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0960958

DC 2022.020

Supervisors:
dr.ir. P.W.A. Zegelaar

dr.ir. T.P.J. van der Sande
prof.dr. H. Nijmeijer

Eindhoven, March 25, 2022





Development of an Automated Emergency Braking System for a Renault Twizy iii





Abstract

In this research an Automated Emergency Braking (AEB) system is developed for the Renault
Twizy used in the i-CAVE research program. The AEB system should be able to avoid a collision
or at least minimize the impact velocity in case a collision threat is detected. The AEB system is
implemented in a simulation environment, which includes a model of the modified brake system of
the Renault Twizy. The performance of the AEB system is evaluated via simulations for different
driving scenarios.

The absolute motion of a detected object is required to determine if the object is relevant for the
AEB system and present in the driving path of the host vehicle, and to determine the threat level
of the current traffic situation. The absolute motion of the object is estimated from the available
sensor measurements using a linear discrete-time Kalman filter. The motion model used in the
Kalman filter is the constant acceleration model, which normally describes the relative motion
between the object and the host vehicle. However, in this research, the motion model is slightly
adapted, since the absolute motion of the object is required. As the radar sensor on the host
vehicle has a lower sampling rate than the AEB controller, the state estimates are only updated
in case a new measurement becomes available.

To determine if a detected object is relevant for the AEB system, first the paths of both the host
vehicle and the object are predicted. The position of the object is predicted by making a n-step
a-priori prediction using the last available state estimates from the Kalman filter, and the position
of the host vehicle is predicted directly from the available sensor measurements. A new method
is proposed where uncertainty ellipses around the predicted positions of both the host vehicle and
the object are used to determine if the object is present in the driving path of the host vehicle
and relevant for the AEB system.

After determining if a detected object is relevant and present in the driving path of the host vehicle,
the AEB controller uses a risk metric called the Brake-Threat-Number (BTN) to determine if a
brake intervention is required, which is a measure of the threat level and indicates the effort that is
required to avoid a collision with the object. The BTN is defined as the required host acceleration
to avoid a collision divided by the minimal achievable host acceleration. To compensate for the
response delay of the brake system, the threat level is determined using the predicted future
motions of the host vehicle and the object. When activated, the AEB system can operate in four
different operating modes, being Forward Collision Warning (FCW), pre-charging of the brakes,
partial braking and full braking.
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Chapter 1

Introduction

According to the World Health Organization road traffic accidents are currently estimated to be
the 8th leading cause of death globally for all age groups [1]. Every year approximately 1.3 mil-
lion people die from road traffic accidents, and between 20 and 50 million people suffer non-fatal
injuries. Furthermore, more than half of those killed are vulnerable road users, which include
pedestrians, cyclists and motorcyclists. The main cause of road traffic accidents is human error,
which accounts for approximately 95% of all road traffic accidents [2]. Examples of human error
are distracted driving, driving under the influence of alcohol or other psychoactive substances,
speeding, and non-use of seat-belts, child restraints and motorcycle helmets [1]. Using Advanced
Driver Assistance Systems (ADAS) on vehicles improves road safety and reduces the number of
accidents significantly [3]. According to the European Transport Safety Council, the number of
road deaths in the European Union has decreased by 36% between 2010 and 2020, which is par-
tially caused by the improvement of safety features and the application of ADAS on vehicles [4].
To further increase the EU’s road safety, the European Parliament and the Council of the EU have
decided to make several ADAS mandatory in new models from June 2022 and in all new vehicles
from June 2024. Among these mandatory systems are Intelligent Speed Assistance (ISA) and
Automated Emergency Braking (AEB) [3]. Every ADAS contributes to the driving automation
of a vehicle on a different level. The Society of Automotive Engineers (SAE) has defined six levels
of driving automation, ranging from no automation (level 0) to full automation (level 5), where
the automation levels 0-2 are classified as driver support features and the automation levels 3-5
are classified as automated driving features [5].

A large number of road traffic accidents are rear-end collisions, which are collisions between two
vehicles driving in the same direction [6]. These kind of accidents are often caused by driver in-
attention or distraction, which could for example happen when a leading vehicle suddenly brakes
and the distracted driver of the following vehicle fails to react in time to avoid a collision. One
type of ADAS, which can significantly reduce the number of rear-end collisions or at least mitigate
their severity, is an Automated Emergency Braking (AEB) system. Research shows a reduction
of at least 38% in rear-end collisions for vehicles equipped with an AEB system compared to
similar vehicles without an AEB system [7][8]. An AEB system is defined by UNECE regulation
No. 131 [9] as ”a system which can automatically detect a potential forward collision and activate
the vehicle braking system to decelerate the vehicle with the purpose of avoiding or mitigating a
collision”. Since an AEB system only provides momentary assistance to the driver in case of an
emergency, this type of ADAS belongs to level 0 of driving automation [5]. The European New
Car Assessment Programme (Euro NCAP), which is a European non-profit car safety performance
assessment program, distinguishes between AEB Car-to-Car systems and AEB Vulnerable Road
User (VRU) systems [10]. Especially for AEB VRU systems, determining if a road user is present
in the driving path of the vehicle is important, since a brake intervention by the AEB system
should only be initiated if a possible collision is detected [11].
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CHAPTER 1. INTRODUCTION

To address automated driving, the i-CAVE (Integrated Cooperative Automated Vehicles) research
program has been set up, which is a collaboration of multiple universities and automotive com-
panies in the Netherlands that is designing and researching a Cooperative Dual Mode Automated
Transport (C-DMAT) system [12]. This system consists of dual mode vehicles, which can be driven
both autonomously and manually to improve user acceptance and flexibility. The i-CAVE research
program consists of multiple project groups, where each group has a different specialization. This
project is part of the second project group, which has as goal to develop controllers for cooperat-
ive and automated vehicles [13]. The vehicle used in the i-CAVE research program is a Renault
Twizy, which has very limited safety features. The vehicle is not equipped with any active safety
systems and is only equipped with passive safety systems such as a frontal airbag and a seat belt
for the driver. Therefore, when testing developed controllers and systems on the Renault Twizy,
the risks for both the driver and the test environment are high. The goal of this graduation project
is to develop an Automated Emergency Braking (AEB) system, which functions for both AEB
Car-to-Car and AEB Vulnerable Road User scenarios, and that can eventually be implemented
on the Renault Twizy to improve its safety. In this research, the Renault Twizy will be called
the host vehicle and the vehicle or vulnerable road user present in front of the host vehicle will be
called the object (or target vehicle).

1.1 Research objectives

The main objective of this research is defined as follows:

Develop an Automated Emergency Braking (AEB) system for the Renault Twizy used in the
i-CAVE research program.

To achieve the main-objective of this research, the following sub-objectives are defined:

1. Develop a state estimator to estimate the motion of a detected object from radar sensor
measurements and measurements of the Renault Twizy’s own motion.

2. Determine if a detected object is relevant for the AEB system and present in the driving
path of the Renault Twizy. To this end, the paths of both the Renault Twizy and the object
need to be predicted, where the uncertainty of the predicted motion resulting from sensor
noise and model uncertainty needs to be taken into account.

3. Estimate the threat level of the current traffic situation, which indicates the probability of a
collision with an object in front of the Renault Twizy. Furthermore, develop a controller in
the form of a finite state machine, which uses the estimated threat level to determine which
system response should be initiated.

1.2 Report outline

First, in Chapter 2, a literature review on the various components of an AEB system will be given.
Thereafter, in Chapter 3, the host vehicle will be described, as well as the simulation framework,
the driving scenarios and the simulation parameters used throughout this research. In Chapter 4,
the state estimator is discussed, which is used to estimate the motion of a detected object from
radar sensor measurements and measurements of the host vehicle’s own motion. Furthermore,
this chapter discusses the methods used to predict the paths of the detected object and the host
vehicle. Next, in Chapter 5, the method used to determine if a detected object is relevant for
the AEB system will be explained. Thereafter, the method used to predict the future motion of
the host vehicle and the object will be explained together with the measure used to describe the
threat level of the current traffic situation. Besides, the developed controller in the form of a finite
state machine will be discussed. In Chapter 6, the AEB system will be tested for different driving
scenarios to evaluate the performance of the system. Finally, the conclusions and recommendations
will be given in Chapter 7.
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Chapter 2

Literature review

An AEB system enables the host vehicle to brake autonomously, once a collision threat is detected,
or will provide emergency braking assistance if the driver does not brake sufficiently to avoid a
collision. To explain the workings of an AEB system, the standard architecture of an Advanced
Driver Assistance System (ADAS) as given in Figure 2.1 is used [6].

Figure 2.1: Standard architecture of an Advanced Driver Assistance System (ADAS) [6].

The first layer is the sensor layer, which for an AEB system includes sensors measuring the host
vehicle’s own motion as well as environmental sensors used to detect and measure the motion of
objects in front of the host vehicle. The environmental sensors frequently used by AEB systems
are radar sensors, mono and stereo cameras, and lidar sensors. Often multiple environmental
sensors are combined, which results in more accurate measurements, since the strengths of the
individual sensors complement each other. Furthermore, it improves the reliability of the AEB
system, since erroneous measurements of a sensor can be detected, and undesired responses of the
AEB system can be prevented. It is, however, also possible to realize an AEB system using a
single environmental sensor [6].

Then, in the second layer, which is the sensor-data fusion layer, the measurements of all sensors
are combined to create a model of the host vehicle’s surroundings. The environmental sensors
measure the relative motion between an object and the host vehicle. However, an AEB system
requires the absolute motion of an object. By combining the measurements of the environmental
sensors together with the measurements of the host vehicle’s own motion, the absolute motion
of an object can be estimated. This is often done using a state estimator, such as a Kalman
filter. Furthermore, depending on the available sensors, also the size and type of an object can
be obtained, which can be used to evaluate the threat level of the traffic situation [6]. Crossing
pedestrians or bicyclists are often assumed to move with a constant velocity, whereas the target
vehicle in Car-to-Car scenarios is often assumed to move with a constant acceleration [14][15].

Next, in the third layer being the situation analysis layer, the motion of both the host vehicle
and the object are predicted into the future, which involves making assumptions. Since the pre-
diction horizons required for AEB systems are short, the prediction errors are relatively small.
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The predicted future motions are used to estimate the threat level of the current traffic situation,
which indicates the probability of a collision with an object in front of the host vehicle. Different
measures exist to describe the threat level [6]. Moreover, determining if an object is relevant for
the AEB system is important, since a brake intervention should only be initiated if the object is
present in the driving path of the host vehicle.

In the fourth layer, which is the control layer, the estimated threat level is used to determine an
appropriate action. AEB systems often use a finite state machine as a controller, which compares
the estimated threat level with thresholds to determine which system response should be initiated.
Furthermore, conditions are checked by the controller to determine if the driver is active and not
distracted, in which case a response of the AEB system is not allowed. If the driver fails to react
properly, the controller runs through a cascade of system responses. Typical system responses in
AEB systems are a Forward Collision Warning (FCW) to alert the driver of a possible collision,
pre-charging the brakes such that a subsequent brake intervention can be carried out quicker, par-
tial braking to slightly reduce the velocity of the host vehicle, and full braking to avoid a collision
or at least minimize the impact velocity [6].

Finally, depending on the current system response, the corresponding actuators and human-
machine interface are activated. For AEB systems the brake system of the host vehicle is relevant
to allow automated braking as well as the motor control unit to release the throttle once a brake
intervention is initiated.

The focus of this research is defined by the research objectives given in Section 1.1. Before being
able to reach these objectives, a literature review on the various components of an AEB system will
be given in this chapter. First, the different possible state estimation methods used to estimate the
motion of a detected object from the available sensor measurements will be discussed. Thereafter,
the methods often used to predict the paths of the host vehicle and the object will be discussed,
as well as the methods used to determine if an object is relevant. Then, the available methods
used to estimate the threat level of the current traffic situation will be given. Next, the state of
the art on AEB system will be described. Finally, the performance rating for an AEB system will
be discussed.

2.1 State estimation

An AEB system requires the absolute motion of an object, which can be estimated from the
available sensor measurements using a state estimator. Various types of state estimators exist, of
which the Kalman filter is the most widely used state estimator in object tracking applications [16].
Given a linear model of the system dynamics and the measurements, a (discrete-time) Kalman
filter can be used to estimate the states described by the state vector xk using the available noisy
measurements included in the measurement vector y

k
, when assuming that both the process noise

and measurement noise are zero-mean, white and uncorrelated noise processes with covariance
matrices Qk and Rk respectively. A Kalman filter is a recursive filter, since the estimated states
are only based on the last estimate and the last set of measurements. In general, a Kalman filter
has two phases, namely a prediction phase and a measurement update phase. In the prediction
phase, the states are estimated using the last state estimates together with a linear model of the
system dynamics. Then, in the measurement update phase, the predicted state estimates are
updated with the measurements y

k
using a linear measurement model. For linear systems with

Gaussian noise, the Kalman filter is the optimal state estimator [17].

A Kalman filter uses a linear model of the system dynamics. However, in reality the motion of
an object is often nonlinear due to its turning behaviour as described by the yaw rate. Therefore,
in reality, the system dynamics and/or the measurement model is frequently nonlinear, and using
a Kalman filter could result in erroneous state estimates. For nonlinear systems, the Extended

4 Development of an Automated Emergency Braking System for a Renault Twizy



CHAPTER 2. LITERATURE REVIEW

Kalman Filter (EKF) or the Unscented Kalman Filter (UKF) can be used [18]. The EKF is the
most widely used state estimator for nonlinear systems. Similar to the Kalman filter, the EKF
has two phases, being the prediction phase and the measurement update phase. However, when
using an EKF, the system dynamics and the measurement model are linearized by evaluating the
Jacobians of the system dynamics model and the measurement model around the Kalman filter
estimate [17]. In contrast to the Kalman filter, the EKF is not an optimal state estimator and
there is no guarantee that the EKF works properly [16]. Furthermore, tuning of the EKF can
be difficult and when considering a highly nonlinear system, the EKF will give unreliable state
estimates [17].

Compared with the EKF, an Unscented Kalman Filter (UKF) can improve the estimation per-
formance for nonlinear systems, while having similar computational cost as an EKF [19]. An
UKF is an extension of the Kalman filter, which reduces the linearization errors of the EKF. As
mentioned before, an EKF requires the computation of Jacobians, whereas an UKF does not use
Jacobians. For some systems, it is numerically difficult to compute Jacobians. The UKF uses a
deterministic sampling technique, called the unscented transformation, to select a minimal set of
points around the mean, which are called sigma points. Compared to the EKF, the UKF has one
additional phase, being the calculation of these sigma points [17].

For linear systems with Gaussian noise, the Kalman filter is the optimal state estimator. However,
for nonlinear systems with non-Gaussian noise, another state estimator might outperform the
Kalman filter. One option is the Particle Filter (PF), which is a probability-based and completely
nonlinear state estimator. Despite its high performance, a large disadvantage of using a PF is
an increased level of computational effort [17]. A PF determines an approximate solution to the
sequential estimation, where the required posterior density function is given by a set of weighted
random samples (also called particles). The magnitudes of weights associated with each particle
is used to estimate the states [18]. For nonlinear systems, the UKF can provide a balance between
the high performance of a PF and the low computational cost of a Kalman filter [17].

2.2 Path prediction and object relevance

A state estimator is always based on a model describing the dynamics. In case of object tracking
applications this is a motion model describing how the motion of the object and/or the host vehicle
is expected to evolve over time [20]. An advantage of using motion models is the ability to predict
the future position of the object and/or the host vehicle, which can be used to predict their paths
[21]. Once the predicted paths are known, a possible collision between the host vehicle and the
object can be found and a brake intervention by the AEB system can be initiated if necessary.
When using a discrete-time Kalman filter as a state estimator, the future position can be obtained
by making a n-step a-priori prediction, which basically comes down to iterating the prediction
phase of the Kalman filter n times to obtain the predicted position ahead of the available meas-
urements [17][22]. Here, n is the prediction horizon in samples. The larger the prediction horizon
n, the larger the uncertainty of the predicted position will be. Since the prediction horizon n is
fixed, this type of prediction is also called a fixed-lead prediction. Other types of prediction are a
fixed-point prediction and a fixed-interval prediction [16].

Different motion models exist for tracking applications, which are distinguished from each other
by having different levels of complexity. The motion models range from simple kinematic models,
where the object is assumed to be a freely moving point mass, to more sophisticated models like
a single-track vehicle model. The most suitable motion model depends on the scenario to be con-
sidered and the assumptions that are made [21]. However, most motion models used for object
tracking are simple kinematic models [20]. Often it is not possible to measure the states of the
object required by complex motion models with the sensors available on the host vehicle, such as
the lateral acceleration or the yaw rate of the object [21].
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The kinematic motion models can be subdivided into linear motion models and curvilinear (nonlin-
ear) motion models. In linear motion models, the object is assumed to move straight and rotations
around the vehicle’s z-axis are not taken into account. Two commonly used linear motion models
are the constant velocity model and the constant acceleration model [21]. When using these mo-
tion models, the movement of an object is assumed to be uncoupled across the different coordinate
directions [20]. On the other side, curvilinear motion models also take rotations around the z-axis
into account. Two commonly used curvilinear motion models are the Constant Turn Rate and
Velocity model and the Constant Turn Rate and Acceleration model [21]. In both of these curvi-
linear motion models, it is assumed that there is no relation between the velocity and the yaw rate
of the vehicle. However, when this relation and the nonholonomic constraints to which a vehicle is
subjected need to be considered, a single-track vehicle model can be used [23]. To track the motion
of crossing pedestrians or bicyclists often the constant velocity model is used, whereas for the tar-
get vehicle in Car-to-Car scenarios the constant acceleration model is used more frequently [14][15].

When using a recursive filter like a Kalman filter, the future position of the object and/or the host
vehicle can be predicted by making a n-step a-priori prediction based on a chosen motion model.
The predicted position is uncertain due to the model uncertainty of the chosen motion model
and the measurement uncertainty of the available sensor measurements. When using a Kalman
filter, the level of uncertainty on the predicted position can be estimated from the predicted state
estimation covariance. In [24], the levels of uncertainty on the predicted positions of both the
host vehicle and the object are used to draw uncertainty ellipses around the predicted positions.
Here, an elliptic shape is chosen due to the probabilistic uncertainty model. A collision between
the host vehicle and the object is found if their corresponding uncertainty ellipses intersect for a
certain prediction horizon n.

One issue when predicting a path by solely using a motion model is the model uncertainty, since it
is not exactly known how the object/host vehicle will move in the future [6]. In literature several
other methods are proposed for path prediction, which are suitable for short term prediction, long
term prediction or both. In [25], a path prediction method is proposed which uses a Constant
Turn Rate and Acceleration motion model in combination with maneuver recognition. The pro-
posed Maneuver Recognition Module is able to select the current maneuver from a predefined
set of maneuvers by comparing a local curvilinear model of the path of the vehicle with the cen-
ter lines of the road’s lanes. The predicted path based on the motion model is very accurate in
the short term, whereas the predicted path based on the maneuver recognition is more accurate
for larger prediction horizons. Similarly, in [26], an interactive multiple model trajectory predic-
tion (IMMTP) method is proposed that combines a physics-based path prediction method with a
maneuver-based path prediction method. Again, the physics-based path prediction method is very
accurate for short term predictions, whereas the maneuver-based prediction approach improves
accuracy of the predicted path in the long term. In [27], a set of paths is predefined for different
maneuvers and a Hidden Markov Model is used to determine the most probable path of an object
in the short term based on the current measurements. In [28], an efficient vehicle path prediction
framework is proposed based on recurrent neural network called long short-term memory (LSTM)
that analyzes the temporal behaviour and predicts the future positions of surrounding vehicles.
Then, in [29], several recursive Bayesian filters for pedestrian path prediction at short time hori-
zons are compared. These include EKFs based on a single motion model and Interacting Multiple
Models (IMM) where multiple motion models are combined. Finally, in [30], a novel approach for
path prediction is proposed which is able to predict the vehicle’s path several seconds in advance.
Here, a joint probability distribution is inferred as motion model, which uses previously observed
motion patterns. The distribution is then used to predict the path by calculating the probability
for the future motion, while taking into account the previously observed motion patterns. The
uncertainty of the predicted path can be examined by evaluating the variance and can be depicted
by covariance ellipses around the predicted positions.
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2.3 Threat assessment

After determining if an object is relevant and present in the driving path of the host vehicle, the
threat level of the current traffic situation needs to be estimated, which is used to decide if a brake
intervention by the AEB system is required. The threat level is a measure, which indicates the
probability of a collision with an object in front of the host vehicle. The estimated threat level is
compared with predefined thresholds by the AEB controller to determine which system response
should be initiated. Different measures exist to describe the threat level and they are often related
to an estimation of time. One possible measure is the time to steer (TTS), which is the remaining
time till the last possible moment at which the driver can still avoid a collision by performing a
steering maneuver [6]. Another option is the time to brake (TTB) defined as the remaining time
the driver has to still avoid a collision by performing a braking maneuver [31]. The threat becomes
more critical, when the TTS and TTB become smaller [6].

Another measure often used in AEB systems is the time to collision (TTC), which is defined as
the time needed for two vehicles (or objects) to collide if they continue at their present speed and
on the same path. The larger the TTC, the lower the risk of a collision. In literature, the TTC has
proven to be an effective measure to describe the threat level of the current traffic situation [32].
The calculation of the TTC depends on the chosen motion model, which describes how the motion
of the object and the host vehicle is expected to evolve over time. In [15], the TTC is calculated
using either the constant velocity model or the constant acceleration model. For AEB systems
designed for AEB Vulnerable Road User scenarios, the TTC can be combined with the time to
vehicle (TTV). The TTV is the time needed by a crossing vulnerable road user to reach the driving
path of the host vehicle and therefore depends on the lateral velocity the vulnerable road user [14].

Some AEB systems use a measure to describe the threat level related to the acceleration required
to avoid a collision. An example of such a measure is the Brake Threat Number (BTN), which
is defined as the required acceleration of the host vehicle needed to avoid a collision divided by
the minimal achievable host vehicle acceleration [33]. In practice, the BTN ranges from 0 to 1,
since a BTN larger than 1 indicates a collision with the object cannot be avoided by braking the
vehicle due to the physical limitations of the brake system. In [33], a threat assessment algorithm
is proposed which uses both the time to brake (TTB) and the Brake Threat Number (BTN) based
on an enhanced model including road information to predict the braking behavior of the target
vehicle. The resulting algorithm is called the Consistent Threat Assessment for Longitudinal Mo-
tion Algorithm (CTALMA), and the obtained results show a good and consistent assessment of
the threat level for several test examples.

2.4 State of the art on AEB systems

In conventional AEB systems, it is assumed that the host vehicle is driving on a flat road surface
with a constant tire-road friction coefficient. Furthermore, these AEB systems do not monitor the
driver’s intention before initiating a warning or a brake intervention. In literature several exten-
sions are proposed to improve conventional AEB systems. In [34], an AEB system adaptive to the
tire-road friction is proposed, which could be useful when for example driving on a snowy road.
On snowy roads this adaptive AEB system starts to brake earlier compared to a conventional AEB
system. It was proven that in conditions of reduced friction, drivers feel safer and have more trust
in the adaptive AEB system than the conventional one. Furthermore, an AEB system adaptive
to the tire-road friction could significantly improve collision prevention in winter conditions com-
pared to conventional AEB systems. In [35], an AEB control algorithm is proposed which also
takes into account the effects of road friction and in addition the road gradient. Depending on
the current road conditions and the corresponding maximum deceleration, their AEB activation
control determines the minimal required braking distance with margin parameters. Then, the
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deceleration controller with a feedforward term makes sure a collision is avoided by controlling the
acceleration of the vehicle. The proposed AEB system turns out to be very effective on a sloped
low friction road and avoids collisions, whereas under similar circumstances using the conventional
AEB system resulted in a collision in several cases. In [36], a driver intention detection algorithm
for AEB systems is developed. Conventional AEB systems warn the driver and take over the
vehicle control when a frontal collision risk is detected. However, by monitoring the driver’s in-
tention before initiating an automated brake intervention, driver’s annoyance can be avoided and
the number of warnings can be reduced when the driver is aware of its surroundings. This could
especially be beneficial for AEB systems designed for AEB Vulnerable Road User scenarios in
urban environments, where pedestrians enter the path of the host vehicle frequently.

2.5 AEB system performance rating

The decisions made by an AEB system are based on the estimated states, the predicted paths and
the estimated threat level of the current traffic situation. All of them are associated with some
uncertainty, which means the AEB system bases its decisions on uncertain parameters. Therefore,
the challenge in designing an AEB system is to find a balance between the effectiveness of avoiding
collisions and the risk of false alarms [37]. A trade-off needs to be made between reducing the
number of false positives or the number of false negatives. A false positive means an unnecessary
brake intervention or warning is initiated by the AEB system. On the other hand, a false negative
means a brake intervention or a warning should be initiated by the AEB system, but the system
does not react [34]. If there is a low tolerance for false alarms, then the number of false positives
should be minimized. This is the case when it is desired to prevent driver’s annoyance and con-
sequently a possible deactivation of the AEB system. However, if it is desired to maximize safety
and a collision should be avoided at all times even if there is only a slight collision risk, then the
number of false negatives should be minimized [37]. Currently, all AEB systems in production are
tuned such that the number of false positives is minimized [34]. False negatives are not priorit-
ized since an AEB system is considered to be a driver assistance system, which means the driver
remains responsible for paying attention to the road and keeping a safe distance to other road
users. For all AEB systems the number of true positives and true negatives should be as large as
possible. A true positive means a brake intervention or warning is initiated by the AEB system
and the decision is correct. A true negative means no brake intervention or warning is initiated by
the AEB system and the decision is correct. An overview of the performance rating for an AEB
system is given in Figure 2.2.

Figure 2.2: Performance rating for an AEB system.
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2.6 Summary

In this chapter a literature review is given on the various components of an AEB system. In
general, an Advanced Driver Assistance System (ADAS), such as an AEB system, consists of five
layers. These layers are the sensor layer, the sensor-data fusion layer, the situation analysis layer,
the control layer and the layer including the actuators and the human-machine interface.

Different state estimation methods can be used to estimate the motion of a detected object from
the available sensor measurements. For linear systems with Gaussian noise, the Kalman filter is
the optimal state estimator. For nonlinear systems, the Extended Kalman Filter (EKF) or the
Unscented Kalma! Filter (UKF) can be used. However, in contrast to the Kalman filter, the EKF
and the UKF are not optimal and there is no guarantee that they work properly.

A brake intervention by the AEB system should only be initiated if the object is present in the
driving path of the host vehicle. The paths of both the host vehicle and the object can be predicted
using a motion model. Two commonly used linear motion models are the constant velocity model
and the constant acceleration model. Two commonly used curvilinear motion models are the Con-
stant Turn Rate and Velocity model and the Constant Turn Rate and Acceleration model. When
using a recursive filter like a discrete-time Kalman filter, the future position of the object and/or
the host vehicle can be predicted by making a n-step a-priori prediction based on a chosen motion
model. One issue when predicting a path by solely using a motion model is the model uncertainty,
since it is not exactly known how the object/host vehicle will move in the future. Therefore, for
long term path prediction, a motion model is often combined with maneuver recognition.

Several methods exist to estimate the treat level of the current traffic situation. The threat level is
a measure, which indicates the probability of a collision with an object in front of the host vehicle.
Often these measures are related to an estimation of time, such as the time to steer (TTS), the
time to brake (TTB), the time to collision (TTC), and the time to vehicle (TTV). Some AEB
systems use a measure to describe the threat level related to the acceleration required to avoid a
collision. An example of such a measure is the Brake Threat Number (BTN), which is defined as
the required acceleration of the host vehicle needed to avoid a collision divided by the minimal
achievable host vehicle acceleration.

In conventional AEB systems, it is assumed that the host vehicle is driving on a flat road surface
with a constant tire-road friction coefficient. Furthermore, these AEB systems do not monitor the
driver’s intention before initiating a warning or a brake intervention. In literature, several exten-
sions are proposed to improve conventional AEB systems. For example, an AEB system adaptive
to the tire-road friction or an AEB system adaptive to the road gradient. Furthermore, it is also
possible to monitor the driver’s intention before initiating an automated brake intervention, to
reduce the number of warnings and to avoid driver’s annoyance.

The challenge in designing an AEB system is to find a balance between the effectiveness of avoiding
collisions and the risk of false alarms. A trade-off needs to be made between reducing the number
of false positives or the number of false negatives. A false positive means an unnecessary brake
intervention or warning is initiated by the AEB system. On the other hand, a false negative means
a brake intervention or a warning should be initiated by the AEB system, but the system does not
react. Currently, all AEB systems in production are tuned such that the number of false positives
is minimized.
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Chapter 3

Host vehicle description and
simulation framework

In this research an AEB system will be developed for the Renault Twizy used in the i-CAVE
research program. The AEB system will be implemented in a simulation environment and the
performance of the AEB system will be evaluated via simulations. To draw conclusions from the
simulation results, it is important that the simulation model gives a good representation of the
actual system. By testing the AEB system in the simulation environment instead of testing on the
actual vehicle, time can be saved and more tests can be performed for various driving scenarios.
Furthermore, in this way the potential risk of an accident due to system failure can be overcome.
Another benefit is the availability of the ground-truth signals, which can be used to analyze the
performance of the AEB system.

Figure 3.1: High-level architecture of the AEB system.

The high-level architecture of the AEB system developed in this research is shown in Figure 3.1.
Here, it can be seen that the AEB system consists of two main parts, being:

1. Host vehicle & environment, which includes the vehicle models of the host vehicle and the
object together with the sensor models of the sensors equipped on the host vehicle.

2. AEB controller & state estimation, which includes the state estimator used to estimate the
motion of the object and the method used to determine if the object is relevant for the AEB
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system and present in the driving path of the host vehicle. Furthermore, it includes the AEB
controller, which uses the states of the host vehicle and the object to determine the required
brake acceleration needed to avoid a collision with the object.

In this chapter, first the host vehicle will be described. Thereafter, the sensors equipped on the
host vehicle and used by the AEB system will be discussed together with the way they are modelled
in the simulation environment. Then, the modified brake system of the host vehicle together with
the brake sytem model will be described. Next, the single-track vehicle model used to model the
motion of the host vehicle and the object will be discussed. Finally, this chapter is concluded by
describing a set of driving scenarios and giving the simulation parameters. All simulation results
presented in this research are based on the simulation framework and driving scenarios discussed
in this chapter.

3.1 Host vehicle description

The vehicle used in the i-CAVE research program is a Renault Twizy, which is a two-seated all-
electric city vehicle [13]. Originally, the vehicle is not equipped with any driver assistance systems.
However, the vehicle used in the i-CAVE research program is equipped with additional sensors
and actuators, which makes the vehicle suitable for the implementation of both autonomous and
cooperative driving functionalities such as an AEB system. The vehicle considered as the host
vehicle is shown in Figure 3.2.

Figure 3.2: The modified Renault Twizy used in the i-CAVE research program.

3.2 Sensors

In this research only the sensors on the host vehicle are used. Table 3.1 gives an overview of
the available sensors used by the AEB system with their operating frequencies. Similar to the
operating frequencies of the Inertial Measurement Unit (IMU) and the odometer, the real-time
operating system of the Renault Twizy also runs at a base frequency of 100 Hz [38]. For all
sensors, the noise levels of the corresponding measurement signals are listed in Table 3.2 and are
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expressed in standard deviations. Next, the sensors used by the AEB system will be discussed in
more detail together with the way they are modelled in the simulation environment.

Table 3.1: Operating frequencies of the available sensors [38][39]

Sensor Operating frequency

Radar 16.7 Hz

IMU 100 Hz

Odometer 100 Hz

Table 3.2: Overview of the noise levels of the measurement signals considered in this research and
expressed in standard deviations (SD)

Parameter Noise level (SD) Measurement signal Sensor

σdr
x

0.12 m Longitudinal relative distance Radar [39]

σvr
x

0.11 m/s Longitudinal relative velocity Radar [39]

σdr
y

0.12 m Lateral relative distance Radar [39]

σvr
y

0.11 m/s Lateral relative velocity Radar [39]

σvh
x

0.10 m/s Longitudinal velocity host vehicle Odometer [40]

σah
x

0.098 m/s2 Longitudinal acceleration host vehicle IMU [41]

σwh
z

0.0017 rad/s Yaw rate host vehicle IMU [41]

3.2.1 Radar sensor

The radar sensor used on the Renault Twizy is a Bosch MMRevo14 radar sensor, which is a front
facing mid-range radar sensor that is able to identify, track, and classify objects. As shown in
Figure 3.2, the radar sensor is located behind the front bumper at the center of the vehicle. In
this research, only a single object is considered at the same time, which is detected and tracked by
the front facing radar sensor. The raw radar measurements are processed by the object tracking
algorithm present on the radar sensor. Therefore, it is assumed that the radar sensor provides the
longitudinal relative distance drx and velocity vrx, as well as the lateral relative distance dry and
velocity vry of a detected object [40].

The radar sensor has a range of approximately 160 m and uses digital beam forming and four in-
dependent receiving channels. Figure 3.3 shows the field of view (FoV) of the radar sensor. Here,
objects located at a long distance from the host vehicle are detected using the three narrow beams
of the main antenna. They have cones of respectively 6◦, 9◦ and 10◦ with a range of respectively
160 m, 100 m and 60 m. Objects closer to the host vehicle are detected using the two wider beams
of the close-range elevation antenna. They have cones of respectively 25◦ and 42◦ with a range of
respectively 36 m and 12 m. The elevation antenna is also able to measure the vertical position
and height of objects [39].

The radar sensor is able to track up to 32 objects simultaneously and classifies them in different
object types, which are unknown, pedestrian, construction element, motorcycle or car. Further-
more, the sample time of the radar sensor is approximately 60 ms [39]. The noise levels of the
radar measurement signals given in Table 3.2 are obtained from the product data sheet of the
Bosch MMRevo14 radar sensor [39]. Here, the noise levels of the longitudinal and lateral relative
distance are set equal to the noise level of the range, and the noise levels of the longitudinal and
lateral relative velocity are set equal to the noise level of the range rate.
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Figure 3.3: Field of view of the Bosch MMRevo14 radar sensor [39].

3.2.2 IMU

The inertial signals of the host vehicle are measured with an Inertial Measurement Unit (IMU),
which is installed near the center of mass of the vehicle. The IMU used on the Renault Twizy
is a Bosch MM5.10 sensor, which measures the longitudinal, lateral and vertical acceleration as
well as the yaw rate and roll rate [41]. Furthermore, all measured signals are low-pass filtered at
a cut-off frequency of 15 Hz [40]. The noise levels of the IMU measurement signals as given in
Table 3.2 are obtained from the product data sheet of the Bosch MM5.10 sensor [41].

3.2.3 Odometer

The odometer measures the motor speed of the host vehicle, which by using a fixed gear ratio is
translated to the rotational speed of the rear axle. Now, by using the effective rolling radius of
the Renault Twizy, the longitudinal velocity can be determined from the rotational speed of the
rear axle [38]. Here, it is assumed that the wheels on the rear axle have no wheel slip. Usually,
the longitudinal velocity signal obtained from the odometer is larger than the actual longitudinal
velocity of the vehicle, and therefore needs to be calibrated first. However, it is assumed that
the longitudinal velocity signal from the odometer is equal to the actual longitudinal velocity.
Furthermore, the estimation of the longitudinal velocity in the presence of wheel slip is considered
as future work.

3.2.4 Sensor models

The radar sensor, IMU and odometer are modelled in the simulation environment. Here, the radar
measurements used by the AEB system are the longitudinal relative distance drx and velocity vrx,
as well as the lateral relative distance dry and velocity vry. Furthermore, the measurements from the

IMU used by the AEB system are the longitudinal acceleration of the host vehicle ahx and the yaw
rate of the host vehicle ωh

z . Finally, the longitudinal velocity of the host vehicle vhx measured by
the odometer is also used by the AEB system. In the simulation environment, the virtual sensor
measurements provided by the sensors used by the AEB system are modelled by adding zero-mean
Gaussian white measurement noise to the ground truth signals from the vehicle models. At time
t a certain virtual measurement signal y is modelled as follows

y(t) = ygt(t) + ηy(t), (3.1)

where ygt(t) is the ground truth value and ηy(t) is the measurement noise of measurement signal
y. The noise levels of the measurement signals are listed in Table 3.2. Furthermore, sensor biases
are ignored, and sensor delay is assumed to be neglectable compared to the response delay of the
brake system. In the simulation environment, the sensors provide virtual measurements at their
respective operating frequency as given in Table 3.1. Finally, the virtual measurements of the
radar sensor are only available if the object is present in the FoV as shown in Figure 3.3.
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3.3 Brake system model

The conventional brake system of the Renault Twizy used in the i-CAVE research program consists
of disc brakes at the front and the rear of the vehicle. The Renault Twizy is not equipped with an
Electronic Hydraulic Brake (EHB) system or an Electronic Stability Control (ESC) system, which
can be used to control the brake system. Therefore, some modifications of the conventional brake
system are required to control the brake system of the Renault Twizy and enable autonomous
braking by the AEB system. In previous research [40] the brake system of the Renault Twizy
has been modified as is shown in Figure 3.4. Here, a brake cam actuator is added to the brake
master cylinder of the vehicle, which keeps the conventional brake system intact. The brake cam
actuator consists of an electric motor (with controller), which via a gearbox is connected to a
cam-follower mechanism. As the brake cam actuator is not directly coupled to the brake pedal
system, the added actuator can only apply pressure on the brake master cylinder and not pull the
brake master cylinder. This allows the driver to apply more pressure on the brake master cylinder
by operating the brake pedal system if required [40].

Figure 3.4: Overview of the modified brake system [40].

The brake system model of the modified brake system, as shown in Figure 3.5, consists of two
main parts, namely the brake cam actuator controller followed by the modelled brake cam actuator
dynamics. Eventually, only the brake cam actuator controller should be implemented on the host
vehicle and the brake cam actuator dynamics part is only used to model the behaviour of the
brake cam actuator. The input signal to the brake system model is the required brake acceleration
ab,req, which is determined by the AEB controller. Furthermore, to control the brake system, the
camshaft angle δc of the cam-follower mechanism is required, which is measured by the camshaft
angle sensor [40].

3.3.1 Brake cam actuator dynamics

In previous research [40], a model of the brake system dynamics has been created, where the cam-
follower mechanism and gearbox are modelled as a lumped mass and have an inertia Jc, the brake
motor torque Tbm is modelled on the inertia of the brake motor Jbm and the resistance resulting
from the brake hydraulics is represented by a damper and nonlinear spring, which is modelled as
a combination of a cubic spring and a linear spring. Here, the electrical dynamics of the brake
cam actuator are ignored, as it is assumed that the time constant of the electrical dynamics is
significantly smaller than the time constant of the mechanical system. The resulting equation of
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Figure 3.5: Model of the modified brake system consisting of the brake cam actuator controller
and the brake cam actuator dynamics.

motion of the brake system describes the relation between the brake motor torque Tbm and the
camshaft angle δc and is given by [40](

Jc + Jbmi
2
bm

)
δ̈c = Tbmibm − klδc − kcδ

3
c − Tcδ̇c, (3.2)

where ibm is the gear ratio of the brake motor, kl is the stiffness of the linear spring, kc is the
stiffness of the cubic spring and Tc is the Coulomb friction torque [40]. The parameters used in
the equation of motion of the brake system are given in Table 3.3.

Table 3.3: Parameters brake system model [40][42]

Parameter Value Description Unit

ibm 20 Motor gear ratio -

Jbm 0.26e-4 Brake motor moment of inertia kg m2

Jc 0.0393 Camshaft moment of inertia kg m2

kc 0.0604 Cubic spring stiffness Nm/rad

kl 0.1291 Linear spring stiffness Nm/rad

Tc 2.5340 Coulomb friction torque Nm

Next, the resulting camshaft angle δc from the brake cam actuator is converted into a brake
pressure pb via the brake master cylinder, as is shown in Figure 3.5. Here, based on a simplified
model of the brake system dynamics presented by Gerdes et al. [43] an assumption is made that
the dynamics of the brake master cylinder can be ignored and a static polynomial input/output
relation can be used instead. However, neglecting the dynamics of the brake master cylinder
introduces some model uncertainty. Gerdes et al. [43] presents multiple reduced-order models of
brake system dynamics. A single state model with only one hydraulic state is presented, which
can be used to design vehicle control systems. This model assumes a single brake line connects the
brake master cylinder to the vehicle brakes. The single state model results in a cubic polynomial
relation between the brake pressure pb and the volume of the brake master cylinder. As the
camshaft angle δc is directly proportional to the volume of the brake master cylinder, also a
cubic polynomial relation can be used to model the relation between the brake pressure pb and the
camshaft angle δc. To obtain this relation, a dynamic test was performed in previous research [40],
where the camshaft angle δc is used as the input and the resulting brake pressure pb is measured.
A polynomial model fit of the resulting measurement data is used to define the cubic polynomial
relation between the camshaft angle δc and the brake pressure pb, which is given by

δc = −0.0509( 3
√
pb)

2 + 1.1703 3
√
pb. (3.3)

In the simulation environment, the inverse of this relation is used to determine the actual brake
pressure pb from the actual camshaft angle δc. Finally, the brake pressure pb applied on the vehicle
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brakes by the brake master cylinder results in a brake torque Tb, which eventually results in an
acceleration of the vehicle. Since the host vehicle is not equipped with an Anti-lock Brake System
(ABS), the rear brakes are equipped with a brake pressure limiter to prevent wheel lock-up of the
rear wheels. In previous research [42], the brake torque has been measured by the dynamometer
for various applied brake pressures. Figure 3.6 shows the resulting fit of the brake torque of a
front wheel and a rear wheel as a function of the brake pressure. Here, the effect of the brake
pressure limiter is clearly visible as the brake torque for a rear wheel shows a decreasing slope for
brake pressures above 25 bar.

0 10 20 30 40 50 60 70

-500

-400

-300

-200

-100

0

0 10 20 30 40 50 60 70

-200

-150

-100

-50

0

Figure 3.6: Single wheel brake torque as a function of the brake pressure.

To determine the brake torque Tb from the brake pressure pb, the brake pressure limiter needs to
be taken into account, which is activated above a brake pressure of 25 bar, as is shown in Figure
3.6. If the brake pressure limiter is inactive, the total brake torque Tb is determined by

Tb = 2

(
∂Tbfront

∂pbfront

+
∂Tbrear

∂pbrear

)
pb, for pb ≤ 25 bar, (3.4)

where
∂Tbfront

∂pbfront

and
∂Tbrear

∂pbrear
are the gradients of the relation between the brake torque and the brake

pressure for respectively a single front wheel and rear wheel as shown in Figure 3.6. However, if
the brake pressure limiter is active, the total brake torque Tb is obtained as follows

Tb = 2

((
∂Tbfront

∂pbfront

+
∂Tbrear,lim

∂pbrear,lim

)
pb + Tb,0

)
, for pb > 25 bar, (3.5)

where
∂Tbrear,lim

∂pbrear,lim

is the gradient of the relation between the brake torque and the brake pressure for

a single rear wheel if the brake pressure limiter is active and Tb,0 is the corresponding theoretical
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value of the brake torque for a single rear wheel at a brake pressure of 0 bar. Here, it is assumed
again that the dynamics of the brake hydraulics and brakes can be ignored and a static linear
input/output relation can be used to model the relation between the brake pressure pb and the
brake torque Tb. This assumption is supported by the work presented by Gerdes et al. [43], where
the single state model also results in a linear relation between the brake pressure pb and the brake
torque Tb. However, neglecting the dynamics of the brake hydraulics and brakes again introduces
some additional model uncertainty.

Using the total brake torque Tb, the actual brake acceleration ab can be obtained as follows

ab =
Tb

meffrw
, (3.6)

where meff is the effective vehicle mass being the sum of the vehicle mass and the rotational
inertias, which is equal to 755 kg [42]. Furthermore, rw is the effective rolling radius of a wheel,
which is equal to 0.2778 m [42].

3.3.2 Brake cam actuator controller

The brake cam actuator controller, which is the part of the brake system model that should be
implemented on the host vehicle, uses the required brake acceleration ab,req determined by the
AEB controller as an input. As shown in Figure 3.5, the brake cam actuator controller first de-
termines the required brake pressure pb,req from the required brake acceleration ab,req. This can
be done by first calculating the total required brake torque Tb,req using the same relation as given
in (3.6).

Next, the required brake pressure pb,req can be determined by taking into account the brake pres-
sure limiter, which is active for brake pressures above 25 bar. As shown in Figure 3.6, at a brake
pressure of 25 bar the total brake torque of a single front wheel and a single rear wheel is equal to
-300 Nm. If the brake pressure limiter is inactive, meaning 0 ≥ Tb,req ≥ −600Nm, the required
brake pressure pb,req can be obtained using the same relation as given in (3.4). However, if the
brake pressure limiter is active, meaning Tb,req < −600Nm, the required brake pressure pb,req
can be obtained using the same relation as given in (3.5). Here, the required brake pressure pb,req
is limited to values between 0 bar and 100 bar [40].

From the required brake pressure pb,req, the required camshaft angle δc,req of the cam-follower
mechanism can be determined using the same polynomial model fit as given in (3.3). Here, the
required camshaft angle δc,req is limited to values between 0 rad and 5 rad [40].

Then, a position controller is used to control the brake motor torque Tbm given a required camshaft
angle δc,req. The position controller, which is developed in previous research [40], consists of a
feedforward part and a PID controller. The feedforward part takes into account an amount of
friction and a deadzone on the input signal, which is the required camshaft angle δc,req. Again,
a polynomial model fit of acquired measurement data is used to define the relation between the
required camshaft angle δc,req and the brake motor torque from the feedforward part Tbm,ff [40],
which is given by

Tbm,ff = 0.0178δ2c,req − 0.0195δc,req. (3.7)

The brake motor torque Tbm is determined by adding the brake motor torque from the feedforward
part Tbm,ff to the brake motor torque from the PID controller Tbm,PID. The discrete-time PID
controller can either operate in control mode or in tracking mode. The gains of the PID controller
can be found in Appendix A.1. The input of the PID controller is the error on the camshaft angle
δc,err, which is given by

δc,err = δc,req − δc. (3.8)
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However, in tracking mode, which is used when no input signal is provided by the AEB controller,
the PID controller tracks the error of the brake motor torque, which is determined by subtracting
the brake motor torque from the feedforward part Tbm,ff from the actual brake motor torque Tbm.
The resulting brake motor torque Tbm from the position controller is limited to values between
-1.35 Nm and 1.35 Nm [40].

3.3.3 Response delay of the brake system model

When a brake intervention is initiated by the AEB controller and the brake system receives the
required brake acceleration needed to avoid a collision, a certain amount of time will pass before
the vehicle actually brakes with this desired acceleration. This amount of time is defined as the
response delay of the brake system and is indicated by τb. It is assumed that the response delay
of the brake system is equal to the response delay of the modelled brake cam actuator dynamics.

The response delay of the modelled brake cam actuator dynamics is not a fixed delay, but depends
on the current camshaft angle δc, which is measured by the camshaft angle sensor on the host
vehicle. This response delay is defined as the time that is required to reach 95% of the camshaft
angle needed to achieve minimum acceleration δcmin starting from the current camshaft angle δc.
Here, 95% is chosen since this is commonly used to determine the rise time of a response and us-
ing a larger percentage would overestimate the response delay since the camshaft angle needed to
achieve minimum acceleration δcmin is approached slowly [44]. To determine the response delay of
the brake system τb as a function of the current camshaft angle δc, first the camshaft angle needed
to achieve minimum acceleration δcmin needs to be defined. The minimal achievable host vehicle
acceleration ahmin depends on the tire-road friction coefficient µ [45]. It is assumed that the host
vehicle is driving on a dry road surface with a tire-road friction coefficient µ of 0.9. Furthermore,
the vehicle body pitch and vertical acceleration are assumed to be zero and the tire-road friction
coefficient µ is assumed to be independent of the vertical forces acting on the vehicle. As the
Renault Twizy is not equipped with an ABS system, a safety margin is added to the minimal
achievable host vehicle acceleration ahmin to prevent the wheels from blocking when braking the
vehicle, which could cause stability and steerability issues. Therefore, ahmin is chosen to be -7 m/s2

and the corresponding camshaft angle needed to achieve minimum acceleration δcmin is equal to
4.03 rad.

Figure 3.7 shows the response delay of the brake system τb as a function of the current camshaft
angle δc, which is obtained by performing simulations. To obtain this figure, multiple step inputs
are used for the required brake accelerations ab,req, where the final value of every step input
is set to the minimal achievable host vehicle acceleration ahmin. For every step input, both the
response delay τb and the camshaft angle δc are determined, and the results are shown in Figure
3.7. Here, it can be seen that the response delay of the brake system τb decreases non-linearly
for increasing camshaft angles δc. Furthermore, it can be seen that the response delay is equal to
0 s for camshaft angles δc equal to or larger than 95% of the camshaft angle needed to achieve
minimum acceleration δcmin.
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Figure 3.7: Response delay of the brake system as a function of the current camshaft angle.

3.4 Single-track vehicle model

The motion of both the host vehicle and the object are modelled using a single-track vehicle
model as shown in Figure 3.8, which has three degrees of freedom: the longitudinal, lateral and
yaw motion. A single-track vehicle model is used since the desired inputs to the vehicle model
are the steering angle and the longitudinal tyre forces, which are used to accelerate and brake the
vehicle. Furthermore, it is a simple model that is a good representation of a vehicle and includes
its cornering behaviour. When using this vehicle model, several assumptions are made [45], which
are:

• For both the front and rear axle, the left and right tyre are lumped into a single tyre and
the forces act along the center line of the front and rear axle.

• The vehicle has no longitudinal and lateral load transfer, so no body pitch and body roll.

• The vehicle is driving on a flat road surface without any slopes, so the motion of the vehicle
is restricted to the X,Y-plane.

• The vehicle is considered as a rigid body.

• The vehicle has centre point steering.

• The side slip angles αf and αr, and the road wheel angle δrw are small.

In Figure 3.8, the Cartesian global fixed frame e⃗G is given by

e⃗G = [e⃗G
x e⃗G

y ]T , (3.9)

which is an earth fixed and earth centered coordinate system. Furthermore, the Cartesian body-
fixed frame e⃗ i of vehicle i with its origin positioned at the center of mass (CM), is given by

e⃗ i = [e⃗ i
x e⃗ i

y]
T . (3.10)
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Figure 3.8: The three-degree-of-freedom single-track vehicle model [45].

Since the body-fixed frame rotates with respect to the global frame, the relation between these
frames is given by

e⃗G = R(θ) e⃗ i =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
e⃗ i, (3.11)

where R(θ) is the rotation matrix and θ is the heading angle of the vehicle with respect to the e⃗G
x

direction of the global frame [46]. The vector r⃗i represents the position of the center of mass of
the vehicle in the global frame and is given by

r⃗i = [x y]e⃗G, (3.12)

where x is the position in the e⃗G
x direction and y is the position in the e⃗G

y direction. By differen-
tiating this position vector, the velocity vector can be determined as follows

˙⃗ri = [ẋ ẏ]e⃗G = [ẋ ẏ]R(θ) e⃗ i = [vx vy]e⃗
i. (3.13)

Now by differentiating the velocity vector, the acceleration vector can be obtained as follows

¨⃗ri = [v̇x v̇y]e⃗
i + [vx vy] ˙⃗e

i, (3.14)

where ˙⃗e i can be determined using (3.11) as follows

˙⃗e i = Ṙ(θ)T e⃗G =

[
0 ωz

−ωz 0

]
e⃗ i. (3.15)

Here, ωz (= θ̇) is the yaw rate of the vehicle. The acceleration vector can be obtained by imple-
menting (3.15) into (3.14) and is given by

¨⃗ri = [v̇x v̇y]e⃗
i + [vx vy]

[
0 ωz

−ωz 0

]
e⃗ i = [v̇x − vyωz v̇y + vxωz]e⃗

i. (3.16)

Development of an Automated Emergency Braking System for a Renault Twizy 21



CHAPTER 3. HOST VEHICLE DESCRIPTION AND SIMULATION FRAMEWORK

As shown in Figure 3.8, the force vector acting on the center of mass of the vehicle is given by

F⃗ = [Fx Fy]e⃗
i = [Fx,f + Fx,r + Fres Fy,f + Fy,r]e⃗

i, (3.17)

where Fx,f and Fy,f are the total forces acting on the front axle, and Fx,r and Fy,r are the total
forces acting on the rear axle. Furthermore, Fres is the total longitudinal resistant force acting
on the center of mass of the vehicle, which will be derived later in this section. Now, by applying
Newton’s second law of motion, the equations of motion describing the longitudinal, lateral and
yaw motion of the vehicle can be derived, which is done by combining (3.16) with (3.17) for every
direction as follows

v̇x = vyωz +
Fx,f + Fx,r + Fres

m

v̇y = −vxωz +
Fy,f + Fy,r

m

ω̇z =
laFy,f − lbFy,r

Izz
,

(3.18)

where m is the vehicle mass, la is the distance between the front axle and the center of mass, lb
is the distance between the rear axle and the center of mass and Izz is the vehicle mass moment
of inertia [45]. As the Renault Twizy only steers with the front wheels, the total forces acting on
the front and rear axle when assuming a small road wheel angle δrw can be determined as follows

Fx,f = Fx,ft cos (δrw)− Fy,ft sin (δrw) = Fx,ft

Fy,f = Fx,ft sin (δrw) + Fy,ft cos (δrw) = Fy,ft

Fx,r = Fx,rt

Fy,r = Fy,rt,

(3.19)

where Fx,ft and Fy,ft are the tyre forces on the front axle, Fx,rt and Fy,rt are the tyre forces on
the rear axle, and δrw is the road wheel angle with respect to the e⃗ i

x direction of the body-fixed
frame. The road wheel angle δrw can be obtained as follows

δrw =
δsw
ist

, (3.20)

where ist is the steering ratio and δsw is the steering wheel angle, which is used as an input to
the single-track vehicle model. Furthermore, the longitudinal tyre forces Fx,ft and Fx,rt are also
used as inputs to the single-track vehicle model to accelerate and brake the vehicle. The lateral
tyre forces Fy,ft and Fy,rt can be determined by assuming linear cornering characteristics and are
given by

Fy,ft = −Cfαf

Fy,rt = −Crαr,
(3.21)

where Cf and Cr are the linear cornering stiffnesses of respectively the front and rear axle, and
αf and αr are the side slip angles of respectively the front and rear tyres [45]. The side slip angles
are assumed to be small and can be calculated as follows

αf = −δrw +
vy + laωz

vx

αr =
vy − lbωz

vx
.

(3.22)

3.4.1 Longitudinal vehicle behaviour

The total longitudinal force acting on the center of mass of the vehicle as given in (3.17) consists
of the following force contributions

Fx = Fx,f + Fx,r + Fres, (3.23)
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where the total forces acting on the front axle Fx,f and rear axle Fx,r include the applied forces
from the motor and brakes. Furthermore, during driving, a vehicle is subjected to several external
resistant forces which influence the acceleration of the vehicle [47]. These forces are included in
the total longitudinal resistant force Fres acting on the vehicle, which is given by

Fres = −Fr − Fd − Fv − Fg, (3.24)

where Fr represents the rolling resistance force, Fd is the air drag force, Fv is the viscous friction
force and Fg is the gravitational force due to road grade influences. The rolling resistance force
can be determined by

Fr = frmg, (3.25)

where fr is the rolling resistance coefficient obtained in previous research by performing a coast
down test with the Renault Twizy on a flat road surface [42]. Furthermore, g represents the
gravitational acceleration [47]. Next, the air drag force is given by

Fd =
1

2
ρairCdAf (vx + vwind)

2, (3.26)

where ρair is the air density, Cd is the drag coefficient, Af is the frontal area of the vehicle and
vwind is the wind velocity [47]. The wind velocity is assumed to be zero. Furthermore, the viscous
friction force can be obtained by

Fv = klinvx, (3.27)

where klin is the linear viscous friction term, which introduces driveline viscous losses [42]. Finally,
the gravitational force due to road grade influences is given by

Fg = mg sinα, (3.28)

where α is the road slope angle. It is assumed that the considered vehicles drive on a flat road
surface and therefore road grade influences are ignored. The parameters of the Renault Twizy
used in the single-track vehicle model are listed in Table 3.4. The same parameters are used to
model the vehicle dynamics of the object.

Table 3.4: Parameters single-track vehicle model [40][42][48]

Parameter Value Description Unit

Af 1.4 Frontal area vehicle m2

Cd 0.64 Drag coefficient -

Cf 38.893 Cornering stiffness front axle kN/rad

Cr 58.054 Cornering stiffness rear axle kN/rad

fr 0.01251 Rolling resistance coefficient -

g 9.81 Gravitational acceleration m/s2

ist 14.02 Steering ratio -

Izz 350 Vehicle mass moment of inertia kg m2

klin 2.537 Viscous friction Ns/m

la 0.9978 Front axle to the centre of mass m

lb 0.6882 Rear axle to the centre of mass m

m 708 Vehicle mass kg

ρair 1.2567 Air density kg/m3
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3.5 Driving scenarios and simulation parameters

A number of relevant scenarios is chosen to evaluate the performance of the AEB system. For all
scenarios, the ground truth trajectories of both the host vehicle and the detected object given in
the Cartesian global frame e⃗G are shown in Figure 3.9. The first scenario is called a Car-to-Car
Rear braking (CCRb) scenario [49]. In this scenario, at first, the host vehicle is following the
detected object (target vehicle) and both vehicles are driving straight in the same direction and
with a constant velocity. Then, the target vehicle suddenly brakes and a brake intervention by
the host vehicle is required to prevent a collision. This scenario is relevant since a large number
of road accidents are rear-end collisions and it is desired that the AEB system is able to prevent
a collision or at least reduce the severity of the collision for these kind of scenarios.

The second scenario is called a Car-to-Car Rear moving (CCRm) scenario [49]. This scenario is
similar to the first scenario, where the host vehicle is following the target vehicle and both vehicles
are driving straight in the same direction and with a constant velocity. However, in this scenario
the target vehicle does not brake, but keeps driving at a constant velocity lower than the velocity
of the host vehicle. As time progresses and the distance between the vehicles becomes smaller, a
brake intervention by the host vehicle is required to prevent a collision until the velocity of the
host vehicle becomes smaller or equal to the velocity of the target vehicle. This scenario is relevant
for the same reason as the first scenario.

The third scenario is called an AEB Vulnerable Road User (VRU) scenario [50]. In this scenario,
the host vehicle is driving straight with a constant velocity. Then, suddenly a pedestrian or bi-
cyclist crosses its path from the right side with a constant velocity and a brake intervention by
the host vehicle is required to prevent a collision. Situations similar to the one described by this
scenario are common in urban areas and it is desired that the AEB system is able to prevent a
collision for these kind of scenarios.

Finally, in the fourth scenario, again the host vehicle is following the target vehicle and both
vehicles are driving straight in the same direction and with a constant velocity. Then, similar to
the first scenario, the target vehicle suddenly brakes. However, before a collision takes place, the
host vehicle turns away from the target vehicle. Therefore, in this scenario a brake intervention
by the AEB system is not required and considered undesired. This scenario is included since it is
a relevant traffic situation and the AEB system is designed to deal with situations in which the
host vehicle is cornering.

For every driving scenario, the initial position of the center of mass (CM) of the host vehicle in
frame e⃗G is set equal to the origin (xh

0 , y
h
0 ) = (0, 0), the initial heading angle θh0 is set equal to

0 rad, and the initial longitudinal velocity of the host vehicle vhx,0 is set equal to 30 km/h (8.33
m/s), which is a common velocity in urban areas. The initial position and velocity of the detected
object in frame e⃗G are listed in Table 3.5. The simulation duration used throughout this research
is 10 s. Since the real-time operating system of the Renault Twizy runs at a base frequency of
100 Hz, the parts of the AEB system that should be implemented on the host vehicle also run at
100 Hz.
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Table 3.5: Initial parameters of the detected object in the global frame e⃗G for every driving
scenario

1.CCRb 2.CCRm 3.VRU 4.Turning

Parameter Value Value Value Value Description

xt
0 40 30 60 20 Initial longitudinal position (m)

yt0 0 0 -10.5 0 Initial lateral position (m)

θt0 0 0 0.5π 0 Initial heading angle (rad)

ẋt
0 6 4 0 6 Initial longitudinal velocity (m/s)

ẏt0 0 0 1.5 0 Initial lateral velocity (m/s)
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Figure 3.9: The ground truth trajectories of both the host vehicle and the detected object in the
global frame e⃗G for all driving scenarios.
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3.6 Summary

In this chapter, the host vehicle considered in this research has been described together with the
sensors equipped on the host vehicle and used by the AEB system, which are the radar sensor, the
Inertial Measurement Unit (IMU) and the odometer. These sensors are modelled using realistic
operating frequencies and noise levels. In previous research, the conventional brake system of the
Renault Twizy has been modified by adding a brake cam actuator to the brake master cylinder.
The modified brake system is modelled in the simulation environment, which consists of two main
parts, being the brake cam actuator controller followed by the brake cam actuator dynamics. The
response delay τb of the brake system model is determined as a function of the camshaft angle δc.
The motion of the host vehicle and the object is modelled using a single-track vehicle model with
three degrees of freedom: the longitudinal, lateral and yaw motion.

Different driving scenarios are used to evaluate the performance of the AEB system, which are:

1. Car-to-Car Rear braking (CCRb)

2. Car-to-Car Rear moving (CCRm)

3. AEB VRU

4. Turning away from the target vehicle

All simulation results presented in this research are based on the simulation framework and driving
scenarios discussed in this chapter.
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Chapter 4

State estimation and path
prediction

To determine if a detected object is present in the driving path of the host vehicle and to determ-
ine the threat level of the current traffic situation, the absolute motion of the object is required.
Typically, not all states of the object can be measured directly by the available sensors on the
host vehicle. Therefore, some states need to be estimated from the available sensor measurements,
which is also called state estimation or filtering. Sometimes, these sensor measurements are not
available at every sample, due to the low sampling rate of the sensor. In this case, a state estimator
can be used to estimate the states at the desired sampling rate. Furthermore, measurement noise
is often present on the sensor measurements and a state estimator can be used to filter out the
noise from these measurements [37]. Finally, another advantage of using a state estimator is the
ability to predict the future values of the states [21].

A reliable estimation method is one of the most critical requirements of an AEB system [21]. A
state estimator is always based on a model describing the dynamics, which in the case of object
tracking applications is a motion model describing how the motion of the object and/or the host
vehicle is expected to evolve over time [20]. In general, a motion model is given by

xk+1 = fk(xk,uk,wk), (4.1)

which is also called the state equation. Here, xk is the state vector consisting of the states, uk is
the input vector, wk is the process noise vector and fk is some vector-valued function [20]. The
state equation is given in discrete-time since the sensors work in discrete-time and the host vehicle
is operated using a discrete-time platform [38]. From now on, all equations of the state estimator
will be expressed in discrete-time as a function of the index number for the current time step k. In
addition to a model describing the dynamics, the relation between the sensor measurements and
the states are described by a measurement model, which is also called the measurement equation
and in general is given by

y
k
= hk(xk,uk, vk), (4.2)

where y
k
is the measurement vector, vk is the measurement noise vector and hk is some vector-

valued function [20].

A common filter used for state estimation in object tracking applications is the Kalman filter [16].
In general, a Kalman filter has two phases, namely a prediction phase and a measurement update
phase as will be explained in Section 4.2 [17]. Since the radar sensor on the host vehicle has a
lower sampling rate than the AEB controller, the sensor measurements are not available at every
sample. One common approach is to only update the state estimates at the samples where a new
measurement is available. At the other samples, only the prediction step of the Kalman filter is
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used to estimate the states as will be explained in Section 4.2.3 [38].

In the remainder of this chapter, first the motion model and measurement model are presented after
which the state estimator is discussed. Then, the methods used to initialize the state estimator
and to select the process noise values are discussed. Thereafter, tuning and the performance
of the state estimator are discussed for different driving scenarios. Next, the method used to
predict the path of the detected object is discussed and the uncertainty of the predicted path is
determined. Finally, the method used to predict the path of the host vehicle is explained and
again the uncertainty of the predicted path is determined.

4.1 Motion model and measurement model

A state estimator used for tracking applications is always based on a motion model describing
how the motion of the object and/or the host vehicle is expected to evolve over time. Often, these
models are represented as a linear state-space model by the following discrete-time state equation

xk+1 = Axk +Buk +Gwk, (4.3)

where A is the system matrix which relates the state vector at the current time step xk to the
state vector at the next time step xk+1, B is the input matrix which relates the input vector uk
to the state vector at the next time step xk+1, and G is the process noise matrix which relates
the process noise vector wk to the state vector at the next time step xk+1. Furthermore, the
discrete-time measurement equation is given by

y
k
= Cxk +Duk + vk, (4.4)

where C is the observation matrix which relates the state vector at the current time step xk to
the measurement vector y

k
and D is the observed input matrix which relates the input vector uk

to the measurement vector y
k
[17].

4.1.1 Constant acceleration model

A schematic overview of the host vehicle and the detected object with their states and the available
sensor measurements is shown in Figure 4.1, where the object is modelled as a freely moving point
mass. The reason for this is that it is not possible to accurately measure or estimate the yaw rate
of the object using the available sensors on the host vehicle. All states are given in the current
Cartesian body-fixed frame e⃗h

k , with its origin positioned at the center of mass of the host vehicle.
This body-fixed frame is given by

e⃗h
k = [e⃗h

x,k e⃗h
y,k e⃗h

z,k]
T , (4.5)

where the e⃗h
x,k direction corresponds with the longitudinal direction of the host vehicle, the e⃗h

y,k

direction corresponds with the lateral direction of the host vehicle, and e⃗h
z,k is pointing upwards.

The state vector consisting of the states given in the current body-fixed frame is given by

xk =
[
drx,k vtx,k atx,k dry,k vty,k aty,k

]T
, (4.6)

where drx,k is the longitudinal relative distance between the object and the radar sensor on the

host vehicle, and vtx,k and atx,k are the absolute longitudinal velocity and acceleration of the object

(or target vehicle) respectively. Furthermore, dry,k is the lateral relative distance, and vty,k and aty,k
are the absolute lateral velocity and acceleration of the object respectively. At every sample, the
longitudinal velocity vhx,k and the longitudinal acceleration ahx,k of the host vehicle are assumed to

28 Development of an Automated Emergency Braking System for a Renault Twizy



CHAPTER 4. STATE ESTIMATION AND PATH PREDICTION

be known from the IMU and the odometer on the host vehicle. These are included in the input
vector, which is given by

uk =
[
vhx,k ahx,k

]T
. (4.7)

Figure 4.1: Schematic overview of the host vehicle and the detected object with their states (blue)
and the available sensor measurements (red).

Since both the host vehicle and the object are likely to accelerate and brake in the driving scenarios
described in Section 3.5, it is decided to use a constant acceleration model instead of a constant
velocity model to improve the accuracy of the estimations. Furthermore, the constant acceleration
model is a simple linear kinematic motion model which does not require the yaw rate of the object
and enables the use of a Kalman filter as a state estimator. Normally, the constant acceleration
model is a relative model. However, in this research, the constant acceleration model is slightly
modified by using the absolute velocity and acceleration of the object. The estimated absolute
motion of the object is required to predict its path and to determine if the object is relevant for
the AEB system, which will be discussed in Section 4.4.

When using the constant acceleration model it is assumed that the object has uncorrelated motions
in both the longitudinal and the lateral direction of the current body-fixed frame. Furthermore,
it is assumed that the host vehicle has no side slip, and therefore the lateral velocity of the host
vehicle is assumed to be zero. Finally, the longitudinal acceleration of the host vehicle and the
longitudinal and lateral acceleration of the object are assumed to be constant over the sample time
Ts and the jerk is assumed to be a white noise process [20]. The resulting process noise vector is
given by

wk =
[
wh

jx,k
wt

jx,k
wh

jy,k
wt

jy,k

]T
, (4.8)

where wh
jx,k

and wt
jx,k

are zero-mean Gaussian white noise on the longitudinal jerk of the host

vehicle and the object respectively. Furthermore, wh
jy,k

and wt
jy,k

are zero-mean Gaussian white
noise on the lateral jerk of the host vehicle and the object respectively.

Given the assumptions described above, the discrete-time state equation as described by (4.3) for
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the constant acceleration model is given by



drx,k+1

vtx,k+1

atx,k+1

dry,k+1

vty,k+1

aty,k+1


=



1 Ts
T 2
s

2 0 0 0

0 1 Ts 0 0 0

0 0 1 0 0 0

0 0 0 1 Ts
T 2
s

2

0 0 0 0 1 Ts

0 0 0 0 0 1





drx,k
vtx,k
atx,k
dry,k
vty,k
aty,k


+



−Ts −T 2
s

2

0 0

0 0

0 0

0 0

0 0


[

vhx,k
ahx,k

]

+



−T 3
s

6
T 3
s

6 0 0

0
T 2
s

2 0 0

0 Ts 0 0

0 0 −T 3
s

6
T 3
s

6

0 0 0
T 2
s

2

0 0 0 Ts




wh

jx,k

wt
jx,k

wh
jy,k

wt
jy,k

 .

(4.9)

4.1.2 Measurement model

The measurement model of a state estimator describes how the sensor measurements given by the
measurement vector y

k
are related to the states given by the state vector xk. The measurement

model can be described by a discrete-time measurement equation as given in (4.4). The front facing
radar sensor on the Renault Twizy is able to measure both the longitudinal relative distance drx,k
and velocity vrx,k, as well as the lateral relative distance dry,k and velocity vry,k, which results in
the following measurement vector

y
k
=
[
drx,k vrx,k dry,k vry,k

]T
. (4.10)

The corresponding measurement noise vector is given by

vk =
[
vdr

x,k
vvr

x,k
vdr

y,k
vvr

y,k

]T
. (4.11)

When comparing the measurement vector y
k
with the state vector xk given in (4.6), it can be

concluded that both vectors include the longitudinal and lateral relative distances drx,k and dry,k.
However, the longitudinal and lateral relative velocities vrx,k and vry,k are only included in the
measurement vector y

k
and not in the state vector xk. Instead, the velocity components of the

state vector xk are the absolute velocities of the object vtx,k and vty,k.

In Figure 4.2 a measurement overview is given, where the object is assumed to be stationary and
the host vehicle is driving with a longitudinal velocity vhx and yaw rate ωh

z . Although the object is
stationary, the radar sensor measures a velocity component v⊥ on the object perpendicular to the
vector r⃗T/R, which is due to the turning behaviour of the host vehicle. To determine the relation
between the measured relative velocities and the estimated absolute velocities of the object, first
expressions for the longitudinal velocity v⊥x and the lateral velocity v⊥y need to be found, which

can be done by considering the host vehicle and the object as one rigid body. In this case, v⊥x and
v⊥y are components of the time-derivative of the body-fixed vector r⃗T/R, denoted by ˙⃗rT/R.
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Figure 4.2: Measurement overview of the radar sensor.

Before determining ˙⃗rT/R, first the different frames and vectors as shown in Figure 4.2 will be
discussed. The vectors r⃗H , r⃗R and r⃗T represent the positions of the host vehicle, radar sensor and
object respectively in the Cartesian global frame e⃗G, which is given by

e⃗G = [e⃗G
x e⃗G

y e⃗G
z ]T , (4.12)

where the e⃗G
x and e⃗G

y directions correspond with the east and north direction of an earth fixed

and earth centered coordinate system, and the e⃗G
z direction is pointing upwards. As mentioned

earlier, frame e⃗h is a Cartesian body-fixed frame with its origin positioned at the center of mass
of the host vehicle. The relation between both frames is given by

e⃗G = R(θh) e⃗h =

 cos(θh) − sin(θh) 0

sin(θh) cos(θh) 0

0 0 1

 e⃗h, (4.13)

where R(θh) is the rotation matrix and θh is the heading angle of the host vehicle with respect
to the e⃗G

x direction of the global frame [46]. Next, the vector r⃗R/H represents the position of the
radar sensor in the body-fixed frame and is given by

r⃗R/H = [lf 0 0]e⃗h, (4.14)

where lf is the longitudinal distance between the center of mass of the host vehicle and the front
facing radar sensor. Furthermore, the vector r⃗T/R represents the position of the object in the
body-fixed frame as measured by the radar sensor and is given by

r⃗T/R = [drx dry 0]e⃗h, (4.15)

and finally the vector r⃗T/H represents the position of the object in the body-fixed frame and is
given by

r⃗T/H = r⃗R/H + r⃗T/R = [drx + lf dry 0]e⃗h. (4.16)
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Expressions for v⊥x and v⊥y in the body-fixed frame can now be found by determining the time-
derivative of vector r⃗T/R, which is given by

˙⃗rT/R = ˙⃗rT − ˙⃗rR = [v⊥x v⊥y 0]e⃗h. (4.17)

where ˙⃗rT and ˙⃗rR are the time-derivatives of respectively the vectors r⃗T and r⃗R. Here, the time-
derivative of vector r⃗R can be found as follows

˙⃗rR = ˙⃗rH + ˙⃗rR/H = ˙⃗rH + ω⃗ × r⃗R/H

= [vhx 0 0]R(θh)T e⃗G +
(
[0 0 ωh

z ]e⃗
G
)
×
(
[lf 0 0]R(θh)T e⃗G

)
= [vhx cos (θh) vhx sin (θh) 0]e⃗G + [0 0 ωh

z ]
(
e⃗G × e⃗GT

)
R(θh)[lf 0 0]T

= vhx cos (θh)e⃗G
x + vhx sin (θh)e⃗G

y + [ωh
z e⃗

G
y − ωh

z e⃗
G
x 0]R(θh)[lf 0 0]T

= vhxC(θh)e⃗G
x + vhxS(θ

h)e⃗G
y + ...

...[(ωh
zC(θh)e⃗G

y − ωh
zS(θ

h)e⃗G
x ) (−ωh

zS(θ
h)e⃗G

y − ωh
zC(θh)e⃗G

x ) 0][lf 0 0]T

=
(
vhxC(θh)− ωh

z lfS(θ
h)
)
e⃗G
x +

(
vhxS(θ

h) + ωh
z lfC(θh)

)
e⃗G
y ,

(4.18)

where C(θh) denotes cos (θh) and S(θh) denotes sin (θh) [46]. Furthermore, as given in [46], the
following relation is used

e⃗G × e⃗GT

=


−→
0 e⃗G

z −e⃗G
y

−e⃗G
z

−→
0 e⃗G

x

e⃗G
y −e⃗G

x

−→
0

 . (4.19)

Similarly, the time-derivative of vector r⃗T is given by

˙⃗rT = ˙⃗rH + ˙⃗rT/H = ˙⃗rH + ω⃗ × r⃗T/H

=
(
vhxC(θh)− ωh

z (d
r
x + lf )S(θ

h)− ωh
z d

r
yC(θh)

)
e⃗G
x + ...

...
(
vhxS(θ

h) + ωh
z (d

r
x + lf )C(θh)− ωh

z d
r
yS(θ

h)
)
e⃗G
y .

(4.20)

Finally, using (4.18) and (4.20), the time-derivative of vector r⃗T/R can be determined as follows

˙⃗rT/R = ˙⃗rT − ˙⃗rR

=
(
−ωh

z d
r
xS(θ

h)− ωh
z d

r
yC(θh)

)
e⃗G
x +

(
ωh
z d

r
xC(θh)− ωh

z d
r
yS(θ

h)
)
e⃗G
y

= [(−ωh
z d

r
xS(θ

h)− ωh
z d

r
yC(θh)) (ωh

z d
r
xC(θh)− ωh

z d
r
yS(θ

h)) 0]R(θh) e⃗h

= [−ωh
z d

r
y(C

2(θh) + S2(θh)) ωh
z d

r
x(C

2(θh) + S2(θh)) 0]e⃗h

= [−ωh
z d

r
y ωh

z d
r
x 0]e⃗h,

(4.21)

which results in the following expressions for v⊥x and v⊥y

v⊥x = −ωh
z d

r
y

v⊥y = ωh
z d

r
x.

(4.22)

Using these expressions, the relations between the measured relative velocity and the absolute
velocity of the object in both directions are given by

vrx = vtx − vhx − v⊥x = vtx − vhx + ωh
z d

r
y

vry = vty − v⊥y = vty − ωh
z d

r
x.

(4.23)
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Here, it is assumed again that the host vehicle has no lateral velocity component. Using the
relations given in (4.23), the discrete-time measurement equation as described by (4.4) is given by


drx,k
vrx,k
dry,k
vry,k

 =


1 0 0 0 0 0

0 1 0 ωh
z,k 0 0

0 0 0 1 0 0

−ωh
z,k 0 0 0 1 0




drx,k
vtx,k
atx,k
dry,k
vty,k
aty,k


+


0 0

−1 0

0 0

0 0

[ vhx,k
ahx,k

]
+ ...

...


vdr

x,k

vvr
x,k

vdr
y,k

vvr
y,k

 ,

(4.24)

where the yaw rate of the host vehicle ωh
z,k is included in the observation matrix Ck, which makes

the discrete-time measurement equation given above nonlinear and time-variant. However, the
yaw rate ωh

z,k is assumed to be slowly varying and therefore the nonlinearity is ignored, which is
a valid assumption for the driving scenarios described in Section 3.5. At every sample, the yaw
rate of the host vehicle ωh

z,k is assumed to be known from the IMU.

4.2 State estimator

To estimate the states described by xk, a discrete-time Kalman filter is used. In this section, the
Kalman filter and its general equations will be discussed. Thereafter, an additional correction step
on the estimated states will be introduced, which is required to correct the states for the rotation
of the host vehicle. Then, the method used to deal with the low sampling rate of the radar sensor
will be explained. Finally, the methods used to initialize the state estimator and to select the
process noise values are discussed.

4.2.1 Kalman filter equations

Given a model of the system is known, a Kalman filter can be used to estimate the states described
by xk using the available noisy measurements y

k
together with the knowledge of the system

dynamics, when assuming that both the process noise and measurement noise are zero-mean,
white and uncorrelated noise processes with covariance matrices Qk and Rk respectively [17].
Depending on the available measurements, different state estimates of the state vector xk can be
made. If at time k all measurements up to and including time k− 1 are available, then a so-called
a-priori state estimate can be formed, which is indicated by x̂k|k−1. Here, the first index, in this
case k, indicates the time of the state estimate and the second index indicates whether the state
estimate is a-priori or a-posteriori. So, x̂k|k−1 is an estimate of xk before the measurement at
time k has been processed. Determining the a-priori state estimate x̂k|k−1 and the a-priori state
estimation covariance Pk|k−1 corresponds with the first phase of the discrete-time Kalman filter,
which is called the prediction phase [17]. When the measurement at time k becomes available,
a so-called a-posteriori state estimate can be formed, which is indicated by x̂k|k. So, x̂k|k is an
estimate of xk after the measurement at time k is being processed. Determining the a-posteriori
state estimate x̂k|k and the a-posteriori state estimation covariance Pk|k corresponds with the
second phase of the discrete-time Kalman filter, which is called the measurement update phase
[17]. Figure 4.3 gives a schematic overview of the two phases of a discrete-time Kalman filter.
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Figure 4.3: A schematic overview of the two phases of a discrete-time Kalman filter together with
the a-posteriori and the a-priori state estimates and the corresponding state estimation covariances
[17].

In the first phase of the discrete-time Kalman filter, which is the prediction phase, the a-priori
state estimate is determined as follows

x̂k|k−1 = Ax̂k−1|k−1 +Buk, (4.25)

where x̂k−1|k−1 is the a-posteriori state estimate of the previous time step [17]. Then, the predicted
a-priori state estimation covariance can be determined as follows

Pk|k−1 = APk−1|k−1A
T +Qk, (4.26)

where Pk−1|k−1 is the a-posteriori state estimation covariance of the previous time step. The
second phase of the discrete-time Kalman filter is the measurement update phase, which is only
executed if a new measurement is available as will be explained in Section 4.2.3. In the meas-
urement update phase, first the predicted innovation is determined, which is the error made in
estimating the output y

k
and is given by

ỹ
k
= y

k
− ŷ

k
= y

k
−Ckx̂k|k−1 −Duk. (4.27)

Furthermore, the innovation covariance matrix is given by

Sk = CkPk|k−1C
T
k +Rk. (4.28)

Using the innovation covariance matrix, the Kalman gain can be determined as follows

Kk = Pk|k−1C
T
k S

−1
k . (4.29)

Finally, the updated a-posteriori state estimate is given by

x̂k|k = x̂k|k−1 +Kkỹk = x̂k|k−1 +Kk

(
y
k
− ŷ

k

)
, (4.30)

and the updated a-posteriori state estimation covariance is given by

Pk|k = (I−KkCk)Pk|k−1. (4.31)

Since the time-varying observation matrix Ck is included in the equations of the measurement
update phase, this could result in instability if the yaw rate of the host vehicle ωh

z,k becomes
too large. However, for the driving scenarios discussed in Section 3.5, the yaw rate remains rel-
atively small and is slowly varying. Therefore, this possible instability will not be discussed further.

The process noise covariance matrix is given by

Qk = GqkG
T , (4.32)
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where qk is determined using the expected value operator similar to the measurement noise cov-
ariance matrix, which can both be determined as follows

qk = E
{
wnw

T
m

}
=


σ2
wh

jx

0 0 0

0 σ2
wt

jx

0 0

0 0 σ2
wh

jy

0

0 0 0 σ2
wt

jy

 δnm = q

Rk = E
{
vnv

T
m

}
=


σ2
dr
x

0 0 0

0 σ2
vr
x

0 0

0 0 σ2
dr
y

0

0 0 0 σ2
vr
y

 δnm = R.

(4.33)

Here, σ2 is the variance of the signals present in respectively the process noise vector w and the
measurement noise vector v. Both the process noise and the measurement noise are assumed to
be zero-mean Gaussian white noise processes and due to the Kroneckerdelta function δnm both
covariance matrices do not depend on time, resulting in Qk = Q and Rk = R [17]. Furthermore,
both q and R are square, positive definite and also diagonal, since the motions of the object in the
longitudinal and lateral direction of the current body-fixed frame are assumed to be uncorrelated.
The noise levels of the measurement signals included in R are listed in Table 3.2.

4.2.2 Additional correction step Kalman filter

In this research, the constant acceleration model is slightly adapted by using the absolute motion
of the object instead of the relative motion. To reduce the state estimation errors when the host
vehicle is cornering (ωh

z ̸= 0), the a-posteriori state estimate of the previous time step x̂k−1|k−1 is
corrected for the rotation of the host vehicle before the prediction phase of the Kalman filter is
executed.

If the host vehicle is cornering, the current body-fixed frame e⃗h
k will rotate with respect to the

previous body-fixed frame e⃗h
k−1. Figure 4.4 shows the estimated relative distances of the previous

time step before correction in frame e⃗h
k−1 together with the measured relative distances in frame

e⃗h
k , where the rotation between both frames is clearly visible. Without correcting x̂k−1|k−1 for
the rotation of the host vehicle, the a-priori state estimate x̂k|k−1 as calculated by (4.25) will still

be given in the previous body-fixed frame e⃗h
k−1, whereas the measurement vector y

k
is given in

the current body-fixed frame e⃗h
k . By correcting x̂k−1|k−1 before the prediction phase, both the

a-priori state estimate x̂k|k−1 and the measurement vector y
k
are given in the current body-fixed

frame e⃗h
k when performing the measurement update phase of the Kalman filter as given in (4.30).

In this way the state estimation errors can be reduced.

The relation between the previous body-fixed frame e⃗h
k−1 and the current body-fixed frame e⃗h

k is
given by

e⃗h
k−1 = R(∆θh) e⃗h

k =

 cos(∆θh) − sin(∆θh) 0

sin(∆θh) cos(∆θh) 0

0 0 1

 e⃗h
k , (4.34)

where R(∆θh) is the rotation matrix and ∆θh is the difference in heading angle between two
samples, which can be obtained as follows

∆θh = ωh
z,k−1Ts. (4.35)

Here, at every sample, the yaw rate of the previous time step ωh
z,k−1 is assumed to be known from

the IMU. Furthermore, the yaw rate of the host vehicle is assumed to be constant again over the
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sample time Ts. The corrected a-posteriori state estimate of the previous time step is given by

x̂∗k−1|k−1 =
[
d̂r

∗

x,k−1|k−1 v̂t
∗

x,k−1|k−1 ât
∗

x,k−1|k−1 d̂r
∗

y,k−1|k−1 v̂t
∗

y,k−1|k−1 ât
∗

y,k−1|k−1

]T
.

(4.36)
Using (4.34), the a-posteriori estimate of the longitudinal relative distance can be corrected as
follows

d̂r
∗

x,k−1|k−1 = d̂rx,k−1|k−1 cos(∆θh) + d̂ry,k−1|k−1 sin(∆θh), (4.37)

In a similar way the a-posteriori estimates of the absolute longitudinal velocity and acceleration
of the object can be corrected.

The a-posteriori estimate of the lateral relative distance can be corrected using (4.34) as follows

d̂r
∗

y,k−1|k−1 = −d̂rx,k−1|k−1 sin(∆θh) + d̂ry,k−1|k−1 cos(∆θh). (4.38)

Again, the a-posteriori estimates of the absolute lateral velocity and acceleration of the object
can be corrected in a similar way. The correction step can be implemented in the Kalman filter
by replacing the a-posteriori state estimate x̂k−1|k−1 in (4.25) by the corrected a-posteriori state
estimate x̂∗k−1|k−1.

Figure 4.4: The estimated relative distances of the previous time step before correction in frame
e⃗h
k−1 together with the measured relative distances in frame e⃗h

k .
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4.2.3 Low sampling rate of the radar sensor

When using the Kalman filter as discussed so far, the measurements are assumed to be available
at every sample. However, in reality this is not the case since the sample rate of the radar sensor
differs from the operating frequency of the AEB controller (including the Kalman filter). The
sample rate of the radar sensor is 16.7 Hz, whereas the operating frequency of the AEB controller
is 100 Hz. This means that at approximately every sixth sample new measurements from the
radar sensor are available, and in between these measurements the Kalman filter should estimate
the states without a measurement update. Here, it is assumed that there are no inter-sample
measurements and the sample rate of the radar sensor is a multitude of the operating frequency of
the Kalman filter. In the literature, a common approach to the problem described above is to only
perform the measurement update phase in case new measurements are available [51] [52]. In [51],
this approach results in a size-varying measurement vector y

k
, observation matrix Ck, observed

input matrix D, and measurement noise vector vk. However, this method ensures that the state
estimates are only updated when new measurements are available, which is achieved by removing
the elements of y

k
, Ck, D, and vk that do not belong to new measurements. If at time k the only

components available of the measurement vector y
k
are i1, ..., imk

(with 1 ≤ i1 ≤ ... ≤ imk
≤ m),

then the corrected measurement vector is given by

y∗
k
= Lkyk, (4.39)

where Lk is a mk × m matrix with mk being the number of new measurements at time k and
with m being the number of rows of the observation matrix Ck. The matrix Lk has ones at
the positions ((1, i1), ..., (mk, imk

)) and zeros elsewhere. Furthermore, the corrected observation
matrix, observed input matrix and measurement noise vector are given by

C∗
k = LkCk D∗

k = LkD v∗k = Lkvk. (4.40)

This method can be implemented by replacing y
k
, Ck, D and vk in (4.25) to (4.31) with the

corrected y∗
k
, C∗

k, D
∗
k and v∗k. Furthermore, this method can be used for setups with multiple

sensors with different sample rates. In [53], another method is proposed where the unavailable
measurements are considered to be exactly equal to the predicted measurements. Therefore, sim-
ilar to the method discussed before, the state estimates are not corrected with the measurements
and the a-posteriori state estimate x̂k|k is equal to the a-priori state estimate x̂k|k−1. However,
the method proposed in [53] results in a modified a-posteriori state estimation covariance Pk|k.
In [54], the Kalman gain Kk is set to zero in case a measurement is missing, which similar to the
method presented in [51] results in an a-posteriori state estimate x̂k|k equal to the a-priori state
estimate x̂k|k−1 and an a-posteriori state estimation covariance Pk|k equal to the a-priori state
estimation covariance Pk|k−1. It should be noted that these methods are not necessarily math-
ematically proven, but implementing them can improve the performance of the Kalman filter.

The method used to deal with the low sampling rate of the radar sensor is similar to the methods
presented in [51] and [54]. However, in the setup considered in this research only the radar sensor
provides the measurements included in the measurement vector y

k
. Therefore, in contrast to the

method presented in [51], there is no need to correct y
k
, Ck, D and vk in case no new measurements

are available. If the radar sensor does not provide a new measurement, the state estimates are
only based on the prediction step of the Kalman filter and the a-posteriori state estimate x̂k|k
is set equal to the predicted a-priori state estimate x̂k|k−1, and the a-posteriori state estimation
covariance Pk|k is set equal to the predicted a-priori state estimation covariance Pk|k−1.
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4.2.4 Initialization of the state estimator

When the object enters the field of view of the radar sensor, the Kalman filter should be initialized
first. This involves making an initial estimate of the states included in the state vector xk as given
in (4.6). The initial estimate of these states is given by

x̂0 =
[
d̂rx,0 v̂tx,0 âtx,0 d̂ry,0 v̂ty,0 âty,0

]T
. (4.41)

Here, the initial estimates of the longitudinal and lateral relative distances are set equal to the
initial measured longitudinal and lateral relative distances obtained by the radar sensor as follows

d̂rx,0 = drx,0

d̂ry,0 = dry,0.
(4.42)

Furthermore, the initial estimates of the absolute longitudinal and lateral velocity of the object
are obtained from the initial measurements of the radar sensor, the IMU and the odometer using
the relations given in (4.23) as follows

v̂tx,0 = vrx,0 + vhx,0 − ωh
z,0d

r
y,0

v̂ty,0 = vry,0 + ωh
z,0d

r
x,0.

(4.43)

Finally, the initial estimates of the absolute longitudinal and lateral acceleration of the object are
set to zero, since they are unknown. By initializing the Kalman filter with the initial estimates as
described above, the initialization errors are reduced and the state estimates will converge sooner
towards their actual values.

In addition to the states, also the state estimation covariance needs to be initialized. Since the
initial state estimates are obtained directly from the initial radar measurements, the measurement
noise levels of the radar measurements as given in Table 3.2 are used to determine the initial state
estimation covariance as follows

P0 = A



σ2
dr
x

0 0 0 0 0

0 σ2
vr
x

0 0 0 0

0 0 0 0 0 0

0 0 0 σ2
dr
y

0 0

0 0 0 0 σ2
vr
y

0

0 0 0 0 0 0


AT +Q. (4.44)

4.2.5 Selecting the process noise values

In general, the performance of the Kalman filter largely depends on the ratio between the covari-
ance matrices Q and R. As discussed earlier, the noise levels of the measurement signals included
in the measurement noise covariance matrix R are known from the product data sheet of the radar
sensor and are listed in Table 3.2. Therefore, the performance of the Kalman filter is optimized
by solely tuning the process noise values of the process noise covariance matrix Q. This is done
by minimizing a cost function for different process noise values. As shown in (4.33), the process
noise covariance matrix Q of the constant acceleration model consists of four noise terms on the
longitudinal and lateral jerk for both the host vehicle and the object (or target). The process
noise matrix G relates these noise terms to all states. Here, the process noise values of the host
vehicle and the object are assumed to be equal, which results in a two-parameter optimization
problem. The resulting process noise covariance matrix including the process noise values to be
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tuned is given by

Q = GqGT = G


σ2
wh

jx

0 0 0

0 σ2
wt

jx

0 0

0 0 σ2
wh

jy

0

0 0 0 σ2
wt

jy

GT

= G


10Px 0 0 0

0 10Px 0 0

0 0 10Py 0

0 0 0 10Py

GT ,

(4.45)

where Px and Py are the parameters used to vary the process noise values. By varying Px and Py,
the performance of the Kalman filter can be compared for different process noise values, and by
minimizing a cost function the process noise values resulting in the lowest cost C can be found.
The cost function C used to find these process noise values is given by

C =

N∑
n=1

RMS
(
xgt
k,n − x̂k,n

)
max

(∣∣∣xgt
k,n − x̂k,n

∣∣∣) =

N∑
n=1

√
1
K

∑K
k=1

(
xgt
k,n − x̂k,n

)2
max

(∣∣∣xgt
k,n − x̂k,n

∣∣∣) , (4.46)

where N is the total number of states in the state vector xk as given in (4.6), K is the total number
of samples used to calculate C and superscript gt is used to indicate the ground truth signal. The
cost function is the summation of the root-mean-square (RMS) error divided by the maximum
estimation error for every single state of all simulations. In this way, the RMS error is normalised
with the maximum error, resulting in a cost between 0 and 1 and thus allowing the summation of
the costs for different states since they all contribute equally to the cost function.

4.3 Tuning and performance of the state estimator

To evaluate the performance of the Kalman filter, simulations are performed for the driving scen-
arios described in Chapter 3. The outputs of the vehicle models are used as the ground truth
signals in the simulation results presented in this section. Furthermore, in this section, it is
assumed that there is no measurement noise present on the longitudinal velocity vhx,k and the

longitudinal acceleration ahx,k of the host vehicle measured by the odometer and IMU. The reason
for this assumption is that these signals are included in the input vector given in (4.7), meaning
the measurement noise on these signals is not taken into account by the Kalman filter. For the
same reason it is assumed that there is no measurement noise present on the yaw rate of the host
vehicle ωh

z obtained by the IMU, and used in the measurement equation given in (4.24) and in
the additional correction step of the Kalman filter. Finally, the field of view of the radar sensor
as given in Figure 3.3 is not considered in this section and it is assumed that the radar sensor is
able to ”see” the object at any time.

In this section, first the process noise values are selected using the method discussed in the previous
section. Thereafter, the performance of the Kalman filter is analyzed for different driving scenarios.

4.3.1 Selection of the process noise values

To find the process noise values resulting in the lowest cost C, the method described in Section
4.2.5 is used. Here, the cost function given in (4.46) is minimized for different process noise values.
Due to the assumption that the process noise values of the host vehicle and the object are equal,
the process noise values are varied using only two parameters, being Px and Py. The process noise
values are tuned for one driving scenario, such that the remaining scenarios give a more objective
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indication of the performance of the Kalman filter. The scenario used to tune the process noise
values is the fourth scenario, which is the most complex scenario of the proposed scenarios, where
the host vehicle turns away from a braking target vehicle with a varying yaw rate. Therefore, both
the constant acceleration assumption and the constant yaw rate assumption do not hold for this
scenario, which makes this scenario closest to reality. To compare the values of the cost function
C for different combinations of Px and Py, the same noise seeds are used for the measurement
noise added to the radar measurements for every combination of Px and Py. Using different noise
seeds resulted in the same process noise values resulting in the lowest cost C as presented in this
section. Furthermore, to ensure that the cost function C is not affected by any initialization er-
rors, the estimation errors used to calculate the cost function C are first included after 1 second
of simulation time.

Figure 4.5 shows the cost function C for different combinations of the parameters Px and Py.
These results are obtained by varying Px and Py in steps of 0.5 from -4 to 4. Here, the red dot
indicates the minimal value of C, which is obtained when both Px and Py are set to 1. This means
that for the fourth driving scenario, the lowest cost C is reached if the process noise values are set
relatively high compared to the measurement noise values. Therefore, in this setting, the Kalman
filter mostly relies on the measurements to estimate the states. Furthermore, Figure 4.5 shows the
performance of the Kalman filter gets worse for lower values of Px.

Figure 4.5: The cost function C for different combinations of the parameters Px and Py, where
the red dot indicates the combination resulting in the minimal value of C.
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4.3.2 Performance of the state estimator

In this section the performance of the Kalman filter with the process noise values found in the
previous section is evaluated for the driving scenarios described in Chapter 3. The performance
of the Kalman filter is evaluated by determining the errors between the estimated states and the
corresponding ground truth signals and comparing them for different driving scenarios. More
specifically, the RMS values and the absolute maximum values of these state estimation errors
are compared, which are listed in the top part of Table 4.1. Furthermore, the RMS values and
the absolute maximum values of the errors between the direct state measurements and the cor-
responding ground truth signals are listed in the bottom part of Table 4.1. The only direct state
measurements available are the longitudinal relative distance drx and the lateral relative distance
dry. As an example, the RMS value and the absolute maximum value of the state estimation error
of a certain state x are given by

RMS(xgt − x̂) =

√√√√ 1

K

K∑
k=1

(
xgt
k − x̂k

)2
max(xgt − x̂) = max

(∣∣xgt
k − x̂k

∣∣) (4.47)

where xgt
k is the ground truth value and x̂k is the state estimate of state x at time k. Again,

to ensure that the RMS values and the absolute maximum values of the state estimation errors
are not affected by any initialization errors, the state estimation errors are first included after 1
second of simulation time.

Table 4.1: The RMS errors and the absolute maximum errors of all state estimates (top part) and
of the direct state measurements (bottom part) for all driving scenarios.

1.CCRb 2.CCRm 3.VRU 4.Turning

Error RMS max RMS max RMS max RMS max

dr,gtx − d̂rx (m) 0.058 0.083 0.058 0.088 0.060 0.084 0.048 0.101

vt,gtx − v̂tx (m/s) 0.070 0.141 0.058 0.141 0.059 0.141 0.084 0.258

at,gtx − âtx (m/s2) 0.293 1.047 0.102 0.230 0.103 0.230 0.247 0.497

dr,gty − d̂ry (m) 0.018 0.022 0.018 0.022 0.019 0.020 0.257 0.021

vt,gty − v̂ty (m/s) 0.050 0.128 0.050 0.128 0.050 0.128 0.062 0.128

at,gty − âty (m/s2) 0.103 0.225 0.103 0.225 0.103 0.225 0.294 0.226

dr,gtx − drx (m) 0.124 0.371 0.124 0.371 0.124 0.371 0.124 0.371

dr,gty − dry (m) 0.120 0.414 0.120 0.414 0.120 0.414 0.120 0.414

When comparing the state estimation errors giving in the top part of Table 4.1 for the different
driving scenarios, it can be concluded that the errors are similar in magnitude for all scenarios.
However, scenario 2 and 3 result in smaller or similar errors compared to scenarios 1 and 4. This
could be explained by the fact that scenarios 2 and 3 are the simplest scenarios, since both the
constant acceleration assumption and the constant yaw rate assumption hold for these scenarios.
Furthermore, as expected, it can be seen that most errors increase when a cornering maneuver is
included, which is the case in scenario 4. This scenario is used to select the process noise values.
Compared to the other scenarios, most RMS values and absolute maximum values of the state
estimation errors are larger for scenario 4. Therefore, it can be concluded that the selected process
noise values in the previous section can be used for different driving scenarios.

The bottom part of Table 4.1 includes the RMS values and the absolute maximum values of the
errors between the direct state measurements and the corresponding ground truth signals. Com-
paring these errors with the state estimation errors in the top part of Table 4.1 also gives useful
insights in the performance of the Kalman filter. Since the measurement noise added to the radar
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sensor measurements (as given in Table 3.2) is equal for every scenario, also the RMS values and
the absolute maximum values of the direct state measurement errors are equal for all scenarios.
When comparing the state estimation errors of the longitudinal and lateral relative distances with
the direct state measurement errors, it can be concluded that by using the Kalman filter, the
measurement noise can be reduced significantly. Compared to the direct state measurement er-
rors, the state estimation errors are two to six times smaller. The only exception here is the state
estimation error of the lateral relative distance for scenario 4, which is about twice as large as the
corresponding direct state measurement error. This can be explained by the assumption made in
the motion model of the Kalman filter, where the lateral velocity of the host vehicle is assumed
to be zero. However, for the cornering maneuver included in scenario 4 this assumption is not
valid, which causes the larger state estimation error of the lateral relative distance for this scenario.

The ground truth signals and the estimation of all states for all driving scenarios together with
the measured longitudinal and lateral relative distance are shown in Figure B.1 in Appendix B.1.
Here, the Kalman filter is initialized using the method discussed in Section 4.2.4. The effects of
the initialization method on the performance of the Kalman filter will not be discussed. Figure
B.1 shows that for all driving scenarios the estimations of all states correspond well with the
ground truth signals and the estimation errors are limited considering the quality of the available
measurements. Therefore, for the simulated driving scenarios, the Kalman filter is able to estimate
the states accurately with an acceptable error. Furthermore, by using the Kalman filter, the state
estimates are available at every sample and the measurement noise levels on the longitudinal and
lateral relative distance are significantly reduced.

4.4 Path prediction of the detected object

To determine if a detected object is relevant for the AEB system, the paths of both the host vehicle
and the detected object are predicted first. Once the predicted paths are known, a possible collision
between the host vehicle and the object can be found and a brake intervention by the AEB system
can be initiated if necessary. At every time step k, the paths of both the host vehicle and the
detected object are predicted in the current body-fixed frame e⃗h

k . Figure 4.6 shows the current
and predicted states describing the position and motion of the object in the current body-fixed
frame.

Figure 4.6: The current and the predicted position and motion of the detected object in the current
body-fixed frame.
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The states describing the position and motion of the object are included in the state vector xk
given in (4.6). The position of the object is predicted over the time horizon [k, k + n], where n is
the prediction horizon in samples. This can be done by using the last available a-posteriori state
estimate x̂k|k to determine the predicted state estimate x̂k+n|k, which is also called a n-step a-priori
prediction [17][22]. Since the prediction horizon n is fixed, this type of prediction is also called a
fixed-lead prediction [16]. As will be discussed in the next section, the larger the prediction horizon
n, the larger the uncertainty of the predicted position will be. The predicted state estimate x̂k+n|k
can be obtained by iterating the prediction phase of the Kalman filter n times. This means the
constant acceleration model is used again to predict the position and motion of the object, where
it is assumed that the object has uncorrelated motions in both the longitudinal and the lateral
direction of the current body-fixed frame. Furthermore, the longitudinal and lateral acceleration
of the object are assumed to be constant during the time horizon [k, k + n], which introduces
some model uncertainty since the acceleration of the object could change during this time horizon.
Using the a-posteriori state estimate x̂k|k, the predicted state estimate for one time step ahead of
the current time step k can be determined in a similar way as the a-priori state estimate given in
(4.25) and is given by

x̂k+1|k = Ax̂k|k +Buk. (4.48)

Now, by using (4.48), the predicted state estimate for two time steps ahead of the current time
step k can be determined as follows

x̂k+2|k = Ax̂k+1|k +Buk

= A
(
Ax̂k|k +Buk

)
+Buk

= A2x̂k|k +ABuk +Buk.

(4.49)

From (4.48) and (4.49), the general equation of the predicted state estimate x̂k+n|k can be derived,
which is given by [55]

x̂k+n|k = Anx̂k|k +

n∑
m=1

Am−1Buk. (4.50)

Here, as given in (4.7), the input vector uk consists of the longitudinal velocity vhx,k and the

longitudinal acceleration ahx,k of the host vehicle. Since the motion of the host vehicle does not
influence the predicted position of the object in the current body-fixed frame, (4.50) can be
simplified as follows

x̂k+n|k = Anx̂k|k

d̂rx,k+n|k
v̂tx,k+n|k
âtx,k+n|k
d̂ry,k+n|k
v̂ty,k+n|k
âty,k+n|k


=



1 Ts
T 2
s

2 0 0 0

0 1 Ts 0 0 0

0 0 1 0 0 0

0 0 0 1 Ts
T 2
s

2

0 0 0 0 1 Ts

0 0 0 0 0 1



n 

d̂rx,k|k
v̂tx,k|k
âtx,k|k
d̂ry,k|k
v̂ty,k|k
âty,k|k


,

(4.51)

where d̂rx,k+n|k and d̂ry,k+n|k now indicate the predicted longitudinal and lateral distance between
the object and the position of the radar sensor at time k in the current body-fixed frame. Here, it
should be noted that d̂rx,k+n|k and d̂ry,k+n|k do not indicate the predicted relative distance between

the object and the host vehicle, since the motion of the host vehicle is not included in (4.51).

As is shown in Figure 4.6, the predicted absolute longitudinal and lateral position of the object (or
target vehicle) in the current body-fixed frame can be determined in a similar way as the vector
r⃗T/H given by (4.16) as follows
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x̂t
k+n = d̂rx,k+n|k + lf

ŷtk+n = d̂ry,k+n|k,
(4.52)

where x̂t
k+n indicates the predicted absolute longitudinal position of the object in the e⃗h

x,k direc-

tion and ŷhk+n indicates the predicted absolute lateral position of the object in the e⃗h
y,k direction.

Furthermore, lf is the distance between the center of mass of the host vehicle and the radar sensor,
which is set equal to the known distance a between the center of mass and the front axle of the
host vehicle distance as given in Table 3.4.

At every time step k, the absolute longitudinal and lateral position of the object is predicted for
multiple prediction times tpre, which together form the predicted path of the object at sample k.
The prediction horizon in samples n can be determined from the prediction time as follows

n =
tpre
Ts

, (4.53)

where Ts is the sample time of the AEB system being equal to 0.01 s and the prediction horizon in
samples n is rounded to the nearest integer. In Figure 4.7 the actual path of the object is shown
together with its predicted path in the current body-fixed frame. Here, the prediction time tpre is
changed from one to three seconds in steps of a half-second. For the driving scenarios discussed
in Section 3.5, where the host vehicle drives with a velocity of 30 km/h, a prediction horizon of
three seconds is assumed to be sufficient to prevent a collision. In Figure 4.7a, the predicted path
for the CCRb driving scenario is shown, where the predicted positions start to deviate from the
ground truth positions once the object starts to brake. Furthermore, in Figure 4.7b, the predicted
path for the AEB VRU scenario is shown, where a small deviation is noticeable between the
predicted positions and the ground truth positions. This deviation is caused by the uncertainty
of the predicted positions as will be discussed in the next section. In the end, it can be concluded
that the error between the actual path and the predicted path is acceptable, and therefore the
method proposed in this section to predict the path of the detected object will be used in the
remainder of this research.
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Figure 4.7: The actual path and the predicted path of the detected object in the current body-
fixed frame.

4.4.1 Uncertainty of the predicted path

As discussed in the previous section, the predicted positions of the detected object are uncertain
due to the model uncertainty of the constant acceleration model and the presence of measurement
noise on the sensor measurements. To determine the level of uncertainty on the predicted positions
of the object, the state estimation covariance needs to be predicted over the time horizon [k, k+n].
This can be done by using the last available a-posteriori state estimation covariance Pk|k to
determine the predicted state estimation covariance Pk+n|k. Again, the predicted state estimation
covariance Pk+n|k can be obtained by iterating the prediction phase of the Kalman filter n times.
Using the a-posteriori state estimation covariance Pk|k, the predicted state estimation covariance
for one time step ahead of the current time step k can be determined in a similar way as the
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a-priori state estimation covariance in (4.26) and is given by

Pk+1|k = APk|kA
T +GQGT . (4.54)

By using (4.54), the predicted state estimation covariance for two time steps ahead of the current
time step k can be determined as follows

Pk+2|k = APk+1|kA
T +GQGT

= A
(
APk|kA

T +GQGT
)
AT +GQGT

= A2Pk|kA
T 2

+AGQGTAT +GQGT .

(4.55)

Now, from (4.54) and (4.55), the general equation of the predicted state estimation covariance
Pk+n|k can be derived, which is given by

Pk+n|k = AnPk|kA
T n

+

n∑
m=1

Am−1GQGTATm−1
. (4.56)

where the system matrix A to the power of the prediction horizon n shows that the state estim-
ation errors grow exponentially when the prediction horizon n becomes larger [55]. The resulting
predicted state estimation covariance Pk+n|k has the following form

Pk+n|k =



σ(d̂rx, d̂
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t
y)

0 0 0 σ(v̂ty, d̂
r
y) σ(v̂ty, v̂

t
y) σ(v̂ty, â
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, (4.57)

where the variances are located on the diagonal of the covariance matrix and the covariances are
located on the off-diagonal. As shown in (4.57), there is a correlation between the position, velocity
and acceleration in both the longitudinal and the lateral direction, which is expected since the
constant acceleration model is used, where it is assumed that the object has uncorrelated motions
in both the longitudinal and the lateral direction of the current body-fixed frame. The goal is to
determine the level of uncertainty on the predicted positions of the object, which can be indicated
by the variances σ2

d̂r
x

and σ2
d̂r
y

. These variances are not exactly equal to σ(d̂rx, d̂
r
x) and σ(d̂ry, d̂

r
y) as

given in (4.57), since this would imply that there is no correlation between the position, velocity
and acceleration. When taking into account these correlations and the corresponding units of
the covariances, the variances σ2

d̂r
x

and σ2
d̂r
y

given in m2 can be obtained. These variances are

determined as follows

σ2
d̂r
x
= σ(d̂rx, d̂

r
x) + Tsσ(d̂

r
x, v̂

t
x) +

T 2
s σ(d̂

r
x, â

t
x)

2

σ2
d̂r
y
= σ(d̂ry, d̂

r
y) + Tsσ(d̂

r
y, v̂

t
y) +

T 2
s σ(d̂

r
y, â

t
y)

2
.

(4.58)
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4.5 Path prediction of the host vehicle

Similar to the path prediction of the detected object, the path of the host vehicle is also predicted
in the current body-fixed frame e⃗h

k . However, in contrast to the path prediction of the object,
which uses the state estimates obtained by the Kalman filter, the path of the host vehicle is
predicted directly from the sensor measurements of the longitudinal velocity vhx,k, the longitudinal

acceleration ahx,k and the yaw rate of the host vehicle ωh
z,k. Figure 4.8 shows the current states

and the predicted position and heading angle of the host vehicle in the current body-fixed frame.
Here, x̂h

k+n represents the predicted longitudinal position of the center of mass of the host vehicle

in the e⃗h
x,k direction, ŷhk+n represents the predicted lateral position of the center of mass of the

host vehicle in the e⃗h
y,k direction, and θ̂hk+n represents the predicted heading angle of the host

vehicle with respect to the e⃗h
x,k direction of the current body-fixed frame.

Figure 4.8: The current states and the predicted position and heading angle of the host vehicle in
the current body-fixed frame.

To predict the path of the host vehicle, the constant yaw rate and acceleration model is used [23].
The same prediction time tpre is used for the path prediction of both the host vehicle and the
object. The predicted position and heading angle of the host vehicle are given by

x̂h
k+n = xh

k +
ahx,k

(
cos(θ̂hk+n)− cos(θhk )

)
(ωh

z,k)
2

+

(
vhx,k + ahx,ktpre

)
sin(θ̂hk+n)− vhx,k sin(θ

h
k )

ωh
z,k

=
ahx,k

(
cos(θ̂hk+n)− 1

)
(ωh

z,k)
2

+

(
vhx,k + ahx,ktpre

)
sin(θ̂hk+n)

ωh
z,k

ŷhk+n = yhk +
ahx,k

(
sin(θ̂hk+n)− sin(θhk )

)
(ωh

z,k)
2

−

(
vhx,k + ahx,ktpre

)
cos(θ̂hk+n)− vhx,k cos(θ

h
k )

ωh
z,k

=
ahx,k sin(θ̂

h
k+n)

(ωh
z,k)

2
−

(
vhx,k + ahx,ktpre

)
cos(θ̂hk+n)− vhx,k

ωh
z,k

θ̂hk+n = θhk + ωh
z,ktpre = ωh

z,ktpre.

(4.59)

Since the position and heading angle of the host vehicle are predicted in the current body-fixed
frame, the initial longitudinal position xh

k , the initial lateral position yhk and the initial heading
angle θhk of the host vehicle are all equal to zero. At every time step, the yaw rate ωh

z,k and the

longitudinal acceleration ahx,k of the host vehicle are assumed to be known from the IMU and the
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longitudinal velocity vhx,k of the host vehicle is assumed to be known from the odometer. Further-

more, both the yaw rate ωh
z,k and the longitudinal acceleration ahx,k are assumed to be constant

over the prediction time tpre, which introduces some model uncertainty since they could change
during this period.

Instead of predicting the position of the center of mass of the host vehicle, the predicted position
of the front of the host vehicle needs to be known to detect a possible collision between the host
vehicle and the object. In Figure 4.8, the predicted longitudinal position of the front of the host
vehicle in the e⃗h

x,k direction is indicated by x̂h,F
k+n and the predicted lateral position of the front of

the host vehicle in the e⃗h
y,k direction is indicated by ŷh,Fk+n, which can be obtained as follows

x̂h,F
k+n = x̂h

k+n + lf cos(θ̂
h
k+n)

ŷh,Fk+n = ŷhk+n + lf sin(θ̂
h
k+n).

(4.60)

Figure 4.9 shows the actual path of the host vehicle together with the predicted path in the current
body-fixed frame for the ’turning away’ driving scenario. This driving scenario clearly shows the
benefit of using the constant yaw rate and acceleration model to predict the path of the host
vehicle. Here, in Figure 4.9a, the host vehicle is still driving straight, which means the current
yaw rate of the host vehicle is zero (ωh

z,k = 0). The predicted positions start to deviate from the
ground truth positions once the host vehicle starts to turn and the actual yaw rate of the host
vehicle becomes nonzero. Then, in Figure 4.9b, the host vehicle is turning away, which means the
current yaw rate of the host vehicle is nonzero (ωh

z,k ̸= 0). Here, a small deviation is noticeable
between the predicted positions and the ground truth positions. Again, this deviation is caused
by the uncertainty of the predicted positions as will be discussed in the next section. However,
it can be concluded that the error between the actual path and the predicted path is acceptable,
and therefore the method proposed in this section to predict the path of the host vehicle will be
used in the remainder of this research.

4.5.1 Uncertainty of the predicted path

The predicted positions of the host vehicle are uncertain due to the model uncertainty of the
constant yaw rate and acceleration model, but also due to the measurement noise present on the
sensor measurements. It is assumed that the uncertainty of the predicted path is only influenced
by the measurement noise. The goal is to determine the level of uncertainty on the predicted
positions of the host vehicle, which can be expressed in standard deviations by σx̂h and σŷh indic-
ating the level of uncertainty on the predicted longitudinal and lateral position respectively. To
determine σx̂h and σŷh , the noise levels of the measured longitudinal velocity σvh

x
, the measured

longitudinal acceleration σah
x
and the measured yaw rate σωh

z
as given in Table 3.2 and expressed

in standard deviations are used.

The level of uncertainty on the predicted positions of the host vehicle can be obtained by imple-
menting the measurement noise levels of the longitudinal velocity and acceleration, and the yaw
rate into the constant yaw rate and acceleration model given in (4.59) as follows

σx̂h =
σah

x

(
cos(σωh

z
tpre)− 1

)
(σωh

z
)2

+

(
σvh

x
+ σah

x
tpre

)
sin(σωh

z
tpre)

σωh
z

σŷh =
σah

x
sin(σωh

z
tpre)

(σωh
z
)2

−
(
σvh

x
+ σah

x
tpre

)
cos(σωh

z
tpre)− σvh

x

σωh
z

.

(4.61)
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Figure 4.9: The actual path and the predicted path of the host vehicle in the current body-fixed
frame for the ’turning away’ scenario.
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4.6 Summary

In this chapter, the absolute motion of the detected object is estimated from the available sensor
measurements using a linear discrete-time Kalman filter. The motion model used in the Kalman
filter is the constant acceleration model, which normally describes the relative motion between
the host vehicle and the object. However, in this research, the motion model is slightly adapted,
since the absolute motion of the object is required. Furthermore, an additional correction step
is proposed for the Kalman filter to reduce the state estimation errors when the host vehicle is
cornering. Since the radar sensor on the host vehicle has a lower sampling rate than the AEB
controller (including the Kalman filter), the state estimates are only updated in case a new meas-
urement becomes available. In between measurements, only the prediction step of the Kalman
filter is used to estimate the states. By performing simulations for the most complex driving
scenario, the process noise values of the process noise covariance matrix Q resulting in the lowest
cost C are found. For all simulated driving scenarios, the Kalman filter performs well and is able
to estimate the states accurately with an acceptable error.

To determine if a detected object is relevant for the AEB system, the paths of both the host
vehicle and the object are predicted. The position of the object is predicted by making a n-
step a-priori prediction using the last available state estimates from the Kalman filter. The level
of uncertainty on the predicted positions of the object is determined from the predicted state
estimation covariance. Furthermore, the position of the host vehicle is predicted directly from the
available sensor measurements and the level of uncertainty on the predicted positions is determined
from the corresponding sensor measurement noise levels.
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Chapter 5

AEB controller

Once the predicted paths of the host vehicle and the detected object are known, a possible collision
between the host vehicle and the object can be found. After determining if a detected object is
relevant and present in the driving path of the host vehicle, the AEB controller uses a risk metric
called the Brake-Threat-Number (BTN) to determine if a brake intervention is required, which is
a measure of the threat level and indicates the effort that is required to avoid a collision with the
object. The BTN is defined as the required acceleration of the host vehicle ahreq needed to avoid

a collision divided by the minimal achievable host vehicle acceleration ahmin [33] and is given by

BTN =
ahreq
ahmin

, (5.1)

where ahmin is chosen to be -7 m/s2 as explained in Section 3.3.3. In practice, the BTN ranges
from 0 to 1, since a BTN larger than 1 indicates a collision with the object cannot be avoided by
braking the vehicle due to the physical limitations of the brake system.

In this chapter, first a new method is proposed to determine if a detected object is relevant for
the AEB system. Thereafter, the method used to determine the required acceleration of the host
vehicle will be given. Then, the method used to compensate for the response delay of the brake
system will be discussed. Finally, the AEB controller in the form of a state machine will be
discussed together with all its states and conditions, and the AEB controller will be tuned to
optimize its performance.

5.1 Object relevance

Compared to the existing methods proposed in Section 2.2 used to determine if an object is
relevant, in this section a new method is proposed, which uses the predicted positions and the
corresponding levels of uncertainty of the host vehicle and the object as determined in the previous
chapter. At every time step k, the positions of the host vehicle and the object are predicted for
multiple prediction times tpre, which is changed from one to three seconds in steps of a half-second.
For every prediction time tpre, uncertainty ellipses are drawn around the corresponding predicted
positions of the host vehicle and the object. An elliptic shape is chosen due to the probabilistic
uncertainty model. These ellipses indicate where the host vehicle or the object has a large prob-
ability to be at time tpre [24]. A possible collision between the host vehicle and the object is found
if for a certain prediction time tpre the corresponding uncertainty ellipses intersect.
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5.1.1 Uncertainty ellipse detected object

Figure 5.1 shows the uncertainty ellipse around the predicted position of the detected object
(x̂t

k+n, ŷ
t
k+n) in the current body-fixed frame. Here, the radius of the major axis is indicated

by at and the radius of the minor axis is indicated by bt. Given the levels of uncertainty on
the predicted position of the object in standard deviations, the general equation of a standard
axis-aligned ellipse centered at the predicted position of the object becomes [56](

x− x̂t
k+n

σd̂r
x

)2

+

(
y − ŷtk+n

σd̂r
y

)2

= s, (5.2)

where s indicates the scale of the ellipse. The scale s depends on the desired confidence level
and can be obtained using the so called Chi-Square distribution [57], which will not be discussed
further. The scale s is set to 9.210, which corresponds with a confidence interval of 99%. This
means that the actual position of the object at time tpre lies within the corresponding uncertainty
ellipse with 99% certainty. The radii of the uncertainty ellipse can be determined from (5.2) as
follows

at = σd̂r
x

√
s

bt = σd̂r
y

√
s.

(5.3)

Finally, using the determined radii, the parametric representation of the uncertainty ellipse for
the object becomes

xt
ell(κ) = at cos(κ) + x̂t

k+n

ytell(κ) = bt sin(κ) + ŷtk+n,
(5.4)

where κ is a linearly spaced vector with points between 0 and 2π.

Figure 5.1: Uncertainty ellipse around the predicted position of the detected object in the current
body-fixed frame.
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5.1.2 Uncertainty ellipse host vehicle

Figure 5.2 shows the uncertainty ellipse around the predicted position of the host vehicle (x̂h,F
k+n, ŷ

h,F
k+n)

in the current body-fixed frame. Here, the radius of the major axis is indicated by ah and the
radius of the minor axis is indicated by bh. Furthermore, it can be seen that the uncertainty ellipse
is rotated over the predicted heading angle θ̂hk+n. Given the levels of uncertainty on the predicted
position of the host vehicle in standard deviations, the equation of a rotated ellipse centered at
the predicted position of the host vehicle and rotated over an angle θ̂hk+n can be derived from (5.2)
and is given by (

(x− x̂h,F
k+n) cos(θ̂

h
k+n) + (y − ŷh,Fk+n) sin(θ̂

h
k+n)

σx̂h

)2

+ ...

...

(
(x− x̂h,F

k+n) sin(θ̂
h
k+n)− (y − ŷh,Fk+n) cos(θ̂

h
k+n)

σŷh

)2

= s.

(5.5)

Similar as for the uncertainty ellipse of the object, the scale s for the uncertainty ellipse of the
host vehicle is chosen such that the actual position of the host vehicle at time tpre lies within
the corresponding uncertainty ellipse with 99% certainty. Furthermore, the width w of the host
vehicle is included in the radius of the minor axis bh such that the uncertainty ellipse of the host
vehicle is drawn around the front edges of the host vehicle. The resulting radii of the uncertainty
ellipse are given by

ah = σx̂h

√
s

bh = σŷh

√
s+

1

2
w.

(5.6)

Finally, using the determined radii, the parametric representation of the rotated uncertainty ellipse
for the host vehicle becomes

xh
ell(κ) = ah cos(θ̂hk+n) cos(κ)− bh sin(θ̂hk+n) sin(κ) + x̂h,F

k+n

yhell(κ) = ah sin(θ̂hk+n) cos(κ) + bh cos(θ̂hk+n) sin(κ) + ŷh,Fk+n.
(5.7)

Figure 5.2: Uncertainty ellipse around the predicted position of the host vehicle in the current
body-fixed frame.
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5.1.3 Collision detection

A possible collision is found if for a certain prediction time tpre the corresponding uncertainty
ellipses of the host vehicle and the object intersect. To determine if the uncertainty ellipses
intersect, the points representing the rotated uncertainty ellipse of the host vehicle (xh

ell, y
h
ell) are

inserted in the equation of the uncertainty ellipse of the object. The uncertainty ellipses intersect
if for a certain point (xh

ell, y
h
ell) the following condition holds(

xh
ell − x̂t

k+n

at

)2

+

(
yhell − ŷtk+n

bt

)2

≤ 1. (5.8)

Figure 5.3 shows an example of a relevant object, where the uncertainty ellipses of the host vehicle
and the object intersect for a certain prediction time tpre. In reality, a collision between the host
vehicle and the object will only occur if at time tpre the actual position of the object overlaps
with the actual position of the front of the host vehicle. Therefore, to determine the probability
of a collision, the probability of both the host vehicle and the object being present within the
overlapping area needs to be determined. However, determining this probability is considered to
be future work and will not be discussed further. An object is considered to be relevant for the AEB
system if the uncertainty ellipses intersect for a certain prediction time tpre. Using this method
will increase the number of false positives of the AEB system, since there is a large probability
that the actual position of either the host vehicle or the object lies outside the overlapping area
as is shown in Figure 5.3, meaning a brake intervention by the AEB system is unnecessary. An
object is also considered to be relevant if it is expected to be present right in front of the host
vehicle, which is the case if the absolute estimated lateral relative distance is smaller or equal to
half of the vehicle width w, described by the following condition

|d̂ry,k|k| ≤
1

2
w. (5.9)

Figure 5.3: Example of a relevant object, where the uncertainty ellipses of the host vehicle and
the object intersect.

5.2 Calculation of the required host acceleration

To determine the required acceleration of the host vehicle, two cases are considered in which the
detected object is either stationary or moving in the longitudinal direction of the current body-
fixed frame e⃗h

k . For these cases, the calculation methods of the required host acceleration ahreq are
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slightly different [33], which will both be discussed in the remainder of this section. Note that the
object is not moving in the longitudinal direction of the current body-fixed frame in every driving
scenario. For example in the ’turning away’ scenario, the object will also move in the lateral
direction of the current body-fixed frame once the host vehicle is turning away from the object.
However, this issue is solved when using the method proposed in the previous section to determine
if the object is relevant. If the host vehicle turns away from the object, a brake intervention will
not be initiated by the AEB system, since the object is not considered to be relevant anymore.

5.2.1 Required host acceleration with a stationary detected object

In the first case, the detected object is either standing still or moving initially and coming to a
standstill before the host vehicle comes to a standstill. To derive the required host acceleration,
it is assumed that the longitudinal acceleration of both the host vehicle ahx and the object atx
are constant. Given the current longitudinal position, velocity and acceleration of both the host
vehicle and the object as shown in Figure 5.4, the longitudinal position of the host vehicle and
the object along their path at time t is given by

dhx(t) = dhx(0) + vhx(0)t+
1

2
ahx(0)t

2

dtx(t) = dtx(0) + vtx(0)t+
1

2
atx(0)t

2,

(5.10)

and the longitudinal velocity of the host vehicle and the object at time t is given by

vhx(t) = vhx(0) + ahx(0)t

vtx(t) = vtx(0) + atx(0)t,
(5.11)

where the current states of the host vehicle and the object are taken at t = 0.

Figure 5.4: Longitudinal motion of the host vehicle and the detected object.

From (5.10) and (5.11), the required acceleration of the host vehicle ahreq can be determined as
follows [33]

ahreq = −1

2

vhx
2
(0)

drx(0) + dtstop
, (5.12)

where dtstop is the stopping distance of the object, which is given by

dtstop = −1

2

vtx
2
(0)

atx(0)
. (5.13)

The full derivations of the required host acceleration ahreq for the first case and the stopping
distance dtstop are given in Appendix C.1.
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5.2.2 Required host acceleration with a moving detected object

In the second case, the detected object is moving and the host vehicle needs to brake until its
velocity is equal to the velocity of the object. The relative longitudinal distance between the host
vehicle and the object at time t can be derived from (5.10) as follows

drx(t) =
(
dtx(0)− dhx(0)

)
+
(
vtx(0)− vhx(0)

)
t+

1

2

(
atx(0)− ahx(0)

)
t2

= drx(0) + vrx(0)t+
1

2
arx(0)t

2.

(5.14)

Furthermore, the relative longitudinal velocity between the host vehicle and the object at time t
can be derived from (5.11) as follows

vrx(t) =
(
vtx(0)− vhx(0)

)
+
(
atx(0)− ahx(0)

)
t

= vrx(0) + arx(0)t.
(5.15)

In this second case, a collision between the host vehicle and the object is avoided when their
velocities are equal at a time instant called Time-to-Touch (tTTT ) [33]. Solving (5.14) for the
Time-to-Touch gives the required acceleration of the host vehicle ahreq

ahreq = atx(0)−
(
vtx(0)− vhx(0)

)2
2drx(0)

. (5.16)

The full derivations of the required host acceleration ahreq for the second case and the Time-to-
Touch tTTT are given in Appendix C.2. The second case holds if the velocity of the object at
the Time-to-Touch is positive (vtx(tTTT ) > 0). Otherwise, the first case holds and the required
acceleration of the host vehicle ahreq is calculated using (5.12).

5.3 Compensation for the brake response delay

Instead of using the current motions of the host vehicle and the detected object to determine the
required host acceleration ahreq and the BTN, the motions are predicted into the future over the
brake response delay τb. When using these predicted motions, a brake intervention by the AEB
system can be initiated earlier to compensate for the response delay of the brake system. The
method used to determine the brake response delay τb of the modelled brake system is discussed
in Section 3.3.3, where Figure 3.7 shows the response delay of the brake system τb as a function
of the camshaft angle δc of the brake cam actuator. In this figure it can be seen that the response
delay decreases non-linearly for an increasing camshaft angle.

As discussed in the previous chapter, the states describing the motion of the host vehicle and the
detected object are uncertain. When predicting these states into the future over the time spanned
by the brake response delay τb the uncertainty of the predicted states will grow. Therefore, using
the predicted states to calculate the required host acceleration and the BTN will also affect their
uncertainty.

In the remainder of this section the methods used to predict the motions of the detected object
and the host vehicle will be discussed. Furthermore, the method used to determine required host
acceleration and the BTN from the predicted motions will be discussed.

5.3.1 Predicted motion of the detected object

To determine the required host acceleration ahreq using (5.12) or (5.16), several states describing
the longitudinal motion of the detected object need to be predicted, which are the longitudinal
relative distance drx, the longitudinal velocity vtx and the longitudinal acceleration atx. The method
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used to predict the motion of the detected object over the time spanned by the brake response
delay is almost similar to the method used to predict the path of the object as discussed in Sec-
tion 4.4. However, in contrast to the method used to predict the path of the object, now the
longitudinal relative distance drx instead of the longitudinal position of the detected object should

be predicted in the current body-fixed frame e⃗h
k , which means also the motion of the host vehicle

should be taken into account.

At every current time step k, the motion of the object is predicted in the current body-fixed frame
as is shown in Figure 4.6. The states describing the motion of the object are included in the state
vector xk given in (4.6). The motion of the object is predicted over the time horizon [k, k + nb],
where nb is the prediction horizon in samples. The prediction horizon nb can be obtained from
the brake response delay τb as follows

nb =
τb
Ts

, (5.17)

which is rounded to the nearest integer. Again, the motion of the object is predicted by making a
n-step a-priori prediction, resulting in the predicted state estimate x̂k+nb|k [17][22]. The constant
acceleration model is used to predict the motion of the object, where it is assumed that the
object has uncorrelated motions in both the longitudinal and the lateral direction of the current
body-fixed frame. Besides, the longitudinal and lateral acceleration of the object as well as the
longitudinal acceleration of the host vehicle are assumed to be constant during the time horizon
[k, k + nb], which introduces some model uncertainty since the acceleration of the object or the
host vehicle could change during this time horizon. Using (4.50), the predicted state estimate can
be obtained as follows

x̂k+nb|k = Anb x̂k|k +

nb∑
m=1

Am−1Buk

d̂rx,k+nb|k
v̂tx,k+nb|k
âtx,k+nb|k
d̂ry,k+nb|k
v̂ty,k+nb|k
âty,k+nb|k


=



1 Ts
T 2
s

2 0 0 0

0 1 Ts 0 0 0

0 0 1 0 0 0

0 0 0 1 Ts
T 2
s

2

0 0 0 0 1 Ts

0 0 0 0 0 1



nb


d̂rx,k|k
v̂tx,k|k
âtx,k|k
d̂ry,k|k
v̂ty,k|k
âty,k|k



+

nb∑
m=1



1 Ts
T 2
s

2 0 0 0

0 1 Ts 0 0 0

0 0 1 0 0 0

0 0 0 1 Ts
T 2
s

2

0 0 0 0 1 Ts

0 0 0 0 0 1



m−1 

−Ts −T 2
s

2

0 0

0 0

0 0

0 0

0 0


[

vhx,k
ahx,k

]
.

(5.18)

Note that in contrast to the predicted state estimate used for the path prediction given in (4.51),
now also the longitudinal motion of the host vehicle included in the input vector uk is predicted
in (5.18). Therefore, in contrast to the predicted state estimate given in (4.51), d̂rx,k+nb|k now
indicates the predicted longitudinal relative distance between the host vehicle and the object.

5.3.2 Predicted motion of the host vehicle

In addition to the states describing the motion of the detected object, also the longitudinal velocity
of the host vehicle vhx needs to be predicted to determine the required host acceleration ahreq
using (5.12) or (5.16). In contrast to the predicted motion of the object, which is obtained
by making a n-step a-priori prediction using the state estimates from the Kalman filter, the
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longitudinal velocity of the host vehicle is predicted directly from the (virtual) sensor measurements
of the longitudinal velocity vhx,k and the longitudinal acceleration ahx,k. When assuming that the
longitudinal acceleration of the host vehicle remains constant over the time spanned by the brake
response delay τb, the predicted longitudinal velocity of the host vehicle can be obtained from the
sensor measurements as follows

v̂hx,k+nb
= vhx,k + τba

h
x,k, (5.19)

which introduces some model uncertainty since the longitudinal acceleration of the host vehicle
could change during this time period.

5.3.3 Required host acceleration using the predicted motions

For a stationary object, the required acceleration of the host vehicle in discrete-time can be
determined by substituting the predicted states of the object and the host vehicle into (5.12) as
follows

ahreq,k = −1

2

v̂h
2

x,k+nb

d̂rx,k+nb|k + dtstop,k
, (5.20)

where the stopping distance of the object dtstop,k can be obtained as follows

dtstop,k = −1

2

v̂t
2

x,k+nb|k

âtx,k+nb|k
. (5.21)

For a moving object, the required acceleration of the host vehicle in discrete-time can be determined
by substituting the predicted states of the object and the host vehicle into (5.16) as follows

ahreq,k = âtx,k+nb|k −

(
v̂tx,k+nb|k − v̂hx,k+nb

)2
2d̂rx,k+nb|k

. (5.22)

For both cases, an arbitrary number functioning as a constant safety margin is subtracted from
the predicted relative distance d̂rx,k+nb|k before determining the required host acceleration. This
is done to ensure that the host vehicle comes to a standstill at a fixed distance from the object.

The Brake-Threat-Number (BTN) can now be obtained by substituting the required host accel-
eration ahreq,k into (5.1). Since the predicted states are uncertain, using them to calculate the

required host acceleration ahreq,k and consecutively the BTN will also affect their uncertainty. By
using the levels of uncertainty on the predicted states, a certain range in which the actual BTN
lies can be determined. However, the BTN used by the AEB controller is obtained directly from
the predicted states. Therefore, determining the range in which the actual BTN lies is considered
as future work.

5.4 AEB controller design

Depending on the threat level of the current traffic situation, indicated by the BTN, the AEB
controller determines if a brake intervention is required. The value of the BTN determines if the
AEB system should be activated or deactivated and in which operating mode the AEB system
should operate. The AEB system can operate in four different operating modes, as is shown in
Figure 5.5. For each operating mode the required brake acceleration ab,req differs, which is the
output of the AEB controller and is used by the brake cam actuator controller, as explained in
Section 3.3.2. Next, the operating modes of the AEB system will be discussed together with the
conditions that must hold to activate or deactivate the AEB system.
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Figure 5.5: Operating modes of the AEB system.

5.4.1 Operating modes

In the first operating mode, a Forward Collision Warning (FCW) is given, which is an audio-visual
warning to alert the driver for a likely collision [49]. If the FCW is given soon enough, the driver
can possibly avoid the collision by himself. However, the warning should not be given too early in
order to avoid the system from issuing a warning in non-critical situations, which could lower the
credibility of the AEB system [6]. To activate the AEB system and in this way the first operating
mode, the following conditions must hold:

• The current BTN value is larger than the value of the BTN threshold parameter BTNFCW.

• The object is considered to be relevant using the method discussed in the previous chapter.

• The current longitudinal velocity of the host vehicle vhx,k is larger than a predefined minimal

required velocity vhxmin to prevent the AEB system from being activated when for example
parking the vehicle.

The values of the parameters used by the AEB controller and described in this section are chosen
by performing simulations and will therefore not be discussed further in this research. The chosen
values of these parameters will be given in the following section.

Next, in the second operating mode, the vehicle brakes are being pre-charged to decrease the
response delay of the brake system, as given in Figure 3.7. In this way, a subsequent brake in-
tervention by the AEB system or driver can be carried out more quickly [6]. This operating
mode is activated once the current BTN value exceeds the value of the BTN threshold parameter
BTNpre-charge. In this operating mode, the required brake acceleration ab,req is set equal to a small
predefined acceleration apre−charge and a signal is sent to the cruise controller of the host vehicle
to stop accelerating the vehicle. For example, a small acceleration of 0.5 m/s2 already increases
the camshaft angle significantly to a value of 1.75 rad. Now, when looking at Figure 3.7, the
response delay of the brake system τb is given as a function of the camshaft angle δc. Here, it can
be seen that a camshaft angle of 1.75 rad makes the response delay of the brake system decrease
by approximately 0.2 s and therefore a subsequent brake intervention can be carried out quicker.
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Then, if the driver does not notice the FCW, and the BTN value increases further, the third oper-
ating mode of the AEB system is initiated in which the vehicle is partially braked. In this way a
haptic warning is given to the driver and the velocity of the host vehicle reduces slightly [6]. This
operating mode is activated once the current BTN value exceeds the value of the BTN threshold
parameter BTNpartial. Furthermore, in this operating mode the required brake acceleration ab,req
is set equal to the predefined acceleration apartial.

Finally, in case the driver still shows no (sufficient) response to avoid a collision with the detected
object, the last operating mode is activated in which a full brake intervention is initiated. This
operating mode is activated once the current BTN value exceeds the value of the BTN threshold
parameter BTNfull. In this operating mode, the required brake acceleration ab,req can be determ-
ined using the minimal achievable acceleration of the host vehicle ahmin as follows

ab,req = ahmin − âhres, (5.23)

where âhres is the estimated acceleration from resistant forces, which can be obtained as follows

âhres =
F̂h
res

meff
(5.24)

where F̂h
res is the estimated longitudinal resistant force acting on the host vehicle, which can be

obtained by using the predicted longitudinal velocity of the host vehicle v̂hx,k+nb
and substituting

it into (3.24).

To deactivate the AEB system, one of the following conditions must be satisfied:

• The current BTN value is smaller than the value of the BTN threshold parameter BTNdeactivate.

• The object is not considered to be relevant anymore and a full brake intervention has not
been initiated yet.

• The host vehicle comes to a standstill.

• The longitudinal velocity of the detected object is larger than the longitudinal velocity of
the host vehicle.

The conditions mentioned above to activate or deactivate the AEB system should hold for a
specified number of consecutive samples to prevent undesired activations or deactivations.

5.4.2 Tuning of the AEB controller

The performance of the AEB system is influenced by the parameters used by the AEB controller
as defined in the previous section. The chosen values of these parameters are summarised in Table
5.1. Here, it can be seen that the BTN threshold parameter BTNFCW, which determines the BTN
value at which the AEB system is activated, is set to 0.5. In previous research, a traffic situation is
considered critical when the BTN is larger than or equal to 0.5, which indicates a medium to high
threat [33]. The BTN threshold parameters BTNpre-charge and BTNpartial should lie somewhere
between 0.5 and 1, since a BTN larger than 1 means a collision with the object cannot be avoided.
The values of these parameters are chosen by performing simulations, where BTNpre-charge is set
to 0.65 and BTNpartial is set to 0.8. Finally, the value of the acceleration in partial braking mode
apartial is set to -3 m/s2, which gives other road users the possibility to react in time and allows
the use of the regenerative braking system of the Renault Twizy.

The value of the BTN threshold parameter BTNfull is tuned to optimize the performance of the
AEB system. The driving scenario used to tune this parameter is the AEB Vulnerable Road
User (VRU) scenario, since in this scenario the detected object does not move in the longitudinal

direction of the current body-fixed frame e⃗h
k . Two criteria will be considered in order to tune the

parameter BTNfull, being
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1. The distance between the host vehicle and the detected object should be at least 0.5 m.

2. A full brake intervention by the AEB system should be initiated as late as possible.

Here, the safety distance dsafe is used as a measure of the first criterion, which is defined as the
ground truth relative distance dr,gtx at the moment the host vehicle comes to a standstill. Setting
the BTN threshold parameter BTNfull to a value around 1 should in theory result in a safety dis-
tance dsafe around 0.5 m, since a constant safety margin of 0.5 m is subtracted from the predicted
relative distance before the required host acceleration and the BTN are determined. However,
due to the various uncertainties and assumptions introduced throughout this research, this is not
exactly the case and the parameter BTNfull needs to be tuned to ensure a safety distance dsafe of
at least 0.5 m. Determining the effects of all uncertainties on dsafe is considered as future work.

The distance dfull is used as a measure of the second criterion, which is defined as the ground
truth relative distance dr,gtx at the moment a full brake intervention is initiated. Intuitively, a
larger value of the parameter BTNfull will result in a later initiation of a full brake intervention
of the AEB system and thus resulting in a smaller distance dfull. Therefore, the optimal value of
the parameter BTNfull is the largest possible value which still results in a safety distance dsafe of
at least 0.5 m.

Table 5.1: AEB controller parameters

Parameter Value Description Unit

apartial -3 Acceleration for partial braking m/s2

apre−charge -0.5 Acceleration for pre-charging m/s2

BTNdeactivate 0.2 BTN threshold for deactivation -

BTNFCW 0.5 BTN threshold for FCW activation -

BTNpartial 0.8 BTN threshold for partial braking activation -

BTNpre-charge 0.65 BTN threshold for pre-charging activation -

Since the value of the parameter BTNfull should lie somewhere around 1, the parameter is changed
from 0.95 to 1 in steps of 0.01. For every value of BTNfull, 100 simulations are performed with
different and incoherent noise seeds for the used virtual sensor measurements. The same noise
seeds are used for the simulations of every value of BTNfull. The optimal value of the parameter
BTNfull is the largest possible value resulting in a worst-case safety distance WCdsafe

of at least
0.5 m. The worst-case safety distance is given by

WCdsafe
= µdsafe

− 3σdsafe
, (5.25)

where µdsafe
is the mean of the safety distance and σdsafe

is the standard deviation of the safety
distance, which is multiplied by 3 to ensure that the actual safety distance is larger or equal to
the worst-case safety distance WCdsafe

with 99.7% certainty. Given a set of simulation results for
a certain value of BTNfull, the mean of the safety distance is given by

µdsafe
=

∑N
i=1 dsafe(i)

N
, (5.26)

where N is the total number of simulations, being equal to 100. Furthermore, the standard
deviation of the safety distance is given by

σdsafe
=

√√√√ 1

N

N∑
i=1

(
dsafe(i)− µdsafe

)2
. (5.27)

Figure 5.6 shows the simulation results of the criteria used to tune the AEB controller. Here,
Figure 5.6a shows the distance dsafe as a function of the BTN threshold parameter BTNfull,
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where it can be seen that 0.99 is the largest possible value of BTNfull resulting in a worst-case
safety distance WCdsafe

of at least 0.5 m. Furthermore, Figure 5.6b shows the distance dfull as a
function of BTNfull, which as expected shows a larger value of BTNfull results in a smaller distance
dfull and thus a later initiation of a full brake intervention by the AEB system. Therefore, the
optimal value of the parameter BTNfull used in the remainder of this research is 0.99.

(a) The distance dsafe as a function of the BTN threshold parameter BTNfull.

(b) The distance dfull as a function of the BTN threshold parameter BTNfull.

Figure 5.6: Simulation results of the criteria used to tune the AEB controller.

5.5 Summary

A new method is proposed to determine if an object is relevant, which uses the predicted positions
and the corresponding levels of uncertainty to draw uncertainty ellipses around the predicted po-
sitions of the host vehicle and the object. A possible collision between the host vehicle and the
object is found if for a certain prediction time tpre the corresponding uncertainty ellipses intersect.

To determine if a brake intervention is needed to avoid a collision with a detected object, the
AEB controller uses a parameter called the Brake-Threat-Number (BTN), which is a measure
of the threat level and indicates the effort that is required to avoid a collision with the object.
The BTN is defined as the required host acceleration to avoid a collision divided by the minimal
achievable host acceleration. Two cases are considered to determine the required host acceleration,
in which the detected object is either stationary or moving in the longitudinal direction of the
current body-fixed frame. To compensate for the response delay of the brake system, the threat
level is determined using the predicted future motions of the host vehicle and the object, which
are predicted over the time spanned by the brake response delay τb. When activated, the AEB
system can operate in four different operating modes, being Forward Collision Warning (FCW),
pre-charging of the brakes, partial braking and full braking.
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Chapter 6

Simulation of the AEB system

In this chapter the performance of the AEB system will be evaluated via simulations for different
driving scenarios. The simulation results presented in this chapter are based on the vehicles,
simulation framework and driving scenarios discussed in Chapter 3. The noise levels of the virtual
sensor measurements are set equal to the noise levels given in Table 3.2. Here, to reduce the
noise level of the measured longitudinal velocity vhx and acceleration ahx, they are first filtered
using a first-order low-pass filter with a time constant of 0.1 s before being used by the various
components of the AEB system. By using this low-pass filter, the noise levels on the longitudinal
velocity vhx and acceleration ahx are reduced significantly with a relatively small phase lag (time
delay). Therefore, the effect of the low-pass filter on the state estimates of the Kalman filter is
small and will be ignored. The parameters of the AEB controller used to obtain the simulation
results presented in this chapter are given in Table 5.1 and the BTN threshold parameter BTNfull

is set equal to the tuned value found in Section 5.4.2. In the remainder of this chapter first the
simulation results of the closed-loop tests performed for different driving scenarios will be discussed
together with the performance of the AEB system for these scenarios. Thereafter, the results of
the open-loop tests performed with the Renault Twizy using real sensor measurements will be
discussed.

6.1 Closed-loop testing using simulations

In this section the simulation results of the closed-loop tests performed for three different driving
scenarios will be discussed together with the performance of the AEB system for these scenarios.
The tested driving scenarios are the AEB Vulnerable Road User (VRU) scenario, the Car-to-Car
Rear moving (CCRm) scenario and the Turning away scenario, which are all discussed in Section
3.5. The tests are called closed-loop since the required brake acceleration ab,req as determined by
the AEB controller is fed back to the modelled brake system of the host vehicle.

6.1.1 AEB Vulnerable Road User (VRU) scenario

In the AEB VRU scenario, the host vehicle is driving straight with a constant velocity and a ped-
estrian or bicyclist crosses its path from the right side with a constant velocity. Since the detected
object is not present right in front of the host vehicle, determining if the object is relevant is of
great importance for this scenario. A brake intervention should only be initiated if the object
is considered to be relevant for the AEB system, meaning a possible collision between the host
vehicle and the object is found.

Figure 6.1 shows the predicted paths of the object at different times, where Figure 6.1a shows the
predicted paths of the object together with the corresponding ground truth positions of the host
vehicle. In general, the longitudinal error between the predicted paths and the actual object path
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is small compared to the longitudinal relative distance between the host vehicle and the object.
In Figure 6.1b a close up of the predicted paths is given, where it can be seen that for most of
the predicted paths the maximal absolute longitudinal error between the predicted path and the
actual object path is smaller than 1 m.
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(a) Predicted paths together with the ground truth positions of the host vehicle.
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(b) Close up of the predicted paths.

Figure 6.1: Predicted paths of the detected object at different times for the third driving scenario
AEB VRU.

Figure 6.2 shows the predicted positions of the host vehicle and the object together with the
corresponding uncertainty ellipses at different times. Here, Figure 6.2a shows the object is not
considered to be relevant for the AEB system at t = 3 s, since none of the uncertainty ellipses
of the host vehicle and the object intersect at a certain prediction time tpre. However, as shown
in Figure 6.2b, the object is considered to be relevant at t = 4 s, since the uncertainty ellipses
intersect at a prediction time tpre of 3 s. Here, it can be seen clearly that the error between the
predicted object position and the ground truth object position grows as the prediction time tpre
becomes larger, which makes sense since the level of uncertainty on the predicted position also
grows as tpre becomes larger. At t = 5.5 s, the object is still considered to be relevant as is shown
in Figure 6.2c, since the uncertainty ellipses intersect at a prediction time tpre of 1.5 s. At this
moment the AEB system is activated and a brake intervention by the AEB system is required to
prevent a collision, which will be discussed next.
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The simulation results of the AEB VRU scenario are shown in Figure 6.3, where the four operating
modes of the AEB system are indicated by the coloured areas. The simulation results include the
predicted and ground truth longitudinal relative distance in Figure 6.3a. Furthermore, the pre-
dicted and ground truth longitudinal host velocity and the predicted and ground truth absolute
longitudinal velocity of the object are shown in Figure 6.3b. Then, Figure 6.3c shows the ground
truth longitudinal host acceleration and the predicted and ground truth absolute longitudinal ac-
celeration of the object. Besides, the required brake acceleration ab,req is also shown in Figure

6.3c. All predicted and ground truth signals are given in the current body-fixed frame e⃗h
k . Finally,

the Brake-Threat-Number (BTN) together with the brake response delay τb are shown in Figure
6.3d. Furthermore, Figure 6.3d also shows if the object is present in the field of view of the radar
sensor and if the object is considered to be relevant for the AEB system.

Figure 6.3 shows the BTN rises from zero once the object enters the field of view of the radar sensor.
The BTN rises as the longitudinal relative distance decreases and the host vehicle approaches the
detected object. Once the BTN exceeds the value of the BTN threshold parameter BTNFCW, the
Forward Collision Warning (FCW) is initiated. Thereafter, once the BTN exceeds the value of the
BTN threshold parameter BTNpre-charge, the brakes are being pre-charged, resulting in a small
acceleration of the host vehicle as is shown in Figure 6.3c and a reduction of the brake response
delay τb as is desired, which is shown in Figure 6.3d. Then, once the BTN exceeds the value of
the BTN threshold parameter BTNpartial, the host vehicle is being partially braked, resulting in
an acceleration of approximately -3 m/s2. Finally, once the BTN exceeds the value of the BTN
threshold parameter BTNfull, full braking is initiated. The sudden drop of the BTN at the start
of this operating mode is caused by the large reduction of the brake response delay τb once a full
brake intervention is initiated. Since the value of the brake response delay determines the time
horizon over which the motions of the host vehicle and the detected object used to calculate the
BTN are predicted, the reduction of the brake response delay causes a sudden rise in the predicted
motions as is shown in Figures 6.3a and 6.3b, and consecutively a sudden drop of the BTN. As the
host vehicle is being fully braked and its velocity decreases to zero, the BTN also decreases and
drops to zero once the object leaves the field of view of the radar sensor. Finally, the AEB system
is deactivated once the host vehicle comes to a standstill, which it does at a desired distance of at
least 0.5 m from the object.
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(a) At t = 3 s, the object is not considered to be relevant.
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(b) At t = 4 s, the object is considered to be relevant.
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(c) At t = 5.5 s, the object is considered to be relevant and the AEB system is activated.

Figure 6.2: Predicted positions of the host vehicle and the detected object together with the
corresponding uncertainty ellipses at different times for the third driving scenario AEB VRU.
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(a) Longitudinal relative distance.

(b) Longitudinal host velocity and longitudinal object velocity.

(c) Longitudinal host acceleration, longitudinal object acceleration and the required brake acceleration.

(d) Brake-Threat-Number (BTN) together with the brake response delay of the modelled brake system.

Figure 6.3: Simulation results of the third driving scenario AEB VRU.
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6.1.2 Car-to-Car Rear moving (CCRm) scenario

In the CCRm scenario, the host vehicle is following the target vehicle and both vehicles are driving
straight in the same direction and with a constant velocity. Since the detected object is present
in front of the host vehicle, the object is considered to be relevant for the AEB system over the
entire simulation time. As the velocity of the object is lower than the velocity of the host vehicle,
a brake intervention by the AEB system is required to prevent a collision until the velocity of the
host vehicle matches the velocity of the object.

The simulation results of the CCRm scenario are shown in Figure 6.4, where all predicted and
ground truth signals are given in the current body-fixed frame. Here, it can be seen that the BTN
rises as the longitudinal relative distance decreases and the host vehicle approaches the object.
Again, the operating modes FCW, pre-charging, partial braking and full braking are initiated
consecutively once the BTN exceeds the value of the corresponding BTN threshold parameter as
given in Table 5.1. As explained in the previous section, the sudden drop of the BTN at the
start of the partial braking and full braking operating modes is caused by the large reduction of
the brake response delay τb once a brake intervention is initiated. Once the host vehicle is being
fully braked and the velocity of the host vehicle approaches the velocity of the object, meaning
the relative velocity approaches zero, the BTN drops to zero accordingly, which can be explained
by looking at (5.16) used to calculate the required acceleration of the host vehicle with a moving
object. After the velocity of the host vehicle becomes smaller than the velocity of the object, the
BTN rises again. The AEB system is deactivated once the velocity of the host vehicle is smaller
or equal to the velocity of the object for a certain number of consecutive samples as is shown in
Figure 6.4b. As desired, the minimal relative distance between the host vehicle and the object is
at least 0.5 m. After deactivation of the AEB system, the velocity of the host vehicle still decreases
slightly, which is caused by the resistant forces acting on the host vehicle and because the throttle
of the host vehicle is set to zero by the AEB controller. Furthermore, due to the dynamics of the
modelled brake system, it takes some time for the acceleration of the host vehicle to approach 0
m/s2 after deactivation of the AEB system.
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(a) Longitudinal relative distance.

(b) Longitudinal host velocity and longitudinal object velocity.

(c) Longitudinal host acceleration, longitudinal object acceleration and the required brake acceleration.

(d) Brake-Threat-Number (BTN) together with the brake response delay of the modelled brake system.

Figure 6.4: Simulation results of the second driving scenario CCRm.
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6.1.3 Turning away scenario

In the turning away scenario, at first the host vehicle is following the target vehicle and both
vehicles are driving straight in the same direction and with a constant velocity. Then, the target
vehicle brakes and before a collision takes place the host vehicle turns away from the target vehicle.
Therefore, for this scenario, a brake intervention by the AEB system is not required to prevent a
collision and is undesired. Since the host vehicle turns away from the object, determining if the
object is relevant is of great importance for this scenario and a brake intervention should only be
initiated if the object is considered to be relevant for the AEB system.

Figure 6.5 shows the predicted positions of the host vehicle and the object together with the cor-
responding uncertainty ellipses at different times. Here, Figure 6.5a shows the object is considered
to be relevant for the AEB system at t = 1 s, since the object is present right in front of the
host vehicle. In this driving scenario, the host vehicle starts to turn away from the object at
t = 3 s. Figure 6.5b shows the object is still considered to be relevant at t = 3.3 s, since the
uncertainty ellipses intersect at a prediction time tpre of 2 s. As shown in Figure 6.5b, the ground
truth positions of the host vehicle do not lie within the corresponding ellipses of uncertainty. The
reason for this is that the yaw rate of the host vehicle is still changing at t = 3.3 s, whereas the
positions of the host vehicle are predicted by making a constant yaw rate assumption. Only the
measurement uncertainty of the available sensor measurements is taken into account here and
the model uncertainty is neglected, which explains why the ground truth positions lie outside the
corresponding ellipses of uncertainty. Finally, at t = 3.95 s, the object is not considered to be
relevant as is shown in Figure 6.5c, since none of the uncertainty ellipses intersect, which means
the object is not present in the path of the host vehicle anymore.

The simulation results of the fourth driving scenario turning away are shown in Figure 6.6, where
all predicted and ground truth signals are given in the current body-fixed frame. For this scenario,
the ground truth yaw rate of the host vehicle is also included in Figure 6.6d. Figure 6.6 shows
the BTN rises as the host vehicle approaches the object and the longitudinal relative distance
decreases. At t = 3 s, the host vehicle starts to turn away from the object as can be seen by
looking at the yaw rate of the host vehicle in Figure 6.6d. Around t = 3.6 s, the object is not
considered to be relevant for the AEB system anymore. Therefore, the first operating mode of the
AEB system is not activated once the BTN exceeds the value of the BTN threshold parameter
BTNFCW as given in Table 5.1. Once the object remains outside the field of view of the radar
sensor for a certain number of consecutive samples, the BTN drops to zero. As desired, no brake
intervention is initiated by the AEB system for this driving scenario.
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(a) At t = 1 s, the object is present right in front of the host vehicle and is therefore considered relevant.
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(b) At t = 3.3 s, the object is still considered to be relevant.
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(c) At t = 3.95 s, the object is not considered to be relevant anymore.

Figure 6.5: Predicted positions of the host vehicle and the detected object together with the
corresponding uncertainty ellipses at different times for the fourth driving scenario turning away.

Development of an Automated Emergency Braking System for a Renault Twizy 71



CHAPTER 6. SIMULATION OF THE AEB SYSTEM

0 1 2 3 4 5 6 7 8 9 10
-40

-20

0

20

(a) Longitudinal relative distance.

0 1 2 3 4 5 6 7 8 9 10
-2

0

2

4

6

8

(b) Longitudinal host velocity and longitudinal object velocity.
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(c) Longitudinal host acceleration, longitudinal object acceleration and the required brake acceleration.
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(d) Brake-Threat-Number (BTN) together with the brake response delay of the modelled brake system.

Figure 6.6: Simulation results of the fourth driving scenario turning away.

72 Development of an Automated Emergency Braking System for a Renault Twizy



CHAPTER 6. SIMULATION OF THE AEB SYSTEM

6.2 Open-loop testing of the AEB system

In this section the results of one of the open-loop tests performed with the Renault Twizy will be
discussed. In these tests real sensor measurements are used, which afterwards replace the virtual
sensor measurements in the simulation environment to test how the AEB system responds to real
sensor measurements. These tests are called open-loop since the required brake acceleration ab,req
as determined by the AEB controller is not used by the brake system of the host vehicle. Figure 6.7
gives a schematic overview of the open-loop test performed with the Renault Twizy and discussed
in this section. Here, a stack of cardboard boxes (representing an object) is placed right in front
of the host vehicle at a distance of approximately 20-25 m. The host vehicle drives towards the
object with a constant velocity of approximately 15 km/h, which will not cause any damage to
the Renault Twizy. Eventually, the host vehicle collides with the object and the resulting sensor
measurements can be used to to test how and when the AEB system would respond when being
implemented on the Renault Twizy. Since the object is present right in front of the host vehicle,
the object is considered to be relevant and a brake intervention is required to prevent a colli-
sion. Furthermore, for the same reason, the measured longitudinal relative distance drx and the
measured longitudinal relative velocity vrx are set equal to the range and range rate respectively
as measured by the radar sensor on the Renault Twizy. Finally, to reduce the noise level of the
measured longitudinal velocity vhx and acceleration ahx, they are filtered using a first-order low-pass
filter with a time constant of 0.1 s before being used by the AEB system.

Figure 6.7: Schematic overview of the open-loop test performed with the Renault Twizy.

The results of the open-loop test are given in Figure 6.8, which shows the sensor measurements
together with the predicted signals in the current body-fixed frame. As shown in Figures 6.8b and
6.8c, the predicted longitudinal object velocity and acceleration are approximately zero, which is
correct since the object is stationary. As shown in Figure 6.8d, the BTN rises as the host vehicle
approaches the object and the longitudinal relative distance decreases. At a longitudinal relative
distance of approximately 2.5 m, when the BTN exceeds the value of the BTN threshold parameter
BTNFCW as given in Table 5.1, the AEB system would be activated when implemented on the
host vehicle. However, in the performed test, the host vehicle collides with the object, which is
shown in Figure 6.8a where the longitudinal relative distance reaches zero. This can also be seen
in Figure 6.8d, where the BTN surpasses a value of 1, meaning a collision with the object cannot
be avoided anymore by braking the vehicle.
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(a) Longitudinal relative distance.

(b) Longitudinal host velocity, longitudinal relative velocity and the longitudinal object velocity.

(c) Longitudinal host acceleration, longitudinal object acceleration and the required brake acceleration.

(d) Brake-Threat-Number (BTN) together with the brake response delay of the modelled brake system.

Figure 6.8: Results of the open-loop test performed by driving towards a stationary object.
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6.3 Summary

In this chapter, first the performance of the AEB system has been evaluated via simulations for
different driving scenarios. For the AEB Vulnerable Road User (VRU) scenario, the object is
correctly considered to be relevant for the AEB system, a brake intervention is initiated by the
AEB system, and a collision with the object is avoided with a desired safety distance of at least
0.5 m between the host vehicle and the object. Then, for the Car-to-Car Rear moving (CCRm)
scenario, the object is again correctly considered to be relevant for the AEB system, a brake
intervention by the AEB system is initiated to prevent a collision, which stops once the velocity of
the host vehicle becomes smaller than the velocity of the object. For the turning away scenario,
a brake intervention by the AEB system is not initiated, since the object is not considered to be
relevant anymore once the host vehicle turns away from the object. In addition to these closed-
loop tests, open-loop tests are performed with the Renault Twizy to test how the AEB system
responds to real sensor measurements. In the open-loop test, a stationary object is placed right
in front of the host vehicle and a brake intervention is required to prevent a collision. The results
show the AEB system responds well to real sensor measurements and a brake intervention by the
AEB system would be initiated when implemented on the host vehicle.
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Chapter 7

Conclusions and recommendations

7.1 Conclusions

In this final chapter, the most important conclusions of this research are given as well as recom-
mendations for future research on this topic. The main objective of this research is defined as
follows: ”Develop an Automated Emergency Braking (AEB) system for the Renault Twizy used in
the i-CAVE research program”. The AEB system is developed and tested in a simulation environ-
ment for different driving scenarios. The sensors used by the AEB sytem are a front facing radar
sensor, an Inertial Measurement Unit and an odometer, which are all modelled using realistic
operating frequencies and noise levels. Furthermore, the modified brake system of the Renault
Twizy is modelled in the simulation environment, which consists of two main parts, being the
brake cam actuator followed by the brake cam actuator dynamics. The response delay of the
brake system model is determined as a function of the camshaft angle. The motion of the host
vehicle and the object is modelled using a single-track vehicle model with three degrees of freedom:
the longitudinal, lateral and yaw motion.

The first sub-objective is defined as follows: ”Develop a state estimator to estimate the motion
of a detected object from radar sensor measurements and measurements of the Renault Twizy’s
own motion”. A linear discrete-time Kalman filter is used to estimate the motion of a detected
object from the available sensor measurements. The motion model used in the Kalman filter is
the constant acceleration model, which normally describes the relative motion between the host
vehicle and the object. However, in this research, the motion model is slightly adapted, since the
absolute motion of the object is required. Furthermore, an additional correction step is proposed
for the Kalman filter to reduce the state estimation errors when the host vehicle is cornering.
Since the radar sensor on the host vehicle has a lower sampling rate than the AEB controller
(including the Kalman filter), the state estimates are only updated in case a new measurement
becomes available. In between measurements, only the prediction step of the Kalman filter is
used to estimate the states. By performing simulations for the most complex driving scenario, the
process noise values of the process noise covariance matrix Q resulting in the lowest cost C are
found. For all simulated driving scenarios, the Kalman filter performs well and is able to estimate
the states accurately with an acceptable error.

The second sub-objective of this research is defined as follows: ”Determine if a detected object is
relevant for the AEB system and present in the driving path of the Renault Twizy”. To this end,
first the paths of both the host vehicle and the object are predicted. The position of the object
is predicted by making a n-step a-priori prediction using the last available state estimates from
the Kalman filter. The level of uncertainty on the predicted positions of the object is determined
from the predicted state estimation covariance. Furthermore, the position of the host vehicle is
predicted directly from the available sensor measurements and the level of uncertainty on the
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predicted positions is determined from the corresponding sensor measurement noise levels. A new
method is proposed to determine if an object is relevant, which uses the predicted positions and
the corresponding levels of uncertainty to draw uncertainty ellipses around the predicted positions
of the host vehicle and the object. A possible collision between the host vehicle and the object is
found if for a certain prediction time tpre the corresponding uncertainty ellipses intersect.

The last sub-objective is defined as follows: ”Estimate the threat level of the current traffic situ-
ation and develop a controller in the form of a finite state machine, which uses the estimated
threat level to determine which system response should be initiated”. The AEB controller uses a
parameter called the Brake-Threat-Number (BTN) to determine if a brake intervention is needed
to avoid a collision with a detected object, which is a measure of the threat level and indicates the
effort that is required to avoid a collision with the object. The BTN is defined as the required host
acceleration to avoid a collision divided by the minimal achievable host acceleration. Two cases
are considered to determine the required host acceleration, in which the object is either station-
ary or moving in the longitudinal direction of the current body-fixed frame. To compensate for
the response delay of the brake system, the threat level is determined using the predicted future
motions of the host vehicle and the object, which are predicted over the time spanned by the
brake response delay. When activated, the AEB system can operate in four different operating
modes, being Forward Collision Warning (FCW), pre-charging of the brakes, partial braking and
full braking.

The performance of the AEB system is evaluated via simulations for different driving scenarios. For
the AEB Vulnerable Road User (VRU) scenario, the object is correctly considered to be relevant
for the AEB system, a brake intervention is initiated by the AEB system, and a collision with
the object is avoided with a desired safety distance of at least 0.5 m between the host vehicle and
the object. Then, for the Car-to-Car Rear moving (CCRm) scenario, the object is again correctly
considered to be relevant for the AEB system, a brake intervention by the AEB system is initiated
to prevent a collision, which stops once the velocity of the host vehicle becomes smaller than the
velocity of the object. For the turning away scenario, a brake intervention by the AEB system
is not initiated, since the object is not considered to be relevant anymore once the host vehicle
turns away from the object. In addition to these closed-loop tests, open-loop tests are performed
with the Renault Twizy to test how the AEB system responds to real sensor measurements. In
the open-loop test, a stationary object is placed right in front of the host vehicle and a brake
intervention is required to prevent a collision. The results show the AEB system responds well to
real sensor measurements and a brake intervention by the AEB system would be initiated when
implemented on the host vehicle.
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7.2 Recommendations

This research can be improved or extended as follows:

• Use additional environmental sensors and combine them to obtain more accurate measure-
ments of the objects in front of the host vehicle and to improve the reliability of the AEB
system. Furthermore, by placing environmental sensors at different angles, the field of view
can be extended. In this way, the AEB system could be made suitable for more complex
driving scenarios and crossing vulnerable road users can be detected at an earlier stage.

• The longitudinal velocity of the host vehicle should be estimated in the presence of wheel
slip. In this research, the longitudinal velocity is determined from the rotational speed of the
rear axle, where it is assumed that the wheels on the rear axle have no wheel slip. However,
especially in situations in which an AEB system is activated, this assumption is not valid.

• In this research, sensor biases are neglected and sensor delay is assumed to be neglectable
compared to the response delay of the brake system. However, to improve accuracy of the
model, these could be added to the simulation environment.

• It is assumed that the host vehicle is driving on a dry road surface and therefore a fixed
tire-road friction coefficient is used. However, by dynamically adapting the tire-road friction
coefficient to the current road surface, the AEB system can be made robust against changing
road surfaces. Furthermore, it is assumed that the host vehicle is driving on a flat road
surface. However, by taking into account the road gradient, the AEB system can be made
robust against road grade influences.

• To prevent the wheels from blocking when a brake intervention by the AEB system is ini-
tiated, which could cause stability and steerability issues, the Renault Twizy should be
equipped with an Anti-lock Brake System (ABS).

• A single-track vehicle model is used to model the motion of the host vehicle and the object.
However, to increase the accuracy of the model, a multibody vehicle model of the Renault
Twizy should be used instead. Furthermore, to improve the accuracy of the AEB system,
the physical dimensions of both the host vehicle and the object should be taken into account
in the decision process of the AEB system.

• The brake response delay is estimated from the brake system model. However, a more
accurate estimation could be made when performing brake tests on the Renault Twizy and
by measuring the total response delay of the vehicle.

• A low-pass filter with a time constant of 0.1 s is used to reduce the noise levels on the
longitudinal velocity vhx and acceleration ahx. Using a larger time constant will reduce the
noise levels on these signals more, but will also result in a larger phase lag. In this case, the
effects of low-pass filtering on the state estimates of the Kalman filter should be taken into
account.

• The position of the host vehicle is predicted directly from the available sensor measurements
and the level of uncertainty on the predicted positions is determined from the corresponding
sensor measurement noise levels, which means the model uncertainty is neglected. However,
when estimating the motion of the host vehicle with a state estimator, this model uncertainty
is also taken into account when determining the level of uncertainty on the predicted positions
of the host vehicle.

• The assumptions and uncertainties introduced throughout this research have a significant
effect on determining whether an object is relevant for the AEB system and present in the
driving path of the host vehicle. Therefore, a degree of certainty should be added to the
proposed method, which indicates the certainty of an object being relevant. This can be
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done by determining the probability of a collision, or in other words, the probability of both
the host vehicle and the object being present within the overlapping area of the uncertainty
ellipses at a certain prediction time tpre.

• Extend the AEB system such that it is able to deal with multiple objects simultaneously
and select the most important object (MIO) out of all detected objects.

• The required radar sensor measurements of an object are assumed to be available. However,
in reality, before being able to implement the AEB system on the Renault Twizy, the AEB
system needs to be combined with an object tracking algorithm.

• The BTN used by the AEB controller is obtained directly from the predicted states of the
host vehicle and the object. Due to the uncertainty of the predicted states, the actual BTN
lies within a certain range. This range can be determined and used by the AEB controller
to either decrease the number of false positives or false negatives. In addition, the effect of
all uncertainties on the safety distance dsafe could be determined.

• Implement the AEB system on the Renault Twizy and test the system for different driving
scenarios.
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[33] E. R. Gelso and J. Sjöberg, “Consistent Threat Assessment Using BTN and TTB Metrics ,,”
no. January 2017, pp. 74–89, 2017.

[34] I. Koglbauer, J. Holzinger, A. Eichberger, and C. Lex, “Autonomous emergency braking
systems adapted to snowy road conditions improve drivers’ perceived safety and trust,”
Traffic Injury Prevention, vol. 19, no. 3, pp. 332–337, 2018. [Online]. Available:
https://doi.org/10.1080/15389588.2017.1407411

[35] H. Kim, S. Kyungsik, I. Chang, and K. Huh, “Autonomous emergency braking considering
road slope and friction coefficient,” International Journal of Automotive Technology, vol. 19,
pp. 1013–1022, 2018.
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Appendix A

Brake cam actuator controller

A.1 PID controller gains

To control the brake motor torque Tbm given a required camshaft angle δc,req, a position controller
is used, which consists of a feedforward part and a PID controller. The PID controller can operate
in control mode or in tracking mode. In control mode the PID controller operates as a conventional
PID controller and is given by

P + ITs
1

z − 1
+D

N

1 +NTs
1

z−1

, (A.1)

where the proportional gain P has a value of 1.3248, the integral gain I has a value of 0, the
derivative gain D has a value of 0.1736 and the filter coefficient N is equal to 61.0339 [40].
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Appendix B

Performance of the state estimator

B.1 Simulation results
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(a) Longitudinal relative distance.
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Figure B.1: The ground truth and the estimations of all states for different driving scenarios
together with the measured longitudinal and lateral relative distance.
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Appendix C

Derivation of the required host
acceleration

C.1 Derivation of the required host acceleration with a sta-
tionary detected object

To derive the required host acceleration, it is assumed that the longitudinal acceleration of both
the host vehicle ahx and the object atx are constant. Given the current states of the host vehicle
and the object, the longitudinal position of the host vehicle and the object along their path at
time t is given by

dhx(t) = dhx(0) + vhx(0)t+
1

2
ahx(0)t

2

dtx(t) = dtx(0) + vtx(0)t+
1

2
atx(0)t

2,

(C.1)

and the longitudinal velocity of the host vehicle and the object at time t is given by

vhx(t) = vhx(0) + ahx(0)t

vtx(t) = vtx(0) + atx(0)t,
(C.2)

where the current states of the host vehicle and the object are taken at t = 0.

Since the longitudinal velocity of the object is zero at the stopping time (vtx(tstop) = 0), the
stopping time can be derived from (C.2) as follows

tstop = −vtx(0)

atx(0)
. (C.3)

Solving (C.1) for the stopping time gives the stopping distance of the object, which is given by

dtstop = dtx(tstop)− dtx(0) = vtx(0)tstop +
1

2
atx(0)t

2
stop

= vtx(0)

(
−vtx(0)

atx(0)

)
+

1

2
atx(0)

(
−vtx(0)

atx(0)

)2

= −1

2

vtx
2
(0)

atx(0)
.

(C.4)

From the stopping distance of the object dtstop, the available stopping distance of the host vehicle
can be determined as follows

dhstop = dtx(0)− dhx(0) + dtstop = drx(0) + dtstop. (C.5)
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Finally, using the current velocity of the host vehicle vhx(0) and the available stopping distance of
the host vehicle dhstop, the required acceleration of the host vehicle ahreq is determined as follows
[33]

ahreq = −1

2

vhx
2
(0)

dhstop
= −1

2

vhx
2
(0)

drx(0) + dtstop
. (C.6)

C.2 Derivation of the required host acceleration with a mov-
ing detected object

The relative longitudinal distance between the host vehicle and the object at time t can be derived
from (C.1) as follows

drx(t) =
(
dtx(0)− dhx(0)

)
+
(
vtx(0)− vhx(0)

)
t+

1

2

(
atx(0)− ahx(0)

)
t2

= drx(0) + vrx(0)t+
1

2
arx(0)t

2.

(C.7)

Furthermore, the relative longitudinal velocity between the host vehicle and the object at time t
can be derived from (C.2) as follows

vrx(t) =
(
vtx(0)− vhx(0)

)
+
(
atx(0)− ahx(0)

)
t

= vrx(0) + arx(0)t.
(C.8)

In this second case, a collision between the host vehicle and the object is avoided when their
velocities are equal at a time instant called Time-to-Touch (tTTT ) [33]. At this time instant, the
relative longitudinal velocity is zero (vrx(tTTT ) = 0) and the relative longitudinal distance is also
zero (drx(tTTT ) = 0). The Time-to-Touch can be derived from (C.8) as follows

tTTT = −vrx(0)

arx(0)
= −

(
vtx(0)− vhx(0)

)
(atx(0)− ahx(0))

. (C.9)

Solving (C.7) for the Time-to-Touch gives the required acceleration of the host vehicle ahreq, which
is given by

ahreq = atx(0)−
(
vtx(0)− vhx(0)

)2
2drx(0)

. (C.10)

Substituting the required host acceleration ahreq into (C.9), gives the following expression for the
Time-to-Touch

tTTT = −vrx(0)

arx(0)
= − vrx(0)

(vt
x(0)−vh

x(0))
2

2dr
x(0)

= − 2drx(0)

(vtx(0)− vhx(0))
. (C.11)

Now the velocity of both the host vehicle and the object at the Time-to-Touch can be derived by
substituting the Time-to-Touch into (C.2) as follows

vtx(tTTT ) = vtx(0) + atx(0)tTTT . (C.12)

The second case holds if this velocity is positive (vtx(tTTT ) > 0). Otherwise, the first case holds
and the required acceleration of the host vehicle ahreq is calculated using (C.6).
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