
 Eindhoven University of Technology

MASTER

Design of an Invariant-based World Model for an Autonomous Football Table

Jebbink, K.S.

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/3cf5cf0c-74e8-4fd4-bd64-58ec91589ed3


Mechanical Engineering
Control Systems Technology

Systems & Control

Design of an Invariant-based World
Model for an Autonomous Football

Table

Kevin Jebbink
0817997

Thesis Supervisor: M.J.G. van de Molengraft
other Supervisor: H.P.J. Bruyninckx
Advisor: J.P.F. Senden

April 22, 2022



Declaration concerning the TU/e Code of Scientific Conduct 
for the Master’s thesis 
I have read the TU/e Code of Scientific Conducti. 

I hereby declare that my Master’s thesis has been carried out in accordance with the rules of the TU/e Code of Scientific 
Conduct 

Date 

Name 

ID-number 

Signature 

Insert this document in your Master Thesis report (2nd page) and submit it on Sharepoint

i See: http://www.tue.nl/en/university/about-the-university/integrity/scientific-integrity/  
The Netherlands Code of Conduct for Academic Practice of the VSNU can be found here also. 
More information about scientific integrity is published on the websites of TU/e and VSNU 

Version 202007

http://www.tue.nl/en/university/about-the-university/integrity/scientific-integrity/


1

Design of an Invariant-based World Model for an
Autonomous Football Table
Kevin Jebbink, Jordy Senden, and René van de Molengraft

Department of Mechanical Engineering
Eindhoven University of Technology

Eindhoven, The Netherlands

Abstract—Robots using a world model of its surrounding envi-
ronment have this world model typically exactly parameterized.
This can be very useful mathematically speaking, but it can also
be a limiting factor, as these world models are not robust against
variations in the parameters. This paper describes an approach
of a design of a world model which is robust against variations
in the environment. By designing the world model such that
the robot skills are based only on a small set of invariants,
variations can be embedded in the world model. This means that
the proposed world model will perform correctly with any robot
that operates in an environment in which these invariants hold,
even if certain parameters, such as exact geometric distances
between objects, differ. The proposed model is demonstrated
on an autonomous football table. This paper describes how a
described set of invariants for a football table can be used to
automatically calibrate a camera hanging above the field for
object tracking, as well as calibrate the world model. Experiments
will demonstrate that the performance of the autonomous football
table is within the desired limits, and that the new world model
is robust against variations, such as changing camera position
and football tables with different dimensions.

I. INTRODUCTION

A robot is an autonomous machine that is able to observe
its environment through the use of sensors, and then use
these observations to influence its environment. The local
environment that a robot is able to influence is hereafter
referred to as the workspace of the robot. For a robot to be
able to operate in its workspace, spatial knowledge about
this workspace is required. This is done by creating a spatial
model of the workspace which the robot can use. This spatial
model as well as the perception and control affordances
of the robot are hereafter referred to as the world model.
The spatial model is typically exactly defined in Euclidean
space, which means that every object in the workspace
has its pose expressed in standard units of measurement in
respect to a reference point. This is useful, as it creates a
clear mathematical description of the workspace from which
is possible to derive dynamical models and which can be
used to optimize the task a robot needs to perform. Take,
for example, a robotic arm at an assembly line. The spatial
model of the workspace of this robot is very specifically
defined within the robot. The task this robot needs to perform
is very predictable and repetitive, and can be easily optimized.

However, such a world model also has downsides. The data
from the sensors need to be converted to a metric value in

Euclidean space. If the sensor is not calibrated perfectly, this
conversion will be off. Furthermore, the created world model
is only functional for one specific situation, and changes in
the workspace or sensors means that the world model needs
to be updated to account for this. Such world models are not
robust against variations. Using an Euclidean world model,
while mathematically very useful, can thus also be limiting.
Consider for example a tomato-picking robot. It is impossible
to describe the geometric positions of the tomatoes on a
tomato plant in a world model for such a robot, as each
tomato plant will have variations. However, all tomato plants
do have a similar layout. As such, if a more abstract world
model is used, one which is based on the invariant topological
relations of the tomato plant, then a robot using such a world
model would be able to pick the tomatoes regardless of the
exact geometric positions of the tomatoes on the tomato plant.
A robot using such a world model would in fact be more
similar to a human. A human does not use exact geometric
parameters to calculate its actions, but instead focuses on
relations between objects and relative distances. This paper
proposes a world model which does not use a geometric map
with exact metric distances of objects in the workspace, but
instead uses a priori and invariant knowledge of the layout
of the workspace (which will be referred to as the topology
hereafter) in which the positions of objects are described
relative to the workspace in dimensionless ratios. Such a
world model could be described as an invariant-based world
model.

The proposed world model will be implemented on the
autonomous football table EUTAFT1. An autonomous football
table is a football table where one side of the football table
contains automated rods which are controlled by a built-in
computer. Several similar projects have been realized with
different solutions for ball tracking, such as [1], [2], and
[3]. On EUTAFT, a high speed camera is connected to the
computer, which is used to localize and track the ball. Based
on the estimated location of the ball in the image of the
camera, the computer moves the automated rods such that one
of the puppets on the rods is able to intercept and kick the ball.
In previous work on EUTAFT, such a system was developed
in [4]. In this approach, the manually calibrated camera was
located perpendicular to and directly above the table (see figure

1http://cstwiki.wtb.tue.nl/index.php?title=Autonomous Football Table

http://cstwiki.wtb.tue.nl/index.php?title=Autonomous_Football_Table
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1). The pixel location of the ball is converted to a metric
position on the field, which is then used to determine a correct
rod response. The ball was detected using its red color. Rod
response is controlled using encoder sensors in the actuators.

Fig. 1: Schematic representation of the complete set-up (figure from [5])

While EUTAFT performs well using this approach, there
are several drawbacks. Several manual calibrations are
necessary, such as a camera calibration using a checkerboard
(checkerboard calibration described in [6]), a color calibration
where the software is ’taught’ which colors correspond to
red, white, black, and yellow, and a calibration were the user
manually selects the pixel locations of the puppets as well as
the center-line. Such calibrations can be tedious for the user.
Furthermore, several parameters are ’hard-coded’ in the world
model and are based on the exact dimensions of the EUTAFT
set-up. Such parameters are for example the pixel-to-meter
ratio which is used to convert pixel measurements to meters,
the metric length of the strokes of the rods, the metric length
of the reach of the puppets, as well as the specific color value
of the ball. Using such ’hard-coded’ parameters is limiting,
since variations in the set-up require manual adjustments to
the world model. Lastly, this world model is not equipped
to handle changes in camera position. Even small changes,
which can happen during active play, can already result in
reduced performance. At these instances EUTAFT needs to
be re-calibrated. The camera is also limited to a perpendicular
position right above the table at a specific fixed height.

The proposed new approach will automatically estimate the
parameters of the world model without the need for manual
camera calibrations and manually selecting puppet locations
and markings. This world model will be continuously updated.
It is hypothesized that the proposed approach is robust against
variations, which means that in this approach the camera
does not need to be fixed to the exact position above the
football table and may move during active play, and that this
approach could be universally implemented on any football
table, irrespective of table dimensions and colors.

Much research has been done on automated camera
calibration, such as in [7] and [8]. These are used as a basis
in section IV. [5], [9], [10], [11], and [12] were used to study
different image segmentation techniques, which were used to
create the identification of the puppets and ball in the image

as designed in III. An important goal of software is to track
the ball. Previous work on EUTAFT, as well as several other
automated football tables, achieve this using a camera directly
above and perpendicular to the table as in [2], [3], and [4],
though all use manual camera calibration and a convenient
and fixed position to place the camera. The non-fixed camera
means that estimation of the 3d scene is necessary. [13] and
[14] were used to achieve this in section IV.

Section II describes the software architecture of EUTAFT
using the proposed new world model. This section will de-
scribe the foundation of the new world model, the software
functionalities that result from this world model, and the way
these functionalities interact with each other. Section III and
IV describe how these functionalities are implemented, with
section III focusing on the object detection of the ball and the
automated puppets (hereafter referred to as foosmen) in the
camera images, and with section IV focusing on the modelling
of sensors and the world model and the estimation of the
parameters of this new world model. In section V experiments
are conducted and its results are presented. In section VI the
results are discussed, and in section VII conclusions are made
and recommendations for future work are made.

II. SOFTWARE ARCHITECTURE

The proposed world model is based on fixed and pre-known
relations between the objects on the football table. While
football tables come in all kinds of different configurations,
in this work the following assumptions are made, which hold
true for most general football tables:

• The football table consists of 22 foosmen, 11 per team.
• These 22 foosmen are fixed to 8 parallel rods, which are

all spaced apart by the same distance (distance dr).
• The 22 foosmen can only translate in the lateral direction

and rotate around its own axes.
• The 22 foosmen are mounted on the eight rods, per rod

from left to right, as follows: one keeper team 1, two
defenders team 1, three attackers team 2, five midfielders
team 1, five midfielders team 2, three attackers team 1,
two defenders team 2, one keeper team 2.

• The foosmen on one rod are all spaced apart by the same
fixed distance (distances δd, δm, and δa), and there is no
angular offset between the foosmen on one rod.

• The set of foosmen on all rods, except the keeper rods,
can be moved all the way from one end of the field to
the other end (resulting in stroke lengths sd, sm, and sa).

• The stroke lengths sd, sm, and sa are longer than their
corresponding foosmen spacings δd, δm, and δa, other-
wise the table would have ’deadspots’ (deadspot being
defined as an unreachable ball position).

• The goal of one team is located behind the keeper of
the other team. The size of the goal is equal to stroke of
the keeper foosman (stroke length sk). The length of this
stroke is limited via equally distanced ’stoppers’ on the
keeper rod (this distance is δk).

• The length of the foosmen is such that the foosmen hover
slightly above the field when they are orientated straight



3

up, and that the feet of opposing foosmen can almost
touch when orientated at 90°(so as to decrease the amount
of ’dead spots’ to a minimum).

• Each team has an unique specific team color, which
differs from the surrounding colors of the field, in order to
see which foosman belongs to which team. The foosmen
are uniformly colored according to their team colors.

• The diameter of the ball is in a similar range as the width
of the foosmen, and the ball has an uniform color which
is different from the two team colors as well as the field
color.

These assumptions describe the topology of the foosmen,
which forms the basis of the new world model, and are
hereafter referred to as topology invariants. The decisions
the software need to make are based on the location of
the ball within the topology of the foosmen. The topology
can be described as a rectangular plane with a length of
dl and a width of dw. The coordinate system used in the
world model is based on this plane. When the axis of the
coordinate system are aligned with the plane (the length dl
corresponding the x-axis and the width dw corresponding
to the y-axis), then the positions of the foosmen as well as
the ball can be described in fractions of these two constants.
In this coordinate system, the four corners of the topology
of foosmen will then be (0, 0), (dl, 0), (0, dw), and (dl, dw)
(shown as green dots in figure 2). This creates a coordinate
system which is independent from the dimensions and the
exact geometric distances of the table. For example, the
center dot of the football field will always have the coordinate
(0.5dl, 0.5dw) on any football table.

The positions of the foosmen in this coordinate system can
be described in several constants and variables. The constants
are derived from the topology invariants, and are shown in
figure 2. These constants have an unknown fixed ratio to dl
and dw. As such, in order to accurately describe the position
of the foosmen within the coordinate system, it is necessary
to estimate these topology ratios. The variables describe the
movement of the foosmen along the rods in the y-axis.

Fig. 2: Topology description of the football table.

The setup consist of two sensors: a high speed camera,
and an encoder sensor in the actuators controlling the rods.
Both sensors needs to be calibrated within the new world

model. With regards to the camera, it is necessary to create
a camera model within the world model in which a pixel
position in the camera image can be converted to a position
in the coordinate system. The parameters for this camera
model can be automatically estimated using the topology
of the football table. The encoder sensors in the actuators
of the rods can be used to determine the position of the
foosmen along the rods. In order to be able to estimate the
parameters of the world model, it is necessary that the 11
foosmen of the controllable team can be identified in the
images from the camera. Furthermore, since all decisions
depend on the location of the ball within the topology, being
able to identify and then localize the ball is required as well.
The software needs to determine an actuator response with
the rods, depending on the location of the ball. This response
depends on the workspaces of each individual foosman,
because for a foosman to be able to kick the ball, it needs
to be able to actually reach the ball. As such, the software
needs to determine the workspace of each individual foosman.

Figure 3 depicts a flowchart of the software architecture,
showing the different functionalities as described earlier and
the order in which they are executed. The general structure of
the architecture can be divided in three parts: an initialization
part, a normal operation part, and update world model part.
This division is made because some functionalities will only
need to be executed once, while other functionalities need to
be executed continuously.

Fig. 3: Flowchart of software operations

The software starts with the initialization part, in which the
software first needs to calibrate the encoders sensors in the
actuators, and then identify the controllable foosmen. When
the foosmen are identified, they can be used to estimate
a complete world model, which consist of several camera
parameters, the topology ratios, and the dimensions of the
workspaces of each individual foosman. Lastly, with the
world model complete, the ball can be identified and the
software is ready to play the game. The initialization part
will only run once at the start.



4

The normal operation part are the actions that are
continuously executed in order to play the actual game of
table football. In order to accurately track the ball, this part
operates at a frequency of 100 Hz, which was determined
in [5] to be minimal frequency required for this task. The
normal operation part consists of selecting a correct region
of interest which most likely contains the ball, acquire an
image of the chosen region of interest, localize the ball in
this image, and determine a response with the rods based on
this information. These actions loop continuously. Using a
smaller image of a chosen region of interest instead of using
the entire image is necessary in order to save processing time
and to be able to reach the necessary frequency of 100 Hz.
The region of interest is chosen based on the last known pixel
location of the ball in the image. If the ball is not visible in
the chosen region of interest, the software will cycle through
different regions of interest until the ball is localized again.

The update world model part is there to check, and if
necessary correct, the world model. The world model is not
necessarily static during active play. For instance the camera
might move during active play, which means that certain
aspects of the world model will need to be updated. In order to
check if the world model has changed, the software localizes
the eleven foosmen in the image and checks if these locations
correspond to the predicted locations of the foosmen within
the world model. If there is a mismatch, the software will
update the world model so that the actual locations match
the predicted locations in the world model again. The update
models part is continuously executed parallel to the normal
operation part, but at a lower frequency. The reason for this
is the fact that checking and updating the world model is
a demanding task, and if it were performed at the same
frequency as the normal operation, the computer would not be
able to process it in time. Furthermore, while high frequencies
are necessary to track the ball, such high frequencies are not
required to update the world model, as the world model is not
going to change at a frequency of 100 Hz. The exact frequency
at which this part operates depends on the processing power of
the computer. For the current computer, a frequency of 1 Hz
is chosen, which is fast enough in order to update the world
model without much delay, and also not too demanding so
that the normal operation part is able to run at 100 Hz.

III. IDENTIFYING FOOSMEN AND BALL

In order to be able to identify the foosmen and the ball in
the image, image segmentation and feature detection is used.
Image segmentation divides the image in different segments.
Feature detection is then performed on these segments in order
to determine which segments correspond to the foosmen and
the ball. There are many algorithms that can be used for this
purpose, ranging from classical computer vision approaches
such as thresholding and edge detection [15], all the way
to modern AI-based approaches such as neural networks. An
important consideration in this research is the fact that the
software has to operate at a frequency of 100 Hz. This means
that the chosen algorithms has to have a low computational

cost. Furthermore, since manual calibrations are undesired,
an algorithm that needs to be trained is not a right choice.
Because of both these reasons, AI-based approaches are not
desired [12]. Furthermore, the object detection is performed
in a controlled setting, i.e. it will be an image of a football
table field with a set of invariants which can be used in
identification. These invariants can be used as the features
in the feature detection with which the foosmen and ball
are identified. Color is an obvious feature to use for object
detection, as both the foosmen as the ball will have an
unique and uniform color, and using color as a feature has
a low computational cost. Color alone is not enough however,
as using just color would result in false positives, and the
foosmen and ball colors are not known at the start. So other
features are necessary to identify the objects, especially the
first time when the colors are not yet known.

A. Identifying the Foosmen
The initial feature used to identify the foosmen is

movement. During initialization, all controllable eleven
foosmen will be simultaneously moved by the software, after
which background subtraction [16] can be used to identify
which objects moved in the images. Since there are eleven
foosmen, there should be eleven moving objects of similar
color if no other movements have taken place. If more than
eleven moving objects are located via background subtraction,
then these extra objects will stand out because of its differing
color, and thus can be excluded. After the foosmen are
identified the first time, the team color is determined, which
will be used for future identification. The foosmen color is
estimated in HSV color space. In HSV color space the color
and the intensity are separated from each other, which makes
color detection more robust against variations in lighting
when compared to a RGB color space, where variations in
lighting produce wide variations in all three components [11].

After initialization, the foosmen are identified using color.
Thresholding is performed on the image [15], creating a binary
image with all pixels close to the foosmen color maximized,
and all other pixels minimized. Using dilation and erosion,
noise is removed and nearby pixels are grouped as blobs [15].
Each blob is regarded as a potential foosman. The topology of
the foosmen can then be used to analyse this list of potential
foosmen so as to separate the actual foosmen from false
positives. Since the pose of the camera is not pre-determined
and can change during play, nothing is known about the
perspective effects the image can have on the topology of the
foosmen. As such, it is necessary to identify the topology of
the foosmen using projective invariants. One such invariant
is the collinearity of points: If a set of points are collinear
in world coordinates, than this set of points will also be
collinear in the image. This aspect can be used to locate the
five midfield foosmen, which will always appear as a line in
the image. Another useful projective invariant is the cross-ratio
[17]. The cross-ratio of a set of four collinear points will be
constant despite any perspective effect in the image. Given
four collinear points A, B, C, and D, their cross-ratio Cr is
defined as:
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Cr =
AC ·BD

BC ·AD
(1)

With the bar indicating the distance between two points.
Since the five midfielders are equally spaced apart by distance
δm, the cross-ratio of four neighboring midfielders will be 4

3 .
This cross-ratio can be used to determine which five points are
most likely to correspond to the midfield rod. The three attack
foosmen can be identified using the invariant of collinearity
again. Unfortunately the potential attack rod cannot be verified
using the cross-ratio again, as there are only three attackers.
However, the angle of the potential attack rod can be compared
to the angle of the earlier determined midfield rod, as both
angles should be similar. When both the midfield foosmen
and the attack foosmen are located, the probable positions of
the defenders and keeper can be predicted. Determining which
points in the remaining set of potential foosmen corresponds
to the defenders and keeper is then straightforward.

B. Identifying the Ball

The initial features used to identify the ball are its shape,
relative size, and position in the image. The shape of the
ball is simply an ordinary circle shape, as long as it is not
occluded by other objects in the image. While the absolute
size of the ball is impossible to know, the relative size
of the ball in relation to the foosmen is known (one of
the topology invariants), and as such, if the foosmen are
identified, an estimate of the relative size of the ball can
be made. Furthermore, since the foosmen are identified, it
is possible to estimate the edges of the field in the image.
Any potential ball whose position is outside the edges can
be excluded. K-means clustering is performed on the image,
in order to reduce the color palette of the image [15]. This
results in a image where edges are more clearly defined. The
canny edge detection can then be performed on the image to
give a set of edges [18]. From the resulting set of edges the
closed edges with a circular shape are extracted. The set of
circular edges is then filtered by removing the circular shapes
that are in positions corresponding to known circular shapes
such as the center circle, and positions which are outside the
field. The set is also filtered by removing circles that are too
big or too small relative to the expected size of the ball. The
remaining circle should then correspond to the ball.

After the first identification, the color of the ball is deter-
mined in a similar manner as the foosmen, namely using the
HSV color space and thresholding. For the rest of the game,
the identification is done through this color and position. The
position of a potential ball is used by checking if it’s inside
the edges of the field. Occlusion of the ball happens often,
which makes shape and relative size an unreliable property
to constantly use for ball detection. Furthermore, k-means
clustering is too computationally demanding when the required
frequency of 100 Hz is to be reached, and edge detection is
too unreliable without this clustering beforehand.

IV. ESTIMATING WORLD MODEL

A. Calibrating the Actuator Sensors

The setup consists of two sensors: the encoder sensors in
the actuators controlling the rods, and the high speed camera
aimed at the field. From the data of the encoder sensors it is
possible to estimate where a set of foosmen is located along the
rod. Each set of foosmen on a rod has two extreme positions,
namely when the foosmen are located against the two sides
of the table at the ends of the rods. In the world model, each
of the four controllable rods has one variable (αk, αd, αm,
and αa) that describe where the set of foosmen on that rod
is located in between these extreme positions. An α equal to
zero corresponds to the extreme left location on the rod and
an α equal to one corresponds to the extreme right location
on the rod (as seen in figure 4).

(a) Image L, when all α = 0 (b) Image R, when all α = 1

Fig. 4: Layout of football table when all α’s are equal to 0 and 1. Yellow
dots represents locations used to create a rectangle as can be seen in figure 5

During initialization, the software will slowly move all
foosmen to the left until no further change in the actuator
sensors is detected anymore, which is the point where the
foosmen hit the left wall. The current sensor readings are
saved as the constant PLi, with i corresponding to k, d, m,
or a depending on the rod. All foosmen are then moved to
the right until the right wall is hit, and the sensor readings are
saved as the constant PRi. If the variable Pi is defined as the
current sensor reading during the game, then the current αi is
defined as:

αi =
Pi − PLi

PRi − PLi
(2)

B. Camera Model

To translate an image from the camera to usable information
for the world model, a projective transformation between the
3d scene of the football table and 2d pixels in the image is
necessary. Starting from the standard pinhole camera model,
as is given from [6], results in the following:

s

uv
1

 = K[R|T]


X
Y
Z
1

 =

fx γ u0

0 fy v0
0 0 1

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz



X
Y
Z
1


(3)
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Where K is the intrinsic camera matrix, which projects
3d points given in the frame of the camera to the 2d pixel
coordinates in the image, and where R and T are the
rotation and translation matrices respectively, which together
are known as the extrinsic camera matrix and describe the
coordinate conversion from the world frame to the camera
frame. u and v are the pixel locations in the image in the x-axis
and y-axis respectively, s is the projective transformation’s
scale factor, and

[
X Y Z

]T
are the 3d coordinates in

the world frame (which was described in II, see figure 2 for
world frame). The intrinsic matrix K consists of 5 unknown
parameters. γ, which represents the skew between the x and
y axis, is usually nonexistent in modern cameras [19], and as
such, will be assumed to be 0. Furthermore, since the height
and width of a pixel in modern cameras is usually equal [19],
the focal lengths fx and fy are considered to be equal as
well, simplifying those two parameters to just one parameter
f . u0 and v0 are the x and y coordinates of the principal
point of the image, which is usually in the center of the image.

Real cameras have lenses, which introduces lens distortions.
The most common and severe distortion in modern cameras
is radial distortion [6]. As such, radial distortion will be con-
sidered in the this paper, while other distortions are assumed
to be small enough to be ignored. There are several ways to
model radial distortion, the most common of which is the even-
order polynomial model [20]. However, in this paper, a one
order division model is used which provides a more accurate
approximation than the even-order polynomial model, while
needing less parameters [21]. This model is written as:

vu = (1 + λr2d)
−1(vd − v0) + v0 (4)

Where vu =
[
uu vu

]T
are the undistorted pixel coordi-

nates and vd the distorted pixel coordinates. λ is the distortion
parameter. rd can be described as:

rd =
√
(ud − u0)2 + (vd − v0)2 (5)

A common method to determine the parameters present in
the pinhole camera model and the lens distortion model is to
calibrate the camera using a checkerboard or a similar object
in different poses in the image [6]. This method is based on
the fact that a calibration object such as a checkerboard has
a known familiar pattern. The perspective distortion of this
familiar pattern can then be exploited to estimate the param-
eters in the camera models. This paper presents a method to
determine these parameters completely automatic and based on
the known features and topology of the football table, without
the need for extra objects such as a checkerboard.

C. Estimating the Intrinsic Camera Parameters

The lens distortion model (4) is estimated first. To
determine λ, a method is used as is presented from [8]. Here,
λ can be determined by looking at the amount of distortion in
straight lines. Straight lines are abundant in a football table,
but due to radial distortion, all these lines will be curved in

the image. By finding out the curvature of these lines, an
estimation can be made for λ.

First, a canny edge detection [18] is performed on the image.
The Harris corner detection [22] is then performed on the set
of edges resulting from the canny edge detection. The corner
detection is used to separate the edges in a set of curved lines.
These curved lines can be treated as circular arcs. The radius
and center coordinates of these circles can be determined by
fitting a circle to the curved line. According to [8], the best
circle fits are given by the Levenberg Marquardt circle fit [23].
However, this circle fit algorithm requires an initial guess for
the circle parameters. As such, this paper uses the Taubin circle
fit [24] to find an initial guess for a circle, which will then
be refined using the Levenberg Marquardt circle fit. When the
circles are determined, λ can be estimated from such a circle
using the following equation as given from [8]:

λ−1 = u2
0 + v20 − 2cuu0 − 2cvv0 + c2u + c2v − c2r (6)

Where cu and cv are the pixel coordinates of the center of
the circle, and cr is the radius of the circle. Longer curved
lines will give more accurate results for λ, as well as curved
lines which are located further away from the principal point
given by v0. As such, the resulting λ’s from these lines are
given a higher weight. λ’s which differ substantially from the
median of all λ’s are excluded from the set. The remaining
λ’s are averaged, resulting in a final λ which is used in the
model. Using a few seconds of images from the camera
increases the precision of the estimation, as it is possible that
a single image contains enough noise that the estimation of
lambda is off. Using multiple images ensures that these noisy
images can be excluded from the estimation.

When the image can be corrected with the estimated
distortion model (4), the focal length f (and by extension the
intrinsic matrix K) can be estimated. This is done using two
images of the football field: one image in which all actuator
values α = 0 (called image L), and one image in which all
α = 1 (called image R). This set-up can be seen in figure
4. By combining the foosmen positions in image L and R,
it is possible to connect certain foosmen locations so that
a rectangle can be formed in the world frame, as shown in
figure 5a. From the perspective of the camera however, this
rectangle will be deformed into a certain quadrilateral, as can
be seen in figure 5b. According to [7], this deformation can
be used to estimate the focal length f .

The focal length f can be derived using:

nw
TK−TK−1nh = 0 (7)

In which K is the intrinsic matrix, and where nw and nh

are 3 dimensional vectors that can be described as:

nw =
(m1 ×m4) ·m3

(m2 ×m4) ·m3
m2 −m1

nh =
(m1 ×m4) ·m2

(m3 ×m4) ·m2
m3 −m1

(8)
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(a) Created rectangle based on
foosmen positions in figure 4

(b) Deformation of a rectangle in a quadrilateral due
to perspective effect. Figure from [7].

Fig. 5

In which m1, m2, m3, and m4 are the pixel coordinates
of the observed corners of the quadrilateral in the image
(see figure 5b). The aforementioned corners are written as
augmented vectors, i.e.: m1 =

[
um1 vm1 1

]T
. Using (7),

the focal length f can be described as:

f2 = − 1

nw3nh3

(
nw1nh1 + nw2nh2 − (nw1nh3 + nw3nh1)u0

−(nw2nh3 + nw3nh2)v0 + nw3nh3u
2
0 + nw3nh3v

2
0

)
(9)

Where in nwi and nhi the i denotes the ith component
of the vectors nw and nh. Estimating the focal length is
impossible when either nw3 or nh3 is equal to zero, because
(9) is not defined in that situation. This situation occurs when
the camera is located directly above the football table, and
aimed perpendicular to the football field. In this situation,
there is no perspective effect, and as such, it is impossible
to determine a focal length. This means that in this particular
situation the complete camera model (3) cannot be estimated.
This specific situation and the solutions required to solve it
are discussed in the following sections where a known focal
length is necessary.

D. Estimating the Extrinsic Camera Parameters

If the intrinsic matrix is known, then the extrinsic matrix
can be found by matching specific pixel locations in the image
to the corresponding 3d locations in the world coordinates.
This is known as a perspective-n-point problem (PnP), where
the pose of the camera is estimated by relating a set of known
3d points in the world frame to their corresponding pixel
positions in the image [13]. The foosmen can be used for this
purpose, giving eleven positions to match the image to the
3d scene.

As was stated earlier in section II, in the chosen coordinate
system, the positions of the foosmen can be described in
several constants related to the topology (see figure 2), and the

four actuator variables α as defined in (2). Table I lists each
foosmen in terms of these topology constants and actuator
variables in the left side of this table. These coordinates are
directly derived from the topology invariants. Which foosman
corresponds to the which foosman number can be seen in
figure 2.

TABLE I:
FOOSMEN COORDINATES

X Y

1 0 αksk + δk

2 dr αdsd

3 dr αdsd + δd

4 3dr αmsm

5 3dr αmsm + δm

6 3dr αmsm + 2δm

7 3dr αmsm + 3δm

8 3dr αmsm + 4δm

9 5dr αasa

10 5dr αasa + δa

11 5dr αasa + 2δa

TABLE II:
FOOSMEN COORDINATES IN RATIOS

WITH dw

X (in dw) Y (in dw)

1 0 αksk/dw + δk/dw

2 1
7
dl/dw αdsd/dw

3 1
7
dl/dw αdsd/dw + δd/dw

4 3
7
dl/dw αmsm/dw

5 3
7
dl/dw αmsm/dw + δm/dw

6 3
7
dl/dw αmsm/dw + 2δm/dw

7 3
7
dl/dw αmsm/dw + 3δm/dw

8 3
7
dl/dw αmsm/dw + 4δm/dw

9 5
7
dl/dw αasa/dw

10 5
7
dl/dw αasa/dw + δa/dw

11 5
7
dl/dw αasa/dw + 2δa/dw

The X coordinates of the foosmen can be described
using the distance between two neighboring rods dr. The
Y coordinates of the foosmen are described using the the
spacing between the foosmen δi, the length of the stroke of
the foosmen si, and the value of the actuators controlling the
foosmen αi, with i corresponding to a rod. The Z coordinates
of the foosmen are all equal to zero, as all foosmen are
located in the same plane. As such, the Z coordinates are not
shown in table I.

Since the real geometric values of these constants are not
known, it is not possible to use these coordinates directly
in this way to solve the PnP problem. However, the PnP
problem is also solvable when these coordinates are known
in terms of one chosen topology constant. The logical chose
for this constant is either dl or dw, as these are the constants
corresponding to the x and y-axis respectively in the world
model (see section II). dw is chosen here as it is more con-
venient when calculating the topology ratios than dl, although
dl would have worked just as well. If the ratios between
all topology constants and dw can be estimated, then it is
possible to describe all foosmen positions as dimensionless
coordinates in terms of dw. Table II shows the same foosmen
coordinates as table I, but now redefined as ratios with dw.
This results in the set of topology ratios that now need to
be estimated, after which these coordinates can be used to
solve the PnP problem. To solve the PnP problem, the SQPnP
algorithm as described in [14] is used, which is an algorithm
that always determines the global minima of the PnP problem
and consistently achieves results at a low computational cost.

E. Estimating the Topology Ratios

The topology ratios in the y-axis can be estimated as
follows. Take any two neighboring foosmen on the same rod,
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called foosman A and foosman B. During the calibration of the
actuator sensors as described in subsection IV-A, all foosmen
are located at the extreme left position during which all α’s
are zero (see figure 4a). The position of foosmen A and B
in world coordinates can be expressed as AL and BL, and in
pixel positions in the image as aL and bL. All foosmen are
then moved to the extreme right position during which all α’s
are one (see figure 4b). The position of foosmen A and B in
world coordinates can be expressed as AR and BR, and in
pixel positions in the image as aR and bR. The four points
AL, BL, AR, and BR are collinear, and as such, the cross-
ratio can be used to relate the four world points to the four
image points [17]. The cross-ratio is a projective invariant and
can be used to relate the points as:

ALAR ·BLBR

BLAR ·ALBR

=
aLaR · bLbR
bLaR · aLbR

= Cr (10)

In which the bar above two points indicates the distance
between the two points, and Cr is the invariant cross-ratio.
The right side of (10) is known, as it can be directly inferred
from pixel measurements. Filling in the left side of (10) with
the stroke length and foosmen spacing constants results in:

si · si
(si − δi) · (si + δi)

= Cr (11)

In which i is the rod corresponding to the chosen foosmen A
and B. Since si is always larger than δi (a topology invariant),
Cr is always a number larger than 1. As can be derived from
the topology invariants and figure 2, dw can be described as:

dw = si + (ni − 1)δi (12)

Where ni is the amount of foosmen on that specific rod.
Combine (11) and (12) to get the ratios si/dw and δi/dw as in
(13) and (14) respectively:

si
dw

=

(
1 + (ni − 1)

√
Cr − 1

Cr

)−1

(13)

δi
dw

=

(√
Cr

Cr − 1
+ (ni − 1)

)−1

(14)

This method can be repeated on any set of neighboring
foosmen to estimate all necessary ratios. The method does
not work on the ratios sk/dw and δk/dw however, as the keeper
has no neighboring foosmen. These ratios can be derived later
however. By solving the PnP problem using just ten foosmen
instead of eleven (by excluding the keeper foosman), it is
possible to derive the Y coordinate of the keeper using (3),
which can then be used to derive the ratios by using table II.

The rod distance dr and the topology length dl are related
to each other by a fixed ratio:

dl = 7dr (15)

This follows from one of the topology invariants, which
states that a football table consists of 8 equally spaced rods.
The ratio between dl and dw can be estimated using the earlier

created quadrilateral shown in figure 5b, which was used to
estimate the focal length. [7] suggest that the aspect ratio of
this deformed rectangle in figure 5a can be determined using:

(
2dr
dw

)2 =
nw

TK−TK−1nw

nh
TK−TK−1nh

(16)

In which nw and nh are defined by (8). The fraction 2dr/dw

is the aspect ratio of the deformed rectangle. This determined
aspect ratio can then be used to estimate the ratio dl/dw via
(15). If the situation occurs where (9) is undefined and the
focal length is unknown, the quadrilateral in the image from
figure 5b will not be deformed, and as such will be visible as
an rectangle in the image. This means that the aspect ratio in
the image will be equal to the aspect ratio in world coordinates.
As such, the constant dl can still be related to dw by simply
estimating the aspect ratio of rectangle in the image.

F. Using the estimated model to locate the ball

The now complete camera model from (3) can be used
to project a 3d point in the world frame to the image. The
inverse operation is necessary however. This is impossible,
since in this situation only u and v are known in the model
while X , Y , Z, and s are unknown, which means the model
is undetermined. However, an assumption can be made,
which does make this solvable. By assuming that the ball
will always be located on the field (which for all intents and
purposes it will be), the position of the ball in the z-axis is
fixed at a certain constant dh, which is the distance between
the rods and the field (see figure 6b). By assuming a fixed
position of the ball in the z-axis, only the position of the ball
in the other two axis remain unknown. By combining the
fixed distance in the z-axis with the pixel location of the ball
in the image, enough variables are known in order to use the
camera model (3).

(a) Layout when foosmen are
turned 90°

(b) Sideview of foosmen

Fig. 6

The constant dh can be related to the other constants via dr.
When the foosmen on two neighboring rods are angled parallel
to the x-axis (90°turn), the feet of two opposing foosmen can
almost touch (see figure 6a), which was one of the topology
invariant. This means that the length of a foosman from feet
to shoulders (where it is connected to the rod) will be equal
to 0.5dr. Turning this foosman 90°to the normal position, will
show that the foosman will slightly hover above the field. This



9

means that the field is located a foosman length below the rods
(see figure 6b). As such dh can be described as:

dh = 0.5dr (17)

The camera model (3) can be changed as follows to create
a new model from which the position of the ball can be
estimated. First, the pixel coordinates of the ball in the image,
ub and vb, are converted to normalized camera coordinates x′

b

and y′b respectively, using (3). This results in:

x′
b =

Xc

Zc
=

ub − u0

f

y′b =
Yc

Zc
=

vb − v0
f

(18)

With Xc, Yc, and Zc as the coordinates of the ball in camera
coordinates. Using these normalized camera coordinates, (3)
can be rewritten as:

Zc

x′
b

y′b
1

 =

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz



Xb

Yb

Zb

1

 (19)

Where Xb, Yb, and Zb describe the coordinates of the ball
in world coordinates in terms of dw. The value Zb is fixed as
Zb = dh, while Xb, Yb, and Zc are unknown. The matrix terms
rij are components of the rotation matrix R and tx, ty , and tz
are components of the translation vector T. Rearranging (19)
and placing all unknowns in one vector, results in:r13dh + tx

r23dh + ty
r33dh + tz

 =

x′
b −r11 −r12

y′b −r21 −r22
1 −r31 −r32

Zc

Xb

Yb

 (20)

Which can be written in the form:

h = B

Zc

Xb

Yb

 (21)

By taking the inverse of B, (21) can be used to determine
the coordinates of the ball in the world frame. This method
can not be used if B is singular. However, this is highly
unlikely to happen, but if it were to happen, an easy solution
would be to simply use a neighboring pixel for ub and/or vb
in (18). This would still result in an accurate estimation of the
location of the ball (one pixel difference would not make a
significant difference), while creating a non-singular matrix B.

If the situation occurs where the focal length is not known
because (9) was undefined, the location of the ball can still be
estimated. In this unique situation, the camera is aimed exactly
perpendicular to the field. As a result, the rotation matrix R
will take the form of:

R =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 (22)

In which θ is the angle of rotation of the field with respect
to the camera, which can be estimated by using the known
topology of the foosmen (by looking at the angle of the rods
and where certain foosmen are located in the image). The tx
and ty components from the translation matrix T, can also be
estimated using the topology. The component tz disappears in
this situation, as (19) simplifies to:

Zc

[
x′
b

y′b

]
=

[
Xc

Yc

]
=

[
cos θ − sin θ tx
sin θ cos θ ty

]Xb

Yb

1

 (23)

The normalized image coordinates x′
b and y′b cannot be

directly estimated without the focal length. Furthermore, Zc

is still unknown. From (18), the camera coordinates can be
described as:

Xc =
Zc

f
(ub − u0)

Yc =
Zc

f
(vb − v0)

(24)

The fraction Zc/f can be estimated by comparing the dis-
tances between foosmen in world coordinates to the same
distances between foosmen in pixel coordinates. The ratio
between these distances in world coordinates and in pixel
coordinates will be the same for every distance, and will in
fact be Zc/f . When Zc/f , θ, tx, and ty have been determined,
(23) and (24) can be used to estimate the position of the ball
in world coordinates.

G. Estimating the workspaces of the foosmen

The workspace of an individual foosman is defined as the
range of points in the world coordinates where a foosman
is able to reach and kick the ball forward towards to goal
of the opponent. Knowledge about the workspaces of each
foosman is necessary in order to make a decision about which
foosman to move. The workspace of a foosman is defined
using four lines: two longitudinal lines which are parallel to
the x-axis and have a Y value Ywl and Ywr, and two lateral
lines which are parallel to the y-axis and have a X value
Xwf and Xwb. The longitudinal lines represent the edges of
the stroke along the rod of a specific foosman. If the ball is
located in between these two lines, then it is possible to align
that foosman with the ball in order to block or kick the ball
if the ball crosses the path of the foosman. The lateral lines
represent the edges of the range of the kick of a foosman. If
the ball is located in between these two lines as well as the
longitudinal lines, then it is possible for that foosman to kick
the ball forward. If the ball is located behind the lateral line
with value Xwb, then this foosman will turn to an angle such
that the ball will not be blocked if it is shot forward from
behind. The workspaces of neighboring foosmen can overlap.
When the ball is in more than one workspace, either foosmen
can be chosen. In this situation, the foosman that has the
current shortest distance to the ball will be chosen. Figure 7a
shows how the workspace is defined for the middle attacker
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(a) The four lines defining the
workspace of the middle attacker

foosman. The two longitudinal lines are
used to position the foosman with

respect to the ball. The lateral lines are
used to determine where the ball can be

kicked.

(b) Workspace of each red foosman shown
as a transparent orange rectangle. Some

workspaces overlap.

Fig. 7

foosman, while figure 7b show the workspaces of all foosmen.

The parameters Ywl and Ywr for a foosman can be defined
by using table II. The left edge Ywl of the workspace of each
foosman is defined as the Y coordinate of that foosman when
α is 0. The right edge Ywr of the workspace of each foosman is
defined as the Y coordinate of that foosman when α is 1. The
parameters Xwf and Xwb for a foosman can be estimated in a
similar way. The front edge Xwf of the workspace of the each
foosman is defined as the X coordinate of that foosman plus
df1 as estimated in (25). The back edge Xwb of the workspace
of the each foosman is defined as the X coordinate of that
foosman minus df2 as estimated in (25).

df1 =
√
d2h − (dh − rb)2

df2 = df1 − rb
(25)

Where rb is defined as the estimated radius of the ball in
world coordinates. Figure 8 shows how df1 can be estimated
using dh and rb and the Pythagorean theorem.

Fig. 8: The figure shows the maximum distance df1 at which the ball can
still be kicked by the foosman.

V. EXPERIMENTS AND RESULTS

In order to test the hypothesis that the presented method is
robust against variations, a series of experiments are conducted
under changing parameters. These changing parameters are

different camera angles, as well as different football tables
with different dimensions and colors. The experiments are
divided in four subsections. In the first three subsections
40 measurements are conducted on EUTAFT. In these 40
measurements, four different camera poses are tested (10
measurements per camera pose). The four chosen camera
poses can be seen in figure 9. The first subsection focuses
on the accuracy of the estimated camera model, the second
subsection focuses on the accuracy of the estimated topology
ratios, and the third subsection focuses on the accuracy of the
ball tracking and actuator responses. The last subsection will
focus on additional experiments that were performed on three
additional football tables with different dimensions.

Fig. 9: The four camera positions and the six ball locations used in the
experiments

A. Validation of estimated camera model

The estimated camera model can be validated by comparing
the estimated camera model to a camera model found using a
more traditional method, namely a camera model found using
the checkerboard method by [6]. The difference between the
intrinsic camera matrices should be minimal between the two
camera models. The principal point (u0, v0) and the skew γ
in the intrinsic camera matrix were assumed to be equal to
the center of the image (which for the used camera would
be equal to (540, 720)) and zero respectively. Furthermore,
the focal length fx and fy were assumed to be equal. When
these assumptions are compared to a camera model estimated
using the checkerboard method (see 26), it can be seen
that these assumptions hold. The estimated principal point
differs by around 10 pixels in the u direction compared to
the assumption, but [25] suggests that such an offset is not
significant in the estimation of principal points.

Kcheckerboard =

1152 0 530
0 1152 721
0 0 1

 (26)

Table III shows the mean µ and standard deviation σ of
the focal length f and the distortion parameter λ of the
ten experiments per camera pose. Camera pose 1 has no
estimated focal length, as it is not possible to estimate an
accurate focal length in this camera pose, as was discussed
in subsection IV-C. The estimated focal lengths f can be
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compared to the focal length found using the checkerboard
method. The estimated distortion parameter is more difficult to
compare to the found distortion parameters from the standard
checkerboard method, as the checkerboard method uses a
different lens distortion model consisting of multiple distortion
parameters.

TABLE III:
CAMERA MODEL ESTIMATIONS

µ± σµ± σµ± σ Cam 1 Cam 2 Cam 3 Cam 4
f - 1142± 38 2003± 363 1174± 32

λ(10−9) 153± 1.3 151± 4.2 157± 1.4 150± 1.9

The intrinsic matrix as derived from the checkerboard
method is assumed as the ground truth to which the estimated
focal length is compared. [25] suggests that an offset between
0 and 25 in the parameter value of f from the true value
is common in the checkerboard method. As such, this
paper considers a difference of less than 25 between the
checkerboard focal length and the estimated focal length to
be an accurate estimation. The focal length estimations for
camera pose 2 and 4 are close to focal length as derived
from the checkerboard method, and fall within the limit of
25. Furthermore, the variation between the ten experiments
for each of these camera poses is low (the standard deviation
is just 38 and 32). The estimated focal length of camera
pose 3 is not close to the checkerboard focal length at all,
and the standard deviation is high, meaning that there are
large differences between the estimations in the experiments
from this pose. In order to determine if the errors in the
estimated focal lengths for camera 3 are too large for this
estimation to be useful, the experiments in subsections V-B
and V-C are performed twice, one time where the estimated
focal length is used, and one time where the focal length
is not estimated but instead fixed at the determined ground
truth of 1152. The differences in these results will indicate
if the error in the focal length estimation is problematic or not.

As can be derived from (4), the distortion parameter λ starts
to have an effect from values of at least 2e-9. Values lower
than 2e-9 would only have sub-pixel effects, meaning no real
distortion correction would happen. While it is difficult to
verify the validity of the estimated distortion parameters, as
they cannot be compared to the checkerboard estimation, all
estimated distortion parameters are in a very similar range.
Using the value 2e-9 as the minimum threshold, it can be seen
that the standard deviation is very small in all four camera
poses. This is an indication that the estimated distortion
parameters are a correct estimation, although the chance exist
that there is a systematic bias present in all estimations. Figure
10a shows the image without any correction applied to it, while
figure 10b shows an image where the lens distortion correction
is applied with the parameter equal to 153e-9, which is the
mean of all 40 estimated distortion parameters. Judging by
eyesight, figure 10a clearly has barrel distortion in the image,
which seem to be completely resolved in figure 10b, which
indicates that there does not seem to be a systematic bias
present in the estimation.

(a) Image of the table when no
distortion correction is applied.

(b) Image of the table when distortion
correction of 153e-9 has been applied.

Fig. 10

B. Validation of estimated Topology ratios

To validate the estimated world model, the estimated topol-
ogy ratios are compared to the actual topology ratios, which
were measured by hand at millimeter scale. Table IV shows
the list of the mean µ and standard deviation σ of all topology
ratios estimated during all experiments, with the exception of
the ratio dl/dw, which is presented separately in table V. The
estimations are not presented separately per camera pose, as
there was no significant difference between the estimations
between different camera poses. Since these estimations do not
depend on the focal length, there was no difference between
the experiments with an estimated focal length or a fixed focal
length, and as such, these experiments are also not presented
separately.

TABLE IV:
TOPOLOGY RATIO ESTIMATIONS OF EUTAFT

sk/dw sd/dw sm/dw sa/dw δk/dw δd/dw δm/dw δa/dw

real(10−3) 277 648 247 416 362 352 188 292

µ(10−3) 281 653 245 419 360 347 189 291
σ(10−3) 0.5 1.3 0.4 0.7 0.2 1.3 0.1 0.4

The differences between the measured topology ratios and
the estimated topology ratios are small. The largest offset
between the measured ratio values and the estimated ratio
values is just 0.006. The real metric value of dw is 64 cm on
EUTAFT. This means that a difference of 0.006 between the
measured ratio values and the estimated ratio values would
result in offset of 0.384 cm. Considering the fact that the
width of the foosmen feet is 2 cm and the ball has a diameter
of 3 cm, an offset of 0.384 cm is expected to be no problem.
The standard deviation is low, indicating that there are no
large differences between the experiments.

The estimations for the last topology ratio, namely dl/dw,
show more varying results, which is why this ratio is presented
separately in table V. Here µ1 and σ1 indicate the results
where the focal length is estimated, while µ2 and σ2 indicate
the results where the focal length was fixed at 1152. The real
ratio is equal to 1.64.
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TABLE V:
THE MEAN AND STANDARD DEVIATION PER CAMERA POSE FOR THE dl/dw

ESTIMATION

real: 1.64 Cam 1 Cam 2 Cam 3 Cam 4
µ1 ± σ1 1.63± 0.003 1.59± 0.017 1.34± 0.126 1.65± 0.008

µ2 ± σ2 1.63± 0.002 1.61± 0.005 1.64± 0.006 1.65± 0.003

Especially noticeable is the difference between the real ratio
and the estimated ratio in camera pose 3 when using the
estimated focal lengths. This is a clear consequence from the
inaccurate estimation of the focal length in camera pose 3 in
section V-A, as this offset is not present when a fixed focal
length is used.

C. Accuracy of ball tracking and actuator response
The main goal of EUTAFT is to accurately track the ball

and formulate a correct response with the foosmen. As such,
EUTAFT should be able to give a correct estimation of the
location of the ball in world coordinates and give the right
actuator values α for each rod such that a foosman is placed
in front of the ball. An estimation for the ball location and
actuator value is considered correct when the end result is
that a foosman will be able to hit the ball straight ahead.
The ball has a diameter of 3 cm, and the feet of the foosmen
are 2 cm wide on the EUTAFT table. This means that an
absolute error of 1 cm or lower results in the ball being hit
straight ahead, an absolute error between 1 cm and 2.5 cm
results in the ball being hit diagonally, and an absolute error
greater than 2.5 cm results in the foosman missing the ball.
As such, the end result should preferably be a rod response
with an absolute error below 1 cm, and at the very least a
rod response with an absolute error below 2.5 cm. While
the presented world model in this paper is based on relative
coordinates, the conversion back to geometric values is useful
in this experiment to test the accuracy of EUTAFT.

In these experiments, the ball is placed in six known
locations (as shown in figure 9). Figure 11 show the
six actual ball positions (shown in black) as well as the
corresponding estimations per ball position in the world
coordinates (shown in color, with each color corresponding
to a specific camera pose). Figure 11 show the estimations
when the estimated focal lengths are used. The actual ball
locations are measured by hand and then converted to world
coordinates using the measured topology ratios (which were
measured by hand in section V-B).

The ball estimations for camera pose 1 and 2 are very
close to the real ball location. Camera pose 4 shows slightly
more offset when compared to camera pose 1 and 2. Camera
pose 3 shows a lot more offset and variations, which is a
consequence of the incorrect estimation of the focal length.
The severity of the error in ball tracking with an incorrect
focal length estimation increases the farther away the balls
are from the camera, which can clearly be seen when looking
at the two balls lower in the y-axis which are located furthest
away from camera 3.

Fig. 11: Six ball positions and the corresponding estimations. The black x’s
mark the actual ball locations, the colored +’s mark the corresponding

estimations, where red is cam pose 1, green is cam pose 2, blue is cam pose
3, and magenta is cam pose 4.

To test the accuracy of the rod response, the desired rod
actuator values are calculated using the manually measured
topology ratios and ball locations. The absolute error between
the desired actuator values and the chosen actuator values
is converted to centimeters and plotted in figure 12 and is
shown separately for each of the four camera poses.

Fig. 12: Shows the absolute error of actuator values in centimeters. Error is
defined as the difference between the desired actuator value and the actual

actuator value. The red lines indicate the two set limits.

Table VI shows the mean and standard deviation of the
absolute alignment error per camera pose, with µ1 and σ1

indicating the absolute error where the focal length is esti-
mated, and µ2 and σ2 indicating the absolute error where the
focal length was fixed at 1152.

TABLE VI:
THE MEAN AND STANDARD DEVIATION OF THE ABSOLUTE ALIGNMENT

ERROR OF ALL RODS IN CENTIMETER PER CAMERA POSE

Cam 1 Cam 2 Cam 3 Cam 4
µ1 ± σ1 0.15± 0.11 0.21± 0.14 0.82± 0.61 0.48± 0.27

µ2 ± σ2 0.14± 0.11 0.22± 0.15 0.29± 0.23 0.53± 0.34
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Camera pose 1 and 2 show good results, with every single
error being well below the desired value of 1 cm, and with
most even below 0.5 cm. Camera pose 4 has some outliers,
which causes the average error to rise and the standard
deviation to be increased. However, most of these errors are
still below the desired 1 cm line. This means that, in these
three camera poses, all kicks will hit the ball, with all shots
in camera pose 1 and 2 being straight ahead, while some
shots in camera pose 4 might be accidental diagonal shots.
Camera pose 3 shows substantially higher errors. When the
results of camera pose 3 in table VI are compared, it can
be seen that the average error and the standard deviation
lower significantly when a fixed focal length is used, which
indicates that the incorrect focal length estimation is the main
reason for the higher rod alignment error. However, even in
camera pose 3, most errors are still below the desired 1 cm
limit, and except for one single measurement, all errors are
below the maximum error limit of 2.5 cm. This means that
EUTAFT is still accurate enough to be able to play a game of
table football, even if the focal length estimation is not perfect.

D. Testing the universality of the world model

An important aspect of the new world model is the
intention that this world model is robust against varying
football table dimensions, as long as these other football
tables follow the same set of invariants. To test if this is
the case, the experiments from subsection V-B and V-C are
repeated on three different football tables, which all have
different dimensions and colors. While these football tables
are not automated like EUTAFT, a person can stand in for
the actuators of the rod.

On all three football tables, 20 measurements are performed
using the same 4 camera poses as shown in figure 9 (so 5
measurements per camera pose). In this experiment, a fixed
focal length of 1152 is used instead of the estimated focal
length. This is done in order to focus this experiment on testing
if the world model can perform on other tables. The three
football tables are referred to as Football table A, B, and C
in these experiments. Table VII show the real topology ratios
of all three football tables, as well as the means µA, µB , µC

and standard deviations σA, σB , σC of the estimated ratios.

TABLE VII:
TOPOLOGY RATIO ESTIMATIONS FOR THE NON-EUTAFT TABLES

sk/dw sd/dw sm/dw sa/dw δk/dw δd/dw δm/dw δa/dw dl/dw

real A(10−3) 331 612 207 314 339 388 198 339 1736
µA(10−3) 334 610 213 311 333 390 197 345 1723
σA(10−3) 1.5 2.7 0.9 1.4 0.7 2.7 0.2 0.7 20.3
real B(10−3) 397 576 186 371 302 424 203 314 1751
µB(10−3) 395 580 187 380 303 420 203 310 1750
σA(10−3) 3.0 4.3 1.4 2.8 1.5 4.3 0.4 1.4 40.6
real C(10−3) 341 610 228 325 325 382 195 341 1707
µC(10−3) 341 606 226 323 330 394 194 338 1703
σA(10−3) 2.4 4.3 1.6 2.3 1.2 4.3 0.4 1.2 15.9

For all three football tables the difference between the real
topology ratios and the estimated topology ratios is small.

These results are of the same precision as the topology
ratio estimation on EUTAFT. The offsets between the real
and estimated ratios are small enough that no problems are
expected for the accuracy. The standard deviation is low,
indicating that there are no large differences between the
measurements.

During the 20 measurements on each football table, the
ball is placed in four known positions. The ball positions are
estimated, and an actuator response is decided based on those
results, similar as was done in subsection V-C. Table VIII
shows the mean µ and standard deviation σ of the absolute
alignment error per camera pose for all three football tables
A, B, and C.

TABLE VIII:
THE MEAN AND STANDARD DEVIATION OF THE ABSOLUTE ALIGNMENT

ERROR OF ALL RODS IN CENTIMETER PER CAMERA POSE FOR THE
NON-EUTAFT TABLES

Cam 1 Cam 2 Cam 3 Cam 4
µA ± σA 0.66± 0.45 0.40± 0.60 0.31± 0.24 0.43± 0.28

µB ± σB 0.53± 0.38 0.41± 0.27 0.46± 0.35 0.44± 0.31

µC ± σC 0.31± 0.21 0.32± 0.20 0.35± 0.22 0.41± 0.31

The results show that the presented method performs within
the set limits, and is as such accurate enough. This demon-
strates that the approach is robust against the variations these
different tables have.

VI. DISCUSSION

It was hypothesised that EUTAFT could be made robust
against variations by replacing the geometric based world
model by a new world model based on a set of invariants.
The results show that this is indeed the case. Experiments
are performed using different camera setups and on multiple
football tables with differing dimensions and colors. The
software is able to give estimations of the camera parameters
and topology ratios. These estimations are accurate enough
to localize the ball and position the foosmen within the error
limits such that the foosmen are able to block and kick the
ball. Most balls will be hit straight ahead as most actuator
errors are within the desired error limit of 1 cm. Virtually all
balls will always be hit as almost no actuator error exceeds
the maximum error limit of 2.5 cm. A video of EUTAFT in
action can be found here.

The estimation of the focal length can be problematic,
as was seen during the estimation in camera pose 3. This
has consequences for the accuracy of the estimation of the
topology ratio dl/dw and the localization of the ball. The
incorrect focal length estimation for camera pose 3 suggests
that this pose does not cause enough perspective deformation
from which an accurate estimation for the focal length can be
made. When perspective deformation is low, the terms nw3

and nh3 in (9) get closer to zero, which causes this estimation
to become less accurate. Even though the performance is still
within the maximum set error limits with an imprecise focal
length, it might be better to simply manually calibrate the

https://www.youtube.com/watch?v=RZkiDIedSTA
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focal length of the camera beforehand, and then fix the focal
length at this value in order to minimize the error. Such a
manual calibration would only need to be performed once
for a specific camera. When comparing these results to the
measurements from the EUTAFT football table, it can be seen
that the accuracy is slightly lower on the non-EUTAFT tables,
which is caused by the more prevalent outliers on these tables
in comparison to EUTAFT. These outliers are most likely a
result of the more difficult identification of the foosmen and
ball on these three tables. EUTAFT has an active lighting
system which provides bright and evenly distributed lighting
directly above the table, while the other three tables depend on
the surrounding light. While care was taken to make sure that
the identification of the foosmen and ball is independent of
lighting conditions, in practice the less optimal lighting does
affect performance.

VII. CONCLUSION

A new world model is created which is not based on
geometric distances between objects, but on pre-known and
invariant relations between the objects in the workspace of
the robot (which was referred to as the topology). This world
model was implemented on EUTAFT, an automated football
table. Earlier software on EUTAFT used a world model that
used manual calibrations, ’hard-coded’ geometric distances,
and a fixed camera position, which made this world model
not robust against variations, and as such limited the world
model to one specific football table and set of sensors. The
new world model requires no manual calibrations and is
robust against variations such as changing camera poses and
differing football tables dimensions and color, as long as the
setup corresponds to a predetermined set of invariants.

In the future, improvements could be made on the esti-
mation of the focal length of the camera. This estimation
had significant offsets when the perspective effect was not
large enough. This decreased the performance of EUTAFT,
although performance was still good enough that this was
not too problematic. Improvements can also be made on the
identification of the foosmen and the ball. Lower lighting
conditions reduce the performance of the new world model,
as the software can have difficulties to spot the foosmen
and ball in these situations. Furthermore, an assumption is
made that the foosmen and ball are uniformly colored. The
identification aspect of the software could be extended so that
it would be possible to identify the foosmen and ball even
when these are not uniformly colored. This would decrease
the set of invariants, and as such, increase the universality
of the new world model. Due to the accuracy of the new
world model on EUTAFT, it is possible to extent the software
in the future with more complex shots and strategies, such
as aimed shots, or perhaps even passes to other foosmen.
When implementing more complex strategies, it would be very
useful if the software is able to also detect the foosmen of the
opponent.

REFERENCES

[1] M. T. S. W. T. Chau, J. Then and S. Cheng, “Robotic foosball table.”
University of Adelaide, 2007.

[2] E. T. M. Aeberhard, S. Connelly and N. Walker, “Foosball
robot.” Georgia Institute of Technology, 2007. [Online]. Available:
http://www.eskibars.com/projects/foosball robot/

[3] T. Weigel and B. Nebel, “Kiro – an autonomous table soccer player,”
vol. 2752, 11 2003, pp. 384–392.

[4] R. Janssen, J. Best, M. Molengraft, and M. Steinbuch, “The design of
a semi-automated football table,” 09 2010, pp. 89–94.

[5] R. Janssen, J. Best, and M. Molengraft, “Real-time ball tracking in a
semi-automated foosball table,” 06 2009, pp. 128–139.

[6] Z. Zhang, “A flexible new technique for camera calibration,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 11, pp. 1330–1334, 2000.

[7] L.-W. H. Z. Zhang, “Whiteboard scanning and image enhancement,”
Digital Signal Processing, vol. 17, no. 2, pp. 420–424, Mar. 2007.
[Online]. Available: https://www.microsoft.com/en-us/research/uploads/
prod/2016/11/Digital-Signal-Processing.pdf

[8] A. Wang, T. Qiu, and L.-T. Shao, “A simple method
of radial distortion correction with centre of distortion
estimation,” Journal of Mathematical Imaging and Vision,
vol. 35, pp. 165–172, 11 2009. [Online]. Available: https:
//www.researchgate.net/publication/220146291 A Simple Method of
Radial Distortion Correction with Centre of Distortion Estimation

[9] S. Brahmbhatt, Basic Machine Learning and Object Detection Based
on Keypoints. Berkeley, CA: Apress, 2013, pp. 119–153. [Online].
Available: https://doi.org/10.1007/978-1-4302-6080-6 8

[10] V. Chari and A. Veeraraghavan, Lens Distortion, Radial Distortion.
Boston, MA: Springer US, 2014, pp. 443–445. [Online]. Available:
https://doi.org/10.1007/978-0-387-31439-6 479

[11] R. Ramanath and M. S. Drew, Color Spaces. Boston, MA: Springer
US, 2014, pp. 123–132. [Online]. Available: https://doi.org/10.1007/
978-0-387-31439-6 452

[12] “Advances in computer vision,” Advances in Intelligent Systems
and Computing, 2020. [Online]. Available: http://dx.doi.org/10.1007/
978-3-030-17795-9

[13] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, no. 6, p. 381–395,
jun 1981. [Online]. Available: https://doi.org/10.1145/358669.358692

[14] G. Terzakis and M. I. A. Lourakis, “A consistently fast and globally
optimal solution to the perspective-n-point problem.” Springer Inter-
national Publishing, 2020.

[15] S. Prabu and J. Gnanasekar, A Study on Image Segmentation Method for
Image Processing, 12 2021.

[16] A. Jain, Fundamentals of Digital Image Processing, ser. Prentice-Hall
information and system sciences series. Prentice Hall.

[17] J. L. Mundy and A. Zisserman, “Appendix - projective geometry for
machine vision,” 1992.

[18] J. Canny, “A computational approach to edge detection,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6,
pp. 679–698, 1986.
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