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PCT monitoring with immunoassays using f-BPM

Abstract
In this paper the possibilities are explored to use a Free Bio-sensing by Particle Motion (fBPM) immunoassay to

detect low concentrations of Procalcitonin (PCT). The antibody pair PPC3-B27A3 has shown positive response

for a PCT concentration as low as 100 pM. This is useful in the prevention and treatment of bacterial infections

and eventually sepsis. A PCT concentration of 100 pM is when local infections start to become more severe,

thus when treatment is due. This paper also looks at the post-processing of experimental data and compares

the current thresholding method with a recently designed post-processing technique, based on deep learning.

During experiments an artifact in the imaging software has been found. We found that fBPM immunoassays are

prone to agglomeration of detection particles. This artificially increases the activity and lowers the state lifetime.

An extra step in the post-processing has been implemented to filter out this agglomeration, with success, making

the filtered results more reliable.

TU/e I



PCT monitoring with immunoassays using f-BPM CONTENTS

Contents
1 Introduction 1

2 Theoretical Background 2
2.1 Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Procalcitonin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Bio-sensing by Particle Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4 Antibodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 Response Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Experimental Setup 12
3.1 Antibody Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Assay Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Results PPC3-B27A3 18
4.1 State fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 State lifetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Conclusion PPC3-B27A3 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Agglomeration 25
5.1 Filtering out agglomerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 Editing data for THM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Editing for DLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4 Conclusions Editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Discussion 36

7 Summary 37

Bibliography 38

A Appendix 40

TU/e II



PCT monitoring with immunoassays using f-BPM Chapter 1. Introduction

1 Introduction
The goal of this project is to be able to continuously measure the Procalcitonin (PCT) concentration in the blood

of hospitalized patients. In hospitals it can be a struggle to distinguish a viral infection from a bacterial infection.

PCT is chosen as bio marker because it is a good marker of bacterial infection. Healthy people have a very

low concentration of PCT in their blood (4 pM), as do patients with a viral infection[1]. The PCT concentration

however increases significantly when the patients have a bacterial infection. There is a close correlation between

the PCT concentration and the severity of inflammation. The concentration regime for this project is 4 to 160

pM [2]. The concentration of PCT in healthy individuals is around 4 pM, when local infections occur the PCT

concentration is around 40 pM and the onset of sepsis is reflected by a PCT concentration of 160 pM, at 800 pM

of PCT the patient is likely to enter septic shock. We intend to prevent sepsis from happening, so the relevant

regime would be between 40 to 800 pM of PCT. If an increase in PCT concentration can be observed early,

treatment can be started earlier, improving the patient’s health.

Figure 1.1: Graphical illustration of the relation between PCT con-
centration in blood and the severity of infection.

The fact that PCT concentrations increase with bacterial infection, but not with viral infection gives PCT di-

agnoses an edge over other bio markers. This allows for more effective use of antibiotics, as a viral infection

can not be combated by the usage of antibiotics and only increase antimicrobial resistance. As a result of drug

resistance, antibiotics and other antimicrobial medicines become ineffective and infections become increasingly

difficult or impossible to treat[3], increasing the risk of disease spread, severe illness and death.

In order to be able tomeasure PCT accurately, this research is set up to use a new bio-sensing technique called free

bio-sensing by particle motion (fBPM). This is an unobtrusive technique which will hopefully be used alongside

other vital signs of patients in a medical ward. The eventual end product will work by drawing a little bit

of blood and running that through a fBPM setup, the PCT concentration will be given, either real-time or at

intervals.

This paper will focus on improving the accuracy of the fBPM system by comparing different post-processing

techniques. The effectiveness of the current post-processing method, thresholding the diffusion coefficient, is

compared to a novel deep learning model. On top of that this research will look into filtering out experimental

artefacts.

TU/e 1



PCT monitoring with immunoassays using f-BPM Chapter 2. Theoretical Background

2 Theoretical Background

2.1 Brownian Motion
When looking at particles in the length scales of microns or smaller one will notice that nothing stands still.

Particles will move up and down left and right, in no particular direction. This phenomena is called Brownian

motion (named after Robert Brown), and is caused by molecules bumping into another particles, which in turn

bump into other particles. This happens for medium particles, like water molecules in water, but also with other

particles dispersed in a medium. When a single particle is dispersed in a medium, the trajectory of this particle

is determined by the collisions this particle makes with incoming medium particles. These collisions are random

and discrete. As long as this particle is small enough, its motion can be defined as a 3D random walk.

This random walk can be defined as a normal distribution around 𝑟 = 0 , 𝑟 being the radial distance from the

origin, with a variance 𝜎2 = 2𝑑𝐷𝑡, according to Einstein’s theory. Here 𝐷 is the diffusion coefficient, 𝑑 the

dimension From this the second moment can be calculated to be ⟨𝑟2⟩ = 2𝑑𝐷𝑡. This means that the value of

⟨𝑟2⟩ scales linearly with time, if the measured value of ⟨𝑟2⟩ does not, that would indicate confinement or forced

motion. From the Stokes-Einstein equation, the value of the Diffusion coefficient can be calculated, as long as the

flow is not turbulent and the particles are assumed smooth, spherical and non-interacting. The Stokes-Einstein

equation yields:

𝐷 = 𝜇𝑘𝐵𝑇 =
𝑘𝐵𝑇
6𝜋𝜂𝑟

. (2.1)

Where 𝜇 is themobility, 𝑘𝐵 the Boltzmann coefficient, 𝑇 the temperature (in Kelvin), 𝜂 the dynamic viscosity of the

medium and 𝑟 the particle radius. These are all experimental parameters. Under typical experimental conditions

used in this research, this would give an theoretical diffusion coefficient of approximately 𝐷 = 0.5𝜇𝑚2𝑠−1. This
diffusion coefficient decreases however as the particle is in close proximity to the substrate surface, due to the

no slip condition at the interface between substrate and medium. This can amount up to a factor 3 in lateral

diffusion [4].

(a) (b)

Figure 2.1: a) The dependence of D on ⟨𝑟2⟩ as a function of time, along with illustrations of the three major
types of diffusive behavior. b) Illustration of how the individual collisions make up the macroscopic
manifestation of diffusion.

Diffusion is a direct consequence of Brownian motion. Consider a thought experiment where a container is half

filled with particles, while the other half is empty. Diffusion would state that once an equilibrium is reached,

the particles will be spread homogeneously. This can be understood by thinking of the collisions the particles

make on the filled side of the container. The outer particles would than only be receiving collisions from the
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PCT monitoring with immunoassays using f-BPM Chapter 2. Theoretical Background

high concentration side, resulting in a net force driving them outwards. This is visualized in 2.1b. Similarly,

particles with a higher temperature vibrate more, causing the temperature to spread homogeneously.

These collisions are discrete events, however, the larger the particle, the less discrete this appears. When the

particle becomes too large, the collisions pushing it into one direction are counterbalanced by collisions on the

other side pushing it in the opposite direction. Eventually these minor fluctuations in locations are insignificant

compared to the particle size. This can be seen in the mean squared displacement of a Brownian particle, which

is proportional to 𝐷, and thus via Equation 2.1, scales with 1
𝑟 .

2.2 Procalcitonin
This research is set up to find the concentration of procalcitonin (PCT) in blood of hospital patients. PCT is the

precursor of calcitonin, which helps regulate the calcium levels in blood. It is quite a small protein, made up of

116 amino acid residues and weighing in at 13 kDa of molecular weight[5]. It consists of three parts, premature

calcitonin, surrounded by the N-terminus and katacalcin, see Figure 2.2. These last two are cleaved off when

PCT is converted into calcitonin. In a healthy person, the PCT is almost completely converted into calcitonin and

therefore normally only a very low concentration is present. This changes however when a bacterial infection

arises. An increase in PCT levels can signal immune system activation, which is often a result of an infection.

Infections can be caused by multiple infectious agents such as parasites, bacteria or viruses.

Figure 2.2: Amino acid sequence of human procalcitonin , epitope specificities and pairs of mAbs recommended
for PCT sandwich immunoassay

Inflammation is one of the first responses of the immune system to infection or irritation. Inflammation is

stimulated by chemical factors released by injured cells and serves to establish a physical barrier against the

spread of infection, and to promote healing of any damaged tissue following the clearance of pathogens. If

the immune response is not adequate enough, the patient can develop sepsis, which can lead to organ failure

and death, if not treated properly. This is especially true for the more vulnerable patients, such as elderly and

neonates.

Nowadays, infections can be treated rather efficiently. Depending on the type of infection (the type of pathogen

causing the infection) the adherent medication can be administered. But in order to find the right medication, the

type of infection does need to be diagnosed. Here time is of the essence, the faster themedication is administered,

the less severe the symptoms. Bacterial and viral infections can both cause the same kinds of symptoms, it can be

difficult to distinguish which is the cause of a specific infection. This is where PCT plays a role. Measuring the

PCT concentration is especially useful in detecting bacterial infections, since the PCT concentration is closely

correlated to the severity of inflammation. While the PCT concentration hardly changes in the case of a viral

infection [6]. On top of that is the concentration of PCT in the blood of healthy individuals much lower (4pM)

than that of bacterial infection patients (40 - 160 pM), meaning there is a high signal to noise ratio.
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PCT monitoring with immunoassays using f-BPM Chapter 2. Theoretical Background

2.3 Bio-sensing by Particle Motion
Themethod ofmeasuring the PCT concentration chosen in this study is called free bio-sensing by particle motion

(fBPM), the free referring to free diffusion. Bio-sensing by particle motion is a fancy way of saying ”extracting

information by looking at the movement of particles”. This technique is based on Brownian motion and is in a

way very similar to tethered particle motion (TPM).

2.3.1 Tethered Particle Motion

TPM is a bio-sensingmethodwhere a large bead is connected to a substrate via a tether (oftenDNA or a polymer),

in order to study the behavior of said tether. The tether itself is oftentimes to small, or thin, to be able to

properly see with regular microscopes, whereas the bead is not. To this extend, the location of the bead is

determined. In the case of TPM, the bead does not display Brownian motion, but rather confined motion, given

by Equation 2.2:

⟨𝑟2⟩ = 𝑅2𝑐𝑜𝑛𝑓(1 − 𝑒−
𝑡
𝜏 ). (2.2)

Where the mean squared radial displacement ⟨𝑟2⟩ starts out as Brownian motion, but starts to feel the effects of

confinement after a characteristic confinement time 𝜏, see also 2.1a. Eventually to converge to the square root of

the confinement radius 𝑅2𝑐𝑜𝑛𝑓, in this case the radius of the tether. By equating the diffusive speed of a confined

particle at 𝑡 = 0 to the diffusive speed of a free particle, an expression for 𝜏 can easily be found:

∂ ⟨𝑟2𝑐𝑜𝑛𝑓⟩

∂𝑡
|
𝑡=0

=
𝑅2𝑐𝑜𝑛𝑓
𝜏

=
∂ ⟨𝑟2𝐵𝑀⟩

∂𝑡
|
𝑡=0

= 2𝑑𝐷 (2.3)

𝜏 =
𝑅2𝑐𝑜𝑛𝑓
2𝑑𝐷

. (2.4)

A scatter plot of the projection of its 2D coordinates over time typically yields a spherical image with a radius.

This radius is √𝑙
2
tether + 2𝑙tether𝑅bead (Pythagorean theorem), where the length of the tether is 𝑙tether. If the tether

binds to the substrate, it effectively shortens its length, reducing the radius of the scatter plot while still remaining

circular. Whereas when the bead is to be bound by two tethers, the confinement region of the bead is limited

to the overlap of two circles. This results in a stripe like pattern. This is useful to distinguish whether a bead is

bound to another tether or the substrate, when its region of confinement decreases.

Figure 2.3: The three different states the TPM system can be in, animated as the measured center of the bead
after a certain time. On the left the normal state, the bead is confined by the tether; in the middle
the bead is confined to a stripe-like pattern due to the overlap in confinement of two tethers; on the
right the bead is bound to the substrate.
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2.3.2 Free Particle Motion

fBPM is in essence very similar to TPM, the difference being that the bead is not necessarily bound to a tether.

The starting position of fBPM is with freely diffusing particles in a flow cell. This flow cell contains a surface on

which binders are homogeneously dispersed, connected to the substrate on one end, free on the other. Similar

to a long-pile carpet, but not so dense. A schematic overview is given in Figure 2.4

Figure 2.4: A simple illustration of how fBPM works

The particles in the flow cells display Brownian motion when they are unbound, but once they get close to a

binder, they can bind. The bead motion changes into confined motion, like in a TPM system, once it is bound

to a binder. The free diffusion changes into circular motion. If a stripe like pattern is seen, like in Figure 2.3,

the bead is clearly bound by two binders. Likewise a smaller circle or dot might indicate a that it is stuck to

the substrate. This way allows one to classify beads into categories: unbound, single bound state, double bound

state, and stuck. As well as the bound state life times of said states. All of this is possible by only looking through

a microscope, determining the center of beads and tracing the motion patterns of these beads.

In order to bind to a binder, a bead must diffuse downwards to the bottom of the flow cell, and approach the

substrate. The decrease in diffusion coefficient when near a planar surface, mentioned in subsection 2.1, means

that not only the ⟨𝑟2⟩ decreases, but also the variation on the measured diffusion coefficient. Because of this it is

often difficult to distinguish single and double bound states. That is why the stripe-like patterns are a extremely

useful indication of double bound states.

The advantages of this method is that it requires a rather simple (and thus cheap) experimental setup, basically

only a microscope and a PC are required. The field of view of the microscope is large enough to capture several

hundreds of particles simultaneous, this makes measurements more reliable, since there is a higher statistical

population, without removing the possibility to look at individual particle motion and behavior.
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2.4 Antibodies
Antibodies, also known as immunoglobulins, are proteins used by the immune system to identify and neutralize

foreign objects such as pathogenic bacteria and viruses. The Y-shaped molecule composed of four poly-peptides:

two heavy chains (H) and two light chains (L). The two tips of the Y-shape show considerable variation in amino

acid composition and are referred to as the variable (V) regions to distinguish them from the relatively constant

(C) regions. Both the heavy and the light chain consist of a variable domain, respectivelyHL andVL, and constant

domains, CH and CL, see figure Figure 2.5. Together the VH and VL make up a paratope (analogous to a lock),

this is the part of an antibody which recognizes and binds to one particular epitope (analogous to a key) on an

antigen, allowing these two structures to bind together with precision. Each arm of the Y-shaped antibody has

an identical paratope at the end.

Figure 2.5: The generalized struction of IgG

The Y-shape is split into two by the hinge region, this held together by disulfide bonds and is flexible in nature,

this allows the distance between the paratopes to vary. The CH domain beneath the hinge is called the Fc region.

This region can bind to the receptor present on a phagocyte, which is essential for phagocytosis (the process of

ingestion of pathogens). This is one of the main ways of the immune system to remove pathogens.

There are five different primary classes of antibodies, which are distinguished by the type of heavy chain they

possess. These differences allow the different classes to function in different types and different stages of immune

responses. The antibodies that can bind to PCT are all part of the immunoglobulin class IgG, the most common

type of antibody found in the blood circulation. Because of its relative abundance and excellent specificity toward

antigens, IgG is the most commonly used antibody in research and clinical diagnostics.
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PCT monitoring with immunoassays using f-BPM Chapter 2. Theoretical Background

The antibody classes can be further divided into subclasses, based on minor differences in the heavy chain type

of each Ig class. In humans there are four subclasses of IgG: IgG1, IgG2, IgG3 and IgG4 (numbered in order of

decreasing concentration in serum). The subclasses differ in the number of disulfide bonds and the length and

flexibility of the hinge region[7][8].

In this research all of the used antibodies are of the IgG1 or IgG2a subclass. Where generally speaking IgG1 has

a high Fc affinity and IgG2a has an extremely low Fc affinity. But, the IgG affinity to Fc receptors is specific to

individual species as well as the class. The structure of the hinge regions contributes to the unique biological

properties of each of the four IgG classes. Even though there is about 95% similarity between their Fc regions,

the structure of the hinge regions is relatively different.

There are two types of antibodies available that can be picked depending on the applicational requirements:

polyclonal and monoclonal. Polyclonal antibodies are made using several different immune cells. They will

have the affinity for the same antigen but different epitopes, whereas monoclonal antibodies are made using

identical immune cells that are all clones of a specific parent cell, and thus only bind to one specific epitope

corresponding to their paratope. Nowadays it is possible to produce monoclonal antibodies that bind to any

epitope desired.

2.4.1 Affinity

Antibody affinity is defined as strength of the binding interaction between antigen and antibody. It depends

on the closeness of the stereochemical fit between antibody sites and antigen determinants, the size of the

area of contact between them, and the distribution of charged and hydrophobic groups. In stable condition,

where the associated form of the antigen and antibody is favored, the antibody is referred to as being of higher

affinity.

When the affinity is higher, the time bound is longer, making it possible to detect lower concentrations of PCT.

This is at a cost of reversibility. If the binding strength is too high, the PCT will no longer unbind. This would

make it impossible to measure a decrease in PCT concentration. In the end we would like to be able to continu-

ously measure the PCT concentration in blood, so not only increase but also fluctuation. Polyclonal antibodies

are less sensitive to pH or buffer changes, even to antigen changes. And because of them being able to bind to

more than one epitope, they can help amplify the signal from target protein even with low expression level. The

specificity however decreases, as well as the batch-to-batch consistency. As polyclonal antibodies can bind to

any epitope, it is impossible to predict to which it will bind on beforehand, making the affinity impossible to

predict.

2.4.2 Immunoassays

In this project f-BPM is applied in an immunoassay. This is a method of measuring the presence of certain

molecules, by use of antibodies. In the case of immunoassays, the binders are antibodies working as a pair,

a substrate and a detection antibody. These antibodies are chosen such that they both bind to PCT, but not

to each other. The detection antibody is attached to the surface of the bead, while the substrate antibody is

physisorbed to the substrate’s surface. After the antibodies are introduced, both the surface of the bead and that

of the substrate are blocked, to remove residual interaction. The bead with the detection antibody will find and

bind to the PCT molecules. This will than travel as a compound, until it meets and binds to a capture antibody,

immobilizing the bead. This confinement can be measured. This way the binding frequencies and lifetimes can

be measured. A schematic of such a structure can be found in Figure 2.6
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Figure 2.6: A typical illustration of an fBPM immunoassay

2.5 Response Measurements
To check the concentration of a sample with unknown concentration, one needs to compare its results with a

dose response curve, made beforehand for that certain sample. This can be done for the bound fraction, the

activity or the state lifetime. For this to be possible the dose response curves needs to be reproducible, there

should not be any significant batch-to-batch variations in the dose-response curve, as this would significantly

reduce the accuracy of the concentration measurement. The latter is also true when the slope of the curve

is not steep enough or too steep, since a small error in the readout of a x value with a very steep slope will

lead to a big error in the determined y value, and vice versa for a gentle slope. The dose-response curve of

bound fraction and activity are sigmoid shaped, meaning that only the linear part of that curve can be used for

accurate concentration measurements. This means that the accuracy is dependant on size of the linear regime,

so ideally the desired concentration regime lies in this linear regime of the response and this regime is as large

as possible.

2.5.1 Bound Fraction

The key element of experimental data is state prediction. During post-processing, a time dependent state is

coupled to each individual particle tracked. Every particle at every analyzed frame of a measurement has a state

assigned to it. These states can either be unbound, single bound or double bound. The bound fraction is the

fraction of frames where a particle is in the bound state, divided over the total amount of frames, as seen in

Equation 2.5. This can further be categorized into the single bound and double bound fraction. Logically there

also exists an unbound fraction, which is one minus the bound fraction. These fractions correspond to the time

averaged fraction of frames where particles are in said state over the total amount of frames.

𝐵𝐹𝑠 =
∑

𝑁𝑝
𝑛=1 𝐹𝑠,𝑛
𝑁𝑝𝐹𝑚𝑎𝑥

(2.5)

Here 𝐵𝐹𝑠 is the time averaged bound fraction of state 𝑠, 𝑁𝑝 the total number of particles, 𝐹𝑠,𝑛 the total number of

frames particle 𝑛 is in state 𝑠 and 𝐹𝑚𝑎𝑥 the total amount of frames in the measurement time.
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2.5.2 Activity

Ameasure to analyze the concentration is to look at the activity. The activity is the number of events per particle

per second. To do this analytically, all the events are summed and divided over the amount of active particles

(so particles with an average 𝐷 above the stuck limit) and over the measurement time in seconds. There are

however two ways to count events: by counting the amount of times a state appears, and by looking how often

a particle switches states.

There are two types of switching activity, the so called ’01’ and the ’12’ activity. Respectively the amount of

times a particle switches from the unbound to the single bound state or vice versa and how often it switches

back and forth between single bound and double bound state. All of this is illustrated in Figure 2.7, where the

Figure 2.7: An illustration of how the activity is counted, where UB = 2 × 𝑛01 and DB = 2 × 𝑛12.

blue line is a simplistic representation of what state a certain particle is in as function of time. Below that the 01

and 12 events have been counted at the moment such an event occurs. If one were to count the times this particle

is in the unbound (UB) state this would be exactly double as the number of 01 events. Likewise the number of

double bound (DB) events is double the number of 12 events.

However is this same state prediction is cropped, like in Figure 2.8, this is no longer the case. If one were to

compare 01 and 12 events to be twice the UB and DB events, there is now 1 fewer 01 event and 1 fewer 12 event.

Bearing in mind that there are usually hundreds of particles in one measurement, this seemingly insignificant

mistake might rack up to be larger than expected. Therefor it is important to be consistent in the determination

of the term ’event’.

Figure 2.8: An illustration of how the activity is counted, where UB ≠ 2 × 𝑛01 and DB ≠ 2 × 𝑛12.

In order to get from the number of events to the actual activity of a measurement, the total number of events

𝑁𝑒𝑣𝑒𝑛𝑡𝑠 are is fitted with a normal distribution, from which the mean number of events 𝜇𝑒𝑣𝑒𝑛𝑡𝑠 is derived and

divided by the measurement time 𝑇𝑚𝑒𝑎𝑠, like so [4]:

𝐴𝑐𝑡𝑖𝑣 𝑖𝑡𝑦𝑗 =
𝜇𝑒𝑣𝑒𝑛𝑡𝑠,𝑗
𝑇𝑚𝑒𝑎𝑠

. (2.6)

Where j is either 01 or 12, for the desired type of activity.
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Ultimately, the activity will follow the Hill equation:

𝑅 = 𝑅𝑏𝑔 + 𝑅𝑎𝑚𝑝𝑙
[T]𝑛

𝐸𝐶𝑛50 + [T]𝑛
. (2.7)

This is the response 𝑅 as a function of background response 𝑅𝑏𝑔, an amplification factor 𝑅ampl, concentration

[T], the half maximal effective concentration 𝐸𝐶50 and the Hill coefficient 𝑛which is a way to quantify the degree
of interaction between ligand binding sites. The activity per concentration is an experimental result, therefore

the dissociation constant can extracted from this fit. This Hill equation is in essence nothing different from a 4

parameter logistic regression curve.[9]

2.5.3 State Lifetime

Another property one can extract data from are the state lifetimes. Simply put, a particle is either bound or

unbound. The time a particle resides in either of those states, is called the state lifetime, respectively 𝜏𝐵 and 𝜏𝑈𝐵.
Binding and unbinding happen at a certain rate, these rate constants are called 𝑘on and 𝑘off.

Figure 2.9: An illustration of a typical mobility time trace to illustrate 𝜏𝐵, 𝜏𝑈𝐵, 𝑘on and 𝑘off

In order to get these values from experimental results, the state lifetimes are sorted by length in increasing order.

The survival fraction is then plotted, which is nothing else than 1 - the cumulative distribution function. This is

then plotted and fitted with an exponential fit, like in Equation 2.8.

1 − 𝐹𝑈𝐵(𝑡) = exp (− 𝑡
𝜏𝑈𝐵

) = exp (−𝑘on 𝑡)

1 − 𝐹𝐵(𝑡) = exp (− 𝑡
𝜏𝐵
) = exp (−𝑘off 𝑡)

(2.8)

This is an oversimplified approach, as it is already known that there are three states in the fBPM system. The

bound state is an overarching state comprised of the single and double bound state. This results in two new state

lifetimes: 𝜏𝑆𝐵 and 𝜏𝐷𝐵, see Figure 2.10.
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Figure 2.10: A state lifetime illustration including the single and double bound state

The problem now is that the bound state lifetime can no longer be fitted with a single exponential. Therefor a

double exponential is introduced:

1 − 𝐹(𝑡) = 𝐴1 exp (−
𝑡
𝜏1
) + 𝐴2 exp (−

𝑡
𝜏2
) . (2.9)

This double exponential fit consists of two exponents, with two different decay times, and two different magni-

tudes 𝐴1 and 𝐴2. The constraint is that 𝐴1 + 𝐴2 = 1, thus:

1 − 𝐹(𝑡) = 𝐴1 exp (−
𝑡
𝜏1
) + (1 − 𝐴1) exp (−

𝑡
𝜏2
) . (2.10)

Due to the two different decay times, this double exponential fit is able to account for two populations of lifetimes,

short lifetimes 𝜏1 and long lifetimes 𝜏2. Equation 2.10 shows the difference in performance between the single

and double exponential fit.
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Figure 2.11: The survival curve of bound state lifetime of the 200 pM measurement of the PPC3-B27A3 sample,
as a demonstration why the double exponential fit is required.

It is to be expected that the single and double bound state lifetime still correspond to a single exponential decay,

while the bound lifetimes do not. However, deviations from this behavior might be explainable when using

polyclonal antibodies, due to the heterogeneity in paratopes. After looking at the results, all states seem to be

better suited for a double exponential fit. Therefore, the short lifetime is attributed to low affinity paratopes and

the long lifetime is attributed to the high affinity paratopes.
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3 Experimental Setup

3.1 Antibody Pairs
For this research the antibody pair PPC3-B27A3 was chosen and tested. PPC3 is a polyclonal antibody, meaning

a higher overall antibody affinity and therefor quicker binding and high sensitivity for detecting low quantities

[10]. Also the binding is less dependent on particle deformations and irregularities. This comes at the cost of

some batch-to-batch reproducabitity, as the bond formed can be one of several options ofmonoclonal bonds. This

difference in bond also leads to a loss in accuracy, as different bonds have different affinities and thus different

dissociation rates. B27A3 is the biotinylated version of 27A3, a monoclonal antibody particularly binding to the

N-terminus of PCT, see Figure 2.2.

For the comparison of DLM vs THM, results of this research can be compared with the results of other experi-

ments, such as the 13B9-B27A3 antibody pair. 13B9 is a monoclonal antibody, and is chosen because of its low

affinity to B27A3. The result of this is lower non-specific binding, a delay the saturation of dose response curves

and evading irreversible binding. The antibodies compatible with PCT have been screened for affinity [11], see

Figure 3.1, to get a general sense which antibodies to use.

We expect the responses of PPC3-B27A3 to be different than that of 13B9-B27A3, because of the higher affinity.

This would translate into more response at lower concentration. The difference in polyclonal versus monoclonal

antibodies is expected to increase this low concentration response.

Figure 3.1: Heat map of the antibody screening of all available antibodies against each other. An antibody
concentration of 100 nM was used together with a target concentration of 10 nM. No target was
added to three negative control samples, marked with ‘*’.
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3.2 Assay Preparation
In this research the main focus is on PCT fBPM immunoassays. This was done for different antibody pairs,

however the preparation procedure does not significantly change for different pairs. The general procedure

basically consists of three steps: functionalization, blocking, particle cleaning.

Firstly the antibodies are diluted in phosphate-buffered saline (PBS) such that the antibody solution is 100 nM.

The capture antibody solution is suspended and incubated for 60 minutes in the flow cell at room temperature,

such that they will physisorb to the substrate. This flow cell is made by sticking a flow cell sticker onto a glass

plate. The detection antibody solution is pipette mixed with 1 𝜇m streptavidin coated Dynabeads MyOne and

incubated for 45 minutes at room temperature in a HulaMixer Sample Mixer.

Once this is done, the blocking step can commence. The particles are blocked by biotinylatedmethyl-polyethylene

glycol (mPEG), diluted in PBS, during a 10 minute incubation step at room temperature in a HulaMixer. The flow

cells are blocked by a 1% bovine serum albumin (BSA) solution, diluted in PBS, during a 60, minute incubation

step at room temperature.

After the particle incubation step, the magnetic property of the Dynabeads is utilized. In a magnetic rack the

beads are pulled towards the magnet, such that the remaining solution can be removed, without the loss of

particles. This effectively washes the particle solution. After rinsing three times with PBS, the particles are

isolated and placed in a 1% BSA (in PBS) solution for 60 minutes at room temperature. For a schematic overview

of the immunoassay structure, see Figure 2.6.

After which the particle solution is sonicated, and diluted to the desired imaging concentration with the assay

buffer (which consists of 0.1% BSA solution in PBS). Before imaging, the flow cells are injected with the diluted

particle solution, which is incubated there for 20 minutes at room temperature, such that the particles have

plenty of time to sediment. After which imaging can begin.

3.3 Imaging

3.3.1 Microscope

Measurements are done on a movable stage a Nikon Ti Confocal Microscope or the Leica inverted microscope

with an objective with 20x magnification in darkfield. The particles were recorded for 10 minutes at 60 frames

per seconds using the FlyCapture Software Development Kit (FLIR) after calibration with the NIS-Elements

Microscope Imaging Software (Nikon).

3.3.2 Software

In order to get the particle locations from a visual feed tracking software is required. To this end the ”Biosensing

by particle diffusion software” is used, which has been developed by Max Bergkamp [12]. This is a real-time

particle tracking software made especially for BPM in C++. By having accurate particle identification and local-

ization, particles can be tracked and their xy locations can be found with sub-pixel precision, after which it is

noted down as a .txt file, called a xy-list. These xy-lists are saved and used for post-processing.

TU/e 13



PCT monitoring with immunoassays using f-BPM Chapter 3. Experimental Setup

The software identifies particles in a three step process, illustrated in Figure 3.2.

• First, the image is filtered with an intensity thresholds to find possible particles against a dark background.

• Then the distance between two intensity peaks is checked to remove larger shapes and minimize false

positives. This distance filter includes also a distance to the boundary of the field of view, as particles

leaving the field of view can no longer be tracked.

Lastly, the particles are filtered on shape, this exists of two components, symmetry and deviations from a particle

template is added to ensure that all particles are spherical and thus indeed particle, not artifacts.

• Symmetry filtering is done by calculating the covariance matrix, and retrieving the major and minor mo-

tion amplitude as a result of the square root of the largest and smallest eigenvalue of the covariance matrix.

From the fraction of the minor over the major motion amplitudes, the symmetry of the motion pattern

can be found. For each particle its symmetry is calculated and particles with a symmetry below a certain

threshold will be rejected.

• The second part of the shape filtering step is based on particle template deviation. A particle template is

gathered from simulation, which is subtracted from the particle’s location. The sum of the remaining ab-

solute pixel intensity values is used to calculate the deviation from the particle template. Again a threshold

value is set to filter out deviating particles.

Figure 3.2: The three step particle identification process.

Once the particle identification is done, the localization can commence. For reasons of sensitivity and speed,

phasor localization is used. This algorithm transforms the intensity of the point spread function into phase

vectors using the first Fourier coefficients in the x and y direction. The angles of these phase vectors are then

inverse Fourier transformed to give the x- and y- location of the center of the point spread function[13].
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3.4 Post-processing

3.4.1 Threshold Method

The threshold method (THM) is a post-processing script that tries to analyse what is happening at the micro-

scopic size. It runs on the input of the ’xy-lists’ created by the imaging software. For every identified particle

a new row is added to this text file. The first two columns are the starting x and y positions of each particle,

in pixels. The rest of the columns are the difference in location at other frames, alternating in x and y. This

difference (in pixels) is that between the position at that time, compared to the starting position. This means

that the xy-list is a (m x n) matrix with m the number of particles and n two times the number of frames plus

two, for it has two columns per frame (one for x, one for y) plus two starting columns. This is illustrated in

Figure 3.3.

Figure 3.3: Illustration of a xy-list with the x y coordinates for particles 1 to n, for time 0 to t.

The THM predicts the particle’s state based on the calculated diffusion coefficient, and compares this to a certain

threshold value and assigns states to particles on the bases of these regimes. There are some filtering steps,

mainly to filter out noise and stuck particles. The process is described below and illustrated in Figure 3.4.

Figure 3.4: Schematic of the THM state prediction process.

Firstly the average diffusion coefficient for each particle (Mean_DC(j)) is calculated. This is done using the mean

squared displacement (MSD(j,𝜏)) of particles at time step 𝑡 versus at time 𝑡 + 𝜏, with 𝜏 ranging from 1 to 10. This

is then fitted with a linear fit, where the slope represents the time averaged diffusion coefficient.

There is also a process to get the time-dependent diffusion coefficient, this is calculated using the mean square

displacement as a function of time with a moving mean. A moving mean transformation with a sliding window

of size 𝑘, which averages each value of an array by averaging the value of the current position over the values

of its 𝑘 − 1 neighbors. This is a good method to even out short-term fluctuations on a signal. See Figure 3.5 for

an illustration.

The calculation of the time dependent diffusion coefficient starts with calculating the squared displacement

(SD(j,t,𝜏)) from one point at time 𝑡 versus at time 𝑡 + 𝜏, where 𝑡𝑎𝑢 is an integer increasing from 1 to 10. This

gives 10 different sets of values for the squared displacement, for every value of 𝜏 a set of time-dependent values.

This squared displacement is averaged with a moving mean with a window size of 60, resulting in a mean

square displacement as function of particle number, time and 𝜏 (MSD(j,n, 𝜏)).This is then weighted over 𝜏 such
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Figure 3.5: Illustration of a moving mean[14]

that further time-steps influence the mean to a lesser degree, reducing it to one single set of values per particle

(MSD(j,t)).

The time averaged diffusion coefficient is then used to filter out all stuck particles, by removing particles of which

the average diffusion coefficient is not higher than the stuck threshold value, which is in this research set at 0.02.

In a for loop over all remaining frames, the value of the weighted diffusion coefficient is once again averaged

with a moving mean, to smooth out the signal. The output of this is compared with certain threshold values per

time-step, after which states are assigned to frames. These threshold values distinguish three different regimes:

unbound, single bound and double bound. Lastly the length of said states are checked, if states are shorter than a

specified lifetime (120 frames), the state is discarded. The end result is a matrix for all particles with the particles’

state as a function of time (Events_DC(j,t)).

3.4.2 Deep Learning Algorithm

In order to improve the state determination of tracked particles, a deep learning algorithm was applied for the

post-processing of the experimental data. Deep learning is a type of machine learning, which is in turn a form

of artificial intelligence that enables a system to learn from data rather than through explicit programming. Ma-

chine learning uses a variety of algorithms that iteratively learn from data to improve data and predict outcomes.

If a machine learning algorithm is trained with data, it generates a machine learning model. This model can than

be used on real data to predict the outcome.[15]

In order to get a machine learning model to work, it needs to be trained. This means that one is to feed the model

a set of training data. In the case of the deep learningmodel (DLM) used in this research, this means creating a set

of simulated data and feeding that to the model. This simulated data also has the correct outcomes. The model

starts looking for patterns and crudely predict states for this training data. The predicted states are compared

to the true states, and false states are rejected. This way the model only keeps the correct prediction patterns

and reject patterns that lead to incorrect outcomes. By digesting more data the accuracy of the predictions

increase. When the model is sufficiently trained, it can be used on experimental data where the outcome is

unknown.

Deep learning is a specific method of machine learning that goes through successive layers in order process

data.This is especially useful when trying to learn patterns from unstructured data and problems that are poorly

defined. A deep learning model consists of three types of layers: one input layer, many hidden layers, and an

output layer. Each layer consists of multiple, interconnected, nodes who each do a simple processing step. Data

is fed into the input layer. Then the data is modified in the hidden layer and the predicted outcome is given in

the output layer. Every connection between the neurons consists of weights, it denotes the significance of the

input values. These weights are calculated during the training of a model. The hidden layers is what makes
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transforms the raw data into values for the desired parameters.

The DLM used in this research is used to distinguish in what state colloidal particles are, based on coordinates

measured in fBPM. In order to do so, the model uses a combination of a bidirectional Long Short-Term Memory

(LSTM) layer and a 1D convolutional neural network (CNN)[16]. This breaks down to the following:

A LSTM layer is a type of recurrent neural network (RNN), designed for processing sequential data. This means

that it includes the output of the previous step along the input at the current position for the output of the

current step, see Figure 3.6 for a schematic. LSTM is a specific type of RNN which includes a separate memory

cell, designed to learn long-term dependencies. Not only is this RNN dependent on the output of the previous

step and the input of the current step, it is also dependant on the memory cell state. Each step the information

of the current step is can be stored in the memory cell and old information can be forgot. This way the LSTM

can save relevant information for a longer period of time. This LSTM is used bidirectional, this refers to an

adaptation of tradition RNN algorithms. Since, these types of algorithms are very dependant on the input, the

order in which it is ran affects the outcome. To this end the bidirectional LSTM is made of two LSTM’s, one of

the two processes the inputs backwards. In the end, both representations are merged into a single output. By

looking at it backwards, it might find patterns that otherwise would have been overlooked.

Figure 3.6: Schematic overview of a RNN[17]

A CNN is an algorithm often used in image recognition and excels in picking out local patterns, or ’patches’. In

terms of image recognition, it would easily be able to find the edges of objects from which it tries to recognise

categorized objects. For example, by looking at the edges making up a human nose, it can tell if an object is a

nose. It maps features to the next layer, which has one neuron for every different feature. This layer is used as

filter for the whole grid of inputs to quickly recognize features.

Figure 3.7: Schematic overview of a 1D CNN[18]

The 1D stands for 1 dimensional. This means it looks at 1D inputs, like time traces. In Figure 3.7, a schematic

of a 1D-CNN is shown. Here x is an array of inputs, which are ran through a the convolutional layer made up

of a set of neurons, A. These neurons look at small time segments of the data. A looks at all such segments,

computing certain features. Then, the output of A is fed into a fully-connected layer, F, which links the output

of A to a state prediction.

For this project the 1D CNN is used as a pre-processing step for the bidirectional LSTM. This way the input of

the LSTM is reduced to a shorter sequence of meaningful features. This way the computation speed is greatly

increased without sacrificing on performance.

TU/e 17



PCT monitoring with immunoassays using f-BPM Chapter 4. Results PPC3-B27A3

4 Results PPC3-B27A3
This researched is mainly based on the results of the PPC3-B27A3 antibody pair. To goal is find positive response

at low PCT concentration. This pair is tested by both the deep learning model (DLM) and the thresholding

method (THM). A secondary goal is to look at the difference in response as result of post-processing method. To

validate and possibly quantify these differences, results of other pairs are also looked at. For this purpose, the

results of the 13B9-B27A3 pair is used, because we have three separate measurements of this pair.

The results of the THM are very dependent on input parameter, such as the averaging window size or the set

threshold values. The DLM is more robust and more complex to alter, therefor changes were made to the THM

script and the results were compared to previous results or the DLM results.

4.1 State fractions
In Figure 4.1 the unbound, single and double bound fractions are displayed. It is clear that there is a response

as result of increasing PCT concentration. The concentration regime seems to be chosen well, as this captures

the linear regime of response perfectly. Note the saturation around 800 pM. This coincides with the regime

where sepsis occurs up to septic shock. Preferably the limit of detection would lie around 4 to 40 pM. Unfortu-

nately, there was no measurement done at this concentration, so we are unable to tell if it is possible to measure

here.

There is hardly any difference between DLM and THM for the unbound fraction. This means that both DLM

and THM are equally capable to distinguish bound from unbound, even though the state determination method

is different, see subsection 3.4. This can also be seen in the 𝐸𝐶50 values, displayed in Table 4.1.
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Figure 4.1: Unbound, single bound and double bound fraction for PPC3-B27A3 for the DLM and THM.

There is a very small difference in the bound states. At higher concentrations the THM has a relatively higher

double bound fraction and lower higher bound fraction compared to the DLM. This difference is negligibly small.

This is also reflected in the 𝐸𝐶50’s in Table 4.1, the UB and SB fraction have a nearly identical Hill curve. The

DB fraction has a slightly higher 𝐸𝐶50 for DLM, but the both DLM THM share the same confidence interval.

The fact the the standard deviation for the DB fraction THM Hill fit is significantly higher than that of DLM,

indicates that the DLM DB fraction values align better with the expected dose-response curve. Indicating that

the DLM might be more reliable in double bound state recognition.

For the 13B9-B27A3 pair the state fractions were also calculated and plotted in Figure A.1. Here too the con-

clusion is that there is no significant difference in state fraction between DLM and THM. This is remarkable,
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Table 4.1: The corresponding 𝐸𝐶50’s per method as result of fitting the bound
fractions with the Hill equation.

UB SB DB
DLM 480 ± 71,0 314 ± 39,6 651 ± 109
THM 482 ± 69,7 304 ± 42,5 695 ± 157

since the DLM is supposed to have better DB state detection. The two methods have different state prediction

techniques, but yield similar results.

The main difference in state prediction between DLM and THM is the overlap region in between the single and

double bound states. The only possibility for particles to be assigned to the double bound state while having a

𝐷 above the double bound state threshold (and vice versa) is when the state transition is rejected because of its

length is too short. If this rejection was not incorporated, the border between the two bound states would be a

straight vertical line.

Figure 4.2: Diffusion coefficient distribution per state for both post-processing methods plotted from experi-
mental data. Data from 800 pM PPC3-B27A3 antibody pair.

In Figure 4.2, the 𝐷 distribution per state is displayed for both the DLM and the THM result. Both images

represent the same measurement, the 800 pM measurement for the PPC3-B27A3 antibody pair. Like mentioned

before, the overlap between the two bound states is distinctly shaped. The DLM has greater overlap. This is

the reason the DLM was introduced to this system, there is a lot of information between state changes lost in

that overlap regime, which would otherwise be lost. Heterogeneity in particles and bonds translate to different

values of 𝐷 where states occur, so much so that in some instances the double bound state of a certain particle

has a higher 𝐷 than the single bound state of another particle. This is information lost by simply assessing states

based on a threshold.

Another thing that we notice is that the DLM has a much higher fraction of double bound states, compared to

THM. Its peak is shifted to the left compared to THM. This is probably due to the low mobility filtering in THM

that removes particles with a too low average 𝐷, intended to remove stuck particles. This is shown in Figure A.4.

Though this only slightly affects the bound states, it does filter out some non-specific binding. To prove this,

we plotted the 𝐷 distribution for the control measurement with and without this filter in Figure A.5. For that

reason, the low mobility filter remains implemented in the THM. It might be useful to implement this also in the

DLM, but in view of time, this has not been done in this research.

TU/e 19



PCT monitoring with immunoassays using f-BPM Chapter 4. Results PPC3-B27A3

4.2 Activity
The activity for both the DLM and the THM is measured as the average number of state switches per second, see

subsubsection 2.5.2 for more information.The activity for the PPC3-B27A3 pair is illustrated in Figure 4.3. This

plots the unbound to single bound (01), the single to double (12) activity as well as the total activity, the sum of

01 and 12.
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Figure 4.3: The 01, 12 and total activity for the PPC3-B27A3 antibody pair, comparing DLM to THM results.

The 01 activity follows the expected sigmoid curve, which seems to saturate once again at 800 pM. The 12

activity might not be saturated, but this is no problem. The fBPM technique works best with reversible binding,

which is less often the case with 12 activity. Looking at the difference between methods, the slope at which 01

activity increases in the linear regime seems similar. The 01 activity is just a little bit higher for DLM than for

THM. Assuming that both post-processing tools are equally capable of distinguishing bound from unbound seen

Figure 4.1, this wouldmean that the states are generally shorter for DLM, in the low concentration regime.

The main difference in the 01 activity lies beyond the low concentration regime, the DLM saturates, while the

THM still increases. This is probably due to the exclusion of the low mobility filter (LMF). This filter removes

particles that are double bound for most of the time. This reduces the number of particles to divide the events

over, increasing the 01 activity. In order to truly say something about the difference in state determination, this

LMF needs to be taken in account. For that reason, Figure 4.4 displays the activity for DLM, THM with and

THMwithout LMF. We see the sudden saturation in 01 activity after 400 pM for THMwithout LMF as well. This

indicates the start of the multivalent regime.
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Figure 4.4: The respective 01, 12 and total activities for the PPC3-B27A3 antibody pair, comparing DLM and
THM with and without the low mobility filter.
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Clearly there are a lot of particles stuck at concentrations above 400 pM, who have been removed by the LMF.

These particles do not contribute to the activity, except for the number of particles the events need to be divided

by. The activity without the LMF is probably more representative of the real situation but is also more prone

to irreversible bonds to contribute. With increasing concentration of PCT a new subculture of particles arises,

particles who are multivalently stuck, so much so that they cannot unbind. This can also be seen in the slight

increase in double bound lifetime in Figure 4.7.

These particles disfigure the dose response curve of the 01 activity. On top of that, they inflate the double bound

fraction, as they would be assigned as double bound. This problem is fixed with the introduction of the LMF.

After this filtering, the 01 activity does seem to better follow the expected sigmoid shape. The while the other

01 activities saturate much faster. This can also be seen in Table 4.2 where the 𝐸𝐶50’s of the THM with LMF is

much higher for THM with LMF than the others, indicating that the activities saturate later.

Apart for the dip in the 01 activity at high concentration, there is virtually no difference in the THM with or

without LMF. This implies that the LMF successfully removes stuck particles filtering away too much 12 events.

The fact that the THM with and without LMF have very similar activities at 0 pM PCT indicate that most non-

specific bonds are only temporary.

We expect the bound fraction to have the approximately the same EC50 as the 01 activity, since this is solely

about binding and unbinding. The bound fraction is 1- the unbound fraction, thus has the same EC50. We see

however, that the unbound fraction EC50 double that for the DLM and the THMwithout LMF, whereas the THM

with LMF does approach it somewhat close but is still too low. At least it is clear that an LMF yields better results

here. This makes very interesting to look at DLM with an LMF.

Table 4.2: The corresponding 𝐸𝐶50’s permethod as result of fitting the activitywith theHill equation.

01 Activity 12 Activity Total Activity
DLM 204 ± 38 400 ± 28 350 ± 44
THM with LMF 338 ± 73,4 465 ± 328 403 ± 179
THM without LMF 225 ± 24 605 ± 346 414 ± 126

What strikes the eye is the huge difference in 12 activity. The 12 activity of the DLM reaches up to 150% of

the magnitude of the 12 activity of the THM without LMF. The 12 activity of THM with LMF is even smaller

still. The shape of the curve and the 𝐸𝐶50’s are very similar for the two THM’s, even to some extent to that of

DLM, but the DLM has a much lower standard deviation. Confirming that the DLM is better at distinguishing

12 events.
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4.2.1 Reproducibility of activity

To be able to say something about the differences in results of two methods, we need to compare other pairs

as well. The 13B9-B27A3 pair has been measured three times, once at low concentration (set A) and twice at

higher concentration (set B and C). Since set B and C have the same concentration range, the activities of these

experiments are plotted in Figure 4.5.
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Figure 4.5: The activities of set B and set C of the 13B9-B27A3 pair, along with the mean activity per method
and its standard deviation.

Unfortunately, we cannot say anything about the 𝐸𝐶50’s, since this requires a fully developed activity to be able

to fit it with the Hill equation. Set A (Figure A.8) is unsuited for fitting the Hill curve, since the concentration

regime is cut down too short to show saturation. The other sets do show saturation but has too few data points

in the linear regime to properly fit the Hill curve. Making it hard to say something quantitative about the

difference in performance of DLM versus THM (with LMF) regarding activity. But we can say something about

patterns.

The drop in 01 activity for DLM due to a lack of LMF, mentioned earlier, is also visible for this antibody pair.

What can also be concluded here, is that however the 12 activity is much higher for DLM than for THM, the THM

result is much more consistent. This probably due to the lack of a low mobility filter for DLM. Like mentioned

before, this reduces the inclusion of stuck particles. This would explain the deviation in the 12 activity. Even

though set B and C are made and measured identically, they are not the same sample. There will be some batch-

to-batch deviations in the amount of stuck particles. This is another reason the DLM will improve from an

LMF.
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4.3 State lifetimes
In Figure 4.6 the surviving fraction of the unbound state are plotted, along with the double exponential fit. What

can be seen from this figure is that the fraction between short and long lifetimes is independent of PCT con-

centration. The same is true for the short lifetimes 𝜏1. With increasing concentration, the unbound 𝜏2 decreases
exponentially, which is to be expected. The value of 𝜏2 is plotted in Figure 4.7, of all states.

Figure 4.6: The THM unbound state lifetimes of the PPC3-B27A3 pair, along with a double exponential fit

The difference between the results of DLM and THM for the single and double bound 𝜏2’s are insignificant, but
there is a clear difference in the 𝐸𝐶50 with which the unbound lifetime decays. This is 173 ± 15, 9 s for DLM

where it is only 119 ± 2, 71 s for THM. This earlier plateau can also be seen in Figure 4.7, where the UB THM

fit seems to bend off earlier. This is possible due to the fact that the unbound state lifetimes at 0 pM are much

higher for THM. Both THM and DLM have values higher than the measurement time. This value is extrapolated

from the lifetime fit, and therefore uncertain. Increasing the measurement time would make these results more

trustworthy.
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Figure 4.7: The characteristic state lifetimes 𝜏2 for unbound, single and double bound states as a function of
concentration, plotted for THM and DLM

As expected, the bound states are largely concentration independent, whereas the unbound state lifetime displays

an exponential decay. This corresponds with literature [19]. This means that only the 𝜏2 of the unbound lifetime

can be used as calibration curve, but for this the result must be reproducible. To test this, the results of two

different measurements of the same antibody pair were compared. This was done for the 13B9-B27A3 pair. The

results can be seen in Figure 4.8.
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We do see a slight increase in the double bound state lifetime of the DLM, this is due to the sub-population of

particles that are immobilized. This is likely because they are multivalently bound to the extent that they can no

longer unbind. These irreversible bonds only appear at high PCT concentrations. The LMF in the THM removes

this sub-population, but the DLM does not.
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Figure 4.8: On the left, the unbound state lifetimes, derived from both THM and DLM, plotted for two different
measurements of a 13B9-B27A3 antibody pair; On the right, the averaged values for the unbound
state lifetime per method along with the standard deviation.

Once again, the exponential decay is clearly visible. The DLM has a slightly lower unbound lifetime. The

difference in between sets, is lower for DLM, especially in the low concentration regime. From this we can

conclude that the DLM analysis is more precise, and thus more reliable to make a calibration curve. A thing to

note here is that, unlike the activity, the precision increases with concentration. Making this a more suitable

dose-response for high concentrations.

4.4 Conclusion PPC3-B27A3 results
We investigated the possibility of using the PPC3-B27A3 antibody pair in a fBPM immunoassay to detect low

concentrations of PCT. This pair show response for low concentrations, its linear regime coincides with the

desired concentration regime to detect the onset of sepsis. The single and double bound fraction and the 01

activity show proper linear response without all too much deviation at low concentrations, while the unbound

lifetime can best be used at higher concentrations.

This pair has been post-processed with DLM and THM, these results have been compared. The main differ-

ence between the two models is the determination of double bound states, since both are equally capable in

distinguishing bound from unbound. The DLM is better in detecting double bound states. This is reflected in a

vastly larger 12 activity. This leads to a higher total activity for the DLM, which makes this the better method

to determine concentration from as the signal to noise ratio is decreased.

On the other hand, the reproducibility for the 12 activity is lower than that of THM. This can be attributed to

low mobility filter build into the THM, which has a more accurate number of active particles. Clearly there is a

large sub-population of particles immobilized. Introducing this filter to the DLM removes this sub-population,

increasing the accuracy of the activity and possibly the reproducibility. This would ultimately give the DLM an

edge over THM.
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5 Agglomeration
Upon later inspection it became apparent that something odd was happening during measurements. When two

particles enter each other’s vicinity, there is a chance that somehow theywill agglomerate. These agglomerations

are then indistinguishable for the tracking software. The result of this is that the recorded positions of both

particles is than identical. Those xy positions often display great leaps, this is presumably due to mislocalization.

The agglomeration consists of two (or more) particles. The recorded xy position is that of the predicted center

of a particle. Rather than following the center of the agglomeration, the tracking software might still track the

center of one of the agglomerated particles but switch from one to the other. This would explain the great leaps

in position, as the two particles are logically in two different locations. If at one moment the location of the

perceived particle is that of particle 1, and an instant later that of particle 2, the perceived particle would have

instantly ’travelled’ the distance between the centers of the two particles.

Figure 5.1: An experimental example of agglomeration taking place. On the left: their xy positions scattered,
on the right: the calculated diffusion coefficient.

In Figure 5.1 an experimental example is shown where two particles agglomerate. The top particle is diffusing

freely until it meets the bottom particle. By looking at the diffusion coefficient on the left, the time at which

they meet can be deduced. After 200 seconds their diffusion coefficient is exactly the same, this can only be the

case if their lateral movement is exactly the same, proving the point that they are moving as one. This means

that the tracking software detects them as one.
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5.1 Filtering out agglomerations
In order to ensure that those experimental artefacts do not influence the measurement’s result, those collisions

need to be filtered out. For that a Matlab script was created, initially to remove particles that display agglomer-

ation. Later a more sophisticated method was developed that removes frames once a particle is agglomerated,

preserving the pre-collision frames.

There are two ways tried to go about detecting collisions, the first way was to scan the starting xy location of all

particles. Then there is a list composed of every particle’s nearest neighbors. The number of nearest neighbors

is a parameter called ’k’ and can easily be changed. ’Nearest’ here refers to Cartesian distance, not necessarily

label number. This is because the particles are labeled left-to-right top-to-bottom, meaning that two particles

located in a vertical line can be very close and still have a large difference in label number. For every particle the

measured diffusion coefficient of every time step is compared to that of its k nearest neighbors. If the difference

between 𝐷’s of neighbors is less than 10E-5 for 100 seconds, this will be registered as agglomerated.

The second way is to look to the coordinates themselves. This has the benefit that the calculated 𝐷 dependent is

on its method of determination and on system parameters, contrary to the raw and unedited coordinates. The

way this works, is that if two or more particles have the same coordinates (within a margin of 10E-10) for 100

seconds. For this to work, it will register as agglomeration. the assumption that clustering only occurs when

particles are close to each other, is required.

The difference in bound fraction for the PPC3-B27A3 antibody pair edited with the 𝐷 approach compared to the

xy edited data can be seen in Figure 5.2. It is clear that the differences are marginal, but that the xy based editing

is a little more simplified. To that extent the xy based editing method is used from here on out.
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Figure 5.2: The unbound, single, double and total bound fraction plotted for both 𝐷 and XY edited data.
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In order to save computation time, both methods use the ’k’ nearest neighbors technique. In order to find a

proper value for k, some measurements were ran with different k, as function of time. The result can be seen in

Figure 5.3. The result shown here is typical for antibody fBPM. First off, the number of particles with removed

frames increases with k. This is logical as k increases, the area of inspection increases. Once k reaches 15

the number of registered particles does not increase anymore. This concludes that the particles do not travel

beyond the distance of the fifteenth neighbor and that this would be an appropriate value for k. This might

change with fluctuations in particle density. For this reason, most of the data analyzes were done with 𝑘 = 20
or higher.
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Figure 5.3: The percentage of particles tagged as agglomerated as a function of time, for different values of k
nearest neighbors. Done on the experimental data of 13B9-PPC3 with a concentration of 500 pM
PCT.

Secondly, it is evident that as more time elapses, more particles display faulty behavior. This is logical as there

is more time for particles to find each other and agglomerate. This holds true as long as the timescale at which

clusters disintegrate is larger than the measurement time.

After extensive testing, the conclusion can be drawn that once particles cluster together, the clusters do not

disintegrate within the measurement time. To test this the starting frame number and the end frame number of

the agglomeration is noted down in a list, along with what particle clusters with who. There are zero entries

with a end frame number unequal to the total number of frames. This can also be seen in Figure 5.3, where there

the number of particles with removed frames is ever increasing, signifying that clusters do not break up.

Having a list of the agglomerated particles including a time at which they start agglomeration ensures that

agglomerated time steps can be trimmed. The way this is done is to set the values of the xy-lists on said times to

’Not a Number’ (NaN). The THM can than be edited in such a way that it splits the xy-list into two categories:

one intact list and one with removed frames. The script then calculates the 𝐷 for the first list as usual. After

which the second list is analyzed, particle per particle, each with a different end frame. Once both loops are

concluded, the results are merged, and the script proceeds as per usual.
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5.2 Editing data for THM
This editing is an useful addition to the original script, as one can easily see in Figure 5.3, the vast majority of

particle at some point cluster with immunoassay fBPM. This way a lot of useful data can be saved.

5.2.1 Bound Fraction

To demonstrate this the results of the original data was compared to that of the edited data. Below the unbound,

single and double bound fraction are given for the PPC3-B27A3 antibody pair, are displayed in Figure 5.4. From

these images it is plain to see that editing for agglomeration reduces the unbound fraction and thus increases the

bound fraction. Editing by removing particles (RP) reduces the unbound fraction to a larger extent than editing

by removing frames (RF).

From this the conclusion can be made that the ’faulty’ frames mostly consist of unbound and double bound

states. Leaving them in would underestimate the single bound fraction. The particles saved by RF compared

to RP significantly increase the unbound and single bound fraction, at the cost of the double bound fraction,

meaning that these frames consist mostly of single bound and unbound states. In other words, frames that could

contain 01 activity. Only removing particles would overestimate the double bound fraction, because the double

bound fraction is much higher of RP edited data than that of the original or RF edited.
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Figure 5.4: A comparison of THM values of the unbound, single and double bound fraction (for the PPC3-B27A3
antibody pair), for the original data compared to that of filtering out frames, or removing particles
listed as agglomerated.

Note that all three methods have a distinct drop in single bound fraction at 1000 pM, indicating that the transition

from single bound to double bound is more predominant than the unbound to single bound. Since the sandwich

immunoassay is a three-phase system and the single bound state being a intermediate state, eventually all parti-

cles will end up in the double (or multiple) bound state, if the concentration is high enough. This indicates that

for reversible binding the concentration regime should be restricted to 800 pM. Linking this back to the context,

800 pM is a sufficiently high concentration, as the patient would have entered septic shock by then.
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5.2.2 Activity

The same comparison is also made for the activity, as can be seen in Figure 5.5. What we would expect is that

both the 01 and the 12 activity eventually will saturate, first 01 then 12. The edited data has a much clearer

saturation of 01 activity, around 800 pM. This is in accordance with the saturating of single bound fractions seen

in Figure 5.4. The double bound fraction does not saturate in the measured concentration interval, so we would

expect the 12 activity not to saturate either. This is true for the RP edited data, but the RF edited data seems to

saturate at 800 pM. This is based on two data points, so this statement is quite fragile.
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Figure 5.5: A comparison of THM values of the 01, 12 and total activity (for the PPC3-B27A3 antibody pair), for
the original data compared to that of filtering out frames (RF), and of removing particles (RP) listed
as agglomerated.

What springs to the eye is that editing decreases both the 01 and the 12 activity significantly. Both the frame

and particle editing seem to saturate the 01 activity around 800 pM, the frame editing even more so. This is in

contrast with the original data, which linearly increases. But in line with the predicted behavior. The 01 activity

for THM RF is slightly higher than that of RP for low concentration, but is no longer so at higher concentration.

This is in contrast with expectation, based on the fact that the ’saved’ frames make up mostly unbound and

single bound states. It seems these frames do not contain many events.

The decrease in activity after editing THM data proves that agglomeration induces false events, like predicted

earlier. Combined with the increase in bound fraction indicates that many of these false events are short-lived

and that the ”true” bound states have a longer longevity. This is true for both types of editing. The reason the

RF editing has lower activity than RP editing might be that the frames saved, of otherwise removed particles,

have a below average activity.
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5.3 Editing for DLM
The DLM method has a much more complex structure and is thus less easily changed. The main advantage for

editing by removing particles compared to removing frames, is that it works exactly the same as with original

data. The only difference is in xy-lists. For lack of time, there was no attempt made to check the effectivity of

editing by removing frames for DLM, all edited DLM data shown is done by removing frames. To be able to

compare this, also the THM and edited THM data is inserted. Note that this is also edited by particle removal,

to be able to compare its impact on processing style.

5.3.1 Bound Fraction

In Figure 5.6 the unbound, single and double bound fraction are displayed for both original and edited data. Like

before (Figure 4.1), there is hardly any difference in unbound fraction, this too holds for the edited data. What is

noticeable is that the removing particles lowers the unbound fraction, but this happens for both THM and DLM

in equal amounts.
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Figure 5.6: Unbound, single bound and double bound fraction for PPC3-B27A3 for DLM and THM both before
and after editing.

This trend is continued in both the single and the double bound fraction. There is an increase in both bound

fractions after editing, but this is similar for both methods. There is an increase up to 5% to either bound fraction.

There is no real difference in increase per method, apart from the initial difference mentioned earlier.

5.3.2 Activity

Looking at the activities in Figure 5.7, it can be seen that the total activity is hardly changed by removing particles

for DLM, in contrast with THM. This result is due to significant decrease in 01 activity counterbalanced by a

small increase in 12 activity. This indicates that the removed particles played a larger role in 01 activity than

in 12 activity. Note that an increase in activity after editing is possible due to the fact that activity is inversely

proportional to the number of particles. The result of the 13B9-B27A3 antibody pair (Figure A.8) is a lot messier

but shows a similar pattern.
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Figure 5.7: A comparison of DLM and THM values of the 01, 12 and total activity (for the PPC3-B27A3 antibody
pair), for the original data compared to that of the RP and RF edited data.

Once again, a saturation can be seen in the 01 activity around 400 pM, much like the pattern seen in edited THM

data. The values of the edited DLM 01 activity are very similar to those of the edited THM. However, unlike the

edited THM data, 01 activity here eventually turns into a decline. This is indicative of the predicted shift from

01 activity to 12 activity as the majority of the particles are in a bound state.

We also see that the edited DLM data has an increased 12 activity, meaning that the ’false’ events are mostly 01

events in the DLM output. By removing ’faulty’ particles the 12 activity increase, this can only be the case if the

number of particles decreases faster than the number of 12 events. To back up this hypothesis we can look at

the results or the 13B9-B27A3 pair. Because it was measured multiple times, the conclusions drawn from this

pair has more decisiveness.
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Figure 5.8: A comparison of DLM and THM values of the 01 and 12 activity (for the 13B9-B27A3 antibody pair),
for the original data compared to that of removing particles (RP) listed as agglomerated.
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Omitting the THM editing based on removing frames for now, the following conclusions can be drawn. In

general, removing particles has much more impact on 01 activity than on 12 activity. Removing particles sig-

nificantly reduces 01 activity at higher concentrations, this holds for both THM and DLM. Editing DLM does

not lead to an increase in 12 activity, it rather stays unaltered. Editing THM does slightly decrease the 12 activ-

ity. Looking specifically at the effect of editing on DLM activity, the hypothesis is confirmed. The fact that the

12 activity slightly decreases after editing can be discredited because it is only a minor decrease, and that we

have previously established the DLM to be better at double bound state recognition. Concluding that indeed,

most of the false events are 01 events. Neglecting to remove agglomeration would artificially increase the 01

activity.

To check the accuracy of these measurements, some of the sub-figures from Figure 5.8 have been merged into

Figure 5.9. From this result it is clear that, like with the unedited data, the 12 DLM activity has high standard

deviation. Whereas the 12 THM activity does not, neither do both 01 activities. It could be that the standard

deviation of the 12 activity is higher for DLM RP, because the signal is higher. The deviation could simply scale

with the amplitude of the signal. Alternatively, the increase in standard deviation might be attributed to the

low mobility filter, mentioned before. The difference in the number of stuck particles between different batches

would influence the value of the 12 activity significantly.
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Figure 5.9: The respective 01, 12 and mean activities for the 13B9-B27A3 antibody pair, comparing original and
particle edited (RP) DLM and THM results of set B and C.

TU/e 32



PCT monitoring with immunoassays using f-BPM Chapter 5. Agglomeration

5.3.3 State Lifetimes

In Figure 5.10 the state lifetimes of the PPC3-B27A3 pair have been plotted. The edited unbound state lifetimes

are very similar to the original unbound state lifetimes, only a bit higher. This is also reflected in the slightly

higher 𝐸𝐶50, in Table 5.1. The lifetimes of THM are a bit higher than DLM, the same holds for the edited data.

We can see that removing particles increases all 𝜏2’s slightly, meaning bonds live longer. This is logical as we

have just seen in that the 01 activity decreases.
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Figure 5.10: A comparison of DLM and THM values of the state lifetimes (for the PPC3-B27A3 antibody pair),
for the original data compared to edited by removing particles (RP) and by removing frames (RF).

The single bound state lifetime does not change much, removing particles slightly increases it. The same holds

for the double bound state lifetime, but the spread here is a bit larger. The double bound state lifetime only

becomes reliable for THM after 200 pM, since that method finds it hard to get enough data points before then.

The DLM however, does have enough datapoints at 100 pM and can therefor properly predict the double bound

state lifetime. This goes to show once more that the double bound state detection of DLM is superior to that of

THM.

One thing to note is that edited DLM still displays a small increase in double bound state lifetime, with increasing

concentration. This is once again due to the immobilized particles. These are not filtered out by the cropping

script. This can be included quite simply, but the effect of this is left as a future investigation.

The increase in state lifetimes (both bound and unbound) after editing is a direct consequence of the decrease in

activity. Less state switches means the time spend in said state is on average longer. This proves that without

filtering out agglomerations, the lifetime is underestimated.
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5.3.4 𝐸𝐶50

To conclude the results, the 𝐸𝐶50’s for all responses, for all methods have been collected in Table 5.1. The standard

deviation here is that of the Hill fit.

Table 5.1: The EC50’s of the state fractions, activities and unbound state lifetime for all analysis methods

EC50’s DLM DLM RP THM THM RP THM RF
SB Fraction 314 ± 39,6 357 ± 62,4 304 ± 42,5 333 ± 71,3 345 ± 60,5
DB Fraction 651 ± 109 569 ± 158 695 ± 157 630 ± 186 683 ± 242
UB Fraction 481 ± 71,0 467 ± 100 482 ± 69,7 467 ± 100 470 ± 102
01 Activity 204 ± 37,8 196 ± 2,43E6 338 ± 73,4 300 ± 83,8 349 ± 1460
12 Activity 400 ± 27,6 346 ± 4,05 465 ± 328 523 ± 700 361 ± 39,4
Total Activity 350 ± 44,1 295 ± 0,581 403 ± 179 382 ± 78,9 328 ± 58,8
UB State Lifetime 173 ± 15,9 262 ± 26,6 119 ± 2,71 145 ± 33,3 129 ± 33,1

In general, the 𝐸𝐶50 values for the RF edited THM lie closer to the DLM RP edited, the THM RP edited. Indicating

that this method might be more accurate than THM RF, but since even the DLM data is experimental, this cannot

be said with certainty.

We see that the 𝐸𝐶50 values for the state fractions of THM and DLM are very similar, even after editing. The

moment the unbound state lifetime starts to decrease is the same moment the 01 activity starts. This is approxi-

mately true for the DLM and to a lesser extend the DLM RP as well. This is less so the case for the THM values,

as these UB state lifetimes saturate much earlier than the 01 activity. When the 01 activity starts to increase, the

SB fraction should too. This does fit for the THM, THM RP and THM RF values, but is less so the case for the

DLM and DLM RP. This is likely due to the immobilized particles deflating the DLM 01 activity.

The extremely high standard deviations for the edited DLM 01 activities mean that that data does not behave

like a normal dose response curve, and can therefor not be fitted with the Hill equation. This is understandable,

because of the drop in 01 activity after editing, seen with RP edited DLM. This is probably due to the lack of

the LMF. The high deviation in 12 activity for THM and THM indicate that these do not accurately predict the

activity, but we have already concluded that the DLM is better in distinguishing double bound states. Fortunately

the DLM RP can still accurately the 12 activity, so this problem is not only because of RP editing. What is

interesting is that the THM RF can predict the 12 activity very similar to that of DLM RP, while the THM RP is

way off.

These half maximal effective concentrations are only a guideline off course. Small changes in response values

deeply influence the Hill curve and implicitly the 𝐸𝐶50. It does give insight to the general response behavior, so
should only be used as a guideline.
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5.4 Conclusions Editing
The fBPM immunoassay system is prone to agglomeration, an artefact where two particles merge together and

are registered as one. When they fuse together, their lifetimes exceed the measurement time. The imaging

software is unable to distinguish the particles from each other, so the location of the particles intermittently

switches to that of the other particle. This generates a lot of false events. These events are mainly 01 events, as

seen in a reduction in 01 activity and increase in unbound state lifetime after editing. Agglomeration reduces

the bound fraction, because it affects otherwise active particles.

This can be circumvented by simply removing particles which display this behavior from the analysis. Another

option is to remove frames in which agglomeration occurs, this is more sophisticated and leads to more natural

activities, but is yet to be implemented in the DLM.

The combination of a decrease in activity and an while the bound fraction also increase must mean that the

particles stay longer in the bound state once they bind. This can also be seen in the increase of bound state

lifetime after editing. This means that without editing the state lifetime is underestimated. On the one hand

this is a negative result, as the number of binding events is even lower than expected, but this also means that

the chance to miss events is lower, as particles stay in their state for longer, making the activity derivation more

reliable.
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6 Discussion
The PPC3-B27A3 antibody pair was tested and found to have a low concentration response. However, this pair

was only successfully measured once. To confirm its reproducibility and test its precision, multiple measure-

ments need to be done. A lot of conclusions are drawn from a single measurement, which might be unrepre-

sentative for this antibody pair. It would also be best to measure at more different PCT concentrations. Adding

more low concentrations and higher concentrations will make it easier to tell trends from a logarithmic plot,

such as state lifetime. For linear plots, the gap between 400 and 800 pM is quite high, especially since most of

the change in bound fraction and activity happens there. Adding for instance 600 pM would to more accurate

bound fraction and activity derivations.

The unbound state lifetime is extrapolated from a double exponential fit over the survival curve of the length

of unbound lifetimes. For low concentrations, this exceeds the measurement times. For more reliable results,

it might be better to extend the measurement time to 1200 seconds, or 20 minutes. Maybe the unbound state

lifetime is even higher, but is cut of because of the measurement duration.

Due to lack of time and lack of knowledge on the coding language Python, the DLM data could only be edited

such that agglomerated particles are removed from the input. Asmentioned before, removing frames gives better

results than removing entire particles. In order to compare the THM edited data with the DLM edited data, the

frame editing way could not be used. This would not give a fair comparison.

The comparison of the DLM versus the THM is warped anyway, since the THM does include a lowmobility filter

and the DLM does not. This low mobility filter allows the THM to have a better grasp at the number of activite

particles. This improves the accurate state fraction and activity determination. To be able to look objectively at

the quality of state determination, this has to be taken in account. The next step is to either include this in the

DLM or to remove the low mobility particles from the xy-list.

TU/e 36



PCT monitoring with immunoassays using f-BPM Chapter 7. Summary

7 Summary
As we have seen, the fBPM immunoassay is a viable option to measure the concentration of procalcitonin. The

PPC3-B27A3 antibody pair is a good choice, since it shows response at low concentration. The linear regime

of unbound fraction and activity starts around 100 pM, possibly even lower. This is the concentration where

local infections become more severe, and therefore a crucial concentration to start treating the infection. This

antibody pairing needs some further research to test its accuracy and precision but shows great prospect.

The analysis of of experimental data can be done either with the thresholding model or with the deep-learning

model. This paper shows that the DLM is better at distinguishing single bound from double bound states. It

also registers higher activity, increasing the signal to noise ratio on this response. This all leads to an increased

robustness to heterogeneity in particles. The one advantage the THM has over the DLM at the moment is

the inclusion of a low mobility filter, removing immobile particles and improving the precision of the activity

determination. This would improve the performance of the DLM even further.

During experimenting, we stumbled upon an artefact in the imaging software due to the agglomeration of par-

ticles in fBPM immunoassays. This agglomeration leads to false events, artificially raising the activity. It also

reduces the bound fraction, reducing the signal to noise ratio here and therefor the quality of the calibration

curve. The real state lifetimes are underestimated without taking in account the agglomeration. Because the

amount of agglomerated particles per measurement is somewhat random, this drastically reduces the precision

of the measurement and this of concentration derivation.

This is circumvented by filtering out the particles which contribute to this artefact. This is done for both DLM

and THM. The results of which reduce the activity and a increase in bound fraction, particles stay bound longer.

This confirms the hypothesis that agglomeration introduces false events. The problem with removing particles

is that this removes useful data too. It has been found that once agglomeration takes place, it does not unbind

within the measurement time. This means that all the frames before the collision are still useful. Less frames

mean lower signal to noise. To alleviate this problem the editing script for THM was altered to include pre-

collision frames and only remove the agglomerated frames. Unfortunately, this was not done for DLM, due to a

lack of time. But this is a way the performance of the DLM can be increased even further.
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A.1 Bound fraction other pairs
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Figure A.1: The unbound, single bound and double for the 13B9-B27A3 antibody pair, comparing THM results
versus DLM results.
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Figure A.2: The unbound, single bound and double for the 13B9-B27A3 antibody pair, comparing THM results
versus edited THM results by removal of particles (RP) and frames (RF).
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Figure A.3: The unbound, single bound and double for the 13B9-B27A3 antibody pair, comparing DLM and
THM results versus edited DLM and THM results by removal of particles.
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A.2 Low mobility filter
Below the effects of using the low mobility filter are displayed on the diffusion coefficient distribution.

Figure A.4: The influence of filtering low mobility particles on the diffusion coefficient distribution per state
for the THM processed 800 pM PPC3-B27A3

Figure A.5: The influence of filtering low mobility particles on the diffusion coefficient distribution per state
for the THM processed 800 pM PPC3-B27A3 control measurement
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A.3 Activities other pairs
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Figure A.6: The respective 01, 12 and cumulative activities for the 13B9-B27A3 antibody pair, comparing DLM
results versus THM results.
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Figure A.7: The respective 01, 12 and cumulative activities for the 13B9-B27A3 antibody pair, comparing THM
results versus particle (RP) and frame (RF) edited THM results.
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Figure A.8: The respective 01, 12 and cumulative activities for the 13B9-B27A3 antibody pair, comparing orig-
inal and particle edited (RP) DLM results versus the original, particle edited and frame edited (RF)
THM results.
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Matlab Scripts

A.4 Cropping Script
This script was designed to find agglomerations. The outputs are a list of all particles agglomerating, a graph

of how many particles are removed as a function of time, a new xylist without the removed particles and a new

xylist without the frames in which agglomeration takes place.

1 clear all;close all;

2 tic

3 %% Open data

4 [FileName , PathName] = uigetfile({'*.txt'}, 'Select the data files you want to

analyze')

5 FilePath = strcat(PathName ,FileName);

6 xylist=importdata(FilePath);

7 NameExtension=erase(FileName ,'.txt');

8 disp(NameExtension)

9 flaglist=[];

10 k=25;

11 mislocplot=20;

12 %% Parameters

13 PixelSize=0.588;

14 N_particles=size(xylist ,1)

15 Np_before=N_particles;

16 xylist=xylist*PixelSize;

17

18 %%% Conversion frames to seconds

19 TotalFrames=numel(xylist(1,3:2:end));

20 FrameStep=1;

21 FrameRate=60; %Hz

22 TimeStep=FrameStep/FrameRate; %seconds

23 Time=[1:TotalFrames]*(FrameStep/FrameRate);

24

25 trajectory_x=xylist(:,1)+xylist(:,(3:2:end)); %convert differential coordinates

26 trajectory_y=xylist(:,2)+xylist(:,(4:2:end));

27

28 %%

29 binlist=[];

30 for j=1:size(xylist ,1)

31 startloclist=[xylist(:,1) xylist(:,2)]; %determine starting locations

32 startlocpart=[xylist(j,1) xylist(j,2)];

33

34 Idx=knnsearch(startloclist ,startlocpart ,'K',k+1);

35 nearnb=Idx(2:1:k+1).'; %pick 15 nearest neighbours

36

37 for jj=1:k

38 diff_x=trajectory_x(nearnb(jj),:)-trajectory_x(j,:); %compare locations

39 diff_y=trajectory_y(nearnb(jj),:)-trajectory_y(j,:);

40 bin_diff_x=abs(diff_x)<10^(-10); %check if there is a moment where coordinates

overlap
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41 bin_diff_y=abs(diff_y)<10^(-10);

42 doublebin=bin_diff_x+bin_diff_y;

43 t_1=find(doublebin==2,1,'first'); %start of overlap moment

44 t_2=find(doublebin==2,1,'last');

45 totaldoublesum=doublebin >1;

46 if t_2-t_1+1==sum(totaldoublesum) & t_2-t_1+1>6000

47 binlength=t_2-t_1+1;

48 binlist=[binlist; j nearnb(jj) t_1 t_2];

49 elseif t_1>30000 & t_2-t_1+1==sum(totaldoublesum) & t_2-t_1+1>600 %check for

different bond lengths

50 binlength=t_2-t_1+1;

51 binlist=[binlist; j nearnb(jj) t_1 t_2];

52 elseif sum(totaldoublesum(t_1:1:t_2))>60 & t_2~=TotalFrames

53 disp(['t_2 is not end particle: ',num2str(j)])

54 elseif t_2-t_1+1>600 & sum(totaldoublesum(t_1:1:t_2))>60

55 if t_2==TotalFrames & find(doublebin~=2,1,'last')<TotalFrames -6000

56 t_2=find(doublebin~=2,1,'last')+1;

57 binlength=t_2-t_1+1;

58 binlist=[binlist; j nearnb(jj) t_1 t_2];

59 else

60 disp(['not continious problem: particle ',num2str(j),' and ',num2str(nearnb

(jj))])

61 end

62 end

63 end

64 end

65

66 %% write flaglist

67 flaglist=unique(binlist(:,1)); %particles that agglomerate: for DLM

68 size(flaglist)

69 DLMLIST=flaglist '-1;

70 % dlmwrite([NameExtension ,'DLMLIST.txt'],DLMLIST)

71

72 %% mislocalization as function of measurement time

73 mlplot=[];

74 for ii=1:mislocplot

75 A=ii*TotalFrames/mislocplot;

76 mlplot=[mlplot; A*(FrameStep/FrameRate)];

77 B(ii)=numel(find(binlist(:,3)<A));

78 end

79

80 figure(1)

81 scatter(mlplot,B,15,'r','filled')

82 ax=gca;

83 ax.Title.String= 'Np removed as function of time';

84 ax.XLabel.String='Measurement time (s)';

85 ax.YLabel.String='Number of particles removed';

86 legend(['Np\_before=',num2str(Np_before)],'Location','northwest');

87 grid minor;

88 %% revert back to pixels

89 xylist=xylist/PixelSize;
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90 %% save precolision data

91 xylist_special=xylist;

92 for j=1:size(binlist)

93 rownr=binlist(j,1);

94 x_1=2+2*binlist(j,3);

95 x_2=2+2*binlist(j,4);

96 xylist_special(rownr,x_1:1:x_2)=NaN;

97 end

98 %% write new xylists

99 xylist_new=xylist;

100 for j=1:size(flaglist)

101 rownr=flaglist(j);

102 xylist_new(rownr ,:)=NaN;

103 end

104 xylist_new(any(isnan(xylist_new), 2), :) = []; %removes NaN rows

105 xylist_edited=xylist_new;

106 %% save new xylists

107 Np_after=size(xylist_edited ,1);

108 dlmwrite([NameExtension ,'_EDITED.txt'],xylist_edited) %removed particles

109 dlmwrite([NameExtension ,'_Special.txt'],xylist_special) %removed frames

110 toc
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A.5 THM Post-processing Script
This is the thesholding-model, this script transforms xy-lists into results by calculating the diffusion coefficient,

and assigning particles to states according to their diffusion values. The output is amongst others: bound frac-

tion, activities and state lifetimes.

1 %%%Standalone f-BPM analysis script for analysing single data files

2 clear all;close all;

3 tic

4 %% Load xy-lists

5 [FileName , PathName] = uigetfile({'*.txt'}, 'Select the data files you want to

analyze')

6 FilePath = strcat(PathName ,FileName);

7 xylist=importdata(FilePath);

8 NameExtension=erase(FileName ,'.txt');

9 disp(NameExtension)

10 %% Parameters

11 PixelSize=0.588;

12 N_particles=size(xylist ,1);

13 xylist=xylist*PixelSize;

14

15

16 %%% Conversion frames to seconds

17 FrameRate=60; %Hz

18 TotalFrames=numel(xylist(1,3:2:end));

19 FrameStep=1;

20 TimeStep=FrameStep/FrameRate; %seconds

21 Time=[1:TotalFrames]*(FrameStep/FrameRate);

22 Time_seconds=TotalFrames/FrameRate;%total measurement time in seconds

23

24 %%%Specify the axis limits for plotting to make data easily comparable.

25 DC_plotlimit=0.7; % um^2/sec

26

27

28 %%% Set thresholds for average DC based event detection:

29 Unbound_threshold=0.12; %um^2/sec; any average DC above this value will be assigned

as unbound

30 MVbound_threshold=0.04; %um^2/sec; any average DC below this value will be assigned

as multivalent bound

31 Stuck_threshold=0.02;

32

33 %%%Values used for plotting the events signal over the DC time trace

34 unbound_value=0.6;

35 sbound_value=0.55;

36 mbound_value=0.5;

37 %%%Specify a minimum length for an event

38 Min_eventlength=120; %frames

39

40

41 %%% Specify the type of fits that are used for fitting events and lifetimes

42 Events_fittype='normal';

TU/e 46



PCT monitoring with immunoassays using f-BPM A. Appendix

43 Lifetimes_fittype='exp2';

44

45 %% Split xy-list into two lists if frames have been removed

46 xylistedited=[];

47 xylistnew=[];

48 for i_Trajectory=1:size(xylist ,1)

49

50 if sum(isnan(xylist(i_Trajectory ,:)))>1

51 xylistedited=[xylistedited; xylist(i_Trajectory ,:)];

52 else

53 xylistnew=[xylistnew; xylist(i_Trajectory ,:)];

54 end

55 end

56 xylist=xylistnew;

57

58 %% Diffusion constant complete trajectory

59 %%% Calculate the average diffusion coefficient for each particle using the

60 %%% mean squared displacement

61 for ii=1:size(xylist ,1)

62 x=(xylist(ii,3:2:end));

63 y=(xylist(ii,4:2:end));

64 n_frames=numel(x);

65

66 maxdt=10;

67 MSD=zeros(1,maxdt+1);

68 MSD(1)=0;

69 for dt=1:maxdt

70 SD=zeros(1,n_frames -dt);

71 for l=1:n_frames -dt

72 SD(l)=(x(l+dt)-x(l)).^2+(y(l+dt)-y(l)).^2;

73 end

74 MSD(dt+1)=mean(SD);

75 end

76 dtlist=0:maxdt;

77 try

78 myfit=fit(dtlist',MSD','poly1');

79 Dtrajectory(ii)=myfit.p1*FrameRate/4;

80 catch

81 end

82 end

83

84 %% Diffusion coefficient as function of time

85 %%% calculate the diffusion coefficient over time for each particle

86 %%% Setting some parameters:

87 MeasurementWindow=120; %sliding window length in number of frames

88 DiffmeanWindow=60; %sliding window for mean DC calculation in number of frames

89 plot_number=1;

90 plot_max=11; %maximum number of particles plotted in the for loop

91 events_avDC=zeros(size(xylistnew ,1),TotalFrames)*NaN;

92 events_avDC2=zeros(size(xylistedited ,1),TotalFrames)*NaN;%initialize events matrix

93 unbound_lifetimes=[];
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94 sbound_lifetimes=[];

95 mvbound_lifetimes=[];

96 zero_one_events1=[];

97 unbound_lifetimes2=[];

98 sbound_lifetimes2=[];

99 mvbound_lifetimes2=[];

100 zero_one_events2=[];

101 one_two_events1=[];

102 one_two_events2=[];

103

104 Dtotalspecial=[];

105 for j=1:size(xylist ,1) %loop over each particle

106 x=(xylist(j,3:2:end));

107 y=(xylist(j,4:2:end));

108 checkval=0;

109

110 maxdt=10;

111 DtraceWindow=zeros(maxdt,numel(x)-MeasurementWindow+1);

112 weight=zeros(1,maxdt);

113

114 for dt=1:maxdt

115 SDtrace=(x(1+dt:end)-x(1:end-dt)).^2+(y(1+dt:end)-y(1:end-dt)).^2; %squared

displacement

116

117 SDtraceWindow=movmean(SDtrace,MeasurementWindow -dt,'Endpoints','discard');

%mean squared displacement

118

119 DtraceWindow(dt,:)=SDtraceWindow*FrameRate/(4*dt); %diffusion coeff for

certain dt

120

121 Vrel=dt*(2*dt^2+1)/(MeasurementWindow -dt+1); %calculate relative variance

122 weight(dt)=1/Vrel; %assign weights to data points (rows) DtraceWindow

123 end

124 sumweight=sum(weight);

125 weight=weight/sumweight;

126 weight=weight ';

127

128 Dtotal(j,:)=sum(DtraceWindow.*weight); %calculate diffusion coefficient

129

130 %% State assignment based on DC

131 if Dtrajectory(j)>Stuck_threshold %low mobility filter

132 for nf=1:size(Dtotal ,2)-DiffmeanWindow %number of frames to slide the

window over

133 if mean(Dtotal(j,nf:(nf+DiffmeanWindow -1)))>Unbound_threshold

134 events_avDC(j,nf+DiffmeanWindow/2)=unbound_value;

135 %assign value to position in middle of sliding window to match DC

time trace

136 elseif mean(Dtotal(j,nf:(nf+DiffmeanWindow -1)))<MVbound_threshold

137 events_avDC(j,nf+DiffmeanWindow/2)=mbound_value;

138 else

139 events_avDC(j,nf+DiffmeanWindow/2)=sbound_value;
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140 end

141 end

142

143 %Remove states shorter than a specified number of frames

144 %Unbound events

145 Adiff = diff(events_avDC(j,:)==unbound_value);

146 nnz(Adiff==1)+nnz(Adiff==-1);

147 ind_start = find(Adiff==1);

148 ind_stop = find(Adiff==-1);

149 ubblock_length = ind_stop -ind_start; % list of consecutive section lengths

150 blocks_ind = find(ubblock_length <Min_eventlength);% list of blocks below

min length in frames

151 for ii = 1:numel(blocks_ind) % loops through each block

152 events_avDC(j,(ind_start(blocks_ind(ii))+1:ind_stop(blocks_ind(ii))))=

events_avDC(j,(ind_start(blocks_ind(ii))));

153 end

154 nnz(Adiff==1)+nnz(Adiff==-1);

155

156 %Single bound events

157 Adiff = diff(events_avDC(j,:)==sbound_value);

158 ind_start = find(Adiff==1);

159 ind_stop = find(Adiff==-1);

160 sbblock_length = ind_stop -ind_start; % list of consecutive section lengths

161 blocks_ind = find(sbblock_length <Min_eventlength);% list of blocks below

min length

162 for ii = 1:numel(blocks_ind) % loops through each block

163 events_avDC(j,(ind_start(blocks_ind(ii))+1:ind_stop(blocks_ind(ii))))=

events_avDC(j,(ind_start(blocks_ind(ii))));

164 end

165

166 %Double bound events

167 Adiff = diff(events_avDC(j,:)==mbound_value);

168 ind_start = find(Adiff==1);

169 ind_stop = find(Adiff==-1);

170 mvblock_length = ind_stop -ind_start; % list of consecutive section lengths

171 blocks_ind = find(mvblock_length <Min_eventlength);% list of blocks below

min length

172 for ii = 1:numel(blocks_ind) % loops through each block

173 events_avDC(j,(ind_start(blocks_ind(ii))+1:ind_stop(blocks_ind(ii))))=

events_avDC(j,(ind_start(blocks_ind(ii))));

174 end

175

176 %Find 01 and 12 events

177 Adiff = diff(events_avDC(j,(DiffmeanWindow+1):(nf+DiffmeanWindow/2))==

unbound_value);

178 zero_one_events1(j)=nnz(Adiff==1)+nnz(Adiff==-1);

179

180 Bdiff = diff(events_avDC(j,(DiffmeanWindow+1):(nf+DiffmeanWindow/2))==

mbound_value);

181 one_two_events1(j)=nnz(Bdiff==1)+nnz(Bdiff==-1);

182
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183 %%% Extract state lifetimes:

184 events_vector=events_avDC(j,:);

185 events_vector=rmmissing(events_vector);

186

187 %%% unbound lifetimes:

188 unbound_vector=(events_vector==unbound_value);

189 measurements=regionprops(unbound_vector ,'Area');

190 m_area=[measurements.Area];

191 unbound_lifetimes=[unbound_lifetimes , m_area];

192 unbound_lifetimes_corr{j}=m_area;

193

194 %%% single bound lifetimes == multivalent unbound lifetimes:

195 sbound_vector=(events_vector==sbound_value);

196 measurements=regionprops(sbound_vector ,'Area');

197 m_area=[measurements.Area];

198 sbound_lifetimes=[sbound_lifetimes , m_area];

199 sbound_lifetimes_corr{j}=m_area;

200

201 %%% multivalent bound lifetimes:

202 mvbound_vector=(events_vector==mbound_value);

203 measurements=regionprops(mvbound_vector ,'Area');

204 m_area=[measurements.Area];

205 mvbound_lifetimes=[mvbound_lifetimes , m_area];

206 mvbound_lifetimes_corr{j}=m_area;

207

208 else

209 events_avDC(j,:)=NaN;

210 zero_one_events1(j)=NaN;

211 one_two_events1(j)=NaN;

212 unbound_lifetimes_corr{j}=NaN;

213 sbound_lifetimes_corr{j}=NaN;

214 Dtotal_stuck=Dtotal(j,:);

215 end

216 end

217 %Separate loop 1 results from loop 2 results

218 unbound_lifetimes1=unbound_lifetimes;

219 sbound_lifetimes1=sbound_lifetimes;

220 mvbound_lifetimes1=mvbound_lifetimes;

221

222 Dtotal_unbound=events_avDC(:,1:size(Dtotal ,2))==unbound_value;

223 Dtotal_unbound=Dtotal_unbound.*Dtotal;

224 Dtotal_unbound_vector=Dtotal_unbound(Dtotal_unbound~=0);

225

226 Dtotal_sbound=events_avDC(:,1:size(Dtotal ,2))==sbound_value;

227 Dtotal_sbound=Dtotal_sbound.*Dtotal;

228 Dtotal_sbound_vector=Dtotal_sbound(Dtotal_sbound~=0);

229

230 Dtotal_mvbound=events_avDC(:,1:size(Dtotal ,2))==mbound_value;

231 Dtotal_mvbound=Dtotal_mvbound.*Dtotal;

232 Dtotal_mvbound_vector=Dtotal_mvbound(Dtotal_mvbound~=0);

233
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234 %% special loop

235 %Do the same for the other xy-list, but do this line-by-line,

236 %since different particles have different number of frames

237 %To work around NaN inputs translate NaN to -1 and then filter >0

238 Dtotal2=-1*ones(size(xylistedited ,1),numel(x)-MeasurementWindow+1);

239

240 for j=1:size(xylistedited ,1) %loop over each particle

241 xylist2=xylistedited(j,1:1:find(isnan(xylistedited(j,:)),1,'first')-2);

242 %shorten xy input to just before input becomes NaN

243 x=(xylist2(1,3:2:end));

244 y=(xylist2(1,4:2:end));

245 n_frames=numel(x);

246

247 %Calculate average DC

248 MSD2=zeros(1,maxdt+1);

249 MSD2(1)=0;

250 for dt=1:maxdt

251 SD=zeros(1,n_frames -dt);

252 for l=1:n_frames -dt

253 SD(l)=(x(l+dt)-x(l)).^2+(y(l+dt)-y(l)).^2;

254 end

255 MSD2(dt+1)=mean(SD);

256 end

257 dtlist=0:maxdt;

258 try

259 myfit=fit(dtlist',MSD2','poly1');

260 Dtrajectory2(j)=myfit.p1*FrameRate/4;

261 catch

262 end

263

264 %Calculate time dependant DC

265 maxdt=10;

266 DtraceWindow=zeros(maxdt,numel(x)-MeasurementWindow+1);

267 weight=zeros(1,maxdt);

268

269 for dt=1:maxdt

270 SDtrace=(x(1+dt:end)-x(1:end-dt)).^2+(y(1+dt:end)-y(1:end-dt)).^2; %squared

displacement

271

272 SDtraceWindow=movmean(SDtrace,MeasurementWindow -dt,'Endpoints','discard');

%mean squared displacement

273

274 DtraceWindow(dt,:)=SDtraceWindow*FrameRate/(4*dt); %diffusion coeff for

certain dt

275

276 Vrel=dt*(2*dt^2+1)/(MeasurementWindow -dt+1); %calculate relative variance

277 weight(dt)=1/Vrel; %assign weights to data points (rows) DtraceWindow

278 end

279 sumweight=sum(weight);

280 weight=weight/sumweight;

281 weight=weight ';
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282

283 %calculate diffusion coefficient

284 parameterD=sum(DtraceWindow.*weight);

285 for jj=1:length(sum(DtraceWindow.*weight))

286 Dtotal2(j,jj)=parameterD(jj);

287 end

288

289 %State assignment

290 if mean(sum(DtraceWindow.*weight))>Stuck_threshold %only detect events

for non-stuck particles , can change value

291 for nf=1:size(Dtotal2 ,2)-DiffmeanWindow %number of frames to slide the

window over

292

293 if mean(Dtotal2(j,nf:(nf+DiffmeanWindow -1)))>Unbound_threshold

294 events_avDC2(j,nf+DiffmeanWindow/2)=unbound_value; %assign value to

position in middle of sliding window to match DC time trace

295 elseif mean(Dtotal2(j,nf:(nf+DiffmeanWindow -1)))<MVbound_threshold &

mean(Dtotal2(j,nf:(nf+DiffmeanWindow -1)))>0

296 events_avDC2(j,nf+DiffmeanWindow/2)=mbound_value;

297 elseif mean(Dtotal2(j,nf:(nf+DiffmeanWindow -1)))>MVbound_threshold &

mean(Dtotal2(j,nf:(nf+DiffmeanWindow -1)))<Unbound_threshold

298 events_avDC2(j,nf+DiffmeanWindow/2)=sbound_value;

299 elseif Dtotal2(j,nf)<0

300 events_avDC2(j,nf+DiffmeanWindow/2)=NaN;

301 end

302 end

303

304 %%%Remove states shorter than a specified number of frames

305 %Unbound state

306 Adiff = diff(events_avDC2(j,:)==unbound_value);

307 nnz(Adiff==1)+nnz(Adiff==-1);

308 ind_start = find(Adiff==1);

309 ind_stop = find(Adiff==-1);

310 ubblock_length = ind_stop -ind_start; % list of consecutive section lengths

311 blocks_ind = find(ubblock_length <Min_eventlength);% list of blocks below min

length in frames

312 for ii = 1:numel(blocks_ind) % loops through each block

313 events_avDC2(j,(ind_start(blocks_ind(ii))+1:ind_stop(blocks_ind(ii))))=

events_avDC2(j,(ind_start(blocks_ind(ii))));

314 end

315

316 %Single bound state

317 Adiff = diff(events_avDC2(j,:)==sbound_value);

318 ind_start = find(Adiff==1);

319 ind_stop = find(Adiff==-1);

320 sbblock_length = ind_stop -ind_start; % list of consecutive section lengths

321 blocks_ind = find(sbblock_length <Min_eventlength);% list of blocks below min

length

322 for ii = 1:numel(blocks_ind) % loops through each block

323 events_avDC2(j,(ind_start(blocks_ind(ii))+1:ind_stop(blocks_ind(ii))))=

events_avDC2(j,(ind_start(blocks_ind(ii))));
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324 end

325

326 %Double bound state

327 Adiff = diff(events_avDC2(j,:)==mbound_value);

328 ind_stop = find(Adiff==-1);

329 ind_start = find(Adiff==1);

330 mvblock_length = ind_stop -ind_start; % list of consecutive section lengths

331 blocks_ind = find(mvblock_length <Min_eventlength);% list of blocks below min

length

332 for ii = 1:numel(blocks_ind) % loops through each block

333 events_avDC2(j,(ind_start(blocks_ind(ii))+1:ind_stop(blocks_ind(ii))))=

events_avDC2(j,(ind_start(blocks_ind(ii))));

334 end

335

336 % Check 01 and 12 events

337 Adiff = diff(events_avDC2(j,(DiffmeanWindow+1):(nf+DiffmeanWindow/2))==

unbound_value);

338 zero_one_events2(j)=nnz(Adiff==1)+nnz(Adiff==-1);

339

340 Bdiff = diff(events_avDC2(j,(DiffmeanWindow+1):(nf+DiffmeanWindow/2))==

mbound_value);

341 one_two_events2(j)=nnz(Bdiff==1)+nnz(Bdiff==-1);

342

343 %%% Extract state lifetimes:

344 events_vector2=events_avDC2(j,:);

345 events_vector2=rmmissing(events_vector2);

346

347 %%% unbound lifetimes:

348 unbound_vector2=(events_vector2==unbound_value);

349 measurements=regionprops(unbound_vector2 ,'Area');

350 m_area=[measurements.Area];

351 unbound_lifetimes2=[unbound_lifetimes2 , m_area];

352 unbound_lifetimes_corr2{j}=m_area;

353

354 sbound_vector2=(events_vector2==sbound_value);

355 measurements=regionprops(sbound_vector2 ,'Area');

356 m_area=[measurements.Area];

357 sbound_lifetimes2=[sbound_lifetimes2 , m_area];

358 sbound_lifetimes_corr2{j}=m_area;

359

360 %%% multivalent bound lifetimes:

361 mvbound_vector2=(events_vector2==mbound_value);

362 measurements=regionprops(mvbound_vector2 ,'Area');

363 m_area=[measurements.Area];

364 mvbound_lifetimes2=[mvbound_lifetimes2 , m_area];

365 mvbound_lifetimes_corr2{j}=m_area;

366

367 else %if particles have low mobility

368 events_avDC2(j,:)=NaN;

369 zero_one_events2(j)=NaN;

370 one_two_events2(j)=NaN;

TU/e 53



PCT monitoring with immunoassays using f-BPM A. Appendix

371 unbound_lifetimes_corr2{j}=NaN;

372 sbound_lifetimes_corr2{j}=NaN;

373 Dtotal_stuck2=Dtotal2(j,:);

374 end

375 end

376 %Separate results loop 2 from loop 1

377 Dtotal_unbound2=events_avDC2(:,1:size(Dtotal2 ,2))==unbound_value;

378 Dtotal_unbound2=Dtotal_unbound2.*Dtotal2;

379 Dtotal_unbound_vector2=Dtotal_unbound2(Dtotal_unbound2~=0);

380

381 Dtotal_sbound2=events_avDC2(:,1:size(Dtotal2 ,2))==sbound_value;

382 Dtotal_sbound2=Dtotal_sbound2.*Dtotal2;

383 Dtotal_sbound_vector2=Dtotal_sbound2(Dtotal_sbound2~=0);

384

385 Dtotal_mvbound2=events_avDC2(:,1:size(Dtotal2 ,2))==mbound_value;

386 Dtotal_mvbound2=Dtotal_mvbound2.*Dtotal2;

387 Dtotal_mvbound_vector2=Dtotal_mvbound2(Dtotal_mvbound2~=0);

388

389 %Merge results loop 1 and 2

390 Dtotal_unbound=[Dtotal_unbound; Dtotal_unbound2];

391 Dtotal_sbound=[Dtotal_sbound; Dtotal_sbound2];

392 Dtotal_mvbound=[Dtotal_mvbound; Dtotal_mvbound2];

393 Dtotal_unbound_vector=[Dtotal_unbound_vector; Dtotal_unbound_vector2];

394 Dtotal_sbound_vector=[Dtotal_sbound_vector; Dtotal_sbound_vector2];

395 Dtotal_mvbound_vector=[Dtotal_mvbound_vector; Dtotal_mvbound_vector2];

396

397 try

398 unbound_lifetimes_corr=[unbound_lifetimes_corr unbound_lifetimes_corr2];

399 sbound_lifetimes_corr=[sbound_lifetimes_corr sbound_lifetimes_corr2];

400 mvbound_lifetimes_corr=[mvbound_lifetimes_corr mvbound_lifetimes_corr2];

401 end

402 save([NameExtension ,'Dtotal.mat'],'Dtotal')

403

404 %Plot DC distribution

405 figure();

406 histogram(Dtotal_unbound_vector ,0:0.001:DC_plotlimit ,'FaceColor',[0 0.4470 0.7410],

'EdgeColor','none'); %blue

407 hold on

408 histogram(Dtotal_sbound_vector ,0:0.001:DC_plotlimit ,'FaceColor',[0.8500 0.3250

0.0980],'EdgeColor','none') %orange

409 hold on

410 histogram(Dtotal_mvbound_vector ,0:0.001:DC_plotlimit ,'FaceColor',[0.9290 0.6940

0.1250],'EdgeColor','none'); %yellow

411 title('Total DC distribution');

412 xlabel('D (\mum^2/sec)');

413 ylabel('Counts');

414 set(gca,'FontSize',18);

415 ylim([0 3.5*10^5])

416 axis('square')

417 saveas(gcf,[NameExtension ,' Total DC',num2str(Unbound_threshold),' Windowsize ',

num2str(MeasurementWindow),'.tiff'])
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418 close

419

420 %% Bound Fraction

421 DCfractions=zeros(5,2);

422 DCfractions(1,1)=numel(Dtotal(:))+numel(find(Dtotal2(:)>0));

423 DCfractions(2,1)=numel(find(Dtotal(:)>Unbound_threshold))+numel(find(Dtotal2(:)>

Unbound_threshold));

424 DCfractions(3,1)=numel(find(Dtotal(:)<Unbound_threshold&Dtotal(:)>MVbound_threshold

))+numel(find(Dtotal2(:)<Unbound_threshold&Dtotal2(:)>MVbound_threshold));

425 DCfractions(4,1)=numel(find(Dtotal(:)<MVbound_threshold))+numel(find(Dtotal2(:)<

MVbound_threshold&Dtotal2(:)>0));

426 DCfractions(5,1)=DCfractions(3,1)+DCfractions(4,1);

427 for position=1:length(DCfractions)

428 DCfractions(position ,2)=DCfractions(position ,1)/DCfractions(1,1);

429 end

430 DCfractions=array2table(DCfractions ,'RowNames',{'total counts','free','single-

molecule','multivalent','Total bound'});

431 writetable(DCfractions ,[NameExtension ,'DCfractions','.xlsx'],'WriteRowNames',true);

432

433 BoundFraction=(numel(find(Dtotal(:)<Unbound_threshold))+numel(find(Dtotal2(:)<

Unbound_threshold&Dtotal2(:)>0)))/(numel(Dtotal(:))+numel(find(Dtotal2(:)>0)));

434

435 %% Events distributions

436 zero_one_events=[zero_one_events1 zero_one_events2];

437 one_two_events=[one_two_events1 one_two_events2];

438

439 all_events=rmmissing(zero_one_events)';

440 all12_events=rmmissing(one_two_events)';

441 all_events2=[rmmissing(zero_one_events) rmmissing(one_two_events)]';%01 + 12 events

442

443 N_particles_mobile=numel(all_events); %if particles are stuck, events will be NaN

so all_events will skip this particle

444

445 unbound_lifetimes=[unbound_lifetimes1 unbound_lifetimes2];

446 sbound_lifetimes=[sbound_lifetimes1 sbound_lifetimes2];

447 mvbound_lifetimes=[mvbound_lifetimes1 mvbound_lifetimes2];

448

449

450 %% fit distribution before filtering

451 pd_all_events=fitdist(all_events ,'normal');

452 pd_12_events=fitdist(all12_events ,'normal');

453

454

455 all_events_mean=pd_all_events.mu;

456 all_events_std=pd_all_events.sigma;

457 all_events_SE=all_events_std/sqrt(numel(all_events));

458

459 all12_events_mean=pd_12_events.mu;

460 all12_events_std=pd_12_events.sigma;

461 all12_events_SE=all12_events_std/sqrt(numel(all12_events));

462
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463 activity_all_events=(all_events_mean/Time_seconds)*1000;

464 std_activity_all_events=(all_events_std/Time_seconds)*1000;

465 SE_activity_all_events=(all_events_SE/Time_seconds)*1000;

466

467

468 activity_all12_events=(all12_events_mean/Time_seconds)*1000;

469 std_activity_all12_events=(all12_events_std/Time_seconds)*1000;

470 SE_activity_all12_events=(all12_events_SE/Time_seconds)*1000;

471

472 activity_01=(fitdist(rmmissing(zero_one_events '),'normal').mu/Time_seconds)*1000

473 activity_12=(fitdist(rmmissing(one_two_events '),'normal').mu/Time_seconds)*1000

474 %% iterative fitting of distribution to all events

475 Sigma = 4;

476 all_events=rmmissing(zero_one_events)';

477 x_scale=max(all_events);

478

479 %%% Fitting events distribution

480 for i = 1:20

481 if i == 1

482 pd_n = fitdist(all_events ,Events_fittype);

483 pd_n12 = fitdist(all12_events ,Events_fittype);

484 all_events_means(i)=pd_n.mu;

485 all_events_stds(i)=pd_n.sigma;

486 all_events_SEs(i)=pd_n.sigma/sqrt(numel(all_events));

487

488 all12_events_means(i)=pd_n12.mu;

489 all12_events_stds(i)=pd_n12.sigma;

490 all12_events_SEs(i)=pd_n12.sigma/sqrt(numel(all12_events));

491

492 all_events = all_events( all_events < (pd_n.mu+ Sigma*pd_n.sigma ));

493 pd_n = fitdist(all_events ,Events_fittype);

494

495 if pd_n.mu+ Sigma*pd_n.sigma > 0

496 all12_events = all12_events( all12_events < (pd_n12.mu+ Sigma*pd_n12.sigma

));

497 pd_n12 = fitdist(all12_events ,Events_fittype);

498 end

499 all_events_means(i+1)=pd_n.mu;

500 all_events_stds(i+1)=pd_n.sigma;

501 all_events_SEs(i+1)=pd_n.sigma/sqrt(numel(all_events));

502

503 all12_events_means(i+1)=pd_n12.mu;

504 all12_events_stds(i+1)=pd_n12.sigma;

505 all12_events_SEs(i+1)=pd_n12.sigma/sqrt(numel(all12_events));

506 end

507 pd_n = fitdist(all_events ,Events_fittype);

508 all_events = all_events( all_events < (pd_n.mu+ Sigma*pd_n.sigma ));

509 pd_n = fitdist(all_events ,Events_fittype);

510 all_events_means(i+1)=pd_n.mu;

511 all_events_stds(i+1)=pd_n.sigma;

512 all_events_SEs(i+1)=pd_n.sigma/sqrt(numel(all_events));
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513

514 pd_n12 = fitdist(all12_events ,Events_fittype);

515 if pd_n.mu+ Sigma*pd_n.sigma > min(all12_events(all12_events >0))

516 all12_events = all12_events( all12_events < (pd_n12.mu+ Sigma*pd_n12.sigma ));

517

518 pd_n12 = fitdist(all12_events ,Events_fittype);

519 else

520 disp(i)

521 break

522 end

523 all12_events_means(i+1)=pd_n12.mu;

524 all12_events_stds(i+1)=pd_n12.sigma;

525 all12_events_SEs(i+1)=pd_n12.sigma/sqrt(numel(one_two_events));

526 end

527 remove_particles=find(zero_one_events >pd_n.mu+ Sigma*pd_n.sigma);

528 remove_particles2=find(one_two_events >pd_n12.mu+ Sigma*pd_n12.sigma);

529

530 all_events_filtered_n=all_events;

531 all_events=rmmissing(zero_one_events)';

532

533 all12_events_filtered_n=all12_events;

534 all12_events=rmmissing(one_two_events);

535

536

537 all_events_mean_n=all_events_means(end);

538 all_events_std_n=all_events_stds(end);

539 all_events_SE_n=all_events_SEs(end);

540

541 all12_events_mean_n=all12_events_means(end);

542 all12_events_std_n=all12_events_stds(end);

543 all12_events_SE_n=all12_events_SEs(end);

544

545 activity_all_events_n=(all_events_means(end)/Time_seconds)*1000; % (mHz)

546 std_activity_all_events_n=(all_events_stds(end)/Time_seconds)*1000; % (mHz)

547 SE_activity_all_events_n=(all_events_SEs(end)/Time_seconds)*1000; % (mHz)

548

549 activity_all12_events_n=(all12_events_means(end)/Time_seconds)*1000; % (mHz)

550 std_activity_all12_events_n=(all12_events_stds(end)/Time_seconds)*1000; % (mHz)

551 SE_activity_all12_events_n=(all12_events_SEs(end)/Time_seconds)*1000; % (mHz)

552

553

554

555 figure()

556 histfit(all_events_filtered_n ,ceil(max(all_events_filtered_n)/2)+1,Events_fittype)

557 title('All 01 events 20it fitting')

558 xlabel('Events')

559 ylabel('Particles')

560 xlim([0 x_scale])

561 set(gca,'FontSize',18)

562 saveas(gcf,[NameExtension ,' all 01 events 20it fitting ',Events_fittype ,' ',num2str

(Unbound_threshold),'.tiff'])
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563 N_particles_eventsfiltered=numel(all_events_filtered_n);

564

565 figure()

566 histfit(all12_events_filtered_n ,ceil(max(all12_events_filtered_n)/2)+1,

Events_fittype)

567 title('All 12 events 20it fitting')

568 xlabel('Events')

569 ylabel('Particles')

570 xlim([0 x_scale])

571 set(gca,'FontSize',18)

572 saveas(gcf,[NameExtension ,' all 12 events 20it fitting ',Events_fittype ,' ',num2str

(MVbound_threshold),'.tiff'])

573 N_particles_12eventsfiltered=numel(all12_events_filtered_n);

574

575 %% plot histogram of all diffusion coefficients after filtering by events:

576

577 Dtotal_unbound_filtered=Dtotal_unbound;

578 Dtotal_unbound_filtered(remove_particles ,:)=[];

579 Dtotal_unbound_filtered_vector=Dtotal_unbound_filtered(Dtotal_unbound_filtered~=0);

580

581 Dtotal_sbound_filtered=Dtotal_sbound;

582 Dtotal_sbound_filtered(remove_particles ,:)=[];

583 Dtotal_sbound_filtered_vector=Dtotal_sbound_filtered(Dtotal_sbound_filtered~=0);

584

585 Dtotal_mvbound_filtered=Dtotal_mvbound;

586 Dtotal_mvbound_filtered(remove_particles2 ,:)=[];

587 Dtotal_mvbound_filtered_vector=Dtotal_mvbound_filtered(Dtotal_mvbound_filtered~=0);

588

589 figure();

590 histogram(Dtotal_unbound_filtered_vector ,0:0.001:DC_plotlimit ,'FaceColor',[0 0.4470

0.7410],'EdgeColor','none'); %blue

591 hold on

592 histogram(Dtotal_sbound_filtered_vector ,0:0.001:DC_plotlimit ,'FaceColor',[0.8500

0.3250 0.0980],'EdgeColor','none') %orange

593 histogram(Dtotal_mvbound_filtered_vector ,0:0.001:DC_plotlimit ,'FaceColor',[0.9290

0.6940 0.1250],'EdgeColor','none') %yellow

594

595 % histogram(Dtotal(:) ,0:0.001:DC_plotlimit ,'EdgeColor ','none');

596 title('DC total filtered');

597 xlabel('D (\mum^2/sec)');

598 ylabel('Counts');

599 set(gca,'FontSize',22);

600 ylim([0 3.5*10^5])

601 axis('square')

602 saveas(gcf,[NameExtension ,'_Total DC_D',num2str(Unbound_threshold),' filtered ',

num2str(Events_fittype),'.tiff'])

603 close

604

605 %% state lifetimes analysis

606 %%% ecdf of state lifetimes , fit log double exp

607
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608 %%% determine which particles are filtered out before by normal fitting:

609 ub_lifetimes_filtered_events=unbound_lifetimes_corr;

610 ub_lifetimes_filtered_states=unbound_lifetimes_corr;

611 b_lifetimes_filtered_events=sbound_lifetimes_corr;

612 b_lifetimes_filtered_states=sbound_lifetimes_corr;

613 mv_lifetimes_filtered_states=mvbound_lifetimes_corr;

614

615 %%% for normal fitting of all events:

616 ActiveParticles_all_events=[zero_one_events <max(all_events_filtered_n) (

one_two_events <max(all12_events_filtered_n))];

617 for ap=1:length(ActiveParticles_all_events)

618 if ActiveParticles_all_events(ap)==0

619 ub_lifetimes_filtered_events{ap}=[];

620 b_lifetimes_filtered_events{ap}=[];

621 mv_lifetimes_filtered_states{ap}=[];

622 end

623 end

624 ub_lifetimes_filtered_events=cell2mat(ub_lifetimes_filtered_events);

625 b_lifetimes_filtered_events=cell2mat(b_lifetimes_filtered_events);

626 mv_lifetimes_filtered_states=cell2mat(mv_lifetimes_filtered_states);

627

628

629 %% Unbound state lifetimes ecdf fitting - unfiltered

630 all_unbound_lifetimes=cell2mat(unbound_lifetimes_corr);

631 figure()

632 [f,x] = ecdf(all_unbound_lifetimes);

633 condition = f<1.0;

634 f = f(condition);

635 x = x(condition);

636 ft=fittype('a*exp(-b*x)+(1-a)*exp(-d*x)');

637

638 coeffnames(ft);

639 options=fitoptions(ft);

640 options.StartPoint = [0.1 0.1 0.001];

641 options.Lower = [0 0 0];

642 options.Upper = [1 1 1];

643

644

645 fit_lifetime = fit (x/FrameRate , (1-f), ft, options);

646 fraction_1 = fit_lifetime.a;

647 tau_1 = 1/fit_lifetime.b;

648 fraction_2 = 1-fit_lifetime.a;

649 tau_2 = 1/fit_lifetime.d;

650

651

652 plot(fit_lifetime , x/FrameRate , (1-f));

653 xlim([0 Time_seconds]);

654 ylim([0.01 1]);

655 set(gca,'YScale','log');

656 hold on

657 ci_bounds=predint(fit_lifetime ,x/FrameRate);
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658 plot(x/FrameRate ,ci_bounds ,'r--')

659 set(gca,'FontSize',14)

660 get_gca=gca;

661 legend(get_gca,'off');

662 title({

663 ['Unbound state lifetimes - >0.01 \mum^2/s']

664 ['\tau_{1}= ',num2str(tau_1,'%.1f'),'s (',num2str(fraction_1 ,'%.2f'),')','; \

tau_{2}= ', num2str(tau_2,'%.1f'), 's',' (',num2str(fraction_2 ,'%.2f'),')']

665 });xlabel('Lifetime (s)');

666 ylabel('Surviving fraction');

667 grid on;

668 saveas(gcf,[NameExtension ,' ALL_unbound_ecdf_logfit','.tiff'])

669

670

671 y_value_fitting = fit_lifetime(x/FrameRate);

672 data_save_matrix = zeros(length(x) ,3);

673 data_save_matrix(:, 1) = x/FrameRate;

674 data_save_matrix(:, 2) = y_value_fitting;

675 data_save_matrix(:, 3) = (1-f);

676 data_save_matrix=array2table(data_save_matrix ,'VariableNames',{'Time_s','

y_value_fitting','data_1minf'});

677 writetable(data_save_matrix ,([FileName ,'ALL_unbound_lifetimes_plotdata','.xlsx']));

678

679

680 get_gca=gca;

681 legend(get_gca,'off');

682 title(['Unbound state lifetime - \tau_{1}= ',num2str(tau_1,'%.1f'), 's; \tau_

{2}= ', num2str(tau_2,'%.0f'), 's']);

683 xlabel('Lifetime (s)');

684 ylabel('log(1-cdf)');

685 grid on;

686 saveas(gcf,[NameExtension ,' unbound_ecdf_logfit','.tiff'])

687 close

688

689 colNames={'tau_1','fraction_1','tau_2','fraction_2'};

690 UnboundStateResults(1,1)=tau_1;

691 UnboundStateResults(1,2)=fraction_1;

692 UnboundStateResults(1,3)=tau_2;

693 UnboundStateResults(1,4)=fraction_2;

694 UBStateLifetimes=array2table(UnboundStateResults ,'VariableNames',colNames);

695 writetable(UBStateLifetimes ,[NameExtension ,' ALL_unbound_lifetimes_fitdata','.xlsx'

]);

696

697 CI_95pct=confint(fit_lifetime ,0.95);

698 CI_68pct_SD=confint(fit_lifetime ,0.68);

699 CI_95pct_table=array2table(CI_95pct ,'VariableNames',{'fraction','tau_1','tau_2'});

700 writetable(CI_95pct_table ,[NameExtension ,' 95pct CI of ecdf fit unbound ALL','.xlsx

']);

701 CI_68pct_SD_table=array2table(CI_68pct_SD ,'VariableNames',{'fraction','tau_1','

tau_2'});
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702 writetable(CI_68pct_SD_table ,[NameExtension ,' 68pct CI is SD of ecdf fit unbound

ALL','.xlsx']);

703

704

705 %% Unbound state lifetimes ecdf fitting - events filtered

706

707 figure()

708 [f,x] = ecdf(ub_lifetimes_filtered_events);

709 condition = f<1.0;

710 f = f(condition);

711 x = x(condition);

712

713 ft=fittype('a*exp(-b*x)+(1-a)*exp(-d*x)');

714

715 coeffnames(ft);

716 options=fitoptions(ft);

717 options.StartPoint = [0.1 0.1 0.001];

718 options.Lower = [0 0 0];

719 options.Upper = [1 1 1];

720

721

722 fit_lifetime = fit (x/FrameRate , (1-f), ft, options);

723 fraction_1_ub_f = fit_lifetime.a;

724 tau_1_ub_f = 1/fit_lifetime.b;

725 fraction_2_ub_f = 1-fit_lifetime.a;

726 tau_2_ub_f = 1/fit_lifetime.d;

727 plot(fit_lifetime , x/FrameRate , (1-f));

728 xlim([0 Time_seconds]);

729 ylim([0.01 1])

730 set(gca,'YScale','log');

731 hold on

732 ci_bounds=predint(fit_lifetime ,x/FrameRate);

733 plot(x/FrameRate ,ci_bounds ,'r--')

734 set(gca,'FontSize',14)

735 get_gca=gca;

736 legend(get_gca,'off');

737 title({

738 ['Unbound state lifetimes - events filtered']

739 ['\tau_{1}= ',num2str(tau_1_ub_f ,'%.1f'),'s (',num2str(fraction_1_ub_f ,'%.2f'),

')','; \tau_{2}= ', num2str(tau_2_ub_f ,'%.1f'), 's',' (',num2str(

fraction_2_ub_f ,'%.2f'),')']

740 });xlabel('Lifetime (s)');

741 ylabel('Surviving fraction');

742 grid on;

743 saveas(gcf,[NameExtension ,' events_filtered_unbound_ecdf_logfit','.tiff'])

744

745

746 y_value_fitting = fit_lifetime(x/FrameRate);

747 data_save_matrix = zeros(length(x) ,3);

748 data_save_matrix(:, 1) = x/FrameRate;

749 data_save_matrix(:, 2) = y_value_fitting;
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750 data_save_matrix(:, 3) = (1-f);

751 data_save_matrix=array2table(data_save_matrix ,'VariableNames',{'Time_s','

y_value_fitting','data_1minf'});

752 writetable(data_save_matrix ,([FileName ,'events_filtered_ub_lifetimes_plotdata','.

xlsx']));

753

754 colNames={'tau_1','fraction_1','tau_2','fraction_2'};

755 UnboundStateResults(1,1)=tau_1_ub_f;

756 UnboundStateResults(1,2)=fraction_1_ub_f;

757 UnboundStateResults(1,3)=tau_2_ub_f;

758 UnboundStateResults(1,4)=fraction_2_ub_f;

759 UBStateLifetimes=array2table(UnboundStateResults ,'VariableNames',colNames);

760 writetable(UBStateLifetimes ,[NameExtension ,'

events_filtered_unbound_lifetimes_fitdata','.xlsx']);

761

762 CI_95pct_ub_f=confint(fit_lifetime ,0.95);

763 CI_68pct_SD_ub_f=confint(fit_lifetime ,0.68);

764 CI_95pct_table=array2table(CI_95pct ,'VariableNames',{'fraction','tau_1','tau_2'});

765 writetable(CI_95pct_table ,[NameExtension ,' 95pct CI of ecdf fit unbound events

filterd','.xlsx']);

766 CI_68pct_SD_table=array2table(CI_68pct_SD ,'VariableNames',{'fraction','tau_1','

tau_2'});

767 writetable(CI_68pct_SD_table ,[NameExtension ,' 68pct CI is SD of ecdf fit unbound

events filtered','.xlsx']);

768

769

770 %% Single Bound state lifetimes ecdf fitting - unfiltered

771 all_bound_lifetimes=cell2mat(sbound_lifetimes_corr);

772 figure(7)

773 [f,x] = ecdf(all_bound_lifetimes);

774 condition = f<1.0;

775 f = f(condition);

776 x = x(condition);

777

778 ft=fittype('a*exp(-b*x)+(1-a)*exp(-d*x)');

779

780 coeffnames(ft);

781 options=fitoptions(ft);

782 options.StartPoint = [0.1 0.1 0.001 ];

783 options.Lower = [0 0 0];

784 options.Upper = [1 1 1];

785

786

787 fit_lifetime = fit (x/FrameRate , (1-f), ft, options);

788 fraction_1 = fit_lifetime.a;

789 tau_1 = 1/fit_lifetime.b;

790 fraction_2 = 1-fit_lifetime.a;

791 tau_2 = 1/fit_lifetime.d;

792

793 plot(fit_lifetime , x/FrameRate , (1-f));

794 xlim([0 Time_seconds]);
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795 ylim([0.01 1]);

796 set(gca,'YScale','log');

797 hold on

798 ci_bounds=predint(fit_lifetime ,x/FrameRate);

799 plot(x/FrameRate ,ci_bounds ,'r--')

800 set(gca,'FontSize',14)

801 get_gca=gca;

802 legend(get_gca,'off');

803 title({

804 ['Bound state lifetimes - >0.01 \mum^2/s']

805 ['\tau_{1}= ',num2str(tau_1,'%.1f'),'s (',num2str(fraction_1 ,'%.2f'),')','; \

tau_{2}= ', num2str(tau_2,'%.1f'), 's',' (',num2str(fraction_2 ,'%.2f'),')']

806 });xlabel('Lifetime (s)');

807 ylabel('Surviving fraction');

808 grid on;

809 saveas(gcf,[NameExtension ,' ALL_bound_ecdf_logfit','.tiff'])

810

811

812 y_value_fitting = fit_lifetime(x/FrameRate);

813 data_save_matrix = zeros(length(x) ,3);

814 data_save_matrix(:, 1) = x/FrameRate;

815 data_save_matrix(:, 2) = y_value_fitting;

816 data_save_matrix(:, 3) = (1-f);

817 data_save_matrix=array2table(data_save_matrix ,'VariableNames',{'Time_s','

y_value_fitting','data_1minf'});

818 writetable(data_save_matrix ,([FileName ,'ALL_bound_lifetimes_plotdata','.xlsx']));

819

820

821 colNames={'tau_1','fraction_1','tau_2','fraction_2'};

822 UnboundStateResults(1,1)=tau_1;

823 UnboundStateResults(1,2)=fraction_1;

824 UnboundStateResults(1,3)=tau_2;

825 UnboundStateResults(1,4)=fraction_2;

826 UBStateLifetimes=array2table(UnboundStateResults ,'VariableNames',colNames);

827 writetable(UBStateLifetimes ,[NameExtension ,' ALL_bound_lifetimes_fitdata','.xlsx'])

;

828

829 CI_95pct=confint(fit_lifetime ,0.95);

830 CI_68pct_SD=confint(fit_lifetime ,0.68);

831 CI_95pct_table=array2table(CI_95pct ,'VariableNames',{'fraction','tau_1','tau_2'});

832 writetable(CI_95pct_table ,[NameExtension ,' 95pct CI of ecdf fit bound ALL','.xlsx'

]);

833 CI_68pct_SD_table=array2table(CI_68pct_SD ,'VariableNames',{'fraction','tau_1','

tau_2'});

834 writetable(CI_68pct_SD_table ,[NameExtension ,' 68pct CI is SD of ecdf fit bound ALL'

,'.xlsx']);

835

836

837 %% Single Bound state lifetimes ecdf fitting - events filtered

838 figure()

839 [f,x] = ecdf(b_lifetimes_filtered_events);
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840 condition = f<1.0;

841 f = f(condition);

842 x = x(condition);

843

844

845 ft=fittype('a*exp(-b*x)+(1-a)*exp(-d*x)');

846

847 coeffnames(ft);

848 options=fitoptions(ft);

849 options.StartPoint = [0.1 0.1 0.001];

850 options.Lower = [0 0 0];

851 options.Upper = [1 1 1];

852

853

854 fit_lifetime = fit (x/FrameRate , (1-f), ft, options);

855 fraction_1_b_f = fit_lifetime.a;

856 tau_1_b_f = 1/fit_lifetime.b;

857 fraction_2_b_f = 1-fit_lifetime.a;

858 tau_2_b_f = 1/fit_lifetime.d;

859 plot(fit_lifetime , x/FrameRate , (1-f));

860 xlim([0 Time_seconds]);

861 ylim([0.01 1]);

862 set(gca,'YScale','log');

863 hold on

864 ci_bounds=predint(fit_lifetime ,x/FrameRate);

865 plot(x/FrameRate ,ci_bounds ,'r--')

866 set(gca,'FontSize',14)

867 get_gca=gca;

868 legend(get_gca,'off');

869 title({

870 ['Bound state lifetimes - events filtered']

871 ['\tau_{1}= ',num2str(tau_1,'%.1f'),'s (',num2str(fraction_1 ,'%.2f'),')','; \

tau_{2}= ', num2str(tau_2,'%.1f'), 's',' (',num2str(fraction_2 ,'%.2f'),')']

872 });xlabel('Lifetime (s)');

873 ylabel('Surviving fraction');

874 grid on;

875 saveas(gcf,[NameExtension ,' events_filtered_bound_ecdf_logfit','.tiff'])

876

877

878 y_value_fitting = fit_lifetime(x/FrameRate);

879 data_save_matrix = zeros(length(x) ,3);

880 data_save_matrix(:, 1) = x/FrameRate;

881 data_save_matrix(:, 2) = y_value_fitting;

882 data_save_matrix(:, 3) = (1-f);

883 data_save_matrix=array2table(data_save_matrix ,'VariableNames',{'Time_s','

y_value_fitting','data_1minf'});

884 writetable(data_save_matrix ,([FileName ,' events_filtered_bound_lifetimes_plotdata',

'.xlsx']));

885

886

887 colNames={'tau_1','fraction_1','tau_2','fraction_2'};
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888 UnboundStateResults(1,1)=tau_1;

889 UnboundStateResults(1,2)=fraction_1;

890 UnboundStateResults(1,3)=tau_2;

891 UnboundStateResults(1,4)=fraction_2;

892 UBStateLifetimes=array2table(UnboundStateResults ,'VariableNames',colNames);

893 writetable(UBStateLifetimes ,[NameExtension ,'

events_filtered_bound_lifetimes_fitdata','.xlsx']);

894

895 CI_95pct=confint(fit_lifetime ,0.95);

896 CI_68pct_SD_b_f=confint(fit_lifetime ,0.68);

897 CI_95pct_table=array2table(CI_95pct ,'VariableNames',{'fraction','tau_1','tau_2'});

898 writetable(CI_95pct_table ,[NameExtension ,' 95pct CI of ecdf fit bound events

filtered','.xlsx']);

899 CI_68pct_SD_table=array2table(CI_68pct_SD_b_f ,'VariableNames',{'fraction','tau_1','

tau_2'});

900 writetable(CI_68pct_SD_table ,[NameExtension ,' 68pct CI is SD of ecdf fit bound

events filtered','.xlsx']);

901

902 %% Double Bound unfiltered

903 all_bound_lifetimes=cell2mat(mvbound_lifetimes_corr);

904

905 figure()

906 [f,x] = ecdf(all_bound_lifetimes);

907 condition = f<1.0;

908 f = f(condition);

909 x = x(condition);

910

911 ft=fittype('a*exp(-b*x)+(1-a)*exp(-d*x)');

912

913 coeffnames(ft);

914 options=fitoptions(ft);

915 options.StartPoint = [0.1 0.1 0.001];

916 options.Lower = [0 0 0];

917 options.Upper = [1 1 1];

918

919

920 fit_lifetime = fit (x/FrameRate , (1-f), ft, options);

921 fraction_1 = fit_lifetime.a;

922 tau_1 = 1/fit_lifetime.b;

923 fraction_2 = 1-fit_lifetime.a;

924 tau_2 = 1/fit_lifetime.d;

925 plot(fit_lifetime , x/FrameRate , (1-f));

926 xlim([0 Time_seconds]);

927 ylim([0.01 1]);

928 set(gca,'YScale','log');

929 hold on

930 ci_bounds=predint(fit_lifetime ,x/FrameRate);

931 plot(x/FrameRate ,ci_bounds ,'r--')

932 set(gca,'FontSize',14)

933 get_gca=gca;

934 legend(get_gca,'off');
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935 title({

936 ['MVBound state lifetimes - >0.01 \mum^2/s']

937 ['\tau_{1}= ',num2str(tau_1,'%.1f'),'s (',num2str(fraction_1 ,'%.2f'),')','; \

tau_{2}= ', num2str(tau_2,'%.1f'), 's',' (',num2str(fraction_2 ,'%.2f'),')']

938 });xlabel('Lifetime (s)');

939 ylabel('Surviving fraction');

940 grid on;

941 saveas(gcf,[NameExtension ,' ALL_mvbound_ecdf_logfit','.tiff'])

942

943

944 y_value_fitting = fit_lifetime(x/FrameRate);

945 data_save_matrix = zeros(length(x) ,3);

946 data_save_matrix(:, 1) = x/FrameRate;

947 data_save_matrix(:, 2) = y_value_fitting;

948 data_save_matrix(:, 3) = (1-f);

949 data_save_matrix=array2table(data_save_matrix ,'VariableNames',{'Time_s','

y_value_fitting','data_1minf'});

950 writetable(data_save_matrix ,([FileName ,'ALL_mvbound_lifetimes_plotdata','.xlsx']));

951

952 colNames={'tau_1','fraction_1','tau_2','fraction_2'};

953 UnboundStateResults(1,1)=tau_1;

954 UnboundStateResults(1,2)=fraction_1;

955 UnboundStateResults(1,3)=tau_2;

956 UnboundStateResults(1,4)=fraction_2;

957 UBStateLifetimes=array2table(UnboundStateResults ,'VariableNames',colNames);

958 writetable(UBStateLifetimes ,[NameExtension ,' ALL_mvbound_lifetimes_fitdata','.xlsx'

]);

959

960 CI_95pct=confint(fit_lifetime ,0.95);

961 CI_68pct_SD=confint(fit_lifetime ,0.68);

962 CI_95pct_table=array2table(CI_95pct ,'VariableNames',{'fraction','tau_1','tau_2'});

963 writetable(CI_95pct_table ,[NameExtension ,' 95pct CI of ecdf fit mvbound ALL','.xlsx

']);

964 CI_68pct_SD_table=array2table(CI_68pct_SD ,'VariableNames',{'fraction','tau_1','

tau_2'});

965 writetable(CI_68pct_SD_table ,[NameExtension ,' 68pct CI is SD of ecdf fit mvbound

ALL','.xlsx']);

966

967

968 %% Double bound state lifetimes ecdf fitting - events filtered

969

970 figure()

971 [f,x] = ecdf(mv_lifetimes_filtered_states);

972 condition = f<1.0;

973 f = f(condition);

974 x = x(condition);

975

976 ft=fittype('a*exp(-b*x)+(1-a)*exp(-d*x)');

977

978 coeffnames(ft);

979 options=fitoptions(ft);
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980 options.StartPoint = [0.1 0.1 0.001];

981 options.Lower = [0 0 0];

982 options.Upper = [1 1 1];

983

984 fit_lifetime = fit (x/FrameRate , (1-f), ft, options);

985 fraction_1_b_f = fit_lifetime.a;

986 tau_1_b_f = 1/fit_lifetime.b;

987 fraction_2_b_f = 1-fit_lifetime.a;

988 tau_2_b_f = 1/fit_lifetime.d;

989 plot(fit_lifetime , x/FrameRate , (1-f));

990 xlim([0 Time_seconds]);

991 ylim([0.01 1]);

992 set(gca,'YScale','log');

993 hold on

994 ci_bounds=predint(fit_lifetime ,x/FrameRate);

995 plot(x/FrameRate ,ci_bounds ,'r--')

996 set(gca,'FontSize',14)

997 get_gca=gca;

998 legend(get_gca,'off');

999 title({

1000 ['Mv Bound state lifetimes - events filtered']

1001 ['\tau_{1}= ',num2str(tau_1,'%.1f'),'s (',num2str(fraction_1 ,'%.2f'),')','; \

tau_{2}= ', num2str(tau_2,'%.1f'), 's',' (',num2str(fraction_2 ,'%.2f'),')']

1002 });xlabel('Lifetime (s)');

1003 ylabel('Surviving fraction');

1004 grid on;

1005 saveas(gcf,[NameExtension ,' events_filtered_mvbound_ecdf_logfit','.tiff'])

1006

1007

1008 y_value_fitting = fit_lifetime(x/FrameRate);

1009 data_save_matrix = zeros(length(x) ,3);

1010 data_save_matrix(:, 1) = x/FrameRate;

1011 data_save_matrix(:, 2) = y_value_fitting;

1012 data_save_matrix(:, 3) = (1-f);

1013 data_save_matrix=array2table(data_save_matrix ,'VariableNames',{'Time_s','

y_value_fitting','data_1minf'});

1014 writetable(data_save_matrix ,([FileName ,' events_filtered_mvbound_lifetimes_plotdata

','.xlsx']));

1015

1016

1017 colNames={'tau_1','fraction_1','tau_2','fraction_2'};

1018 UnboundStateResults(1,1)=tau_1;

1019 UnboundStateResults(1,2)=fraction_1;

1020 UnboundStateResults(1,3)=tau_2;

1021 UnboundStateResults(1,4)=fraction_2;

1022 UBStateLifetimes=array2table(UnboundStateResults ,'VariableNames',colNames);

1023 writetable(UBStateLifetimes ,[NameExtension ,'

events_filtered_mvbound_lifetimes_fitdata','.xlsx']);

1024

1025 CI_95pct=confint(fit_lifetime ,0.95);

1026 CI_68pct_SD_mv_f=confint(fit_lifetime ,0.68);
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1027 CI_95pct_table=array2table(CI_95pct ,'VariableNames',{'fraction','tau_1','tau_2'});

1028 writetable(CI_95pct_table ,[NameExtension ,' 95pct CI of ecdf fit mvbound events

filtered','.xlsx']);

1029 CI_68pct_SD_table=array2table(CI_68pct_SD_mv_f ,'VariableNames',{'fraction','tau_1',

'tau_2'});

1030 writetable(CI_68pct_SD_table ,[NameExtension ,' 68pct CI is SD of ecdf fit mvbound

events filtered','.xlsx']);

1031

1032 %% Make a results document

1033

1034 Results={N_particles ,N_particles_mobile ,N_particles_eventsfiltered ,meanD ,...

1035 BoundFraction ,BoundFraction_filtered ,activity_01 ,activity_12 ,

std_activity_all_events ,...

1036 activity_all_events_n ,activity_all12_events_n ,std_activity_all_events_n ,...

1037 tau_1_ub_f , 1/CI_68pct_SD_ub_f(1,2), 1/CI_68pct_SD_ub_f(2,2),...

1038 fraction_1_ub_f , CI_68pct_SD_ub_f(1,1), CI_68pct_SD_ub_f(2,1),...

1039 tau_2_ub_f , 1/CI_68pct_SD_ub_f(1,3), 1/CI_68pct_SD_ub_f(2,3),...

1040 fraction_2_ub_f ,1-CI_68pct_SD_ub_f(1,1),1-CI_68pct_SD_ub_f(2,1),...

1041 tau_1_b_f , 1/CI_68pct_SD_b_f(1,2), 1/CI_68pct_SD_b_f(2,2),...

1042 fraction_1_b_f , CI_68pct_SD_b_f(1,1), CI_68pct_SD_b_f(2,1),...

1043 tau_2_b_f , 1/CI_68pct_SD_b_f(1,3), 1/CI_68pct_SD_b_f(2,3),...

1044 fraction_2_b_f ,1-CI_68pct_SD_b_f(1,1),1-CI_68pct_SD_b_f(2,1)};

1045

1046 Results_names={'N_particles','N_particles_mobile','N_particles_eventsfiltered','

meanD',...

1047 'BoundFraction','BoundFraction_filtered','01_activity','12_activity','

std_activity_01_events','activity_01_events_n','activity_12_events_n','

std_activity_01_events_n',...

1048 'tau_1_ub_f', 'SD_t1_ub_lower', 'SD_t1__ub_upper',...

1049 'fraction_1_ub_f', 'SD_f1_ub_lower', 'SD_f1_ub_upper',...

1050 'tau_2_ub_f', 'SD_t2_ub_lower', 'SD_t2_ub_upper',...

1051 'fraction_2_ub_f','SD_f2_ub_lower','SD_f2_ub_upper',...

1052 'tau_1_bound_f', 'SD_t1_b_lower', 'SD_t1_b_upper',...

1053 'fraction_1_bound_f', 'SD_f1_b_lower', 'SD_f1_b_upper',...

1054 'tau_2_bound_f', 'SD_t2_b_lower', 'SD_t2_b_upper',...

1055 'fraction_2_bound_f','SD_f2_b_lower','SD_f2_b_upper'};

1056

1057 Results_table=cell2table(Results,'VariableNames',Results_names ,'RowNames',{

NameExtension});

1058 writetable(Results_table ,[NameExtension ,'_Results.xlsx'],'sheet',1,'WriteRowNames'

,1);

1059

1060 Settings={PixelSize ,FrameRate ,TotalFrames ,Time_seconds ,Unbound_threshold ,

Min_eventlength ,DiffmeanWindow ,maxdt,Events_fittype ,Sigma,Lifetimes_fittype};

1061 Settings_names={'PixelSize','FrameRate','TotalFrames','TimeSeconds','D_threshold','

Minimum_eventlength','WindowSize','maxdt','Events_fittype','sigma_cutoff','

Lifetimes_fittype'};

1062 Settings_table=cell2table(Settings ','RowNames',Settings_names);

1063 writetable(Settings_table ,[NameExtension ,'_Results.xlsx'],'sheet',2,'WriteRowNames'

,1);

1064
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1065 toc

TU/e 69


	Introduction
	Theoretical Background
	Experimental Setup
	Results PPC3-B27A3
	Agglomeration
	Discussion
	Summary
	Bibliography
	Appendix

