculation time of the di�erent interpolation methods

A cubic b-spline interpolation consists of two di�erent parts. The �rst part of b-spline interpolation is
calculating the coe�cients. This part will be referred to as the coe�cients calculation. The second part
of cubic b-spline interpolation is determining the values of function and its �rst and second derivatives
based on the coe�cients for a number of desired positions. This part is referred to as the output calcu-
lation. The calculation times of both aspects of the cubic b-spline interpolations will be compared.

This section compares the calculation times of the proposed GPGPU interpolation method of Section 3.2
with two di�erent methods: a CPU/MATLAB implementation of the proposed interpolation method and
a standard MATLAB interpolation. The standard MATLAB interpolation has also been used in Section
3.3 to validate the accuracy of the proposed interpolation method. The proposed GPGPU interpolation
method of Chapter 3 will be referred to as the GPU interpolation in this section. The CPU version of
the proposed interpolation method will be referred to as the CPU interpolation. The CPU interpolation
uses solely one core instead of all four cores available. Therefore, the CPU interpolation could be at most
four times as fast. The calculation time of these three interpolation methods will be compared in this
section. The computer hardware and software which have been used in these time comparison is given
in Tables 3.1 and 3.2.

The calculation time of the coe�cients calculation is compared based on interpolating a discrete TSDF
which the same number of point in each direction and the same grid size in each direction. A TSDF
which has the same number of points and the same grid size in each direction will be referred to as a box
TSDF. This box discrete TSDF is created using a 3D white noise signal. To validate the consistency of
all three interpolation method, the interpolation methods have to interpolate ten di�erent discrete TSDF
of the same size. Figures 4.1 show the calculation time of the three di�erent interpolation methods with
respect to the number of point on each edge of the box TSDF. As can be seen in Figure 4.1(a), the GPU
interpolation is signi�cantly faster than the other two interpolation methods. Moreover, the di�erence
between the GPU interpolation and the other interpolation methods increases when the number of points
on the axis increase. Figure 4.1(a) also shows that the CPU interpolation is also faster than the MATLAB
interpolation. Figure 4.1(b) shows that the variance of the calculation times is signi�cantly smaller than
the average calculation times for all three interpolation methods. Therefore, the calculation time of the
interpolation is assumed to be constant for a given number of points on the edges. The results of Figure
4.1(b) are not as expected with respect to Figure 4.1(a). The curvature of the GPU implementation is
smooth when the number of points on each edge is larger than 50. When the number of points on each
edge is lower than 50, the curvature is signi�cantly less smooth than above 50. Consequently, a higher

42

Numerical experiments

variance in the GPU implementation is expected in Figure 4.1(b) but is not available. The curvature
of the GPU implementation might less smooth due to the chosen number of threads and blocks. The
in�uence of this choice is assumed to be not signi�cant for this thesis. Though, the in�uence of this
choice might be relevant in case of less number of points on each edge. In case of this thesis, the voxel
spaces has more points on each edge than 50.

0 50 100 150 200
Number of points on each edge [-]

10-4

10-3

10-2

10-1

100

101

A
ve

ra
ge

 c
al

cu
la

tio
n

tim
e

[s
]

MATLAB
CPU
GPU

(a)

0 50 100 150 200
Number of points on each edge [-]

10-10

10-8

10-6

10-4

10-2

V
ar

ia
nc

e
of

 th
e

ca
lc

ul
at

io
n

tim
e

[s
]

MATLAB
CPU
GPU

(b)

Figure 4.1: Comparing the calculation times of the coe�cients of the GPU interpolation, the CPU interpola-
tion and the MATLAB interpolation. In part (a) shows the average calculation time of the three
interpolation methods. In part (b) shows the variance in calculation time of the three interpolation
methods.

The second part of a cubic b-spline interpolation is to calculate the interpolated TSDF values and the
derivatives at desired positions. The discrete TSDF is pre-calculated and has a �xed size of 50x50x50.
In this comparison, the calculation time of the coe�cients is not taken into account. Therefore, this
validation focusses solely on the calculation time from the coe�cients to the desired output valuables.

The desired positions are chosen randomly within the space described by the discrete TSDF. The in-
terpolation method has to calculate the outputs for 10 di�erent discrete TSDFs in order to check the
variance of the interpolation methods. Figures 4.2 show the calculation times of the output calculation of
all three interpolation method. As can be seen, the GPU interpolation is faster than the other methods
when the number of outputs is set higher than 50. The CPU interpolation is faster in calculating the
outputs when the number of outputs is lower than 50.

43

Numerical experiments

0 100 200 300 400 500
Number of outputs [-]

10-4

10-3

10-2

10-1

100

101

A
ve

ra
ge

 c
al

cu
la

tio
n

tim
e

[s
]

MATLAB
CPU
GPU

(a)

0 100 200 300 400 500
Number of outputs [-]

10-10

10-8

10-6

10-4

10-2

V
ar

ia
nc

e
ca

lc
ul

at
io

n
tim

e
[s

]

MATLAB
CPU
GPU

(b)

Figure 4.2: Comparing the calculation times of the coe�cients of the GPU interpolation, the CPU interpola-
tion and the MATLAB interpolation. In part (a) shows the average calculation time of the three
interpolation methods. In part (b) shows the variance in calculation time of the three interpolation
methods.

As can be seen in Figures 4.1, the GPU interpolation method calculates the 3D b-spline coe�cients
signi�cantly faster than the CPU interpolation and the MATLAB interpolation. Even when the CPU
interpolation uses four cores in parallel then the GPU interpolation still would be faster. Moreover, the
proposed GPU interpolation is also faster in calculating the output when the number of outputs is larger
than 60. Moreover, the calculation time increases signi�cantly less than the CPU interpolation when the
number of outputs increases.

Optimal motion planning describes the trajectory with a discrete version of the trajectory. Therefore,
the number of outputs is desired to be higher than 50 in most cases. However, the CPU interpolation
could run in parallel. Therefore, the CPU interpolation could be up to four times faster than the current
algorithm. As a result of multi-core CPU implementations, the CPU interpolation could be faster when
the number of outputs is less than 200.

Concluding, the coe�cients should always be calculated using the proposed interpolation method when
calculation time should be as low as possible. Moreover, the output of the interpolation should be calcu-
lated with the proposed interpolation method when the number of outputs is higher than 50 and when
only one CPU core is used. In case of the current CPU, the parallel CPU interpolation could be up to
four times faster than the current version. Therefore, it might be better to use a CPU version for the
second part of the cubic b-spline interpolation. However, if the second part of the interpolation is done
on the GPU, the coe�cients have to be stored in the CPU memory from the GPU memory. Storing
the coe�cients in the CPU memory will result in some time loss. The combination of calculating the
coe�cients with the GPU and calculating the output using a CPU is not really interesting. Therefore,
the GPGPU version of the interpolation method is proposed to be used in an optimal motion planning
algorithm.

44

Numerical experiments

4.2 Optimal motion planning with collision constraints from point cloud data

The goal of this thesis is to propose an interpolation method which is able to interpolate a discrete
function for optimal motion planning. Section 3.2 proposes an interpolation method which satis�es all the
requirements. This section validates whether this interpolation method is indeed able to create an obstacle
avoidance constraint for optimal motion planning. This section �rstly validates whether the proposed
interpolation method can be used on synthetic data. Secondly, the proposed interpolation method is
combined with the KinectFusion Framework in order to calculate an obstacle avoidance constraint from
an environment.

4.2.1 OMP based on interpolated TSDF

This section evaluates whether the proposed interpolation method can be used for creating an obstacle
avoidance constraints. The obstacle avoidance constraint will be created arti�cially and interpolated using
the proposed interpolation method. However, an optimal motion planning problem is needed to validate
the obstacle avoidance constraint. This section starts with explaining the optimal motion planning
algorithm which will be used to validate the interpolated TSDF. In Chapter 1, optimal motion planning
is described calculating a trajectory while minimizing a certain cost. The optimal control problem which
is to be solved in this thesis is given by

min
x(·),u(·)

∫ T

0
l(x(τ), u(τ), τ)dτ +m(x(T)),

s.t. ẋ = g(x(t), u(t), t), x(0) = x0,

cj(x(t), u(t), t) ≤ 0 , t ∈ [0, T], j ∈ [1,, k], (4.1)

where x(t) is the state of the system, u(t) is the control input, l(x(τ), u(τ), τ) is the cost, m(x(T)) is
the terminal cost and cj(x(t), u(t), t) describe the constraints of the system. Häusler et al. propose to
approximate the optimized trajectory functional with an approximated log-barrier function [30]. The
log-barrier approximation of (4.1) results in the following optimized trajectory functional

min
x(·),u(·)

∫ T

0
l(x(τ), u(τ), τ)− ε

∑
j

log(−cj(x(τ), u(τ), τ))dτ +m(x(T)),

s.t. ẋ = g(x(t), u(t), t), x(0) = x0, (4.2)

where ε is a constant which is bigger than zero. When ε goes to zero, the minimum of the approximation
will go to the minimum of the optimized trajectory functional. A small size of ε results in an optimal
control problem which is di�cult in term of computation. Consequently, the optimal control problem is
�rst solved for a large ε. Thereafter, the ε is decreased and this new optimal control problem uses the
minimizer of the optimal control with the previous ε as an initial guess. Interior point optimization is
commonly referred to as continuation. 4.2 is di�cult to minimize due to the continuous representation
of all the functions. In practice, the optimal control problem of (4.2) is solved using a numerical solver.
A approach to solve (4.2) is to discretize (4.2) in order to use a numerical solver. A discretized version
of (4.2) is given by

min
x(·),u(·)

N−1∑
k=0

lk(xk, uk)− ε ∑
j

log(−cj(xk, uk))

+mN (xN),

s.t. xk+1 = gk(xk, uk), x(0) = x0. (4.3)

45

Numerical experiments

Damen et al. [31] have compared three di�erent solvers for the discrete optimal control problem given in
(4.3). Therefore, three solvers have an implementation available at Eindhoven University of Technology
(TU/e). For this thesis, the discrete PRojection Operator-based Newton method for Trajectory Opti-
mization (dPRONTO) will be used to solve the optimal control problem. The dPRONTO algorithm
has been chosen because it is an in-house solution. Hence, the knowledge and an implementation of the
dPRONTO algorithm are available at the TU/e. A more in-depth explanation of the PRONTO algorithm
can be found in [32].

The dPRONTO implementation of Damen et al. is able to handle continuous dynamics as an input
while solving the discrete Functional of equation (4.3). The dPRONTO algorithm rewrites the optimal
control problem of (4.3) into a cost function

min
ξ∈U

g(ξ), (4.4)

where ξ is a trajectory which is determined based on x and u and g(ξ) the projected cost function. As
discussed in the Chapter 1, it is preferred to solve the minimum using Newton-Like minimization meth-
ods. This refers to how the projected cost function is minimized in the dPROTNO algorithm. According
to Section 2.4, linear interpolation might not be able to solve the optimal control problem.

To demonstrate the possibility of using the GPGPU interpolation method of Chapter 3 in an optimal
control problem like (4.2), the GPGPU interpolation method is implemented in the dPRONTO algorithm
of the TU/e. This thesis focusses on optimal motion planning for a point mass. The dynamics of the
optimal motion problem are de�ned by Newton's second law. The state vector is given by

x =

x1
x2
x3
x4
x5
x6

 , (4.5)

with
ẋ1 = x2, ẋ3 = x4, ẋ5 = x6, (4.6)

where (x1, x3, x5) is the position in a Cartesian coordinate system and (x2, x4, x6) are the velocities of
the point mass. These dynamics can be given in the following matrix notation

ẋ = Ax+Bu, (4.7)

with,

A =

0, 1, 0, 0, 0, 0
0, 0, 0, 0, 0, 0
0, 0, 1, 0, 0, 0
0, 0, 0, 0, 0, 0
0, 0, 0, 0, 1, 0
0, 0, 0, 0, 0, 0

 , (4.8)

B =

0, 0, 0
1
M , 0, 0
0, 0, 0
0, 1

M , 0
0, 0, 0
0, 0, 1

M

 , (4.9)

46

Numerical experiments

whereM is the mass of the object which is moved, x is the position in space and speed in x, y, z-direction
and u is the force in x, y, z-direction. The dPRONTO algorithm needs certain inputs before calculation.
Qn penalizes the error between the desired end position and the end point of the proposed trajectory. In
other words, the variable Q is used as a soft constraint for function mN (xN) of equation (4.3). In this
case, the terminal constraint is given by

mN (xN) =
1

2
(xN − xdes)TR(xN − xdes), (4.10)

where, xdes is the desired end position and x
T
des is the transposed of the input xdes. The function lk de�nes

the cost of the trajectory. The cost of the trajectory is de�ned by the input of the system, resulting in
the following stage cost

lk = uTkRuk, k ∈ [1 N] (4.11)

where uTk is the transposed of the input uk. This stage cost should result in a trajectory where the input
is minimized. The minimum is assumed to be found when the absolute descent is smaller than a certain
threshold (AbsTol). The trajectory is initialized by the starting position (x0) to the desired end position
(xdes) with a constant speed. Moreover, the trajectory consists out of N + 1 number of points. In this
thesis, the trajectory has to move from point a to b in a �xed time (tf). α is the Armijo's rule constant
and β is the backtracking constant, as discussed in Section 2.4. The inequality constraints are added
in (4.3) using a barrier function. However, this barrier function has another parameter besides ε and
that parameter is referred to as the relaxation parameter (δ). The in�uence of the relaxation parameter
can not be seen in (4.3) or (4.2). The relaxation parameter is added because (4.3) and (4.2) can not be
computed when a constraint ci is positive. Therefore, the log-barrier function is replaced with a quadratic
polynomial when the constraint is smaller than −δ. Resulting in the following barrier function

β(z) =

{
−log(z) , z > δ

−log
(
δ + 1

2

[(
z−2δ
δ

)2 − 1
])

, z ≤ δ.
(4.12)

The quadratic polynomial does not interfere with the smoothness requirement because the function β is
a C2 function. The values of these dPRONTO parameters are given in the Appendix F.

The obstacle avoidance constraint should be added to the optimal motion problem. In this section,
the obstacle avoidance constraint is calculated using the proposed interpolation method of Section 3.2
and an arti�cially created discrete TSDF. The discrete TSDF of the simulation obstacles are created
using the SDF given by Quilez [33]. Moreover, the SDFs are truncated with a truncation threshold of
1[m]. The optimal trajectories around three di�erent obstacles are presented in this section. The �rst
obstacle is a sphere because the SDF of a sphere is a smooth function with the exception of the center of
the sphere. The second obstacle is a box because the SDF of a box is not a C2 function itself. A box and
a torus shape are combined based on the smooth transition mentioned by Quilez [33]. The third obstacle
is chosen to be a bit more complex shape than the other two. First, the proposed interpolation method
of Section 3.2 will be used to determine the obstacle avoidance constraint. Later, a linear interpolation
combined with central approximation will be used to compare the proposed interpolation method with
the least computational method. Figure 4.3 shows the optimal trajectory around the sphere and the box
calculated using the proposed interpolation method. Figure 4.4 shows the optimal trajectory around the
box and torus combination calculated with the proposed interpolation method.

47

Numerical experiments

(a) (b)

Figure 4.3: The optimal trajectory around a spherical obstacle (a) and around a box obstacle (b).

(a) (b)

Figure 4.4: The optimal trajectory around an obstacle which is a box and a torus combined. Two di�erent views
of the same trajectory are shown.

As can be seen in Figures 4.3 and 4.4, the optimal motion planning algorithm �nds a feasible solution.
However, these Figures do not show that the trajectory is a local minimizer of (4.2). The size Newtons
step gives a proper indication of the size of the error, as discussed in Section 2.4. Therefore, the trend
of the size of the Newtons step gives an indication of the trend of the size of the error. Figure 4.5 shows
an example of the size of Newton's step of the dPRONTO algorithm. As can be seen in Figure 4.5, the
descent of the dPRONTO algorithm shows quadratic convergence. The steps at iteration 6 and 15 are
the consequence of the continuation. Decreasing ε creates a di�erent optimal control problem. Therefore,

48

Numerical experiments

the error increases when ε is decreased. Therefore, it can be concluded that the trajectories found in
optimal motion planning are local minimizers of the optimal control problem (4.2).

0 5 10 15 20 25
Iteration i [-]

10-15

10-10

10-5

100

105

1010

lo
g(

s)

Figure 4.5: An example of the descent convergence of the dPRONTO algorithm.

In Section 2.4, optimization using linear interpolation is discussed as well. From literature, it was con-
cluded that linear interpolation with a central approximation for the derivatives might work. The maxi-
mum error caused by the central approximation has to be signi�cantly smaller than the error of Newton's
method. The obstacle avoidance constraint which is determined with linear interpolation with central
approximation will be referred to as the linear interpolated obstacle avoidance constraint. The linear in-
terpolated obstacle avoidance constraint of the optimal control problem is transformed into the projected
cost function. Hence, the in�uence of the error of the linear interpolated obstacle avoidance constraint
in the minimization is di�cult to derive. Therefore, the possibility of using linear interpolated obstacle
avoidance constraint in optimal motion planning will be validated using simulations. Figure 4.6 shows the
trajectory of an optimal motion planning based on a linear interpolated obstacle avoidance constraint.
As can be seen from Figures 4.6 and 4.3, the linear interpolation method uses almost the same amount of
iterations to minimize the optimal control problem. Figure 4.6 is a bit misleading because the grid size
is twice as dense in the linear interpolated case in order to solve the optimal control problem. Moreover,
the terminal condition in the cubic case is 1e−5 and in the linear interpolated case the terminal condition
is set to 1e−2. The terminal condition is set higher in the linear interpolated case because it was not able
to �nd a trajectory with a lower Newton's step. The trajectory of Figure 4.6 is feasible for the linear
interpolated obstacle avoidance constraint, however, the trajectory collides with the actual obstacle. This
solely indicates that linear interpolation is not as accurate as the cubic interpolation. Figure 4.6 shows
a few increases in the Newton's step at iteration 10 and 16. These increases in Newton's step are the
result of continuation. Concluding, Figure 4.6 does not prove linear interpolation with central di�erence
approximation is slower or less reliable than cubic interpolation.

49

Numerical experiments

(a)

0 5 10 15 20 25
Iteration i [-]

10-10

10-5

100

105

1010

lo
g(

s)
(b)

Figure 4.6: An example of a local minimizer of the optimal motion planning based on a linear interpolated obstacle
avoidance constraint. In part (a) the trajectory which is the minimizer. In part (b) the Newton's step
versus the iteration number.

Figure 4.7 shows the results of a di�erent optimal motion planning. In Figure 4.7, the same obstacle is
used as in Figure 4.6, however, the trajectory has a di�erent start and end position. As can be seen,
the size of the Newtons step does not show a local quadratic convergence rate. Moreover, the Newtons
step seems to stagnate after 17 iterations. According to the theory of Section 2.4, this could be the
result of the error in the central di�erence approximation and linear interpolation. The optimal motion
planning is not able to determine an optimal trajectory for this particular start and end position when
the grid size is set to be twice as dense. Figure 4.8 shows the results of the optimal motion planning
when the grid size is twice as dense as in Figure 4.7. As can be seen in Figure 4.8, the trajectory is much
shorter than the trajectory of Figure 4.7. Figure 4.8(b) shows that the has found multiple local minima.
However, the �nal trajectory is not a local minimum because the size of the Newtons step is larger than
the absolute tolerance. Moreover, the trajectory of Figure 4.8 collides with the obstacle. Furthermore,
optimal motion planning based on a linear interpolated obstacle avoidance constraint of a box is not
possible. Shown in this Section, an optimal motion planning algorithm can already fail when a simple
obstacle is represented by a linear interpolated obstacle avoidance constraint. Hence, linear interpolated
obstacle avoidance constraints are not desired in autonomous optimal motion planning.

50

Numerical experiments

(a)

0 5 10 15 20 25 30
Iteration i [-]

10-5

100

105

1010

lo
g(

s)
(b)

Figure 4.7: An example of a local minimizer of the optimal motion planning based on a linear interpolated obstacle
avoidance constraint. In part (a) the trajectory which is the minimizer. In part (b) the Newton's step
versus the iteration number.

(a)

0 10 20 30 40 50
Iteration i [-]

10-5

100

105

1010

lo
g(

s)

(b)

Figure 4.8: An example of a local minimizer of the optimal motion planning based on a linear interpolated obstacle
avoidance constraint. In part (a) the trajectory which is the minimizer. In part (b) the Newton's step
versus the iteration number.

4.2.2 OMP based on KinectFusion data

In Section 4.2.1, the GPGPU accelerated interpolation method is used to interpolate the discrete TSDF
to create a proper obstacle avoidance constraint. Discussed in Section 4.2.1, a linear interpolated obstacle
avoidance constraint can cause a problem in an optimal motion planning algorithm. One of the goals
of this thesis was to demonstrate that KinectFusion and a moving depth camera can be used to create
the discrete TSDF. Whether the KinectFusion data can be used to create a discrete TSDF which can be
used in optimal motion planning will be discussed in this section.

51

Numerical experiments

The KinectFusion framework is available as open-source software under the name KinFu [9]. How-
ever, the implementation of the KinectFusion framework is not exactly the same as the KinectFusion
framework. In KinFu, each voxel is initialized as a voxel which is far from a surface. In other words, each
voxel is initialized with the value 1. KinFu only stores the TSDF values in a voxel when the TSDF value
is between]− 1, 1[or when the global voxel already has a value which is not 1. Therefore, the 3D grid
has only voxels with the value 1 unless a measurement has shown di�erent. Figure 4.9 shows the exact
TSDF of (2.5) and the reduced TSDF which is used in KinFu of a 1D obstacle. As can be seen in Figure
4.9, the reduced TSDF is not the same as the exact TSDF inside the obstacle. This error occurs when
the truncation threshold is smaller than twice the thickness of an obstacle. In order to ensure no hollow
obstacles, the truncation threshold should be larger than twice the thickness of the thickest obstacle in
the environment.

-5 -4 -3 -2 -1 0 1 2 3 4 5
Position [m]

-1.5

-1

-0.5

0

0.5

1

1.5

T
S

D
F

 v
al

ue

Exact TSDF
KinFu TSDF

(a)

-5 -4 -3 -2 -1 0 1 2 3 4 5
Position [m]

-1.5

-1

-0.5

0

0.5

1

1.5

T
S

D
F

 v
al

ue
 [-

]

Exact TSDF
KinFu TSDF

(b)

Figure 4.9: A 1D example of the exact TSDF and the KinFu TSDF with a truncation threshold of 1[m]. Part
(a) shows the TSDF functions. Part (b) shows a interpolated version of the same TSDF functions.

The KinFu algorithm has a default truncation threshold of 0.03 [m]. As illustrated in Figure 4.9, this
truncation threshold will result in an obstacle which is hollow inside when the obstacle is thicker than
the truncation threshold. The hollowness of the obstacles might cause issues in the optimal motion
planning. When the optimal motion planning is initialized through an obstacle which is hollow then
the optimal motion planning might not be able to solve the optimal control problem. The points which
are inside an obstacle are assumed to be negative. However, the points inside a hollow obstacle are
positive. Therefore, the optimal motion planning algorithm cannot know that these points are inside
an obstacle. Hence, the optimal motion planning algorithm will not push these points to outside the
obstacle. Moreover, the hollowness is an issue for the smoothness requirement of Chapter 3. To satisfy
the smoothness requirement, the discrete TSDF is interpolated in order to get a C2 function. The discon-
tinuity of the discrete TSDF results in signi�cant overshoot in the interpolation as shown in Figure 4.9(b).

To illustrate the hollowness issue occurs in the KinFu data, an o�ce chair has been scanned using
the default KinFu algorithm. Figure 4.10(a) shows an o�ce chair and a red line which approximates the
location of the plain of Figure 4.10(b). Figure 4.10(b) shows plane of the KinFu TSDF which intersects

52

Numerical experiments

with the backrest of the chair. As can be seen in Figure 4.10(b), the backrest of the chair is hollow as
expected from Figure 4.9. This hollowness of obstacles results in di�erent values within the obstacles
than expected. A position within an obstacle might be evaluated as outside an obstacle when the obstacle
is hollow. Therefore, the KinFu cannot be used with the default settings.

(a) (b)

Figure 4.10: Part (a) shows the o�ce chair and a red line. The red line indicates approximate location of the
plain of part (b). Part (b) shows KinFu data of the plane. As can be seen in Part (b), the chair is
scanned as an hollow object.

The simplest solution to solve the hollowness problem is to increase the truncation threshold of the
KinFu algorithm. The obstacle will not be hollow when the truncation threshold is larger than half the
thickness of the largest obstacle. However, the KinFu algorithm has some problems with this increase of
truncation threshold. First, the number of points within the point cloud increase linearly with the size
of the truncation threshold. Therefore, the point cloud bu�er has to be increased as well. Moreover, the
tracking of the camera is in�uenced by an increase of the truncation threshold. The depth camera is
tracked by an ICP algorithm, as explained in Chapter 2.

53

Numerical experiments

Figure 4.11: An example of a too large truncation threshold. Here positive truncation signed distance functions
(TSDF) are shown by blue to green (TSDF ∈ (1 0]), negative truncation distances are shown by
green to red (TSDF ∈ [0 − 1)) and the black line represent the obstacle surface(TSDF = 0). Here
the black camera is the original point of view and the gray camera is the second point of view.

Figure 4.11 shows a thin obstacle which has been scanned by the KinFu solely from one camera position,
the black camera in the Figure. As can be seen in Figure 4.11, the voxels behind an obstacle are sensed
as a voxel which is inside of an obstacle while this clearly is not true. In other words, the sensor thinks
that the obstacle is much thicker than the obstacle actually is. Therefore, the depth image of Figure 4.11
results in false information in the global discrete TSDF. When the camera move to the second location,
the gray camera in Figure 4.11, the second depth image senses a di�erent environment than it expected.
Hence, the false information of the �rst measurement is noise for the ICP algorithm. In case of the
hollowness problem, the truncation threshold should be at least larger than half the size of the largest
obstacle, as discussed earlier in this section. However, Figure 4.11 shows that the truncation threshold
should not be larger than the smallest obstacle. Therefore, the hollowness problem and the tracking
problem contradict. Hence, the truncation threshold should be chosen with caution and is a practical
solution for the hollowness problem.

To test the KinFu data in optimal motion planning, the same state cost, dynamics, and terminal cost as
in Section 4.2.1 are used. Moreover, the same dPRONTO algorithm is used as in Section 4.2.1. How-
ever, The obstacle avoidance constraint is created by interpolation the modi�ed KinFu data instead of
a prede�ned discrete TSDF. The parameters of the dPRONTO algorithm are slightly di�erent for the
KinFu TSDF than the prede�ned discrete TSDF. The parameters of the dPRONTO algorithm for the
KinFu based optimal motion planning are given in Appendix F. Figures 4.12 and 4.13 show the optimal
trajectory based on modi�ed KinFu data. As can be seen, the optimal motion planning �nds two dif-
ferent trajectories around the obstacles. The starting points of both trajectories has been chosen to be
the same, both x(0) = [1.4414, 2.3906, 1.0547]. However, the di�erence of the trajectories is caused by
the di�erent desired end point. The desired end point of Figure 4.12 is x(T) = [0.66, 0.47, .70] and the
desired end point of Figure 4.13 is [0.86, 0.23, 0.70]. Both trajectories are initialized with a constant
velocity over the entire trajectory.

54

Numerical experiments

(a) (b)

Figure 4.12: The optimal trajectory around Kinect Fusion data. (a) and (b) show the same trajectory and
obstacles form a di�erent angle.

(a) (b)

Figure 4.13: The optimal trajectory around Kinect Fusion data. (a) and (b) show the same trajectory and
obstacles form a di�erent angle. The obstacle in this Figure is the same obstacle as Figure 4.12.

4.3 Summary

This chapter started with the veri�cation of the requirement that the interpolation method should be as
fast as possible. The calculation time of the proposed interpolation method is compared with a CPU ver-
sion of the proposed method and a MATLAB interpolation. As in Section 4.1, the proposed interpolation
algorithm calculates the coe�cients signi�cantly faster than the other two interpolation method. For a

55

Numerical experiments

discrete TSDF of the size 128x128x128, the GPGPU interpolated method is over 275 times faster than
a default MATLAB interpolation method and over 40 times faster than a CPU implementation of the
interpolation method. The CPU interpolation is faster in calculating the output based on the coe�cients
when the number of outputs is less than 50. When the number of outputs is more than 50 than the
proposed interpolation method is faster than the CPU version. However, the combination of calculating
the coe�cients using a GPU and calculating the outputs using a CPU is not ideal. The coe�cients have
to be transferred from the GPU memory to the CPU memory, resulting in time loss due to restoring the
coe�cients. The MATLAB version is in both cases signi�cantly slower than the proposed interpolation
method. Concluding, the GPGPU interpolation should be used for calculating the coe�cients and the
outputs of the interpolation method.

In Section 4.2, the proposed interpolation method is implemented in an optimal motion planning al-
gorithm. First, the discrete TSDF is calculated using an exact SDF. A few example are shown where the
optimal motion planning algorithm provides an optimal trajectory. Moreover, this section showed that
linear interpolation fails in some cases of optimal motion planning. The default open-source implemen-
tation of KinectFusion (KinFu) provides a di�erent discrete TSDF than expected. In KinFu, an object is
hollow inside, where the assumption was that these voxels inside of an obstacle are −1. This di�erence in
the discrete TSDF results in a problem in the optimal motion planning algorithm. Therefore, KinFu is
tuned in order to get a usable discrete TSDF. The optimal motion planning algorithm is able to calculate
an optimal trajectory based on modi�ed KinectFusion data, as shown in Section 4.2.

56

Conclusions and recommendations

5 Conclusions and recommendations

5.1 Conclusions

In Chapter 1, three di�erent goals have been set for this research. The �rst goal is to implement and a
validated a fast interpolation method of a 3D scalar �eld for optimal motion planning. The second goal
is to combine the interpolation method with an SDF to calculate the obstacle avoidance constraint for
optimal motion planning. The last goal is to compare the zero level set of the interpolated SDF with the
zero level set of the exact SDF. This section summarises the report based on these three goals.

The interpolation method should satisfy the smoothness and pass-through requirement as discussed
in Chapter 1. Furthermore, the interpolation method should be as fast as possible. A literature study
on interpolation methods has been conducted to �nd the fastest interpolation method. The literature
concluded that the interpolation method of Unser et al. [19] [20] should be the fastest. However, no math-
ematical proof was given in the papers of Unser et al. Section 3.1 shows that the digital �lter method is
faster in the conducted experiments than a time reduced version of cubic b-spline interpolation method
which is based on the tridiagonal theory. The smoothness and pass-through requirements have been
validated for the digital �lter method in Section 3.3. Section 3.2 discusses the implementation of the
proposed interpolation method. The proposed interpolation method is a CUDA implementation of the
digital �lter method of Unser et al.

Section 2.3.4 compares the proposed interpolation with a CPU implementation of the digital �lter and
a default MATLAB interpolation algorithm. The interpolation methods have been compared based on
their calculation time of two parts of the interpolation. The �rst part of the interpolation is calculating
the coe�cients from the SDF. The second part of the interpolation is calculating the obstacle avoidance
constraint and the derivatives of multiple points. Section 2.3.4 shows that the proposed interpolation
method is signi�cantly faster than the other two methods. When the SDF has a size of 128x128x128,
the proposed interpolated method is over 275 times faster than a default MATLAB interpolation method
and over 40 times faster than a CPU implementation of the digital �lter interpolation method. The
di�erence in second part of the interpolation method was not as clear as the �rst part. The CPU imple-
mentation is faster when the number of outputs is lower than 50. The coe�cients calculating of the CPU
implementation is signi�cantly slower and converting the coe�cients from the GPU memory to the CPU
memory costs time as well. Furthermore, the number of outputs of the interpolation method is probably
larger than 50. Concluding, the proposed interpolation method is the fastest method of interpolating the
discrete SDF.

Section 3.4 compares the zero level set of the interpolated SDF with the zero level set of the exact
SDF. This comparison has been done for several di�erent obstacle radius to grid size ratios. The valida-
tion showed a relation between the error and the obstacle radius to grid size ratio. The largest error was
visible when the interpolation method had to recreate an edge. The error in the edge reconstruction was
smaller than 1% of the grid size when the radius to grid size ratio is larger than 4. When more accuracy
is required, the radius to grid size ratio can be increased.

Last, the proposed interpolation method has been implemented in an in-house optimal motion plan-
ning algorithm. This research provided images which showed that the combination of the proposed
interpolation method and optimal motion planning was possible for di�erent simulated environments.
This research combined the proposed interpolation method with KinectFusion in optimal motion plan-
ning as well. The KinectFusion algorithm is originally designed to recreate the surface of an environment
and locate the camera position. Consequently, KinectFusion is solely interested in points which are close
to a surface. Consequently, the points which are closer to a surface than the truncation threshold are

57

Conclusions and recommendations

used to recreate the environment. However, hollow obstacles can result in an optimal control problem
which cannot be used in optimal motion planning as discussed in Section 4.2.2. Hence, the truncation
threshold of the KinectFusion algorithm has to be increased. This increase in truncation threshold re-
duces the accuracy of the Iterative Closest Point algorithm which tracks the camera position. This ICP
algorithm already has di�culties to track the camera in low detailed environments or when the camera is
moving fast. Hence, the increase of the truncation threshold should be done with caution. The proposed
interpolation method combined with the modi�ed KinectFusion algorithm was able to provide an obstacle
avoidance constraint for optimal motion planning. Furthermore, this research provided proof that sensor
data can be used to calculate an obstacle avoidance constraint for optimal motion planning.

5.2 Recommendations

1. Smoothness of the interpolation method. This research proposed a fastest interpolation
method which satis�ed the requirement and assumptions for optimal motion planning. However,
the fastest interpolation method might not result in the fastest convergence rate in the optimal
motion planning algorithm. Section 2.4 shows that a Newton-like minimization method has a
region in which it has a quadratic convergence rate. Increasing the smoothness of the obstacle
avoidance constraint might result in a larger region with a quadratic convergence rate. Hence, the
optimal motion planning should use fewer iterations to �nd the minimizer. The obstacle avoidance
constraint can be smoother by using, for example, smoothing splines. This thesis assumed that
smoothing splines are not necessary for optimal motion planning, in Chapter 3. The same idea holds
for higher order splines. Higher order splines hight increase the smoothness of the obstacle avoidance
constraint as well. However, this thesis was solely concerned with satisfying the requirements with
the fastest interpolation method. I do not have the expertise to prove or disprove this concept.
Therefore, an investigation might give more insight whether this concept improves the calculation
time. Even when this concept improves the calculation time, the reducing the calculation time is
not the highest priority.

2. Not knowing the environment a-priori. An assumption which has not been discussed in
this report is the fact that this research assumed that the entire environment is known a-priori.
To use this thesis, the entire environment has to be scanned before the robot is able to apply
optimal motion planning. A more realistic/autonomous case would be that a robot should plan
the optimal trajectory while scanning the environment. I do not have the background to state
whether the current method will or will not work in a �nite optimal motion planning. Therefore,
the environment description should be implemented in a �nite horizon approach. This problem is
not of top priority but should be investigated in the near future.

3. Dynamic environments. This thesis was solely concerned with a static environment. However, a
static environment is not a realistic assumption for the operating environment of most robots. Most
robots will encounter moving obstacles in their environment which it should avoid. KinFu is able
to reconstruct moving obstacles. However, the KinFu algorithm needs to have a scan of the static
environment before it is able to segment the moving obstacles. Therefore, the KinFu algorithm
needs to scan an environment with solely static obstacles. Furthermore, the KinFu algorithm needs
to scan again for the moving obstacles. If the KinFu algorithm is used, static obstacles cannot be
added or removed from the environment. Therefore, an updated KinFu algorithm or a di�erent
algorithm is required to deal with dynamic obstacles in the environment. An alternative method
for KinFu is given by Keller et al. [34]. Keller et al. state that their method is able to segment
dynamic obstacles from the scan. This problem is not a top priority. However, robots require an
optimal motion planning method which is able to cope with dynamic environments. Therefore, a
research on how to describe a dynamic environment has to be done in the near future.

58

Conclusions and recommendations

4. Tracking of the camera. The KinFu algorithm relays on an ICP algorithm to track the camera
position. The tracking error has an in�uence on the obstacle reconstruction. However, the ICP
algorithm is not accurate in tracking the camera. Keller et al. [34] have investigated the tracking
error of KinFu algorithm and their scanning method. Both algorithms had a nonnegligible tracking
error in a controlled experiment. The tracking error of KinFu algorithm peaked at 0.1[m] in the
controlled experiment. Moreover, Keller et al. noticed that both methods have problems with sensor
drift. This sensor drift was also noticed in this thesis. Figure 5.1 shows a KinFu representation of
a pallet which is a box. However, the pallet does not seems to be a box in Figure 5.1. Moreover,
the edge shown inside the orange square shows that the edge is misaligned. This misalignment is
the result of the sensor drift.

Figure 5.1: An example of a failing scan due to a large error in the tracking.

Concluding, the camera tracking of the Kinfu algorithm is not accurate enough for optimal motion
planning. Therefore, the tracking of the camera needs to be improved. A method would be to fuse
the ICP tracking with a di�erent tracking method. This tracking problem is of high priority and
an investigation into improving the tracking should be done as fast as possible.

5. Hollow obstacles. Section 4.2.2 discusses the problem of obstacle representation of the default
KinFu algorithm. The truncation of the SDF results in hollow obstacles when the truncation thresh-
old is smaller than half the thickness of the thickest obstacles. This thesis solved this problem by
increasing the truncation threshold. However, the tracking of the camera was not able to track
the camera when the truncation threshold was larger than the thickness of the thinnest obstacle.
Therefore, the truncation threshold has to be chosen with caution when using this method. Al-
though, the tracking of the camera already has to be improved, increasing the truncation threshold
is not the most intelligent solution for solving this problem. Hence, a more intelligent solution
should be investigated for the hollowness problem. The hollowness problem is not as important as

59

Conclusions and recommendations

the tracking error. Therefore, the hollowness problem can wait at least until the tracking error is
resolved.

6. Fast output calculation based on coe�cients. This research used (2.22) for calculating the
output of a desired position. However, Ruijters et al. [35] propose a faster method of calculating
the desired output. The method of Ruijters et al. has not been used in this thesis because it would
not work in a CUDA/MATLAB implementation. Ruijters et al. propose their method using CUDA
together with C-code. Therefore, the problem could be that the method of Ruijters et al. does
not work with MATLAB. As far as I understand their solution, Ruiters et al. propose to store
the coe�cients di�erently in a speci�c GPU memory type. This type of memory has the bene�t
that linear interpolating between two points costs signi�cantly less time than normal interpolation.
Therefore, the output of a desired point can be calculated using 8 linear interpolations instead of
64 nearest neighbour lookups. Hence, the calculation time will be reduced using the method of
Ruijters et al. According to Ruijters et al., their method is over 20% faster than the method which
has been used in this thesis. Each loop of the optimal motion planning requires a calculation of
the output of the interpolated obstacle avoidance constraint and its derivatives. Therefore, the
method of Ruijters et al. should be bene�cial for optimal motion planning. However, this is not as
important as the tracking and hollowness problem described before.

60

REFERENCES

References

[1] Roland Jan Geraerts. Sampling-based motion planning: Analysis and path quality. 2006.

[2] Matt Zucker, Nathan Ratli�, Anca D Dragan, Mihail Pivtoraiko, Matthew Klingensmith, Christo-
pher M Dellin, J Andrew Bagnell, and Siddhartha S Srinivasa. CHOMP: Covariant Hamiltonian
optimization for motion planning. The International Journal of Robotics Research, 32(9-10):1164�
1193, 2013.

[3] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and Stefan Schaal.
STOMP: Stochastic trajectory optimization for motion planning. In Robotics and Automation
(ICRA), 2011 IEEE International Conference on, pages 4569�4574. IEEE, 2011.

[4] John Schulman, Jonathan Ho, Alex X Lee, Ibrahim Awwal, Henry Bradlow, and Pieter Abbeel.
Finding locally optimal, collision-free trajectories with sequential convex optimization. In Robotics:
science and systems, volume 9, pages 1�10, 2013.

[5] Jim Mainprice, Nathan Ratli�, and Stefan Schaal. Warping the workspace geometry with electric
potentials for motion optimization of manipulation tasks. In Intelligent Robots and Systems (IROS),
2016 IEEE/RSJ International Conference on, pages 3156�3163. IEEE, 2016.

[6] C.T. Kelley. Iterative Methods for Linear and Nonlinear Equations. Frontiers in Applied Mathe-
matics. Society for Industrial and Applied Mathematics, 1995.

[7] Car De Boor. A practical guide to splines, volume 27. Springer-Verlag New York, 1978.

[8] Brian Curless and Marc Levoy. A volumetric method for building complex models from range images.
In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pages
303�312. ACM, 1996.

[9] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe, Pushmeet Kohli,
Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew Davison, et al. KinectFusion: real-time 3d
reconstruction and interaction using a moving depth camera. In Proceedings of the 24th annual
ACM symposium on User interface software and technology, pages 559�568. ACM, 2011.

[10] John P Morgan and Richard L Tutwiler. Real-time reconstruction of depth sequences using signed
distance functions. In SPIE Defense+ Security, pages 909117�909117. International Society for
Optics and Photonics, 2014.

[11] Paul J Besl, Neil D McKay, et al. A method for registration of 3-D shapes. IEEE Transactions on
pattern analysis and machine intelligence, 14(2):239�256, 1992.

[12] John H Mathews, Kurtis D Fink, et al. Numerical methods using MATLAB, volume 4. Pearson
London, UK:, 2004.

[13] Philippe Thévenaz, Thierry Blu, and Michael Unser. Interpolation revisited [medical images appli-
cation]. IEEE Transactions on medical imaging, 19(7):739�758, 2000.

[14] Carl De Boor. Spline toolbox for use with MATLAB: user's guide, version 3. MathWorks, 2005.

[15] Brian A Barsky. End conditions and boundary conditions for uniform b-spline curve and surface
representations. Computers in Industry, 3(1-2):17�29, 1982.

[16] Francois Lekien and J Marsden. Tricubic interpolation in three dimensions. International Journal
for Numerical Methods in Engineering, 63(3):455�471, 2005.

61

REFERENCES

[17] Larry Schumaker. Spline functions: basic theory. Cambridge University Press, 2007.

[18] Richard H Bartels, John C Beatty, and Brian A Barsky. An introduction to splines for use in
computer graphics and geometric modeling. Morgan Kaufmann, 1995.

[19] Michael Unser, Akram Aldroubi, and Murray Eden. Fast B-spline transforms for continuous image
representation and interpolation. IEEE Transactions on pattern analysis and machine intelligence,
13(3):277�285, 1991.

[20] Michael Unser. Splines: A perfect �t for signal and image processing. IEEE Signal processing
magazine, 16(6):22�38, 1999.

[21] Ahmed I Zayed. A convolution and product theorem for the fractional fourier transform. IEEE
Signal processing letters, 5(4):101�103, 1998.

[22] Daniel Ruijters and Philippe Thévenaz. GPU pre�lter for accurate cubic B-spline interpolation. The
Computer Journal, page 086, 2010.

[23] Stephen J Wright and Jorge Nocedal. Numerical optimization. Springer Science, 35(67-68):7, 1999.

[24] Samuel Daniel Conte and Carl W De Boor. Elementary numerical analysis: an algorithmic approach.
McGraw-Hill Higher Education, 1980.

[25] Dan Zuras, Mike Cowlishaw, Alex Aiken, Matthew Applegate, David Bailey, Steve Bass, Dileep
Bhandarkar, Mahesh Bhat, David Bindel, Sylvie Boldo, et al. IEEE standard for �oating-point
arithmetic. IEEE Std 754-2008, pages 1�70, 2008.

[26] How CUDA's abstractions map to a GPGPU implementation. http://15418.courses.cs.cmu.

edu/spring2013/article/11.

[27] Robert C James. Advanced calculus belmont. Calif.: Wadsworth, 1966.

[28] Christian Knauer, Maarten Lö�er, Marc Scherfenberg, and Thomas Wolle. The directed Hausdor�
distance between imprecise point sets. In ISAAC, pages 720�729. Springer, 2009.

[29] Stuart E Dreyfus. Dynamic programming and the calculus of variations, volume 21. Academic Press
New York, 1965.

[30] John Hauser and Alessandro Saccon. A barrier function method for the optimization of trajectory
functionals with constraints. In Decision and Control, 2006 45th IEEE Conference on, pages 864�869.
IEEE, 2006.

[31] T.J.G Damen. Discrete-time optimal control algorithms for online trajectory planning. Master
Thesis, Eindhoven University of Technology.

[32] A Pedro Aguiar, Florian A Bayer, John Hauser, Andreas J Häusler, Giuseppe Notarstefano, Anto-
nio M Pascoal, Alessandro Rucco, and Alessandro Saccon. Constrained optimal motion planning for
autonomous vehicles using pronto. In Sensing and Control for Autonomous Vehicles, pages 207�226.
Springer, 2017.

[33] Inigo Quilez. Signed distance functions of di�erent primetives and combinations. http://http:

//iquilezles.org/www/articles/distfunctions/distfunctions.htm.

[34] Maik Keller, Damien Le�och, Martin Lambers, Shahram Izadi, Tim Weyrich, and Andreas Kolb.
Real-time 3d reconstruction in dynamic scenes using point-based fusion. In 3DTV-Conference, 2013
International Conference on, pages 1�8. IEEE, 2013.

62

http://15418.courses.cs.cmu.edu/spring2013/article/11
http://15418.courses.cs.cmu.edu/spring2013/article/11
http://http://iquilezles.org/www/articles/distfunctions/distfunctions.htm
http://http://iquilezles.org/www/articles/distfunctions/distfunctions.htm

REFERENCES

[35] Daniel Ruijters, Bart M ter Haar Romeny, and Paul Suetens. E�cient GPU-based texture interpo-
lation using uniform B-splines. Journal of Graphics, GPU, and Game Tools, 13(4):61�69, 2008.

63

B-splines is a special case of piecewise polynomial

A B-splines is a special case of piecewise polynomial

To determine whether b-spline interpolation is a speci�c form of piecewise polynomial interpolation, the
following equation has to be solved

Si(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3 =

n∑
j=0

cjφj(x− xj), (A.1)

where Si is the piecewise polynomial which describes the interpolation between points xi and xi+1, ai,
bi, ci and di are the coe�cients of the piecewise polynomial interpolation, cj are the coe�cients of the
b-splines. Solely for readability, the following equation will be used

ui = x− xi, ∆u = xi+1 − xi, ui+1 = ui −∆u, (A.2)

where ∆u is the grid size. To reduce complexity of the derivation, the grid size will be �xed here at
one. Cubic b-splines have a small window where they have a value. Therefore, the equation (A.1) can
be rewritten into

Si(x) =
i+2∑
j=i−1

cjφj(uj) = ci−1φi−1(ui + ∆u) + ciφi(ui) + ci+1φi+1(ui−∆u) + ci+2φi+2(ui− 2∆u). (A.3)

This equation can be rewritten into vector notation

Si(x) =
[
φi−1(ui + ∆u) φi(ui) φi+1(ui −∆u) φi+2(ui − 2∆u)

]
ci−1
ci
ci+1

ci+1

 . (A.4)

To solve this equation, four basis function have to be calculated in term of ui. Therefore, equation (2.16)
is determine the in�uence of each basis function. Moreover, these equation are written in vector notation.

φi−1(ui + ∆u) =
1

6
(2− ui − 1)3 = −1

6
u3i +

1

2
u2i −

1

2
ui +

1

6
=
[
u3i u2i ui 1

]
−1

6
1
2
−1

2
1
6

 , (A.5)

φi(ui) =
2

3
− 1

2
(ui)

2(2− ui) = −1

2
u3 + u2 +

2

3
=
[
u3i u2i ui 1

]
−1

2
1
0
2
3

 , (A.6)

φi+1(ui −∆u) =
2

3
− 1

2
(ui − 1)2(2 + ui − 1) =

1

2
u3i −

1

2
u2 − 1

2
u+

1

6
=
[
u3i u2i ui 1

]
1
2
−1

2
−1

2
1
6

 , (A.7)

φi+2(ui − 2∆u) =
1

6
(2 + ui − 2)3 =

1

6
u3 =

[
u3i u2i ui 1

]
1
0
0
0

 . (A.8)

Combining equations (A.5), (A.6), (A.7), (A.8) and (A.4) together creates the following equation

Si(x) =
[
u3i u2i ui 1

]
−1

6 −1
2

1
2

1
6

1
2 1 −1

2 0
−2

2 0 −1
2 0

1
6

2
3

7
6 0

ci−1
ci
ci+1

ci+1

 . (A.9)

64

Convergence rate Newton's Method

B Convergence rate Newton's Method

The proof of the local quadratic convergence can be proven using the three assumptions. When the
standard assumption hold, there exist a ball (B(x|||ei|| < r)) around the actual root in which the
following equations hold

||f ′(xi)|| ≤2||f ′(x∗)||, (B.1)

||f ′(xi)−1|| ≤2||f ′(x∗)−1||, (B.2)

||f(x∗)−1||−1||ei||/2 ≤ ||f(xi)|| ≤ 2||f ′(x∗)||||e||. (B.3)

Moreover, when xi is close to x
∗ then the following relation holds

f(xi) =

∫ 1

0
f ′(x∗ + tei)eidt. (B.4)

Combining (2.39), (2.46) and (B.4) results in the following equation

e+ = f ′(xi)
−1(f ′(xi)ei + f(xi))

= f ′(xi)
−1
∫ 1

0
(f ′(xi)− f ′(x∗ + tei))eidt

(B.5)

Based on the second standard assumption, the following relation holds

||f ′(xi)− f ′(x∗ + tei)|| ≤γ||xi − x∗ − tei||
≤γ||(1− t)ei||.

(B.6)

When (B.6) is implemented into (B.5) results in

||e+|| ≤||f ′(xi)−1|| ||ei||
∫ 1

0
γ||(1− t)ei||dt

≤||f ′(xi)−1|| ||ei||
[
γ||(t− 1/2t2)ei||

]1
0

≤||f ′(xi)−1|| ||ei||γ
1

2
||ei||

≤2||f ′(x∗)−1||γ 1

2
||ei||2.

(B.7)

65

CUDA soure code

C CUDA soure code

C.1 1D interpolation

1 // include function of Ruijters
2 #include "math_func.cu"
3 #include "cutil_math_bugfixes.h"
4

5 #define Pole (sqrt(3.0f)−2.0f) // Pole of cubic b−splines is defined as sqrt(3)−2
6

7 // Initial condition for causal filter
8 __host__ __device__ float InitialCausalCoefficient(
9 float* c, // coefficients

10 uint DataLength, // number of coefficients
11 int step) // element interleave in bytes
12 {
13 const uint Horizon = UMIN(12, DataLength); // More than 12 has no influence
14

15 // this initialization corresponds to clamped boundaries
16 // accelerated loop
17 float zn = Pole; // Weighting factor based on the ...

pole
18 float Sum = *c; // Initializing sum with c(0)
19 for (uint n = 0; n < Horizon; n++) {
20 Sum += zn * *c; // Weighting factor multiplied with ...

coefficient
21 zn *= Pole; // Update weighting factor
22 c = (float*)((uchar*)c + step); // Update coefficients
23 }
24 return(Sum); // Return intial condition for ...

causal filter
25 }
26

27 // Initial conditon for the anti causal filter
28 __host__ __device__ float InitialAntiCausalCoefficient(
29 float* c, // pointer to last coefficient
30 uint DataLength, // number of samples or coefficients
31 int step) // element interleave in bytes
32 {
33 // this initialization corresponds to clamping boundaries
34 return((Pole / (Pole − 1.0f)) * *c);
35 }
36

37 __host__ __device__ void ConvertToInterpolationCoefficients(
38 float* coeffs, // input samples −−> output coefficients
39 uint DataLength, // number of samples or coefficients
40 int step) // element interleave in bytes
41 {
42 // compute the overall gain
43 const float Lambda = (1.0f − Pole) * (1.0f − 1.0f / Pole); // given formula for ...

b−splines
44

45 // causal initialization
46 float* c = coeffs;
47 float previous_c; //cache the ...

previously calculated c rather than look it up again (faster!)
48 *c = previous_c = Lambda * InitialCausalCoefficient(c, DataLength, step); // ...

Initial condition for causal filter

66

CUDA soure code

49 // causal recursion
50 for (uint n = 1; n < DataLength; n++) {
51 c = (float*)((uchar*)c + step);
52 *c = previous_c = Lambda * *c + Pole * previous_c;
53 }
54 // anticausal initialization
55 *c = previous_c = InitialAntiCausalCoefficient(c, DataLength, step);
56 // anticausal recursion
57 for (int n = DataLength − 2; 0 ≤ n; n−−) {
58 c = (float*)((uchar*)c − step);
59 *c = previous_c = Pole * (previous_c − *c);
60 }
61 }

C.2 Interpolate 3D grid in x-direction

1 #include "interpolate.cu" //include 1D interpolation functions
2

3 // interpolation in x−direction
4 __global__ void SamplesToCoefficients3DX(
5 float* volume, int N_x , int N_y , int N_z)
6 // volume: input the current space −> output coefficients
7 // N_x size of space in x−direction, N_y size of space in y−direction, N_z size of ...

space in z−direction
8 {
9 uint width = (unsigned int) N_x; // width of the space

10 uint height = (unsigned int) N_y; // height of the space
11 uint depth = (unsigned int) N_z; // depth of the space
12 uint pitch = sizeof(float) *width; // width in bytes
13

14

15 // process lines in x−direction
16

17 const uint y = blockIdx.x * blockDim.x + threadIdx.x;
18 // starting points in y−direction
19 const uint z = blockIdx.y * blockDim.y + threadIdx.y;
20 // starting points in z−direction
21 const uint startIdx = (z * height + y) * pitch;
22 // starting points in y− and z−direction
23

24 float* ptr = (float*)((uchar*)volume + startIdx);
25 // pointer to starting point in the vector volume
26 ConvertToInterpolationCoefficients(ptr, width, sizeof(float));
27 // 1D interpolation in x direction and next point is sizeof(float) away
28 }

C.3 Interpolate 3D grid in y-direction

1 #include "interpolate.cu" //include 1D interpolation functions
2

3 // interpolation in y−direction
4 __global__ void SamplesToCoefficients3DY(
5 float* volume, int N_x , int N_y , int N_z)
6 // volume: input the current space −> output coefficients

67

CUDA soure code

7 // N_x size of space in x−direction, N_y size of space in y−direction, N_z size of ...
space in z−direction

8 {
9 uint width = (unsigned int) N_x; // width of the space

10 uint height= (unsigned int) N_y; // height of the space
11 uint depth = (unsigned int) N_z; // depth of the space
12 uint pitch = sizeof(float) *width; // width in space
13

14 // process lines in y−direction
15

16 const uint x = blockIdx.x * blockDim.x + threadIdx.x;
17 // starting points in x−direction
18 const uint z = blockIdx.y * blockDim.y + threadIdx.y;
19 // starting points in z−direction
20 const uint startIdx = z * height * pitch;
21 // starting points in x− and z−direction
22

23 float* ptr = (float*)((uchar*)volume + startIdx);
24 // pointer to starting point in the vector volume
25 ConvertToInterpolationCoefficients(ptr + x, height, pitch);
26 // 1D interpolation in y−direction and next point is pitch away
27 }

C.4 Interpolate 3D grid in z-direction

1 #include "interpolate.cu" //include 1D interpolation functions
2

3 // interpolation in z−direction
4 __global__ void SamplesToCoefficients3DZ(
5 float* volume, int N_x , int N_y , int N_z)
6 // volume: input the current space −> output coefficients
7 // N_x size of space in x−direction, N_y size of space in y−direction, N_z size of ...

space in z−direction
8 {
9

10 uint width = (unsigned int) N_x; // width of the space
11 uint height = (unsigned int) N_y; // height of the space
12 uint depth = (unsigned int) N_z; // depth of the space
13 uint pitch = sizeof(float) *width; // width in bytes
14

15 // process lines in z−direction
16

17 const uint x = blockIdx.x * blockDim.x + threadIdx.x;
18 // starting points in x−direction
19 const uint y = blockIdx.y * blockDim.y + threadIdx.y;
20 // starting points in y−direction
21 const uint startIdx = y * pitch;
22 // step in bytes in order to get from y(i) to y(i+1)
23 const uint slice = height * pitch;
24 // step in bytes in order to get from z(i) to z(i+1)
25

26 float* ptr = (float*)((uchar*)volume + startIdx);
27 // pointer to starting point in the vector volume
28 ConvertToInterpolationCoefficients(ptr + x, depth, slice);
29 // 1D interpolation in y−direction and next point is slice away
30 }

68

CUDA soure code

C.5 Function which calculates the number of threads and blocks

1 function [n_t,n_b] = number_thread_blocks(n)
2 %NUMBER_THREAD_BLOCKS Calculate ideal number of threads and blocks for CUDA
3 %calculation
4 % input n is a vector with number of theads in x,y,z−direciont
5 % n(1) is the number of CUDA cores needed in x direction
6 % n(2) is the number of CUDA cores needed in y direction
7 % n(3) is the number of CUDA cores needed in z direction
8 % when number of theads are defined in less than 3 direction, user can sent smaller ...

vector as well.
9 % ouput n_t is a vector with number threads per block in all three directions and n_b...

is a vector with the number of blocks in the grid in all three directions
10

11 gpu_device = gpuDevice; % get information on gpu ...
devices in pc

12 n_t = [0,0,0]; % initiate number of threads
13 n_b = [0,0,0]; % initiate number of blocks
14 dim = length(n); % dimension of vector n
15

16 if dim == 3
17 %% 3D
18 if max(n) < gpu_device.MaxThreadsPerBlock^(1/3) % when the number of ...

calculation in each direction is smaller than the maximum threas per ...
block

19 n_t = [n(1),n(2),n(3)]; % size of threads is equal to...
number of calculcaltion

20 n_b = [1,1,1]; % block size is set to 1
21 else
22 for i = 1:3 % loop over all directions
23 n_t(i) = 8; % 8 still chosen on my gpu ...

because it is gpu_device.MaxThreadsPerBlock^(1/3) / should be ...
dividable by 2

24 while mod(n(i),n_t(i)) 6=0 % are the number of ...
calculation dividable by the number of threads

25 n_t(i) = n_t(i)/2; % update number of theads
26 if n_t(i) <1 % not possible
27 return;
28 end
29 end
30 end
31 n_b = [n(1)/n_t(1),n(2)/n_t(2),n(3)/n_t(3)]; % setting number of ...

blocks and threads
32 end
33 elseif dim == 2
34 %% 2D
35 if max(n) < sqrt(gpu_device.MaxThreadsPerBlock) % when the number of ...

calculation in each direction is smaller than the maximum threas per ...
block

36 n_t = [n(1),n(2),1]; % size of threads is ...
equal to number of calculcaltion

37 n_b = [1,1,1]; % block size is set ...
to 1

38 else
39 for i =1:2
40 n_t(i) = sqrt(gpu_device.MaxThreadsPerBlock); % max number of ...

threads in 2D case
41 while mod(n(i),n_t(i)) 6=0 % are the number of ...

calculation dividable by the number of threads

69

CUDA soure code

42 n_t(i) = n_t(i)/2; % update number of ...
theads

43 if n_t(i) < 1 % not possible
44 return;
45 end
46 end
47 end
48 n_t = [n_t(1),n_t(2),1]; % setting number of ...

threads
49 n_b = [n(1)/n_t(1),n(2)/n_t(2),1]; % setting number of ...

blocks
50 end
51 else
52 %% 1D
53 if n <gpu_device.MaxThreadBlockSize(1) % when the number of ...

calculation in each direction is smaller than the maximum threas per ...
block

54 n_t = [n,1,1]; % size of threads is equal ...
to number of calculcaltion

55 n_b = [1,1,1]; % block size is set ...
to 1

56 else
57 if mod(n,32) == 0 % take warp into account
58 n_t = [32,1,1];
59 n_b =[n/32,1,1];
60 else
61 n_t = [1,1,1]; % last resort
62 n_b = [n,1,1];
63 end
64 end
65 end
66 end

70

The addition images of the multivariate interpolation validation

D The addition images of the multivariate interpolation validation

The images of the other derivatives of the comparison which included all the re�ned points.

10 20 30 40 50 60 70 80 90 100
Slice [-]

10-1

100

101

102

df
/d

y
[-

]

Avg e of y-z slice
Max e of y-z slice
Avg e of x-z slice
Max e of x-z slice
Avg e of x-y slice
Max e of x-y slice

10 20 30 40 50 60 70 80 90 100
Slice [-]

10-1

100

101

102

df
/d

z
[-

]

Figure D.1: The absolute di�erence between the �rst derivatives of MATLAB and proposed interpolation visu-
alized by a mean error and the maximum error of a slice. The maximum values of the functions
df/dy and df/dz are ±20 which results in a �oating point precision of 1.191e− 7.

10 20 30 40 50 60 70 80 90 100
Slice [-]

100

102

d2 f/d
yd

y
[m

-1
]

10 20 30 40 50 60 70 80 90 100
Slice [-]

100

102

d2 f/d
yd

z
[m

-1
]

Avg e of y-z slice
Max e of y-z slice
Avg e of x-z slice
Max e of x-z slice
Avg e of x-y slice
Max e of x-y slice

Figure D.2: The absolute di�erence between the second derivatives of MATLAB and proposed interpolation vi-
sualized by a mean error and the maximum error of a slice. The maximum values of the second
derivatives are ±900 which results in a �oating point precision of 6.1e− 5.

71

The addition images of the multivariate interpolation validation

10 20 30 40 50 60 70 80 90 100
Slice [-]

100

102

d2 f/d
yd

y
[m

-1
]

10 20 30 40 50 60 70 80 90 100
Slice [-]

100

102

d2 f/d
yd

z
[m

-1
]

Avg e of y-z slice
Max e of y-z slice
Avg e of x-z slice
Max e of x-z slice
Avg e of x-y slice
Max e of x-y slice

Figure D.3: The absolute di�erence between the second derivatives of MATLAB and proposed interpolation vi-
sualized by a mean error and the maximum error of a slice. The maximum values of the second
derivatives are ±900 which results in a �oating point precision of 6.1e− 5.

The images of the other derivatives of the comparison which neglected the 14 re�ned grid points close
the the boundaries.

20 30 40 50 60 70 80
Slice [-]

10-5

10-4

10-3

10-2

df
/d

y
[-

]

Avg e of y-z slice
Max e of y-z slice
Avg e of x-z slice
Max e of x-z slice
Avg e of x-y slice
Max e of x-y slice

20 30 40 50 60 70 80
Slice [-]

10-5

10-4

10-3

10-2

df
/d

z
[-

]

Figure D.4: The absolute di�erence between the �rst derivatives of MATLAB and proposed interpolation visu-
alized by a mean error and the maximum error of a slice. The maximum values of the functions
df/dy and df/dz are ±20 which results in a �oating point precision of 1.191e− 7.

72

The addition images of the multivariate interpolation validation

20 30 40 50 60 70 80
Slice [-]

10-4

10-2

d2 f/d
yd

y
[m

-1
]

20 30 40 50 60 70 80
Slice [-]

10-4

10-2

d2 f/d
yd

z
[m

-1
]

Avg e of y-z slice
Max e of y-z slice
Avg e of x-z slice
Max e of x-z slice
Avg e of x-y slice
Max e of x-y slice

Figure D.5: The absolute di�erence between the second derivatives of MATLAB and proposed interpolation vi-
sualized by a mean error and the maximum error of a slice. The maximum values of the second
derivatives are ±900 which results in a �oating point precision of 6.1e− 5.

20 30 40 50 60 70 80
Slice [-]

10-4

10-2

d2 f/d
yd

y
[m

-1
]

20 30 40 50 60 70 80
Slice [-]

10-4

10-2

d2 f/d
yd

z
[m

-1
]

Avg e of y-z slice
Max e of y-z slice
Avg e of x-z slice
Max e of x-z slice
Avg e of x-y slice
Max e of x-y slice

Figure D.6: The absolute di�erence between the second derivatives of MATLAB and proposed interpolation vi-
sualized by a mean error and the maximum error of a slice. The maximum values of the second
derivatives are ±900 which results in a �oating point precision of 6.1e− 5.

The images of the other derivatives of the comparison which neglected the 20 re�ned grid points close
the the boundaries.

73

The addition images of the multivariate interpolation validation

25 30 35 40 45 50 55 60 65 70 75 80
Slice [-]

10-6

10-5

10-4

10-3

df
/d

y
[-

]

Avg e of y-z slice
Max e of y-z slice
Avg e of x-z slice
Max e of x-z slice
Avg e of x-y slice
Max e of x-y slice

25 30 35 40 45 50 55 60 65 70 75 80
Slice [-]

10-6

10-5

10-4

10-3

df
/d

z
[-

]

Figure D.7: The absolute di�erence between the �rst derivatives of MATLAB and proposed interpolation visu-
alized by a mean error and the maximum error of a slice. The maximum values of the functions
df/dy and df/dz are ±20 which results in a �oating point precision of 1.191e− 7.

25 30 35 40 45 50 55 60 65 70 75 80
Slice [-]

10-4

d2 f/d
yd

y
[m

-1
]

25 30 35 40 45 50 55 60 65 70 75 80
Slice [-]

10-4

d2 f/d
yd

z
[m

-1
]

Avg e of y-z slice
Max e of y-z slice
Avg e of x-z slice
Max e of x-z slice
Avg e of x-y slice
Max e of x-y slice

Figure D.8: The absolute di�erence between the second derivatives of MATLAB and proposed interpolation vi-
sualized by a mean error and the maximum error of a slice. The maximum values of the second
derivatives are ±900 which results in a �oating point precision of 6.1e− 5.

74

The addition images of the multivariate interpolation validation

25 30 35 40 45 50 55 60 65 70 75 80
Slice [-]

10-4

d2 f/d
yd

y
[m

-1
]

25 30 35 40 45 50 55 60 65 70 75 80
Slice [-]

10-4

d2 f/d
yd

z
[m

-1
]

Avg e of y-z slice
Max e of y-z slice
Avg e of x-z slice
Max e of x-z slice
Avg e of x-y slice
Max e of x-y slice

Figure D.9: The absolute di�erence between the second derivatives of MATLAB and proposed interpolation vi-
sualized by a mean error and the maximum error of a slice. The maximum values of the second
derivatives are ±900 which results in a �oating point precision of 6.1e− 5.

75

Signed Distance Field of an edge

E Signed Distance Field of an edge

The Signed Distance Field (SDF) of the edge case can not be calculated using a single formula. Lets
de�ne the edge to be in z-direction and can be neglected in the SDF. Therefore, the SDF can be written
as multiple functions in x− and y−direction. To calculate the SDF, the 2D space is divided into three
di�erent subspace which together describe the entire space. Figure E.1 shows the zero-level set of an
edge together with the three di�erent subspaces.

-5 0 5

x-axis [m]

-5

-4

-3

-2

-1

0

1

2

3

4

5

y
-a

x
is

 [
m

]

Zero-level set

Boundary of subspacesI

II

III

Figure E.1: The zero-level set of an edge and the three subspaces.

The �rst subspace describes the distance between the rounded part of the edge. In the Figure E.1
indicated as I. A point is within this subspace when

x ≤ xc and y ≥ yc, (E.1)

where x and y is the position and xc and yc is the center of the edge. The center of the edge is given in
Figure E.1 as a red circle. The SDF in this subspace can be calculated with the following equation

SDFI =

√
(x− xc)2 + (y − yc)2 − re, (E.2)

where re is the radius of the edge. The second space is the subspace with the horizontal surface of the
edge. In the Figure E.1 indicated as II. The boundaries of this subspace is �ned as

x > xc and y > yc − (x− xc) (E.3)

All the distances of this subspace can be calculated with the following equation

SDFII = y − yc − re. (E.4)

All the other points are in the last subspace, in Figure E.1 indicated with III. The distance to the vertical
surface to these points are given by the following formula

SDFIII = xc − x− r. (E.5)

These equation and subspaces result in a SDF for the entire 2D space. Figure E.2 shows an example of
the SDF as a function of the position in space. If the edge is in z-direction, the SDF is the same for each
position in z−direction.

76

Signed Distance Field of an edge

Figure E.2: The SDF of the edge.

77

Parameters of dPRONTO algorithm

F Parameters of dPRONTO algorithm

The values of the dPROTNO parameters for simulations are given in Table F.1. The values of the
dPROTNO parameters for the KinectFusion data are given in Table F.2.

Parameter Value

Qn h−2diag([10, 1, 10, 1, 10, 10])

tf 5s

R h−210−2I

N 100

AbsTol 1e−1

δstep 0.1

δ0 0.1

α .4

β 0.3

εstep 0.1

ε0 0.1

εmin 1e−3

Table F.1: The parameters for the dPRONTO algorithm for the simulations.

Parameter Value

Qn h−2diag([100, 10, 100, 10, 100, 10])

tf 5s

R h−210−1I

N 100

AbsTol 1e−1

δstep 0.1

δ0 0.01

α .4

β 0.3

εstep 0.1

ε0 0.1

εmin 1e−3

Table F.2: The parameters for the dPRONTO algorithm for the KinFu data.

78

	Introduction
	Robot motion planning
	Environment descriptions
	Research challenges
	Research objective and methodology
	Contribution
	Report outline

	Mathematical preliminaries and background material
	Implicit representation
	KinectFusion
	Background of interpolation methods
	One Dimensional interpolation
	Comparing basic multivariate interpolations
	Multivariate cubic b-spline
	Fast multivariate interpolation
	Summary

	Newton's method
	Convergence rate
	Convergence rate of an approximated function
	Terminal condition
	Backtracking line search

	Summary

	Proposing a fast interpolation method for optimal motion planning
	Digital filter vs tridiagonal interpolation
	The implementation of the proposed interpolation method
	Verification of the proposed interpolation method
	One dimensional CUDA interpolation
	Multivariate CUDA interpolation

	Zero level set interpolation error as function of the radius to grid size ratio
	Summary

	Numerical experiments
	Calculation time of the different interpolation methods
	Optimal motion planning with collision constraints from point cloud data
	OMP based on interpolated TSDF
	OMP based on KinectFusion data

	Summary

	Conclusions and recommendations
	Conclusions
	Recommendations

	B-splines is a special case of piecewise polynomial
	Convergence rate Newton's Method
	CUDA soure code
	1D interpolation
	Interpolate 3D grid in x-direction
	Interpolate 3D grid in y-direction
	Interpolate 3D grid in z-direction
	Function which calculates the number of threads and blocks

	The addition images of the multivariate interpolation validation
	Signed Distance Field of an edge
	Parameters of dPRONTO algorithm

