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Abstract

Electron microscopy plays an essential role in the research of new, innovative materials,
in drug development, and in the manufacturing process of the semiconductor industry.
In an industrial electron microscope, a high-precision sample manipulation stage is em-
ployed to position the sample under the electron beam. In such high-precision position-
ing systems, friction is a performance limiting factor in terms of positioning accuracy
and settling time, as it can induce non-zero steady-state positioning errors, limit cy-
cling, and large settling times. These performance limitations are inherent to classical
PID control, which is still employed in the vast majority of industrial applications.

The contribution of this thesis is twofold. First, a reset PID control strategy for im-
proving the settling performance of a motion system subject to friction, presented in [1],
is validated on an industrial nano-positioning motion stage. This experimental setup
is representative for the sample manipulation stage used in various industrial electron
microscopes. The experimental results presented in this thesis are submitted for journal
publication in [2].

Secondly, the effects of flexible dynamics on stability and settling performance of a 2
DOF system subject to set-valued, non-collocated friction are investigated analytically.
Friction-induced limit cycles are considered in particular, which can occur in flexible
systems with higher-order dynamics, without the presence of a Stribeck effect in the
friction characteristic, or the presence of an integrator in the controller. Based on this
analysis, the intuition behind two novel control strategies for improving the settling
performance of a flexible, 2 DOF system, subject to non-collocated, set-valued friction,
is presented.
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CHAPTER1
Introduction

Electron microscopy is widely used in technology and science. Three major areas for
microscopy are materials science, life sciences and electronics (e.g., semiconductor ap-
plications), each with its own performance requirements. Materials science focusses on
innovative materials, which are used in exploring alternative energy sources, developing
stronger, lighter materials, or nanodevices. In the study of new materials, the highest
possible image resolution created by the microscope is desired in order to map the ar-
rangement of all individual atoms in the material. The field of life sciences focuses on
drug development and a better understanding of diseases and viruses. The samples in
the Life Sciences industry are often organic, so in order to retain a samples’ natural,
native state without damaging them, delicate preparation and handling is required. In
the semiconductor industry, electron microscopes are used in parallel to the manufac-
turing process of chips, and, specifically, the individual transistors, in order to quickly
detect and correct any undesired process inaccuracies. The pace at which such an image
can be created by the microscope is of high importance to achieve higher throughput
and, consequently, reduce costs.

An electron microscope is a microscope that uses a beam of accelerated electrons as a
source of illumination. Thermo Fisher Scientific produces microscopes that can achieve
a resolution as small as 50 pm (0.05 nm) and magnifications up to 50.000.000x, com-
pared to a maximum resolution of 200 nm and magnifications of 2000x achieved with
traditional light microscopes. The three main types of electron microscopes are:

• Transmission electron microscopes (TEM),

• Scanning electron microscopes (SEM),

• Scanning transmission electron microscopes (STEM).

In transmission electron microscopes (TEM), see Fig. 1.1, an electron gun is used to
produce a high voltage electron beam that (partially) passes through a sample. An
image can be created by projecting the outcoming electron beam onto a fluorescent
screen or by digitally recording it. TEM can achieve very high resolutions (50 pm), but
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Fig. 1.1. Schematic representation of the FEI Titan TEM.

has the disadvantage that the samples have to be extremely thin (±0.1µm), which can
make sample preparation technically challenging.

In scanning electron microscopes (SEM), a focused electron beam is scanned across the
surface of a sample to produce an image. Generally, the image resolution of a SEM is
lower than that of a TEM. Since the electron beam only scans the surface of the sample,
a SEM is able to image bulk samples of several millimetres in size in contrast to a TEM.
An additional advantage of a SEM over a TEM is the possibility to identify the material
composition of the sample by detecting characteristic X-rays using energy-dispersive
X-ray spectroscopy.

A scanning transmission electron microscope (STEM) combines both principles and
scans a focused electron beam across the sample, which is then transmitted through
the sample to create an image. This technique combines the high resolution of a TEM
with the possibility to identify material composition.

An additional technique used for sample preparation and analysis is the Focused Ion
Beam (FIB). The FIB setup is similar to the SEM setup, but uses a focused ion beam,
rather than electrons, which can ’mill’ a specimen surface via sputtering with nm
precision. This makes nano-machining possible to produce minute components or to
remove unwanted material.

1.1 Sample manipulation stage

In all variations of electron microscopes, a high-precision sample manipulation stage is
employed to position the sample under the electron beam, see Fig. 1.2. This motion
stage can manipulate the sample in 5 degrees of freedom (DOF): three translations
(x, y, z) and two rotations (Rx, Ry). The three translations and the Ry-rotation are
considered frictionless, whereas the Rx-rotation suffers from significant friction instead,
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Fig. 1.2. The sample manipulation stage and the sample holder which are used in an
electron microscope, including a schematic representation of the main components.

which limits the achievable positioning accuracy. The Rx-rotation is created by rotating
the entire motion stage (including the sample holder) on a large bearing, inside the
white housing in Fig. 1.2. A DC motor drives a worm gear, which is connected via a
flexible coupling. This worm gear drives a worm wheel to which the motion stage is
connected. The first significant source of friction is the lubricated contact between the
worm gear and the worm wheel. Secondly, the Rx-rotation itself induces large amounts
of friction due to rolling contacts of the main bearing and the rubbing of O-rings,
which are needed to maintain the required vacuum in the microscope. In this thesis,
the Rx DOF is explicitly considered, as this DOF particularly limits the achievable
performance due to the apparent friction. It is intended to improve the performance by
employing specific control strategies that are able to deal with these frictional effects.

1.2 Control strategies for systems subject to friction

Control of motion systems subject to friction has been an active field of research in the
past decades. Two main control approaches can be distinguished when dealing with
friction: model-based friction compensation and non-model-based control techniques.

Model-based friction compensation compensates the friction by including a parametric
friction model in either a feedback or feedforward loop, see, e.g., [3–6]. This means that
a model is required that accurately describes the friction. Various friction models can
be used to describe the friction in a system, see, e.g., [7,8]. Three commonly used static
models to describe friction on macroscopic level are shown in Fig. 1.3. The most basic
friction model consists of only Coulomb friction Fc, depicted in Fig. 1.3a. The addition
of viscous friction, which is proportional to the velocity, is depicted in Fig. 1.3b. In
Fig. 1.3c, static friction Fs and a velocity-weakening Stribeck effect is added. How-
ever, to accurately describe the behaviour of high-precision motion system it is often
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Fig. 1.3. Friction models: (a): Coulomb friction model; (b): Coulomb + viscous friction
model; (c): Coulomb + viscous + static + Stribeck friction model.

necessary to also include microscopic frictional effects such as position-dependent local
elastoplastic deformation of the various contact points [3], which significantly increases
the complexity of the friction model. In practice, exact model-based friction compen-
sation is not possible. Modelling errors and difficult to predict (time-varying) friction
characteristics, due to, e.g., temperature differences, humidity, or wear, results in some
level of under- or overcompensation when dealing with friction through compensation.
Adaptive control may introduce a certain level of robustness against uncertain, or time-
varying friction characteristics, see, e.g., [9, 10]. Inevitable modelling errors, however,
still remain, which result in a deteriorated positioning performance.

Non-model-based techniques do not rely on accurate knowledge of the friction charac-
teristics, but instead apply specific control signals to change the system response to
obtain a desired performance despite the apparent friction. Examples of non-model-
based control techniques are dithering-based techniques, see, e.g., [11,12], and impulsive
control, see, e.g., [13–15]. The former employs high-frequency vibrations to smooth the
discontinuity induced by the friction, whereas the latter uses impulsive control sig-
nals when the system gets in a stick phase with non-zero position error. Both these
control techniques suffer from the same drawback in the sense that they risk exciting
high-frequency system dynamics.

1.3 Problem description

Despite the existence of model-based and non-model-based control techniques for deal-
ing with systems with friction, the vast majority of industrial applications still rely on
classical, linear control techniques for achieving a desired performance. This is mostly
due to the fact that these techniques are well understood and controller design based on
frequency response functions (FRF) is relatively easy. In particular, the classical PID
control is most commonly applied in systems with friction, since the integrator action
results in compensation of unknown static friction. The current state-of-practice in con-
trolling the sample manipulation stage also consists of classical PID control, including
additional lead-, lag- low-pass- and notch filters.
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However, due to the ever-increasing performance requirements in high-precision sys-
tems, the application of classical PID control unacceptably limits the achievable per-
formance in terms of accuracy and settling times, illustrated in Section 3.3. The first
major limitation of PID control applied to systems with friction is the possibility of
inducing limit cycling, thereby losing asymptotic stability of the setpoint. Secondly,
PID control may result in slow convergence and therefore long settling times, due to
the (increasingly) slow depletion and refilling of the integrator buffer (when converging
to the setpoint).

In order to overcome these limitations in the considered electron microscope motion
stage, the addition of a second, short-stroke (piezo) actuator is investigated, see [16].
While it has been shown that this approach can be effective in improving the per-
formance, both in terms of achievable accuracy and settling performance, adding an
additional actuator results in increased complexity and cost of the system. Therefore,
a preferred solution to deal with the current performance limiting friction is to apply
smart control to the existing, single actuator system, as elaborated in Section 3.4.

1.4 Project goals

The goal of this project is twofold. First, a reset PID control strategy for improving the
settling performance of a motion system subject to friction, presented in [1], is experi-
mentally validated on an industrial nano-positioning motion stage. This experimental
setup is representative for the sample manipulation stage used in various industrial elec-
tron microscopes, described above. The settling performance of the industrial motion
stage needs to be improved such that, as a consequence, throughput can be increased.
For a cost-aware solution, the aim is to increase the settling performance of the indus-
trial motion stage without adding additional actuators, or making any other changes
to the mechanical design. To this end, a smart (and cheap) hybrid control strategy is
proposed in [1], to increase the settling performance of a single-mass (1 DOF) motion
system, subject to set-valued friction.

Next, the 1 DOF model is expanded to a flexible 2 DOF model. The second goal
is to analyse the effect of flexible (higher-order) dynamics on stability and settling
performance of a motion system subject to set-valued Coulomb friction acting on the
unactuated (non-collocated) mass. Accordingly, two stabilizing control strategies are
proposed that aim at decreasing settling times, compared to the state-of-practice solu-
tions.

1.5 Thesis outline

In Chapter 2, the nano-positioning stage, which is used as an experimental setup rep-
resentative for the Rx-rotation stage in the microscope, is introduced. A parametric
model representing this setup is constructed and estimates for the system parameters
are derived. Using two different identification techniques, a non-parametric model is
obtained and used to enhance the parametric model. Moreover, experiments are per-
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formed to identify the friction characteristics.

Chapter 3 focusses on the control of a single-mass motion system, subject to set-valued
friction. First, a model of both the system and the friction is given after which the
control issues associated with PID-control of such a system are demonstrated in simu-
lation. A hybrid control strategy for increasing the settling performance is introduced,
as developed in [1], and experimentally implemented on the nano-positioning experi-
mental setup, addressing the first goal of the project. Based on the experimental result,
the achieved performance benefits, the influence of microscopic frictional effects, and
repeatability, are discussed.

Chapter 4 expands the setpoint control problem from a 1 DOF case, to a flexible
2-mass-spring-damper system subject to non-collocated friction, addressing the sec-
ond project goal. The model for this system is given, written in Lur’e-type form, after
which an illustrative simulation example is used to identify the control problems regard-
ing stability and settling performance. These control problems are analysed through
a simulation-based bifurcation analysis and a more general Linear Matrix Inequality
(LMI) approach. Subsequently, two control strategies for setpoint control are proposed,
which address these stability- and performance issues.

6



CHAPTER2
Nano-positioning motion stage

In this chapter, the nano-positioning stage, which is used as an experimental setup rep-
resentative for the Rx-rotation stage in the microscope, is introduced. A parametric
model representing this setup is constructed and estimates for the system parameters
are derived. Using two different identification techniques, a non-parametric model is ob-
tained and used to enhance the parametric model. Moreover, experiments are performed
to identify the friction characteristics.

2.1 Description of the experimental setup

An experimental nano-positioning motion stage, shown in Fig. 2.1, is used to study
the behaviour of the Rx rotation stage of the sample manipulation mechanism used in
various industrial electron microscopes, described in Section 1.1. The setup consists of

Fig. 2.1. The nano-positioning motion stage used as an experimental setup.
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Fig. 2.2. Schematic representation of the nano-positioning stage used as an experimen-
tal setup.

a Maxon RE25 DC servo motor 1 connected to a spindle 2 via a coupling 3 that is
stiff in the rotational direction while being flexible in the translational direction. The
spindle drives a nut 4 , transforming the rotary motion of the spindle to a translational
motion of the attached carriage 5 . A coiled spring 6 connects the carriage to the fixed
world frame to eliminate any backlash between the spindle and the nut. The motor
position is measured by a rotary encoder 7 with a transformed resolution of 100 nm.
The position of the carriage is measured by a linear incremental Renishaw encoder 8
with a resolution of 1 nm. In addition, a piezoelectric actuator 9 is located between
the nut and the carriage, and a linear Heidenhain encoder 10 with a resolution of 1 nm
is positioned above the carriage. These last two components, however, will not be used
in this research.

The experimental setup of Fig. 2.1 is a good representation of the Rx-rotation stage of
the sample manipulation mechanism used in industrial electron microscopes, shown in
Fig. 1.2. The worm gear driving the worm wheel of the microscope’s motion stage is
represented in the experimental setup as a spindle driving a nut. Note that the posi-
tioning performance of the microscope’s motion stage is determined by the rotational
accuracy, opposed to the translation accuracy in experimental setup.

Different sources of friction can be identified in the nano-positioning stage, which are
similar to the sources of friction in the Rx-stage of the electron microscope. Friction
induced by the bearing supporting the motor axis and the main axis, Ff,b1 and Ff,b2
in Fig. 2.2, respectively, contributes a small amount to the overall friction in system.
The friction between the carriage and the frame, Ff,c, can be compared to the friction
induced by the main bearing of the sample manipulation stage. The friction between the
spindle and the nut, Ff,nut, contributes dominantly to the overall friction characteristic,
and can be associated to the friction between the worm gear and worm wheel in the
Rx-stage.

The objective is to control the position of the carriage to a desired constant position
setpoint within an accuracy of 10 nanometer (nm), despite the various sources of fric-
tion, using non-collocation of sensing and actuation. Non-collocation of sensing and
actuating means that additional dynamics are present between the location where the
control force is applied and the location of the sensor used for position feedback control.
The settling performance is defined as the time it takes for the system to settle within a
specified error bound. A mathematical model of the dynamics of the system is required

8
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Fig. 2.3. Model of the nano-positioning motion stage used as an experimental setup.

to design a controller for this control objective. First, an analytical parametric model
is derived based on the equations of motion, using estimates of the various mass- and
stiffness components. Such a parametric model, however, is prone to estimation errors,
which makes it difficult to obtain it at a sufficient level of accuracy. Therefore, system
identification techniques are used to obtain a non-parametric model of the dynamics of
the system from measured frequency response data. An accurate parametric model is
obtained by adjusting the parameters of the analytical model, such that it matches the
measured input-output relation.

2.2 Parametric system modelling

The nano-positioning motion stage is modelled as a 2-mass-spring-damper system,
schematically shown in Fig. 2.3. The equations of motion (EOM) for this system
can be written as the following differential inclusions:{

m1ẍ1 = k(x2 − x1) + d(ẋ2 − ẋ1) + u−Ψ1,

m2ẍ2 = −k(x2 − x1)− d(ẋ2 − ẋ1)−Ψ2.
(2.1)

Here, m1 represents the equivalent mass containing the sum of the transformed motor-
and spindle inertia. The moving carriage is denoted by m2, and the stiffness k is a
combined stiffness representing the flexibility of the nut, the spindle, the bearing and
the piezoelectric actuator. A damper d represents the internal damping of the system.
The motor exerts a transformed force u on m1. The friction forces acting on m1 and
m2 are denoted by Ψj , j ∈ {1, 2}, and satisfy the following set-valued force laws:

Ψj(ẋj) ∈ −Fs,jSign(ẋj)− Fv,j(ẋj), j = 1, 2, (2.2)

where Sign(·) denotes the set-valued sign function defined as

Sign(y) =


−1, y < 0,
[−1, 1], y = 0,
1, y > 0,

(2.3)

and the static friction and velocity-dependent friction terms are denoted by Fs,j and
Fv,j(ẋj), respectively.

The derivation steps taken to construct this reduced-order 2 DOF model from a higher-
order dynamic model of the setup, including the estimations of the various parameters,
can be found in Appendix A.

9
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2.2.1 Plant components

The standard, high-level position-feedback control loop to control the position of the
load, x2, to the desired setpoint, r, is shown in Fig. 2.4. Here, the position controller
C outputs a force u, which is directly used as an input (with an optional addition of a
disturbance signal ds, used for system identification in Section 2.3), as is done in the
model in (2.1).

On the actual setup, however, a command voltage, V̂com, is used as an input. The
low-level block diagram is shown in Fig. 2.5, where G is expanded into its individual
electronic and mechanical components, shown inside the red dashed lines. Based on a
relative position error, a desired motor force, û, is generated by the position controller
C. This desired motor force is first converted to a desired command voltage, V̂com,
through the linear transformation

V̂com = (û+ d̂s)
i

ĝmK̂T

,

where i is the ratio between the rotation of the spindle and the resulting linear displace-
ment of the carriage, ĝm is the estimate of the amplifier gain, and K̂T is the estimate
of the motor gain. This digital signal is converted to a continuous voltage Vcom, by a
digital-to-analog converter (DAC). The amplifier converts this input voltage to a mo-
tor current I1. In order to generate a constant output current, a current control loop
inside the amplifier regulates the voltage across the motor such that the desired output
current is achieved. Additionally, a low-pass filter is present in the amplifier to reduce
high-frequency noise.

The motor subsystem Gmotor includes the conversion from voltage V to current I. The
total current through the DC motor equals the voltage drop across the coil resistance
R and the inductor L of the DC motor, minus the back-EMF term. For simplicity, it is
assumed that the current is constant, so the inductance can be disregarded, resulting
in

I = V −Kvẋ1
R

.

This back-EMF termKvẋ1 is essentially an electrical equivalent of a velocity-dependent
friction term. The output current I through the motor, results in a transformed force
u through the linear relation

u = IKT

i
,

1The amplifier has two modes of operation: 1) velocity mode, where the command voltage Vcom is
scaled to an output voltage or 2) torque mode, where the command voltage Vcom is scaled to an output
current. In torque mode, the motor torque will not depend on the load, Tm = KmI, so this mode of
operation is used to guarantee good tracking of the output force.
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Fig. 2.5. Bottom level control loop, including the various components.

which acts on the mechanical system Gload. The actual position is measured and
converted back to a digital signal by an analog-to-digital converter (ADC), and is used
to close the feedback control loop.

Table 2.1: Signal definitions.

Parameter Description
r reference position for the load
e positional error
û desired control force
u actual control force
ds disturbance signal
V̂com desired command voltage
Vcom actual command voltage
Iref reference current
eI current error
V actual voltage across the motor
I current trough the motor
x2 position of the load
x̂2 estimated position of the load

2.3 Non-parametric system identification

In order to improve the analytical parametric model described in Section 2.2, the sys-
tem’s frequency response function (FRF) between the desired control force û and the
position of the load x2, is obtained using non-parametric identification techniques. An
FRF consists of transfer function measurements at discrete frequencies, which math-
ematically describe the relation between the input and the output of a linear system,
both in amplitude and in phase. This input-output relation can be used for controller
design directly, without specific knowledge of the system parameters. However, doing
so, results in the loss of physical understanding of the system characteristics. Therefore,
the identification results are used to estimate the stiffness and damping parameters, k
and d, respectively, of the analytical model, such that it fits the experimental input-
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output behaviour, while maintaining knowledge of the physical characteristics of the
system.

In this work, two different system identification methods are used for obtaining the
FRF: a standard method using a non-periodic excitation signal, called the indirect
three-point method [17,18], and a Local Polynomial approach using a periodic multisine
excitation signal [17,19]. The linear dynamics of the system with friction are considered
around a non-zero velocity setpoint. The principles of both identification methods are
elaborated in Appendix B.

2.3.1 Indirect three-point method

The first method used to identify the plant dynamics G, as given in Fig. 2.5, is the
indirect three-point method. This approach enables closed-loop identification of the
dynamic input-output behaviour, which is often desired in practical applications. In
the case of identifying the dynamic behaviour of the nano-positioning stage, a constant
velocity setpoint of 0.1 mm/s is implemented, using a stabilizing PD-controller (which
is designed based on the analytical model found in Section 2.2), to exclude, nonlinear,
static frictional effects during the measurement. In a closed-loop setting, it is not
possible to measure the plant G directly, due to a correlation between input U and
the injection signal ds through the feedback loop. By using the indirect three-point
method to estimate the plant dynamics G, this problem is avoided. With this method,
a band-limited white noise signal is injected just before the plant (signal ds in Fig. 2.4),
after which the Process Sensitivity PS is divided by the Sensitivity S. Referring to the
block diagram in Fig. 2.4, these transfer functions are defined by:

S = 1
1 + CG

= U

ds
, (2.4)

PS = G

1 + CG
= e

ds
, (2.5)

G = −PS
S

. (2.6)

In practice, however, any measurement is inherently disturbed by e.g. system non-

R N

L

Fig. 2.6. Principle of the windowed overlapped segment averaging: the signal of length
L is divided into M (4) windowed segments of length N with an overlap of N − R
samples.
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linearities (friction, stick-slip, backlash, etc.), stochastic effects (noise, disturbance)
and measurement errors. Therefore, to enhance the estimation of G, the entire data set
L is divided into separate segments, each of length N . A Hanning window is applied
to each frame to reduce leakage caused by the discontinuities as a result of this data
segmentation. However, applying a window results in data loss at the frame boundaries.
To resolve this, a total of M windowed frames are created with an overlap of N − R
samples, see Fig. 2.6. The values of the used parameters are given in Table 2.2. The
resulting FRF measurement is shown in Fig. 2.8.

Table 2.2: Parameter values used in the three-point method for system identification.

Parameter Symbol Value Unit
Measurement time t 40 s
Sampling frequency fs 10000 Hz
Data set length L 400000 samples
Frame length N 40000 samples
Overlap R 20000 samples
Number of frames M 49 frames
Frequency resolution fres 0.25 Hz

2.3.2 Local Polynomial Method

The standard method of identifying the dynamical behaviour of a system described
above, assumes that the plant G is linear. In practice however, the considered system
is not linear, due to friction. Since a FRF is a linear relation from the input to the
output of a system, the goal is to obtain a Best Linear Approximation (BLA) of the
dynamical system behaviour, using a Local Polynomial Method (LPM). By using a
periodic excitation signal (a multisine signal with equidistantly spaced frequencies from
1 to 2000 Hz), the LPM enables the separation of noise/transient effects from the
systems dynamics, which significantly increases the quality of the plant estimation.
The basic idea of the used LPM is as follows:

amp.

freq.! = 1 ! = 2 ! = 3

Fig. 2.7. Amplitude of the Fourier transform as a function of frequency. The excited
frequencies are given by the black arrows, the transient and the noise contributions on
all frequencies are given by the grey arrows.
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• Excite the system at a certain known frequencies ω. This results in the schematic
discrete Fourier transform (DFT) spectrum shown in Fig. 2.7, where the excited
frequencies are clearly present (black arrow), but noise and transient effects are
also present at the entire spectrum (grey arrows), also at non-excited frequencies.

• Fit a polynomial through a number of non-excited frequency bins around an
excited frequency bin. These non-excited frequency bins only contain noise/tran-
sient effects.

• Interpolate this polynomial to find an estimate of the noise/transient effect at the
excited frequency bin ω.

• Subtract this estimate from the excited frequency bin to obtain a ’noise-corrected
DFT spectrum’.

• Fit a polynomial through the excited frequency bins of the corrected DFT spec-
trum.

• Interpolate this polynomial to find an estimate for the BLA at every frequency.

For a more detailed explanation, refer to Appendix B. The resulting FRF measurement
is shown in Fig. 2.8.

2.4 System identification results

The resulting Bode plot, of the frequency response function from the motor force to
the (non-collocated) position of m2, obtained through both system identification tech-
niques, is shown in Fig. 2.8. For the Bode plot of the frequency response function from
the motor force to the (collocated) position of m1, see Fig. B.5 in Appendix B. Both
the three-point method and the LPM show roughly the same system behaviour. At low
frequencies, a -10 dB/dec slope in the magnitude plot with corresponding -90 degrees
phase can be observed. This decreases to a -20 dB/dec slope with -180 phase, before
a resonance peak is observed at around 160 Hz. After the resonance peak, the slope
tends towards -40 dB/dec with -360 degrees of phase.

For the three-point method measurement, at frequencies above 500 Hz, the magnitude
of the output becomes sufficiently small for noise to become dominant. The measure-
ment result obtained using the LPM remains relatively clear, even at high frequencies.
This is partly due to averaging, inherent to the LPM. Two separate experiments have
shown repeatable high-frequency behaviour, see Fig. B.6 in Appendix B, suggesting
the presence of high-frequency dynamics, accurately measured up to 1000 Hz. These
identification results are used to estimate the system parameters in (2.1). This revisited
model is discussed in Section 2.6.
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Fig. 2.8. Comparison between the experimentally found Bode plots, of the transfer
function from the desired control force û to the (non-collocated) position of the carriage
x2, using the three-point method with noise injection (grey) and the LPMwith multisine
injection (black).

2.5 Friction identification

Friction experiments are performed to identify the friction characteristics. Separate ex-
periments are performed to identify the static and viscous contributions of the friction.

2.5.1 Static friction experiments

The static friction present in the nano-positioning stage is experimentally obtained
from breakaway experiments. This is done by gradually increasing the actuator force
from zero until the stick-to-slip transition of the carriage is measured. At this point,
the input force is approximately equal to the static friction force. An example of such
a break-away experiment is shown in Fig. 2.9. It can be seen that defining a single
stick-to-slip transition is not always straightforward, since this transition happens in
stages. Therefore, two regions of movement are defined: macroscopic movement and
microscopic movement.

On a microscopic scale, creep is observed, caused by microscopic frictional effects. On
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Fig. 2.9. Break-away experiment to obtain the static friction. Initially microscopic
creep and stick-slip behaviour is observed, after which the system the system breaks
away macroscopically.

this scale, two sliding surfaces can no longer be considered smooth, but instead have
to be considered as two rough surfaces sliding over each other, as shown schematically
in Fig. 2.10. The spindle and nut typically have a machining tolerance in the order
of micrometers, which translates to a relatively rough surface when movement on a
similar scale is considered. The contact points, asperities, of the sliding surfaces are
constantly deforming, or even breaking (abrasion). This effect can be modelled as two
relative moving surfaces connected by springs, see Fig. 2.11 [3]. In case of microscopic
relative motions, such as creep, the asperities deform elastically, see Fig. 2.11b. These
microscopic frictional effects are shown in Fig. 2.9, and play a significant role on the

Motion

Motion

Fig. 2.10. The sliding of two rough surfaces resulting in microscopic creep and stick-slip
behaviour.
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No motion

(a) No force ap-
plied

Relative motion

(b) Applied force
is smaller than
the break-away
friction

Relative motion

(c) Applied force
is larger than the
break-away fric-
tion

Fig. 2.11. Model representing the finite stiffness of the asperities. For small relative
motions, the two surfaces are connected by springs, resulting in microscopic elastic
displacement, presliding. For larger relative motions, the springs snap, and macroscopic
sliding occurs.

nano-scale in which the experimental setup operates, which will be further elaborated
in Section 3.5.

For larger, macroscopic, relative motions, the asperities in Fig. 2.10 move over each
other, or break, resulting in slip. This can be modelled as breaking of the springs, shown
in Fig. 2.11c. Two variations of slip are defined: local slip, and global slip, shown in
Fig. 2.9. With local slip, the spindle visibly rotates, but gets stuck again. These local
stick-to-slip moments are due to mechanical imperfections in the setup, for example
asymmetry of the spindle, which causes the friction to be dependent on the orientation
of the spindle. Also, due to the system being overdetermined (both the duplex bearing
and the carriage rail constrain the same sideways DOF), misalignment can amplify this
stick-to-slip behaviour significantly. Dirt particles getting stuck between the spindle-
nut contact area can also cause a significant increase in position-dependent friction,
adding to the problem. Once the actuation force is larger than the static friction, the
system slips globally. This experiment is repeated for different positions and for both
directions of motion. The friction values for which the system breaks away in a global
sense are shown in Fig. 2.12. This figure shows that the variance in static friction levels
is minor, for different carriage positions.

2.5.2 Viscous friction experiments

The velocity-dependent part of the friction characteristic is obtained by performing
closed-loop experiments where the carriage tracks a constant-velocity setpoint. Since
the acceleration of the system is zero in this situation (ideally), and the velocity is
non-zero, the EOM of (2.1) can be written as{

0 = k(x2 − x1) + d(ẋ2 − ẋ1) + u−Ψ1,

0 = −k(x2 − x1)− d(ẋ2 − ẋ1)−Ψ2,
(2.7)
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Fig. 2.12. Measured friction characteristic. The circles are static friction values ob-
tained from breakaway experiments in Section 2.5.1, and the solid lines connect velocity-
dependent friction values for different initial positions (Section 2.5.2).

which, after substitution, results in the force equilibrium where the total friction force
is equal to the actuation force

u = Ψ1 + Ψ2. (2.8)

This experiment is repeated for multiple velocities and for both directions of motion.
The combined measurements, resulting in an overall friction characteristic, is given
in Fig. 2.12. It consists of a static friction part, a viscous contribution and a slight
Stribeck-effect. Note that the overall (combined) friction characteristic Ψ1 + Ψ2 is
identified this way, not the individual contributions. Also note that this friction char-
acteristic is only a momentary recording, since it can change significantly over time, due
to factors such as wear, contamination and temperature. These modelling difficulties
motivate the use of non-model-based control techniques, which are robust against all
these uncertainties, and do not require an accurate (friction) model.

2.6 Parametric model revisited

The parametric model in (2.1) is now revisited. In particular, firstly, the stiffness and
damping parameters, k and d, respectively, are estimated using the identification results
of Section 2.3. The stiffness k is adjusted such that the resonance peak in the Bode plot
presented in Fig. 2.8 occurs at 160 Hz, while the internal damping d is adjusted such
that the height of this resonance peak matches the measurements. Secondly, using the
knowledge of the friction identification experiments, linear dampers df,1 and df,2 are
added between the fixed world and the first- and second mass, respectively, to represent
both the back-EMF generated in the motor and the macroscopic viscous friction. The
microscopic frictional effects in Fig. 2.11 are not included in this model. The resulting
linear model is given by{

m1ẍ1 = k(x2 − x1) + d(ẋ2 − ẋ1) + df,1ẋ1 + u,

m2ẍ2 = −k(x2 − x1)− d(ẋ2 − ẋ1) + df,2ẋ2,
(2.9)
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Fig. 2.13. Linear model of the experimental setup.

and is graphically represented by Fig. 2.13. The corresponding parameter values are
given in Table 2.3. A comparison between the model-based and the experimentally
found Bode plots of the frequency response function from the motor force to the (non-
collocated) position of m2, is shown in Fig. 2.14. The -1 slope in the magnitude plot,
and corresponding −90° phase, is a result of the viscous damping df,1 and df,2. At
high frequencies, the phase of the experimentally found FRF drops, while the phase of
the model-based FRF rises. This is due to the low-pass filter, present in the amplifier,
which is not included in the model.

M
ag
n
it
u
d
e
(d
B
)
[N

/m
]

-250

-200

-150

-100

101 102 103

P
h
as
e
(d
eg
)

-180

-90

0

90

180

Three-point method

LPM

Model

Frequency (Hz)

Fig. 2.14. Comparison between the model-based (black) and the experimentally found
Bode plots of the frequency response function from the motor force to the (non-
collocated) position of m2, using the three-point method with noise injection (grey)
and the LPM with multisine injection (red).
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Table 2.3: Adjusted model parameters to fit the experiments.

Parameter Value Unit
m1 171 kg
m2 1.6 kg
d 550 N s/m
df,1 20000 N s/m
df,2 10 N s/m
k 1.7e6 N m

2.7 Discussion

A nano-positioning stage is used as an experimental setup to represent the sample
manipulation stage in the electron microscope. A linear, non-parametric model of the
experimental setup is obtained using two different system identification techniques, i.e.,
the indirect three-point method, and a Local Polynomial Method (LPM). Both meth-
ods give similar results, although the FRF obtained using the LPM is more accurate,
especially at higher frequencies.

Separate experiments have been performed to identify the friction present in the ex-
perimental setup. On a macroscopic scale, the static friction has been experimentally
obtained from breakaway experiments and the viscous friction is obtained by perform-
ing closed-loop experiments where the carriage tracks a constant-velocity setpoint, in-
dicating the presence of a slight Stribeck effect. Microscopic frictional effects, causing
microscopic creep and stick-to-slip behaviour, have been identified, but (due to the high
complexity) not included in the model.

A parametric 2-mass-spring-damper model of the experimental setup is constructed,
where linear dampers are added between the fixed world and the first- and second
mass, respectively, to represent both the back-EMF generated in the motor, and the
macroscopic viscous friction. The stiffness and damping parameters are estimated using
the identification results, resulting in a parametric model that fits the experimentally
obtained FRF.
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CHAPTER3
Validation of reset control of

single-mass motion systems with
friction

This chapter focusses on setpoint control of a single mass, subject to set-valued friction,
where in particular the settling performance is addressed. First, a model of both the
system and the friction is given, after which the control issues associated with PID-
control of such a system are demonstrated in simulation. A hybrid control strategy for
increasing the settling performance is introduced, based on [1], and experimentally val-
idated on the nano-positioning experimental setup. Based on the experimental results,
the achieved performance benefits, the influence of microscopic frictional effects, and
repeatability, are elaborated.

3.1 Introduction

The simplest way to model a motion system is as a single-degree-of-freedom mass
m, shown in Fig. 3.1. Despite its simplicity, a single inertia model is often a good
approximation of a motion system in the low- to medium frequency range. This is
the frequency range of interest, due to the low velocities involved in the final settling
stage, considered in this section. A single mass model is a good representation for the

u

m

z

Ψ

Fig. 3.1. Schematic representation of a single sliding mass subject to friction.
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behaviour of the nano-positioning stage up to approximately 160 Hz, see Chapter 2,
which will be used as an experimental setup in Section 3.5. This chapter is organized
as follows. Section 3.2 introduces the system and friction model of interest. The
control issues associated with PID control of single-mass systems subject to friction are
demonstrated in simulation in Section 3.3, and a reset PID controller is introduced in
Section 3.4 to address these issues specifically. Lastly, the reset controller is validated
on the experimental setup in Section 3.5.

3.2 System and friction model

The single-mass system dynamics are given by the differential inclusion

ż1 = z2,

ż2 = 1
m

(−Ψ(z2) + u).
(3.1)

Here, z1 and z2 represent the position and velocity of the mass, respectively. The mass
is subject to a set-valued friction force Ψ, which is induced by a friction model including
Coulomb friction, a viscous contribution and a velocity-weakening Stribeck effect, see
Fig. 3.2. The friction force complies with the following set-valued force law:

Ψ(z2) ∈ FsSign(z2) + γz2 − f(z2), (3.2)

where the Stribeck contribution is given by

f(z2) = (Fs − Fc)
δz2

1 + δ|z2|
. (3.3)

static friction

Coulomb friction

vis
co
us

fri
cti
onFs

Fc

Fv

=
γz

2

S
trib eck

z2

Ψ

velocity

friction force

Fig. 3.2. Friction characteristic including the static friction Fs, Coulomb friction Fc,
viscous friction Fv = γz2 and a velocity-weakening Stribeck effect.
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Here, δ is a Stribeck shape parameter, Fs is the static friction, γz2 is the viscous friction,
Fc is the Coulomb friction, and Sign(·) denotes the set-valued sign function defined in
(2.3). A control input u is used to regulate the position z1 to a desired setpoint r.

3.3 Classical P(I)D control

Classical, linear, P(I)D control suffers from limitations when used to regulate a system
subject to friction to a desired setpoint. First, the settling performance limitation for
a PD-controlled system is illustrated. Second, the stability issues of a PID-controlled
system, subject to friction containing a velocity-weakening Stribeck effect, are illus-
trated. Finally, the settling performance issues for a PID-controlled system subject to
Coulomb friction are illustrated.

3.3.1 Linear PD control

Consider a linear PD controller for control input u in (3.1), to regulate the mass to a
desired setpoint r. The PD controller is given by

uPD = −kp(z1 − r)− kdz2, (3.4)

where kp and kd represent the proportional and derivative gain, respectively. The
closed-loop system can then be written as

ż1 = z2,

ż2 ∈
1
m

(−Ψ(z2)− kp(z1 − r)− kdz2).
(3.5)

The response of the closed-loop system (3.5) to a constant position reference, is sim-
ulated using a numerical time-stepping method [20]. This is an efficient method to
correctly simulate systems with set-valued discontinuities in the right-hand side, in this
case set-valued friction, without the need for event detection. Due to the apparent fric-
tion, the PD-controlled closed-loop system (3.5) reaches a non-zero steady state error
within its equilibrium set, see Fig. 3.3. This equilibrium set is found by evaluating (3.5)
at ż1 = ż2 = 0 and solving for z1 and z2, resulting in

EPD =
{

(z1, z2) | z1 ∈ r + Fs
kp

Sign(0), z2 = 0
}
. (3.6)

The steady-state error can be reduced by increasing the proportional gain kp, but
cannot become zero.
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Fig. 3.3. Top: simulated position response (to r = 0.2) of a PD-controlled (kp = 18,
kd = 0.1) single inertia (m = 1), subject to a friction characteristic Ψ including Stribeck
effect. A non-zero steady state error occurs, within its stick-set (3.6) occurs (dash-
dotted lines). Bottom: corresponding control force and static friction bounds (dotted
lines).

3.3.2 Linear PID control

To correct for any steady-state error, a linear PID controller is implemented for control
input u in (3.1), given by

uPID = −kp(z1 − r)− kdz2 − kiz3, (3.7)

where kp, ki, and kd represent the proportional, integral, and derivative gain, respec-
tively, and z3 denotes the integrator state. The closed-loop system can then be written
as

ż1 = z2,

ż2 ∈
1
m

(−Ψ(z2)− kp(z1 − r)− kdz2 − kiz3),

ż3 = z1 − r.

(3.8)

The equilibrium set is again found by evaluating (3.8) at ż1 = ż2 = ż3 = 0 and solving
for z1, z2 and z3, resulting in

EPID =
{

(z1, z2, z3) | z1 = r, z2 = 0, z3 ∈
Fs
ki

Sign(0)
}
. (3.9)

The addition of an integrator allows the system to escape the stick phase, since it
eventually compensates for the static friction. However, in the presence of a velocity-
weakening Stribeck effect, the friction may be overcompensated in the slip phase, re-
sulting in stick-slip oscilations around the setpoint [3, 21]. This is shown in simulation
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Fig. 3.4. Top: simulated position response (to r = 0.2) of a PID-controlled (kp = 18,
kd = 2.5, ki = 40) single inertia (m = 1), subject to a friction characteristic Ψ including
Stribeck effect. A limit cycle around the desired setpoint occurs. Bottom: corresponding
control force and static friction bounds (dotted lines).

in Fig. 3.4. This stability issue has been addressed in [22], where a control strategy is
proposed that robustly compensates for this velocity-weakening Stribeck effect.

In the absence of a Stribeck effect, limit cycles do not occur for a single-mass system,
and the setpoint r is asymptotically stabilized with a PID controller for input u in
(3.1), see [23], as long as the following assumption is satisfied.

Assumption 1. The controller gains kp, kd and ki satisfy ki > 0, kp > 0 and
(kpkd)/m > ki.

For the linear system, i.e., Fs = 0, Assumption 1 is equivalent to ensuring global expo-
nential stability of the equilibrium z1 = r, z2 = z3 = 0, by the Routh-Hurwitz stability
criterion. However, this closed-loop system suffers from severe settling performance
issues. PID control may suffer from slow convergence and therefore long settling times,
due to the (increasingly) slow depletion and refilling of the integrator buffer (as the
position response approaches the setpoint) [23]. When the system gets in stick, the
integrator builds up the control force to overcome the static friction. When the static
friction is overcome, the system slips and may overshoot its setpoint, after which it
sticks again. Now the integrator buffer first has to deplete, before a control force in
the opposite direction can be applied. Since the speed in which the integrator buffer is
filled and depleted is proportional to the position error, this process takes increasingly
more time with a decreasing position error, resulting in long settling times. This slow
settling behaviour and increasingly slow filling and depleting of the integrator buffer is
illustrated in simulation, in Fig. 3.5.
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Fig. 3.5. Top: simulated position response for a PID-controlled system subject to
Ψ without Stribeck effect, with kp = 18, kd = 2.5, ki = 40. The system converges
(increasingly) slow towards its setpoint. Bottom: corresponding control force and static
friction bounds (dotted lines).

In context of the sample stage used in industrial electron microscopes, described in
Section 1.1, long settling times result in significant usability limitations. This is espe-
cially the case in the semiconductor industry, where the microscope is used in parallel
to the manufacturing process. The pace at which an image can be accurately created
by the microscope is crucial to increase throughput and, consequently, reduce costs. In
order to improve the settling response, without changing the actual system, non-linear
control is investigated in the form of a reset PID controller.

3.4 Reset PID control

In order to improve the settling performance of a single-mass system subject to Coulomb
friction, a reset PID controller is proposed in [1]. In this reset controller, the integrator
term z3 in the linear PID-controller, given in (3.8), is replaced by a reset integrator.
Resetting the integrator circumvents to a large extend the filling and depletion of the
integrator buffer, resulting in shorter periods of stick and thereby significantly faster
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settling. The resulting reset PID controller is given by

u = −kp(z1 − r)− kdz2 − kiz3, (3.10a)
ż3 = z1 − r, (3.10b)
z+

1 = z1, (3.10c)
z+

2 = z2, (3.10d)

z+
3 = −αz3 − (1 + α)kp

ki
(z1 − r). (3.10e)

Here, the superscript + denotes the updated value of the state after a reset. The states
z1 and z2 (the position and velocity, respectively) do not change after a reset, while the
integrator state z3 is updated according to (3.10e). The design parameter α ∈ [0, 1]
enables scaling of the reset, to cope with asymmetry in the friction characteristic. Its
role is further elaborated in Section 3.5.1. The integrator is reset according to (3.10e)
whenever the following four conditions hold simultaneously:

1. The system overshoots the setpoint,

2. The system enters a stick phase,

3. The system has not yet settled within the desired accuracy band,

4. The controller output is larger than a specified value.

In a mathematical description of these four written reset conditions, the integrator is
reset according to (3.10e) whenever z = (z1, z2, z3) is such that

kp(z1 − r)2 + ki(z1 − r)z3 ≤ 0
∧ − z2(kp(z1 − r) + kiz3) ≤ 0
∧ | − ki(z1 − r)| ≥ η1

∧ | − kp(z1 − r)− kiz3| ≥ η2.

(3.10f)

Here, the parameter η1 defines a bound such that resets are inhibited when the carriage
is within the desired position error accuracy band. The parameter η2 causes resets to
be inhibited when the controller output is small. These last two conditions in (3.10f)
are required to ensure the absence of Zeno solutions [24]. The rationale behind the
reset map (3.10e) and the reset conditions (3.10f) are clarified in Section 3.4.2.

An essential feature of these reset conditions is that, despite the discontinuity in the
control force, the risk of exciting high-frequency system dynamics is not increased,
compared to the application of the classical PID controller. This is the case because
the system is always in stick when a reset occurs, and remains in stick right after
the reset, due to the position-dependent term that is subtracted from the integrator
sign change in (3.10e) (an essential feature to still ensure setpoint stability). Since
the system is not moving, the net force acting on the system remains zero at a reset
instant, i.e. the actuation force is fully counteracted by the friction force. The only
time a discontinuity in the net force occurs is when the system enters the stick phase.
This is, however, inherent to the discontinuous nature of the friction characteristic, and
will therefore happen with both the classical PID controller and the reset controller.
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For an elaborate analysis and a formal mathematical description of this reset controller,
see [1].

3.4.1 Illustrative example

A numerical simulation to illustrate the achievable performance improvements when
the reset PID controller in (3.10), is implemented, is shown in Fig. 3.6. A numerical
time-stepping method is used to correctly deal with the set-valued friction [20].

First, consider the closed-loop system (3.8), where a classical PID controller is employed
to control the mass to the constant position setpoint r = 0. For this simulation, m = 1
kg, Fs = 1 N, Fv = 0.5, and kp = 18 N/m, ki = 40 N/(ms) and kd = 2.5 Ns/m. The

Fig. 3.6. Simulated position response with static and viscous friction (a), zoomed view
(b) and control force with static friction bounds (dotted lines) (c). The circles indicate
the instants of a controller reset.
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controller gains satisfy Assumption 1. The position response is shown in Fig. 3.6a as
the red dotted line. It can be seen that the system indeed converges to the constant
setpoint z1 = 0, however, long periods of stick result in a long settling time. The
control force u for the linear PID controller is shown in Fig. 3.6c as the red dotted line,
where the depletion and refilling process of the integrator buffer, causing long periods
of stick, is clearly visible. This process takes increasingly more time with a decreasing
position error, which results in increasingly longer periods of stick when the position
error decreases.

To circumvent these (increasingly) long periods of stick, and increase settling perfor-
mance, the linear PID controller is replaced by the reset controller, in (3.10), resulting
in the closed-loop system (3.8), (3.10d)-(3.10f). The tuning parameters are α = 1,
η1 = 10−8, and η2 = 1, resulting in the position response shown as the black line in
Fig. 3.6. Here, the circles in Fig. 3.6b indicate the reset instants, which occur when
the reset conditions are satisfied. It can be seen in Fig. 3.6c that due to the controller
resets, a large part of the depletion/refilling process of the integrator buffer is circum-
vented, as the control force converges to the (unknown) value of ±Fs inbetween resets,
resulting in a significant decrease of the settling time.

3.4.2 Hybrid system formulation

The closed-loop reset control system (3.8), (3.10d)-(3.10f) is written in the hybrid
formalism of [24], to elaborate on the design of the reset conditions. First, the following
state transformation is applied, which allows for a simpler description of the system
dynamics, in terms of measurable states:

q :=

ζϕ
v

 :=

mσmφ
v

 :=

 −ki(z1 − r)
−kp(z1 − r)− kiz3

z2

 . (3.11)

Here, ζ is the generalized position error, ϕ contains all non-zero components of the
controller state at zero velocity, i.e. the proportional and integral terms and v is the
velocity of the mass. The states σ and φ are added for completeness, since they are
used in the stability analysis in [2]. The stick set can now be defined as

Estick =
{
q ∈ R3 | v = 0, |ϕ| ≤ Fs

}
. (3.12)

With state transformation (3.11), the closed-loop dynamics (3.8) and reset law (3.10d)
- (3.10e) are rewritten in the hybrid formalism of [24], as follows:

q̇ ∈ F(q) :=


−kiv
ζ − kpv

ϕ− kdv − FsSign(v)

 , q ∈ C,

q+ = g(q) :=
[
ζ −αϕ v

]T
, q ∈ D,

(3.13a)

where F is the flow map, g is the jump map, C is the flow set and D is jump set. Using
(3.11), the reset conditions (3.10f) transform into the jump set

D :=
{

(ζ, ϕ, v) ∈ R3 | ζϕ ≤ 0, ϕv ≤ 0, |ζ| ≥ η1, |ϕ| ≥ η2
}
. (3.13b)
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Here the condition that the system overshoots its setpoint is given by ζϕ ≤ 0. To
detect the stick phase, the criterion ϕv ≤ 0 is used rather then simply v = 0, since the
latter is difficult to check (i.e., non-robust) in practice due to measurement noise.

The flow set contains all values for the state z, which are not contained by the jump
set, and is given by

C := R3 \ D. (3.13c)

For an elaboration on the rationale behind the design of this jump set D, consider Fig.
3.7, which shows the evolution of the states ζ, ϕ, and v, of the illustrative example in
Section 3.4.1. Recall that the integrator is reset when the system satisfies the follow-
ing two conditions at the same time: 1) it enters a stick phase, and 2) the position
overshoots the setpoint, given as the jump set D in (3.13b), where ζ is the general-
ized position error, ϕ contains all nonzero components of the controller state at zero
velocity, and v is the velocity of the mass.

1) Suppose the solution has initial condition ζ > 0, ϕ > 0, and v = 0, and starts in
a stick phase (time interval 1 in Fig. 3.7). Due to the dynamics of the integrator,
ϕ > Fs will eventually be reached, which results in a slip phase (intervals 2 and 3
in Fig. 3.7). The solution enters a stick phase again (interval 4 in Fig. 3.7) when
v = 0 is reached and the controller state ϕ satisfies 0 < ϕ < Fs. At this point,
the condition ϕv ≤ 0 is satisfied.

A reset should not take place if the solution enters a stick phase without the occurrence
of an overshoot, due to, e.g., different initial conditions, tuning, or friction characteris-
tics. In such situations the solution still enters a stick phase and item 1) is satisfied. For
this reason, we require the additional condition ϕζ ≤ 0 in the jump set D in (3.13b):

2) Before an overshoot of the setpoint (interval 2 in Fig. 3.7), we have positive ζ and
ϕ, and thus ϕζ > 0. After an overshoot (interval 3 in Fig. 3.7), ζ changes sign

Fig. 3.7. The evolution of the states ζ, ϕ, and v, with the proposed reset PID controller.
The integrator reset via a sign change of ϕ are clearly visible. This figure is adapted
from [2].
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so that ϕζ ≤ 0. Along with item 1), we conclude that the requirement ϕζ ≤ 0 in
D indeed enforces that a reset only takes place when the solution enters a stick
phase after an overshoot.

Finally, the conditions |ζ| ≥ η1 and |ϕ| ≥ η2 in (3.13b), for some design parameters
η1 > 0 and η2 > 0, prevent a jump when ζ or ϕ are zero, so that Zeno behavior is
avoided. A formal proof is given in [2], that under Assumption 1, the set of equilibria

B =
{
z ∈ R3 | ζ = v = 0, |ϕ| ≤ Fs

m

}
(3.14)

is asymptotically stable, which means that the system converges asymptotically towards
the setpoint. In the next section, the reset PID controller is implemented on the
experimental setup.

3.5 Controller validation on the experimental setup

The PID reset controller is implemented on the nano-positioning experimental setup,
described in Section 2.1, to investigate the achievable performance benefits in practice.
The goal is to control the system towards a desired setpoint within an accuracy of
10 nm. To achieve this, the setup follows a fourth-order reference trajectory to its
setpoint, such that is moves with a velocity of 1 mm/s. At the end of this initial
transient trajectory, the stage has a non-zero positioning error due to the presence of
friction. This is the starting point of the window of interest, and from this point on, the
goal is to control the system towards a specified position error accuracy of 10 nm using
the proposed PID reset controller. The following experimental results are submitted
for journal publication in [2].

The system identification study in Section 2.3, shows that the nano-positioning stage
can be approximated by a single-mass model up to 160 Hz, and friction experiments
from Section 2.5 show that a Stribeck effect is present in the experimental setup. De-
spite the small Stribeck effect, the experimental results below show that both the
classical and the reset PID controller have some robustness against a Stribeck effect.
The controller tuning, settling performance benefits, the effect of microscopic frictional
effects, and repeatability are discussed below.

3.5.1 Controller tuning

The PID controller gains are obtained using standard linear loop-shaping techniques,
based on the parametric system model found in section 2.6, resulting in kp = 107

N/m, kd = 2 · 103 Ns/m and ki = 108 N/(ms). For these controller parameter values,
Assumption 1 holds. The standard robustness margins (for linear controller design) are
met, see Appendix C.

The reset controller requires tuning of three additional parameters: α, η1 and η2. The
tuning parameter α ∈ [0, 1] determines to which value the integrator state resets. For
α = 0, the integrator state resets to 0. An α closer to 1 results in a larger reset and a
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correspondingly shorter stick duration, where an α closer to zero increases robustness for
frictional asymmetry. A milder reset allows for increasing levels of asymmetry in static
friction, since this prevents overcompensation of friction and maintains its stabilizing
properties, see [1] for more details. Experiments are done using various values for α,
showing the direct influence of this parameter on the settling performance.

The parameter η1 = ki · 10−8 = 1 N/s is chosen, such that resets are inhibited when
the carriage is within the desired position error-accuracy band of 10−8 m (10 nm).
The parameter η2 = 1 Nms is chosen to avoid Zeno behaviour, and is experimentally
obtained.

3.5.2 Settling performance benefits

The performance benefits of the reset controller with respect to the classical PID con-
troller, on the experimental setup, are demonstrated in Fig. 3.8. In particular, the
relative improvement in terms of settling time, compared to classical PID control is
shown.

The responses for the position error z1 − r and the corresponding scaled control force
u/(4ki) are presented in Fig. 3.8 for the classical PID and the reset PID (with different
values of α). All experiments are performed with the same initial conditions. Variations
in the position errors and time instants of the initial stick phases between the presented
responses are due to the fact that the friction characteristic is slightly different for each
experiment, due to, e.g., small temperature changes as a result of continued system
operation. Since the setup operates on a nano-scale, even minor changes in the friction
may have a significant impact on the response. It can be observed in Fig. 3.8 that
the application of the reset controller (see the four bottom plots for different values
for α) results in generally shorter stick periods and hence decreased settling times,
as compared to the classical PID controller (see the top plot). In particular, in the
presented responses, the desired accuracy is achieved at respectively, 95, 72, 25 and
8 seconds corresponding to values for α of 0, 0.3, 0.8 and 1. In contrast to the reset
controller, the classical PID controller (with the same controller gains), did not reach
the desired accuracy within the maximal measurement window of 120 seconds.

Finally, it is emphasized that false resets are not triggered due to the robust design of
the jump set D in (3.13b), with respect to velocity measurement noise, as pointed out
in Section 3.4.2.

3.5.3 Microscopic frictional effects

Microscopic frictional effects play a non-negligible role on the considered setup, due
to the low positional error levels the setup operates in. These microscopic frictional
effects, discussed in Section 2.5, can clearly be observed as the small stick-to-stick
jumps in the position error response upon resets, see the inset in the fourth subplot
of Fig. 3.8. Macroscopically, the system should not move upon reset, as is claimed in
Section 3.4, since the actuation force to which the controller resets, is always smaller
then the static friction. However, due to a finite stiffness of the asperities, microscopic
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Fig. 3.8. Experimental results of various values of α. Black: position error z1 − r; red:
total control force scaled by 4ki. The accuracy band of 10 nm is indicated by the dashed
lines. The gray patches indicate when the system has settled within its accuracy band
of 10 nm.
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stick-to-stick jumps can be observed. The measured stiffness of the asperities have
values between 8 · 108 and 7 · 109 N/m, determined by dividing the change in force by
the resulting microscopic displacement. Although these estimated stiffness coefficients
are very large, the associated effect is significant due to the low position errors in the
operating conditions. In this case, these microscopic elastic effects are not unfavourable,
as they force the system towards the setpoint. Microscopic stiffness effects can, however,
also have a negative contribution to the settling response. When the stiffness of the
asperities is low, or the size of the reset is large, the positional jump will be large,
which may result in the system overshooting its setpoint. A new reset occurs almost
immediately after, since the reset conditions in D are again satisfied. These consecutive
resets due to large positional jumps, which are a result of large resets for α = 0.75, are
shown in Fig. 3.9, resulting in a deterioration of the settling performance.

A second effect that affects the settling performance is microscopic creep. As compared
to the response in the example of Section 3.4.1, a controller reset occurs some time after
the beginning of a macroscopic stick instant, instead of at the beginning of the stick
instant. This effect is caused by microscopic creep, first mentioned in Section 3.5.3,
at the start of (and during) a macroscopic stick instant (see the first inset in the first
subplot of Fig. 3.8), thereby not allowing for a discrete jump because of the nonzero
velocity. Hitting v = 0 (so that φv ≤ 0 in D is satisfied) can be detected only when the
microscopic creep stops. The reset delay associated to creep allows then the integrator
buffer to deplete, which, in turn causes a milder reset. This milder reset decreases the
achievable performance benefits, but increases the robustness against asymmetry in the
friction characteristics, mentioned in Section 3.5.1.

3.5.4 Repeatability

On this nano-scale, slight variations in the friction characteristic, or in the initial con-
ditions, have a significant influence on the settling response. This is demonstrated
by performing 8 repeated settling experiments to a step reference of 10−6 m, with a
minimal variation in initial conditions (carriage position within 1 · 10−6 m, spindle ori-
entation within (2π)/100 rad), shown in Fig. 3.9. The blue line represents the measured
system response of the experiment with the smallest settling time, whereas the grey
lines show the response of the other experiments.

The top plot, where a classical, linear PID controller is used, displays significant varia-
tion in the settling response. The duration of the first moment of stick is proportional
to the size of the initial overshoot, since the position error determines the time it takes
for the integrator to compensate for the static friction. Despite the long initial moment
of stick, however, a small initial overshoot is beneficial for the settling response, which
makes sense intuitively. Furthermore, one response seems to exhibit a limit cycle, in-
stead of converging to the setpoint, which is either a result of the (slight) Stribeck effect,
or due to the mechanical flexibility in the system. Limit cycles in flexible, 4th-order
system, are investigated in Chapter 4.

The bottom plots in Fig. 3.9 show the settling response of the experimental setup when
the reset controller is implemented, for increasing values of α. The first three plots, for
α = 0, α = 0.25 and α = 0.5, respectively, show relatively repeatable behaviour. The
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variation in initial overshoot is similar to the linear PID case, since both controllers
are identical up to the first moment of stick. The settling time is, generally, decreased
significantly, compared to the linear PID controller, where the largest α results in the
shortest settling time. Limit cycles are now avoided for all measurements. This may
suggest that, although not specifically considered during the design, the implemented
reset controller also has a stabilizing functionality in the case of friction-induced limit
cycles. For α = 0.75, however, robustness issues can be observed, in the form of large
variations in settling performance. Here, the system either converges quickly, or shows
oscillatory behaviour, which is a result of microscopic elastic jumps upon reset, which
significantly overshoot the setpoint, due to the microscopic friction effects discussed in
Section 2.5.

The elastic jumps upon reset are shown in a zoomed-in plot in Fig. 3.10, for α = 0,
α = 0.25 and α = 0.75. It can be clearly observed that the size of the elastic jump
is generally related to the size of the reset. There is no clear linear relation between
the size of the reset and the size of the elastic jump, however, since the jump-size is
position-dependent. The moment on which the first reset occurs does not depend on α,
but instead varies due to slight variations in initial conditions, or friction characteristics.
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Fig. 3.9. Comparison of multiple, independent measurements of the settling response
to a step reference of 1 · 10−6 m. Grey: measured settling response of each individual
experiment, red: measured system response of the experiment with the smallest settling
time, black: accuracy bound of 10 nm.
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Fig. 3.10. Zoomed-in plot, showing the elastic jumps upon reset for α = 0 (black),
α = 0.25 (grey) and α = 0.75 (red).

3.6 Discussion

In this chapter, the PID reset controller proposed in [1] is discussed and implemented
on the nano-positioning experimental setup, described in Section 2.1. The experimen-
tal results show significant performance improvement in terms of settling time, when
employing the proposed reset PID controller, as compared to its classical PID counter-
part. Increasing the scaling factor α, and consequently the size of the reset, generally
increases the performance in terms of settling time.

However, microscopic frictional effects play a non-negligible role on the considered
setup, due to the low positional error levels the setup operates in. Firstly, these effects
result in microscopic elastic stick-to-stick jumps upon an integrator reset. Larger con-
troller resets result in larger elastic microscopic jumps, which may induce oscillatory
behaviour around the setpoint, thereby limiting the size of the reset. Secondly, micro-
scopic creep results in a delayed controller reset, as compared to a simulated response.
This is because the microscopic creep results in a non-zero velocity, thereby inhibiting
a controller reset.

On this nano-scale, slight variations in the friction characteristic, or in the initial con-
ditions, have a significant influence on the settling response. For certain initial con-
ditions, robustness issues can be observed when applying larger resets. It is therefore
emphasized that the experimental results show the potential improvement in settling
performance when the reset PID controller is employed, but these improvements are
not guaranteed for all initial conditions. Applying a lower scaling factor α increases
the robustness against frictional uncertainties, but at the cost of longer settling times.
Improving the mechanical design of the experimental setup, by decreasing the machin-
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ing tolerances of the sliding surfaces (e.g., smooth the spindle-nut contact, which is the
dominant friction source), can reduce the position-dependency of the frictional effects.
This can result in repeatable settling behaviour, for different initial conditions, which
would allow for a more general application (i.e., independent of initial conditions) of
the proposed reset controller.
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CHAPTER4
Setpoint control of flexible

motion systems

This chapter expands the setpoint control problem from a 1 DOF case, to a flexible 2-
mass-spring-damper system subject to non-collocation of friction and actuation. Adding
this additional DOF to the model enables the modeling of (anti-)resonances and the
notion of (non-)collocation of, e.g., sensing and actuation or actuation and friction,
which are often essential for accurate system modeling and controller design. The
model for this system is given in Lur’e-type form, after which an illustrative simulation
example is used to identify the control problems regarding stability and settling per-
formance. These control problems are analysed through a simulation-based bifurcation
analysis and a more general Linear Matrix Inequality (LMI) approach. Subsequently,
two control strategies for setpoint control are proposed, which address these stability-
and performance issues.

4.1 Introduction

Consider a 2-mass-spring-damper system as depicted in Fig. 4.1, given by the EOM{
m1ẍ1 = u+ k(x2 − x1) + d(ẋ2 − ẋ1),
m2ẍ2 = −k(x2 − x1)− d(ẋ2 − ẋ1)−Ψ.

(4.1)

u

m1

x1 x2

m2

k

d

Ψ

Fig. 4.1. Model of a general 2-mass-spring-damper system with non-collocation of
friction and actuation.
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Here, x1 and x2 are the position of the first and the second mass, respectively, ẋ1 and
ẋ2 are the velocities of the first and the second mass, respectively, ẍ1 and ẍ2 are the
accelerations of the first and the second mass, respectively, and m1 and m2 are the
masses of the first and second mass, respectively. The two masses are connected via a
flexible link with stiffness k and damping d. The friction force Ψ, acting on the second
mass, is induced by a Coulomb friction model with static friction Fs, see Fig. 4.2, and
is given by

Ψ ∈ FsSign(ẋ2), (4.2)

where the set-valued Sign(·) function is given in (2.3). The control goal is to regulate
the second mass to a desired position (x2 = r), by applying a control input u to the
first mass. A linear P(I)D controller is employed for this regulatory task, given by

u = Kc

(
(r − x2)− Tdẋ2 −

1
Ti
ξ

)
,

ξ =
∫ τ

0
(r(τ)− x2(τ))dτ,

(4.3)

where r is the reference position, and ξ is the integrator state. The controller parameters
Ti and Td represent the integrator- and derivative time constant, respectively, and Kc

is the overall gain.

This 2 DOF model can represent a wide range of (motion) systems, e.g., flexible servo
systems, robots or nano-positioning motion stages, see, e.g., Section 2.2. Adding this
additional DOF to the model increases its usability significantly, as it enables the
modelling of (anti-)resonances and the notion of (non-)collocation of, e.g., sensing and
actuation or actuation and friction. Both these phenomena are often essential for ac-
curate system modelling and controller design. In this chapter, modelling and setpoint
control of such a 2 DOF system is investigated. To this end, the system dynamics is

Fs = Fc

_x2

Ψ

velocity

friction force

Fig. 4.2. Coulomb friction characteristic.
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first modelled as a Lur’e-type system in Section 4.2. The control issues associated with
P(I)D control of 2 DOF systems subject to non-collocated friction are illustrated in
Section 4.3. The identified control issues are investigated through a simulation-based
bifurcation analysis in Section 4.4, after which two LMI-based stability analysis tools
are presented in Section 4.5. Finally, two control strategies to deal with the identified
control issues are presented in Section 4.6.

4.2 Lur’e-type model

The system in Fig. 4.1, described by the dynamics (4.1), can be represented as a Lur’e-
type system [25]. This class of systems consists of a linear time invariant (LTI) part,
where a (set-valued) nonlinearity is added through a feedback loop. The Lur’e-type
system is described by the following differential inclusion (see Fig. 4.3a).

ẋ = Ax+Bu+Hw,

y = Cx,

w ∈ −Ψ(y),
(4.4)

where x is the system state, y is both the input of the set-valued friction function Ψ(y)
and the system output, and u is the control input. The set-valued friction law Ψ satisfies
a [0,∞] sector condition, which means the friction characteristic is bounded within the
first and third quadrant of the Ψ-ẋ2-plane in Fig. 4.2. The friction characteristic only
consists of Coulomb friction, i.e., no Stribeck effect. The linear state-feedback control
law is written as

u = Kx, (4.5)
where K is the controller gain matrix representing the P(I)D controller given in (4.3).
Substituting (4.5) in (4.4) gives the following closed-loop system, described by the
differential inclusion (see Fig. 4.3b):

ẋ = (A+BK)x+Hw,

y = Cx,

w ∈ −Ψ(y).
(4.6)

The transfer function G(s) of the linear part of (4.6) from the input w to the output y
is given by

G(s) = C(sI − (A+BK))−1H. (4.7)

_x = Ax+Bu+Hw

y = Cx

Ψ(y)

u

y
w

−w

G(s)

(a) Open-loop

_x = (A+BK)x+Hw

y = Cx

Ψ(y)

w

−w

y

G(s)

(b) Closed-loop

Fig. 4.3. Lur’e representation of the open-loop and closed-loop system.

41



The matrices A, B, C, H and K in (4.6) for both PD- and PID-control are given below.

PD control

For PD control, the state vector x in (4.6) is defined as: xPD =
[
x1 x2 ẋ1 ẋ2

]T
.

The system matrices in (4.6) and feedback gain matrix K in (4.5) are given by:

APD =


0 0 1 0
0 0 0 1
− k
m1

k
m1

− d
m1

d
m1

k
m2

− k
m2

d
m2

− d
m2

 , BPD =


0
0
− 1
m1
0

 , (4.8a)

CPD =
[
0 0 0 1

]
, HPD =


0
0
0
1
m2

 , (4.8b)

KPD =
[
0 Kc 0 TdKc

]
. (4.8c)

PID control

For PID control, the state vector x in (4.6) is defined as: xPID =
[
x1 x2 ẋ1 ẋ2 ξ

]T
.

The system matrices in (4.6) and feedback gain matrix K in (4.5) are given by:

APID =


0 0 1 0 0
0 0 0 1 0
− k
m1

k
m1

− d
m1

d
m1

0
k
m2

− k
m2

d
m2

− d
m2

0
0 1 0 0 0

 , BPID =


0
0
− 1
m1
0
0

 , (4.9a)

CPID =
[
0 0 0 1 0

]
, HPID =


0
0
0
1
m2
0

 , (4.9b)

KPID =
[
0 Kc 0 TdKc TiKc

]
. (4.9c)

In the following section, the PD- and PID controlled systems given above are used to
illustrate the stability- and performance issues related to setpoint control of flexible
systems subject to friction.
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4.3 Illustrative example

The issues regarding stability and settling performance of a closed-loop, flexible, 2
DOF system, subject to set-valued friction, as given in (4.6), are demonstrated in an
illustrative simulation example. The parameters used for these simulations are given
in Table 4.1 and 4.2. Here, the controller integrator- and derivative time constant
are fixed, resulting in a single controller design variable Kc, see (4.3). In terms of a
practical application, this situation and parameter choice can represent a well-mounted
and lubricated motor with negligible friction and high equivalent mass, driving a load
with low mass, subject to friction.

The position response of the closed-loop system (4.6), with parameter values given in
Table 4.1 and 4.2, to a step reference of 5 · 10−4 m, is simulated and depicted in Fig.
4.4. The first plot shows the position response of the PD-controlled system without
friction, with Kc = 8000. This PD-controller stabilizes the linear closed-loop system
and converges to the desired setpoint. In the second plot, non-collocated friction (at the
second inertia) is added to the same PD-controlled system, resulting in limit cycling.
In contrast to the 1 DOF case in Section 3.3, a limit cycle occurs without the presence
of a Stribeck effect, and without integral action. The controller gain Kc is reduced to
Kc = 4000, resulting in the disappearance of the limit cycle, shown in the third plot.
However, the system settles at a steady-state error due to the presence of friction and
the absence of integral action, similar to the 1 DOF case in Section 3.3.1. Therefore, an
integrator is added to escape the stick phase, but doing so results in the re-occurrence
of limit cycles, shown in the fourth plot. This limit cycle can be attenuated again by
decreasing the gain Kc even further, shown in the last plot of Fig. 4.4.

As can be seen from the oscillations of the position response in the top plot of Fig.
4.4, the robustness margins are low. The reason this example is used, is that the
bifurcation plots in Fig. 4.5 and 4.6 are created using these system values, enabling
direct comparison between this illustrative example and these two figures. Examples
have been found, however, in which a system with standard robustness margins also
displayed the same limit cycling behaviour.

Table 4.1: System parameters.

Parameter Value 1 Unit
m1 1 [kg]
m2 0.1 [kg]
k 1000 [N m−1]
d 10 [N s m−1]
Fs 0.5 [N]

Table 4.2: Controller parameters.

Parameter Value 1
Td 0.02
Ti 1/15
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Fig. 4.4. Illustrative example showing the possibility of limit cycles, depending on the
controller gain Kc.
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The main observation from this illustrative example is that a P(I)D-controlled, flexible,
2-mass-spring-damper system with non-collocated Coulomb friction can exhibit limit
cycling, without a Stribeck effect in the friction. This is an essential difference between
a 1 DOF and a 2 (or multiple) DOF system. For P(I)D-controlled 1 DOF systems, limit
cycles are only possible when Fs > Fc, i.e., the static friction is larger then the Coulomb
friction, e.g., when the friction characteristic contains a Stribeck effect (see Fig. 3.2).
For P(I)D controlled 2 DOF systems with flexible dynamics, this is not the case, since
limit cycles may occur even when only Coulomb friction is present, i.e., Fs = Fc. This
has previously been concluded in [26] for friction acting solely on the motor side, but
not for non-collocation of friction and actuation, as the above simulations indicate.

4.4 Simulation-based bifurcation analysis

The illustrative example in Section 4.3 shows that in some cases, a flexible system
subject to non-collocated Coulomb friction exhibits limit cycling, even without an inte-
grator. In this section, the limit cycling behaviour is investigated through a simulation-
based bifurcation analysis. In particular, the goal is to find the controller gains Kc for
which the closed-loop system (4.6) does not exhibit limit cycling.

The equilibrium set of the closed-loop system is found by evaluating (4.6) at ẋ1 = ẍ1 =
ẋ2 = ẍ2 = 0, and, additionally, ξ̇ = 0 for the integral case, and algebraically solve for
x1 and x2. This results in the following two equilibrium sets, for a PD-controlled or
PID-controlled closed-loop system respectively:

EPD =
{

(xPD ∈ R4) |

ẋ1 = ẋ2 = 0, x1 ∈
[
k−Kc
Kck

Fs
k−Kc
Kck

Fs
]
, x2 ∈

[
− 1
Kc
Fs

1
Kc
Fs
]}
,

(4.10)

EPID =
{

(xPID ∈ R5) |

ẋ1 = ẋ2 = 0, x1 ∈
[
−Fs

k
Fs
k

]
, x2 = 0, ξ ∈

[
− Fs
KcTi

Fs
KcTi

]}
.

(4.11)

Now it is of interest to find all controller gains Kc that stabilize the linear part of
the closed-loop system, i.e., without friction1. The equilibrium of a linear system is
asymptotically stable if all the roots of the characteristic polynomial lie in the open
left-half of the complex plane. The Routh-Hurwitz stability criterion is used to deter-
mine the number of closed-loop poles in the right-half complex plane. Applying the
Routh-Hurwitz stability condition to the example system results in the following sets of
controller gains Kc that stabilizes the linear part of a PD- and PID-controlled system
respectively:

APD = {Kc ∈ R>0 | 1 < Kc < 10084} (4.12)
APID = {Kc ∈ R>0 | 798 < Kc < 9917} (4.13)

1Only the set of controller gains that stabilize the linear part of the system are investigated. Simula-
tions have shown that adding friction actually increases this stability range, but designing a controller
which does not stabilize the linear plant is not recommended and hardly ever done in practice.
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Fig. 4.5. Bifurcation plots of the PD-controlled system. The maximum value of the
states (x1, x2, ẋ1, ẋ2) are plotted against the controller gain Kc. The dotted lines
represent limit cycles, the thick lines represent equilibrium points and the grey areas
represent an equilibrium set.

Note again that the overall controller gain Kc is the only controller design parameter,
as Ti and Td in (4.3) are kept fixed. An elaboration on finding the bounds (4.12) and
(4.12) is given in Appendix F.

For Kc ∈ APD or Kc ∈ APID for the PD- or PID controlled system, respectively, the
set of controller gains for which limit cycling can occur is sought through a bifurcation
analysis. A bifurcation is a qualitative change in system behaviour, e.g., a change from
an equilibrium point to a limit cycle. It is identified by evaluating the simulated position
response of the closed-loop system (4.6) using various controller gains within the linear
stability ranges (4.12) and (4.13), with various various initial conditions. The resulting
bifurcation plots are shown in Fig. 4.5 and Fig. 4.6 for a PD- and PID-controlled system,
respectively. Here the solutions of the analytical equilibrium points/sets, given by
(4.10) and (4.11), are shown as the black solid lines (equilibrium points) and gray areas
(equilibrium sets). The dashed lines represent the difference between the maximum-
and minimum value of the periodic limit cycle solution for the considered state, after
a certain amount of time (steady-state solution), indicated with max(·).

The bifurcation diagrams in Fig. 4.5 and 4.6 show that limit cycles do not occur for
lower controller gains. Consequently, for the PID-controlled system, stability of the
setpoint is guaranteed when a sufficiently low gain is employed, since the only solution
is the equilibrium point x2 = 0. However, transient performance issues must now
be considered, since a low gain may result in slow or inaccurate trajectory tracking.
Increasing the controller gain Kc, eventually leads to a bifurcation. In this particular
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Fig. 4.6. Bifurcation plots PID-controlled system. The maximum value of the states
(x1, x2, ẋ1, ẋ2, ξ) are plotted against the controller gain Kc. The dotted lines represent
limit cycles, the solid lines represent equilibrium points and the grey areas represent
an equilibrium set.

case study, a fold bifurcation occurs at Kc = 6700 for a PD-controlled system, and at
Kc = 2730 for a PID-controlled system. This means that including an integrator in
the controller significantly decreases the maximum gain below which limit cycles are
guaranteed to be absent. This confirms the observation from the illustrative example,
where including an integrator induced limit cycling. It can also be observed that the
maximum value of the limit cycle shown in Fig. 4.5 and 4.6 corresponds to the values
from the illustrative example in Fig. 4.4.

In order to better visualize the limit cycles, the x1 − x2 plane is visualized in Fig. 4.7
and Fig. 4.8, for the PD- and PID-controlled system respectively. Although the actual
4- or 5-dimensional problem (for PD- and PID-controlled system respectively) cannot
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be visually represented in a single figure, the phase planes still give clear insight in the
size and shape of the limit cycles and the influence of the initial conditions.

1

1

2

2

Fig. 4.7. Phase plane of the PD-controlled system with Kc = 8000. Depending on the
initial condition (two initial conditions are plotted), the system either converges to an
equilibrium set with a steady-state error (trajectory 2, solid lines) or converges to a
stable limit cycle (trajectory 1, dashed lines). The red line represents the equilibrium
set.

1

1

2 2 33

Fig. 4.8. Phase plane of the PID-controlled system with Kc = 4000. Depending on
the initial condition (three initial conditions are plotted), the system either converges
to an equilibrium set with a steady-state error (trajectory 2, solid lines) or converges
to a stable limit cycle (trajectory 1 and 3, dashed lines). The red line represents the
equilibrium set.
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In both phase plane plots, the stable limit cycle is sketched as the bold line and the
equilibrium set is shown as the red interval. Trajectory 1 starts outside the stable
limit cycle and spirals inwards to the stable limit cycle. Trajectory 2 starts ’inside’ the
limit cycle and spirals towards the equilibrium set. Trajectory 3 in Fig. 4.8 also starts
’inside’ the stable limit cycle, but spirals towards the stable limit cycle. The fact that
a trajectory can either spiral towards the equilibrium set or towards the limit cycle
means that there must exist a boundary in the region of attraction between the two
attracting sets. This boundary is the unstable branch of the limit cycle and determines
whether a trajectory is attracted to the limit cycle or to the equilibrium, depending on
which side of the unstable branch of the limit cycle the states are.

4.4.1 Discussion

This section highlights the importance of considering friction-induced limit cycling for
flexible 2 DOF systems, in controller design. Namely, limit cycles can occur without
the presence of a Stribeck effect in the friction characteristic, or the presence of an
integrator in the controller. This is unlike the 1 DOF case, where at least one of those
aspects is required for limit cycles to occur.

Furthermore, it is found that limit cycles can be avoided by sufficiently decreasing the
controller gain. Consequently, stability of the setpoint is guaranteed when PID-control
with sufficiently low gain is employed. However, transient performance issues must now
be considered, since low gain may result in slow or inaccurate trajectory tracking.

The following figures in this section are created using the same system values, enabling
direct comparison between them. The position response in Fig. 4.4 shows the limit
cycling behaviour for a specific case. The bifurcation plots in Figs. 4.5 and 4.6 indicate
the existence of periodic and/or equilibrium solutions for all controller gains within the
linear stability range. The phase planes presented in Figs. 4.7 and 4.8 give a visual
representation of the solution based on the initial conditions, for a specific controller
gain.

4.5 Stability analysis tools

The bifurcation analysis of Section 4.4 gives good insight in the dynamical behaviour
of the system, but it is generally a time-consuming procedure, which makes it not par-
ticularly suitable for controller design. Therefore, it is desired to use a more general
approach to determine asymptotic stability of the solution corresponding to the set-
point, suitable for controller design. To this end, two conditions are investigated which
address this issue: one based on absolute stability of the system, the other based on a
Bendixson-like criterion, which guarantees the absence of limit cycles.
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4.5.1 Absolute stability

A well-known analysis tool for non-linear systems is the Circle criterion, stated as
Theorem 7.1 in [25], which gives sufficient conditions for absolute stability, as defined in
the Kalman-Yakubovich-Popov (KYP) lemma, see Lemma 6.3 in [25]. However, based
on the bifurcation plots in Fig. 4.5 and 4.6, resulting from the simulation analysis
in Section 4.4, it can be concluded that absolute stability of the closed-loop system
(4.6), with matrices given in (4.8) or (4.9), is not possible. This fact can be concluded
because for some states, any controller gain Kc, result in an equilibrium set, while
absolute stability requires that all states converge to an isolated equilibrium point.
Consequently, this condition cannot be used for checking the feasibility of a controller
of the form (4.8c) or (4.9c) for the particular case study considered in this chapter.

Expanding the controller K in (4.5) to a full-state feedback controller Kfull ∈ R1x6,
with the 6-dimensional state xfull =

[
x1 x2 ẋ1 ẋ2 ξ1 ξ2

]
, where ξ1 is an addi-

tional integrator term acting on the first mass, and adjusting the system matrices in
(4.9) accordingly, also can not render the closed-loop absolutely stable. Solving the
KYP criterion for both K = Kfull and P results in a non-linear problem due to the
multiplication of the two decision variables, see Appendix G. A well-known approach
to convert this problem to an LMI, is to apply a change in variables, see, e.g., Example
4 in [27]. However, the resulting LMI has been checked to be infeasible, concluding that
the design of a controller based on absolute stability is too restrictive for this particular
case study.

4.5.2 Bendixson-like criterion

A less restrictive requirement compared to absolute stability is the Bendixson-like cri-
terion presented in [28]. This is an LMI-based criterion for Lur’e-type systems that
ensures the absence of limit cycles for nonsmooth dynamical systems. This criterion
does not exclude quasi-periodic behaviour or chaos and hence asymptotic stability of
the setpoint can not be verified with this criterion. However, these kinds of solutions are
not observed in simulation, so despite the lack of actually guaranteeing global asymp-
totic stability of the setpoint, this Bendixson-like criterion can serve as a useful basis
for controller design. The criterion is stated as follows.

(Bendixson-like criterion) Suppose there exists µ and positive definite matrix P such
that the following inequalityP ((A+BK)− µIn) + ((A+BK)− µIn)TP ∗ ∗

HTP − C 0 0
HT (P (A+BK) + (A+BK)TP ) + κC 0 0

 ≥ 0 (4.14)

is satisfied for some κ ≥ 0. Then if

tr(A)− (n− 2)µ < 0

the system (4.6) does not have periodic solutions.

The proof for this condition is provided in [28]. For known system matrices A, B,
C, H and a known controller K, the condition (4.14) can be verified using standard
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LMI techniques, to rule out the possibility of limit cycles. For this, µ is varied in an
external loop, while searching for feasible solutions for P satisfying (4.14), for given µ,
in each iteration. The existence of a feasible solution cannot be ruled out, based on the
bifurcation plots in Fig. 4.5 and Fig. 4.6, as was the case with the absolute stability
criterion. This is true because these figures clearly show that there exist controller gains
Kc for which limit cycles are avoided. Despite this fact, however, a feasible solution
could not be found for (4.14) for the considered closed-loop system. Therefore, it is
concluded that this criterion is also too conservative to serve as a basis for controller
design in this particular case.

4.5.3 Discussion

Attempts to verify absolute stability, or the absence of limit cycles, for the closed-loop
system (4.6) with matrices (4.9), have resulted in infeasible problems. An attempt to
find a full-state feedback controller which renders the closed-loop system (4.6) abso-
lutely stable based on the Circle criterion, have also resulted in an infeasible problem.
Controller synthesis based on the Bendixson-like criterion (4.14) is not achieved since
this involves solving a non-linear matrix inequality, which is not solvable with standard
LMI solving techniques.

4.6 Proposed control strategies

In this section, two alternative control strategies for setpoint control of the closed-loop
system (4.6) are proposed. The goal is to regulate the non-collocated mass m2, which
is subject to set-valued friction, to a desired setpoint, by applying a control input u in
(4.4) to the first mass m1. First, the stability- and performance issues related to this
control goal are briefly reiterated. Secondly, a switching control strategy is proposed
for improving the transient behaviour towards to setpoint. After this, a reset control
strategy is proposed, which aims on improving the settling performance similar to the
reset controller presented in Section 3.4 and [2], but taking the flexible dynamics into
account. The achievable performance benefits for both control strategies are illustrated
in simulation.

The first, stability-related control problem is illustrated in the simulation example in
Section 4.3. Here, it is shown that employing a PD- or PID controller for setpoint
control of a flexible system subject to non-collocated friction, induces the risk of expe-
riencing limit cycling. To address this issue, i.e., achieve the absence of limit cycles, the
results of the bifurcation analysis in Section 4.4 are used for controller design. These
results confirm that a PD-controlled system subject to friction converges to a non-zero
steady-state error and therefore the setpoint is never asymptotically stable. Therefore,
PID-control is employed instead, which can asymptotically stabilize the second mass
to its setpoint. However, PID-control is limited by a low gain, since a larger gain may
result in limit cycles, as Fig. 4.6 illustrates. High-gain feedback (high bandwidth) is
generally preferred over low-gain feedback, for its performance benefits in terms of in-
put tracking and robustness against uncertainties and disturbances. The ability for a
high-gain when PD control is employed, but the necessity for PID control to achieve
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asymptotic stability, motivates a PD-to-PID switching control strategy in the next
section.

4.6.1 PD-to-PID switched control

The intuition behind the switching control strategy proposed below is as follows. A
high-gain PD-controller is used to bring the system close to its setpoint. When the
PD-controlled system gets in the stick phase and is unable to escape this stick-set
indefinitely, a switch to low-gain PID-control is performed, to achieve convergence to
its setpoint, while avoiding the occurrences of limit cycles.

To determine the switching instant, consider again the equations of motion of the
system (4.6), first introduced in (4.1):{

m1ẍ1 = u+ k(x2 − x1) + d(ẋ2 − ẋ1),
m2ẍ2 ∈ −k(x2 − x1)− d(ẋ2 − ẋ1)− FsSign(ẋ2).

(4.15)

Here, k(x2 − x1) + d(ẋ2 − ẋ1) represents the internal force between m1 and m2, due
to the flexibility connecting the two masses, see Fig. 4.9a. Elimination by substitution
results in

m2ẍ2 ∈ −m1ẍ1 + u− FsSign(ẋ2). (4.16)

Evaluating (4.16) at ẋ2 = ẍ2 = 0 gives

0 ∈ −m1ẍ1 + u− FsSign(0), (4.17)

which is written as an inequality to give the condition for m2 to be in the stick phase:

|u−m1ẍ1| ≤ Fs. (4.18)

Here, the expression u−m1ẍ1 is the internal force acting on the second mass, see Fig.
4.9b, which is defined from here on as

Fint := k(x2 − x1) + d(ẋ2 − ẋ1)
:= u−m1ẍ1.

(4.19)

Note that the internal force in (4.19) can either be written in terms of relative position
and velocity between the first and second mass, or in terms of control input u and

u

m1

x1 x2

m2

k(x2 − x1)

d( _x2 − _x1)

Fs

(a) Internal force in terms of rel-
ative position and velocity of the
first and second mass.

u

m1

x1 x2

m2

Fs

Fint

(b) Internal force as defined in
(4.19).

Fig. 4.9. Free-body-diagram of a flexible 2 DOF system.
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Fig. 4.10. Free-vibrating model of m1, representing the situation when m2 is in the
stick phase.

the acceleration of the first mass ẍ1. The first formulation requires exact knowledge
of the stiffness and damping parameters between the two masses, which are often not
accurately known in practice. The acceleration, on the other hand, may be measured
with an accelerometer, which makes the second formulation of (4.19) the preferred
choice in practice. Irrespective of the formulation, the key conclusion is that whether
the second mass resides in stick, depends on the state of the first mass.

For the second mass to remain in stick indefinitely, (4.18) has to hold for all future
time. At the moment the second mass m2 sticks, the (frictionless) first mass m1 can be
considered as a single vibrating mass, as in Fig. 4.10. In this situation, the actuation
force u remains constant, due to the lack of integrator action in the PD-controller and
the fact that x2 is constant and ẋ2 = 0. The internal damping between the first and
second mass, which is always present in a practical system, causes the (PD controlled)
position response of m1 to behave as a damped, decaying oscillation. Consequently, the
resulting internal force Fint, defined in (4.19), behaves as a decaying oscillation as well,
see Fig. 4.11 for the time interval indicated by the grey area. This means that whenever
the oscillating internal force reaches a maximum that is smaller than the friction force
Fs, the internal force will never exceed the friction force in the future, and consequently,
the second mass will stick indefinitely. To detect the moment at which the oscillating
internal force is at a maximum, its time derivative must be zero, indicated as the red
bars in Fig. 4.11. The following three conditions embed these criteria, at which a switch
to PID control occurs, such that convergence to the setpoint is achieved.

ẋ2 = 0, (4.20a)
d

dt
Fint = 0, (4.20b)

|Fint| ≤ Fs, (4.20c)

with Fint defined in (4.19). The grey patches in Fig. 4.11 indicate when all three
switching conditions (4.20) hold. These switching conditions enable the definition of
the switching control strategy as follows.

(PD-to-PID switching control strategy) Start with high-gain2 PD-control, to con-
trol the system close to the setpoint. When the PD-controlled system gets in stick and
is unable to escape this stick-set indefinitely, i.e., the conditions (4.20) hold, switch
to low-gain PID-control, to guarantee convergence to the setpoint, while avoiding limit
cycles.

2But low enough to avoid limit cycles.
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Fig. 4.11. Decaying internal force as a result of a PD controlled step reference. The
grey area indicates when the second mass is in stick and the switching conditions in
(4.20) are satisfied.

Illustrative example

The following illustrative example shows the achievable performance benefits of the
proposed switching control strategy, compared to classical PD- and PID control. Based
on the bifurcation plots in Fig. 4.5 and 4.6, limit cycles are avoided for 1 < Kc < 6700
for PD-control, and 798 < Kc < 2730 for PID-control. In this example, a PD-controller
with Kc = 5000 is used to bring the system close to the setpoint, after which an
integrator is added and the gain is decreased to Kc = 2500, thereby avoiding limit
cycling also for the PID controller.

The simulated position response of the PD-, PID- and PD-to-PID-controlled system
(4.6) to a step reference of 0.01 m, is shown in Fig. 4.12. Here, system matrices (4.8)
and (4.9) are used, with parameter values given in Table 4.1 and 4.2. It can clearly
be observed that the PID-controlled system suffers from significantly more overshoot,
compared to the PD-controlled system. This large initial overshoot results in large
oscillations around the setpoint. The PD-controlled system gets in stick indefinitely
after around 1 second, i.e., conditions (4.20) hold. At this moment, the controller
switches to low gain PID control, to regulate the system further towards the setpoint.
The transient performance benefits of the proposed switched control technique is clearly
demonstrated in this illustrating example.

4.6.2 Reset control

As an addition to the switched control strategy, a reset PID control strategy is pro-
posed. Again, a 2 DOF system with non-collocation of actuation and sensing, and
non-collocation of actuation and friction is considered, as in Fig. 4.1. For the control
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Fig. 4.12. Simulated position response of x2 to a step of 0.01 m for a PD (black dash-
dot), PID (black) or switched (red) system. The bottom plot is a vertically zoomed in
version of the top plot. The white/grey areas represent the switch from PD (white) to
PID (grey).

strategy proposed in the previous section, once the PD-controlled system is regulated
close towards the setpoint, the controller switches to PID control. This PID-controlled
system, however, suffers from similar performance issues as discussed for the 1 DOF
case in Section 3.3. Namely, the system suffers from slow convergence and therefore
long settling times as a result of the (increasingly) slow depletion and refilling of the
integrator buffer.

In order to improve the settling performance of a flexible system subject to non-
collocated set-valued friction, a reset controller is proposed. The motivation behind
this reset controller is similar to the motivation for the reset PID controller presented
in Section 3.4. That is, resetting the integrator circumvents large portions of the filling
and depletion of the integrator buffer, resulting in shorter periods of stick and thereby
significantly faster settling. However, the mechanical flexibility in the system results
in a decoupling of the applied control input and the force acting on the non-collocated
mass, i.e., the point on which the friction acts. This decoupling is not taken into ac-
count in the original reset PID control strategy from Section 3.4, but is essential for
effective control.

To illustrate the influence of the mechanical flexibility, consider the simulated position
response in Fig. 4.13. Here, a reset PID controller, given in (3.10), with α = 0,
analogous to an integrator reset to zero, is used to regulate the system to a setpoint
of 5 · 10−5 m using a step reference. The position response of both the first (actuated)
and second (sensed) mass are shown in the top plot. The internal force Fint, defined in
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(4.19), and the integrator control force unonl = Kc/Tiξ, where ξ is defined in (4.3), are
shown in the bottom plot. In the first 0.2 seconds, the actuation force increases and the
position of the first, actuated, mass follows correspondingly. After the internal force
Fint becomes larger than the friction force, the second mass slips, see (4.18). In this
case, the system overshoots its setpoint after which the reset conditions (3.10f) hold
and the integrator is reset according to (3.10e). Since α = 0, the integrator resets to
zero. The core feature upon which the reset PID controller in Section 3.4 is designed,
is the fact that, despite a discontinuous jump in the control force, a 1 DOF system
always remains in stick, right after the reset. This design feature, however, is lost for
a flexible 2 DOF system with only non-collocated friction. This is clearly seen in Fig.
4.13 in the position response and the oscillatory behaviour of the first (frictionless)
mass. Consequently, due to the oscillation of the first mass, the internal force Fint
in the bottom plot, also displays oscillatory behaviour, with a peak force significantly
exceeding the integrator reset value. The peak force does, however, remain lower than

Fig. 4.13. Closed-loop simulation with reset control. Top: simulated position response
x1 (dashed) and x2 (solid) to a step reference of 5 · 10−5 m. A reset scaling factor
α = 0 is implemented. The reset instants are indicated by the black circles. Middle:
zoomed in position response. Bottom: internal force acting on m2, Fint (black) and
the integrator force unonl (red).
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the friction force and eventually converges towards the integrator control force. After
the internal force exceeds the friction force, the second mass slips again, exceeds its
setpoint, and another reset occurs.

For the case shown in Fig. 4.13, with α = 0, the internal force does not exceed the
friction force upon reset, and therefore does not influence the position response of
the second mass. In Fig. 4.14, the results of a reset PID controller with α = 0.3 are
presented. In this case, the internal force does exceed the friction force upon reset, which
causes the system to slip, overshoot the setpoint, enters a stick phase and, subsequently,
triggers the reset conditions (3.10f) again.

This example shows that the PID reset controller proposed in [2] is not robust against
flexible dynamics. A key intuition is that the state of the first mass is unknown and
uncompensated for, while it does influence the stick-to-slip moments of the second mass.
Therefore, the following alternative control strategy is proposed,

(Reset control strategy) Employ full-state feedback to regulate the internal force Fint
such that it resembles the reset integrator force, i.e., Fint = unonl.

This is achieved by adding a derivative control action to the first mass, with gain Td,1Kc,
to suppress the oscillations of the first mass upon reset. This results in the closed-loop
system (4.6) with controller

KPID =
[
0 Kc Td,1Kc TdKc TiKc

]
(4.21)

The achievable performance benefits of this proposed reset control strategy are illus-
trated in Fig. 4.15. Here, the dashed lines represent the position response to a step

Fig. 4.14. Top: simulated position response x1 (dashed) and x2 (solid) to a step
reference of 5 · 10−5 m. A reset scaling factor α = 0.3 is implemented, resulting in limit
cycles. The reset instants are indicated by the black circles. Bottom: internal force
acting on m2, Fint (black) and the integrator force unonl (red).
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Fig. 4.15. Top: simulated position response x2 (dashed) and x2 (solid) to a step
reference of 5 · 10−5 m. A reset scaling factor α = 0.3 is implemented, resulting in
limit cycles. The reset instants are indicated by the black circles. Middle: a vertically
zoomed in version of the top plot. Bottom: internal force acting on m2, Fint (black)
and the integrator force unonl (red).

reference of 5 · 10−5 m with the originally proposed reset controller from Section 3.4.
Here, α = 0.2 is the maximum value which does not result in limit cycling, as in Fig.
4.14. The oscillatory behaviour of the first mass can clearly be seen upon reset. The
solid lines represent the reset PID controller with added damping to the first mass
through a derivative controller action. Now, α = 0.8 can be employed, while still
avoiding limit cycling. This higher α results in significantly shorter stick moments, and
therefore increased settling performance.

4.6.3 Discussion

The results of the bifurcation study in Section 4.4 are used as a basis for the proposal of
two performance-increasing control strategies. A switching control strategy is proposed,
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for improving the transient behaviour towards the setpoint. Here, a high-gain PD
controller is employed to bring the system close to the setpoint, after which a switch
to low-gain PID control is performed, to achieve convergence, while avoiding limit
cycles. To improve the settling performance in terms of settling time, also a reset
control strategy is proposed, which employs full-state feedback to regulate the system
such that the force acting on the controlled mass, resembles the reset behaviour of the
reset PID controller, proposed in Section 3.4. This allows for employing a larger α,
without re-introducing limit cycles. This consequently results in shorter stick moments
and therefore increased settling performance. Simulation examples of both control
strategies show significant achievable performance benefits, compared to classical PID
control.
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CHAPTER5
Conclusions and

recommendations

Electron microscopy plays an essential role in the research to new, innovative materials,
in drug development, and in the manufacturing process of the semiconductor industry.
A high-precision sample manipulation stage is employed to position the sample under
the electron beam. In such high-precision positioning systems, friction is a performance
limiting factor in terms of positioning accuracy and settling time, as it can induce
non-zero steady-state positioning errors, limit cycling, and large settling times. These
performance limitations are inherent to classical PID control, which is still employed
in the vast majority of industrial applications. In this thesis, a reset PID controller is
validated on an experimental setup, representative for the sample manipulation stage
in an industrial electron microscope, to increase the performance in terms of settling
times. Secondly, the effects of flexible dynamics on stability and settling performance
of a system subject to set-valued, non-collocated friction are investigated analytically.
This chapter presents general conclusions of the thesis and recommendations for future
research.

5.1 Conclusions

The nano-positioning motion stage described in Chapter 2, representing the motion
stage of an industrial electron microscope, is used as an experimental setup. The setup
can be approximated by a single-mass model in the low- to medium-frequency range.
At high frequencies (above 160 Hz), decoupling due to non-collocation of actuation and
sensing requires a 2 DOF model to accurately describe the dynamics. The parameters
of this 2 DOF model are estimated based on system identification results. Friction
experiments showed the presence of macroscopic static- and viscous friction, as well as
microscopic frictional effects.

Chapter 3 addresses the issues regarding setpoint control of a single mass, subject to
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set-valued friction. Employing PD control to regulate a system subject to friction to
a desired setpoint, results in a steady-state error. In the presence of a Stribeck effect,
PID control can result in limit cycling, which is addressed in [22]. A system subject to
Coulomb friction (with potentially a viscous contribution), suffers from (increasingly)
slow convergence due to the refilling and depletion of the integrator buffer, resulting
in long settling times. A reset PID controller is presented and experimentally imple-
mented on the nano-positioning motion stage described in Chapter 2, to address this
control problem specifically. The experimental results show significant performance im-
provement in terms of settling time, when employing the proposed reset PID controller,
as compared to its classical PID counterpart. Increasing the size of the reset, generally
increases the performance in terms of settling time. However, microscopic frictional
effects result in elastic positional jumps upon an integrator reset. Larger controller re-
sets result in larger elastic microscopic jumps, which may induce oscillatory behaviour
around the setpoint, thereby limiting the size of the reset.

Chapter 4 provides an analytical study of setpoint control of flexible 2 DOF systems,
subject to non-collocated friction. A simulation-based bifurcation analysis illustrates
the possibility of limit cycling of a PD- and PID controlled system, subject to Coulomb
friction without Stribeck effect. Limit cycling can be avoided by sufficiently decreasing
the controller gain. Attempts to verify absolute stability, or design a full-state feedback
controller which renders the closed-loop system absolutely stable, have resulted in in-
feasible problems. The attempt to verify the absence of limit cycles using an LMI-based
Bendixson-like criteria, also gave no feasible solutions. Consequently, the results of the
bifurcation study are used as a basis for the proposal of two performance-increasing
control strategies. A switching control strategy is proposed, for improving the tran-
sient behaviour towards the setpoint. Here, a high-gain PD controller is employed to
bring the system close to the setpoint, after which a switch to low-gain PID control is
performed, to achieve convergence, while avoiding limit cycles. To increase the settling
performance in terms of settling time, also a reset control strategy is proposed, which
employs full-state feedback to regulate the system such that the force acting on the
controlled mass, resembles the reset behaviour of the reset PID controller, proposed in
Section 3.4. Simulation examples of both control strategies show significant achievable
performance benefits, compared to classical PID control.

5.2 Recommendations

In this section, a few open problems and possible extensions for future research are
listed.

• Friction has proven to limit the performance of a high-precision motion system in
terms of accuracy and settling time. In particular, microscopic frictional effects
cannot be neglected on the nanometer-positioning scale. Therefore, the frictional
model can be expanded to include these microscopic (pre-sliding) frictional effects,
allowing for model-based (feed-forward) friction compensation. However, obtain-
ing an accurate model which is suitable for model-based friction compensation,
may be challenging.
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• Further research in non-model-based control techniques, which do not rely on
accurate knowledge of the friction characteristic, such as dithering-based tech-
niques and impulsive control, may be promising. In particular, the microscopic
elastic effects, experimentally observed in Fig. 3.9 in Chapter 3, in the form of
positional jumps upon controller reset, can potentially be exploited to improve
the settling performance. This would require further research in the microscopic
elastic behaviour of the system, since there is currently no linear relation between
the size of the controller input and the size of the microscopic elastic jump.

• An alternative, or addition, to the proposed PD-to-PID switched control in Sec-
tion 4.6, is to take initial conditions into account. When the positional error is
sufficiently small, limit cycles do not occur, as indicated in the simulation-based
analysis of Section 4.4. This would allow for high-gain PID control, while still
avoiding limit cycles. Increasing the integrator gain, speeds up the filling/de-
pletion of the integrator buffer, resulting in shorter moments of stick and, conse-
quently, increased settling performance. This control strategy requires finding the
switching surface, i.e., the unstable bifurcation branch, to determine for which ini-
tial conditions the system converges to its setpoint, instead of converging towards
a limit cycle.

• To improve the performance in terms of accuracy and settling times of the ex-
perimental setup, or a general flexible 2-DOF system as considered in Chapter 4,
a second actuator can be added to control the second mass directly, resulting in
a long-stroke/short-stroke control strategy. The experimental setup is equipped
with a piezoelectric actuator, which can be used for this purpose. A sequential-
and dual-axis control strategy has been investigated in [16], but this research does
not consider the effects of friction. Therefore, this research can be expanded to
investigate the effect of friction on fully-actuated (flexible) systems.

• Currently, the reset control strategy strategy proposed in Section 4.6 only adds
a derivative term to attenuate the oscillations of the first mass upon a controller
reset. By expanding this to full-state feedback control, the internal force Fint can
be better regulated to follow the reset integrator profile.

• A learning algorithm integrated with extremum seeking control can be imple-
mented to improve the settling performance, without the need for a friction- or
system model. Industrial motion systems often execute repetitive tasks. In the
case of an electron microscope, for example, the sample stage makes repetitive
movements to create a full image of a sample. This motivates the investigation of
a learning control strategy, to improve the performance of the experimental setup,
integrated with extremum seeking control, which is robust against disturbances
such as (time-varying) friction effects.

• An extension to the friction-induced limit cycling analysis in Section 4.4, is to in-
clude collocated friction. Additionally, the friction characteristic can be expanded
to contain a Stribeck effect and, potentially, microscopic frictional effects. The
exact influence of system parameters, specifically damping, on limit cycling be-
haviour needs further investigation, since this is still not fully understood [29].
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• An even further extension to the friction-induced limit cycling analysis in Sec-
tion 4.4, is to consider a N DOF system, with friction acting on all N masses.
This would enable analysis of friction-induced limit cycles in complex, multibody
systems.

• The limit cycling behaviour in flexible systems, observed in simulation in Section
4.4, can be investigated experimentally. For proper investigation, a setup is re-
quired in which the damping and stiffness parameters are adjustable. If this limit
cycling behaviour is observed experimentally, the control strategies proposed in
Section 4.6 can be implemented and experimentally validated.

• Before implementing the proposed control strategies in Section 4.6, a stability
proof is required to prove that the setpoint is asymptotically stable. The simu-
lation study in Section 4.4 suggests asymptotic stability of the setpoint, but this
has not yet been proven.

• For improving the settling performance of the industrial Rx motion stage (de-
scribed in Section 1.1), the reset control strategy presented in 3.4 can be directly
implemented, as this control strategy has proven to be effective in reducing set-
tling times on the experimental setup (which represents the industrial motion
stage). However, since microscopic frictional effects are not compensated for, and
may induce robustness issues in a practical application, a low scaling factor α
should be employed. This increases the robustness against unknown frictional
effects, at the cost of settling performance.
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APPENDIXA
Model reduction

The full dynamic model is given in Figure A.1. This model is reduced in a number of
steps by eliminating the small masses and high stiffness components.
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Fig. A.1. Step 1: full model.

The frame is considered infinitely stiff and orders of magnitude heavier than both the
bearing and the spindle. Combining the stiffness of the spindle, the bearing and the
nut, results in the reduced model given in Figure A.2.
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Fig. A.2. Step 2.
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The mass of the piezo and nut is orders of magnitude smaller than the mass of the
carriage. Similarly, the inertia of the coupling is orders of magnitude smaller than the
inertia of the motor and the spindle. Both the stiffness of the carriage and the radial
stiffness of the coupling are considered infinitely stiff. This result in the reduced model
given in Figure A.3.
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Fig. A.3. Step 3.

Removing the transmission is done by dividing the inertia and stiffness by i2, dividing
the input torque T by i and multiplying the angle of the motor by i, resulting in the
model shown in Figure A.4.
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Fig. A.4. Step 4.

The last step is to combine the inertia of the motor and the spindle, since the radial
stiffness of the spindle divided by i2 is orders of magnitude larger than the combined
stiffness of the nut, spindle, bearing and piezo. A damper is added to represent any
internal damping and friction components. This results in the reduced 4th order model
shown in Figure A.5.
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Fig. A.5. Step 5.
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A.1 Parameter estimation

Table A.1: System parameter estimation of the experimental setup

Mechanical part Parameter Symbol Equation Value Unit
Motor Motor inertia J 1.05e−6 kg m2

Transmission Pitch p 5e−4 m
Transfer ratio i 7.96e−5

Bearing Bearing stiffness Cbearing 1e7 N m−1

Spindle Radius r 2.5e−3 m
Mass mspindle 1e−2 kg
Inertia I 1

2mr
2 3.13e−8 kg m2

Modulus of elasticity E 2.1e11
Area A 1.96e−5 m2

Max. length Lmax 6e−3 m
Moment of inertia Ip (πD4)/32 6.14e−11 m4

Modulus of rigidity G 7.93e10 N m−2

Axial stiffness Caxial (EA)/Lmax 6.87e8 N m−1

Torsional stiffness Cradial (GIp)/Lmax 1.28e10 N rad−1

Piezo Piezo stiffness Cpiezo 4e8 N m−1

Nut Nut stiffness Cnut 3.5e7 N m−1

Carriage Carriage mass mcar 1.6 kg
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A.2 Model reduction bode plots
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Fig. A.6. Bode plots of the transfer function from motor force [N] to resulting carriage
position [m], for each model reduction step. Here the estimated stiffness, damping, and
mass parameters are used.
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APPENDIXB
System identification

B.1 FRF measurements using non-periodic excitation: the
standard method

Direct open loop method

Consider an open loop system shown in Figure B.1.

G

v(t)

u(t) y(t)

Fig. B.1. Block diagram of an open loop system.

Here G is the unknown plant that needs to be identified and v(t) is an unkown distur-
bance noise. The output behaviour in the time domain can be written as

y(t) = G(f) ∗ u(t) + v(t), (B.1)

where ∗ indicates a convolution. The continuous time domain signals u(t), v(t) and
y(t) are measured at t = nTs, ∀n = [0, 1, . . . , N − 1], with Ts the sampling time and N
is the number of samples. These discretized time domain signals can be transformed
to the frequency domain using the Discrete Fourier Transform (DFT):

X(k) = 1√
N

N−1∑
t=0

x(nTs)e−j2πkn/N , (B.2)

with k the discrete time index and where x(nTs) can be replaced by u(nTs), v(nTs) or
y(nTs) to obtain the DFT’s U(k), V (k) and Y (k) respectively. Now the DFT of the
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input-output behaviour is given by:

Y (k) = G(k)U(k) + V (k), (B.3)
Y (k)U∗(k) = G(k)U(k)U∗(k) + V (k)U∗(k), (B.4)

Syu(k) = G(k)Suu(k) + Svu(k), (B.5)

where Syu is the Cross Power Spectral Density (CPSD) of the input and the output,
Svu the CPSD of the input and the noise and Suu the Auto PSD of the input. By
making sure that the input and the noise are uncorrelated (e.g. by choosing u(t) as
white noise), the CPSD Svu becomes zero, and an estimate of the plant G can be
calculated by

G(k) ≈ Syu
Suu

. (B.6)

Enhancing the spectral estimation

In practice, any measurement is inherently disturbed by e.g. system non-linearities
(friction, stick-slip, backlash etc.), stochastic effects (noise, disturbance) and measure-
ment errors. To improve plant estimate in (B.6), the results are averaged over M data
series:

G(k) ≈
∑N
i=1 S

i
yu(k)∑N

i=1 S
i
uu(k)

. (B.7)

The most used method is Welch’s averaged modified periodogram method. With this
method, the entire data set of length L is split intoM frames, each of length N samples.
A window (e.g. Hanning window) is applied to each frame to prevent leakage caused by
the discontinuities as a result of this cutting. However applying a window results in data
loss at the frame boundaries. To resolve this, more frames are created by overlapping
theM frames byN−R segments and apply the window to these overlapping frames. See
Figure B.2. This procedure is automated in MATLAB with the function tfestimate.

Coherence

A measure to quantify the quality of the obtained FRF is the coherence C(k). It
measures how much of the output power is coherent (linearly related) with the input
power. To motivate this, consider again the open loop block diagram shown in Figure
B.1. The DFT of the input-output behaviour can be written as

Y (k) = G(k)U(k) + V (k),
Y (k)Y ∗(k) = G(k)U(k)Y ∗(k) + V (f)Y ∗(k),

Syy(k) = G(k)Suy(k) + Svy(k).

Here it is again assumed that the input u(t) and the disturbance on the output v(t)
are uncorrelated, so Suv(k) = 0.

The quality of the measurement is determined by Svy(k). For a reliable measurement
Svy(k) should be small, such that |Syy(k)| = |G(f)Suy(k)|, which means that the output
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power is directly related to the plant. This ratio defines the coherence function C(k)

C(k) =
∣∣∣∣∣G(k)Suy(k)

Syy(k)

∣∣∣∣∣ =
∣∣∣∣∣Syu(k)Suy(k)
Suu(k)Syy(k)

∣∣∣∣∣ . (B.8)

Or, when averaging is used:

C(k) =
∣∣∣∣∣
∑N
i=1 S

i
yu(k)

∑N
i=1 S

i
uy(k)∑N

i=1 S
i
uu(k)

∑N
i=1 S

i
yy(k)

∣∣∣∣∣ . (B.9)

The measurement is reliable when each data series in N yields the same PSD’s, i.e.
when Si..(k) ≈ Sj..(k), ∀i 6= j. Then the coherence C(k) ≈ 1 which means that the
relation from u to y is mostly linear for that frequency. So when C(k) < 1 at a certain
frequency, it indicates the presence of:

• Non-linearities in G(k)

• Dominant (measurement) noise sources

• Leakage errors of the DFT

• Other inputs or disturbances contributing to the output

The coherence can be calculated with MATLAB by using the function mscohere.m

R N

L

Fig. B.2. Principle of the windowed overlapped segment averaging: the signal of length
L is divided into M (4) windowed segments of length N with an overlap of R samples.

Indirect closed loop method

In many practical applications it is desired to identify the dynamics of the system in
closed loop. Consider a standard unity feedback system as shown in Figure B.3.

−

r(t)
C G

d(t) v(t)

u(t) y(t)e(t)

Fig. B.3. Block diagram of a closed loop system with unity feedback.
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In the closed loop case, it is no longer possible to simply use (B.6), since now the noise
v(t) is added to the input u(t) through the feedback loop, resulting in a correlation
between u(t) and v(t). A possible solution is to use the so-called indirect three-point
method. With this method, a disturbance d(t) is applied and both u(t) and e(t) are
measured. Now the Sensitivity S and Process Sensitivity PS can be calculated by:

S = 1
1 + CG

≈
∑N
i=1 S

i
ud∑N

i=1 S
i
dd

(B.10)

,−PS = G

1 + CG
≈
∑N
i=1 S

i
ed∑N

i=1 S
i
dd

, (B.11)

where averaging is used to increase the spectral estimation, similar as done above.
Dividing PS by S gives an estimate for the plant G:

PS

S
= G

1 + CG
· 1 + CG

1 = G. (B.12)

The coherence of both d→ u and d→ e can be checked to quantify the quality of both
measurements. Care has to be taken that the reference r(t), the disturbance d(t) and
the noise v(t) are uncorrelated, otherwise biases could deteriorate the plant estimation
significantly.

B.2 FRF measurements using periodic excitations: the
Local Polynomial Method

The standard method of identifying the dynamical behaviour of a system described
above assumes that the plant G is linear. In practice however, no system is completely
linear, e.g. due to friction. Since a FRF is a linear mapping from the input to the
output of a system, the goal is to obtain a Best Linear Approximation (BLA) of the
dynamical behaviour using a Local Polynomial Method.

The Local Polynomial Method (LPM) is a procedure for nonparametric estimation
of the FRF of a nonlinear system based on the Best Linear Approximation (BLA).
Compared with other nonparametric FRF estimates based on windowing techniques
(e.g. noise injection, see the method above), it has proved to be remarkably efficient in
reducing the leakage errors caused by the application of Fourier Transform techniques
to non-periodic data. The LPM can estimate FRF models of systems excited by both
periodic and arbitrary signals. Here a periodic multisine signal will be used.

Multisine signal

A generalized multisine u(t) is a signal consisting of F sine waves with different fre-
quencies fk, amplitudes Ak and phase shifts φk:

u(t) = 1√
F

F∑
k=1

Ak sin(2πfkt+ φk). (B.13)
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f
k = 1 k = 2 k = 3

Fig. B.4. Amplitude of the Laplace transform as a function of frequency. The excited
frequencies are given by the black arrows, the transient and the noise contributions on
all frequencies are given by the grey arrows.

Random-phase multisines are used, which means that φk is the outcome of an uniform
random process over [0, 2π]. The frequency grid {f1, f2, . . . , fF } and amplitudes at
these frequencies have to be specified and can be chosen in such a way that a more
dense frequency grid with higher amplitudes is present in the range where resonance
peaks are expected. The period of the complete multisine, Tu(t), is the least common
multiple of the periods of its individual components

Tu(t) = lcm{T1, T2, . . . , TF } = lcm{f−1
1 , f−1

2 , . . . , f−1
F }, (B.14)

if a common multiple exists, i.e. Tu(t) = n1T1 = . . . = nFTF with ni ∈ N0 for
i ∈ {1, . . . , F}.

The Local Polynomial Method

Consider again a SISO system G that is excited by a known input signal u(t) and whose
output is the sum of the input contribution and of a disturbance term v(t) where the
input-output system can be represented as

Y (k) = GkUk + Tk + Vk. (B.15)

The basic idea of the LPM is, based on the smoothness of the transfer function G
and the transient term T as functions of frequency, to approximate these functions in a
narrow frequency band around a central frequency Ωk by a polynomial. The polynomial
parameters are estimated from the experimental data collected in this frequency band.
Next Gk, at the central frequency Ωk, is retrieved from this local polynomial model as
the estimate of the FRF at that frequency.

For the excitation with periodic signals it is key to exploit excited and non-excited
frequency bins within the total input spectrum. The non-excited frequencies k 6= εP
will contain the measurement noise and other non-periodic disturbances such as leak-
age/transient effects. These perturbations are also present on the excited frequencies,
in combination with the periodic content, see Figure B.4. Because a periodic excitation
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signal is used, it is possible to separate the transient and plant estimation. For this,
start with an estimation of the transient effects at the non-excited frequencies. This
output spectrum is defined as

Y (εP + ρ) = T (ΩεP+ρ) + Ṽ (εP + ρ),

with ρ = −d,−(d− 1), . . . ,−1, 1, . . . , d− 1, d a local frequency window over the non-
excited frequencies and Ṽ (εP+ρ) the non-periodic disturbances to the measurement.
Note that ρ does not include the excited frequency, so the plant dynamics are not
included in this output spectrum.

Now write this transient as a polynomial M :

T (ΩεP+ρ) = M(εP + ρ).

This polynomial M(εP + ρ) is parametrized using a Taylor series expansion and the
resulting set of equations can be solved using a least squares optimization. The optimal
solution of this optimization results in the estimation of the transient at the excited
frequency T̂ (ΩεP ).

Doing this around each excited frequency gives an estimate of the transient effects at
each excited frequency, T̂ (ΩεP ). Now the transient effects can be decreased significantly
in the output spectrum by subtracting the estimated transient effect at the excited
frequency, from the output spectrum at that frequency:

Ŷ (εP ) = Y (εP )− T̂ (ΩεP ). (B.16)

So now (B.15) can be simplified, resulting in the noise-corrected output spectrum:

Ŷ (εP ) = G(ΩεP )U(εP ) + V (εP ), (B.17)

with V (εP ) the remaining transient effects and all disturbances. Now this noise-
corrected output spectrum can be used to calculate the plant dynamics.
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B.3 FRF measurements
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Fig. B.5. Comparison between the model-based and the experimentally found bode
plots of both the transfer function from the motor force to the (non-collocated) position
of m2, and the transfer function from the motor force to the (collocated) position of
m1, using the three-point method with noise injection and the LPM with multisine
injection.
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Fig. B.6. Bode plot of the transfer function from the motor force to the (non-collocated)
position of m2, using the LPM with multisine injection. A comparison of two separate
measurements shows similar high-frequency behaviour.

82



APPENDIXC
Robustness margins

The resulting robustness margins for the closed-loop system using the classical tuned
PID controller are given in Tab. C.1. The open-loop bode plot, the Nyquist plot and
the Sensitivity plot, including graphical representations of the robustness margins are
given in Fig. C.1, Fig. C.2 and Fig. C.3, respectively.

Table C.1: Control margins

Parameter Value
Crossover frequency 36 Hz
Gain margin (GM) 14 dB
Phase margin (PM) 31°
Modulus margin (MM) 6.2 dB
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GM =  14 dB

PM = 31°

Fig. C.1. Bode plot: open loop G · C.
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MM PM

1/GM

Fig. C.2. Nyquist plot: open loop G · C.

MM = 6.2 dB

Fig. C.3. Sensitivity plot: 1
1+G·C .
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APPENDIXD
Position dependency

D.1 Spindle orientation

To elaborate on the spindle orientation dependency, consider Fig. D.1. Here a setpoint
is given such that the spindle rotates 45°, or 1/8 rotation, and the system is given
30 seconds to settle. The carriage is kept, approximately, in the same position, only
moving 0.5 mm due to a single rotation of the spindle. This way, the settling response
at 8 different spindle orientations is investigated. This is repeated 3 times and the
settling response is shown in Fig. D.1. Comparing different spindle orientations, shows
different settling behaviour. A (relative) spindle orientation of 135° results in much
more oscillations, compared to for example a (relative) spindle orientation of 225°.
Comparing the four separate experiments done for each spindle orientation, shows
(generally) repeatable settling behaviour, confirming the claim that the orientation of
the spindle does indeed influence the settling behaviour significantly.

D.2 Carriage position

The carriage position also influences the settling response, see Fig. D.2. Here, the
spindle is rotated 8 · 360°, resulting in a carriage displacement of 4 mm and a constant
final spindle orientation, comparable to the relative spindle orientation of 135° in Fig.
D.1. This movement is repeated 10 times, covering the entire 4 cm long workspace.
This entire set of 10 movements is repeated in three separate experiments.

The first two movements in Fig. D.2 are related to a carriage position close to the
bearing (refer to the description of experimental setup in Fig. 2.2), and have a different
settling response compared to the rest.

87



Fig. D.2. Three identical experiments, each consisting of 10 spindle rotations where the
spindle end-orientation is kept the same. Therefore this shows the effect of the carriage
position on the settling response.

0° 45° 90° 135° 180° 225° 315°270°s

Fig. D.1. Repeated settling experiments for 8 different spindle orientations, showing the
effect of the spindle orientation on the settling response. The spindle relative spindle
orientation is shown in the bottom part of the plot.

88



APPENDIXE
Equilibrium set

The closed-loop equation of motion can be written as

ẋ = (A+BK)x+Gw. (E.1)

E.1 PD-controlled system

Filling in the system matrices corresponding to PD-control in (E.1) gives


ẋ1
ẋ2
ẍ1
ẍ2

 =




0 0 1 0
0 0 0 1
− k
m1

k
m1

− d
m1

d
m1

k
m2

− k
m2

d
m2

− d
m2

+


0
0
− 1
m1
0




0
Kc

0
TdKc


T


x1
x2
ẋ1
ẋ2

+


0
0
0
−1

FsSign(ẋ2).

(E.2)

The equilibrium set of (E.2) is found by setting the state derivatives to zero, ẋ1 = ẋ2 =
ẍ1 = ẍ2 = 0, resulting in


0
0
0
0

 =




0 0 1 0
0 0 0 1
− k
m1

k
m1

− d
m1

d
m1

k
m2

− k
m2

d
m2

− d
m2

+


0
0
− 1
m1
0




0
Kc

0
TdKc


T


x1
x2
0
0

+


0
0
0
−1

FsSign(0).

(E.3)

This can also be written as

{
− k
m1
x1 + k−Kc

m1
x2 = 0,

k
m2
x1 − k

m2
x2 − 1

m2
FsSign(0) = 0.

(E.4)
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Solving (E.4) for x1 and x2 results in the equilibrium sets


x1 ∈ −k−Kc

kKc
FsSign(0),

x2 ∈ − Fs
Kc

Sign(0),
ẋ1 = 0,
ẋ2 = 0.

(E.5)
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E.2 PID-controlled system

Filling in the system matrices corresponding to PID-control in (E.1) gives


ẋ1
ẋ2
ẍ1
ẍ2
ξ̇

 =




0 0 1 0 0
0 0 0 1 0
− k
m1

k
m1

− d
m1

d
m1

0
k
m2

− k
m2

d
m2

− d
m2

0
0 1 0 0 0

+


0
0
− 1
m1
0
0




0
Kc

0
TdKc

TiKc


T



x1
x2
ẋ1
ẋ2
ξ

+


0
0
0
−1
0

FsSign(ẋ2).

(E.6)

The equilibrium set of (E.6) is found by setting the states derivatives to zero, ẋ1 =
ẋ2 = ẍ1 = ẍ2 = ξ̇ = 0 resulting in


0
0
0
0
0

 =




0 0 1 0 0
0 0 0 1 0
− k
m1

k
m1

− d
m1

d
m1

0
k
m2

− k
m2

d
m2

− d
m2

0
0 1 0 0 0

+


0
0
− 1
m1
0
0




0
Kc

0
TdKc

TiKc


T



x1
x2
0
0
ξ

+


0
0
0
−1
0

FsSign(0).

(E.7)

This can also be written as


− k
m1
x1 + k−Kc

m1
x2 − KcTi

m1
ξ = 0,

k
m2
x1 − k

m2
x2 − 1

m2
FsSign(0) = 0,

x2 = 0.
(E.8)

Solving (E.8) for x1, x2 and ξ results in the equilibrium sets



x1 ∈ −Fs
k Sign(0)

x2 = 0,
ẋ1 = 0,
ẋ2 = 0,
ξ ∈ − Fs

KcTi
Sign(0).

(E.9)
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APPENDIXF
Routh-Hurwitz criteria

The Routh-Hurwitz criteria gives necessary and sufficient conditions for all of the roots
of the characteristic polynomial to lie in the left half of the complex plane, and is
defined as follows.

Routh-Hurwitz Criteria. Given the polynomial

P (λ) = λn + a1λ
n−1 + · · ·+ an−1λ+ an,

where the coefficients ai are real constants, i = 1, · · · , n, define the n Hurwitz matrices
using the coefficients ai of the characteristic polynomial:

H1 = (a1), H2 =
[
a1 1
a3 a2

]
, H3 =

a1 1 0
a3 a2 a1
a5 a4 a3

 ,
and

Hn =


a1 1 0 0 · · · 0
a3 a2 a1 1 · · · 0
a5 a4 a3 a2 · · · 0
...

...
...

... · · ·
...

0 0 0 0 · · · an

 ,

where aj = 0 if j > n. All of the roots of the polynomial P (λ) are negative or have
negative real part iff the determinants of all Hurwitz matrices are positive:

detHj > 0, j = 1, 2, . . . , n.

Consider the system (4.4) without friction. The transfer function from input u to
position of the second mass x2 is given by:

G(s) = X2(s)
U(s) = ds+ k

s2(m1m2s2 + (m1 +m2)ds+ (m1 +m2)k) (F.1)

93



The transfer functions of a PD- and PID-controller respectively are given by

CPD(s) = Kc(1 + Tds), (F.2)

CPID(s) = Kc(1 + Tds+ Ti
s

) = Kc(Tds2 + s+ Ti)
s

. (F.3)

The closed-loop transfer function is given by

GCL(s) = GC

1 +GC
, (F.4)

where C is either CPD or CPID and which denominator is the characteristic polynomial
ΦCL(s). Or the characteristic polynomial can be found directly by

ΦCL(s) = Cden(s)Gden(s) + Cnum(s)Gnum(s) = 0, (F.5)

where the subscripts den and num represent the denominator and numerator of the
transfer functions respectively.

Filling (F.1) and (F.2) or (F.3) in (F.5) give the characteristic equations for a PD- or
PID-controlled system respectively, resulting in the following coefficients ai for which
the Routh-Hurwitz criteria can be checked.

PD: a1 = m1+m2
m1m2

, a2 = (m1+m2)k+dKcTd

m1m2
, a3 = kKcTd+dKc

m1m2
, a4 = kKc

m1m2
.

PID: a1 = m1+m2
m1m2

, a2 = (m1+m2)k+dKcTd

m1m2
, a3 = kKcTd+dKc

m1m2
, a4 = dKcTi+kKc

m1m2
, a5 = kKcTi

m1m2
.

The overall controller gain Kc is the only varying parameter, so the closed-loop stability
of the system can now be checked, depending on this parameter.
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APPENDIXG
Absolute stability

G.1 Feasibility check

The system (4.6) is said to be absolutely stable if it has a globally uniformly asymptot-
ically stable equilibrium point at the origin for any nonlinearity in a given sector [25].
In the case of Coulomb friction, this is the [0,∞] sector, which means that the friction
characteristic is bounded within the first and third quadrant in Fig. 3.2. The circle
criterion is stated as follows [25]:

(Circle criterion) The system (4.6) is absolutely stable if Ψ ∈ [0,∞] and (4.7) is
strictly positive real.

The strictly positive real part is expressed in an LMI form based on the Kalman-
Yakubovich-Popov lemma [25]:

(Kalman-Yakubovich-Popov) Consider system (4.4), with Ψ ∈ [0,∞] and the linear
feedback law (4.5). Then (4.7) is strictly positive real if and only if there exist a matrix
P = P T > 0 such that

P (A+BK) + (A+BK)TP < 0
PH = CT .

(G.1)

A strictly positive real, minimal realization, LTI system is equivalent to a strictly passive
system [25]. Consequently, by designing a controller K such that the KYP criterion
(G.1) is fulfilled, the closed-loop system (4.6) is rendered absolutely stable. Since this
criterion guarantees global asymptotic stability for all nonlinearities in a given sector,
this controller would be robust against changes in friction, as long as the [0, ∞] bound
is satisfied.
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G.2 Controller synthesis

Instead of verifying the feasibility of a given controller, the KYP condition can be used
to design a PID controller which renders the resulting closed-loop system asymptotically
stable. For this, the PID-controller given in (4.9c) is expanded to a full-state feedback
controller Kfull ∈ R1x6 and the system matrices in (4.9) are adjusted accordingly.
Solving the

Solving (G.1) for both K = Kfull and P results in a non-linear problem, due to the
multiplication of Kfull and P . These generally non-convex optimization problems can-
not be solved by standard LMI techniques. Therefore, before the KYP conditions can
be used for controller design, a change in variables is needed to render the problem
linear. This results in the following LMI condition:[

AQ+BZ +QAT + ZTBT H −QCT
HT − CQ 0

]
< 0, (G.2)

where Q = P−1 and Z = KfullQ. For the derivation of (G.2), refer to Appendix G.3.
A controller gain matrix Kfull ∈ R1x6 can be found by solving (G.2) for Q and Z and
then solve for Kfull = ZQ−1. However, this problem also turned out to be infeasible.
Therefore, it is concluded that designing a controller based on absolute stability is too
restrictive for this particular system.

G.3 KYP change of variables

Before the KYP conditions can be used for controller design, a change in variables is
needed, to render the problem linear. The change in variables is given as follows.[

P (A+BK) + (A+BK)TP PH − CT
HTP − C 0

]
< 0 (G.3a)[

P−1 0
0 I

] [
P (A+BK) + (A+BK)TP PH − CT

HTP − C 0

] [
P−1 0

0 I

]
< 0 (G.3b)[

(A+BK)P−1 + P−1(A+BK)T H − P−1CT

HT − CP−1 0

]
< 0;Q = P−1

(G.3c)[
(A+BK)Q+Q(A+BK)T H −QCT

HT − CQ 0

]
< 0 (G.3d)[

AQ+BKQ+QAT +QKTBT H −QCT
HT − CQ 0

]
< 0;Z = KQ

(G.3e)[
AQ+BZ +QAT + ZTBT H −QCT

HT − CQ 0

]
< 0 (G.3f)
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