
 Eindhoven University of Technology

MASTER

Evaluation of supervisory control theory based on requirement evolution of LOPW

van der Schriek, Yorick I.C.

Award date:
2018

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/f1b467df-8394-471d-a22e-d9dc6061b841


Evaluation of supervisory control theory
based on requirement evolution of LOPW

Master Thesis

Student: Y.I.C. van der Schriek
Student Number: 0737693

Department of Mechanical Engineering

Master: Manufacturing Systems Engineering
Department: Mechanical Engineering
Research Group: Control Systems Technology
In collaboration with: ASML Netherlands B.V.

TU/e Supervisors: dr.ir. M.A. Reniers
ir. L.J. van der Sanden

External Supervisor: dr.ir. R.R.H. Schiffelers

CST 2018.032

Eindhoven, 2 July 2018





Abstract

The demand for computer chips is continuously rising. ASML is the market leader of litho-
graphy systems used in the semi-conductor industry to produce chips. To ensure that the
requests of the manufacturers are met with regard to the increasing demand, the lithography
systems are continuously improved. Not only is this done by developing new systems, but
also improving existing ones with regard to the control software is essential. Lot Operations,
Process Wafer (LOPW) is the high level controller of the wafer logistics within the wafer
scanners of ASML. LOPW makes sure the wafer logistics is executed correctly, telling com-
ponents, such as the wafer handler or chuck what to do, but not how they should perform
that operation. This supervising of LOPW ensures that wafers are put in, processed and
removed from the machine. In addition to this, LOPW ensures maintenance, conditioning
and scheduling requirements are met.

The logistical process within a wafer scanner is complex, which results in a big controller. To
resolve this problem the controller is split into many smaller controllers, which are connected in
a hierarchical way. Currently this is done using Analytical Systems Design (ASD), where each
subcomponent of LOPW is modelled manually according to requirements. Earlier research has
shown that Supervisory Control Theory is a valid method to replace the manual modelling of
the components. This method uses formal requirements in combination with the uncontrolled
behaviour of the system to synthesize correct supervisor controllers for the components. The
elimination of manual design of the controllers should result in fewer mistakes with respect
to the requirements and an improvement in development time. These benefits of SCT with
regards to ASD are hypothetical and the goal of this research is to test this hypothesis.

To test the hypothesis several subcomponents of LOPW are selected and modelled in Com-
positional Interchange Format (CIF). CIF is a modelling language which allows supervisor
synthesis. These models are then evolved according to the requirement evolution during the
years. The requirements are extracted from the ASD models. Unfortunately the documen-
tation is written for general requirements of LOPW and written after changes are made to
the models. The result of this is that the requirements used for each version are not always
traceable in the documentation. These models are then compared to their ASD equivalents,
including the amount of changes according to metrics.

The results show that the SCT methodology might be beneficial for ASML, since the amount
of changes which have to be made to CIF models are less than the amount of changes re-
quired in ASD models. Due to some limitations within CIF with regards to data transference
there should be follow up research to determine certain aspects of modelling as they do not
fully match the functionality as provided by ASD. The follow up research can then deter-
mine whether these functions are required and how they should be implemented. For large
components the SCT methodology is not capable of synthesizing a controller. Therefore
more research has to be done to conclude a method for large components to allow the SCT
methodology to be applied in all components of LOPW.

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

I





Preface

This is my thesis ”Evaluation of supervisory control theory based on requirement evolution of
LOPW”. This thesis describes the research that has been performed on historical data pro-
vided by ASML. This research was conducted from November 2017 to June 2018 at ASML as
part of my endeavour to meet the graduation requirements of the Manufacturing Systems En-
gineering master within the Mechanical Engineering Department of the Eindhoven University
of Technology.

At the start of my graduation internship at ASML there was a lot unclear about the outcome
of this research, but during this internship it was difficult to remain fully focussed on the main
goal as there were many interesting branches to look at. Ramon Schiffelers as supervisor at
ASML was a great help determining the right track together with my TU/e supervisors Michel
Reniers and Bram van der Sanden. Our regular meetings gave me new insights and motivation
to keep going, for which I am grateful.

I want to thank ASML for the opportunity to do an internship there and my supervisors
for their guidance and insight. Thanks Josh Mengerink for help with the EMMA tool and
Yuri Blankenstein and Rolf Theunissen for their help with the implementation of the ASD
technology bridge.

I want to thank my parents for supporting me during my study, my friends for the joyfull
distractions and Fraukje for being the drive behind my work ethic.

Thank you reader for taking time to read this thesis and I hope you enjoy the pages to come.

Yorick Isedorus Cornelis van der Schriek

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

III



Contents

Abstract I

Preface III

List of Abbreviations VI

1 Introduction 1

1.1 Research Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Structure of this report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Analytical System Design 5

2.1 ASD General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 ASD Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 ASD Actions and Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Lot Operations, Process Wafer 10

3.1 LOPW scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 LOPW construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Supervisory Control Theory and Application 18

4.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 CIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 SBS to CIF transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 Application to LOPW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Metrics 27

5.1 Metric Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Counting Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 General Model Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4 Halstead Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5 Change Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.6 Metrics application to CIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Methodologies Comparison 34

6.1 Modelling Metric Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2 Modelling Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.3 Modelling Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.4 ASD Pollution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

IV



CONTENTS

7 Conclusion and Recommendations 46

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

References 48

Appendices

A ASD Metric Extraction Java Scripts 50

A.1 GitMiner to obtain all model revisions . . . . . . . . . . . . . . . . . . . . . . 51
A.2 Size Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
A.3 Metrics Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
A.4 Metrics Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

B CIF Metric Extraction Python Scripts 61

B.1 Alphabet Generating Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
B.2 Automata Counter per CIF specification . . . . . . . . . . . . . . . . . . . . . 63
B.3 Automata Name Collector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
B.4 Changes in CIF in automata . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
B.5 CIF Metric Collector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
B.6 Runtime Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

C Changelogs 79

C.1 Component A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
C.2 Component B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
C.3 Component C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
C.4 Component D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
C.5 Component E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
C.6 Component F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
C.7 Component G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
C.8 Component H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

D Metric Data Per Revision 84

D.1 Component A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
D.2 Component B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
D.3 Component C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
D.4 Component D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
D.5 Component E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
D.6 Component F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
D.7 Component G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
D.8 Component H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

V



List of Abbreviations

ACC Actual Cyclomatic Complexity

ASD Analytical System Design

CC Cyclomatic Complexity

CE Chuck at Exposure side

CIF Compositional Interchange Format

CM Chuck at Measure side

CSI Changed Source Instructions

CSV Comma Separated Value

DM Design Model

DU Discharge Unit

EMMA EMF (Meta) Model Analysis tool

EPDS Element Performance and Design Specification

EUV Extreme Ultraviolet

FIFO First In First Out

FP Function Points

IM Interface Model

LOC Lines of Code

LOPW Lot Operations, Process Wafer

LTS Labelled Transition System

MI Maintainability Index

PU Preallignment Unit

SCT Supervisory Control Theory

SSI Shipped Source Instructions

TR Track

TU/e Eindhoven University of Technology

VAF Value Adjustment Factor

WH Wafer Handler

WS Wafer Stage

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

VI



Introduction

1. Introduction

This first chapter will introduce ASML and the research setting. The goal of my graduation
project is stated after these subjects and the approach of reaching this goal is discussed. The
chapter will conclude with a brief explanation on how this report is structured.

1.1 Research Setting

Since ASML was formed in 1984 [1] it has become worldleader in developing machines which
allow the fabrication of chips. These so called wafer scanners are used by all major chip
manufacturers of the world. These manufacturers require ASML to keep improving their
machines to allow increase of transistor amounts per chip. This is done by using new tech-
niques as Extreme Ultraviolet(EUV) lithography to decrease the smallest feature size, which
is currently down to 10nm [26]. However not only the accuracy of the imaging had to be
improved, but throughput of the ASML machines also had to be improved, leading to the
Twinscan machines of ASML. These Twinscan machines were not only able to expose a wafer,
but could also prepare the next wafer for this process simultaneously.

The wafers on which the chips are printed are moved through these machines. The Lot
Operations, Process Wafer (LOPW) is the controller of this logistical process. However as
machines are improved the movement requirements of these logistics change. If all these
requirements would be incorporated in one big controller, it would become very prone to
errors, as the controller would be just too complex. Therefore the LOPW is constructed as
an hierarchical controller. This controller consists of many sub-controllers in an hierarchical
structure. Each sub-controller is controlling a certain piece of the machine, but is itself
supervised by a controller on a higher level in the hierarchy.

ASML is using Analytical Software Design (ASD) [4] to manually design these sub-controllers
to conform with the requirements. These requirements are partially written down in docu-
mentation, but not all requirements are fully documented [13]. Because the hierarchical
approach has been used for some time now and sub-controllers are adjusted frequently, it
becomes harder to determine where certain requirements are incorporated in the controllers.
This combined with the manual modelling required for the adjustment of a controller to meet
new requirements has led to the research on using supervisory control synthesis [12], [22].
Supervisory control synthesis derives a controller from a collection of plants and a set of re-
quirements. The collection of plants represent the machinery by modelling the uncontrolled
behaviour which should be controlled. The requirement set specifies the behaviour which is
allowed on the machinery. Both should be written down in a formal way for the synthesis
algorithm to use them.

The research of Robin Loose [14], [13] has shown that supervisory control synthesis can
generate controllers with the same behaviour as the manually constructed controllers. This
means that both approaches could be used to ensure correct movement of the wafers within the
machine. As stated before the currently used approach of manually constructing controllers
has its drawbacks, however that does not directly mean that supervisor synthesis is better.
For this reason this research will compare the two methodologies.

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

1 / 91



Introduction

1.2 Research objective

Both the ASD and supervisory control synthesis approach have the same controller validity,
which means both methods result in usable controllers which conform to the requirements.
However, ASD requirement confirmation has to be done manually, where SCT ensures this
confirmation directly. These methods also differ in methodology on how to achieve the con-
troller. These methodologies can be evaluated according to metrics which quantify software
and methodology characteristics. Even though these metrics can be used for this, the base
of both methods are the requirements. Requirements have changed over time and are still
continuing to change. However the rate and severity of the changes has not been mapped
and is therefore unknown. Without knowledge of this the impact of another method is not
realistically measurable. The main problem definition for this master’s project is focusing on
the differences between ASD and SCT, combined with requirement changes history and can
be defined as:

Evaluation of supervisory control theory based on requirement evolution of LOPW.

1.2.1 Subproblems

To achieve the main goal, multiple sub-problems should be solved.

1. Data analysis
Analysis of the available (historical) data. This data is raw and should be processed to
be useful. Identify the requirements per component, log the changes per requirement
and for the complete component. A creation of a historical overview of requirements
should be the result of this subproblem.

2. Metrics selection
To be able to determine differences and quantify these. There are many metrics available
and the right metrics should be selected to evaluate the models. A result of this is a
standard quality quantification method for both CIF and ASD. In addition to this
changes between versions can be quantified for both modelling languages.

3. Component selection
As LOPW has hundreds of individual components, it would be too much work to evalu-
ate all components with respect to historical developments in requirements, therefore a
selection of models should be made. These models will be used as base for this research.

4. Requirement categorization
LOPW is built according to a set of requirements. These requirements can be gathered
from different sources and can be categorized based on their source [13], functionality [21]
or construction [15]. This categorization can be used to research the relative influence
of a requirement of a specific category on the ASD and CIF models with respect to the
selected metrics.

5. Model generation
There are old LOPW models available in ASD format. Without a valid CIF model on
the same requirements, it is impossible to make a comparison between both modelling

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

2 / 91



Introduction

languages. CIF models should be created for the selected components, which satisfy
the same requirements as the ASD models.

6. Model development
The selected components should be adjusted in CIF to meet newer requirements to sim-
ulate the development history of LOPW. During this process ASD models are evaluated
with regards to their functionality, to make sure all non-documented requirements are
still taken into account. This ensures a level of equivalence and would allow evolution
analysis.

7. Metrics quantification
The selected metrics have to be used to evaluate the models and the changes made after
requirement changes. These metrics can eventually be used to compare the methodolo-
gies and model qualities.

8. Methodology comparison
Using the quantified metrics the methodologies can be compared. Combined with the
data analysis a conclusion can be drawn on the methodologies.

1.2.2 Scope

As LOPW is too big to analyze completely and has many aspects which can be evaluated it
is important to define a clear scope. The ASD and CIF models can be converted in other
languages such as C for implementation and Labelled Transition System (LTS) for model
evaluation purposes. The implementation of the controller has been left out of scope in
this research. Earlier research used the transformation to LTS [13] for equivalence checking
between CIF and ASD. This method is not used during this research, as the goal is to create
controllers based on the requirements and not to prove equivalence between two controller
design methods.

An important metric when looking at software development methodologies is time duration.
More specifically the time it takes to implement certain requirements. Even if it is possible to
obtain the implementation time while using ASD it is impossible to compare this data with
equivalent data using CIF. This is due to the lack of exact programming time logs, personal
differences and environmental influences. Therefore this aspect of methodology comparison
is not used and instead the Halstead Time definition is used [9], where time is defined by the
complexity of the model.

1.3 Research approach

The sub-problems should be tackled in a rather sequential order. First all versions of each
component should be obtained. This set of models should then be cleared of broken models
before extracting metrics from them. These models are either corrupted models or unfinished
models with errors in them. The values for these metrics can be used to select several
interesting models which the research will focus on.

For each of the models a set of versions is available. Each of these models has a set of other
models which are used by the main model. To be able to use these models the corresponding

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

3 / 91



Introduction

model versions of used components should be added. Then the requirements of this version
can be written down. When the requirements are known, the component is modelled in CIF
with the formalized requirements. Finally a supervisor is synthesized to obtain the final result
for this version. These steps are repeated until the entire version history of the component
is covered. When all versions are modelled, both ASD and CIF models are evaluated with
regards to metrics. These metrics can be compared to establish a conclusion on which method
is preferable for this component. In addition to the metrics, findings during the modelling
of components in CIF are used to form this conclusion. After all selected components are
modelled and evaluated, the results are combined to form a grounded conclusion.

This report is a guide through this process, which is further detailed in the next section.

1.4 Structure of this report

In the next chapter the working of ASD is globally described. Note that only the most relevant
functionalities and semantics of ASD are described. Chapter 3 will explain LOPW in more
detail and an analysis of LOPW in general is conducted. The chapter will conclude with a
classification of the requirements of LOPW. The next chapter is Chapter 4. This chapter
globally depicts the supervisory control theory and in more detail how to use it to convert
LOPW into CIF. Chapter 5 will elaborate on the metrics used and how they will contribute
to the evaluation. Chapter 6 will use the metrics of both the ASD models and CIF models to
compare both methodologies. In addition to this, other findings during this research related
to the difference between the methodologies are elaborated on. The report will be rounded
off with a conclusion and recommendations with regard to this research.

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

4 / 91



Analytical System Design

2. Analytical System Design

What LOPW is and what its function is, is briefly described in the previous chapter and
will be elaborated in Chapter 3. This chapter will elaborate on the building blocks of which
LOPW is currently built, which are modelled with ASD. After the introduction of ASD several
key aspects of ASD are described in more detail. The chapter concludes with the introduction
of metrics to analyse ASD models.

2.1 ASD General

The building blocks of LOPW are Analytical System Design (ASD) [4] components. ASD uses
sequence based specifications (SBS) [18] to model components and their controlled behaviour.
The modelling language is developed by Verum Software Tools B.V. [25] as a control specifi-
cation language and describes finite state automata. These automata are abstract machines
with multiple states and transitions between them, but the automaton can be in only one
state at a time. Regardless of the external components, ASD models can be used to define a
controller. This controller can tell these external elements what to do in what order, but not
how it should be done. The how is determined by the elements themselves. ASD:Suite, which
is the developing arena for ASD, allows for conversion of the ASD models into executable
code for implementation purposes. During this conversion the semantics and correctness is
maintained to ensure right behaviour of the system.

Figure 2.1: Schematic illustration of a hierarchical structure of three ASD components.

ASD models can be combined in an hierarchical structure, where decisions can be made based
on actions of other components. In Figure 2.1 a simple example of this is depicted where the
client uses two other models as a service. The client can command a service to do action X,
where the service will send a reply back to notify the client the action is complete. In return
this service component can use other services in the same way as the current client uses this
service component. In addition to this a client can use multiple services, but can also be a
service to multiple other clients. This can be expanded to a multi level hierarchical system,

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

5 / 91



Analytical System Design

which allows for partitioning of complex systems into many smaller components to reduce
the complexity. All model files are within the same folder and refer to each other within that
folder.

2.2 ASD Models

The client, as described in the previous section, is built out of two blocks: an Interface Model
(IM) and a Design Model (DM). These models are both defined by rulecases, which are the
core of the Sequence Based Specification. Each rulecase exists of several declarations:

• Interface: From which interface the trigger comes.

• Trigger/Event: An incoming event which leads to the activation of the rulecase. This
can either be a call event from a component higher in the hierarchy, a notification event
from an used interface or an internal trigger.

• Guard: A boolean check to evaluate if this rulecase is allowed to be executed. If the
guard is evaluated true when the trigger happens, the actions specified in this rulecase
are executed. This is an optional attribute for a rulecase.

• Action: If the trigger happens and the guard is evaluated true, the actions listed here
will be executed.

• State Variable Update: If there exists a state variable within the model, this can be
updated to another value. This is optional for each rulecase.

• Target State: Defines the transition of state after this rulecase.

Figure 2.2: Example of a rulecase.

Figure 2.2 shows an example of a rulecase as used in ASD. This particular rulecase defines
when an alarm should be activated: when a switch is flipped and the variable ’x’ is smaller
or equal than two. When this is accepted the window sensor is activated and ’x’ is set to two
after which the model transitions to the target state. In addition to the rulecases SBS allows
for specification of multiple states. In each state it is possible to define different behaviour
when a trigger comes in. In the first rule of Figure 2.2 it is indicated that this state is initial
with the name: NotActivated.

2.2.1 Interface Model

The service interface model is the top of the client, which is the interface model belonging to
the DM of the component. It shows the external behaviour of the client to components higher
in the hierarchy and can be used to communicate with them as can be seen in Figure 2.1.
All possible actions which can be returned to components higher in the hierarchy following a

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

6 / 91



Analytical System Design

request from above are declared within the interface model. This allows for non-determinism,
where a request has multiple possible replies. In Figure 2.3 an example of this is depicted,
where a person triggers ’Call’, this trigger event is depicted in the figure with a dotted line.
Either the person he calls can ’Answer’ or ’Denied’, which are both action events and are
depicted with a solid line.

Figure 2.3: Transitions within an interface model.

In addition to the requests from above, actions that result from notification triggers from
a used service are declared. These are called modelling events and it is declared that they
can be triggered, but not by what, this is done in the design model. They are defined either
optional or inevitable, which implies that they will occur maybe or definitely. However this
is mainly a distinction in the verification process in ASD and has no definite meaning within
the model.

2.2.2 Design Model

The design model describes the internal functioning of the component. Instead of only showing
what is visible to components higher in the hierarchy, it declares what should be shown. Based
on a request from the top, the design model will determine what should be the reply of the
interface model. This is done based on the used services. The design model can communicate
with the used services by sending a request. The interface model of the used service will
receive this request and will respond with an action, which in turn can be determined by the
design model of the used service.
Figure 2.4 is a design model adhering to the interface model given in Figure 2.3. The interface
model did not have a valid base for a choice, where the design model specifies when the call
is answered: when the phone is charged and the person has time to answer.

In addition to the normal sequence of trigger and reply, there can also occur a notification
event in the used service which invokes actions in the component. Notification events are
events which are not initiated by an event from within the component. Notification events
can trigger modelling events in the interface model. These notification events, unlike the
regular events, happen asynchronously. This means they are stored in a queue when such
a notification event is triggered. As soon as the client is able to process the trigger it will
process the notification event. No other triggers will be processed as long as the notification
event is in this queue. Multiple notifications can occur and are stored to a maximum of 7

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

7 / 91



Analytical System Design

Figure 2.4: Transitions within a design model.

per client and are then processed in a first in first out order (FIFO). This number can be
adjusted, but the encountered models used the default value of 7.

2.3 ASD Actions and Semantics

So far all actions used in examples are named actions, which define what should happen.
There are several specific action declarations within ASD which deserve some attention.

• VoidReply: an action which is equal to those who are named, but is defined in every ASD
model. It simply replies with an action called ‘VoidReply’ to notify other components
that a trigger has happened on the component.

• Illegal: defines that the trigger is not allowed to happen here. Only occurs in models
with multiple states, where a certain trigger is allowed to happen in one state, but not
in the other.

• NoOp: abbreviation for No Operation. This implies that a trigger is allowed, but has
no corresponding action.

• Blocked: this design model specific declaration indicates a certain call event will not
happen because it can’t. An example of this can be seen in Figure 2.5, where a call from
the component (Phone Charged) can only be answered with ‘Full’ or ‘Empty’ by the
used component (Phone). The call ‘Time?’ is not sent to the phone yet and therefore
the answers to this call will not and cannot occur. These answers are therefore blocked.

• Disabled: this interface model specific action type defines the modelling events to be
unable to occur in certain states.

Named actions and VoidReplies can be combined into a list on a single rulecase meaning they
are executed in order of specification. The specific action declarations are mutually exclusive:
a trigger can’t have NoOp and Illegal declarations as they contradict each other.

The reason for action declarations Illegal, Blocked and Disabled is the completeness require-
ment of SBS, which specifies that each possible trigger should be mentioned in every state,
even if they are not allowed. Using these declarations this requirement can be met. In addi-
tion to this, if a guard is specified, actions should be specified for both the true evaluation of
the guard and the false evaluation. An example can be seen in Figure 2.5. In addition to the
IM of Figure 2.3, there is a possibility of a conference call within the interface model. However
this is blocked by the design model(Illegal). Due to this requirement ASD components can

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

8 / 91



Analytical System Design

have hundreds of blocked and/or illegal rulecases. An advantage of this is that every possible
action is declared, which makes it easy to see what will occur and what will not.

Figure 2.5: SBS specification of a design model equal to that of Figure 2.4

ASD has also a run-to-completion policy, which states that the triggered rulecase should be
fully executed (actions and state variable updates) before the corresponding state transition
can take place. This also indirectly invokes that other incoming calls are blocked until the
action sequence of the rulecase is completed.

The monitor semantics of ASD mean that a component can only be used by one client at a
time. This means that when another client requests something at the component, it has to
wait until the component has finished the action sequence belonging to the first client. Any
notifications at the component, belonging to the first client can still be triggered while the
second client is served. This is because notification events are asynchronous.

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

9 / 91



Lot Operations, Process Wafer

3. Lot Operations, Process Wafer

Lot Operations, Process Wafer or LOPW is incorporated in the wafer scanners built by ASML.
As described in the introduction these machines are used to perform the lithography step in
the production of microchips. These microchips are printed on silicon wafers. These wafers
arrive at the wafer scanner in a lot, which is a group of wafers. Each wafer in a lot should
undergo the same lithography step. The wafers are already preprocessed and are physically
ready to be illuminated. During this step certain parts of the wafer are exposed to the EUV
light, which gives them different properties compared to non-exposed parts. Due to differences
in material properties the added layer in preprocessing can be selectively etched away.

Figure 3.1: Logistics of wafers within the ASML wafer scanner [3]

Illumination of a wafer is a delicate practice and before the wafer is ready for this procedure
it has to go through certain steps. A lot arrives at the track (TR), which is a wafer providing
system for the wafer scanner. A wafer is then placed on the Wafer Handler (WH) at the
Pre-alignment Unit (PU). Here the wafer is rotated and translated to the right specifications.
When this is done the wafer can enter the Wafer Stage (WS), where it is put on a chuck.
The chuck is a moving table, controlled to ensure right positioning of the wafer in the Wafer
Stage. The chuck with wafer is at the measuring side (CM) when the wafer enters and the
wafer is 3D measured. After this is done the chuck switches places with the other chuck to
go to the exposure side (CE). Here the wafer is illuminated, before the chuck switches back
to CM. Then the wafer is unloaded to the Discharge Unit (DU) and put back on the track by
the track and unload robots. The other chuck is used for the same process simultaneously,
but in antiphase. The described logistics process is depicted in Figure 3.1.

3.1 LOPW scope

Lot Operations, Process Wafer (LOPW) is described in the Element Performance and De-
sign Specification (EPDS) as having the responsibility of ‘streamed processing of lots’ and
the ‘streamed processing of wafers’ belonging to each lot [3]. This means that the controller
allocates the operations of the wafer during the processing stage within the Twinscan ma-
chines. LOPW is part of a bigger control cluster concerning the production, which in total is
responsible for the wafer logistics in the Twinscan as depicted in Figure 3.1.

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

10 / 91



Lot Operations, Process Wafer

The process described in the previous paragraph is a simplification of reality. In reality there
are exceptions in the handling of wafers and dummy wafers are present, to prevent empty
chucks at the exposure side. This is crucial in immersion lithography systems, since the
immersion fluid should remain under the optical system at all times. These features are
controlled by the LOPW as well. Wafers are processed by a first in first out (FIFO) principle.
This means that wafers can not overtake eachother in case something goes wrong at one wafer.
The LOPW makes sure this does not happen.

3.2 LOPW construction

To control a logistics system as described in the previous paragraph a controller is needed.
However due to the complexity of the system, a monolithic controller would be very complex
and incomprehensible. Therefore this controller is split up into separate controllers in an
hierarchical structure as described in Section 2.1. In case of new requirements or changes in
these, it is expected that only a few of these smaller supervisors might have to be changed
in order to satisfy these changes. Software engineers are currently changing the controllers
manually to implement these new requirements. These requirements are generally written
down in LOPW documentation and are more deeply discussed at the end of this section.
Although this hierarchical controller is easier to comprehend than one big controller, it is not
always directly clear which controllers should be adapted if a requirement changes. The way
the requirements are written down is the reason for this. They are not written down per
controller, but per functionality of LOPW.

3.3 Analysis

Before any further research can be done, it is crucial to perform a good analysis of the ‘what
is’ state of LOPW. This chapter will attend to the analysis of the LOPW with regards to
it’s history. This will be done first very generally, but will gradually become more specific
until a component level analysis is reached. During this process intermediate metric selections
have been made to limit the size of the analysis without compromising too much information
loss. Later on in this report another metric selection will be made for analysis of selected
components, which allows for a more detailed inspection.

Historical data of LOPW ranges back to early 2013. Before this LOPW did exist, but the
data belonging to this time frame has not been stored or is too scattered to be useful. Before
a general master branch was introduced in the repository of the LOPW, personal branches
were used. One of these was marked as the most recent, which was then used on the machines.
As these indications are hard to trace back it was decided to focus the view on the master
branch. The data from the branch was recovered in early November 2017, which results in
a dataset ranging from January 2013 to October 2017. The analysis in this chapter is solely
based on models of the master branch which were used in that time period. Since LOPW
is older than this time period a startup period is expected to be seen in the analysis due to
uploading to this branch in the repository.

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

11 / 91



Lot Operations, Process Wafer

3.3.1 General Analysis

The data was recovered using a gitminer supplied with the EMF (Meta) Model Analysis
Tool (EMMA) [16], recovering all revisions for all existing files within the master branch,
placing each revision of a file in a designated folder for that file. If a file was deleted this is
indicated as well with the correct time stamp. Using this information LOPW composition
can be rebuilt for each time instance if required. The actual LOPW has not been rebuilt
for the whole history, but the size of LOPW has been extracted from the data. The size of
LOPW is indicated in the amount of independent models at that time.

Figure 3.2: Size of LOPW in time

In Figure 3.2 this size is graphically shown. From this picture it is clear that LOPW has
grown in size from just under 200 individual models to 630. In this period LOPW has seen
884 individual components, but 254 of them were discontinued. From all these models 45 to
52% is a design model, where the absolute difference is clearly visible in the later parts on the
LOPW time line. In the begin this difference between the amount of interface models and
design models became smaller and at a time there were more design models than interface
models. This is possible since interface models can be defined once, but instantiated multiple
times, with different design models for each instance. During 2014 the total amount of models
was quite stable and the difference between the amount of interface and the amount of design
models was not more than 1 or 2 models, however in 2015 the amount of models increased
again and so did the difference between the amount of interface models and design models.

Not only did the amount of models change, the models themselves have changed as well.
This results in models with a revision amount ranging from 1 to 228 revisions, cumulatively
resulting in a total number of models close to 20.000. These model changes are shown in
Figure 3.3. As can be seen the frequency of changes of design models is much higher than
those of interface models. The design models make up 75% of all revisions. However, as is
discussed later, this is mainly a result of the need of changes in a DM when an IM changes.
Something else which is worth mentioning is that the increase in amount of models as shown
in Figure 3.2 does not add to the amount of changes per time period.

Notice that in Figure 3.2 the increase of models on the first day is very high. This is due to

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

12 / 91



Lot Operations, Process Wafer

Figure 3.3: Changes of LOPW per 4 week period

the fact that LOPW is older than the history of data is available, all changes before this are
put on the first day. Since Figure 3.3 depicts the derivative of the size which is the amount
of revisions per time period. The time period is taken as 4 weeks since this compensates
the variance in upload time of the revisions. The graph displays a large peak at the first
period, which is clarified by the large amount of revisions on the first day. The other peaks
are created by actual changes in models, but no reason for the density of changes could be
found.

3.3.2 Intermediate Metric and Model Selection

As in this research changes between revisions are important, it is cause to use models which
have multiple revisions. Using this as only criterion would lead to an immense amount of
models which should be evaluated and modelled in CIF as can be seen in Figure 3.4. This
is unachievable within the limited time of this research. Therefore certain metrics will be
used to select a group of models which will be used for further evaluation. To get a good
representation of LOPW, the selected models should be representative for most of the models
present in LOPW. The metrics are extracted with EMMA [16].

Figure 3.4: Amount of models with a certain amount of revisions

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

13 / 91



Lot Operations, Process Wafer

To make sure all kind of models are taken into account it is also relevant to have both simple
and complex models. For this the amount of rulecases and the amount of states are taken
into account. As can be seen in Figure 3.5 there is a small correlation between the amount
of states and the amount of rulecases. Even though there is a correlation, the spread is very
wide, which makes it mandatory to evaluate both separately with respect to model selection.
Each model is depicted with a blue dot, darker dots mean that several dots overlap and these
are models with equal rulecases and states. As the differences in values become bigger when
the absolute number increases, the graph is shown on a double logarithmic scale.

Figure 3.5: Average amount of states plotted to the average amount of rulecases.

For this research the amount of change is also important. There are several factors contribut-
ing to this: the amount of revisions, the average time between those revisions, change in
rulecases, change in amount of states and change in the used interface models. As there is no
clear correlation between these metrics, all of these metrics are evaluated separately for all
models to make a decent selection of models which would represent LOPW. To ensure that
there are enough changes within the scope of time, a minimum of 10 revisions is set.

From Figure 3.6 it can be concluded that there is no strong correlation between the amount
of revisions and the average amount of changed rulecases. Which makes it relevant to choose
models with a spread in this spectrum. As the differences in values become bigger when the
absolute number increases, the graph is shown on a double logarithmic scale.

3.3.3 Selected Model Analysis

The model selection was not only done by looking at Figures 3.5 and 3.6. A manual itera-
tive search was also done to identify potential interesting models with regards to the model
requirements, which can be difficult to identify from the general view on LOPW that is used
till now. However it is expected that the requirement changes can be recognized by changes
in the design model if the interface model changes at the same time. Therefore only models
with enough of these instances relative to the amount of revisions are taken into account

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

14 / 91



Lot Operations, Process Wafer

Figure 3.6: Average amount of rulecases plotted to the amount of revisions.

during the iterative search. Exceptions are made for the models used by Loose, which are
taken into account regardless of this aspect. These models were taken into account since there
was already a start for these models and they could be good reference for models with few
requirement changes. There were a few reasons not all of these models were selected:

• No changes in model during entire history.

• Dummy models which are in the LOPW structure, but do not have specific control
decision requirements. Therefore we consider them inappropriate for this research, as
these requirements play a key role.

The other models were interesting enough for this research. However to complete the selection,
more models should be selected to be representative for LOPW. These models are chosen by
looking at the graphs of the states, rulecases and cumulative changes of interface models. If
the first two showed a lot of change or had a trend, while the cumulative change of interface
models was high the model had potential. Then this model was plotted alongside the data
of the LOPW analysis graphs shown in Figures 3.5 and 3.6 (and more) to make sure a wide
enough coverage of LOPW was realized. This resulted in the models depicted in Figure 3.7.

During the evaluation of the components one extra component was added to the selection.
This was done due to a function change of component H. First a single component H was used,
but as LOPW is suitable for all wafer scanners of ASML, the component was split. Component
H became a forwarder to either component H Y or H X, depending on the machinetype.
Due to this change one of these components was added. As can be seen in Figure 3.7 this
component is rather large, which is why this component was not selected in the first place.
This component was used in the research, but due to its size not evolved over the entire
timescope. The reason for this will be discussed in Chapter 6.

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

15 / 91



Lot Operations, Process Wafer

Figure 3.7: Rulecase amount evolution for the selected models.

3.4 Requirements

The ASD components are built with regard to some requirements. Interface models are used
to model the possible behaviour, where the Design models implement the requirements to
enforce the correct behaviour. The requirements are written down in the EPDS [3] per feature
of LOPW. Each feature has several requirements, which can be implemented in different
subcomponents of LOPW. This makes the traceability of the requirements written down
in the EPDS very difficult. Some models are not mentioned in the EPDS, which makes
traceability impossible. In addition to this the document is not updated simultaneously with
the models, which makes it impossible to link the requirements in the documentation to a
certain LOPW revision. The only method left to obtain the requirements is to extract them
from the ASD design models. This is a difficult and risky method, since some requirements
might be only implementation choices and not actual component requirements. However since
this was the only method left this methodology has been chosen.

3.4.1 Requirement Classification

To make a distinction between different kind of requirements a classification is made of them.
Requirements can be categorized on aspects like the source of a requirement [15], the func-
tionality [21] or the construction. Where functionality sorts the requirements based on the
function of the requirement, e.g. a requirement which states that the response time should be
smaller than 1 second. The construction categorization divides the requirements in segments
based on the influence on the coding, e.g. a requirement is written for flexibility so the code
can be used in multiple machines. As the requirements are all extracted from the design
model, the source is untraceable further than that. The requirements that are extracted
should all be functional requirements, as the domain specific requirements do not define how
the component should work. These domain specific requirements implemented in the model
which are necessary to comply with the syntax of the language.

The extracted requirements from the design model are formal functional requirements, which
can be further categorized. During analysis of the components the following requirement
categories were encountered:

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

16 / 91



Lot Operations, Process Wafer

1. Sequence Requirements:
These are the most common requirements within the components. They are set up in
a way shown in Equation 3.1. From the design model it might be that an event A can
initiate multiple events. There can also be state variable conditions attached. Event B
should directly succeed event A. In case multiple events are required after A, these are
executed directly in arbitrary order after A.

When A occurs, do B (and C) (3.1)

2. Information Request Requirements:
Some events require specific data which is not given to the component through incoming
events. Therefore an extra event must take place before a certain action can take place.
In Equation 3.2 such an occurrence is given. The component does get information on
attribute X, but not on Z. Before action B can take place an action A should happen,
which gathers the required data.

Before B(Z) can occur, A(X,Z) must occur (3.2)

3. Condition Requirements
Condition requirements are sequence requirements which are based on a decision as can
be seen in Equation 3.3. An action True does not necessarily mean to do X. Neither
does A mean to do X, because when the response to A is false this might not be the
case. These are different from Equation 3.1, as there can be more action sequences
which reply with True. The sequence A-True should be executed before X is executed.

When action A is followed by a response True do X (3.3)

4. Data Requirements
Data requirements are condition requirements with memory. Based on a certain activity
history the current action is determined. An example of this is is given in Equation 3.4.
X should only be executed when B was executed last of A and B. If X is filling gas tank
of a car, this should only be done if you took the car (B) and not when you took the
bike to work(A).

Do X when B was executed last from [A,B] (3.4)

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

17 / 91



Supervisory Control Theory and Application

4. Supervisory Control Theory and Application

This chapter will elaborate on Supervisory Control Theory. First a brief introductory of su-
pervisor synthesis is given in Section 4.1, after which the supporting language CIF is explained
and how to generate supervisors in Section 4.2. In Section 4.3 the transformation from SBS
to CIF is explained, followed by the the application of this method to LOPW in Section 4.4.

4.1 General

Supervisory Control Theory [19] is a method to create controllers for (hybrid) discrete event
models. Formal discrete event models specifying the uncontrolled system are called plants
and can be combined with formal discrete event requirements to generate a supervisor. These
plants form the uncontrolled system and are themselves composed of states and transitions
between those states. The state transitions are either controlled or uncontrolled, which is
important to the synthesis. An uncontrolled event can’t be disabled by the supervisor, an
example could be an user input. The controlled events are enabled or disabled by the super-
visor.

In addition to the plant automata there should be requirement automata specified. These
formalized requirements specify which behaviour the system should show. Synthesis will form
a supervisor which ensures the system will behave according to the specified requirements.
The requirements can specify that certain events should only be executed in a certain order.
The supervisor will disable the events unless the events prior to them in the sequence have
occurred.

Marked states are another important attribute for supervisor synthesis. From any state there
should always be a marked state reachable to prevent livelock and deadlocks. If this is not
possible the current state is a blocked state, which will then be blocked by the supervisor.
Note that deadlock is still possible in marked states. Every automaton needs at least one
marked state. Since a supervisor can control multiple plant automata, the whole system
should always be able to reach a global marked state. This global marked state is when all
automata are in a marked state.

The result of synthesis is a safe supervisor which makes sure the plant behaves according to
the requirements. In addition to this it ensures that a marked state can always be reached
(non-blocking) and that the system is maximally permissive. Maximally permissiveness means
that only events are disabled to ensure controllability, behaviour according to the requirements
and non blocking behaviour, all other events are allowed. All this is done while keeping the
controlled system controllable, which means that all uncontrollable events are not disabled.

Supervisory control theory to synthesize a supervisory needs a language and tool to apply it
to practical cases. The next section describes this language and the toolset used.

4.2 CIF

The Compositional Interchange Format (CIF) [2] is a modelling language which allows for
supervisor synthesis as described in the previous section. This technology has been devel-
oped at the University of Technology in Eindhoven at the Systems Engineering group of the

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

18 / 91



Supervisory Control Theory and Application

Mechanical Engineering Department. CIF has many possibilities, like conversions to verifi-
cation languages [6] and visualisations. This has been used in previous research, for instance
in [13]. The research in this thesis will continue the research into the application of CIF in
combination with supervisor synthesis.

In this research CIF is used to synthesize controllers based on the ASD models of LOPW. How
this is done is described in the following sections, but it is important to note that ASD uses a
hierarchical modelling structure. CIF has a one level structure, which means that there is no
such thing as hierarchy. This hierarchy should be manually implemented. Previous research
on these topics is done [13] [14] [20] , which describes this in more detail. Here only the most
important parts and differences are elaborated.

Supervisory control, as described in the previous section, can be done in CIF by modelling
plants and requirements. A plant can be modelled with locations and controllable and un-
controllable events. A simple button is modelled in Listing 4.1.

1 plant button:

2 uncontrollable u_pushed , u_released;

3 location Released:initial; marked;

4 edge u_pushed goto Pushed;

5
6 location Pushed:

7 edge u_released goto Released;

8 end

Code Listing 4.1: Plant model of a button

This plant models the behaviour of a button, which can not be controlled by the supervisor.
It can switch from being Pushed to Released with a transition ‘u released’. A controlled plant
can be a lamp, which can be turned on or off by the supervisor as depicted in Listing 4.2.
With the transitions ‘c on’ and ‘c off’ the lamp can switch from the Off to the On position
and vice versa.

1 plant lamp:

2 controllable c_on , c_off;

3 location Off:initial; marked;

4 edge c_on goto On;

5
6 location On:

7 edge c_off goto Off;

8 end

Code Listing 4.2: Plant model of a lamp

These plants can be linked. Due to synchronizing of events this can be done by a requirement
which is depicted in Listing 4.3. It uses the same events as declared in the lamp plant.
Therefore they will occur simultaneously. This requirement ensures that the event ‘lamp.c on’
can only take place when the button is pushed. Equally it can only turn off when the button
is not pushed any longer.

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

19 / 91



Supervisory Control Theory and Application

1 requirement A:

2 location: marked;initial;

3 edge lamp.c_on when button.Pushed;

4 edge lamp.c_off when button.Released;

5 end

Code Listing 4.3: Requirements for button and lamp

This is a simple example which will behave correctly. However to ensure a safe, non-blocking
and maximally permissive controller synthesis should be applied. Synthesis restricts the plant
behaviour in such way that the requirements are met and the controller is safe, non-blocking
and maximally permissive [17].

4.3 SBS to CIF transformation

This section will elaborate on the transformation from the ASD models to CIF. The main
method is derived from the work of Loose [13], which used the method on LOPW components
as well. Other research has been done to apply this method on other systems [23] [7]. This
chapter will briefly describe the method used and point out any differences in the methodology.

In ASD the interface models show all possible behaviours, which conforms with the definition
of the uncontrolled system within the supervisory control theory. Therefore the IMs are
transformed into plants, which then can be used for synthesis. The design model is the
equivalent of the supervisor, because both tell which behaviour is allowed on the uncontrolled
system. In Figure 4.1 a visualization of this process is given. Note that plants 2 and 3 are
linked to another supervisor, which needs to be synthesized when looking at that specific
component.

Figure 4.1: Simplified view of an ASD component and it’s SCT equivalent.

To translate the semantics of the rulecases in CIF, pseudo states have to be introduced. CIF
does not allow multiple events to take place at one single event, where ASD uses rulecases

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

20 / 91



Supervisory Control Theory and Application

to execute multiple events in sequence. To convert this in CIF intermediate pseudo states
are introduced to allow multiple events to take place before the actual state transition takes
place. An transformation of the rulecase given in Figure 2.2 is shown in Figure 4.2 with a
transition diagram. Note that the guard only needs to be on the first transition, as the whole
rulecase should be executed in one go, which is also ensured with this conversion method.

Figure 4.2: A transition diagram of a rulecase in ASD and its transformation into CIF.

The controllability of the events and actions depend on the interface. When evaluating
the service interface (IM 1 in Figure 4.1) the events are uncontrolled, as they are triggered
by events outside the component. The replies that interfaces give are controlled. The used
interface models (IM 2 and IM 3 in Figure 4.1) have this the other way around, as the triggers
are controlled, but the replies are defined by the control sequences outside the component.

Besides normal synchronized events and actions, ASD can have notification events, which are
processed asynchronously. These events in used services might trigger a response in other
plants, but they do not have to occur immediately. CIF does not support such an event,
which is why for each notification event in a used interface a queue should be introduced as
shown in Figure 4.3. This queue allows a notification event to occur, but delays the required
response. Note that this is not exactly how ASD handles these queues as the events are not
handled FIFO and the queue size is limited to one. This issue is more extensively elaborated
in Chapter 6. When there are any notification events in a queue, all incoming client calls
are blocked, since the notification event should be handled first. However the client calls are
uncontrolled, which means they can’t be blocked by the supervisor.

Figure 4.3: A transition diagram of a queue automaton for a single notification event.

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

21 / 91



Supervisory Control Theory and Application

To solve this the incoming requests at the client (Plant 1) should be made controllable.
Another reason to do this are the monitor semantics and run to completion semantics. These
say that if a trigger happens with action on an used service, the whole rulecase should be
executed in one go. However the monitor semantics say that an used component can only be
used by one client at the same time. Therefore, when a used service is busy, the request has to
be blocked, since the rulecase can’t be fully executed due to the occupation of the used service.
This is not a result of the model itself, but the monitor semantics of models within ASD. This
results in the controllability of events as depicted in Figure 4.4, where uncontrollable events
are depicted with a dashed line and controllable events with a continuous line.

Figure 4.4: All modelled components in CIF

Besides controlled and uncontrolled events to define behaviour in CIF, there are the marked
states which influence the synthesis procedure. This can be used in combination with re-
quirements to ensure the run to completion, but also to make sure the notification events
are handled before any more requests come in. This is done by marking every normal state
within the plants, but not the pseudo state. A same thing is done for the queues, where the
empty state is marked, but the full state is not. This will result in the desired behaviour.

Within the ASD interface models, events and actions can send and receive data. This data is
then transferred from a trigger event to an action in the DM, where both trigger and action
can origin from a different IM. This data is not changed, just transferred from one interface
model to another in the design model. This can be modelled in CIF, but does not have any
influence on the supervisor synthesis, since decisions and transitions are not based on this
data. This is the reason it was not included in models in earlier research [13]. In this research
however, ASD and CIF will be compared. To reduce the amount of differences between the
two modelling languages, the data transmission is included in this research.

To this end a data storage unit is created. This data storage plant will update its value when
data should be transferred. To receive data a single plant with an uncontrollable event is
introduced which generates random data in a predefined range. This can be seen in Figure
4.5. Where these are implemented in the component is visualized in Figure 4.4. Each time
data should be transferred, the data storage value is updated to the data external data value.
The events which should send data are therefore all mentioned within the data plant (Send
event in Figure 4.5). Since it is out of scope how the interaction between the CIF and ASD
components would be during implementation, this is a simplification. However it allows for

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

22 / 91



Supervisory Control Theory and Application

Figure 4.5: A transition diagram of a data transmission.

the data to be read by outside components as well as being updated, for instance when event
Receive in Plant 2 takes place. As synthesis does not allow arbitrary data types, a simplified
ranged integer is chosen to be representative for the data to be transferred. If the data would
be more extensive in the actual system, the data type can be changed after synthesis in the
plants. The supervisor will still be valid, but the data type within the plants is upgraded.

Special actions of ASD might be integrated in the plant models. NoOp can and should be
integrated, which is simply a single event in CIF without pseudo states. Blocked events only
occur in design models, so should not be included. Illegal and disabled events can also be left
out, since they are there to adhere to the completeness requirement of the SBS syntax. CIF
blocks events automatically in these cases, which makes it unnecessary to include them.

4.4 Application to LOPW

The SBS specification is used to transform all interface models into CIF plant models. In ad-
dition requirements should be added. In Section 3.4 it is stated where the requirements come
from and were categorized, these are transformed into usable requirements. Each category
has a different kind of requirement coding, which is depicted below.

1. Sequence Requirements:
A simple requirement automaton with two states is introduced. As the action sequence
should be fully executed before anything else can happen according to the ASD plant
behaviour, only the initial state should be marked as can be seen in Listing 4.4.

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

23 / 91



Supervisory Control Theory and Application

1 requirement Forward_Event_A:

2 location idle: initial;marked;

3 edge Main1.Trigger goto Fwd; // When A occurs (Equation 3.1)

4 edge Plant2.Trigger goto Fwd;// When C occurs (when combined)

5 location Fwd:

6 edge Plant1.Action goto idle;// Do B (Equation 3.1)

7 end

Code Listing 4.4: Example of a sequence requirement

This is the most simple requirement to ensure action sequences. When multiple triggers
lead to the same event this can not be modelled in two separate sequence requirements.
This would require both triggers to occur before the event can be executed. Therefore
these requirements need to be combined, which leads to the addition of line 4 in Code
Listing 4.4.

2. Information Request Requirements:
This requirement is modelled in a same manner as the sequence requirements. How-
ever multiple events can have the requirement that an action should take place before
that event, which is visible in Listing 4.5. For the same reasons as for the sequence
requirements, requirements which require the same action to be executed first should
be combined.

1 requirement Info_Request_A:

2 location idle: initial;marked;

3 edge Plant1.Action goto Fwd;// A must occur(Equation 3.2)

4 location Fwd:

5 edge Plant2.Action goto idle;// Before B can (Equation 3.2)

6 edge Plant2.Action2 goto idle;// Before C can (combined)

7 end

Code Listing 4.5: Example of an information request requirement

3. Condition Requirements:
These requirements are accompanied with a monitor. This monitor will keep track of
events, but does not block them. First a requirement of the sequence type will make
sure ‘Plant1.Action1’ is triggered. This is monitored as can be seen in Listing 4.6. Now
there is a ‘memory’ of which action has been taken. As there might be more events with
an equal response, it is necessary to remember to which event the reply belongs. Then
there is a reply, which in the case of being ‘True’ should invoke line 17, but only if the
reply is indeed a reply on the right event, which in this case is ‘Plant1.Action1’. This
is done by only transitioning to ‘Fwd’ in requirement ‘Result OK’ when the monitor
indeed indicates that the reply is the reply on the right action.

1 plant Plant1Monitor:

2 monitor;

3 location idle:initial;marked;

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

24 / 91



Supervisory Control Theory and Application

4 edge Plant1.Action1 goto A1;

5 // When action A (Equation 3.3)

6 // occurs remain in A1 until response is given

7 location A1:marked;

8 edge Plant1.TRUE ,Plant1.FALSE goto idle;

9 end

10
11 requirement Result_OK:

12 monitor Plant1.TRUE;

13 location idle:initial;marked;

14 edge Plant1.TRUE when Plant1Monitor.A1 goto Fwd;

15 // if True is the response on A (Equation 3.3)

16 location Fwd:

17 edge Plant2.dosomething goto idle;

18 // Do X (Equation 3.3)

19 end

Code Listing 4.6: Example of a condition requirement

4. Data Requirements:
Data requirements are also in need of a monitor. This monitor will change location
when one of the events required in memory occurs. Based on the state of the monitor
a certain sequence of events may take place. The extra Event3 instance on line 15 in
Listing 4.7 is there to ensure that the action is not blocked when this event is triggered
when Event1 is not in the memory. This is necessary when Event3 is triggering other
events in all cases.

1 plant Event1Event2Monitor:

2 monitor;

3 location Event1:initial;marked;

4 //When B was executed last from [A,B] (Equation 3.4)

5 edge Plant1.Event2 goto Event2; // Event A

6 location Event2:marked;

7 //When A was executed last form [A,B] (Equation 3.4)

8 edge Plant1.Event1 goto Event2; // Event B

9 end

10
11 requirement X:

12 location idle:initial;marked;

13 edge Plant1.Event3 when Event1Event2Monitor.Event1 goto Fwd;

14 //Do X when B was executed last from [A,B] (Equation 3.4)

15 edge Plant1.Event3 when not Event1Event2Monitor.Event1;

16 // Allow B to occur , but don ’t do X (Equation 3.4)

17 location Fwd:

18 edge Plant2.dosomething goto idle; // Event X (Equation 3.4)

19 end

Code Listing 4.7: Example of a data requirement

In addition to this a mandatory requirement is needed to make sure the plants are behaving
according to the ASD semantics. Since we assume to have the ASD interface models as a

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

25 / 91



Supervisory Control Theory and Application

starting ground this is necessary. The client plant is the CIF equivalent of the client IM in
ASD and the used plants are the equivalents of the used interfaces in ASD. The requirement
for each component is that the trigger events in the client plant should only be allowed when
all used plants are idle, which is done with a requirement invariant like shown in Listing 4.8.
Here is the client portrayed by plant Main and the used plants are Plant1 and Plant2.

1 requirement {Main.Trigger1 ,

2 Main.Trigger2} needs Plant1.Idle and Plant2.Idle;

Code Listing 4.8: Example of a semantic invariant requirement

If an event can be triggered in multiple states of the plant model and has different action
sequence requirements in each state, the activity should be mentioned like requirement X
in Listing 4.7. Another option is to monitor the activity, so it will not be blocked in this
requirement. This is possible for events which are in the client plant, however notification
events are not explicitly mentioned there, so this would be wrong. To solve this problem an
extra requirement invariant is introduced like the one above for all notification events, which
are only allowed to be handled if the client plant (Plant 1 in Figure 4.1) is in a marked state.
This means the queues can only be emptied when the client plant is in a marked state as can
be seen in Listing 4.9.

1 requirement {Queue1.Trigger ,Queue2.Trigger}

2 needs Main.MarkedState1 or Main.MarkedState2;

Code Listing 4.9: Example of a notification invariant requirement

After the plants are modelled correctly and the requirements are according to specification,
supervisor synthesis can be applied using data based synthesis. The result is a supervisor
which ensures the right behaviour of the uncontrolled plants. When required, the data which
should be transferred can be changed as described earlier.

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

26 / 91



Metrics

5. Metrics

Metrics can be used to quantify ASD and CIF models. However there are a lot of software
metrics available in the ICT scene, this research focusses on state machine models and there-
fore metrics specific for models are used. The chosen metrics are relevant to the research
questions and both applicable to ASD models and CIF models. First the metric selection is
described, how they are applied to ASD and it is stated why these metrics are used. Several
metrics for ASD are extracted with EMMA [16] from the models and then used for com-
putation of more complex metrics. JAVA scripts are used to use EMMA and can be found
in Appendix A. The second part of this chapter will specify how each metric can be com-
puted for CIF. For CIF a Python script is used to extract the metrics, which can be found in
Appendix B.

5.1 Metric Selection

The reason to use metrics is to get quantifiable data to compare two different controller
development methodologies. Preferably metrics to quantify development are used [5]:

• Shortfall: Measurement of how much the software does not meet requirements at a
certain time;

• Lateness: Determines the duration of time between a new requirement and implemen-
tation;

• Adaptability: Rate of adaptation to new requirements;

• Inappropriateness: Is the total amount of time combined with the amount of shortfall.

However due to the lack of data regarding time and the immense time consumption a practical
experiment would take, these metrics shall not be used to compare the two methodologies at
stake. Instead metrics to compare the resulting models from both methodologies are used.

There are a lot of metrics to quantify software. Earlier research [8] has used a set of metrics
to quantify the size and quantity of the ASD models. These are used for ASD and adjusted
for CIF. In addition to these metrics one of the most commonly used metrics for software is
used, which are function points [11]. With this set of metrics the models can be evaluated
with regards to size and complexity.

Metric categories which are excluded are related to errors and failures, since the data is not
available and impossible to obtain within this research. Only estimations of errors can be
made. For the same reason the methodologies metrics are not used, the time related metrics
are not used here as well, except estimations.

The metrics are divided in 4 different groups. The first one contains the Counting metrics,
the second one are the General Model metrics and the third are the Halstead metrics. The
Change metrics make the list of groups complete. These groups and their metrics will all be
explained one by one in the coming subsections.

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

27 / 91



Metrics

5.2 Counting Metrics

The first group contains 8 metrics, which describe amounts of occurrences of certain model
attributes. These are easily determined by counting the amount of occurrences in a model.
Table 5.1 shows these metrics with a short explanation.

Table 5.1: Attribute occurrence metrics

Metric ASD CIF

States The amount of states The amount of locations

Actions The amount of actions The amount of controllable events

Rulecases
The amount of rulecases,
excluding blocked, illegal
and NoOp actions

The amount of edges

Events The amount of trigger events The amount of uncontrollable events

State variables
as guard

The amount of variables
which are used in a guard

The amount of variables
which are used in a guard

Data variables in
events and actions

The amount of data variables
used in events and actions

The amount of data variables
which are updated

Operators on
state variables

The amount of operators
used on state variables

The amount of operators
used on state variables

Operators on
data variables

The amount of data storage
and call operators

The amount of data assignments

The states, actions, rulecases and events are already explained in Chapter 2. The state
variables in a guard metric is the amount of state variables which is actually used in a guard.
State variables which are not used as guard will not be counted. A similar thing is happening
with the data variables in events and actions metric, which only counts the data variables
which are sent or received in at least one action or event. The operators are the additions
which can be used in combination with the previous metrics. An example for state variables
is an equal sign and for data variables a save operator. As a result the operators on state
variables metric must be zero when the state variables as guard metric is zero. The data
variables metrics have an equal relation.

5.3 General Model Metrics

In addition to the first eight metrics, which were only counting attributes, there are several
metrics which give a better insight in the size and complexity. Table 5.2 is filled with these
metrics.

Table 5.2: General Complexity metrics

Metric

LOC Lines of Code

CC Cyclomatic Complexity

ACC Actual Cyclomatic Complexity

Function Points Function Points

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

28 / 91



Metrics

The lines of code (LOC) is a standard metric for software [11]. The LOC is simply the amount
of lines the code has. It is generally counted in either physical or a logical way. The physical
way is the easiest and simply counts all the lines visible on the screen, which includes non
functional pieces of text within the code. How the logical LOC (also called source lines of
code or source instructions) is counted is dependant on the syntax of the code, but always
only counts executable code. For ASD this is the summation of the Actions and Rulecases
metric. One might say that only the rulecases are the lines of code, however one rulecase can
have multiple actions, which can be read as lines.

The Cyclomatic Complexity (CC) [8] is a metric which gives a number to the amount of
linearly independent paths in a code, when this code is transformed into a directed flow
graph. These are the paths which are different from each other and are not constructed from
other paths. The CC can be calculated by Equation 5.1, where E is the amount of transitions
and N is the amount of states.

CC = E −N + 1 (5.1)

In addition to this the Actual Cyclomatic Complexity (ACC) [8] can be computed. This
merges all transitions which have the same origin and target state into one. These are then
called unique transitions. The equation to compute the ACC is very similar to Equation 5.1,
the only difference is that E is replaced by EU , as denoted in Equation 5.2. This variable
denotes the amount of unique transitions.

ACC = EU −N + 1 (5.2)

Function Points (FP) are another way of measuring the size of a piece of code. A function
is a piece of code that will perform a certain task [11]. To obtain the FP the first step is to
apply Equation 5.3 to obtain the function counts. As there are 5 different types of functions
and 3 types of weighing per type according to Kan [11] a double sum is done. The parameters
summed are the amounts of functions per type multiplied by their weighing.

FC =
5∑

i=1

3∑
j=1

wij · xij (5.3)

The second step requires assessment of 14 system characteristics on their influence on the
program in a range 0 to 5. Using Equation 5.4 [11] the FP can be calculated, where the
value adjustment factor (VAF) is denoted between the brackets and is comprised from the
summation of all characteristic assessments.

FP = FC ·
(

0.65 + 0.01 ·
14∑
i=1

ci

)
(5.4)

However the ASD suite has a built in function to express the size of a model in function
points. It calculates the function points with a single weight factor per function. In addition
to this the VAF is equal to one [24]. This results in Equation 5.5. Where xi are the different

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

29 / 91



Metrics

functions. The weight factors are specified as wi. Table 5.3 shows which functions and weight
factors are used for ASD.

FP =

5∑
i=1

wi · xi (5.5)

Since this function point metric is already built in and therefore equally used for all ASD
applications, this metric is chosen.

5.4 Halstead Metrics

The Halstead metrics [9] quantify the effort it takes to comprehend, service and develop
a program, based on the counting of operators and operands. The operands are assumed
to be the state variables used as guards, states of the model and data variables in actions
and events. The Operators are assumed to be the events, state variables operators and
data variables operators [8]. It allows for quantifying complexity for any software language,
which makes it very suitable for this research. The base of the metrics are the unique and
total number of both operators (n1, N1) and operands (n2, N2) and combinations of these
(n1 + n2 = n,N1 + N2 = N). Using these five main metrics can be defined:

1. Volume

V = N · log(2n) (5.6)

The Halstead metric of volume is based on the amount of mental comparisons a software
engineer should make when writing a software package of length N.

2. Difficulty

D =
n1

2
· N2

n2
(5.7)

Halstead assumes that adding new operators, but reusing the existing operands, will
make the program more difficult to understand. Therefore a higher value for D means
that a program is more difficult. The unique operators divided by two multiplied by
the average amount of occurrences of each operand will give the difficulty.

3. Effort

E = D · V (5.8)

The effort quantifies the mental effort of the developer which is necessary to develop
or comprehend the program. For all mental comparisons (Equation 5.6) the developer
should make several elementary comparisons (Equation 5.7). Multiplying these will give
the required effort.

4. Time required to understand the model

T =
E

18
(5.9)

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

30 / 91



Metrics

Halstead empirically determined that the amount of elementary mental comparisons of
an human is around 18. Combined with the required effort this would lead to the total
time required to understand the model.

5. Expected number of Bugs

B =
V

3000
(5.10)

Halstead empirically determined an estimation for the amount of bugs in the code in
relation to the volume. Based on this research the estimated amount of bugs is a fraction
of the volume.

Using the Halstead metric Volume, the LOC and CC, a maintainability index can be quantified
as used in [8]. Equation 5.11 gives the maintainability index. This index indicates how well
maintainable the model is. For good models the value should be at least 65, but preferably
above 85.

MI = 171 − 5.2 · ln(V ) − 0.23 · CC − 16.2 · ln(LOC) (5.11)

Microsoft has implemented an adjusted version in Microsoft Studio, which returns a main-
tainability index between 0 and 100. If this MI is used, the index for a good model is above
20. The function to obtain this index is similar to Equation 5.11 and is depicted in Equa-
tion 5.12. Where the cyclomatic complexity is replaced by the actual cyclomatic complexity.
Other than this adjustment it is only scaled to be between 0 and 100.

MI = MAX(0, (171 − 5.2 · ln(V ) − 0.23 ·ACC − 16.2 · ln(LOC)) ∗ 100/171) (5.12)

5.5 Change Metrics

Besides metrics which quantify a certain model, it is mandatory for this research to have some
metrics which identify changes between two revisions. Many metrics can just be computed per
revision and then compared, e.g. two different FP values. However this indicates a change,
it does not indicate how much has changed. Two completely different models might actually
have the same FP value. To overcome this problem the changed source instructions (CSI)
are used [11]. These are the new lines and changed lines of code. In combination with the
deleted lines of code and the amount of LOC of the previous revision the new amount of
LOC or shipped source instructions (SSI) according to Equation 5.13 [10]. With d indicating
the deleted amount of code and cc the changed amount of code, which will ensure it is not
counted double, since it is also incorporated in the CSI.

SSInew = SSIold + CSI − d− cc (5.13)

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

31 / 91



Metrics

5.6 Metrics application to CIF

To be able to compare the CIF models to the ASD models, it is convenient to have the same
metrics used for both languages. The general functioning of the metrics is explained in the
previous subsections. This subsection will elaborate on the application of these metrics to
the CIF syntax and the differences with respect to ASD. Note that the metrics are defined
to facilitate the comparison with the ASD metrics.

5.6.1 Counting Metrics

The counting metrics are equally applied within the CIF syntax. However some other things
have to be counted to be compatible with the metrics, since CIF does not have some attributes
which ASD has. The states is not one of them, since they can be counted in both languages.
The actions however do not exist in CIF, in CIF there are only events, but there is a distinction
between controllable and uncontrollable events. Since the actions only occur when an event
happens in ASD, it can be seen as controllable. Therefore the controllable events will be
counted instead of the actions. The trigger events will then be counted as the uncontrollable
events. Since the modelling of actions and events is not directly copied to CIF in terms of
(un-)controllable events as described in Section 4.3, there are differences expected here.

In ASD the rulecases are counted, but CIF does not have such an attribute. The closest
related attribute in CIF is an edge. Therefore instead of rulecases edges are counted. The
other counting metrics are not changed relative to the ASD metrics, except the data variables
in events and actions. CIF can not send data along events when using synthesis, but it does
allow for data variable updates on edges. This is counted as a data variable in an event. As
this is simplified in our modelling into a separate plant model, only this one has data variables
and the comparison will be very skewed.

5.6.2 General Model Metrics

The general model metrics of the cyclomatic complexity are exactly the same as in ASD,
since they are not based on syntax level, but on model level. The LOC however is syntax
dependent. For ASD we had the amount of rulecases and the amount of actions. In CIF we
count the amount of edges, since they are defining the amount of executable code. Although
CIF has many more lines to define locations, events and variables, these are not counted
since this is done differently in ASD. ASD does not need lines of code to do this, since the
modelling environment allows for placement elsewhere. In contrast with the ASD:suite, the
CIF modelling environment does not have a built in function to calculate the function points.
To match this with the ASD function points the same definition of the function points is used,
while replacing the entries for this function with CIF equivalents. Table 5.3 shows the ASD
and CIF input for Equation 5.5.

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

32 / 91



Metrics

Table 5.3: Entries for Funtion Point Equation

wi xi (ASD) xi (CIF)

14 Trigger Events Uncontrolled Events

2 Guard Expressions Guard Expressions

5 Rule Cases Edges

1 State Variable Updates State Variable Updates

1 Action Events Controlled Events

All other metrics are based on these metrics. To obtain the other metric values the same
formulas and methods as described the previous paragraphs should be used, but using the
replacements for CIF as described in this section. The change metrics are equally applied to
CIF as they are applied to ASD.

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

33 / 91



Methodologies Comparison

6. Methodologies Comparison

According to the modelling method as described in Section 4 the components selected in Sec-
tion 3 were modelled and a supervisor was synthesized. This chapter will cover the analysis of
the findings during the modelling and the metric analysis. During these analyses both ASD
and CIF will be taken into account. First the metrics are analysed to get quantifiable compar-
ison results. After this a generic analysis is done for things which could not be captured within
the metrics. The chapter will also explain about the restrictions of the synthesis algorithm
and the pollution of the ASD models. Using the conclusions from all of the analysis parts, a
final conclusion can be drawn with regards to both controller development methodologies.

6.1 Modelling Metric Analysis

A lot of quantifiable indicators were defined in Chapter 5. For all revisions and models that
were selected in Chapter 3 these metrics were computed and evaluated for both the ASD
and CIF specifications. As there are 217 component revisions analysed this has generated a
huge amount of data, which is too much to attach to this thesis. Instead of attaching these,
the analysis of this data is covered in this section. Some samples from the data is given to
visualize the data. Appendix C shows the changes per revision and Appendix D shows the
combined component metric values per revision. As the ASD and CIF languages are different,
so are the metric values. Therefore first an analysis is done on the metrics to see what major
absolute differences there are between both approaches and why. When this is done a closer
look is taken at the relative differences between revisions to determine which approach takes
less effort when implementing a change.

Due to its size, component H X became too big to synthesize a supervisor. Therefore only a
small piece of the model development history was created in CIF. As discussed earlier there
are a lot of revisions in the early stages of the available model history. Without the rest of
the time line in CIF, this would give a skewed image of the difference over the whole period.
Therefore component H X was not taken into account during the evaluation of the metrics.
The other components were modelled and analysed, resulting in more automata than in ASD.
This can be seen in Table 6.1.

Table 6.1: Amount of automata per component

Component ASD CIF
DM IM Plants Requirements

A 1 4 16 13

B 1 4 5 7

C 1 5 8 11

D 1 3 27 21

E 1 3 16 28

F 1 12 26 40

G 1 3 5 11

H 1 4 6 14

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

34 / 91



Methodologies Comparison

6.1.1 Absolute Difference Analysis

Due to the differences in languages some functionalities are modelled in a different way, which
in turn results in different metric values. One of these is the data variables metric. As in
CIF this is modelled in a separate plant, only there data exists. In ASD every instance of an
event which transfers data has this data variable, which increases the total amount of data
variable operators. Since data is simplified within CIF, this metric will not play a major role
in the analysis.

Some metrics which do play a major role in the analysis are the amount of states, events and
actions. In ASD a single trigger event can have multiple actions. This is an event sequence,
which is modelled differently in CIF. CIF uses pseudo-states to model the same behaviour.
These pseudo-states have a huge impact on several metrics. First of all the amount of states
rises. Depending on the amount of different action sequences this can lead to many more
states within a plant. While the amount of states increases, the amount of events or actions
might decrease. Every trigger event with the same action sequence follows the same path. In
CIF this means that the state changes of the plant are equal. However in each state the event
is declared only once. In ASD this is different as each trigger declares the action sequence.
The difference can be clearly seen in Figure 6.1. The amount of unique event and actions
remains the same, however the absolute amount of actions is reduced by two in this example.
In return the amount of states is increased by two.

Figure 6.1: Example of different modelling resulting in different metric results

Due to the lack of Blocked, Illegal and NoOp actions in CIF, these are all zero in contrast
with the ASD metrics. However the amount of events and actions are translated to the
amount of uncontrolled and controlled events in CIF for the metrics, it is not completely a
one to one translation. This is due to the hierarchical implementation in CIF. Due to this the
events in used IMs are the controlled events and the actions are uncontrolled. In the client
IM the events and actions are both controlled. For the sum of both this does not have an
influence, but this will result in fewer function points. This is due to the higher weight factor
of uncontrolled events. However this difference is present, the metrics can still be used to
compare relative changes between revisions, which is done in the next section.

The CC for ASD models is close to that of the CIF models. However the ACC is higher for
interface models in CIF, since the amount of states is higher. However the complexity in the
requirements is low, whereas the complexity in a DM is high. This is due to the modularity
of the requirements which makes each individual requirement quite simple. A DM combines
this which makes the complexity much higher. Due to this split nature each component is not

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

35 / 91



Methodologies Comparison

only less complex according to the CC and ACC, but also less difficult and takes less effort
to comprehend according to the Halstead metrics.

Note that there are models added to CIF which are not in the ASD counterparts, like queue
and data storage automata. This is necessary to get an equal functionality, but also influences
the results. The other way around is also possible, since within ASD an extra interface
model is sometimes used to create flow structures. One might argue that these models are
not a critical part of the component and therefore should not be taken into account when
evaluating the metrics. However both influence the results, so both are necessary to meet
the requirements. Therefore these models are taken into account. This leads for component
D to a higher volume and FP value as can be seen in Table 6.2. This component uses close
to twenty queue automata and uses a combined requirement to ensure the right behaviour of
notification events and their required actions. The combined requirement is a necessity, since
keeping the requirements modular became too big to synthesize a supervisor.

This all results in a higher maintainability index for the CIF requirements as can be seen
in Table 6.2. It must be taken into account that there are more requirements and there is
only one DM. Summing up the effort of all requirements does not even come close to the
effort which it would take to comprehend one DM, which makes CIF still better in this view.
Even though the requirements better maintainable than the DM, the interfaces are not much
improved when modelling these in CIF.

Table 6.2: Average values of key metrics for all components.

Comp Revisions States LOC Function Points Volume MI
ASD CIF ASD CIF ASD CIF ASD CIF ASD CIF ASD CIF

A 68 29 11.3 52.0 785.0 268.0 4394.0 2480.2 2143.5 2553.0 50.8 69.0
B 59 14 7.0 47.6 1508.9 228.2 9073.1 2380.4 3866.2 2005.0 35.9 54.1
C 73 37 8.1 46.2 1029.2 330.8 5583.2 3164.6 2701.6 3023.3 43.6 68.6
D 18 6 5.0 96.5 304.0 228.0 1807.8 2331.5 865.8 2043.9 49.0 79.1
E 10 5 4.0 54.7 159.0 92.8 715.4 630.7 241.3 419.2 37.8 54.2
F 138 90 21.4 120.3 2280.7 593.2 9044.2 5569.8 6221.3 5220.1 42.3 69.8
G 12 7 4.0 26.8 316.0 107.0 2472.8 932.4 892.5 826.9 49.5 65.5
H 51 29 11.0 53.9 629.0 140.3 2145.7 1384.8 1496.0 1026.6 49.9 71.5

Avg 53.6 27.1 9.0 62.3 876.5 248.5 4680.5 2563.2 2303.5 2139.8 44.9 66.5

6.1.2 Relative Difference Analysis

This section will not focus on the absolute difference in metric values, but rather on the
changes of metric values during the evolution of the component. In this way metrics can be
used to quantify the change and a comparison between both methodologies with respect to
change effort can be made. Due to the amount of data which is available, the graphs shown
are exemplary for the whole dataset. As the entire dataset will be taken into account for
analysis, there will be a table with key averages for all models.

When looking at complete components, the changes within CIF are smaller than in ASD with
respect to the LOC. With on average 39.3 LOC changes per revision for ASD, the amount
of LOC changes is 2.2 times higher than in CIF as can be seen in Table 6.3. This can be
explained by the amount of actions which are used by more than one event. These should

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

36 / 91



Methodologies Comparison

be added in ASD, whereas in CIF these might already be declared. The Blocked and Illegal
actions are not counted within the LOC, these should also be updated in ASD according to
interface changes. However this can be done semi-automatically within the ASD tooling and
therefore they are not taken into account in this metric analysis. As the actions and events
make up the LOC, these follow the same trend.

The way the CIF models are built results in more states than the ASD equivalents, as de-
scribed in the previous section. Due to the modelling of action sequences with help of pseudo
states and the requirements the total amount of states is higher than in ASD. Not only the
absolute difference is visible, but the difference in changes is even more vial. CIF has an
amount of states which is 8 times higher on average as in ASD, but the amount of states
added or removed per revision is 21 times higher than in ASD with 2.8 changes per revision.
Due to the construction of CIF more states are needed to model things, for instance in the
requirements. Changing these can even result in change of states within CIF, where there
are no changes in states in ASD. As one metric is higher and the other lower in CIF, we need

Figure 6.2: Evolution of the amount of function points for component F

a combination to make a well grounded comparison. To this end we introduced the FPs in
Section 5. As we take the averages of FP changes, we can see that the amount of FP changes
on average is higher in ASD than in CIF. The FP difference between revisions in ASD is on
average 228.2, whereas in CIF this is 207.8 on average as can be seen in Table 6.3. Note that
this difference relative to the average function points is different, as ASD has almost double
the FP on average as the CIF counterparts. The difference increases with 70 FPs when a
few outliers of component A are not taken into account. These outliers are due to pollution
within the ASD components, which will be discussed within the next section. In CIF this
pollution is partly removed to reduce the statespace, which results in big differences. These
outliers are 4 revisions in one day, which makes it also very likely to be a mistake. When
these are not taken into account the relative change is equal for both methodologies. For
component F the evolution of the function points can be seen in Figure 6.2. Especially when
there is a lot of change in FPs, the amount of FP changes at ASD is much more than in CIF.
For smaller changes in FP the amount of change is bigger in ASD for most cases, but not for

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

37 / 91



Methodologies Comparison

all. At component G something else is the cause for the higher change in FP. This change
is due to the addition of data transmission within the component. ASD does not need any
extra automata to realise this, but CIF needs the extra automata as described in Section 4.
With very few other changes this has a huge impact on the average FP change, giving it a
higher value than the ASD counterpart.

Note that the time between each revision is not equal as Figure 6.2 would imply, but this is
done for visualisation purposes. Figure 6.3 does show the revisions on the right timescale.
Here it can be seen that revisions are clustered, which might imply that requirement changes
are implemented in phases. This can be done for testing purposes of the code by extending
the functionality piece by piece.

Figure 6.3: Evolution of the Volume and MI for component F

Figure 6.3 also shows that the maintainability index of CIF is higher than that of ASD.
However the MI is calculated per automaton of DM/IM. The graph shows the average MI
for the whole component. As CIF has many smaller components as can be seen in Table 6.1,
this makes each component more easy to maintain, although there are more of them than in
ASD. This holds for every component as can be seen in Table 6.2. It also explains why the
MI rises even though the volume increases at the end of 2016. The volume depicts the size of
the entire component. At the end of 2016 a new interface has been added to the component,
which increases the volume. However this model has a higher MI than average which increases
the MI for both ASD and CIF. Overall the volume of ASD is higher than that of CIF, but
they both show the same tendency.

Table 6.3 shows the differences in change values between the two methodologies. Note that
some metrics are not evaluated on change, for instance the MI. This is due to the nature
of the metric. For the maintainability we are not interested in the change of it, since this
is a value which does not imply change effort. It is a result of it and therefore we are only
interested in the absolute value as depicted in Table 6.2.

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

38 / 91



Methodologies Comparison

Table 6.3: Average change of key metrics of all components

Component States LOC Function Points Volume

ASD CIF ASD CIF ASD CIF ASD CIF
A 0.5 6.0 58.7 58.3 280.3 527.0 171.2 568.2
B 0.0 0.5 19.6 4.8 186.2 49.8 59.1 49.4
C 0.2 2.1 54.8 13.6 220.9 141.0 150.1 130.3
D 0.0 4.6 21.2 17.6 123.0 187.4 79.4 185.5
E 0.0 5.3 54.3 18.8 471.9 376.8 152.7 152.9
F 0.3 2.1 65.1 13.6 215.5 125.0 197.6 140.9
G 0.0 0.4 3.2 5.6 22.8 51.8 10.3 43.3
H 0.0 1.5 37.4 5.4 99.4 47.4 104.6 37.6

Avg 0.1 2.8 39.3 17.2 228.2 207.8 115.6 163.5

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

39 / 91



Methodologies Comparison

6.2 Modelling Analysis

In Chapter 3 an analysis on the revision count of the models was done. There it was visible
that the amount of revisions for design models was significantly higher than the amount of
changes in interface models. However this gives a false image of reality, since there are a few
reasons a new revision is created for the ASD models:

1. An actual change has been made to the model:
There has been made a change to the model, which results in a different revision.

2. A referenced model has changed:
There has been made a change to a referenced model, this matters if a definition of
an event or action is changed. Each verified model has a so called fingerprint in ASD,
indicating that the model is verified. Even though a reference is to the same file, the
fingerprint might change as the referenced model is verified again.

3. Verification data is different:
The verification data is partly stored within the model, which is added if a verification
is done. This leads to a new file, which in turn leads to a new revision.

4. Metadata is different:
ASD stores the modelling tool version and language version within the file, if the model
is saved again within another tool version this is updated, leading to an other file and
in turn a new revision.

5. Old file is restored:
There are actual changes in a new revision, but this is actually just a restoration of an
older version.

6. No reason:
There are occasions there are no changes at all to the model, however a new revision is
made.

Since the analysis is conducted on design model revision lists, the severity of reasons on
interface models is not determined. However reason 2 is the reason for 20% of the selected
model revisions. This reason is not valid for interface models, since these references do
not occur in interface models. In 27% of the revisions an actual change to the model has
been made. These percentages are really dependent on the nature of the model. A simple
component may have 0 revisions due to reason 2, as there are very few references, where a
model with more referenced IMs can have as much as 45% of the revisions due to this reason.
Since CIF does not have a verification or metadata, which is changed during modelling, and
we do not create a revision when there is no reason, there are 53% less revisions on average
in CIF than in ASD, considering all reasons for change, ranging between 35% and 75% per
model.

These differences in reasons do have an impact on which things change within the CIF mod-
elling. If in ASD an interface changes, this impacts the CIF modelling in an equal manner,
that only the plant automaton changes. In ASD however this also impacts the design model.
This can either be just in the file where the reference is changed, but it can also be a more

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

40 / 91



Methodologies Comparison

extensive change. As mentioned earlier, ASD needs to be complete, mentioning all possible
events in each state even if they are blocked or illegal. Adding an event to an referenced
model, requires that it must be added in the design model by being blocked or illegal there
(in case there is no requirement concerning this event for this component). CIF does not have
this completeness and therefore less change has to be made within the CIF specification. In
Figure 6.4 a changelog of a component is given, where it can be seen that at version 11, 16,
17, 19 and 20 both the design model as a used plant changes. In the CIF equivalent of this
component only the used plant changes.

Figure 6.4: A piece of a changelog of a component.

The figure also shows that the requirements are not changing one by one, which would be
the optimal situation, as each revision has a single requirement change. However require-
ments are written down as modular as possible. Due to this a change in actual requirements
might involve multiple formal requirements. An example is that a new event is added which
should have 4 actions to be taken after that. This is then split into 4 different requirements,
which might already exist and change. Due to this it is rarely the case that only one require-
ment changes within CIF. In addition to this requirements might get replaced with other
requirements as can be seen clearly at version 4 of Figure 6.4.

6.3 Modelling Restrictions

Besides differences between ASD and CIF with regard to changes and revisions, there are
significant differences between the two with regards to modelling. There are three major
problems during interface model conversion to CIF, which will be discussed in the coming
paragraphs:

1. Notification Event Queues

2. Data transference

3. State Space Allowance

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

41 / 91



Methodologies Comparison

6.3.1 Notification Event Queues

As described in Section 4 to allow for notification events to be happening asynchronously a
queue system must be introduced. This queue system should be able to hold several activities
and remember in which order the activities should be executed. Such a queue is built in
within the ASD hierarchical syntax and therefore not necessary to model. In CIF there is
no hierarchy and no queuing system. Earlier research [13] has described how to model a
functional FIFO queueing system as depicted in Figure 6.5, however this is only a feasible
option for components with very few notification events, as every possible queuing order is
manually described. This is due to the fact that each state represents another queue filling.
The transitions represent the filling of the queue and the handling of the events. Even when
this definition of the notification queue is limited to 1 instance of each notification event.
This model can be upgraded to contain more than one, which would lead for two notification
events to an statespace of 128 states for this queue automaton with the standard queue size
of 7. With a queue size of 2 the statespace remains limited to 7 as can be seen in Figure 6.5.
One of the selected components has 14 notification events. With the ASD standard set to a
queue of 7, the queue automaton would have a state space of 147 states.

Figure 6.5: An example of a queue with size two and two activities

Using data an alternative queue model can be set up with less states. This was unfortunately
only ready for implementation after the analysis was done and there was no time left to redo
the analysis. In Listing 6.1 the model is depicted for a FIFO queue with capacity 7. For each
notification event there are 8 events added to the queue automaton, assuming a maximum
queue size of 7. Depending on the amount of events already in the queue, the right line of
code is executed (e.g. queue is filled with 4 events and Notification 1 occurs, then line 12 will
execute). This is done because the synthesis algorithm does not allow the use of lists, which
would be used to place the event on the right place in the queue to ensure a FIFO handling
of events. When the queue is full the notification event should still not be blocked, as it
is uncontrollable. The notification handling is done by a single event introduced within the
queue model, when the corresponding notification event is first in the queue. Afterwards the

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

42 / 91



Methodologies Comparison

actual amount of events in the queue is updated and all present events are shifted one place.
This allows for synthesis of a supervisor, which uses modular requirements for notification
events even for a large amount (19) of notification events. Therefore this is a suitable way to
model the notification queue.

1 plant Queue:

2 controllable Not_Forward_1 , //1

3 Not_Forward_2; //2

4 disc int [0..2]P1 ,P2 ,P3 ,P4 ,P5 ,P6 ,P7 = 0;// places to store events

5 disc int [0..7] Filled = 0; //how many events in queue

6 marked P1=0,P2=0,P3=0,P4=0,P5=0,P6=0,P7=0,Filled =0;

7
8 location Empty: initial; marked;

9 edge Plant1.Not_Event_1 when Filled =0 do P1:=1, Filled := Filled +1;

10 edge Plant1.Not_Event_1 when Filled =1 do P2:=1, Filled := Filled +1;

11 edge Plant1.Not_Event_1 when Filled =2 do P3:=1, Filled := Filled +1;

12 edge Plant1.Not_Event_1 when Filled =3 do P4:=1, Filled := Filled +1;

13 edge Plant1.Not_Event_1 when Filled =4 do P5:=1, Filled := Filled +1;

14 edge Plant1.Not_Event_1 when Filled =5 do P6:=1, Filled := Filled +1;

15 edge Plant1.Not_Event_1 when Filled =6 do P7:=1, Filled := Filled +1;

16 edge Plant1.Not_Event_1 when Filled =7;

17
18 edge Plant1.Not_Event_2 when Filled =0 do P1:=2, Filled := Filled +1;

19 edge Plant1.Not_Event_2 when Filled =1 do P2:=2, Filled := Filled +1;

20 edge Plant1.Not_Event_2 when Filled =2 do P3:=2, Filled := Filled +1;

21 edge Plant1.Not_Event_2 when Filled =3 do P4:=2, Filled := Filled +1;

22 edge Plant1.Not_Event_2 when Filled =4 do P5:=2, Filled := Filled +1;

23 edge Plant1.Not_Event_2 when Filled =5 do P6:=2, Filled := Filled +1;

24 edge Plant1.Not_Event_2 when Filled =6 do P7:=2, Filled := Filled +1;

25 edge Plant1.Not_Event_2 when Filled =7;

26
27 edge Not_Forward_1 when P1 = 1 do Filled := Filled -1,

28 P1:=P2, P2:=P3 , P3:=P4 , P4:=P5 , P5:=P6 , P6:=P7 , P7:=0;

29 edge Not_Forward_2 when P1 = 2 do Filled := Filled -1,

30 P1:=P2, P2:=P3 , P3:=P4 , P4:=P5 , P5:=P6 , P6:=P7 , P7:=0;

31 end

Code Listing 6.1: Queue model with queue size 7 for two notification events.

Note that this new queue modelling will have an influence on the metrics, however the influ-
ence on the effort and time is non significant. As can be seen in Listing 6.1 the automaton
is quite generic, which allows for automation of this process. In this way the introduction of
this automaton will influence metrics like the FP, Volume and LOC, but not the effort which
it takes to create and adapt the queue. Since the metrics are used to indicate the effort and
time it takes to introduce changes and the effort of this queue is low due to automation, the
introduction of this automaton should not influence the results significantly with respect to
effort and time it takes to create and change the model.

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

43 / 91



Methodologies Comparison

6.3.2 Data Transference

In ASD events and actions can transfer data along. CIF edges do not have this possibility
without using channels, which are not compatible with the synthesis algorithm. The edges
are able to update a defined value within the plant. However an edge can not update a
value which is not in the same plant as the edge, which makes it impossible to do this in the
requirements. This is a problem, since the ASD syntax does not always define where data is
going to or where it is coming from in the interface models. Channels are not suitable for
two reasons, they need the same sender as receiver name and more importantly, supervisor
synthesis does not support channels.

This is now solved as described in Section 4, which is a simplification. It does however allow
for data to be read from an external source and stored within the component. Since the
actual replacement of a component within LOPW with a CIF model is not within the scope
of this research, this might be sufficient. However more research should be conducted to make
grounded statements about this part of the models.

6.3.3 State Space

Another problem is generated by the difference in actuation of events within both languages.
In ASD there is completeness, which tells if an event is either allowed or not for all events. This
is possible since an ASD component is only active when a call is made to the component. Due
to this the events are only blocked when the component is active, allowing other components
to use this event. In CIF there is neither a completeness requirement nor selective activity
of a component. If an activity is not allowed within the specification, it is never allowed
since the CIF component is always active. However since CIF does not have a completeness
requirement, the in ASD blocked events are not specified in the requirements at all. Therefore
they are allowed, unless it prohibits the actual functioning of the component.

This is a difference which can be easily bridged, by making the CIF specification exactly
as the ASD specification, by blocking all events in the used plants, when the component is
active. However this is superfluous as the normal requirements are making sure the action
sequences are fully enveloped before any other event can take place on an used plant. The
real problem is in the fact that this will generate a huge statespace. Especially in components
with many used interface models. Component B has only 68 states when controlled in the
statespace when modelling only the used parts of the referenced interfaces. However if the
interface models are completely modelled this grows with a factor 260 to 17.640 states. Note
that this is a small component and the statespace will grow with more complex models,
generating huge statespaces for the bigger components like component F and H. This makes
the synthesis process slow and memory consuming, resulting in long waiting times or out of
memory errors. In addition to this a lot of behaviour is modelled with no influence on the
component, which makes it harder to identify the actual behaviour of the component in the
statespace. This might invoke problems during verification of the component.

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

44 / 91



Methodologies Comparison

6.4 ASD Pollution

In Section 6.1.2 we already encountered some major differences between ASD and CIF in some
cases. The reason for this has ground in the evolution of the ASD models. Some models were
created in 2012 and are updated and changed during the years. During this evolution many
actions, references and variables were added and removed. This had to be done manually.
Since ASD does not have any negative effects of this pollution, one might forget to remove
one of these attributes. These attributes are not used within the IM or DM anymore, but are
still defined. This is what is meant with pollution.

Functionally the models are still correct and do not have any noticeable negative effects of this
pollution, however the model definition becomes larger and more difficult to comprehend. For
reply-events this is the case in frequently used IMs. Here a certain rulecase is removed, but
not all reply event definition only used in this rulecase are removed. Variables can be found
in both IMs and DMs, even if they are not used. The references are particularly interesting,
as they are taken into account when calculating the Function Points. When a reference is
made, but no single event is used from that interface, the events do not have to be declared
according to the completeness requirement of ASD. This results in a reference, which adds to
the components size, but is not actually part of the component.

In CIF the pollution of variables was not present, as most of the variables which cause the
pollution pre-date the first available models for this research. The reference pollution was not
remodelled in CIF, as there was no need to do this. The reply event pollution was however
taken over from ASD. This was done to maintain the conformity between the IMs and the
plants within CIF. In CIF however this pollution is easily removed as the unused events are
indicated by the tooling. The ASD:Suite does not indicate the unused reply events, which
makes it a more extensive task to do.

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

45 / 91



Conclusion and Recommendations

7. Conclusion and Recommendations

7.1 Conclusion

This research investigates the difference of two methodologies to make controllers for LOPW.
The current methodology uses ASD to manually describe controllers, whereas CIF uses su-
pervisor synthesis to generate controllers. To compare both methodologies a selection has
been made of several components of LOPW. From these models requirements are extracted
and then according to these CIF specifications were made. These were then compared to
their ASD counterpart using metrics.

A general analysis shows that a lot of revisions are there without actual requirement changes
for that component. Due to changes in interfaces these revisions came to be or due to meta-
data changes as explained in Chapter 6.2. In both methodologies this should be adapted,
however in ASD the DM is adapted in many cases as well mainly due to completeness se-
mantics of ASD, whereas CIF does not need requirement changes. This is supported by the
metrics, which conclude that the amount of changes within CIF is lower than the amount of
changes within ASD. This means that the effort it takes to keep the models up to date with
the requirements is lower when using the SCT methodology.

Unfortunately it is not that simple, since some constructions are difficult to implement in CIF.
These constructions are features within ASD which are not or very inefficient to implement
in CIF. These constructions are the implemented queues in ASD, which have to be added
manually in CIF, and the data-transference between models, which can only be done with a
workaround in CIF. In addition to this, large components with more than 2000 lines of code
like component F or H X can take a few hours to synthesize or run out of memory with the
standard modelling techniques.

However taking into account the reduction in amount of changes needed in CIF by 40%
counted in function points, we can conclude that CIF is a more efficient method to generate
controllers for models of LOPW, which are not too big. In some cases the CIF methodology
might not be preferred over ASD, because the implementation has influence on the efficiency
of the modelling process, which is still subject for research. Also the SCT methodology might
not work for large models, because of the big state space. To this end more research has to
be done, which is described in the next section.

7.2 Recommendations

As described in Section 3 it is difficult to trace requirements from the documentation to the
various components that are realizing these requirements. This is due to the fact that the
requirements mentioned in the documentation are often not one to one or many to one related
to a single component. Instead there are many requirements which ae then implemented in
many models. Therefore it was difficult to find out which requirements a component should
meet. Therefore it is recommended to ASML to detail their LOPW EPDS even more and
add timestamps of requirement implementation. When this is done the EPDS can be used to
find requirements for each model. In addition to this requirements can be traced back to a
certain revision. This will not only improve the CIF modelling, but will also be helpful for the
current methodology using ASD. In addition to this I would recommend ASML to clean up

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

46 / 91



Conclusion and Recommendations

their ASD models, as some models are in the running for 6 years. This has resulted in a lot
of pollution in the models, which makes them harder to read and understand. This clean-up
would should consist of removing unused references, actions and variables.

There are still some bumps in the CIF methodology as described in Section 6, such as queues
and data transference. Further research could clarify the implementation of the queues for
notification events as this is still a major restriction with regards to functionality on the CIF
implementation used in this research. As this is an ASD specific function, this might be
solved without a queue within CIF, depending on the LOPW structure requirements. The
implementation of the proposed solution for the correct queue model and its automation is
highly recommended to research, to see the influence on the methodology.

Another difficulty is the data transference, which is now simplified in the CIF specifications
used. Due to the inability of the synthesis algorithm to cope with channels, this is currently
no option. However even with channels they can only send data over to an edge with the same
name. Therefore the CIF3 language and synthesis algorithm should be adjusted to make this
a viable solution. Depending on the component and LOPW it might not even be needed to
send data trough the CIF specifications. This makes it even more interesting for a follow up
research.

The interface models were now taken as plants, which leads to a lot of events which are not
needed in the actual component and are blocked within ASD. Research should be done to
determine if these events are needed to model and if so, if they should be disabled. In both
cases this is related to the collaboration of components within LOPW and the implementation
of CIF within the hierarchy. As there are many differences between ASD and CIF in the
implementation, this might cause crucial differences within the way of modelling.

During this research the tool EMF (Meta) Model Analysis(EMMA) [16] was used to extract
metrics from the ASD models. To this end the supplied gitminer is used which mines all
revisions of all files of LOPW. Unfortunately ASD components refer to used interface models
within the same folder. Since the miner stores all versions of a certain model in its own folder,
these references are not working any longer. To add to this the name of the model is changed
into the date of the revision, which might not be the same as the referenced models as they
are older. Therefore EMMA is not able to resolve the events and actions in the DMs which
take place on the interface models. To solve this a function should be added to update the
references to the right folder and then finding the last version of the referenced model with
regards to the timestamp of the DM. As this is very specific to ASD models this might be
inefficient for a global tool, but it might be very convenient for ASML. When these references
are resolved, much more detailed information about events can be extracted with EMMA.

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

47 / 91



REFERENCES

References

[1] ASML. ASML Company History. https://www.asml.com/company/history/en/s277?
rid=51985, 2017. Online; accessed 2017-11-08.

[2] Beek van D.A. Fokkink W.J. Hendriks D., Hofkamp A., Markovski J. van de Mortel-
Fronczak J.M., Reniers M.A. Cif 3: Model-based engineering of supervisory controllers.
In Erika Ábrahám and Klaus Havelund, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 575–580, Berlin, Heidelberg, 2014. Springer Berlin
Heidelberg.

[3] Blitterswijk M. EPDS LOPW. Confidential D000486800-00, ASML , May 2017.

[4] Broadfoot G.H., Hopcroft P.J. Analytical Software Design. -, 2003.

[5] Comer E.R., Bersoff E.H., Davis A.M. A Strategy for Comparing Alternative Software
Development Life Cycle Models. In IEEE TRANSACTIONS ON SOFTWARE ENGI-
NEERING, volume 14, 1988.

[6] Eindhoven University of Technology. MCRL2 Homepage. http://www.mcrl2.org/web/
user_manual/index.html, 2017. Online; accessed 08-11-2017.

[7] Forschelen S.T.J., van de Mortel-Fronczak J.M., Su R., Rooda, J.E. Application of
supervisory control theory to theme park vehicles. Discrete Event Dynamic Systems,
22(4):511–540, Dec 2012.

[8] Groote J.F., Marincic J., Osaiweran A. Assessing the Quality of Tabular State Machines
through Metrics. In 2017 IEEE International Conference on Software Quality, Reliability
and Security (QRS), pages 426–433, July 2017.

[9] Halstead, M.H. Elements of Software Science (Operating and Programming Systems
Series). Elsevier Science Inc., New York, NY, USA, 1977.

[10] IEEE Standards Board. IEEE Standard for Software Productivity Metrics. IEEE Std
1045-1992, 1993.

[11] Kan, S.H. Metrics and Models in Software Quality Engineering. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2002.

[12] Kock de E. , Fokkink W.J. Control and performance analysis of wafer flow in wafer
handling systems. Master’s thesis, Eindhoven University of Technology, 2014.

[13] Loose R. Component-wise Supervisory Controller Synthesis using existing plant models
in a client/server structure. Master’s thesis, Eindhoven University of Technology, 2017.

[14] Loose R., van der Sanden B., and Reniers M.A., Schiffelers R.R.H. Component-wise
supervisory controller synthesis in a client/server architecture. In Workshop on Discrete
Event Systems (WODES), 2018.

[15] Chemuturi M. Requirements Engineering and Management for Software Development
Projects. SpringerLink : Bücher. Springer New York, 2012.

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

48 / 91



REFERENCES

[16] Mengerink J.G.M., Serebrenik A., Schiffelers R.R.H., van den Brand M.G.J. Automated
analyses of model-driven artifacts: Obtaining insights into industrial application of mde.
In Proceedings of the 27th International Workshop on Software Measurement and 12th
International Conference on Software Process and Product Measurement, IWSM Mensura
’17, pages 116–121, New York, NY, USA, 2017. ACM.

[17] Ouedraogo L., Kumar R., Malik R., Akesson K. Nonblocking and safe control of discrete-
event systems modeled as extended finite automata. IEEE Transactions on Automation
Science and Engineering, 8(3):560–569, July 2011.

[18] Poore J.H. Prowell S.J. Foundations of sequence-based software specification. IEEE
Trans. Softw. Eng., 29(5):417–429, May 2003.

[19] Ramadge P.J., Wonham W.M. Supervisory control of a class of discrete event processes.
SIAM Journal on Control and Optimization, 25(1):206–230, 1987.

[20] Romero Sahagun E. Specification of Timed Service Contracts in Component Based
Architectures. Master’s thesis, Eindhoven University of Technology, 2015.

[21] Sharma R., Biswas K. Functional Requirements Categorization - Grounded Theory
Approach. ENASE 2015 - Proceedings of the 10th International Conference on Evaluation
of Novel Approaches to Software Engineering, pages 301–307, 01 2015.

[22] Starke M.J. Supervisory control using extended finite automata for ASML wafer scanners.
Master’s thesis, Eindhoven University of Technology, 2013.

[23] Swartjes L, van Beek D.A., W.J. Fokkink van Eekelen J.A.W.M. Model-based design
of supervisory controllers for baggage handling systems. Simulation Modelling Practice
and Theory, 78:28–50, 11 2017.

[24] Verum. Verum Knowledge Base. http://community.verum.com/knowlegdebase.aspx,
2017. Online; accessed 2018-05-08.

[25] Verum. Verum Software Tools B.V. https://www.verum.com/company/, 2017. Online;
accessed 2017-11-07.

[26] Wagner C., Harned N. Lithography gets extreme. Nature Photonics, 4:24, January 2010.

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

49 / 91



ASD Metric Extraction Java Scripts

A. ASD Metric Extraction Java Scripts

Packages are not included in scripts for reading purposes. Instead they are shown in the
scripting below. Note that not all packages are used in all scripts.

1 import java.io.File;

import java.io.FileReader;

import java.io.IOException;

import java.io.LineNumberReader;

5 import java.nio.file.Files;

import java.nio.file.Path;

import java.nio.file.Paths;

import java.util.ArrayList;

import java.util.List;

10 import org.eclipse.emf.common.util.URI;

import org.eclipse.emf.common.util.TreeIterator;

import org.eclipse.emf.ecore.EPackage;

import org.eclipse.emf.ecore.resource.Resource;

import org.eclipse.emf.ecore.EObject;

15 import com.asml.generics.qvto.java.QvtoTransformationEnvironment;

import com.asml.generics.qvto.util.QvtoTransformationException;

import Analysis.AnalyzerImpls.MetricsOverTime.ObjectMetrics;

import Analysis.AnalyzerImpls.MetricsOverTime.ResourceMetrics;

import Analysis.AnalyzerImpls.MetricsPuller.core.MetricsPuller;

20 import JoshUtils.EMF.CustomResourceSet;

import JoshUtils.Debugging.SysOutDebugger;

import JoshUtils.General.Configuration;

import Persistors.Database.DatabasePersistor;

import Simple.ExampleMetric;

25 import Utils.IO.DataRepository;

import Utils.IO.HistoricalFile;

import Utils.IO.Revision;

import nl.altran.verum.asd.ecore.asd.*;

import nl.altran.verum.asd.ecore.AsdStandaloneSetup;

30 import nl.altran.verum.asd.transform.AsdXsdToAsdEcoreTransformation;

import nl.altran.verum.asd.xsd.ASD9.ASD9Package;

import nl.altran.verum.asd.xsd.ASD9.ASD9StandaloneSetup;

import Analysis.AnalyzerImpls.MetricsPuller.core.Metric;

import Analysis.AnalyzerImpls.MetricsPuller.core.MetricsPackage;

35 import RepositoryMiners.GitMiner.GitMiner;

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

50 / 91



ASD Metric Extraction Java Scripts

A.1 GitMiner to obtain all model revisions

This Java script uses the gitminer to obtain all file revisions. It places each revision of a
individual model in a folder for that designated model.

1 /** Script to mine LOPW from the repository */

public class Miner {

public static void mine(String url, String name) {

5 File dir = new File("./tmpDir/" + name);

// use the GitMiner to mine git repositories

GitMiner gm = new GitMiner();

gm.setDatasetName("LOPW");

10
// open the repo for analysis

gm.openRepo("C:\\Users\\yschriek\\Documents\\LOPW_GIT");

// Set data types to mine

15 gm.addFileTypeToFind(".pdf"); // for EPDS

gm.addFileTypeToFind(".im"); // for IM models

gm.addFileTypeToFind(".dm"); // for DM models

// actually get them

20 gm.findRevisionsOfFileTypes();

}

}

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

51 / 91



ASD Metric Extraction Java Scripts

A.2 Size Measurement

This Java script counts the size of LOPW for each occurring revision number. When a certain
revision number for a model does not exist, was present before and was not deleted, it is still
counted for the size.

1 /** * This script will run for LOPW and determine its size */

public class Sizemeasurement {

public static void main(String[] args) throws IOException {

5 // Load settings and open files

JoshUtils.General.Configuration.init("C:\\Users\\yschriek\\workspace\\EMMAv3\\emma.ini");

FileWriter fileWriter = new FileWriter("Size_Individual.csv");

PrintWriter printWriter = new PrintWriter(fileWriter);

// Create list of all occuring timestamps in ’integers’

10 Set<Integer> integers = new TreeSet<>();

for (HistoricalFile hf : DataRepository.instance.getDataset("LOPW_Upgraded -

Copy").getHistoricalFiles()) {

for (Revision rev : hf.getRevisions()) {

if (!integers.contains(rev.getTimestamp())) {

integers.add(rev.getTimestamp());

15 }

}

}

// Concert set of timestamps into vector

int[] list = new int[integers.size()];

20 int i = 0;

for (Integer integer : integers) {

list[i] = integer;

i++;

}

25 Arrays.sort(list);

//Loop to compute size at each timestamp

for (int timest : list){

int count =0 ;

//check for all files

30 for (HistoricalFile hf : DataRepository.instance.getDataset("LOPW_Upgraded -

Copy").getHistoricalFiles()) {

Revision revisionAt=null;

Revision prev = null;

//check all revisions of this file

for (Revision f : hf.getRevisions()) {

35 int file_rev = f.getTimestamp();

// if file revision is lower than current time store that revision, unless it is

deleted

if (file_rev <= timest){

prev = f;

revisionAt = f;

40 //comment out if interested in cumulative unique models

if (f.getName().contains("deleted")){

revisionAt = null;

};

}

45 // if file revision is higher than current time, store latest value, unless it is

deleted

else if (file_rev > timest) {

revisionAt = prev;

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

52 / 91



ASD Metric Extraction Java Scripts

//comment out if interested in cumulative unique models

if (f.getName().contains("deleted")){

50 revisionAt = null;

};

break;

}

}

55 // If there was a revision of this file of the type DM, add to count

// Comment out if only interested in IMs

if (hf.getExtension().equals(".dm")) {

if (revisionAt != null) {

count++;

60 }

}

// If there was a revision of this file of the type IM, add to count

// Comment out if only interested in DMs

else if(hf.getExtension().equals(".im")) {

65 //if there is one

if (revisionAt != null) {

count++;

}

}

70 }

long epoch= timest;

String date = new java.text.SimpleDateFormat("MM/dd/yyyy HH:mm:ss").format(new

java.util.Date (epoch*1000));

System.out.println(count + " " + timest + " " + date );

printWriter.println(count +","+timest+","+date);

75 }

printWriter.close();

fileWriter.close();

}

}

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

53 / 91



ASD Metric Extraction Java Scripts

A.3 Metrics Extraction

This Java script extracts metrics from all the model revisions within a certain folder. The
values are stored within a SQL database.

1 /** This EMMA script will run for LOPW and evaluate metrics*/

public class AdvancedExample {

public static void main(String[] args) throws IOException {

JoshUtils.General.Configuration.init("C:\\Users\\yschriek\\workspace\\EMMAv3\\emma.ini");

5
// Setup for the ASD technology bridge

ASD9StandaloneSetup.doSetup();

AsdStandaloneSetup.doSetup();

EPackage.Registry.INSTANCE.put(null, ASD9Package.eINSTANCE);

10
//define the .dm/im to .asd transformation

AsdXsdToAsdEcoreTransformation transformation = new AsdXsdToAsdEcoreTransformation();

QvtoTransformationEnvironment env = new

QvtoTransformationEnvironment(transformation.getDefaultUriTransformer());

15
int hfcounter = 0;

//start loop over all different files

for (HistoricalFile hf :

DataRepository.instance.getDataset("LOPW_Upgraded").getHistoricalFiles()) {

DatabasePersistor persistor = new DatabasePersistor();

20 int dsid = persistor.getDatasetId("LOPW_Upgraded");

String file_id = hf.getFullName();//

// create resourceset, to enable us to load files into resources

CustomResourceSet crs = new CustomResourceSet();

//use hfcounter to determine which historical files should be evaluated:

25 //for LOPW around 900 different models: 0 - 225 - 450 - 675 - 900 or

0-150-300-450-600-750-900

if (hfcounter>=0 && hfcounter<1000){

int fid = persistor.getFileId(file_id, dsid);

//for each revision:

for (Revision r : hf.getRevisions()) {

30 String versionname = fid + r.getName();

//if the file does not end on .asd , these are all DMs and IMs:

if (r.getName().endsWith(".asd")==false){

int linecount = countLines(r.getAbsolutePath());

if (linecount >100) {

35 URI rv_uri;

//if there is a .deleted file, add .dm or .im to allow the tech bridge to cope

with this file extension

//then create an URI

if( r.getName().endsWith(".deleted")){

Path source = Paths.get(r.getAbsolutePath());

40 Files.move(source,

source.resolveSibling(r.getName().concat(hf.getExtension())));

rv_uri = URI.createFileURI(r.getAbsolutePath().concat(hf.getExtension()));

}

else{

rv_uri = URI.createFileURI(r.getAbsolutePath());

45 }

//Transform model into meta-model

try {

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

54 / 91



ASD Metric Extraction Java Scripts

transformation.transformModel(rv_uri, env);

}

50 catch (QvtoTransformationException e) {

e.printStackTrace();

}

//set a new uri to the converted uri

URI rv_out_uri = env.getUriTransformer().transformUri(rv_uri);

55 Resource rv_resource = crs.getResource(rv_out_uri,true);

//Disabled the proxy resolver to save time, enable for more details

//EcoreUtil.resolveAll(crs);

60 //set which metrics should be used:

MetricsPuller puller = new MetricsPuller();

puller.register(new ExampleMetric());

//calculate them

65 ResourceMetrics rm_metrics = puller.execute(rv_resource);

//save them:

for (ObjectMetrics metrics : rm_metrics) {

for (String key : metrics.keySet()) {

70 if (!key.equals("object_id")) {

Object value = metrics.get(key);

//if the name contains deleted it means the file is deleted and all

metrics should equal 0,

//else the right value is assigned

if(!r.getName().contains("deleted")){

75 persistor.storeMetrics(

(int)metrics.get("object_id"),

r.getTimestamp(),

fid,

key,

80 value.toString()

);

}

else{

persistor.storeMetrics(

85 (int)metrics.get("object_id"),

r.getTimestamp(),

fid,

key,

"0"

90 );

}

}

}

}

95 }

}

}

hfcounter++;

}

100 //if not within analysing range, just continue until in range or the end

else{hfcounter++;}

double progpercent = (hfcounter + 1) / 884;

System.out.println("Filenumber = " + hfcounter + " Progress = %.2f" + progpercent );

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

55 / 91



ASD Metric Extraction Java Scripts

}

105 }

//simple function to determine size of a model in amount of XML lines

//if these are too few, the model is old and the conversion will give an error

public static int countLines(String filename) throws IOException {

110 LineNumberReader reader = new LineNumberReader(new FileReader(filename));

int cnt = 0;

String lineRead = "";

while ((lineRead = reader.readLine()) != null) {}

cnt = reader.getLineNumber();

115 reader.close();

return cnt;

}

}

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

56 / 91



ASD Metric Extraction Java Scripts

A.4 Metrics Definition

This Java script defines the metrics which are extracted from the models by Script A.3.

1 public class ExampleMetric extends MetricsPackage {

@Metric(name="NumStatesPerFile") // Count all instances of state per model

public int numStatesPerFile(Model asdroot) {

int counter = 0;

5 TreeIterator<EObject> allObjects = asdroot.eAllContents();

while (allObjects.hasNext()) {

EObject obj = allObjects.next();

if (obj.eClass().getName().toString().equals("State")) {

counter++;

10 }

}

return counter;

}

15 @Metric(name="NumActionsPerFile") // Count all actions per model

public int numActionsPerFile(Model asdroot) {

int counter = 0;

TreeIterator<EObject> allObjects = asdroot.eAllContents();

while (allObjects.hasNext()) {

20 EObject obj = allObjects.next();

if (obj instanceof Action) {

counter++;

}

}

25 return counter;

}

@Metric(name="NumInterfacePerFile") // count all referenced interfaces per model

public int numInterfacePerFile(Model asdroot) {

30 int counter = 0;

TreeIterator<EObject> allObjects = asdroot.eAllContents();

while (allObjects.hasNext()) {

EObject obj = allObjects.next();

if (obj instanceof Interface) {

35 counter++;

}

}

return counter;

}

40
@Metric(name="NumIllegalPerFile") // count all illegal actions per model

public int numIllegalPerFile(Model asdroot) {

int counter = 0;

TreeIterator<EObject> allObjects = asdroot.eAllContents();

45 while (allObjects.hasNext()) {

EObject obj = allObjects.next();

if (obj instanceof IllegalAction) {

counter++;

}

50 }

return counter;

}

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

57 / 91



ASD Metric Extraction Java Scripts

@Metric(name="NumBlockedPerFile") // count all blocked actions per model

55 public int numBlockedPerFile(Model asdroot) {

int counter = 0;

TreeIterator<EObject> allObjects = asdroot.eAllContents();

while (allObjects.hasNext()) {

EObject obj = allObjects.next();

60 if (obj instanceof BlockedAction) {

counter++;

}

}

return counter;

65 }

@Metric(name="NumNoOpPerFile") // count all noop actions per model

public int numNoOpPerFile(Model asdroot) {

int counter = 0;

70 TreeIterator<EObject> allObjects = asdroot.eAllContents();

while (allObjects.hasNext()) {

EObject obj = allObjects.next();

if (obj instanceof NoOpAction) {

counter++;

75 }

}

return counter;

}

80 @Metric(name="NumDisabledActionPerFile") // count all disabled events per model

public int numDisabledActionPerFile(Model asdroot) {

int counter = 0;

TreeIterator<EObject> allObjects = asdroot.eAllContents();

while (allObjects.hasNext()) {

85 EObject obj = allObjects.next();

if (obj instanceof DisabledAction) {

counter++;

}

}

90 return counter;

}

@Metric(name="NumEventReferencesPerFile") // count all events per model

public int numEventReferencesPerFile(Model asdroot) {

95 int counter = 0;

TreeIterator<EObject> allObjects = asdroot.eAllContents();

while (allObjects.hasNext()) {

EObject obj = allObjects.next();

if (obj instanceof EventReference) {

100 counter++;

}

}

return counter;

}

105
@Metric(name="NumGuardsPerFile") // count all guards per model

public int numGuardsPerFile(Model asdroot) {

int counter = 0;

TreeIterator<EObject> allObjects = asdroot.eAllContents();

110 while (allObjects.hasNext()) {

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

58 / 91



ASD Metric Extraction Java Scripts

EObject obj = allObjects.next();

if (obj instanceof Guard) {

counter++;

}

115 }

return counter;

}

@Metric(name="NumRuleCasesPerFile") // count all rulecases per model

120 public int numRuleCasesPerFile(Model asdroot) {

int counter = 0;

TreeIterator<EObject> allObjects = asdroot.eAllContents();

while (allObjects.hasNext()) {

EObject obj = allObjects.next();

125 if (obj instanceof RuleCase ) {

counter++;

}

}

return counter;

130 }

@Metric(name="NumStateVariablesPerFile") // count state variables per model

public int numStateVariablesPerFile(Model asdroot) {

int counter = 0;

135 TreeIterator<EObject> allObjects = asdroot.eAllContents();

while (allObjects.hasNext()) {

EObject obj = allObjects.next();

if (obj instanceof StateVariable) {

counter++;

140 }

}

return counter;

}

145 @Metric(name="NumDataVariablesPerFile") // count all data variables per model

public int numDataVariablesPerFile(Model asdroot) {

int counter = 0;

TreeIterator<EObject> allObjects = asdroot.eAllContents();

while (allObjects.hasNext()) {

150 EObject obj = allObjects.next();

if (obj instanceof DataVariable) {

counter++;

}

}

155 return counter;

}

@Metric(name="NumChangedReferenceInterfacesPerFile")

// count how much referenced interfaces are changed w.r.t. the previous revision

160 public int NumChangedReferenceInterfacesPerFile(Model asdroot) {

int counter = 0;

TreeIterator<EObject> allObjects = asdroot.eAllContents();

while (allObjects.hasNext()) {

EObject obj = allObjects.next();

165 if (obj instanceof UsedServiceReference) {

String version = asdroot.eResource().getURI().segment(7);

version = version.replaceAll("\\D+","");

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

59 / 91



ASD Metric Extraction Java Scripts

for (HistoricalFile hf :

DataRepository.instance.getDataset("LOPW").getHistoricalFiles()) {

if((hf.getName()+hf.getExtension()).equals(((UsedServiceReference)

obj).getName().toString()+".im") ){

170 for (Revision r : hf.getRevisions()) {

if(r.getName().equals(version+".im.asd")){

counter++;

break;

}

175 }

break;

}

}

}

180 }

return counter;

}

@Metric(name="ThisInterfaceChangedperFile") // determine if the client interface has

changed

185 public int ThisInterfaceChangedperFilePerFile(Model asdroot) {

int counter = 0;

String version = asdroot.eResource().getURI().segment(7);

version = version.replaceAll("\\D+","");

for (HistoricalFile hf : DataRepository.instance.getDataset("LOPW").getHistoricalFiles())

{

190 if((hf.getName()+hf.getExtension()).equals(asdroot.getName().toString()+".im") ){

for (Revision r : hf.getRevisions()) {

if(r.getName().equals(version+".im.asd")){

counter++;

break;

195 }

}

break;

}

}

200 return counter;

}

}

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

60 / 91



CIF Metric Extraction Python Scripts

B. CIF Metric Extraction Python Scripts

B.1 Alphabet Generating Script

This Python function creates a vector which contains all controllable or uncontrollable events
present within a CIF specification, depending on the input being ‘Controllable’ or ‘Uncon-
trollable’.

1 # Yorick van der Schriek 1-5-2018 - ASML - TU/e - CIF models of LOPW

import math

5 # generate the Event alphabet of entire cif specification

def generatealphabet(path , Declaration):

f = open(path)

alphabet = []

Plant = f.readline ()

10 #for all lines

while Plant:

# read Plant name

if Plant.count("plant") == 1:

NameTmp = Plant

15 NameTmp = Plant.split("plant ")

NameTmp = NameTmp[1].split(":")

Name = NameTmp[0]

# if Controllable or Uncontrollables are starting to be defined

if Plant.count(Declaration)==1:

20 Ccount=0

#count all within this declaration

while Ccount==0:

#save first event

if Plant.count(Declaration)==1:

25 Names = Plant.split(Declaration)

Names = Names[1].split(",")

#if last event strip of non -name attributes

if Plant.count(";")==1:

Tmp = Names[len(Names)-1].split(";")

30 Names[len(Names)-1] = Tmp[0]

#else remove the comma

else:

Names = Names[:-1]

35 #save other events

else:

Names = Plant.split(",")

if Plant.count(";")==1:

Names[len(Names)-1] = Names[len(Names)-1].split(";")[0]

40 else:

Names = Names[:-1]

Z=0

# add the new declared events in this line to alphabet when they are

not commented

while Z < len(Names):

45 if not Names[Z].strip ().startswith("//"):

Names[Z] = Name + "." + Names[Z].strip()

alphabet.append(Names[Z])

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

61 / 91



CIF Metric Extraction Python Scripts

Z=Z+1

# ; declares end of the declaration so end loop if so

50 Ccount = Plant.count(";")

# else goto next line

if Plant.count(";") ==0:

Plant = f.readline ()

55 #if declaration is finished read lines untill new event declarations are

found

Plant =f.readline ()

f.close ()

return alphabet

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

62 / 91



CIF Metric Extraction Python Scripts

B.2 Automata Counter per CIF specification

This Python function counts the amount of automata within a CIF specification.

1 # Yorick van der Schriek 1-5-2018 - ASML - TU/e - CIF models of LOPW

import math

5 def determine_automata(path):

f = open(path)

Requirements =0

Plants = 0

#for each line

10 for line in f:

Line = line.strip ()

#if not commented

if not Line.startswith("//"):.

#add if new requirement or plant is declared

15 Requirements = Requirements + line.count("requirement ")

Plants = Plants + line.count("plant ")

f.close

return (Requirements+Plants)

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

63 / 91



CIF Metric Extraction Python Scripts

B.3 Automata Name Collector

This Python function collects all names of the automata within a CIF specification.

1 # Yorick van der Schriek 1-5-2018 - ASML - TU/e - CIF models of LOPW

import math

5 def determine_plants_requirements(path):

nr_automata = determine_automata(path)

f = open(path)

loopcount = 0

invariant = 1

10 Namelist =[]

# for all automata

while loopcount< nr_automata:

count =0

Name = "none"

15
#for all lines in this automata

while count == 0:

Plant= f.readline ()

20 # if line commented delete it from analysis

if Plant.strip().startswith("//"):

Plant = " "

# part of line commented , remove commented part

25 if Plant.count("//")>=1:

Temp = Plant.split("//")

x=Plant.count("//")

Temp=Temp[0:len(Temp)-x]

Plant= ’’.join(Temp)

30
# if plant , save name

if Plant.count("plant ") == 1:

NameTmp = Plant

NameTmp = Plant.split("plant ")

35 NameTmp = NameTmp[1].split(":")

Name = NameTmp[0]

# if requirement , save name

if Plant.count("requirement ") == 1:

40 NameTmp = Plant

NameTmp = Plant.split("requirement ")

# if requirement invariant:

if NameTmp[1].count("{")==1:

45 NameTmp = NameTmp[1].split("{")

NameTmp = "Invariant " + str(invariant)

invariant = invariant +1

Name = "Requirement " + NameTmp

50 # if normal requirement:

elif NameTmp[1].count(":")==1:

NameTmp = NameTmp[1].split(":")

Name = "Requirement " + NameTmp[0]

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

64 / 91



CIF Metric Extraction Python Scripts

55 # if line is requirement invariant with 1 event

elif NameTmp[1].count("needs")==1:

NameTmp = NameTmp[1].split("needs")

NameTmp = "Invariant " + str(invariant)

invariant = invariant +1

60 Name = "Requirement " + NameTmp

# add every new automaton in list

if not Name == "none" and not Name in Namelist:

Namelist.append(Name)

65
# if end of automaton goto next one

count = Plant.count("end") + Plant.count("needs")

loopcount = loopcount +1

70 f.close ()

return (Namelist)

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

65 / 91



CIF Metric Extraction Python Scripts

B.4 Changes in CIF in automata

This Python function has two inputs,‘old’ and ‘new’ both CIF specifications. It calculates for
each automaton in both specifications if it is introduced, changed or deleted in the ‘new’ CIF
specification. Afterwards three lists with names of introduced, changed and deleted automata
are returned.

1 # Yorick van der Schriek 1-5-2018 - ASML - TU/e - CIF models of LOPW

import math

5 def determine_changed_CIF(old ,new):

GenMatrix = []# Creating an empty matrices

PandQ_old = []

PandQ_new = []

All_introduced = []

10 All_removed = []

All_changed = []

#if first component , no old exists

if not old == "empty":

15 PandQ_old = determine_plants_requirements(old)

PandQ_new = determine_plants_requirements(new)

#for all ’new’ components

for PQ_new in PandQ_new:

20
# edit names where requirement is written with capital letter for

unification

if PQ_new.count("Requirement")>0:

PQ_cif = PQ_new.replace("Requirement", "requirement")

else:

25 PQ_cif = PQ_new

# if the ’new’ component does not exist in the old one add to introduced

if not PQ_new in PandQ_old:

#print "introduced: " + PQ_new

30 All_introduced.append(PQ_new)

# if it does exist:

else:

FullNewAutomaton=[]

35 f = open(new)

searchcount=0

#search automata

while searchcount==0:

Plant=f.readline ()

40 Plant = Plant.strip()

#remove requirement form the name

if Plant.count("Requirement")>0:

Plant=Plant.split("Requirement")[1].strip()

45
# when automaton found end loop

if ((Plant.count(PQ_cif)==1 and Plant.count("plant")+Plant.count("

requirement")==1) or ((Plant.

count("{")==1 or Plant.count("

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

66 / 91



CIF Metric Extraction Python Scripts

needs")==1) and PQ_new.count("

Invariant")==1 ) )and not Plant

.startswith("//"):

searchcount=1

50 # from here store the lines untill the automon ends

if (( Plant.count(PQ_cif)==1 and Plant.count("plant")+Plant.count("

requirement")==1) or ((Plant.

count("{")==1 or Plant.count("

needs")==1) and PQ_new.count("

Invariant")==1 ) )and not Plant.

startswith("//"):

FullNewAutomaton.append(Plant)

endcount=0

while endcount==0:

55 Plant = Plant.strip()

FullNewAutomaton.append(Plant)

if Plant.count("end")==1 or Plant.count("}") or Plant.count("needs")

:

endcount=1

else:

60 Plant=f.readline ()

f.close()

# do exactly the same for the old cif specification

FullOldAutomaton=[]

65 f = open(old)

searchcount=0

while searchcount==0:

Plant=f.readline ()

Plant = Plant.strip()

70 if Plant.count("Requirement")>0:

Plant=Plant.split("Requirement")[1].strip()

if ((Plant.count(PQ_cif)==1 and Plant.count("plant")+Plant.count("

requirement")==1) or ((Plant.

count("{")==1 or Plant.count("

needs")==1) and PQ_new.count("

Invariant")==1 ) )and not Plant

.startswith("//"):

searchcount=1

if (( Plant.count(PQ_cif)==1 and Plant.count("plant")+Plant.count("

requirement")==1) or ((Plant.

count("{")==1 or Plant.count("

needs")==1) and PQ_new.count("

Invariant")==1 ) )and not Plant.

startswith("//"):

75 FullOldAutomaton.append(Plant)

endcount=0

while endcount==0:

Plant = Plant.strip()

80 FullOldAutomaton.append(Plant)

if Plant.count("end")==1 or Plant.count("}") or Plant.count("needs")

:

endcount=1

else:

Plant=f.readline ()

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

67 / 91



CIF Metric Extraction Python Scripts

85 f.close

# remove all empty specifications

FullNewAutomaton = filter(None , FullNewAutomaton)

FullOldAutomaton = filter(None , FullOldAutomaton)

90 # check whether all specifications which were already in the old one are

the same

# if not they are added to the list of changed automata

if not(FullNewAutomaton == FullOldAutomaton):

All_changed.append(PQ_new)

95 # check if there are automata in old , but not in new -> these are removed

for PQ_old in PandQ_old:

if not PQ_old in PandQ_new:

All_removed.append(PQ_old)

100 return (All_introduced ,All_removed ,All_changed)

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

68 / 91



CIF Metric Extraction Python Scripts

B.5 CIF Metric Collector

This python function takes a CIF specification and returns all values for the metrics from
that specification.

1 # Yorick van der Schriek 1-5-2018 - ASML - TU/e - CIF models of LOPW

import math

5
def count_string_occurence_CIF(path):

GenMatrix = []# Creating an empty matrix

controlledalphabet = generatealphabet(path ," controllable")

uncontrolledalphabet = generatealphabet(path ," uncontrollable")

10 nr_automata = determine_automata(path)

f = open(path)

loopcount = 0

invariant = 1

# for all automata within path

15 while loopcount< nr_automata:

#set all amounts to zero

count =0

uncontrolled = 0

controlled = 0

20 locations = 0

marked_states = 0

edges = 0

guards=0

TotalControlled=0

25 TotalUncontrolled = 0

updates = 0

gotos = 0

StateVarcounts=0

Integercounts = 0

30 TotalOperators = 0

UniqueOperators = 0

ListOfOperators = []

ListOfEventNames = []

Total_Operators =0

35 Unique_Operators=0

Total_Operands = 0

Unique_Operands =0

Name = "none"

40 # while still in the same automaton

while count == 0:

Plant= f.readline ()

# remove commented lines

if Plant.strip().startswith("//"):

45 Plant = " "

# if partly commented , remove commented part

if Plant.count("//")>=1:

Temp = Plant.split("//")

50 x=Plant.count("//")

Temp=Temp[0:len(Temp)-x]

Plant= ’’.join(Temp)

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

69 / 91



CIF Metric Extraction Python Scripts

# if plant encountered save name

55 if Plant.count("plant ") == 1:

NameTmp = Plant

NameTmp = Plant.split("plant ")

NameTmp = NameTmp[1].split(":")

Name = NameTmp[0]

60
# if requirement encountered save name

if Plant.count("requirement ") == 1:

NameTmp = Plant

NameTmp = Plant.split("requirement ")

65 if NameTmp[1].count("{")==1:

NameTmp = NameTmp[1].split("{")

NameTmp = "Invariant " + str(invariant)

invariant = invariant +1

Name = "Requirement " + NameTmp

70 elif NameTmp[1].count(":")==1:

NameTmp = NameTmp[1].split(":")

Name = "Requirement " + NameTmp[0]

elif NameTmp[1].count("needs")==1:

NameTmp = NameTmp[1].split("needs")

75 NameTmp = "Invariant " + str(invariant)

invariant = invariant +1

Name = "Requirement " + NameTmp

# add the amount of occurences of these metrics to the total for this

automaton

80 locations = locations + Plant.count("location ")

marked_states = marked_states + Plant.count("marked;")

guards = guards + Plant.count(" when ")

updates = updates + Plant.count(":=")

gotos = gotos + Plant.count(" goto ")

85
# Update total and unique lists of operators

if Plant.count(" not ")>=1:

ListOfOperators.append("not")

TotalOperators = TotalOperators + Plant.count(" not ")

90 if Plant.count(" and ")>=1:

ListOfOperators.append("and")

TotalOperators = TotalOperators + Plant.count(" and ")

if Plant.count(" or ")>=1:

ListOfOperators.append("or")

95 TotalOperators = TotalOperators + Plant.count(" or ")

if Plant.count("=")>=1 and Plant.count("=")>Plant.count(":="):

ListOfOperators.append("=")

TotalOperators = TotalOperators + Plant.count("=") - Plant.count(":=")

100 # count amount of discrete variable declarations

if Plant.count("disc ")>=1:

# count the amount of discrete integers untill a ; is encountered

if Plant.count(" int")>=1:

Noend =0

105 while Noend ==0:

Integercounts = Plant.count(",")+1

if Plant.count(";") ==0:

Plant = f.readline ()

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

70 / 91



CIF Metric Extraction Python Scripts

else:

110 Noend = 1

# count the amount of discrete booleans untill a ; is encountered

elif Plant.count(" bool ")>=1 or Plant.count(" enum ")>=1:

Noend =0

115 while Noend ==0:

StateVarcounts = Plant.count(",")+1

if Plant.count(";") ==0:

Plant = f.readline ()

else:

120 Noend = 1

#count amount of controllable event declarations in this automaton

if Plant.count("controllable ")==1 and Plant.count("uncontrollable ") ==

0:

Ccount=0

125 while Ccount==0:

C = 1 + Plant.count(",")

if Plant.count(";") ==0:

Plant = f.readline ()

Ccount = Plant.count(";")

130 controlled= controlled + C

# count amount of uncontrollable event declarations in this automaton

if Plant.count("uncontrollable ")==1:

UCcount=0

135 while UCcount==0:

UC = 1 + Plant.count(",")

if Plant.count(";") ==0:

Plant = f.readline ()

UCcount = Plant.count(";")

140 uncontrolled= uncontrolled + UC

# count amount of events

if (Plant.count("edge ")==1 or Plant.count("{")):

145 ControlledEdges=0

UncontrolledEdges=0

edgecount=0

# edges can cover multiple lines so untill a ; is encountered:

while edgecount==0:

150 # add to counter

thisedge = 1 + Plant.count(",")

# save line in Names , by removing comma at end

if Plant.count("edge ")==1:

155 Names = Plant.split("edge ")

Names = Names[len(Names)-1].split(",")

elif Plant.count("{")==1:

Names = Plant.split("{")

Names = Names[len(Names)-1].split(",")

160 else:

Names = [Plant]

# if first line of the event declarations

if Plant.count("edge ")==1 or Plant.count("{"):

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

71 / 91



CIF Metric Extraction Python Scripts

165
# if also last one

if Plant.count(";")==1 or Plant.count("}"):

# remove closure sign and assignments/guards

170 Tmp = Names[len(Names)-1].split(";")

Tmp = Names[len(Names)-1].split("}")

Names[len(Names)-1] = Tmp[0]

if Plant.count("when ")==1:

Tmp = Names[len(Names)-1].split("when ")

175 Names[len(Names)-1] = Tmp[0]

elif Plant.count("do ")==1:

indices = [i for i, s in enumerate(Names) if ’do ’ in s]

Tmp = Names[indices[0]].split("do ")

Names[indices[0]] = Tmp[0]

180 elif Plant.count("goto ")==1:

Tmp = Names[len(Names)-1].split("goto ")

Names[len(Names)-1] = Tmp[0]

else:

Names = Names[:-1]

185
# if not first one

elif Plant.count(",")>=1:

Names = Plant.split(",")

190 # if also last one remove closure sign and assignments/guards

if Plant.count(";")==1 or Plant.count("}"):

Names[len(Names)-1] = Names[len(Names)-1].split(";")[0]

Names[len(Names)-1] = Names[len(Names)-1].split("}")[0]

195 if Plant.count("when ")==1:

Tmp = Names[len(Names)-1].split("when ")

Names[len(Names)-1] = Tmp[0]

elif Plant.count("do ")==1:

indices = [i for i, s in enumerate(Names) if ’do ’ in s]

200 Tmp = Names[indices[0]].split("do ")

Names[indices[0]] = Tmp[0]

elif Plant.count("goto ")==1:

Tmp = Names[len(Names)-1].split("goto ")

Names[len(Names)-1] = Tmp[0]

205 else:

Names = Names[:-1]

# if last one

else:

210 if Plant.count(";")==1 or Plant.count("}"):

Names[len(Names)-1] = Names[len(Names)-1].split(";")[0]

Names[len(Names)-1] = Names[len(Names)-1].split("}")[0]

else:

Names = Names

215 if Plant.count("when ")==1:

Tmp = Names[len(Names)-1].split("when ")

Names[len(Names)-1] = Tmp[0]

elif Plant.count("do ")==1:

indices = [i for i, s in enumerate(Names) if ’do ’ in s]

220 Tmp = Names[indices[0]].split("do ")

Names[indices[0]] = Tmp[0]

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

72 / 91



CIF Metric Extraction Python Scripts

elif Plant.count("goto ")==1:

Tmp = Names[len(Names)-1].split("goto ")

Names[len(Names)-1] = Tmp[0]

225 Z=0

while Z < len(Names):

# check for correct names , if not adjust

# if correct check with alphabet for controllability of event and

add to correct one

230 Names[Z]=Names[Z].strip()

if Names[Z].count(".")==1:

ListOfEventNames.append(Names[Z])

if Names[Z] in controlledalphabet:

ControlledEdges = ControlledEdges+1

235 if Names[Z] in uncontrolledalphabet:

UncontrolledEdges = UncontrolledEdges+1

Names[Z] = Name + "." + Names[Z].strip()

if Names[Z].count(".")==1:

ListOfEventNames.append(Names[Z])

240 if Names[Z] in controlledalphabet:

ControlledEdges = ControlledEdges+1

if Names[Z] in uncontrolledalphabet:

UncontrolledEdges = UncontrolledEdges+1

Z=Z+1

245
# if not yet the end of event declaration do readline and do loop

again for next line

edgecount = Plant.count(";")+Plant.count("}")

if Plant.count(";") + Plant.count("}") ==0:

Plant = f.readline ()

250
#save total amount of controlled and uncontrolled events per automaton

TotalControlled = TotalControlled + ControlledEdges

TotalUncontrolled = TotalUncontrolled + UncontrolledEdges

edges = TotalControlled +TotalUncontrolled

255
#when automaton end goto next one

count = Plant.count("end") + Plant.count("needs")

# calculation of other metrics and compensation for errors in invariant

requirements

260 count =0

if gotos ==0:

gotos = 1

if TotalControlled ==0:

TotalControlled = 1

265 import re

Rev = int(re.search(r’\d+’, path).group())

if Name.count("Invariant")==0:

pseudo_states = locations - marked_states

FP = 12* TotalUncontrolled + 5* edges + 1*TotalControlled + 2*guards +

updates

270 CC = edges - locations +1

ACC = gotos - locations +1

Unique_Events = len(list(set(ListOfEventNames).intersection(

controlledalphabet)) +list(set(

ListOfEventNames).intersection(

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

73 / 91



CIF Metric Extraction Python Scripts

uncontrolledalphabet)))

Unique_Operators = len(list(set(ListOfOperators)))+Unique_Events

Total_Operators = edges + TotalOperators

275 Unique_Operands = locations + StateVarcounts

Total_Operands = locations + guards

Volume = (Total_Operators +Total_Operands) * math.log(2*(

Unique_Operators +

Unique_Operands),2)

Difficulty = (float(Unique_Operators)/2) * (float(Total_Operands)/float(

Unique_Operands))

280 Effort = float(Volume) * float(Difficulty)

Time = float(Effort) / 18

Errors = float(Volume)/3000

if Volume>0 and edges>0:

MI= 171-5.2*math.log(float(Volume))-0.23*float(CC)-16.2*math.log(float

(edges))

285 MIC = max(0,( 171-5.2*math.log(float(Volume))-0.23*ACC-16.2*math.log(

float(edges))))*(float(100)/172

)

else:

MI =0

MIC = 0

else:

290 pseudo_states = 0

FP = 12* TotalUncontrolled + 5* edges + 1*TotalControlled + 2*guards +

updates

CC = 0

ACC = 0

Unique_Events = len(list(set(ListOfEventNames).intersection(

controlledalphabet)) +list(set(

ListOfEventNames).intersection(

uncontrolledalphabet)))

295 Unique_Operators = len(list(set(ListOfOperators)))+Unique_Events

Total_Operators = edges + TotalOperators

Unique_Operands = locations + StateVarcounts

Total_Operands = locations + guards

300
UOO = max(1,Unique_Events+Unique_Operands)

Volume = (Total_Operators +Total_Operands) * math.log(2*(UOO),2)

Difficulty = 0

Effort = float(Volume) * float(Difficulty)

305 Time = float(Effort) / 18

Errors = float(Volume)/3000

MI= 0

MIC = 0

310 ThisPart = [Rev , Name , FP, locations , TotalControlled ,"0","0","0", edges ,

TotalUncontrolled , StateVarcounts ,

"0" , UniqueOperators ,

TotalOperators , "0","0", CC , ACC ,

edges , Unique_Operators ,

Total_Operators , Unique_Operands ,

Total_Operands , Volume , Difficulty ,

Effort , Time , Errors , MI , MIC ]

GenMatrix= GenMatrix + [ThisPart]

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

74 / 91



CIF Metric Extraction Python Scripts

loopcount = loopcount +1

f.close ()

315
return (GenMatrix)

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

75 / 91



CIF Metric Extraction Python Scripts

B.6 Runtime Script

This python script uses all previous Python functions to generate a changelog and a metrics
matrix for all CIF specifications in the folder the file is in. It writes the results into two
comma separated value(CSV) files.

1 # Yorick van der Schriek 1-5-2018 - ASML - TU/e - CIF models of LOPW

matrix_CIF = [[0]*(items)]*0 # Creating an empty matrix

5 matrix_Changed = [[0]*(items)]*0 # Creating an empty matrix

count = 0

filecount = 0

currentfilecount = 0

Complete_PandReq_list = []

10 Reqlist = []

Plantlist = []

import os

15 Old = "empty"

print "Generating Complete list of Plants and Requirements"

# for all cif specifications in this folder:

for subdir , dirs , files in os.walk("."):

20 for filename in files:

filepath = subdir + os.sep + filename

if filepath.startswith("." +os.sep+"1") and filepath.endswith(".cif"):

filecount=filecount+1

for filename in files:

25 filepath = subdir + os.sep + filename

if filepath.startswith("." +os.sep+"1") and filepath.endswith(".cif"):

# print progress

currentfilecount = currentfilecount +1

print "Progress : " + str(int(( float(currentfilecount)/float(filecount))

*100)) + "%"

30
#check which automata are added in each revision

Thischanged = determine_changed_CIF(Old , filepath)[0]

for i in Thischanged:

# add them to list

35 Complete_PandReq_list.append(i)

# remove duplicates

Complete_PandReq_list = list(set(Complete_PandReq_list))

40 # sort in requirements and plants

for i in Complete_PandReq_list:

if i.startswith("Requirement"):

Reqlist.append(i)

else:

45 Plantlist.append(i)

# sort them alphabetically

Reqlist = sorted(list(set(Reqlist)), key=str.lower)

Plantlist = sorted(list(set(Plantlist)), key=str.lower)

# add together , plants sorted and requirements sorted

50 Complete_PandReq_list=Plantlist+Reqlist

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

76 / 91



CIF Metric Extraction Python Scripts

count = count + 1

#set current file to old for next iteration

Old = filepath

55 #add extra entry and use as header in matrix

Complete_PandReq_list.insert(0,"")

matrix_Changed.append(Complete_PandReq_list)

Old = "empty"

60 currentfilecount =0

print "Start extraction of Metrics and Evaluation of Changes"

# for all cif files in this folder:

for subdir , dirs , files in os.walk("."):

for filename in files:

65 filepath = subdir + os.sep + filename

if filepath.startswith("." +os.sep+"1") and filepath.endswith(".cif"):

# print progress

currentfilecount = currentfilecount +1

print "Progress : " + str(int(( float(currentfilecount)/float(filecount))

*100)) + "%"

70
# add metrics to matrix

matrix_CIF.append(count_string_occurence_CIF(filepath))

# create vector for changes

ChangedVector = [""] * len(Complete_PandReq_list)

75 # find out which automata are changed

ThisAdded ,ThisRemoved , ThisChanged= determine_changed_CIF(Old , filepath

)

# print nice in matrix

for i in ThisAdded:

AutomatonIndex = Complete_PandReq_list.index(i)

80 ChangedVector[AutomatonIndex] = "Added"

for i in ThisRemoved:

AutomatonIndex = Complete_PandReq_list.index(i)

ChangedVector[AutomatonIndex] = "Removed"

for i in ThisChanged:

85 AutomatonIndex = Complete_PandReq_list.index(i)

ChangedVector[AutomatonIndex] = "Changed"

# add filename

ChangedVector[0]=filename

# append to total matrix

90 matrix_Changed.append(ChangedVector)

count = count + 1

Old = filepath

print "Analysis Complete"

95 # Create a header for Metrics csv output

Header =["Revision"," Model"," Function Points","States"," Actions","Blocked

","Illegal","NoOp","Rulecases","Events"

,"State variables as guard","Data

Variables in events and actions","XX

Unique Operators on state variables (

NOT , and , or, >,<, ==, +,- and

otherwise)"," Operators on state

variables (NOT , and , or , >,<, ==, +,-

and otherwise)","Unique Operators on

data vaiables (>>,<<,>< and $)","

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

77 / 91



CIF Metric Extraction Python Scripts

Operators on data vaiables (>>,<<,><

and $)","CC","ACC","LOC"," Halstead n1

","Halstead N1","Halstead n2","Halstead

N2"," Volume","Difficulty","Effort","

Time"," Expected number of Bugs","MI",

"MI (0-100)"]

# print all data to CSV

import csv

100 metricsfilename = "metrics.csv"

changesfilename = "changes.csv"

changesfilename_tp = "changes_tp.csv"

#Metrics

105 with open(metricsfilename , "wb") as f:

writer = csv.writer(f)

x_count=0

writer.writerow(Header)

print "Start Writing metrics to CSV file: " + metricsfilename

110 for x in matrix_CIF:

for y in matrix_CIF[x_count]:

writer.writerow(y)

x_count = x_count+1

115 f.close

#Changed Automata

with open(changesfilename , "wb") as f:

writer = csv.writer(f)

120 x_count=0

print "Start Writing changes to CSV file: " + changesfilename

for x in matrix_Changed:

writer.writerow(x)

x_count = x_count+1

125
f.close

print "Finished changes to CSV file: " + changesfilename

# Changed Automata Transposed:

print "Transpose Changes File: " + changesfilename_tp

130 from itertools import izip

a = izip(*csv.reader(open(changesfilename , "rb")))

csv.writer(open(changesfilename_tp , "wb")).writerows(a)

print " Finished !! "

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

78 / 91



Changelogs

C. Changelogs

This appendix contains changelogs for all components. For each component all existing ASD
models and CIF automata are listed. For each of them is listed what happened to them at
each revision for this component.

C.1 Component A

Figure C.1: Changelog of component A

C.2 Component B

Figure C.2: Changelog of component B

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

79 / 91



Changelogs

C.3 Component C

Figure C.3: Changelog of component C

C.4 Component D

Figure C.4: Changelog of component D

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

80 / 91



Changelogs

C.5 Component E

Figure C.5: Changelog of component E

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

81 / 91



Changelogs

C.6 Component F

Figure C.6: Changelog of component F

C.7 Component G

Figure C.7: Changelog of component G

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

82 / 91



Changelogs

C.8 Component H

Figure C.8: Changelog of component H

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

83 / 91



Metric Data Per Revision

D. Metric Data Per Revision

For each component the most important metric results are shown in a table in this Appendix.
The sum is taken over all automata and models within the component for most metrics,
except the difficulty and the MI, which are taken average.

D.1 Component A

Table D.1: Most imporant metrics ASD for Component A for each revision

Revision LOC
LOC
change

V Vchange Difficulty MI States
State
change

Actions
& Events

FP FP change

1357112586 91 174.88 7.63 62.19 10 107 383
1357112631 103 12 200.43 25.55 8.63 60.84 10 0 119 434 51
1357742150 139 36 283.54 83.11 10.75 58.41 12 2 165 522 88
1357837223 71 68 136.23 147.32 6.75 64.00 8 4 79 354 168
1360749381 114 43 237.04 100.82 9.88 59.25 10 2 133 494 140
1361971024 124 10 274.03 36.99 11.00 58.33 10 0 143 539 45
1366723611 126 2 268.56 5.47 11.25 57.47 10 0 145 557 18
1386690679 1002 876 2765.92 2497.35 55.00 44.70 11 1 1269 5545 4988
1389007705 1040 38 2884.77 118.85 56.90 44.50 11 0 1319 5755 210
1392718014 1042 2 2891.28 6.51 57.00 44.49 11 0 1321 5809 54
1396278097 1026 16 2840.75 50.53 56.20 44.57 11 0 1301 5725 84
1424852602 1042 16 2894.20 53.45 57.20 44.50 11 0 1317 5869 144
1425576006 1046 4 2907.24 13.04 57.40 44.49 11 0 1321 5905 36
1425640172 1054 8 2934.06 26.81 57.90 44.46 11 0 1329 5977 72
1426086770 1056 2 2940.59 6.54 58.00 44.45 11 0 1331 5995 18
1430901241 1072 16 2989.08 48.49 58.70 44.36 11 0 1355 6079 84
1432655913 1030 42 2858.92 130.16 56.70 44.58 11 0 1297 5857 222
1433171121 1044 14 2912.80 53.88 57.40 45.24 11 0 1309 5969 112
1433350588 966 78 2671.25 241.56 53.60 45.68 11 0 1203 5641 328
1435164023 968 2 2677.73 6.48 53.70 45.67 11 0 1205 5659 18
1435340586 908 60 2475.54 202.19 49.80 45.96 11 0 1149 5299 360
1436285398 958 50 2591.88 116.34 51.80 45.33 11 0 1232 5481 182
1436367075 919 39 2507.54 84.33 50.30 45.68 11 0 1160 5319 162
1480579833 977 58 2745.20 237.66 51.29 56.34 14 3 1272 5353 34
1480690994 915 62 2481.04 264.16 36.07 56.80 13 1 1146 5343 10
1481285276 983 68 2664.91 183.86 36.64 56.33 14 1 1278 5377 34
1492167019 975 8 2637.43 27.48 36.23 56.42 14 0 1270 5317 60
1500551082 985 10 2651.91 14.48 37.00 54.22 14 0 1280 5425 108
1505139377 989 4 2662.45 10.54 37.23 54.01 14 0 1284 5443 18

Average 785 58.71 2143.49 171.21 40.96 50.80 11.34 0.5 994.45 4393.97 280.29

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

84 / 91



Metric Data Per Revision

Table D.2: Most imporant metrics CIF for Component A for each revision

Revision LOC
LOC
change

V Vchange Difficulty MI States
State
change

Actions
& Events

FP FP change

1357112586 47 368.58 2.15 72.02 28 48 408
1357112631 58 11 466.88 98.30 2.77 71.27 31 3 59 521 113
1357742150 72 14 640.22 173.35 3.27 70.11 36 5 73 613 92
1357837223 53 19 428.68 211.55 3.06 70.81 27 9 54 495 118
1360749381 63 10 530.47 101.79 2.63 71.89 33 6 64 558 63
1361971024 69 6 603.39 72.92 2.77 72.60 36 3 70 613 55
1366723611 70 1 608.53 5.14 2.81 72.40 36 0 71 619 6
1386690679 350 280 3365.94 2757.40 10.17 68.43 61 25 351 3315 2696
1389007705 360 10 3483.53 117.59 10.49 68.40 62 1 361 3408 93
1392718014 361 1 3486.77 3.24 10.58 68.41 61 1 362 3392 16
1396278097 357 4 3443.95 42.82 10.46 68.42 61 0 358 3357 35
1424852602 365 8 3529.67 85.72 10.71 68.40 61 0 366 3405 48
1425576006 367 2 3551.14 21.47 10.77 68.40 61 0 368 3417 12
1425640172 371 4 3594.15 43.00 10.89 68.38 61 0 372 3441 24
1426086770 372 1 3604.91 10.76 10.92 68.38 61 0 373 3447 6
1430901241 377 5 3669.58 64.67 11.08 68.36 62 1 378 3499 52
1432655913 363 14 3489.99 179.58 10.71 68.43 59 3 364 3349 150
1433171121 358 5 3431.83 58.16 11.16 67.47 56 3 359 3304 45
1433350588 344 14 3285.94 145.89 10.99 67.64 55 1 345 3066 238
1435164023 345 1 3296.58 10.64 11.02 67.64 55 0 346 3072 6
1435340586 322 23 3073.07 223.51 10.89 67.56 52 3 323 2915 157
1436285398 367 45 3546.75 473.67 11.39 67.42 58 6 368 3402 487
1436367075 72 295 697.25 2849.49 3.42 71.32 36 22 75 782 2620
1480579833 351 279 3376.66 2679.40 10.25 69.05 59 23 354 3281 2499
1480690994 72 279 697.25 2679.40 3.42 71.32 36 23 75 782 2499
1481285276 365 293 3444.67 2747.41 8.90 67.03 66 30 369 3359 2577
1492167019 363 2 3423.41 21.26 8.86 67.03 66 0 367 3347 12
1500551082 368 5 3444.01 20.60 8.98 66.24 66 0 372 3377 30
1505139377 369 1 3454.63 10.62 9.00 66.23 66 0 373 3383 6

Average 267.97 58.29 2553.05 568.19 8.09 69.00 52 6 269.59 2480.24 526.96

D.2 Component B

Table D.3: Most imporant metrics ASD for Component B for each revision

Revision LOC
LOC
change

V Vchange Difficulty MI States
State
change

Actions
& Events

FP FP change

1407419954 1503 3851.78 62.80 36.20 7 1912 8922
1424852602 1509 6 3870.60 18.82 63.10 36.16 7 0 1918 8976 54
1425579459 1543 34 3974.58 103.98 64.90 35.93 7 0 1970 9204 228
1425640172 1551 8 3993.74 19.16 64.60 35.90 7 0 1978 9132 72
1430901241 1577 26 4075.82 82.08 66.20 35.70 7 0 2010 9384 252
1432038457 1575 2 4067.29 8.53 65.90 35.71 7 0 2008 9366 18
1433777296 1513 62 3877.85 189.43 64.10 35.90 7 0 1922 9108 258
1435340586 1459 54 3717.83 160.03 62.80 36.14 7 0 1868 8790 318
1436285398 1477 18 3769.96 52.13 63.40 36.03 7 0 1904 8862 72
1436367075 1467 10 3742.45 27.51 63.10 36.10 7 0 1876 8850 12
1443626973 1470 3 3749.16 6.71 62.70 36.15 7 0 1888 9456 606
1456942487 1496 26 3823.60 74.44 64.30 35.80 7 0 1914 9006 450
1477672466 1494 2 3814.61 8.99 64.10 35.79 7 0 1906 9018 12
1492167019 1490 4 3798.15 16.46 63.80 35.77 7 0 1902 8950 68

Average 1508.86 19.62 3866.24 59.10 63.99 35.95 7 0 1926.86 9073.14 186.15

Table D.4: Most imporant metrics CIF for Component B for each revision

Revision LOC
LOC
change

V Vchange Difficulty MI States
State
change

Actions
& Events

FP FP change

1407419954 213 1851.41 7.92 54.27 46 217 2209
1424852602 214 1 1860.98 9.57 7.96 54.26 46 0 218 2215 6
1425579459 226 12 1989.76 128.78 8.29 54.15 48 2 230 2397 182
1425640172 221 5 1931.63 58.13 8.08 54.19 47 1 225 2323 74
1430901241 225 4 1968.76 37.13 8.25 54.14 47 0 229 2347 24
1432038457 225 0 1968.76 0.00 8.25 54.14 47 0 229 2347 0
1433777296 227 2 1988.14 19.38 8.33 54.13 47 0 231 2359 12
1435340586 232 5 2041.90 53.76 8.54 54.05 48 1 236 2422 63
1436285398 222 10 1940.52 101.38 8.13 54.17 47 1 226 2329 93
1436367075 232 10 2041.90 101.38 8.54 54.05 48 1 236 2422 93
1443626973 235 3 2078.05 36.15 8.67 54.00 49 1 239 2462 40
1456942487 237 2 2097.46 19.41 8.75 53.99 49 0 241 2474 12
1477672466 241 4 2135.72 38.26 8.92 53.95 49 0 245 2498 24
1492167019 245 4 2174.77 39.05 9.08 53.92 49 0 249 2522 24

Average 228.21 4.77 2004.98 49.41 8.41 54.10 47.64 0.54 232.21 2380.43 49.77

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

85 / 91



Metric Data Per Revision

D.3 Component C

Table D.5: Most imporant metrics ASD for Component C for each revision

Revision LOC
LOC
change

V Vchange Difficulty MI States
State
change

Actions
& Events

FP FP change

1377096893 878 2305.17 49.63 45.53 7 1127 4933
1377701992 882 4 2315.98 10.81 49.63 45.54 7 0 1133 4979 46
1379338175 890 8 2339.23 23.25 50.00 45.47 7 0 1145 5015 36
1380621927 924 34 2446.16 106.92 52.00 45.26 7 0 1183 5135 120
1381158560 904 20 2384.17 61.99 50.88 45.39 7 0 1159 5129 6
1381422145 922 18 2439.71 55.54 51.88 45.27 7 0 1181 5231 102
1382600014 930 8 2463.10 23.39 52.25 45.21 7 0 1193 5257 26
1382601245 924 6 2443.74 19.35 51.88 45.24 7 0 1187 5225 32
1384368727 926 2 2445.53 1.78 52.25 44.59 7 0 1189 5243 18
1389007705 983 57 2615.62 170.09 56.13 43.23 7 0 1258 5588 345
1389197464 995 12 2654.40 38.78 56.63 43.12 7 0 1278 5648 60
1389278792 1147 152 3019.59 365.19 57.13 41.85 9 2 1574 5696 48
1389773888 1643 496 4309.17 1289.58 62.60 38.02 10 1 2310 7816 2120
1389773899 1173 470 3075.65 1233.52 47.10 46.30 10 0 1600 5890 1926
1392718014 1161 12 3034.61 41.04 46.60 46.18 10 0 1588 5830 60
1396278097 1145 16 2988.42 46.19 46.10 46.22 10 0 1565 5759 71
1396278328 1127 18 2958.45 29.97 56.38 41.72 9 1 1547 5637 122
1424852602 1145 18 3014.89 56.43 57.63 41.44 9 0 1565 5799 162
1425576006 1149 4 3027.89 13.00 57.88 41.42 9 0 1569 5835 36
1425640172 1157 8 3053.93 26.04 58.38 41.38 9 0 1577 5907 72
1426086770 1159 2 3060.44 6.52 58.50 41.37 9 0 1579 5925 18
1430901241 1179 20 3118.38 57.94 59.25 41.25 9 0 1611 6009 84
1432655913 1129 50 2974.78 143.60 57.13 41.55 9 0 1537 5787 222
1433350588 1067 62 2791.64 183.14 55.25 41.63 9 0 1433 5667 120
1435164023 1069 2 2798.10 6.46 55.38 41.62 9 0 1435 5685 18
1435340586 1009 60 2609.04 189.06 51.38 42.28 9 0 1375 5313 372
1440512008 1017 8 2634.59 25.55 51.88 42.24 9 0 1383 5373 60
1443103043 1091 74 2831.44 196.85 54.25 41.05 9 0 1523 6093 720
1443626973 1137 46 3007.72 176.28 59.38 40.93 9 0 1515 5985 108
1460552700 1045 92 2710.07 297.65 53.63 41.41 9 0 1423 5517 468
1477656517 908 137 2377.15 332.91 53.38 45.61 7 2 1153 5531 14
1477672466 886 22 2311.68 65.47 52.25 45.78 7 0 1123 5405 126
1480579833 878 8 2286.15 25.53 51.75 45.83 7 0 1115 5333 72
1480690994 886 8 2311.68 25.53 52.25 45.78 7 0 1123 5405 72
1481285276 878 8 2286.15 25.53 51.75 45.83 7 0 1115 5333 72
1492167019 870 8 2260.67 25.48 51.25 45.88 7 0 1107 5333 0
1500551082 868 2 2254.31 6.36 51.13 45.89 7 0 1105 5333 0

Average 1029.22 54.78 2701.61 150.08 53.59 43.63 8.14 0.17 1367.11 5583.22 220.94

Table D.6: Most imporant metrics CIF for Component C for each revision

Revision LOC
LOC
change

V Vchange Difficulty MI States
State
change

Actions
& Events

FP FP change

1377096893 294 2659.18 10.98 66.52 39 295 2935
1377701992 285 9 2601.47 57.71 11.32 67.13 37 2 286 2785 150
1379338175 288 3 2633.15 31.68 11.45 67.10 37 0 289 2814 29
1380621927 303 15 2797.99 164.84 12.00 66.99 38 1 304 2948 134
1381158560 295 8 2707.25 90.74 11.77 67.07 37 1 296 2856 92
1381422145 303 8 2797.99 90.74 12.00 66.99 38 1 304 2948 92
1382600014 305 2 2819.30 21.31 12.09 66.96 38 0 306 2971 23
1382601245 303 2 2797.99 21.31 12.00 66.97 38 0 304 2959 12
1384368727 305 2 2810.37 12.37 12.09 66.46 39 1 306 2982 23
1389007705 331 26 3055.33 244.97 10.43 69.96 47 8 332 3193 211
1389197464 332 1 3066.05 10.72 10.46 69.95 47 0 333 3199 6
1389278792 340 8 3127.49 61.43 9.47 70.87 52 5 341 3286 87
1389773888 449 109 4090.39 962.91 11.33 69.28 68 16 450 4338 1052
1389773899 351 98 3217.04 873.35 8.75 71.66 57 11 352 3376 962
1392718014 348 3 3173.26 43.79 8.72 71.64 56 1 349 3336 40
1396278097 354 6 3220.90 47.64 9.39 69.78 56 0 355 3476 140
1396278328 349 5 3187.65 33.25 9.82 69.54 53 3 350 3435 41
1424852602 358 9 3280.25 92.60 10.09 69.47 53 0 359 3489 54
1425576006 360 2 3301.76 21.51 10.15 69.46 53 0 361 3501 12
1425640172 364 4 3344.84 43.08 10.26 69.45 53 0 365 3525 24
1426086770 365 1 3355.62 10.78 10.29 69.45 53 0 366 3531 6
1430901241 370 5 3420.40 64.78 10.44 69.42 54 1 371 3583 52
1432655913 358 12 3269.50 150.90 10.09 69.48 52 2 359 3467 116
1433350588 342 16 3086.73 182.77 9.94 69.57 50 2 343 3184 283
1435164023 343 1 3097.38 10.65 9.97 69.57 50 0 344 3190 6
1435340586 327 16 2935.06 162.32 9.50 69.69 50 0 328 3094 96
1440512008 330 3 2966.83 31.77 9.59 69.68 50 0 331 3112 18
1443103043 368 38 3379.50 412.67 10.38 69.25 54 4 369 3571 459

Continued on next page

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

86 / 91



Metric Data Per Revision

Table D.6 – Continued from previous page

Revision LOC
LOC
change

V Vchange Difficulty MI States
State
change

Actions
& Events

FP FP change

1443626973 335 33 3012.09 367.41 9.74 69.48 51 3 336 3164 407
1460552700 336 1 3022.69 10.61 9.76 69.48 51 0 337 3170 6
1477656517 317 19 2915.77 106.93 13.27 66.85 38 13 318 2898 272
1477672466 309 8 2821.89 93.88 12.95 66.93 37 1 310 2817 81
1480579833 305 4 2779.60 42.29 12.77 66.94 37 0 306 2793 24
1480690994 309 4 2821.89 42.29 12.95 66.93 37 0 310 2817 24
1481285276 305 4 2779.60 42.29 12.77 66.94 37 0 306 2793 24
1492167019 303 2 2758.49 21.11 12.68 66.95 37 0 304 2781 12
1500551082 302 1 2747.94 10.55 12.64 66.96 37 0 303 2775 6

Average 330.84 13.56 3023.26 130.28 10.93 68.56 46.24 2.11 331.84 3164.65 141

D.4 Component D

Table D.7: Most imporant metrics ASD for Component D for each revision

Revision LOC
LOC
change

V Vchange Difficulty MI States
State
change

Actions
& Events

FP FP change

1357112586 264 709.93 28.50 50.80 5 295 1555
1357112727 271 7 728.72 18.79 29.25 50.52 5 0 303 1585 30
1358679387 324 53 953.52 224.80 35.75 48.29 5 0 358 1920 335
1361291375 302 6 854.71 6.00 28.38 49.01 5 0 334 1810 6
1363781023 321 19 945.39 90.68 35.50 48.37 5 0 355 1923 113
1381414063 342 21 1002.36 56.97 37.75 46.88 5 378 2054 131

Average 304 21.2 865.77 79.45 32.52 48.98 5 0 337.17 1807.83 123

Table D.8: Most imporant metrics CIF for Component D for each revision

Revision LOC
LOC
change

V Vchange Difficulty MI States
State
change

Actions
& Events

FP FP change

1357112586 248 2130.29 5.67 78.06 92 249 2049
1357112727 217 31 1924.54 205.00 5.14 79.14 94 2 219 2271 222
1358679387 246 29 2409.72 485.18 8.02 79.08 99 5 248 2759 488
1361291375 208 6 1817.27 6.00 4.86 79.22 93 6 210 2191 6
1363781023 219 11 1933.10 115.83 5.03 79.44 98 5 221 2307 116
1381414063 230 11 2048.76 115.66 5.20 79.58 103 5 232 2412 105

Average 228 17.6 2043.95 185.53 5.65 79.09 96.5 4.6 229.83 2331.5 187.4

D.5 Component E

Table D.9: Most imporant metrics ASD for Component E for each revision

Revision LOC
LOC
change

V Vchange Difficulty MI States
State
change

Actions
& Events

FP FP change

1357112445 274 715.49 23.63 51.04 7 363 1321
1357112586 108 166 286.80 428.69 13.75 59.23 4 3 118 714 607
1357112727 120 12 307.38 20.59 13.50 58.23 4 0 130 774 60
1366723611 134 14 384.78 77.39 17.13 55.68 4 0 144 888 114
1367490482 159 25 468.97 84.19 20.25 53.88 4 0 171 1022 134

Average 159 54.25 432.68 152.72 17.65 55.61 4.6 0.75 185.2 943.8 228.75

Table D.10: Most imporant metrics CIF for Component E for each revision

Revision LOC
LOC
change

V Vchange Difficulty MI States
State
change

Actions
& Events

FP FP change

1357112445 136 1040.23 2.25 80.91 73 143 1175
1357112586 76 60 575.34 464.89 2.00 79.79 44 29 82 688 487
1357112727 80 4 606.36 31.02 1.79 81.69 52 8 88 736 48
1366723611 81 1 611.50 5.14 1.80 81.59 52 0 89 742 6
1367490482 91 10 722.10 110.60 1.84 82.19 60 8 100 844 102

Average 92.8 18.75 711.11 152.91 1.93 81.23 56.2 11.25 100.4 837 160.75

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

87 / 91



Metric Data Per Revision

D.6 Component F

Table D.11: Most imporant metrics ASD for Component F for each revision

Revision LOC
LOC
change

V Vchange Difficulty MI States
State
change

Actions
& Events

FP FP change

1357112586 354 790.29 18.25 52.93 15 474 1461
1357112589 372 18 835.33 45.04 19.08 52.58 15 0 502 1545 84
1357112598 414 42 940.73 105.40 20.58 51.96 15 0 574 1665 120
1357112679 443 29 1016.11 75.38 22.00 51.51 15 0 618 1779 114
1357112685 425 18 967.20 48.91 20.50 51.92 15 0 600 1659 120
1357112696 1471 1046 3817.37 2850.17 50.13 45.13 19 4 2202 5625 3966
1357112719 1471 0 3817.37 0.00 50.13 45.13 19 0 2202 5613 12
1357112725 1481 10 3845.05 27.68 50.75 44.95 19 0 2212 5667 54
1357742150 1632 151 4268.54 423.49 52.38 44.12 21 2 2475 5832 165
1357837223 1353 279 3519.96 748.58 50.44 45.91 17 4 1974 5614 218
1358679387 1371 18 3230.85 289.11 44.19 45.94 17 0 2004 5728 114
1359650278 1486 115 3871.21 640.36 51.39 45.12 18 1 2121 6588 860
1360667327 1527 41 3985.51 114.30 53.67 44.55 18 0 2162 6715 127
1361272800 1551 24 4053.79 68.28 53.89 44.50 18 0 2210 6979 264
1361342930 1573 22 4126.80 73.01 55.11 44.40 18 0 2232 6961 18
1361782346 1697 124 4455.77 328.97 55.61 43.95 19 1 2464 7185 224
1361782348 1813 116 4761.48 305.71 55.78 43.75 20 1 2692 7197 12
1361782356 1819 6 4781.90 20.42 56.11 43.73 20 0 2698 7257 60
1361786874 1841 22 4851.20 69.30 57.33 43.56 20 0 2720 7443 186
1361971024 1858 17 4912.62 61.42 57.89 43.40 20 0 2741 7490 47
1362061911 1888 30 5006.45 93.83 58.78 43.33 20 0 2787 7514 24
1362673655 1872 16 4951.65 54.79 57.89 43.38 20 0 2771 7556 42
1363164832 1893 21 5021.14 69.49 58.61 43.07 20 0 2796 7619 63
1363779418 1893 0 5021.14 0.00 58.61 43.07 20 0 2796 7619 0
1363796837 1913 20 5085.25 64.11 59.33 43.02 20 0 2824 7703 84
1365507551 1931 18 5143.46 58.21 60.33 42.56 20 0 2842 7721 18
1366379836 1945 14 5179.79 36.33 60.33 42.49 20 0 2872 7865 144
1366723611 1965 20 5253.21 73.42 61.83 42.42 20 0 2884 7853 12
1367491328 2005 40 5372.20 118.99 62.89 42.25 20 0 2948 8183 330
1367492036 2017 12 5409.24 37.04 63.17 42.23 20 0 2968 8219 36
1369232619 2023 6 5425.54 16.31 63.50 42.14 20 0 2974 8219 0
1369232646 2059 36 5533.93 108.38 64.33 42.02 20 0 3034 8321 102
1370266650 2103 44 5677.18 143.25 66.39 41.84 20 0 3086 8405 84
1376398539 2097 6 5656.21 20.97 66.06 41.86 20 0 3080 8591 186
1376467846 2103 6 5677.18 20.97 66.39 41.84 20 0 3086 8633 42
1377154381 2169 66 5880.15 202.98 69.67 41.35 20 0 3160 8699 66
1379338175 2127 42 5753.86 126.30 67.33 41.76 20 0 3118 8741 42
1379596412 2203 76 5980.46 226.61 70.39 41.20 20 0 3218 9108 367
1380621927 2233 30 6081.27 100.81 71.67 41.14 20 0 3256 9306 198
1381158560 2197 36 5967.01 114.27 70.06 41.31 20 0 3212 9198 108
1381422145 2231 34 6074.22 107.21 71.56 41.15 20 0 3254 9300 102
1381492557 2219 12 6039.68 34.54 70.89 41.27 20 0 3242 9204 96
1381848999 2235 16 6088.33 48.65 71.78 41.14 20 0 3258 9300 96
1382596072 2235 0 6088.33 0.00 71.78 41.14 20 0 3258 9324 24
1382600014 2255 20 6143.01 54.68 72.50 40.97 20 0 3286 9336 12
1383838666 2233 22 6078.44 64.57 71.67 41.10 20 0 3256 9300 36
1384239499 2351 118 6425.53 347.09 74.33 40.67 20 0 3454 9672 372
1384244021 2251 100 6129.26 296.27 72.67 40.90 20 0 3274 9474 198
1384342565 2389 138 6539.09 409.83 76.44 40.35 20 0 3492 9708 234
1385385041 2279 110 6215.51 323.58 73.83 40.75 20 0 3310 7770 1938
1386690679 2425 146 6672.10 456.59 78.44 40.18 20 0 3528 9718 1948
1388756776 2425 0 6677.03 4.93 78.44 40.24 20 0 3528 10174 456
1389007705 2473 48 6828.65 151.62 79.94 40.12 20 0 3600 10354 180
1389197464 2475 2 6839.03 10.38 80.44 40.09 20 0 3594 10402 48
1389608813 2535 60 7026.52 187.49 82.61 39.88 20 0 3678 10600 198
1392718014 2539 4 7031.57 5.06 82.83 39.78 20 0 3682 10588 12
1396278097 2539 0 7031.89 0.32 83.22 39.73 20 0 3674 10636 48
1400080538 2539 0 7031.89 0.00 83.22 39.73 20 0 3674 10804 168
1401889752 2591 52 7189.94 158.05 84.94 39.50 20 0 3750 10942 138
1410448296 2791 200 7751.81 561.87 86.06 38.27 23 3 4119 11145 203
1412162090 2621 170 7256.50 495.31 85.33 38.45 22 1 3793 11111 34
1412688204 2795 174 7766.01 509.51 86.28 38.27 23 1 4123 11145 34
1424852602 2795 0 7766.01 0.00 86.28 38.27 23 0 4123 11163 18
1425576006 2829 34 7873.26 107.25 88.17 38.06 23 0 4157 11199 36
1425579459 2879 50 8024.62 151.36 88.28 38.05 23 0 4261 11463 264
1425640172 2881 2 8030.37 5.75 88.39 38.03 23 0 4263 11463 0
1426086770 2883 2 8037.48 7.12 88.50 38.02 23 0 4265 11499 36
1430495736 3183 300 8960.72 923.23 92.56 36.61 26 3 4754 11986 487
1432038457 3183 0 8960.72 0.00 92.56 36.61 26 0 4754 11968 18
1432655913 3145 38 8846.56 114.16 92.44 36.61 26 0 4676 11765 203
1433171121 3075 70 8595.42 251.14 89.89 37.01 26 0 4592 11776 11
1433350588 2979 96 8293.10 302.32 88.06 37.12 26 0 4426 11482 294
1433777296 2822 157 7835.48 457.62 87.39 37.71 24 2 4143 11451 31
1435164023 2822 0 7835.48 0.00 87.39 37.71 24 0 4143 11469 18
1435340586 2715 107 7467.58 367.90 82.94 38.71 23 1 4029 10965 504
1435592842 2718 3 7481.67 14.10 83.06 38.67 23 0 4032 10984 19

Continued on next page

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

88 / 91



Metric Data Per Revision

Table D.11 – Continued from previous page

Revision LOC
LOC
change

V Vchange Difficulty MI States
State
change

Actions
& Events

FP FP change

1440512008 2820 102 7841.49 359.82 88.72 38.43 23 0 4134 10972 12
1443626973 2771 49 7641.02 200.47 84.67 38.44 23 0 4112 11650 678
1456942487 2791 20 7705.11 64.09 85.78 38.33 23 0 4132 11218 432
1463670046 2797 6 7726.13 21.02 86.11 38.32 23 0 4138 11338 120
1477672466 2765 32 7623.54 102.59 85.22 38.37 23 0 4088 11266 72
1480579833 3201 436 8871.16 1247.62 66.75 45.27 28 5 4895 11577 311
1481285276 3386 185 9427.14 555.98 62.27 48.73 30 2 5248 11636 59
1492167019 3378 8 9399.25 27.89 61.96 48.74 30 0 5240 11636 0
1500551082 3390 12 9421.25 21.99 62.42 47.63 30 0 5252 11726 90
1505139377 3400 10 9451.54 30.30 62.81 47.50 30 0 5262 11762 36
1506503094 3406 6 9472.05 20.51 63.04 47.49 30 0 5268 11762 0
1507216914 3412 6 9491.79 19.74 63.27 47.47 30 0 5274 11906 144
1507298943 3412 0 9491.79 0.00 63.27 47.47 30 0 5274 11906 0
1509109642 3412 0 9491.79 0.00 63.27 47.47 30 0 5274 11906 0

Average 2280.71 65.10 6221.26 197.57 68.08 42.26 21.42 0.35 3373.61 9044.19 215.52

Table D.12: Most imporant metrics CIF for Component F for each revision

Revision LOC
LOC
change

V Vchange Difficulty MI States
State
change

Actions
& Events

FP FP change

1357112586 144 1146.20 3.27 71.91 65 145 1348
1357112589 149 5 1193.80 47.60 3.36 71.84 66 1 150 1400 52
1357112598 156 7 1258.93 65.13 3.49 71.76 67 1 157 1508 108
1357112679 162 6 1314.35 55.42 3.56 71.70 68 1 163 1577 69
1357112685 156 6 1252.65 61.70 3.43 71.77 67 1 157 1519 58
1357112696 388 232 3333.47 2080.82 6.28 70.19 97 30 389 4012 2493
1357112719 386 2 3317.49 15.98 6.25 70.24 97 0 387 3988 24
1357112725 384 2 3293.84 23.66 6.22 70.27 96 1 385 3954 34
1357742150 404 20 3509.76 215.92 7.03 69.86 101 5 405 4097 143
1357837223 381 23 3280.61 229.15 6.79 69.98 92 9 382 3941 156
1358679387 387 6 3345.08 64.47 6.82 69.97 93 1 388 4021 80
1359650278 449 62 3845.33 500.25 7.83 69.20 100 7 450 4466 445
1360667327 457 8 3925.32 80.00 8.02 68.90 100 0 458 4518 52
1361272800 471 14 4059.80 134.47 8.24 68.78 102 2 472 4646 128
1361342930 470 1 4051.75 8.04 8.22 68.79 102 0 471 4640 6
1361782346 485 15 4168.10 116.35 8.20 68.74 105 3 486 4785 145
1361782348 487 2 4176.52 8.42 7.98 69.22 107 2 488 4817 32
1361782356 489 2 4197.07 20.55 8.01 69.22 107 0 490 4829 12
1361786874 499 10 4293.34 96.27 8.15 69.18 107 0 500 4889 60
1361971024 508 9 4372.14 78.81 8.54 69.20 109 2 509 4969 80
1362061911 510 2 4396.45 24.30 8.56 69.18 110 1 511 5003 34
1362673655 504 6 4334.26 62.18 8.56 69.19 109 1 505 4879 124
1363164832 513 9 4410.41 76.15 8.52 69.86 113 4 514 4957 78
1363779418 513 0 4408.24 2.17 8.52 69.85 113 0 514 4957 0
1363796837 517 4 4449.36 41.12 8.57 69.84 113 0 518 4992 35
1365507551 522 5 4492.89 43.53 8.54 70.09 115 2 523 5028 36
1366379836 529 7 4562.91 70.02 8.63 70.07 115 0 530 5092 64
1366723611 528 1 4552.59 10.33 8.62 70.07 115 0 529 5075 17
1367491328 546 18 4739.17 186.59 8.84 70.02 116 1 547 5227 152
1367492036 548 2 4760.01 20.84 8.87 70.02 116 0 549 5250 23
1369232619 548 0 4760.01 0.00 8.87 70.02 116 0 549 5250 0
1369232646 553 5 4833.56 73.55 8.93 70.03 117 1 554 5348 98
1370266650 560 7 4888.64 55.07 8.98 69.97 118 1 561 5399 51
1376398539 569 9 4974.77 86.14 9.10 69.94 118 0 570 5453 54
1376467846 560 9 4888.64 86.14 8.98 69.97 118 0 561 5399 54
1377154381 586 26 5137.50 248.86 9.31 69.86 119 1 587 5588 189
1379338175 560 26 4888.64 248.86 8.98 69.97 118 1 561 5399 189
1379596412 587 27 5144.74 256.10 9.37 69.83 119 1 588 5605 206
1380621927 622 35 5716.63 571.89 12.17 69.87 120 1 623 5922 317
1381158560 595 27 5225.55 491.09 9.46 69.81 119 1 596 5653 269
1381422145 604 9 5324.28 98.73 9.55 69.79 120 1 605 5740 87
1381492557 602 2 5306.98 17.31 9.53 69.80 120 0 603 5728 12
1381848999 605 3 5332.96 25.99 9.56 69.78 120 0 606 5746 18
1382596072 607 2 5354.18 21.21 9.59 69.78 120 0 608 5769 23
1382600014 605 2 5332.96 21.21 9.56 69.78 120 0 606 5757 12
1383838666 606 1 5341.95 8.99 9.56 69.78 120 0 607 5752 5
1384239499 624 18 5511.52 169.57 9.79 69.70 121 1 625 5937 185
1384244021 620 4 5461.87 49.65 9.73 69.71 120 1 621 5836 101
1384342565 623 3 5497.48 35.61 9.77 69.70 121 1 624 5942 106
1385385041 619 4 5459.38 38.09 9.69 69.72 121 0 620 5863 79
1386690679 649 30 5738.86 279.48 10.20 69.55 123 2 650 6101 238
1388756776 648 1 5721.61 17.25 10.19 69.56 122 1 649 6073 28
1389007705 662 14 5877.77 156.16 10.35 69.53 123 1 663 6212 139
1389197464 671 9 5967.74 89.97 10.43 69.51 124 1 672 6299 87
1389608813 681 10 6076.53 108.78 10.55 69.48 125 1 682 6392 93
1392718014 681 0 6062.73 13.79 10.58 69.48 124 1 682 6370 22
1396278097 678 3 6029.40 33.33 10.54 69.48 124 0 679 6341 29

Continued on next page

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

89 / 91



Metric Data Per Revision

Table D.12 – Continued from previous page

Revision LOC
LOC
change

V Vchange Difficulty MI States
State
change

Actions
& Events

FP FP change

1400080538 691 13 6156.73 127.33 10.70 69.45 124 0 692 6419 78
1401889752 699 8 6247.08 90.35 10.80 69.43 125 1 700 6500 81
1410448296 766 67 7162.71 915.63 14.49 69.14 133 8 767 7032 532
1412162090 702 64 6276.99 885.73 10.89 69.07 125 8 703 6524 508
1412688204 724 22 6479.69 202.70 11.05 69.48 133 8 725 6678 154
1424852602 725 1 6490.42 10.73 11.06 69.47 133 0 726 6684 6
1425576006 727 2 6511.89 21.47 11.09 69.47 133 0 728 6696 12
1425579459 738 11 6620.95 109.06 11.22 69.45 133 0 739 6762 66
1425640172 735 3 6588.66 32.30 11.18 69.45 133 0 736 6744 18
1426086770 737 2 6607.91 19.26 11.21 69.44 133 0 738 6756 12
1430495736 788 51 7211.67 603.75 11.88 69.99 150 17 789 7164 408
1432038457 789 1 7222.46 10.79 11.89 69.99 150 0 790 7170 6
1432655913 774 15 7032.08 190.38 11.75 70.00 147 3 775 7014 156
1433171121 751 23 6754.92 277.16 10.75 69.87 143 4 752 6784 230
1433350588 735 16 6586.09 168.83 10.66 69.89 142 1 736 6523 261
1433777296 721 14 6396.44 189.65 10.88 69.26 133 9 722 6458 65
1435164023 723 2 6416.15 19.71 10.89 69.26 133 0 724 6470 12
1435340586 691 32 6093.91 322.24 10.53 69.19 127 6 692 6220 250
1435592842 694 3 6147.08 53.17 10.55 69.15 128 1 695 6245 25
1440512008 699 5 6195.86 48.78 10.61 69.14 128 0 700 6275 30
1443626973 702 3 6231.06 35.20 10.65 69.12 129 1 703 6315 40
1456942487 706 4 6269.43 38.37 10.70 69.11 129 0 707 6339 24
1463670046 706 0 6269.43 0.00 10.70 69.11 129 0 707 6339 0
1477672466 708 2 6273.07 3.63 10.74 69.10 128 1 709 6318 21
1480579833 738 30 6460.78 187.71 9.30 68.67 146 18 740 6700 382
1481285276 757 19 6587.24 126.46 8.83 70.88 155 9 758 6871 171
1492167019 754 3 6584.81 2.43 8.80 71.05 155 0 755 6845 26
1500551082 759 5 6605.50 20.69 8.85 70.73 155 0 760 6875 30
1505139377 761 2 6628.59 23.09 8.86 70.66 156 1 762 6887 12
1506503094 754 7 6593.13 35.46 8.79 71.14 156 0 756 6846 41
1507216914 754 0 6593.13 0.00 8.79 71.14 156 0 756 6846 0
1507298943 754 0 6593.13 0.00 8.79 71.14 156 0 756 6846 0
1509109642 760 6 6618.07 24.94 8.85 70.66 156 0 761 6881 35

Average 593.21 13.57 5220.06 140.90 9.18 69.83 120.28 2.12 594.26 5569.82 124.98

D.7 Component G

Table D.13: Most imporant metrics ASD for Component G for each revision

Revision LOC
LOC
change

V Vchange Difficulty MI States
State
change

Actions
& Events

FP FP change

1377154381 306 860.87 38.38 50.36 4 394 2420
1379338175 306 0 860.87 0.00 38.38 50.36 4 0 394 2420 0
1379596412 308 2 867.04 6.17 38.63 50.32 4 0 396 2420 0
1413460241 310 2 870.31 3.27 38.88 49.38 4 0 398 2438 18
1443626973 318 8 900.16 29.85 39.88 49.23 4 0 408 2438 0
1449484128 322 4 912.60 12.44 40.38 49.16 4 0 412 2534 96
1449497233 322 0 912.60 0.00 40.38 49.16 4 0 412 2534 0

Average 316 3.2 892.54 10.35 39.63 49.45 4 0 405.2 2472.8 22.8

Table D.14: Most imporant metrics CIF for Component G for each revision

Revision LOC
LOC
change

V Vchange Difficulty MI States
State
change

Actions
& Events

FP FP change

1377154381 96 742.23 5.91 65.36 26 97 830
1379338175 96 0 742.23 0.00 5.91 65.36 26 0 97 830 0
1379596412 96 0 742.23 0.00 5.91 65.36 26 0 97 830 0
1413460241 96 0 742.23 0.00 5.91 65.36 26 0 97 830 0
1443626973 97 1 750.89 8.66 6.04 65.33 26 0 98 836 6
1449484128 122 25 940.59 189.70 6.94 65.65 28 2 124 1077 241
1449497233 124 2 958.51 17.92 7.19 65.59 28 0 126 1089 12

Average 107 5.6 826.89 43.26 6.40 65.46 26.8 0.4 108.4 932.4 51.8

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

90 / 91



Metric Data Per Revision

D.8 Component H

Table D.15: Most imporant metrics ASD for Component H for each revision

Revision LOC
LOC
change

V Vchange Difficulty MI States
State
change

Actions
& Events

FP FP change

1358263057 668 1576.17 24.8 52.57 10 1153 1963
1360337247 942 274 2330.09 753.92 32.7 49.38 11 1 1651 2431 468
1361272800 973 31 2414.05 83.96 33.6 48.81 11 0 1707 2695 264
1366716021 985 12 2454.29 40.23 34.3 48.60 11 0 1723 2757 62
1370505495 1004 19 2512.53 58.24 35.6 48.11 11 0 1747 2819 62
1376398539 539 465 1243.97 1268.56 28 50.24 11 0 815 1919 900
1377154381 541 2 1253.82 9.85 28.2 50.43 11 0 817 1921 2
1378308156 549 8 1279.78 25.96 28.6 50.42 11 0 829 1983 62
1378998596 564 15 1321.79 42.01 29.5 49.98 11 0 849 2045 62
1379338175 543 21 1258.17 63.62 28.3 50.32 11 0 821 1921 124
1379596412 549 6 1279.78 21.61 28.6 50.42 11 0 829 1983 62
1381158560 564 15 1321.79 42.01 29.5 49.98 11 0 849 2045 62
1382004243 579 15 1363.98 42.19 30.4 49.58 11 0 869 2107 62
1382600014 570 9 1335.50 28.48 29.9 49.64 11 0 857 2045 62
1383062076 585 15 1381.15 45.66 31 49.47 11 0 875 2107 62
1384790897 576 9 1352.67 28.48 30.5 49.53 11 0 863 2087 20
1385385041 581 5 1370.74 18.07 30.6 49.64 11 0 871 2083 4
1386852798 573 8 1345.78 24.96 30.3 49.70 11 0 859 2087 4
1388756776 567 6 1328.61 17.17 29.7 49.82 11 0 853 2045 42
1389197464 557 10 1303.54 25.06 29.7 49.87 11 0 831 2015 30
1389608813 561 4 1315.01 11.46 30.1 49.79 11 0 835 2033 18
1399987407 571 10 1349.08 34.08 32.6 49.82 11 0 845 2069 36
1430901241 577 6 1366.55 17.47 33.2 49.71 11 0 851 2129 60
1433783288 595 18 1407.56 41.01 32 49.37 11 0 887 2195 66
1434555494 570 25 1346.05 61.51 30.3 50.64 11 0 857 2099 96
1435340586 564 6 1328.58 17.47 29.7 50.74 11 0 851 2099 0
1443626973 598 34 1421.73 93.15 31.6 50.34 11 0 903 2165 66
1492167019 598 0 1410.10 11.63 31.6 50.35 11 0 903 2189 24
1506603857 598 0 1410.10 0.00 31.6 50.35 11 0 903 2189 0

Average 629 37.43 1495.96 104.57 30.57 49.92 10.97 0.04 982.86 2145.69 99.36

Table D.16: Most imporant metrics CIF for Component H for each revision

Revision LOC
LOC
change

V Vchange Difficulty MI States
State
change

Actions
& Events

FP FP change

1358263057 145 935.34 2.78 61.81 48 147 1592
1360337247 114 31 809.22 126.12 2.22 68.90 47 1 118 1200 392
1361272800 127 13 935.65 126.43 2.58 68.69 49 2 131 1322 122
1366716021 134 7 989.10 53.44 2.58 69.67 52 3 138 1376 54
1370505495 139 5 1022.59 33.49 2.55 70.65 54 2 143 1407 31
1376398539 141 2 1039.81 17.23 2.60 70.63 54 0 145 1419 12
1377154381 135 6 992.89 46.93 2.60 70.78 52 2 139 1350 69
1378308156 140 5 1026.34 33.46 2.57 71.68 54 2 144 1381 31
1378998596 144 4 1054.70 28.36 2.52 72.58 56 2 148 1405 24
1379338175 135 9 992.89 61.82 2.60 70.78 52 4 139 1350 55
1379596412 140 5 1026.34 33.46 2.57 71.68 54 2 144 1381 31
1381158560 144 4 1054.70 28.36 2.52 72.58 56 2 148 1405 24
1382004243 148 4 1083.29 28.59 2.48 73.41 58 2 152 1429 24
1382600014 143 5 1049.35 33.94 2.50 72.67 56 2 147 1398 31
1383062076 148 5 1083.29 33.94 2.48 73.41 58 2 152 1429 31
1384790897 143 5 1049.35 33.94 2.50 72.67 56 2 147 1398 31
1385385041 149 6 1090.44 41.09 2.48 73.41 58 2 153 1435 37
1386852798 144 5 1056.50 33.94 2.50 72.67 56 2 148 1404 31
1388756776 141 3 1022.05 34.46 2.43 72.70 55 1 145 1364 40
1389197464 141 0 1020.53 1.52 2.41 72.70 55 0 145 1364 0
1389608813 142 1 1029.12 8.58 2.43 72.69 55 0 146 1370 6
1399987407 142 0 1029.12 0.00 2.43 72.69 55 0 146 1370 0
1430901241 145 3 1054.99 25.87 2.50 72.66 55 0 149 1388 18
1433783288 150 5 1108.77 53.78 2.64 72.61 56 1 154 1451 63
1434555494 137 13 1018.29 90.47 2.67 72.03 52 4 141 1328 123
1435340586 137 0 1018.29 0.00 2.67 72.03 52 0 141 1328 0
1443626973 140 3 1053.50 35.20 2.74 71.99 53 1 144 1368 40
1492167019 141 1 1062.34 8.84 2.76 71.98 53 0 145 1374 6
1506603857 141 0 1062.34 0.00 2.76 71.98 53 0 145 1374 0

Average 140.34 5.36 1026.59 37.62 2.55 71.54 53.93 1.46 144.28 1384.83 47.36

Manufacturing Systems Engineering
Department of Mechanical Engineering

page

91 / 91



T 1.1 j(
Technische Universiteite Eindhoven
University of Technotogy

Declaration concerning the TU/e Code of Scientific Conduct
for the Master’s thesis

1 have read the TU/e Code of Scientific Conduct’.

1 hereby declare that my Master’s thesis has been carried out in accordance with the rules of the TU/e Code of Scientïfic

Conduct

Date

al O)%tE

Name

%k
ID-number

Qa!s3

Submit the signed declaration to the student administration ofyour department.

i See: http://www.tue.nI/en/university/about-the-university/integrfty/scientific-inteqrity/
The Netherlands Code of Conduct for Academic Practice of the VSNU can be found here also.

More information about scientific integrity is published on the websites of TU/e and VSNU

Signature

January 15 2016


