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Chapter 1

Introduction

Additive manufacturing, a production process also known as 3D printing, has been in the spotlight
in recent years as an advanced technology in the manufacturing industry. Applications of the tech-
nology explode with the fast growth of the market due to advantages including high production
rates and improving production qualities. Employment of numerical analysis in additive manufac-
turing can promote the productivity even further. One special situation is in the manufacturing of
fluid devices, where channels instead of solids themselves are significant. In this project, numerical
simulations on 3D printed fluid devices are investigated. Currently, an integrated workflow for
the design, analysis, and testing of such devices is not generally available. This research project
contributes to the development of such a workflow by integrating the design and numerical analysis
steps. Research has been conducted on models of the Tesla valve, a type of fixed-geometry passive
check valve without moving parts, which allows flow in only one direction.

This introductory chapter is outlined as follows. The principle of the Tesla valve will be introduced
briefly in Section 1.1. Section 1.2 presents a concise introduction to the Finite Cell Method, the
simulation technology which is at the heart of the numerical analyses considered in this thesis.
A preliminary experiment is presented in Section 1.3 and corresponding preliminary numerical
simulations are demonstrated in Section 1.3.2. This introduction is concluded with a discussion
of the objectives and outline of this thesis.

1.1 The Tesla valve

An example of the Tesla valve is shown in Fig. 1.1. The Tesla valve was firstly introduced by
N. Tesla [35] as a ”valvular conduit”. Tesla valves can be used for either forward or reverse
flow. The forward flow in a Tesla valve is more resisted than the reverse flow. The working
principle of the Tesla valve is based on the distribution of the flow [3]. The flow through the
side channel requires significant work to redirect the downstream or to combine with the flow in
the main channel. Distribution also leads to high shear regions at junctions. For laminar flows,
this behavior is the main source of the direction dependent resistance. The inertia of the flow is
important and the resistance behavior is inherently influenced by the Reynolds number. Forster
[6] in 1995 experimentally compared Tesla type valves with various diffuser type valves. All these
valves are without any moving parts and the channels are with direction dependent flow resistance.
A typical model of the Tesla valve was proposed in [6]. The model is referred to as the T45-R
because the internal angle α (see Fig. 1.2) is set to 45 degrees.

The property that a Tesla valve promotes flow in one direction over the other one can be evaluated
by the property diodicity called Di. Di is defined as the ratio of the pressure difference across the
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CHAPTER 1. INTRODUCTION

Figure 1.1: Cross Section of a Tesla Valve. Image from Ref. [35]

Figure 1.2: Definition of some shape related parameters for T45-R Tesla valves

valve in the reverse direction over that in the forward direction at a specific flow rate,

Di =
∆pr
∆pf

(1.1)

where the subscripts r and f refer to the reverse and forward directions, respectively.

Numerous researche efforts have investigated the optimization of Tesla valves. For the T45-R Tesla
valve, the diodicity is found to increase linearly with the flow rate for low Reynolds numbers (below
approximately 300) [6]. Truong et al. [37] proposed an inversely proportional relation between the
diodicity and the radius R (defined as in Fig. 1.2), and quantified how the diodicity is related to
the optimal angle α and the characteristic length, which is generally the width of channels in Tesla
valves. According to the presented results the obtained conclusions are valid for Reynolds number
ranging from 100 to 600. Zhang et al. [43] concluded that square cross-sectioned channels yielded
the maximum diodicity for low Reynolds numbers (Re < 500) based on three-dimensional (3D)
flow simulations on the T45-R valve, and that a linear relationship exists between the channel
aspect ratio and the diodicity.

In addition to the T45-R Tesla valve, Liao et al. [18] proposed a potential option of a Tesla valve
labelled MT135 (as shown in Fig. 1.3), for which the internal angle equals to 135 degrees instead
of 45. Gamboa [7] accomplished the optimization of the valve shape further by dynamic parame-
ter determination and achieved a significant increase in the calculated diodicity compared to the
T45-R valve by a maximum of 37% at Re = 2000. An average increase of 25% over the range
0 < Re < 2000 was also demonstrated. These research efforts proved the feasibility of improving
the performance of a single Tesla valve by geometry optimization.

Besides investigations on the optimization of a single Tesla valve, the in-series configuration of
multiple, identically shaped Tesla valves has been studied. Multistage Tesla valve (MSTV) mani-
festes higher flow rates compared to the single stage Tesla valves. Tesla [35] in his patent presented
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Figure 1.3: Different layout used for MT135 microvalve: (a) one stage (b) two staged (c) three
staged (d) four staged. Figure from Ref. [36]

a set of valvular conduits in sequence and claimed that additional stages increase the diodicity.
Reed and Fla [28] experimentally proved that for a T45-R Tesla valve, the diodicity doubles when
the number of valves was increased from 1 to 2, and additional stages increased the pressure drop
but did not change the diodicity enormously. Mohammadzadeh et al. [23] stated that the diodicity
of MSTV increased with the number of stages in Tesla valves only when Reynolds numbers were
greater than 50. Thompson et al. [36] addressed the influence of the Reynolds number, the num-
ber of valves and the distance between valves on the diodicity based on simulations. According
to them, the diodicity of the MSTV increases nonlinearly with an increasing Reynolds number.
For a relatively large Reynolds number, the diodicity increases with the number of stages, and it
decreases with the valve-to-valve distance.

Figure 1.4: Multistage Tesla valve (MSTV) with (a) low-angled configuration. Figure from Ref.
[28] and (b) high-angled configuration. Figure from Ref. [1]

This thesis focuses on the numerical analysis of Tesla valves with immmersed isogeometric analysis
and on the integration between CAD files and numerical analyses. While parametric design of the
Tesla valve is an important topic, the conventional T45-R geometry is utilized in most simulations
to validate the proposed analysis methods. The T45-R Tesla valve appeals for lower pressure
loss in the forward direction compared with Tesla valves of larger inner angles, thus promoting
potential applications. Thompson et al. [36] addressed that for multistage Tesla valves, local
transitional and turbulent flow occurred at junctions even when the flow was laminar at the valve
inlet (Re < 2300). The Reynolds number at the valve inlet was around 300 when the transitional
flow occurred. In order to simplify simulation problems and to focus on the main topic of research,
parameters in our simulations are controlled such that the Reynolds number is always under 300
at the inlet and convection-dominated effects and turbulence can be ignored.

1.2 Immersed finite elements: The Finite Cell Method

Flow in a Tesla valve follows the geometry of the channel, which in general is quite complex.
In contrast to many traditional numerical methods that require conforming meshes, immersed
boundary methods avoid complicated mesh generation. This makes such immersed analysis tools
attractive to use in complicated geometric configurations such as Tesla valves.
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The concept ”immersed boundary method” was first proposed by Peskin [25]. For blood flow prob-
lems associated with cardiac mechanics, where flow interacts with the surrounding solid material,
conventional numerical analysis techniques employ grids conforming to the boundary. Since the
grid generation for complex geometry is costly, Peskin proposed the concept ”fictitious domains”
and employed non-conforming Cartesian grids on complex geometries. The solid boundaries were
then imposed by modification of the governing equations. Distinguished by the implementation of
the modifications, immersed methods are divided into continuous forcing approaches and discrete
forcing approaches [22].

The Finite Cell method is a typical immersed boundary method and is one of the continuous forc-
ing approaches. With the concept of ”fictitious domain”, Parvizian and Rank proposed the Finite
Cell Method (FCM) [24]. In the FCM, the physical domain Ωphy is extended with a fictitious
domain Ωfict, which is generally a simple shape such as a rectangle (as shown in Fig. 1.5). With
the help of the extended domain, time-consuming and error-prone conforming mesh generation for
complex domains is eliminated and the possibility for a seamless integration of complex geometric

models and finite element analysis is therefore promoted. The regular mesh T 〈A covering the com-
plete ambient domain can be easily generated and a discretization space for Galerkin’s method on
the ambient mesh can be constructed.

The accuracy of the FCM can be controlled as optimal rates of convergence are obtained under
mesh refinement and exponential convergence with increasing the polynomial degrees. Natural
boundary conditions in the FCM can be straightforwardly achieved, but essential boundary con-
ditions require weak imposition. Details can be found in Section 2.4 where weak imposition of
periodic boundary conditions is discussed.

Figure 1.5: The physical domain on the left Ωphy is extended with Ωfict and a regular mesh is
generated on the complete ambient domain Ω∪. The physical domain is distinguished by the
variable α which is 1 in it and 0 outside. Figure from Ref. [24]

1.3 Preliminary example

1.3.1 Experiment

To get a basic impression of the Tesla valve, a preliminary experiment is conducted on a 3D printed
Tesla Valve. For this experiment a CAD model is built and a experimental setup is designed with
a 3D printed Tesla valve (Fig. 1.6).

Air flow generated from the air pump flows through the Tesla valve and goes into the atmosphere.
The pressure at the inlet of the Tesla valve is measured by the pressure meter. This value also
equals the pressure drop across the Tesla valve ignoring the pressure change due to the flow meter
and the connecting tubes. The pressure drops for different flow rates are recorded and compared.
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(a)
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Figure 1.6: Diagram of the experimental setup. The air flow generated by the air pump goes
through the Tesla valve, the flow meter and finally goes into the atmosphere.

The diodicity Di defined in Eq. 1.1 is then calculated and analyzed. The cross section of the
channel in the model is 5mm × 5mm square. The maximum flow rate along the channel is:

u =
q

A
≈ 50 l/min

(5× 10−3 m)2
(1.2)

=
50× 10−3

2.5−5 m2 × 60 s
(1.3)

= 33 m/s (1.4)

The Reynolds number in this experiment is:

Re =
u · L
ν

=
33× 5× 10−3

15× 10−6
≈ 11000 (1.5)

where ν is the kinematic viscosity.

This theoretical maximum Reynolds number in this experiment is quite large. Given the flow
rate is generally smaller and that some air is leaking, the actual Reynolds number is anticipated
to be lower. However, the basic physical phenomena are assumed to be represented by this exper-
imental setup. The experiment can be further improved if the air-tightness of the devices is taken
into consideration.

The relation between the pressure drop and flow rates for flow in different directions is shown in
Fig. 1.7, from which we observe that:

1. For a constant pressure drop, the velocity of the flow in the direction port1 → port2 (see
Fig. 1.6c) is always higher than that in the reverse direction.

2. For increasing pressure drop, the flow in the direction port1→ port2 (see Fig. 1.6c) increases
faster than the flow in the reverse direction.

This Tesla valve experiment demonstrates little restriction of the flow in one direction in compar-
ison to the flow in the reverse direction. The flow resisting properties described in the literature
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Di=2.6

Di=2.6

Figure 1.7: Relation of the pressure drops and the flow rates when the Tesla valve is employed in
different directions.

are well verified by our observations. Ideally, the diodicity would also be observed in simulations.
Preliminary numerical simulations of flow through the Tesla valve are studied in Section 1.3.2.

1.3.2 Mesh-conforming finite element analysis

To illustrate the complications associated with mesh-conforming analyses, and hence to motivate
the usage of the Finite Cell Method in this graduation project, we study the steady Navier-Stokes
problem for the flow in the Tesla valve in Section 1.3 using a mesh conforming finite element
method.

Figure 1.8: Geometry of the simplified computational domain of the Tesla valve.

To simplify the problem, we here consider incompressible flow instead of compressible air flow.
The geometry of the Tesla valve is simplified to a planar surface Ω ∈ R2 (see Fig. 1.8). The
boundary ∂Ω consists of Γwall, Γin and Γout. Γwall is subject to a Dirichlet boundary condition
where all velocity components are set to zero. A parabolic horizontal velocity profile f is imposed
on the Dirichlet boundary Γin, which is located on the left or the right boundary, depending on
whether the normal flow or the reverse flow is considered. Γout is a traction free outlet. n denotes
the outward-pointing unit vector normal to ∂Ω. The Navier-Stokes equations for the velocity field
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u : Ω→ R2 and pressure field p : Ω→ R read:

Find u : Ω→ R2, p : Ω→ R such that,
ρ∇ · (u⊗ u)− µ∇ · (∇su) +∇p = 0 in Ω,

∇ · u = 0 in Ω,
u = 0 on Γwall,
u = f on Γin,

2µ∇su · n− pn = 0 on Γout,

(1.6)

Here µ represents the dynamic viscosity of the flow. The density and the viscosity are assigned
the values of liquid water. The average velocity at the inlet equals 10 mm/s. The characteristic
length equals the width of the channel and is 5 mm. The Reynolds number Re equals 25.

For the mesh conforming analysis considered here, the CAD file in the IGS format is imported
into the open source meshing tool Gmsh to generate a conforming mesh. Processing of the CAD
data file results in divided arcs in Gmsh as shown in Fig. 1.9. The built-in data structures lead
to redundant usage of memory. The meshing process, which is assumed to be automatic, requires
manual operations including definition of physical entities. The definition of physical entities
consists of the selection of the the physical domain and the connection between geometric entities
and different boundary conditions. This is not a trivial step, since selection of several geometry
entities from in total 400 entities requires great patience, even for a simplified two dimensional
geometry as considered in this example.

Figure 1.9: Statistic information in Gmsh for the simplified Tesla geometry (left). Divided arcs
(right).

Simulation with boundary conditions defined in Fig. 1.10 produces velocity and pressure schemes
as shown in the Fig. 1.11. Peaks in the velocity appear at the junctions, and the maximum
velocity in the reverse flow is larger than that in the forward flow. While the simulations for flows
in two different directions are conducted under the same velocity schemes at the inlet, it is shown
in the pressure plots that the pressure drop in the reverse flow is higher than the forward flow,
with the diodicity around Di = 14.5

8.5 = 1.7.

The diodicity obtained from the simulation is above 1. This explains that the pressure difference is
higher in the reverse flow compared to the forward flow. The results (in Fig. 1.11) are reasonable.
However, the procedure with which they are obtained is labour intensive. Every trivial change in
the shape or in the mesh requires the generation of a new mesh. Hence, a study of the quality
of the numerical result by mesh convergence studies is impractical, as is the study of geometry
optimization.
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Figure 1.10: Mesh of the simplified computational domain of the Tesla valve.

(a) Velocity profile as the result of the simulation.

(b) Pressure profile as the result of the simulation.

Figure 1.11: Results of simulation analyzed with the conventional method.

1.4 Objective, scope and outline

The main goal of this thesis is to develop a workflow integrating design and numerical analysis
steps, based on the immersogeometric analysis framework. The proposed workflow should be
applicable to flow problems for two- and three-dimensional Tesla valves. To achieve this overall
goal, we identify the following objectives:

1. We aim to specify necessary adjustments in the immersogeometric analysis framework to
make it compatible with flow problems for Tesla valves. The imposition of boundary condi-
tions is one aspect on which we focus in particular.

2. We aim to develop an approach to utilize CAD data files directly in numerical analyses. Our
goal is to find a way to reconstruct geometry which can be used in the Finite Cell Method
from CAD data files and to clarify implementation details.

3. To give a demonstration of the proposed work flow, we plan to conduct analyses of two- and
three- dimensional Tesla valves by investigation of models with various shape improvements.

Our scope focuses on incompressible fluid flows, in particular the steady Stokes equations and the
steady Navier-Stokes equations. Limited by computing abilities, convection-dominated flow prob-
lems are out of our scope and only problems with moderate Reynolds numbers are considered.
Since this thesis focuses mainly on application aspects, mathematical analysis of the proposed
workflow is not elaborated in detail.

In this report, applications of the immersed method and the isogeometric analysis method for
problems of the flow in Tesla valves are investigated. An integrated workflow starting from CAD
data files and working with the immersed isogeomertic analysis method is proposed. Chapter 2

Design through Analysis of 3D Printed Fluid Devices 9
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discusses applications of the immersogeometric analysis method on flow problems in Tesla valves.
Chapter 3 proposes a workflow relating CAD data files to numerical analysis. Chapter 4 provides
applications of the workflow in the shape improvement of Tesla valves. Conclusions are finally
drawn in Chapter 5.

10 Design through Analysis of 3D Printed Fluid Devices



Chapter 2

Immersogeometric analysis

In this chapter we introduce the formulation and implementation of the immersogeometric anal-
ysis framework considered in this thesis. We propose a formulation to weakly impose periodic
boundary conditions using Nitsche’s method. A test case considering an incompressible steady
Navier-Stokes flow problem is considered to demonstrate the technique and a convergence study
is conducted to understand the method.

This chapter is outlined as follows. The background of isogeometric analysis is given in section
2.1. The integration of IGA with the immersed Finite Cell method and the required stabilization
techniques are described in section 2.2. The formulation of the problem is discussed in section
2.3. The weak imposition of periodic boundary conditions is proposed in section 2.4. Finally, the
proposed method is demonstrated using a numerical example in the section 2.5.

2.1 Isogeometric analysis

IsoGeometric analysis (IGA) was introduced by Hughes et al. [14] as a novel framework to establish
a straight-forward interaction between computer aided design (CAD) and finite element analysis
(FEA). The fundamental idea of IGA is that it uses basis functions obtained from CAD modeling
such as B-splines and non-uniform rational B-splines (NURBS). The smoothness property of higher
order B-spline basis functions allows to achieve higher-order continuity. IGA has been applied
for a wide variety of applications including solid mechanics [21], fluid dynamics [11] and multi-
physics modeling [4]. The construction of B-splines, which form the fundamental building block
of isogeometric analysis, is discussed in the following paragraph.

B-spline basis The B-spline basis functions {Ni,p(ξ)}ni=1 are defined using a knot vector, which
is a non-decreasing sequence of parametric coordinates, written as Ξ = [ξ1, ξ2, . . . , ξn+p+1], where
ξi is the ith knot. A knot vector is called open if the first and the last knots both repeat p + 1
times. Open B-splines are standard in the CAD literature. A knot vector is uniform if all interior
knots are equally distributed. Non-uniform and rational B-splines are referred to as NURBS. In
this work, the open and uniform knot vectors are considered, which are described in this section.

Given a knot vector, the B-spline basis functions are defined recursively starting with piecewise
constants (p = 0):

Ni,0(ξ) =

{
1, if ξi < ξ < ξi+1,
0, otherwise

The higher order B-splice basis functions (p ≥ 1) follows from the Cox-de Boor recursion formula:

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (2.1)

Design through Analysis of 3D Printed Fluid Devices 11
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One of the main features of B-spline basis function is that each pth order basis function has p− 1
continuous derivatives across the knots. In case of knot vectors with repeated interior knots, the
basis functions of order p have p−ri continuous derivatives across the knot with ri its multiplicity.

In two- and three- dimensional problems, the multivariate B-splines are generated by a tensor
product. Surfaces and volumes constructed using multivariate B-splines are referred to as bivariate
and trivariate patches. For example, trivariate basis functions defined over the parameter domain
Ω ∈ R3 with coordinate ξ = (ξ, η, ζ) are given by:

NA(ξ) = Ni(ξ)Nj(η)Nk(ζ) (2.2)

One of the challenges in IGA is that it generally involves multiple trimmed surfaces or curves
especially for the complex geometries in engineering design. The conforming IGA framework does
not naturally treat these trimmed surfaces or curves. The natural analysis equivalent of trimmed
geometries in CAD is enriching the IGA framework with immersed methods, which is discussed
in the following section.

2.2 Immersogeometric analysis

The Finite Cell Method (FCM) (detailed in section 1.2), an immersed finite element method in-
troduced by Rank et al. [24], has been found as a natural companion to IGA. In this work, the
framework in which IGA is integrated with FCM is considered for flow problems. The use of
B-spline basis fucntions in a Finite Cell Method (FCM) was first proposed by Schilinger et al.
[32][27][31] and it is referred to as immersogeometric analysis. The framework enables the con-
struction of high-regularity spline spaces on domains of complex geometries. In this framework,
the domain of interest is embedded in an ambient regular mesh. The B-spline basis functions are
constructed over the structured domain for the trial and test spaces with the Galerkin method.
Hierarchical B-splines can be employed for local refinements.

Immersogeometric analysis has been applied to various problems in the fields of solid and struc-
tural mechanics [38], fluid mechanics [41, 13], fluid-structure interaction [16] and image-based
analysis [33, 39]. Image-based analysis is one of the interesting applications of this framework.
An image-based smooth geometry reconstruction from voxel data using a B-spline approximation
was introduced by Verhoosel [39].

In the Finte Cell Method, traditional integration methods for the cut-cells (the cells which are
intersected by the boundary of the physical domain) are not accurate enough. Verhoosel et al.
[39] showed that the accuracy can be improved by implementing a tessellation based quadrature
method. This procedure is schematically illustrated in Fig. 2.1. The quadrature construction pro-
cedure starts with a multilevel uniform refinement. All cut elements would be refined uniformly
until a refinement depth ρmax. The trimmed elements can be identified with the help of a levelset
function (derived from the voxel scan data). On regular integration sub-cells, a regular Gauss in-
tegration scheme is adopted. On the finest cut elements of level ρmax, a tessellation is conducted
with the help of level sets. Gauss quadrature schemes for triangles are employed on triangular
elements resulting from this tessellation on the finest integration subcells. The refinement depth
is controlled by the integration refinement level ρmax. Details of the method are demonstrated in
Fig. 2.1.
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Figure 2.1: A trimmed element is refined up to the level ρmax = 4. Evaluation of level sets on
on vertices of the integration subcells determines their status. On the left is an example of a
regular subcell where 2nd order Gauss quadrature points are marked in red. The right subcell
is recognized as a cut-cell due to the negative levelset value. It is triangulated with the help of
two zero levelset points. Quadrature points are located in triangles covering the physical domain.
Figure from Ref. [39]

Skeleton-based stabilization For incompressible flow problems, Hoang [10] found that local
pressure oscillations occur in the vicinity of cut boundaries (see Fig. 2.2) when the method is
employed with inf-sup stable isogeometric element families.

Figure 2.2: Local pressure oscillations in the vicinity of cut boundaries for the Stokes problem
with immersogeometric analysis. Image from Ref. [10].

These oscillations can be due to conditioning issues if they occur due to small volume fractions.
But, generally, the oscillations occur with relatively large volume fractions. This is a sign of prob-
lems related to the inf-sup stability of the discrete problem. By reducing element sizes, global
errors vanish and optimal convergence rates can be reached. However, the oscillations in the pres-
sure field persist. Thereby, the compatibility of immersogeometric analysis for incompressible flow
problems is severely compromised.

To solve this problem, Hoang et al. [12] proposed a skeleton-based stabilization technique for the
incompressible Navier-Stokes problem,

Design through Analysis of 3D Printed Fluid Devices 13
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Find uh ∈ L(Vh)and ph ∈ L(Qh), such that for all(v, q) ∈ Vh ×Qh
c(uh;uh,vh) + ah(uh,vh) + shghost(u

h,vh) + bh(ph,vh) = lh1 (vh)

bh(q,uh)− shskeleton(ph, qh) = lh2 (qh)
(2.3)

The key idea of this technique is to introduce stabilization terms, which are related to the inter-
face jumps of the highest order derivatives of basis functions in the weak formulation of the mixed
problem (Eq. 2.3).

The bilinear and linear operators are defined as in Ref. [12]. The Skeleton-penalty operator (2.5)
allows to use identical spaces for the velocity and pressure fields. The Ghost-penalty term (2.4) is
added to avoid ill-conditioning of the discretized problem.

shghost(u
h,wh) :=

∑
F∈Fh

ghost

∫
F

γ̂µh2k−1J∂knu
hK · J∂knvhKds (2.4)

shskeleton(uh,wh) :=
∑

F∈Fh
skeleton

∫
F

γµ−1h2k+1J∂knp
hK · J∂knqhKds (2.5)

(a) (b)

(c) (d)

Figure 2.3: Schematic representation for: (a) physical domain Ω embedded in ambient domain A.
(b) ambient domain mesh T hA (covering the complete ambient domain) and background mesh T h
(marked by yellow shading). (c) the skeleton structure. (d) the ghost structure. Figures from Ref.
[12]
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In the above expressions, µ is the viscosity, γ and γ̂ are stabilization parameters, Fhghost and

Fhskeleton are the ghost structure and the skeleton structure which are defined on the background
mesh T h := {K ∈ T hA : K ∩ Ω 6= ∅} (as shown in Fig. 2.3):

Fhskeleton := {∂K ∩ ∂K ′|K,K ′ ∈ T h,K 6= K ′} (2.6)

Fhghost := Fhskeleton ∩ {F |F ⊂ ∂K : K ∈ T h,K ∩ ∂Ω 6= ∅} (2.7)

The jump operator J·K in JfK refers to the difference between the traces of the function f on the
two opposite sides of each face F ∈ Fhskeleton.

2.3 Problem definition

Thompson in [36] demonstrated that the flow in a Tesla valve is laminar when the Reynolds
number is less than 300 at the inlet. For low Reynolds numbers, it is typical to assume steady
flow. Therefore, in this work we investigate the Immersogeometric analysis of incompressible
Stokes flow (Eq. 2.8) in Tesla valves. We consider the inner area of the channel as domain Ω, the
left and right walls (Γ− and Γ+) of the channel as the periodic boundary (detailed in the Section
2.4) and the top and bottom wall of the channel as the non splitting Dirichlet boundary ΓD.

Find u : Ω→ Rd, p : Ω→ R such that,
−2µ∇ · (∇su) +∇p = 0 in Ω,

∇ · u = 0 in Ω,
u = 0 on ΓD,

(2.8)

where µ represents the dynamic viscosity of the flow and ρ is the density. The formulation (2.8)
can be condensed using the stress σ := (−2µ∇su + pI) as: ∇ · (σ(u)) = 0 in Ω,

∇ · u = 0 in Ω,
u = 0 on ΓD,

(2.9)

The implementation of the boundary conditions is details in the next section.

2.4 Periodic boundary conditions

2.4.1 Introduction

The geometry of the multistage T45-R Tesla valve (see Fig.1.2) has a recognizable periodicity.
Therefore, the possibility of enforcing the periodic boundary conditions on one of the units of the
multistage Tesla valve is investigated in this section. This is non-trivial and novel, especially in
the context of immersogeometric analysis.

Various studies in the literature about the influence of the number of stages in the multistage
Tesla valve illustrated the suitability of assuming periodicity. Reed and Fla [28] proved with their
experiments that increasing the number of Tesla valves from 1 to 2 has significant influence on the
flow properties. Further increasing the number of stages leads to increasing pressure difference
without obvious influence on the diodicity. Numerical analysis performed by Mohammadzadeh
[23] and Thompson [36] validated the independence between the diodicity and the number of stages
for the multistage Tesla valves with the Reynolds number less than 50. If the Reynolds number
is greater than 50, the diodicity tends to increase with the number of stages until it reaches a
certain limitation point. In this work, the Reynolds number is controlled under 50, and therefore
the assumption of periodicity can be expected to hold.
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Imposing periodic boundary conditions in the Finite Element Method (FEM) is an important topic
in, e.g., the computational theory of composite materials. It has been broadly investigated on rep-
resentative volume elements. The classical approach is to ensure equal values on the matching
nodes of the opposite boundaries. This can be achieved by elimination of the degrees of freedom
or by application of Lagrange multipliers. However, the classical approach cannot guarantee the
alignment of the mesh on the opposite boundaries. This problem was solved by using a master-
slave method which was proposed by Yuan [42]. Wang et al. [40] presented a new approach to
impose the periodic boundary conditions using the radial point interpolation method.

Weak imposition is another approach of implementing periodic boundary conditions. Larsson et
al. [17] introduced a weak formulation by transforming the strong constraints of the periodicity
to Neumann boundary conditions. Additionally, Svenning et al. [34] proved the feasibility to use
a mixed variational formulation to impose periodic boundary conditions in a weak sense. Reis et
al. [29] introduced the formulation to enforce periodic constraints with the mortar discretization
and Lagrange multipliers.

Immersogeometric analysis is a non-conformal setting and hence the Dirichlet boundary conditions
should be imposed weakly using, e.g., Nitsche’s method (which maintains the size of the system of
equations and the positive definiteness of the matrix) [30]. This has been employed in a number of
studies in the field of isogeometric analysis [5] [9]. However, imposition of the periodic boundary
conditions with the Nitsche’s method in immersogeometric flow problems has not been explored
(up to the author’s knowledge).

In this section we implement Nitsche’s method to weakly impose the periodic boundary conditions
in the immersogeometric analysis of the channel flow problem in Tesla valves. The steady Navier-
Stokes problem Eq. (2.8) is considered for the formulation. Unlike in complex unstructured
conforming meshes, the mesh distribution on the periodic boundary is easily controlled by virtue
of the uniform meshing of the extended domain. Finally, the effectiveness of the proposed method
is demonstrated using a prototypical example (see Fig. 2.4).

2.4.2 Description of constraints

The left and right boundary of the domain (Fig. 2.4) are the opposite periodic boundaries Γ−
and Γ+, where the periodic boundary conditions are to be enforced. The periodic nature of these
boundaries is defined by implementing the jump conditions for velocity and pressure at the periodic
boundaries as:

JuK = 0,
JpK = p0.

(2.10)

The jump operator J·K is defined as Jw(y)K = w(x+, y0) − w(x−, y∗), where x−, x+ refers to the
x-coordinate and y0, y∗ refers to y-coordinate on Γ+ and Γ−. Since the opposite boundaries are
identical and both of them are parallel to the y axis, the mapping from y0 to y∗ is simple. All
other boundaries are considered as non-slipping boundaries denoted by ΓD, where the Dirichlet
condition is imposed (u = 0).

2.4.3 Discretization and Nitsche’s method

In order to incorporate the homogeneous periodic constraints, the pressure is divided into two
parts as: p = p̃+ p̂. A lift term p̂ = p0 · xL is extracted to eliminate the pressure drop between the
opposite boundaries. The p̃ term enforces the periodic constraint. The stress now can be written
as:

σ = (−2µ∇su + p̃I) + p̂I = σ̃ + p̂I. (2.11)
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Figure 2.4: Geometry of a prototypical channel segment with constraints

The velocity and pressure fields are discretized using the Galerkin method. The trial and test
function spaces for velocity and pressure are defined as:

V0,f =
{
u ∈ H1(Ω) : u = 0 on Γwall, u = f on Γin

}
(2.12)

Q =
{
L2(Ω)

}
v ∈ V0,0 q ∈ Q (2.13)

The space H1 refers to the first-order Sobolev space, which is a space of functions which are
bounded in the following norm:

||φ||2H1(Ω) = ||φ||2 + ||∇φ||2 (2.14)

The L2 is a space of integrable real-valued functions φ : Ω→ R for which the following norm (or
integral) is bounded:

||φ||2L2(Ω) =

∫
Ω

φ2dΩ (2.15)

The weak form of the incompressible steady Navier-Stokes problem (2.9) is:

−
∫
Ω

σ̃ : ∇vdΩ +

∫
Γ

(σ̃ · n) · vdΓ +

∫
Ω

∇p̂ · v = 0 (2.16)

Since ∇ · u = 0 on Ω, Eq. 2.16 leads to :

−
∫
Ω

σ̃ : ∇vdΩ−
∫
Γ

(σ̃ · n) · vdΓ−
∫
Ω

∇p̂ · v −
∫
Ω

q∇ · u = 0 (2.17)

The integration on boundaries can be re-formulated to include the periodic conditions:

−
∫

ΓD∪Γ+∪Γ−

(σ̃ · n) · vdΓ =−
∫

ΓD

(σ̃ · n) · vdΓ−
∫

Γ+

(σ̃+ · n+) · v+dΓ

−
∫

Γ−

(σ̃+ · n−) · v−dΓ−
∫

Γ−

((σ̃− − σ̃+) · n−) · v−dΓ

=−
∫

ΓD

(σ̃ · n) · vdΓ−
∫

Γ+

(σ̃+ · n+) · (v+ − v−)dΓ

=−
∫

ΓD

(σ̃ · n) · vdΓ−
∫

Γ+

(σ̃+ · n+) · JvKdΓ
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Identical order spline basis functions are considered for the discretization of the velocity and the
pressure fields:

Vh =
[
Skα
]d ∩ V0,f Qh = Skα ∩Q (2.18)

Skα refers to the space of spline basis functions of degree k and regularity α. In the example
considered in this section, second order splines are considered (k = 2). The formulation to impose
the Dirichlet boundary and the periodic boundary conditions using Nitsche’s method is proposed
as the following:∫

Ω

σ̃(uh) : ∇vdΩ−
∫
Ω

∇p̂ · v −
∫
Ω

∇ · uh · q−

∫
ΓD

(σ̃(uh) · n) · vhdΓ−
∫

ΓD

(σ̃(vh) · n) · uhdΓ +

∫
ΓD

µβ

h
uh · vhdΓ−

∫
Γ+

(σ̃(uh) · n) · JvhKdΓ−
∫

Γ+

(σ̃(vh) · n) · JuhKdΓ +

∫
Γ+

µβ

h
JuhK · JvhKdΓ = 0, (2.19)

where h is the element size and β is a stabilization parameter which is scaled by the viscosity µ.
In this study, a global β is used and the appropriate values are yet to be discussed. The terms in
the second and third lines of equation (2.19) are the Nitsche terms [15]. It contains three terms:
the first term is coercive, the second term maintains the symmetry, and the third term is for the
stabilization.

2.4.4 Periodic point association

Typical approaches for the weak enforcement of periodic boundaries contain complex point pro-
jections to accomplish the integration of jump terms on opposite boundaries with an un-matching
mesh. This disadvantage is ameliorated in this study by virtue of the immersed method.

For any given geometry, the Finite Cell Method starts with embedding the domain in a rectangular
ambient grid. The cut-cells (cells containing the boundary) undergo multilevel refinement based
on refinement indicator (see Fig. 2.5b). In this scenario, the main idea to implement periodic
boundary conditions is to specify the axis of the boundary where periodic conditions are to be
imposed, for example y1 and y2 (as shown in Fig. 2.5a). The distance between these two axes is
evaluated as ∆y = y2 − y1 and the number of elements n to divide the boundary is defined.

In this way, an ambient mesh with size of h = ∆y
n is generated and it is symmetric about the

axis of opposite periodic boundaries. Therefore, refinement using the strategy described in Fig.
2.1 results in identical trimmed elements on the opposite periodic boundaries. The integration
of the jump term is evaluated by the accumulation of element-wise differences of the function on
opposite boundaries: ∫

Γ+

JfhKdΓ ≈ ΣFi∈Γ+
(f∗i − fi) (2.20)

By controlling the size and offset of the ambient mesh, the periodic boundaries are trimmed equally
and hence complex projection techniques are avoided.
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(a)

(b)

Figure 2.5: (a) Generated ambient mesh of size h on axis of periodic boundaries. (b) Identical
trimmed elements on periodic boundaries

2.5 Prototypical test case

In this section we present a test case to demonstrate the Nitsche’s method to weakly impose the
periodic boundary conditions in the immersogeometric analysis. The Stokes flow problem Eq. 2.8
in a channel of a simple valve (see Fig. 2.4) is considered for this study.

The first step of the simulation is to scan the geometry from the image using the image-based
analysis proposed in [39]. Following the immersed method, the physical domain is embedded in
the extended mesh and B-spline bases are employed for the discretization of the ambient domain.
The integration is conducted on the trimmed domain, with multilevel refinements (defined using
a refinement indicator) and the tessellation method as described in Fig. 2.1.
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The values for the density ρ and the dynamic viscosity µ of the flow are assigned by assuming wa-
ter flow at room temperature, that is ρ = 103 kg/m3, µ = 10−3N · s/m2. The periodic boundary
condition is weakly imposed using the Nitsche’s method as proposed in Sec. 2.4. The influence
of the Nitsche’s parameter β in Eq. 2.19 on the performance of the method will be discussed
in later sections. The skeleton-based stabilization method in Sec. 2.2 is implemented to avoid
oscillations. The sensitivity to the skeleton and the ghost parameter γ in Eq. 2.5, Eq. 2.4 is yet
to be investigated.

The velocity and the pressure fields of the Navier-Stokes problem, with stabilization parameter
β = 100, are shown in Fig. 2.6. The color mapped from the magnitude of the velocity changes
from red to blue suddenly in the normal direction of the wall, which demonstrates no slip condition
at the wall. The imposed pressure difference between the inlet and the outlet is very obvious in
the color map. The velocity and pressure fields demonstrate the recognizable periodicity.

Figure 2.6: Velocity and pressure fields of the Stokes problem (Eq. 2.8)

In Fig. 2.7, we study the influence of the mesh size h and the Nitsche’s parameter β on the
convergence behavior of the jump of velocity for the proposed method. Here, the second order
B-spline basis functions (k = 2) are employed. The differences of velocity on opposite boundaries
are evaluated element-wise, which is feasible with the offset method introduced in Sec. 2.4.4. A
study is conducted with background meshes varying from 20× 20 elements to 120× 120 elements.
The default value of β is set to 100. The L1 norm of the jump velocity on opposite boundaries is
shown in Fig. 2.7a from which we observe that it converges at a rate of 4. Different cases with the
varying Nitsche’s parameter β (ranging from 50 to 2000) and with 50 × 50 elements are studied.
We observed that the L1 norm of the jump velocity converges at a rate of 1.5 with increasing
β (see Fig. 2.7b). A relatively large value of β is beneficial for the imposition of the periodic
boundary condition. The convergence behavior of the jump velocities demonstrates the proper
imposition of the periodic boundary conditions. The L1 norm of the jump velocity is under 10−4

for β = 100 and for meshes consist 50×50 elements. This setting will be considered as the default
setting for later simulations.
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(a) (b)

Figure 2.7: Convergence of the jump velocity for different element sizes h and Nitsche’s parameters
β.

In Fig. 2.8, we study the h-convergence behavior of the proposed method for B-spline basis func-
tions of orders k = 2, 3. Again, a study is conducted with background meshes varying from 20×20
elements to 150×150 elements. The Nitsche’s parameter β = 100 is considered, γ = 0.1 is assigned
to both the skeleton and ghost parameter. The flux

∫
u · n is evaluated at the left and the right

boundary and the average value is recorded. The flux with the finest mesh (150× 150) is chosen
to be the reference. For different mesh sizes h, the flux is compared with this reference and the
convergence of the relative error is studied. The behavior of the convergence is not of any obvious
pattern. The uniqueness of the solution for Stokes problem with periodic boundary conditions has
been proved in [2]. One possible reason is that errors are involved when the geometry is recon-
structed with the image based immersed method. Refinement of the ambient mesh does not help
to eliminate errors rooted in the voxel representation of the geometry, especially of the opposite
boundaries. Exact explanation remains to be investigated. In addition, the increase of the degree
of the B-spline basis functions does not have apparent influence on the behavior of convergence.

(a) k = 2 (b) k = 3

Figure 2.8: Convergence of the relative error of flux for different element sizes h.

In Fig. 2.9, we study the h-convergence behavior of the proposed method for B-spline basis func-
tions of order k = 2, 3. The mesh consists of 50 × 50 elements. γ = 0.1 is assigned to both the
skeleton and ghost parameter. The Nitsche’s parameter β is chosen from a set of values from 100
to 1000. The relative error of flux is evaluated with the same method described before. For the
relative error of flux, asymptotic rates (around 0.5) are obtained. Similar to the previous study,
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the order of the B-spline basis functions does not have obvious influence on the flux.

(a) (b)

Figure 2.9: Convergence of the relative error of flux for different Nitsche’s parameter β for (a)
k = 2, (b) k = 3.

In Fig. 2.10 we study the sensitivity of the proposed method to the skeleton and ghost parameter
in Eq. 2.5. Meshes with 50 × 50 elements and the B-spline basis functions of order k = 2 and
the Nitsche’s parameter β = 100 are considered. The skeleton and ghost parameter are always
assigned with identical values. As shown in Fig. 2.10, larger values of γ always results in larger
relative errors of the flux. When h ≈ h0 = 0.016, the relative errors are similar for different values
of γ. When h increases from h0 or when h decreases from h0, the influence of the parameter γ
becomes more significant.

Figure 2.10: Convergence of the relative error of flux for different skeleton parameters γ.
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Chapter 3

CAD-based immersogeometric
analysis

In the previous chapters, the image-based immersed isogeometric method has been studied and
adapted for the analysis of the flow in Tesla valves. For an idealized design-through-analysis
workflow (which includes geometry reconstruction and implementation of the numerical method),
a CAD model instead of images or voxel data should be at the starting point of the analysis
workflow.

In this chapter, the prototype of a workflow where CAD models are taken as inputs and numer-
ical analysis results are given as outputs, is proposed. Section 3.2 provides an introduction to
common data exchange formats. Next, in Section 3.3 a levelsets based geometry reconstruction
method is proposed, including approaches to generate levelset functions directly from the CAD
data and strategies for further smoothing. Then, the constructed geometry is employed to con-
duct an immersogeometric analysis. Section 3.4 finally illustrates the extension of the workflow
to three dimensional problems and gives an idea about how the workflow can be simplified using
CAD-based immersogeometric analysis compared to traditional methods used in industries.

3.1 Data exchange formats

CAD models in different systems are based on different data formats. Before discussing the
geometry reconstruction from data files of CAD models, it is helpful to have an overview of
the most prominent data exchange formats, namely the Initial Graphics Exchange Specification
(IGES) and the Standard for The Exchange of Product (STEP) model data. Data files of CAD
models contain much information, including parameters, constraints, features and design histories.
For numerical analysis, only specific information is significant, i.e., the geometry and the topology
(addressed in detail in the next section). In this section we provide background of the CAD data
file formats used in this work.

3.1.1 IGES

IGES is a neutral data format and was developed by the U.S. National Bureau of Standards
in 1980. In 1991, the fifth version, also the latest version of IGES was produced, supporting
wireframes, freeform surfaces and boundary representations of solids. The IGES format is based
on ASCII standard code and can be divided in 5 separate segments, appearing in sequence:

1. START

2. GLOBAL
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3. DATA ENTRY

4. PARAMETER DATA

5. TERMINATE

The START and the GLOBAL sections contain the name of the file and its sources, the delimiters
for the Parameter Data section, the author of the file, and other general information. The strings
are in Hollerith format, each one with the number of characters it contains followed by an H
preceding it.

Figure 3.1: Fields of the DATA ENTRY section in one line. Fields marked in red are important
for the extraction of the boundary information.

The basic unit of data in the IGES format is an entity. There are 150 types of entities in IGES.
The DATA ENTRY section lists all entities of the file. An example of one line in the DATA
ENTRY is shown in Fig. 3.1. The entity type is a three digit number starting from 100 which is
unique for different types of entities. The PD pointer provides the reference to the specific entity
in the PARAMETER DATA section. The Sequence Number starts with ’D’ and consists of the
line number for this section. The Parameter Line Count refers to the number of lines this entity
takes in the PARAMETER DATA section.

3.1.2 STEP

STEP stands for the standard officially denoted as ISO 10303. The first part of it was released in
1994 and it is undergoing continuous development, including recent enrichments to better support
isogeometric analysis. The development of STEP is based on three principles:

1. Encompassing data relevant to the entire life cycle of a product including design, manufac-
turing, quality, testing and support.

2. Storing data in an application layer separated from the generic shape information.

3. Utilizing a formal language to describe the data structure.

A STEP file is organized in 2 sections, ”HEADER” and ”DATA”, both terminated by ”ENDSEC”.
The HEADER section consists of FILE DESCRIPTION, FILE NAME and FILE SCHEMA. These
are equivalent to the START and GLOBAL sections of the IGES format.

The DATA sections in STEP files are described in a language named EXPRESS following the
principle 3. In EXPRESS, an object is abstracted to an ENTITY and a collection of entities is
a SCHEMA. Each entity instance has a unique mark, which is a positive number preceded by a
hashtag ” # NUMBER ”. The mark is used as a reference to this entity in the file. Each line in
DATA stands for an entity:

#NUMBER = ENTITY NAME(Attribution 1,Attribution 2, ...) (3.1)

Detailed comparisons between different data exhcange formats have been conducted. A recent
summary can be found in [20]. Compared with IGES, STEP is superior for its advantages such as
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its formal information model. In addition, nowadays STEP is more broadly applied and is in con-
stant development, including further extensions for isogeometric modeling capabilities. Therefore,
STEP is the first choice as the information transmitter for the design through analysis workflow.
IGES is also considered to demonstrate the compatibility of the proposed workflow.

3.2 Geometry reconstruction from IGES/STEP

In the typical image-based immersed isogeometric analysis setting of Verhoosel et al. [39], grey
scale voxel data is approximated by B-spline level set functions. When starting from a CAD
model instead of an image, a natural idea is to use a sign function g1 as the levelset function,
which represents whether a point lies inside the boundary of the model or not.

g1(x) =

 −1 x ∈ Ωoutside
0 x ∈ Γ
1 x ∈ Ωinside

(3.2)

In this section, the extraction of the boundary information from CAD data files is discussed first.
Then approaches to generate levelset values from boundaries are presented. Finally, B-spline
approximations to levelset functions are introduced.

3.2.1 Extraction of geometric data from IGES/STEP formats

For boundary representations of models, the extraction process of boundary information from
IGES files and STEP files are similar. In both formats, geometries are organized as collections of
entities.

For IGES, commonly utilized entities include the Line (Type 110), the Rational B-spline Curve
(Type 126), etc. Fields related to these entities are presented in Fig. 3.2 and Fig. 3.3. Once an
IGES file is read, the DATA ENTRY list is checked line by line and the corresponding entity in
the PARAMETER DATA section can be accessed with the help of the PD pointer. Information
in these entities, such as coordinates of the start and the end points for a line, and knot values
and control points of a spline, can then be easily extracted.

Figure 3.2: Fields of LINE entity in IGES files

Figure 3.3: Fields of SPLINE entity in IGES files
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For STEP, a B-spine surface can be divided into a BSPLINE SURFACE WITH KNOTS entity
and a collection of several FACE BOUND entities.

Further splitting leads to BSPLINE CURVE WITH KNOTS entities, with explicit attributions
including a list of control points and a list of knot values. Fig. 3.4 provides a comprehensive
overview of the structure of a B-spline surface in STEP.

Figure 3.4: The topology and geometry for the boundary representation of a surface in STEP.
Image from Ref. [8]

.
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3.2.2 Evaluation of levelset functions

For a two dimensional geometry, the boundary of a model is supposed to consist of a set of closed
B-splines. A query point is inside the model if it is inside one closed B-spline and outside all other

closed B-splines, as exemplified in Fig. 3.5. In Fig. 3.5
−−−→
A1P1 ·

−−−→
A1B1 ≤ 0 and

−−−→
A3P1 ·

−−−→
A3B3 ≤ 0,

hence the point P1 is outside the spline S1 and outside the spline S2. Therefore, P1 is located

outside the domain Ω.
−−−→
A2P2 ·

−−−→
A2B2 ≥ 0 and

−−−→
A4P2 ·

−−−→
A4B4 ≤ 0, the point P2 is inside the spline S1

and outside the spline S2. Therefore, P2 is located inside the domain Ω.Similarly, the point P3 is
inside the spline S1 and inside the spline S2, thus outside the domain Ω.

Figure 3.5: Example of a 2D boundary representation of a model with spline boundaries.

Evaluation of the levelset function g1 (3.2) is equal to the determination of the location of an
arbitrary point. To determine the state of an arbitrary point, a general approach is to first find
the projection of the point on the contour. Then compare the vector from the query point to the
projection, to the normal vector of the curve at the projection point. While the way to conduct
the location query is straightforward, the signed distance function from the projection point to
the contour can also be obtained in addition to the location state. The signed distance function
g2 is then an alternative for the levelset function.

g2(x)

 < 0 x ∈ Ωoutside
= 0 x ∈ Γ
> 0 x ∈ Ωinside

(3.3)

For a closed B-spline, the projection can be found after subdividing the B-spline into a set of
Bezier splines. The algorithm for projecting a point on a Bezier spline can be summarized as:

Algorithm 1 Point projection on a Bezier curve

Input: Query point, P (x, y); Bezier spline (knots and control points) Bi;
Output: Closest point Pi to the query point P on curve Bi;
1: Check if the Bezier spline is simple. If so, continue; else do 5,
2: Check if one of the end points is the closest point. If so, return; else, continue;
3: Check if the Bezier spline is flat enough. If so, do 4; else do 5,
4: Approximate the curve with a line segment and conduct the projection
5: Subdivide Bi into two halves B2i and B2i+1. Compare the outputs of algorithm 1 when B2i

and B2i+1 are inputs and return the closest one.
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Figure 3.6: Different 2D Bezier splines. A Bezier spline is simple if the control polygon is convex
and simple. The first spline is simple, while the second polygon is not convex and the third polygon
is not simple.

Figure 3.7: When end points are closest to the query point on a Bezier spline, define four dot

products R1 =
−−→
P0P ·

−−−→
P0P1, R2 =

−−→
PPn ·

−−−−−→
Pn−1Pn, R3 =

−−−→
PnP0 ·

−−→
PnP , R4 =

−−−→
PnP0 ·

−−→
P0P . If either

R1 < 0 or R2 < 0, and R3 ·R4 > 0, the nearest point to the query point on the curve must be one
of the endpoints.

A simple Bezier spline in Step 1 is defined as a Bezier spline where the control polygon is simple
and convex, as shown in Fig. 3.6. A polygon is simple if it is a flat shape consisting of straight,
non-intersecting line segments or edges that are joined pair-wise to form a closed path. Step 2 can
be implemented by evaluation of several vectors, as shown in Fig. 3.7. A simple Bezier spline is
flat if the height-width ratio of its bounding box is below a specified tolerance. More details of the
algorithm can be found in YingLiang Ma et al. [19]. Basic operations of splines like subdivision
can be found in Piegl et al. [26].

The levelsets g1 and g2 for the geometry of a prototypical channel are shown in Fig. 3.8. The
levelsets produced by location states coarsely represent the geometry while the levelsets produced
by signed distances are considerably more smooth.

28 Design through Analysis of 3D Printed Fluid Devices



CHAPTER 3. CAD-BASED IMMERSOGEOMETRIC ANALYSIS

-1.0e+00

1.0e+00

-0.5

0

0.5

s

Figure 3.8: Original geometry (left), the sign function (middle) and the signed distance function
(right) as levelset functions
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3.2.3 Bspline level set function

Levelset functions produced by location query lack accuracy to represent the geometry, as illus-
trated in Fig. 3.8. To get a more smooth levelset function f , the levelsets g3 can be approximated
by Eq. 3.4, where ai are levelset coefficients and Ni,p are B-spline basis functions of order p,
defined as the tensor product functions of the univariate open B-spline; see reference [39]. This
spline based levelset function resulting from the location query is illustrated in Fig. 3.9. The
image after convolution is much more smooth compared with Fig. 3.8 and is, as a matter of fact,
close to the original geometry.

f(x) =

n∑
i=1

Ni,p(x)ai (3.4)

ai =

∫
Ω
Ni,p(x)g(x)dx∫
Ω
Ni,p(x)dx

(3.5)

(a) (b)

Figure 3.9: B-spline approximation of the sign function (left), the signed distance function (right)
as levelset functions. Black curves represent the exact boundary.

3.3 Immersogeometric analysis

Starting from data files in IGES or STEP, smooth levelset values have been obtained after evalua-
tion and convolution. The next step in our work flow is to conduct the immersogeometric analysis
described in Chap. 2.

The Navier-Stokes problem for steady incompressible flow is studied here for the flow in a curved
channel. The Navier-Stokes equations for the velocity field u : Ω→ Rd and pressure field p : Ω→
Rd read: 

Find u : Ω→ Rd, p : Ω→ R such that,
ρ∇ · (u⊗ u)− µ∇ · (∇su) +∇p = 0 in Ω,

∇ · u = 0 in Ω,
u = g on ΓD,

2µ∇su · n− pn = 0 on Γout,

(3.6)

The density and the viscosity of the flow are assigned properties of liquid water at room temper-
ature, ρ = 103 kg/m3 and µ = 10−3N · s/m2. The boundary ∂Ω consists of Γwall, Γ− and Γ+.
For a flow in the positive direction, Γ− is also Γin and Γ+ is Γout. Γwall is subject to Dirichlet
boundary conditions where velocities are set to zero. A parabolic horizontal velocity profile f is
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imposed on Γin and Γout is subject to a homogeneous Neumann boundary condition as indicated
in Fig. 2.4. Γin and Γwall are combined as ΓD and a function g is defined on ΓD such that

g =

{
0, on Γwall,
f , on Γin

(3.7)

In Eq. 3.6, n denotes the outward-pointing unit normal vector to ∂Ω.

The velocity space is defined as Vf =
{
u ∈ Hd(Ω) : u = 0 on Γwall, u = f on Γin

}
and Q ={

L2(Ω)
}

. The velocity test function is defined on a homogeneous space:

V0 =
{
u ∈ Hd(Ω) : u = 0 on Γwall,u = 0 on Γin

}
The pressure test functions are taken from the space Q.

The Dirichlet boundary conditions are imposed with the Nitsche’s method as described in Chap.
2, with the parameter β = 100. Integration is conducted as described in Sec. 1.2. The skeleton
stabilization technique is also utilized to eliminate potential oscillations. Both parameters in Eq.
2.5 are assigned the same value γ = 0.05. Typical velocity contours and pressure contours of the
simulations are shown in Fig. 3.10.

Figure 3.10: Velocity and pressure schemes resulting from simulation with the signed distance
based immersogeometric analysis.

3.4 Extension to three dimensions

Three dimensional CAD models are much more complex than two dimensional models due to
different operations to generate solid structures from sketches and surfaces, such as extrusion,
sweeping, etc. The evaluation of the signed distance function for three dimensional CAD models
with the method discussed in Section. 3.2.2 is not implemented in our research on account of
its complexity. However, the location state of a random point with regard to a solid cad model
can be inferred in an easier way, by counting the intersections between arbitrary ray lines passing
through the query point and boundaries of the solid (see Fig. 3.11). Points from which all ray
line have odd numbers of intersections with the boundary faces of the solid are located inside
the solid. Points from which all ray lines have even numbers of intersections with the boundary
face of the solid are located outside the solid. This algorithm is implemented in the open source
package OPENCASCADE and is employed to extend our design through analysis method to three
dimensional CAD models.
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Figure 3.11: Location query by counting of intersections. Ray lines l1, l2, l3, l4 starting from the
point P2 inside the cube A1A2A3A4A5A6A7A8 each have only one intersection with the boundary
faces of the solid. Ray lines l5, l6 starting from the point P1 outside the cube have 2 or 0
intersections.

A simple 3D channel model is shown in Fig. 3.12. The levelset functions evaluated by location
queries is shown in Fig. 3.13. Here the gray region is the trimmed area and the blue region is the
levelset of the required domain. The curves are represented well by approximation with B-splines.

The same formulation as in Eq. 3.6 is studied on the domain shown in Fig. 3.12. Values of the
density and the viscosity are set equal to properties of liquid water under normal temperature and
pressure conditions. A parabolic velocity perpendicular to the inlet is imposed and the outlet is
left free. The solid channel is considered without deformation, which is reasonable when the inflow
flux is controlled at a low rate such that the Reynolds number is around 20, below the criterion
Re = 300 as stated in Thompson et al. [36] to avoid turbulence and convection-dominated stability
problems.

Figure 3.12: CAD model of a 3D planar simple model
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Figure 3.13: Levelset functions evaluated with the location query method for the three dimensional
simple model.
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Application to Tesla valves

Shape improvement of Tesla valves has been one of the topics of interests in fluid dynamics re-
search (a review is given in the Section 1.1). There are many factors involved in the optimization
of a Tesla valve, e.g., the inner angle, the aspect ratio of the cross section, the number of stages
and the distance between stages. Therefore, this chapter presents a detailed numerical analysis
of different designs of the Tesla valve. This analysis includes the geometry reconstruction from
STEP/IGES data files and the periodic constraints with offsets (proposed in Chapter 3).

This chapter is outlined as follows. Section 4.1 illustrates the numerical analysis of different two-
dimensional designs of the Tesla valve. Different three-dimensional designs are studied in Section
4.2.

4.1 Two dimensional shape improvements

The original geometry of the Tesla valve is referred to as T45-R because of its 45◦ inner angle (see
Fig. 1.2). A classic alternative Tesla valve is the MT135 type (see Fig. 4.2a). Liao [18] compared
the diodicity of a MT135 Tesla valve with a T45-R valve and concluded that the MT135 Tesla
valve produces larger pressure differences for flows in opposite directions. As a validation, we will
analyze this flow resisting behavior again with the help of the design-through-analysis workflow
discussed in the previous chapter. The Navier-Stokes problem is studied herein to demonstrate
the workflow (see Eq. 3.6). Properties of liquid water are used for the viscosity µ and the density
ρ. The velocity at inlets is 1mm/s uniformly. The ambient domain is scaled to a unit square when
element sizes are discussed.

A convergence study of the numerical method is conducted before studying different designs of
the Tesla valve. The relation between relative errors of the flux and different element sizes h is
studied for the MT135 Tesla valve. From this study, we observed that the relative error of the
flux converges at a rate around 2 (depicted in the Fig. 4.1). When the element size h < 0.02,
the solution is close to the reference solution and the relative error of the flux is smaller than 1%.
Therefore, ambient meshes with the element size h = 0.01 are considered for the numerical study
in the remainder of this chapter.

The T45-R and MT135 Tesla valves (see Fig. 4.2) are designed using the CAD software AUTOCAD
and saved as STEP files. Thompson in [36] proved that flow in a Tesla valve is laminar when the
Reynolds number is less than 300 at the inlet of the valve. For such low Reynolds numbers, it
is reasonable to assume that the flow is steady. Therefore, the steady Navier-Stokes problem is
considered for the analysis. A 5mm wide channel is considered. Given that the characteristic
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length equals the width of the channel with square cross sections, the Reynolds number is around:

Re =
ρvL

µ
= 5 (4.1)

Figure 4.1: Relative errors of flux of the 2D MT135 Tesla valve for different mesh sizes h.

(a) 2 stage MT135
(b) 2 stage T45R

(c) 4 stage MT135

(d) 4 stage T45R

Figure 4.2: T45R and MT135 Tesla valve with different stages

For different geometries, flows in the forward direction and the reverse direction are simulated.
Pressures at the inlet and the outlet are recorded for the evaluation of the diodicity (which is the
ratio of pressure differences for flows in opposite directions as shown in the Eq. 1.1). Diodicities
of different valves are compared in Tab. 4.1.

Valve 2 stage MT135 2 stage TR45 4 stage MT135 4 stage TR45
diodicity 1.026 1.000 1.011 1.005

Table 4.1: Diodicity of the different T45-R and MT135 Tesla valve for the Reynolds number
Re = 5

The comparison of the diodicity qualitatively validates the flow resisting property of the Tesla
valve since diodicities of all valves are always above 1. The diodicity of MT135 Tesla valves is
larger than that of T45-R Tesla valves. This shows that the MT135 Tesla valve has better flow
resisting ability and it can be preferred in cases where highly flow resisting properties are required.
The diodicity of the 4 stage MT135 Tesla valve is smaller than that of the 2 stage MT135 Tesla
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valve. In order to understand it better, the influence of the number of stages on diodicity is studied
in detail.

number of stages 2 4 6 8
diodicity 1.026 1.012 1.036 1.074

Table 4.2: Diodicity of the 2D MT135 Tesla valve for the different number of stages for the
Reynolds number Re = 5

The diodicity of MT135 Tesla valves with different stages is studied and compared in Tab. 4.3
and Fig. 4.3. From Tab. 4.3 and Fig. 4.3, we observed that increasing the number of stages in
Tesla valves will in general promote the flow resisting ability of the valve. However, the influence
of the number of stages on the diodicity is relatively small (see Tab. 4.1). Therefore, increasing
the number of stages is not a natural choice when a large enhancement is required for the flow
resisting ability of the Tesla valve.

Figure 4.3: The diodicity of the 2D MT135 Tesla valve for different numbers of stages

(a) 6 stage MT135 (b) 8 stage MT135

Figure 4.4: MT135 Tesla valve with different number of stages

Furthermore, MT135 Tesla valves with 6 and 8 stages (shown in Fig. 4.4) are considered for
the numerical analysis of the steady Navier-Stokes flow. The velocity and the pressure profiles
are presented in the Fig. 4.7. From this analysis we observed the following The pressure drops
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progressively in the channel. For Re = 5, the flow concentrates in the main part of the channel
and seldom goes through arcs of the channel. Differences between flows in the forward direction
and in the reverse direction are hardly visible on account of the low Reynolds number.

(a) Velocity for flow in the positive direction.
(b) Pressure for flow in the positive direction.

(c) Velocity for flow in the negative direction. (d) Pressure for flow in the negative direction.

Figure 4.5: Velocity and pressure profiles of the flow in the MT135 Tesla valve with 8 stages for
the Reynolds number Re = 5

Figure 4.6: The diodicity of the MT135 Tesla valve (with four stages) for different inlet velocities
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velocity(mm/s) 1 2 5 10 50
Reynolds number 5 10 25 50 250
diodicity 1.012 1.020 1.023 1.030 1.128

Table 4.3: Diodicity for the MT135 type Tesla valves with different Reynolds numbers.

(a) The velocity for the flow in the positive di-
rection. Re = 1

(b) The pressure for flow in the positive direc-
tion. Re = 1

(c) Velocity for forward flow. Re = 1 (d) Pressure for reverse flow. Re = 1

(e) Velocity for forward flow. Re = 50 (f) Pressure for reverse flow. Re = 50

(g) Velocity for forward flow. Re = 50 (h) Pressure for reverse flow. Re = 50

Figure 4.7: The velocity and pressure fields of the MT135 Tesla valve (with four stages) for the
Reynolds numbers Re = 1 and Re = 50.

In the literature it has been reported that the inlet velocity of the flow has a significant influence on
the flow resistance of Tesla valves. Therefore, flow resisting behaviors for different inlet velocities
are also studied for a two stage MT135 Tesla valve (see Fig. 4.6). We observed the following:
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The diodicity is approximately proportional to the inlet velocity. Changes of pressures are always
progressive. For the Reynolds number Re = 1, profiles are similar for flows in opposite directions.
However, for the Reynolds number Re = 50, the velocity profile of the forward direction flow is
very distinguished from the reverse direction flow by recognizable flow in the arcs of the Tesla
valve. Therefore, a prerequisite to utilize the flow resistance of Tesla valves is to have flows with
relatively high Reynolds numbers.

4.2 Three dimensional shape improvements

A three dimensional Tesla valve is built in Solidworks (CAD software) as shown in Fig. 4.8 and
is saved as a STEP data file.

Figure 4.8: Solidworks CAD model of the three dimensional Tesla valve which is saved as a STEP
data file.

With the help of the STEP file, the levelset functions (see Fig. 4.9) are evaluated with the
location query method and are smoothed with the convolution method as described in Chapter
3. The degree of splines used in the convolution to approximate the levelset functions has a
significant influence on the accuracy of the representation (see Fig. 4.10). Therefore, the degree
of splines can be increased to obtain accurate geometry reconstruction from the CAD data file.
Due to unaffordable computational costs, the second order splines (which results in a fairly good
reconstruction of the geometry from the CAD data file) are considered in this work. However, the
geometry reconstructed with the second order splines fails to approximate perpendicular planar
faces and sharp corners. A potential solution is to refine the mesh. But this is not implemented
in our research due to limitations of computational resources.

The Stokes problem (Eq. (2.8)) is investigated in the 3D Tesla valve. The uniform inlet velocity
is taken as 10mm/s. The dynamic viscosity µ is taken from the properties of water. The charac-
teristic length of the flow is taken as the width of the square channel L = 10 mm. The Reynolds
number is evaluated as Re = Lv

µ = 100. The length of the ambient domain is scaled to the unit
length in the x direction when element sizes are discussed. The pressure profile is shown in Fig
4.12. Different planes are considered to illustrate the velocity profiles and are presented in Figs.
4.11 and 4.13.
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Figure 4.9: (left) Levelset functions of the three dimensional Tesla valve. (right) Point represen-
tation of the three dimensional segmented flow channel.

(a) (b)

Figure 4.10: Reconstructed geometries approximated by splines of different degrees k: (a) k = 1,
(b) k = 2.

Figure 4.11: Definition of two planes parallel to the x-y plane (Plane 1 is above Plane 2).

In this study we observed the following: the pressure difference is very similar at different heights
of the channel. However, velocity profiles show that the flux tends to concentrate at the center of
the channel (see Fig. 4.13 and Fig. 4.13). Flow prefers the main channels (i.e., Channel 2 and 3)
compared to the side channels (i.e., Channel 1 and 4). This flow pattern is in agreement with the
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working principle of Tesla valves which qualitatively validates our numerical method.

(a) Velocity in Plane 1. (b) Pressure in Plane 1.

(c) Velocity in Plane 2. (d) Pressure in Plane 2.

Figure 4.12: The velocity and pressure profiles of the Stokes flow in the three dimensional Tesla
valve in two planes parallel to the x-y plane.

The relative error of the flux is studied with different mesh sizes (see Fig. 4.14). It converges with
an optimal rate of 4. Considering the magnitude of the relative errors, an element size of h=0.02
is considered for further simulations.

Figure 4.14: The relative error of the flux for different mesh sizes h.

So far the Tesla valve with the square cross section 10 mm × 10 mm is considered for the
analysis. The flow is also significantly influenced by the aspect ratio of the cross-section area of
valves which therefore is an important aspect to study. Tesla valves with rectangular cross section
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shape(mm×mm) 15.0× 7.5 10.0× 10.0 8.3× 12.5 7.5× 15.0
aspect ratio 0.5 1 1.5 2
diodicity 1.325 1.334 1.329 1.284

Table 4.4: The diodicity of a 3D Tesla valve with different cross sections

of different aspect ratios (15.0mm × 7.5mm, 10.0mm × 10.0mm, 8.3mm × 12.5mm, 7.5mm ×
15.0mm, see Fig. 4.15) are considered and the Stokes flow is studied. The length a and the width
b of the cross section are chosen to maintain the characteristic length of the channel in accordance
with the definition:

L =
2ab

a+ b
(4.2)

The considered parameters are: the uniform inlet velocity v = 10mm/s, the Reynolds number
Re = 100. Pressures at both ends of the channel for opposite flow directions are recorded. The
diodicity is evaluated and compared (see Tab. 4.4). It is observed that the square shaped Tesla
valve is the optimal shape of the cross section. This conclusion is consistent with the results
reported by Zhang et al. [43].

(a)
(b)

(c) (d)

Figure 4.15: Rectangular cross sections with different aspect ratios: (a) 15.0mm × 7.5mm (b)
10.0mm× 10.0mm (c) 8.3mm× 12.5mm (d) 7.5mm× 15.0mm.

In this chapter, the influence of several design parameters on the flow resisting behavior of Tesla
valves has been studied. Through this study, we demonstrated the capability of the proposed
workflow. Here, change of each parameter leads to a new CAD model and little time-consuming
manual work by the user is required to conduct the numerical analysis. This contrast the tra-
ditional FEM workflow, which takes quite a lot of work to perform various simulations. The
workflow proposed herein reduces the work load of the simulation of a new CAD model by saving
it as a new STEP data file, while not requiring further changes to the simulation setup.
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(a) Position of clipping planes.

(b) Velocity in Plane 3.

(c) Velocity in Plane 4.

(d) Velocity in Plane 5.

Figure 4.13: Results of the simulation for the Stokes problem in the three dimensional Tesla valve
in planes parallel to the y-z plane.
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Chapter 5

Conclusion

Numerical analysis techniques in additive manufacturing can be used to increase productivity.
Conventional workflows involve frequent communication between design and numerical analysis
departments. Any small change of design parameters calls for a completely new simulation. This
is not only expensive but also time consuming. A design-through-analysis workflow is proposed
in this thesis to reduce the repetitive communication and unnecessary user efforts. This analysis
workflow is based on the concept of immersogeometric analysis. 3D printed fluid devices are con-
sidered as the application of choice.

One of the main contributions of this work is the CAD-based geometry reconstruction. We have
developed functions in Nutils (Python-based numerical utilities library) to read CAD data files
(STEP/IGES files) and to extract required information for the geometry reconstruction. The
levelset based framework to reconstruct geometry proposed in Ref. [39] is adjusted and employed.
Algorithms to evaluate signed distance functions for boundary represented models are presented.
The framework is extended to three dimensional cases by generating levelset functions using the
developed location query method. Implementations of these approaches are presented with details.

Additionally, we have introduced a formulation where periodic boundary conditions are imposed by
Nitsche’s method in the immersogeometric analysis setting. Functions are developed in Nutils to
implement these constraints. The assumption of flow periodicity in Tesla valves is reasonable since
only flows with small Reynolds numbers are considered in the thesis. For convection-dominated
flows with high Reynolds numbers, further developments to the method are required for stabi-
lization. The strategy to shift the ambient domain proposed in this thesis avoids complex point
projection methods used in conventional methods.

With the immersogeometric analysis and approaches to reconstruct the geometry, a straightfor-
ward and relatively comprehensive workflow can be employed in prototypical cases. Applications
of the workflow in shape improvements of Tesla valves are discussed. The convenience and the
potential of the workflow are presented with a few examples. Modifications of parameters in the
design process are contained within CAD data files and are instantly adopted in simulations with-
out the need for time-consuming geometry clean-up and meshing operations.

For further development, we aim to better control the accuracy of the framework and to explore
more applications of the workflow. The proposed method can be extended to convection-dominated
problems, but additional stabilization techniques are required in such situations. In this thesis,
low order refinements and relatively coarse ambient meshes are employed due to limitations of
computational resources. With high order discretizations and fine ambient meshes, better accuracy
can be expected and more applications can be taken into consideration. Enhancements in the
computing efficiency by code optimization is also a target of future work.
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