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Abstract

Digital twins (DT) and related concepts have recently received significant attention both in in-
dustry and academia. A DT can be seen as a pair of two entities, one physical and one virtual,
between which historical or real time data exchange takes place. The virtual entity is then able
to mimic its physical counterpart very closely, both visually and functionally. Using DTs it is
possible to gain a greater understanding of the entity in question, develop tools to better analyze
the process, and ease testing, to name a few.

Various sources propose that the ideal time to start developing a DT is during the prototyping
phase of a product. With DTs being a relatively new concept, quite often the physical counterpart
already exists. Given this context, a different approach may thus be necessary. In particular,
the reuse of existing artifacts that have been created over the years is of interest. These could
potentially reduce the time to realize the DT, and make the DT easier to maintain and use due
to the reuse of already applied technologies. Present research on DTs does not cover this specific
aspect of development, making it an interesting candidate for an engineering case study which
investigates the possible benefits that can be reaped from the reuse of artifacts.

The goal of this project is to take steps towards realizing a DT for Eindhoven University of
Technology’s robot soccer team Tech United’s soccer robots, most notably for the virtual entity.
Tech United’s soccer robot team is a well-supported project that has existed for over ten years.
This makes it an excellent candidate for exploring the advantages and disadvantages of reusing
artifacts from an existing project in creating a DT. The currently existing artifacts, such as 3D
CAD models, Matlab models and simulator, were utilized to aid in creating this DT. We have
underlined which techniques we applied in our creation process, how the artifacts have saved us
a significant amount of time, but also that they were not without issues. Lastly we have also
explored possible future applications and expansions in the context of robot soccer as well.
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Chapter 1

Introduction

This chapter will introduce the topic at hand and is structured as follows. First Section 1.1 will
describe the relevant context of the project. Then Section 1.2 will describe a conceptual definition
of a digital twin. Lastly in Section 1.3 the goal of this thesis project shall be described.

1.1 Project context

Tech United [2] is a multidisciplinary organization consisting of (former) students, PhD’s and
TU/e employees. One of the main parts of this group is a robot soccer team that they build,
maintain, and compete with. The so called Turtle robots [3] on this team observe the status of the
field, communicate with each other and execute strategies and tactics versus other soccer robot
teams in order to gain victory in a similar way to human soccer. As one can imagine, this is a
quite complex endeavour, with many people involved specialized in helping bring many different
systems and components together; the robot has to be built, the software has to be written, and,
after all, it also has to be maintained. In order to aid in completing this venture, the team has
created several tools. Most notably, besides the physical robot itself there are two more entities
which the software can run on, namely a 2D simulator and a rudimentary 3D simulator.

The simulators use the same Matlab models that drive the actual robots. They behave, work
together, and communicate just like the real robots. Furthermore the simulators also use the
same communication channels as the actual robots do. This allows the simulators to be a quite
auspicious tool for developing and maintaining the robots, that can work as a stand in when the
actual robot is not available.

While these simulators are a great help in testing the robot’s behaviour (both individually and
working together as a team), the user might still miss out on many of the intricacies of the system;
how are the robots and all their subsystems behaving in real time? How are they reacting to
their environment, and are there any possible issues with any of the components? Since the robot
is a quite complex machine, having just a simple sprite representing it means there is no visual
representation of feedback from the hardware subsystems’ current state. Furthermore if one wants
to take a look at certain components, the only way would be to take a look at (and possibly take
apart) the physical robot. Other more complex development work, testing, or analyzing the robot’s
behaviour would also require access to the physical robots, and go through a complete setup to
create for instance a mock-up game. More complex undertakings such as conducting predictive
maintenance, troubleshooting from afar, or testing the physical behaviour of new component
candidates would require new, separate simulations or models to be built. Ideally some solution
would be realized that can aid in the many aspects of developing, using, and improving the Turtle
robot, while making use of the artifacts that are already available. One form that this solution
can possibly take would be a Digital Twin (DT).

Towards Digital Twins for Soccer Robots: a use case in reusing artifacts 1



CHAPTER 1. INTRODUCTION

1.2 Definition of a Digital Twin

The concept of digital twins was first introduced by Grieves in 2002 [4]. In earlier stages this
concept was also known as the ”Mirrored Spaces Model” and the ”Information Mirroring Model”,
before settling on the name digital twin. The model of the digital twin according to Grieves’
definition is that every system is not an entity by itself, but actually a pairing between two
systems; a physical version and a virtual version. The physical version, e.g. an assembly machine,
would operate in the real space. Its digital counterpart operates on the same principles in virtual
space [5].

Tao et al. [1] expands on this and defines a digital twin as a 5 dimensional system consisting
of a physical entity (the robot in this case), a virtual entity (which mimics the robot), services for
both the physical and virtual entities (such as a monitoring service, energy consumption service,
calibration service), data that gets exchanged between the digital twin parts, and connections
between all of these entities.

One of the first notable applications of digital twins is that by NASA and the US Air Force [6].
The usage of the digital twin in that use case is described as the integration of a high fidelity
simulation with subsystems such as health management and the (historic) data for their vehicles.
The digital twin was capable of going through all events that its physical counterpart was capable
of as well. This would allow for more extensive and effective development, while saving resources
that are normally spent on i.e. physical testing. Once the physical side of the system is deployed,
the digital twin would continue to provide benefit by allowing continuous monitoring, supervision,
and optimizing.

This provides a beneficial approach to how the data flow works in a DT. In a DT the computa-
tions on the virtual side of the DT can lead to an adjustment of the physical side of the DT. This
can happen automatically, such as through the adjustment of operating parameters, or manually,
by e.g. adding an extra sensor based on the found results.

Physical Entity (PE)

CN_VS

CN_PV

Virtual Entity (VE)

CN_PDCN_VD

Data (DD)

CN_PS
CN_SD

Services (Ss)

Figure 1.1: Illustration of the 5D DT taken
from [1]

Some sources also provide a concept sim-
ilar to the DT that is less strict in it’s require-
ments, namely the Digital Shadow (DS). The
main difference between a digital twin and a
digital shadow is that in a DT there are con-
nections back and forth between the DT and
the physical real life system [7]. A change in
state in either the physical object or the digital
object would lead to a change in the other ob-
ject as well. For a digital shadow this is not
the case. In a DS data is fed in a one-way flow,
where a change in the physical object will lead
to a change in the digital object, but not vice
versa.

In the high tech systems sector, use cases
can be found in the fields of automation [8] and
manufacturing applications [9]. For example,
Vijayakumar et al. [10] presents an industry application of digital twins. This paper proposes a
digital twin approach for a manufacturing facility. The ease of simulation that a digital twin offers
compared to the more traditional approaches allows for more effective and more time efficient
ways of simulating the facility’s operations. This can be used to find out e.g. ideal facility layout
and forklift management. Furthermore a digital twin is more resilient to the many changes that
the system often has to go through.

However, the benefits experienced here are of possible relevance to a soccer robot as well: since
a digital twin would allow the users to simulate and virtually take apart the robot from their
own computer without needing access to the actual robot, it could help greatly in developing and
maintaining the robot [11], especially when working with multiple people at the same time. Fur-
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CHAPTER 1. INTRODUCTION

thermore, the robots can be used to simulate full games in a life-like environment [12], supported
by visual feedback, replays that allow for free camera movement, and automated data gathering
and analysis. Even from the comfort of their own home one would then be able to set up experi-
ments, gauge the team’s performance, fine tune and analyze the tactics and strategy without the
need for a single physical Turtle robot.

However, this might pose the next question: how does this notion of digital twins differ from
simulations and models. Wright et al. [13] describes the threat to the potential of this technology
stemming from confusion in its definition. With different interpretations among the wide range
of applications, the concept may just be seen as the latest hype or buzzword. Wright defines that
”a digital twin without a physical twin is a model”. To give an analogy for this requirement;
biological twins are created at the same time, look the same at that moment and (to trivialize it
here), grow up and change simultaneously as well. Digital twins should adhere to this principle
too. As a result of this it would be implied that the concept only starts to play a part from the
prototyping stage: use the test data from the prototype to update the parameters in the model
of the prototype, use the updated model to e.g. predict performance, and then update the design
based on the outcome. While the model used in a digital twin would ideally be as accurate as
needed for the intended purpose(s), this may not always be feasible. Processes like physics calcu-
lations may prove to be too computationally intense. As a summary, Wright notes that a model
used in a digital twin is:

• sufficiently physics-based that updating parameters within the model based on measurement
data is a meaningful thing to do,

• sufficiently accurate that the updated parameter values will be useful for the application of
interest, and,

• sufficiently quick to run that decisions about the application can be made within the required
timescale.

These three criteria allude to three aspects that are of importance for a DT. Notice by the abundant
presence of the term ’sufficiently’ here that these aspects tend to differ quite a bit on a case by case
basis. The existence of a model and its properties that influence these three criteria heavily impact
the possible applications of a digital twin for that system. What the digital twin will eventually
be used for may affect the significance of each of these point as well. For example, with a highly
physics-based model use case that tests a system’s safety, accuracy may be of greater importance
than performance. Krasikov et al. [14] provides a comparison between traditional simulations and
digital twins as well. Here it is mentioned that simulations are mostly used in the early stage of
the lifecycle, try to emulate what may happen, and only analyze the processes inside the model.
digital twins on the other hand follow the entity through its lifecycle, know what is going on in the
exact moment, and know of all processes inside the model and interactions between the physical
and digital counterparts.

Compared to a simulation, a DT can best be seen as a more encompassing digital recreation
of the system as a whole. All parts of the system and the environment in which it operates
are included. A simulation is a more specific digital representation of (a part of) the system, to
investigate a predefined goal (for example, the amount of water pressure a fluid system setup can
take). A DT on the other hand is more of a platform, upon which many things can tested, changed
and new applications like remote troubleshooting and predictive maintenance applied. DTs are
thus also capable of being used for simulations, but have functionalities reaching beyond this as
well.

For the remainder of this report, we shall adhere to Tao et al.’s 5D definition of a DT, and
refer back to it multiple times when we describe the creation process of our DT.
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1.3 Project objectives & Research questions

The objective of this master thesis project is to investigate the reuse of existing artifacts in the
context of DT development, especially in regards to the DT’s virtual entity component. We will
do this through a use case where we apply the concept of DT to the earlier described Tech United
turtle soccer robots. During this process we will document our experiences in creating a DT for
a well established project. Of interest will be what artifacts we can reuse, what work is necessary
to make them usable, and what benefit the reuse brings us compared to creating assets from
scratch. In the context of this specific use case, we will also explore some of the possible (future)
applications that our DT can be used for, such that our work will also be of benefit to the turtle
soccer robot project.

While we shall focus this project on the development of a DT, the great amount of time that
this actually requires, and the pandemic limitations that we are faced with during the entirety
of this thesis, might not make this attainable. In this case, we shall at least aim to achieve the
digital shadow that we described in Section 1.2. Since the definitions of a DT and DS lie so closely
together, their development can follow the same process, and any findings we would thus find
along the way are relevant for either definition. To this end we will refer to just a DT from here
on out. We will come back to the specifics of what we have created later when reflect back on our
results.
To now concretize the goals of this project, the following research questions have been formulated:

• RQ1: What are the requirements for the virtual entity of a digital twin for turtle soccer
robots?

• RQ2: What currently existing artifacts can be used in creating the virtual entity of the
digital twin?

• RQ3: What tools and methods can we apply to create the virtual entity of a digital twin
for the turtle soccer robot?

• RQ4: What discrepancies between the virtual and physical entities are of significance in a
digital twin for the turtle soccer robots, and how can they be negated if necessary?

• RQ5: Given the available artifacts, what findings and functionalities can be realized using
the digital twin?

We address RQ1 by defining the definition of DTs in Chapter 1 and by looking at some other
applications of DTs in Chapter 2. Next we answer RQ2 in Chapter 3 by examining the current
state of the turtle soccer robots and what artifacts are available to us. RQ3 we answer in Chapter 4,
where we go over the approaches and methods that are possible to create our DT. After this
we touch on RQ4 in. Lastly RQ5 will be answered by Chapter 5, where we will showcase the
new findings and functionalities that we realized. We will return to these research questions
in Chapter 6 and formulate concrete answers for them.
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Chapter 2

Related work

In this chapter the literature and previous work regarding digital twins and their history will be
reviewed. In Section 2.1 we will take a look at some of the previous use cases of DTs. Then
in Section 2.2 we describe several of the advantages that a digital twin offers.

2.1 Use cases of Digital Twins

Having observed some of the digital twin concept in Chapter 1, we shall delve into some further
work in this field here. Kuts et al. [15] presents work in which a digital twin of a robot arm was
created. The CAD models created during the original development of the arm were used as a
baseline to create a rigged model. This makes movement in a Digital Environment (in this case
that of Unity3D) possible. Scripts for controlling the robot arm were added, as well as a virtual
reality toolkit to allow users to observe and interact with the digital twin in VR. Using the digital
twin the system can be more easily demonstrated or used for educational purposes. The robot
arm contains a collision detection system used to prevent the robot from colliding in operation
with unintended objects. This system is essential for the safe operation of the robot arm. Since
the digital twin provides a high fidelity simulation of the physical device in a virtual space, this
system can be tested without any material or personal risk. As long as the digital environment
and 3D model are made to closely resemble the physical counterpart, a verification of correctness
of the collision prevention system in the digital environment would translate to it working in the
real world as well. Another advantage of the digital twin here is the capability of overriding the
control of the arm from the real world. This means that it is possible to adjust the arm manually
or change its behaviour without having any downtime on the production line. The real world
counterpart of the arm can then just keep operating as usual.

Savolainen et al. [16] gives another example. Here a digital twin of a mine environment is
created. The big advantage of this digital twin is the ability to simulate aspects of the environ-
ment in digital space that would be hard and costly to do in real time. Using simulation, different
system configurations for the mine can be tested to find the most cost efficient setup with the
greatest relative throughput, and long term implications can be analysed to figure out the ideal
maintenance intervals.

A more elaborate account of the technical side is given by Ait-Alla et al. [17]. In this public-
ation the connection between the physical and digital parts are explored. If one wishes to feed
information from the real world to the virtual, there needs to be some connection. This connection
can be fed with information using sensors. There is a balance in applying this however: too many
sensors and there will be too much communication traffic; too few sensors and the data is not
accurate enough. The experiment showcases that there is often not a clear-cut answer. Instead
this should be tested on a case by case basis. This could be a prelude to the fact that while digital
twins may save work in some areas, it can also create more overhead in new ones.

The usage of digital twins could also allow for the usage or integration of new, state of the art
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technologies as well that previously might not have been envisioned: Matulis et al. [8] provides
a use case in which another digital twin was made for a robotic arm. In this case however, the
digital twin was used for the training of the operation of the robot arm by means of reinforcement
learning. Since the digital twin offers a close to 1 to 1 representation of an actual physical robot
arm, it would be possible to train a model to operate the robot arm, and then to apply this
model to an actual physical robot arm. Since reinforcement learning requires many iterations to
go through, digital twins are especially suited: instead of using a physical robot for this, with all
the strain and operational costs that come with that, the digital counterpart can be used instead.
Frequently 3D (CAD) models are already created during the design phase, which can be used to
create the digital twin.

As observed from these previous examples, the integration of digital twins in the so called
industry of the future, also known as Industry 4.0 [18], seems like a common context in which
the digital twin sees use. Industry 4.0, also known as the Fourth Industrial Revolution, pertains
to the increased automation in many areas of manufacturing and industry. With this comes the
integration of smart technologies and IoT in traditional practices. Negri et al. [19] provides a
review of the role of the digital twin in relation to Cyber Physical Systems, specifically in that of
Industry 4.0. Indeed here many of the papers support the importance of the digital twin concept
for this field. Yang et al. [20] argues how in Industry 4.0 one would need to be able to deal with
the customization that products are nowadays expected, requiring a great deal of flexibility and
adaptability. With technologies such as increased automation, IoT and cyber-physical systems,
digital twins offer a way to deal with these aspects in manufacturing.

Aside from specific applications that can be developed using a DT, the high fidelity visualiz-
ation that comes with a DT is a benefit in itself. A DT of the city of Zurich for example is not
only used to model noise and air pollution, but also visualize architectural designs [21].

2.2 Advantages of a Digital Twin

We have seen some of the use cases of DTs now, and observed several of the benefits that were
achieved. We argue that there the concept of DT provides several advantages that make it a
worthwhile endevour to explore further and apply in the field. The work by Tao et al. [1] that was
mentioned previously already speaks of several advantages that DTs can bring. These are:

• Increased understanding. Since it is a requirement of digital twins to have a high-fidelity
model that is kept up to date with the physical counterpart, benefits can be reaped from
this alone. A good 3D model will provide more immersion, overview and visibility of the
object.

• Reduced time to market. A DT can provide developers of a product hands on insights
about the product before it is fully completed. This can already root out possible failures
that might have otherwise only been discovered post launch. Tying in with the previous
point, the DT also gives a highly accurate visual representation of the product from which
insights can be gained as well. This all can help in reducing the amount of iterations the
design has to go through before the final release takes place.

• Optimal operation. As a DT offers a possibility for the system to be analyzed in different
conditions in real-time, optimizations can be made in time to ensure everything works as
intended.

• Reducing energy consumption. A DT allows the discovery of degraded components to
be discovered earlier and replaced. Tests can also point out processes that can be started or
stopped at set times to save energy.

• Reducing maintenance cost. Data generated by a DT can be used to predict lifetimes of
components and possible future failures. Maintenance events can be planned at optimized
times to mitigate possible issues from happening up. Predictive maintenance can be done
to prevent critical failure or increased costs due to wear on more components.

6 Towards Digital Twins for Soccer Robots: a use case in reusing artifacts



CHAPTER 2. RELATED WORK

• Increasing user engagement. Since users can interact with a high fidelity virtual model
of the product before it is finalized, hands on experience and feedback can be acquired early.
This allows adjustments to the design be made before they are fully realized in real life,
leading to a better product at launch.

• Fusing information technologies. Since a DT provides a fully digitized counterpart to
a physical system, digital information technologies can be more easily applied. Machine
learning, (physics) simulations, modeling, cloud computing, big data integration, and IoT
are just some of the possibilities that can be applied to improve the product, analyze it, or
even add new functionality altogether.

Qiao et al. [22] provides a supporting sentiment in a setting of machining tool condition prediction.
They state that the advantages of a DT include the ability to process and incorporate data from
different sources and monitor the real working conditions, aid in design by providing a feedback
mechanism, more precise localization, improved continuity and naturally a beneficial visualization.
Beyond these sources we argue that other possible benefits of DTs could include a simplification
of interaction with the physical object, the ability to work with the system when the real world
counterpart is not (easily) available, and the possibility of extending the DT’s function more easily
compared to other methods.
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Chapter 3

Background

Here we will describe the current situation of Tech United and their Turtle soccer robot team.
First in Section 3.1 we will give a brief overview of the setup of the robt soccer competition. Next
in Section 3.2 we describe the main components of the Turtle robots and their modus operandi.
After this in Section 3.3 we describe the current main way of analysing and testing the robots
digitally using the simulator. Lastly in Section 3.4 we show and describe the existing 3D models
of the Turtle robots. The information in this chapter comes from information published by Tech
United [23] and from contact with them.

3.1 Robot soccer

In robot soccer, teams compete against each other using their own team of robotic players. Like in
standard human soccer, the way to win is quite straightforward; the team that gets the most goals
by the end of the match wins. The tournaments in which teams similar to Tech United compete
with each other are organized by the RoboCup Federation [24]. This organization, established in
1997, had the original goal of creating a robot soccer team capable of competing with the human
soccer World Cup champions by 2050. Since then it has evolved into an overarching institution for
several robot competitions around the world. This makes the tournaments not only a spectator
sport and competitive international endeavor, but also a field in which new robotic technologies
may be invented and tried.

Within the field of robot soccer several divisions exist, just like in human soccer. In there
RoboCup, there is the Simulation League, which is a league in which only virtual robots parti-
cipate. Next are the Small Size League and the Middle Size League, which allow teams to create
their own robots as long as they hold themselves to certain requirements, most specifically with
regards to weight and size. The Standard Platform League forces all teams to play with the same
robot hardware. The emphasis in this league is thus fully on the software side. Finally in the
Humanoid League team compete with robots that resemble actual human autonomy. Tech Turtle
robots currently participate in the Middle Size League.

Similarly to human soccer organization FIFA, RoboCup also sets rules that the robots have
to follow. These are inspired by human soccer rules as well. For the Middle Size League, these
are some of the most important rules: players are not allowed to exert severe physical trauma to
each other, the goalie is the only player with different rules, and in case of violations free kicks
and penalties may be applied. These are then naturally adjusted for them to make sense in the
context of robots instead of humans. For example, the robots may not be allowed to have some
central server do all the processing for them, or have a top down camera provide them visual
information. Instead, each robot should have their own processor and vision apparatuses, similar
to real human players.
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3.2 The Turtle robots

The Turtle robots themselves consist of several subsystems that work together to create a coherent
team. Each robot has a body containing an arrangement of modules that work together to provide
the robot with sight, movement, and decision making. Cameras provide vision the robot. Special
wheels provide mobility and agility. A CPU and GPU provide the computing power to the robot
to handle this information. The robots talk to each other as well to combine their perceived
environment. By sharing their data, strategies and tactics are chosen and executed. A portrait of
one of the robots can be seen in Figure 3.1. Some of these systems of note will be detailed here.

Figure 3.1: Portrait of the current Turtle robot

3.2.1 Motion

For the robots to perform at a competitive level, there are several factors of importance with
regards to mobility; the robots should be able to accelerate quickly, move fast, and rotate rapidly.
A standard wheeled system (like on a car) is the simplest approach, but has shortcomings. The
robot would have to slow down significantly during turns. Turns would also require extra space
to maneuver due to the turning circle. Furthermore turning on the spot would not be possible,
while it can aid greatly in positioning to receive or shoot the ball.

To this end an alternative mobility system was applied. This system comes in the form of
the omni-wheels. Omni-wheels are wheels which house within them smaller wheels that move
perpendicular to the direction of travel. The advantage of this movement method is that the
robot is able to move in a certain direction at speed while still being capable of rotating itself 360
degrees without interruption, something that is not possible with an e.g. tracked system. For the
robots this offers a significant advantage, as they can advance to a certain position, while at the

Towards Digital Twins for Soccer Robots: a use case in reusing artifacts 9



CHAPTER 3. BACKGROUND

same time orienting themselves to be able to receive a ball that is passed to them. A close up of
the omni-wheels can be seen in Figure 3.2.

Figure 3.2: Close up of the omni-wheels used on the Turtle robots

3.2.2 Vision

In order to play the game, it is vital that each robot is able to clearly see the field, its team-
mates, the opponents, and the ball. To achieve this, each robot has access to two pieces of
hardware; a so called ‘OmniVision’-camera up top, and a Kinect on the front. The OmiVi-
sion camera functions by aiming a camera orthogonally to a convex mirror housed above it.

Figure 3.3: Close up of the Omnivision camera
and its parabolic mirror

This provides the camera with a curved per-
spective (fish eye) view of the area around it,
reaching up to about 6 meters away. The ro-
bot is still capable of knowing what lies bey-
ond this range however, as will be described
in Section 3.2.3. While the OmniVision might
provide vision of the robot’s surroundings, in
the end it is still just a single camera. As a res-
ult of this the depth perception of the robot is
rather limited using only this visual input, as is
evident in nature too due to the disadvantages
of monocular vision [25]. It also faces prob-
lems in detecting action that happens above
80 centimeters from the ground, due to the
mirror placement. For this reason the robots
are also equipped with a Kinect camera on the
front. The Microsoft Kinect 2 was originally

developed for the Xbox console, capable of detecting people and movement for usage in e.g. dan-
cing games. This makes the Kinect a suitable and affordable piece of hardware to compensate for
the shortcomings of the OmniVision camera [26].
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3.2.3 World model

Figure 3.4: Close up of the front facing Kinect
camera

Each of the robots combines the visual inform-
ation gathered by the aforementioned systems
to create their view of the field. However, even
with these two cameras per robot this is still a
rather limited amount of information. Unlike
a human soccer player, the robots naturally do
not possess a sense of intuition of where entities
outside of its field of view may be, or what they
are doing. As mentioned earlier, the parabolic
mirror sees up to about 6 meters away, and the
Kinect camera only sees things in front of the
robot. In order to remedy this, each of the ro-
bots share their visual information with each
other. All this information together each ro-
bot then uses to create itself a World Model.
The world model is a map of the whole soccer
pitch, containing the robot itself, positions of the robots, the number of other robots in the game,
the ball and the goals. The robot is equipped with a compass that it can then use to determine
which side of the pitch belongs to which team. A computer that is connected to all of the robots
keeps track of each of the world models to monitor their reliability.

3.2.4 Strategy

With the robots being able to create their view of the world and share it with each other, they
are now capable of acting upon it. This is done using the Strategy system. The strategy system
contains the Defcon module, which takes all observed data into account and interprets them.
These observations can include conditions such as who has possession of the ball, which side of
the field the robots are on, and how teammates are positioned relative to opponents. These are all
combined to create a plan of attack (or defense). The execution of strategies starts by assigning
roles to the robots. They can be attackers, defenders, or goal keepers. Unlike in real life football
where each player has a set role, in robot soccer this can be dynamic. The team then executes
strategies according to the Skills, Tactics and Plays (STP) architecture [27]. Each robot is capable
of a set of skills, which consist out of basic actions such as moving, shooting and intercepting.
These skills are then used to execute tactics. Tactics include things such as defending a certain
opponent, attacking with the ball, or passing to a teammate. Plays are the strategies that robots
will collectively employ in order to score a goal. A preset playbook with strategies is known to
the robots. The robots all vote on a strategy based on their perception of the game state. Once
a strategy is chosen, roles are assigned and everyone tries to execute their set of tactics with the
right timing, with hopefully a goal as a result.

3.2.5 Communication

Communication exists between several different entities of the turtle robot project. Firstly there
is a communication channel between the robots themselves. This is used mainly to create the
earlier described world model, where the robots exchange visual information with each other.
Furthermore there is also communication with a controlling computer. To do this Tech United
has a service called the Turtle Remote Control, or TRC in short. The TRC is capable of basic
commands such as starting and stopping the robots, ordering a substitution, penalties and free
kicks, and assigning a team to each robot. The rules forbid the computer to do any work or direct
control of the robots during play, with the exception of earlier mentioned interactions and the
referee commands as described in Section 3.2.6.

The main framework that lies beneath all of this communication is a Real-Time Database
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(RTDB) system designed by another robot soccer team, team CAMBADA [28]. This system,
based on the concept of shared memory, was made publicly available by CAMBADA, and has
since been used by many other teams, Tech United included. The advantage of this approach is
that many of the subsystems can exchange data with each other, without knowing exactly what
is on the other end. Effectively many of the subsystems are black boxes for each other, that just
plainly receive and send data back and forth. This makes adding new subsystems quite easy, and
adjustments can be made to a subsystem with less likelihood of breaking the system as a whole.

3.2.6 Refbox

Just like in real life soccer, the players in robot football may commit fouls or other actions that
require the intervention of a referee to solve. To do this, the robots can be instructed by a referee
application, the so called Refbox. The Refbox is capable of ordering the robots to robots to
start or stop a match, or penalize a certain team by giving their opponents a free kick. The
Refbox application is an official program used by Robocup. All robots that participate in their
tournaments should be able to interpret the commands given by the Refbox, such that they can
all be arbitrated during actual matches. Tech United has implemented support for the Refbox in
their TRC application, such that they can issue referee commands during practice runs as well.
An excerpt of this can be seen in Figure 3.5.

Figure 3.5: The Refbox integrated in the TRC

During actual tournaments, both teams in play are connected to an implementation of the
Refbox as shown in Figure 3.6. Both teams can then receive commands from the referee behind a
single computer.

Figure 3.6: The Refbox in use in a tournament match
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3.3 Simulator

To aid in testing the robot software and any changes in it, Tech United has created a simulator.
This simulator is capable of simulating matches using the team’s current software models, allowing
the robots to play against each other as well. Two types of visualizations exists for this simulator;
a 2D top down simulator, and a rudimentary 3D simulator. First the 2D simulator shall be
described, after which the same will be done for the 3D simulator.

3.3.1 2D simulator

Figure 3.7: Tech United’s 2D simulator, using a
top down view and simple sprites

The 2D simulator is the main tool that the
team uses to virtually test their robots. Up
to six robots may be enabled in this simulator.
These robots can be set to be part of one of
two teams; team cyan or team magenta. Sev-
eral team composition templates exist in the
simulator as well to ease setup. If the com-
mand to start the robots is then given, they
will start to simulate a match. It is possible
to influence the game during play as well, such
as by moving the ball or by placing obstacles
in the field. The simulator uses a quite simpli-
fied representation of the real world, as there is
naturally no Z axis involved, nor do the robots
have to detect objects around themselves in a
3D space. Nevertheless, the simulator provides the team with a way of testing their changes using
a quite fast to set up tool. The 2D simulator can be seen in Figure 3.7.

3.3.2 3D simulator

Figure 3.8: Tech United’s 3D simulator, using a
flying camera and rudimentary shapes

Functionality wise the 3D simulator is very
similar to the 2D one. The most obvious differ-
ence is the extra dimension. A user is now able
to look around using the camera as the sim-
ulations runs as well. The robots, obstacles,
field, pitch and goals are now represented with
simple 3D sprites. It is also possible to toggle
some extra visual indicators, such as where a
selected robot is aiming its shot at. From a
visual perspective, the 3D simulator is a fair bit
more informative than its 2D counterpart. In
practice however, the 3D simulator is not used
nearly as much as the 2D simulator by Tech
United when testing their turtle software. This
is due to the 3D simulator not adding much in

relevant functionality compared to the 2D simulator. When using the simulators Tech United is
often only looking to see behavioural differences that their software changes caused. For this the
faster to set up 2D simulator usually suffices. Furthermore the performance of the 3D simulator
is noticeably worse than the 2D simulator, making it even less suitable for quick usage. The 3D
simulator is visible in Figure 3.8.
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3.4 3D model

Figure 3.9: Provided CAD model of the Turtle
soccer robot in Blender

Lastly an important component in the devel-
opment and upkeep of the Turtle soccer robots
is their usage of 3D models. These have been
specifically created for the construction of the
robot, as many of the parts have to be indi-
vidually created. These models are rather ac-
curate, as some parts have been directly ma-
chined from these 3D models. Having a to scale
3D model of the subject in question already
available is quite advantageous, as a high fi-
delity 3D model is necessary for realizing a
proper DT. However, there are a few issues
with the provided 3D model. Firstly, it is not
completely up to date anymore. Several of the
components that appear in the 3D model are
differing from how they actually are in reality.
The protective case is missing, some electronic
components are different, and the movement
system has been changed as well, which will be
further detailed in Section 5.6.1.2 will show
an example of this. Secondly the CAD model
was originally not made with usage in a real-
time lighting environment in mind. Due to this
there are a rather large number of faces used in the model. Using it as is would lead to significant
performance degradation solely based on the high rendering impact. Lastly there were are a few
minor points in importing the model into Blender, which shall be mentioned in Section 5.6.1.
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Chapter 4

Elements of a Turtle Digital Twin

In this chapter we set about determining the elements that should make up our DT. In Section 4.1
we consider Tao et al.’s 5D DT again, to establish what is required to complete our DT. In the
sections following this we will look at each of the 5D DT components in detail, going over the
aspects of each of those components that are important to keep in mind as we create our DT. In
particular in Section 4.3, which covers the virtual entity, we will go in depth. Here we discuss the
models that are of interest for our use case, and also explore the possible methods that we can
apply to go about creating the VE.

4.1 Requirements

Before we can define what techniques and methods are needed to create our DT, we first have to
establish what is required, what is already available, and what our final result should adhere to.
In Section 1.2 we have described the possible definitions for DTs, focusing on Tao et al.’s 5D DT
(as depicted in Figure 1.1), and in Section 2.1 we have seen some of the use cases. Tao et al.’s
5D DT definition provides us with a framework that we can use not only as a starting point for
determining what work we have to do, but also to verify that when we have completed this work
that we have created a working DT.

We will now dissect these requirements following Tao et al.’s 5D DT. Notice that we will put
the biggest emphasis on the virtual entity, as this is where the majority of the work will need to
be done, something that we will observe in more detail in Chapter 5:

• Physical entity: the part of the system as a whole that exists in the physical space, consisting
of all the subsystems, their actuators and sensors. These subsystems collectively perform a
set of tasks, of which the sensors then record data.

• Virtual entity: the various models that virtually replicate the physical counterpart of the
system. Tao et al. distinguishes models as being geometrical, physics, behavioral, or rule
models [1]. The required degree of fidelity of the virtual entity and how accurately it mimics
its physical counterpart will depend on the purposes of the DT. We wish to either reuse the
existing models from Tech United, re-purpose them for our own goals, or create them from
scratch, if necessary.

• Services: interfaces and abstractions that can interact with and monitor the physical and
virtual entities. Either already existing services need to be reused or new ones created to
use in the DT.

• Data: information that gets generated and exchanged between the two entities and the
services. The DT needs access to this data to act upon and generate results. If Tech United
already has historic data or means of collecting real-time data for the robots available, then
we may be able to use this data in our DT as well. Otherwise, we need to make changes
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such that this is possible, which may include changes to the hardware (by adding sensors to
the robot) and software (making software changes to record the data from these sensors, or
in case of the simulator, expose data endpoints to give access to this data).

• Connections: the connections that connect all components of the 5D DT and move data
between them. Most notably, we need connections to communicate data between our physical
entity and the virtual entity for our DT to function, and for the services such that we can
monitor our DT and handle input.

4.2 Physical entity

The physical entity for a DT needs to be mature enough that it can at minimum be taken into
basic operation. We observed this in the literature in Section 1.2 as well, where it was argued that
at least a working prototype of the physical entity needs to exist. This ensures that it is capable
of generating data that is needed for our DT. The DT would not be of much interest, nor would
it be possible to reliably determine its correctness, without realistic data from the physical entity.
If a physical entity is not available, then a simulator or virtual prototype can substitute for the
physical entity, given that it is an accurate enough representation of the real physical entity for
the desired end goals of the envisioned DT.

In order for data to be available to us, it may be required to make some modifications to the
physical entity. For example, sensors might need to be attached to the physical entity to provide
telemetry data of the system in operation. We also have to determine what data we want to
gather, what accuracy would be required, and what the update rate of the data would need to be.

4.3 Virtual entity

To model a virtual entity that forms a counterpart to our physical entity, it is first essential to
explore some of the properties that it could posses. At the core of the virtual entity lies its ability
to mimic the physical entity. But to what extent and in what form varies greatly on a case by case
basis. A combination of the various different models mentioned earlier together make the virtual
entity of a specific DT. The desired purpose of the DT and the context of the system in question
should be leading in the design of these models. In our use case for example, geometrical models
can aid in visualizing the robot remotely and in designing the robot, physics models can help in
testing new components, and behaviour models allow the robots strategies to be analyzed.

In order to realize these models, most notably the geometrical and physics ones, we can create
a 3D model. A high fidelity 3D model can be used to help visualize the robot, express behaviour,
and test the physics of parts of the robots virtually. Using a 3D model we may not only reuse any
already existing 3D models of the Turtle soccer robots, but also provide a good visualization for
the DT as well. To this end we shall cover the aspects important to a 3D model in Section 4.3.1,
where we describe the possible methods, tools and techniques that can be used.

With a 3D model, we also need to be able to render it, interact with it, and for it to be able
to interact with other objects in its surrounding as well. Integrated physics tools would also be
of great benefit, as this would save us the effort of programming this from scratch. An answer to
these needs that can round out our virtual entity is a digital environment. A digital environment
is a piece of software that handle these requirements: it is capable of rendering 3D models placed
in a scene, provide tools and interfaces to attach scripts to them, and offers support for physics.
Using digital environments that are popular also means that a large amount of reference material,
extra software packages are available to us, and support can be sought out from others that have
done similar projects using that digital environment. In Section 4.3.2 we will be taking a look at
a selection of programs available to us.
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4.3.1 3D model

This subsection will describe the steps required to create a 3D model for the digital twin. In order
to create a high fidelity digital twin in a 3D environment, naturally 3D models are required as
well.

4.3.1.1 High poly model

In order to produce a high-fidelity model it is desirable to capture as many details as possible of
the physical entity in its digital counterpart. However, there is also the computational impact to
take into account. The decision making and computations will all take place on a single machine
when using the simulator. In our use case multiple robots have to be visualized at the same time
as well. Therefore the rendering impact can start to be quite significant if care is not taken during
the modeling phase. Given this polygonal budget, a high poly to low poly workflow can offer a
solution [29]. The idea behind the high poly to low poly workflow is as follows:

1. A high resolution (high poly) model is created that is as detailed as possible, generally
without much regard to the number of polygons.

2. Next a lightweight (low poly) model is created of the same entity, that in essence encapsulates
the high poly model.

3. The high poly model can then be baked into a normal map that is then applied to the low
poly model. In texture baking rays are cast through the low poly model inwards towards the
high poly model [30]. These rays are cast along the normals of the encapsulating low poly
model, the normals being lines perpendicular to the surface of the faces. The collision that
follows from this ray with the surface of the high poly model gets recorded in a normal map.
A normal map is an implementation of a bump map: a 2D image texture that adds surface
details to objects. This way the illusion of details from the high poly model can be created
on the low poly model while inducing little to no extra computational strain. Figure 4.1
provides an illustration of how this process works.

This workflow will be further explained and exemplified in Section 5.6.1.2, where we apply it our
own use case.

Figure 4.1: Representation of high to low poly baking
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In the case of the Turtle robot, CAD files were provided by Tech United that functioned as a
baseline high poly model. The CAD model was not fully up to date however, so some adjustments
were necessary solely to bring it up to date already.

While the visual details of our high poly model might not be that important to realize our DT,
it is still reasonable to take this approach. For one the CAD models tend to be high poly anyway,
so a low poly has to be made regardless. Taking this free detail from the CAD model over to
the final lower poly mesh is only beneficial to the visualization. Baking certain aspects in instead
of modeling them will also save on the polygonal budget, even if one were to create a low poly
model. Figure 4.2 shows an example of this process being applied to a part of the Turtle robot.

(a) High poly (b) Low poly (c) Low poly with high baked in

Figure 4.2: Showcasing the application of the high to low poly workflow on a component of the
Turtle robot

4.3.1.2 Low poly model

To create a low poly model for use in the high poly to low poly workflow, several approaches
exist. The first method is available when non-destructive methods were used, such as modifiers,
to create more detail on the high poly model. Modifiers are built in operations that are often
found in 3D modeling software. These allow for the mirroring, deformation, and increasing the
resolution of an object by using them. These modifiers sit on a stack that can be moved around
to change the order in which they are used, and can be disabled and enabled at will as well. The
most important modifiers in 3D modeling software related to high and low poly modeling are
the subdivision surface modifier, which divides every face into several subfaces, and the mirror
modifier, which mirrors the faces along one or more axis or mirror points.

Since modifiers can be added and removed as desired, a low poly model can be made from a
high poly model using this method: Copy the high poly model and remove or disable the modifiers
that increase the resolution, and clean up any non essential edges if necessary. In Blender, the
most common modifier to create a higher resolution object is the subdivision surface modifier,
which divides all the faces of the model into a number of subfaces.

(a) Object without a subdivision surface modifier (b) Object with a subdivision surface modifier

Figure 4.3: The result of using a subdivision surface modifier on an octogonal prism object
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The second method is largely the same but applies if a non-destructive method is not applic-
able. This happens if no modifiers were used, or they were applied already (either manually or
automatically, as is the case when exporting). With applying, we refer to the actual destructive
action here of permanently adding the modifier’s changes to the model, after which the modifier
is removed from the stack. In this case a copy of the high poly mesh can be made, after which
edges and vertices are manually dissolved or deleted to simplify the object.

A third method is a quite common one as well; rebuilding the model but with fewer polygons
and simple shapes. This allows for a great degree of accuracy and control over the number of
polygons. A challenge with this approach is replicating complex or smooth objects.

The last way is the fastest but generally least successful. Similarly to modifiers that increase
the resolution of an object, modifiers that decrease it exist as well. Such ”decimate” methods
reduce the number of polygons on an object while trying to maintain the original shape. This
often leads to suboptimal results and bad topology though. In reality a combination of the afore-
mentioned methods is often used. The choice of method depends on what is more apt for the
subobject that is being worked on.

4.3.1.3 UV mapping

In order for a model to be textured, it first need to be UV mapped. This process consists of
dissecting a 3D model into a 2D shape. The ”U” and ”V” in the term come from the axes of
the 2D image texture (”X”, ”Y” and ”Z” are already used to denote the axis of the 3D object
in 3D space). See Figure 4.4 for a visual example. Here several approaches are available as well [31].

Figure 4.4: Dissecting a 3D object into a 2D shape.

A common method is to use seams. Here edges are marked as seams, by which the modeling
program will then split the edge apart. By adding enough seams to the model, the 3D object can
be flattened out.

Another popular method is to project from view. Faces can be selected, looked at from certain
(orthogonal) angles, and then projected onto the UV map. This is repeated for all faces from
different directions, such that all are visible on the map. The downside of this method is that it
does not work well for shapes that do not line up with perspective views (front, side, top etc.)
properly, such as curved surfaces.

The last common method is by doing smart UV projection. In this case the modeling software
is instructed to compute a UV unwrapping, based on some passed parameters. This is by far the
fastest method, but does create a lot of seams in many places of the model, and makes the UV
map hard to oversee. The first point is problematic because the texturing will leave visible edges
around the seams. This is especially true for textures where alignment is clear to see, such as with
stripes or lettering. The second point is mostly of concern when texturing in 2D as well. With 3D
texturing software this is not as much of an issue.
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Due to the complexity of the turtle robot and the many components that make up the 3D
model, choices have to be made with which methods are applied. Doing everything using seams is
not realistic in the given timeframe, even if it would lead to the best result. The approach for this
use case will thus be to first apply smart UV projection, and then manually add seams and project
from view the largest, most important components such that good visual are achieved without it
being too much of a time sink.

4.3.1.4 Materials and texturing

In order to achieve a consistent visualization of the 3D model in different lighting and rendering
settings, the computer graphics approach known as Physically Based Rendering, or PBR for short,
will be used. This idea was largely introduced by Pharr et al.’s book ”Physically Based Render-
ing” [32]. The concept of PBR rests in creating graphics that follow the real world properties of
the material. It may incorporate properties of materials such as how metallic or reflective it is, or
take the material’s refractive index in account.

In Section 5.6.2.1 this approach will be expanded more with regards to applying it in the digital
environment.

4.3.1.5 Rigging

With all but one of the visual aspects of the 3D model covered, there is just one left to address that
is functional as well: movement. When the robot is in operation, there are several components
that can be in motion, such as the wheels and the shooting mechanism. When these move on the
real robot, it would be desirable to move them in our DT as well to fully cover the visualization in
our virtual setting. The primary way of moving parts on a 3D model is using animations. These
can be achieved in a procedural or non procedural way.

The non procedural, ’classic’ way of creating animations is to first add a rig to model. A rig,
also known as a skeleton, consists of bones that are added to the 3D model. Parts relevant to a
bone are then mapping to this bone, causing any movement of that bone to result in movement of
those associated parts of the model as well. Animations are then created by inserting a keyframe,
placing the rig in a certain position, placing another keyframe some time later, and then placing
the rig in another position. This will then create an animation from the first pose to the second
pose [33]. In order to make creating these poses easier, it is also possible to make use of inverse
kinematics. Inverse kinematics, also abbreviated as IK, is a process where control bones are used
to calculated the variable joint parameters needed to move a collection of bones to a position and
orientation relative to the control bone. This controller bone forms a chain consisting of a family
line of bones. The advantage of using IK is that complex movements can be achieved using simple
manipulations of the controller bones, as opposed to moving all bones individually. IK has been
a popular topic in computer graphics for several years now, with many different solutions and
applications [34].

The procedural approach starts off similar to the non-procedural way, where a rig needs to
be created first. Instead of then creating every pose manually however, the desired movement is
instead created in a programmatic manner. With a walking animation for example, every step is
individually calculated by determining a spot to move one of the feet to once the point of weight
of the character has shifted by a minimum amount. The rest of the leg can then follow suit using
IK as well. An advantage of this approach is that it is very adaptable to different situations, as
the animation will automatically adapt properly to e.g. differing levels of terrain [35].
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4.3.2 Digital environment

When we are satisfied with our 3D model, we can turn our attention to the digital environment.
As described earlier, the digital environment is a piece of software that provides the necessary in-
frastructure for our DT, most notably real-time computer graphics and physics. Options include
(specialized) proprietary software, subscription based software like CryEngine [36], and free li-
censed software bound to profit limits such as Unreal Engine [37] and Unity [38]. As each program
has its own perks, the choice will largely depend on the context of the project at hand, and what
the most vital aspects of the DT. Unreal Engine for example offers great visuals and an easy to
use visual scripting tool called Blueprints, while Unity is more suited for lower end systems and
has seen many use cases of DTs where it has been applied. We shall give our choice of digital
environment software and arguments for using it in Chapter 5.

4.4 Services

Services provide a degree of abstraction to our DT. They are essential to allow us to interact with
our DT, but also to e.g. evaluate, validate and optimize it. They provide an encapsulation to
the specialized purposes that our DT would have, hiding any complex actions from the user. A
service could be expressed through a simple terminal or a fully fledged user interface. They may
be provided with input and demands, to which the service will then return the results, such as
optimized parameters, predicted hardware status, or an evaluation report. The usage of services
thus make the DT simpler to use, especially for user groups that have less affinity with the technical
side of the DT. While services can take a plethora of forms and serve varying functions, there is
still a common ground to be found in them. We can distinguish two possible categorizations that
the services can fall into:

1. General services: the services that fall into this category are not specific to a certain DT or
system. Instead, they may be used to They may even use a popular framework or software
suite that is used in many other projects as well. An example of such a service is a user
interface that can be used to control a system’s optimization suite. These services may
not directly help realize a specific functionality of a DT, but they are more likely to be
available already, either from other parts of the project at hand or publicly available from
other sources.

2. Use case specific services: these services are a lot more specific to the case at hand, and
are likely to have been created for a specific purpose. To give an example in the context of
the turtle soccer robots, imagine a tool that can be used to design strategies using visual
programming, and seeing the feedback of the major hardware components, all remotely
without access to the robots physically. It is highly unlikely that one will find e.g. open
source software for such a specific combination of hardware and software, and if it exists it
is likely only available in the hands of the robot developers. These services are thus hard to
borrow from other projects or sources, and if not available already would have to be created
from scratch if they are to be used in a DT.

Since we are working with a long existing use case in this project, we would ideally reuse some of
the services that Tech United already has currently. The TRC for example, that Tech United uses
to control their robots, could be re-purposed to control the DT as well. This would save us time
that we would have to spend on creating this service ourselves, while also making the DT easier
to operate by Tech United due to familiarity with the reused services.

4.5 Data

The next component in our 5D DT is data. Data is of great importance for a DT to work; data
input is necessary for the virtual entity to properly mimic the physical entity, and data output is
what gives us much of the interesting findings that the DT can provide. This data can be either:
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• Historical: data that was recorded and saved earlier. This may for example be match data
that can be used to replay a previously played game.

• Real-time: data that is created when the system is in operation. For example, a position
data update from each of the robots may be sent out at a set frequency.

Whatever of the two kinds the data may be, it is of first importance to determine which data is
actually of interest. The highest priority is data that is responsible for the core functionality of the
robots. Most notably this includes positional data of the robots, indicating where on the field each
robot is, and information on the ball location. After this data of each of the robot’s components
is of interest, such as the state of the battery, motor temperatures and shooting system settings.
These may all be of interest when creating new functionalities in the DT. It is also of importance
to know in which units the data will be provided. Taking the positional data for example, it is of
importance whether these are in millimeters, centimeters or meters, and we need to know what
this data is relative to; the center of the pitch, the friendly side’s goal, or perhaps one of the
corners of the field. We will also need to find out in what space the generated data is oriented.
All these points are of importance when we introduce the data into the digital environment of our
DT, as it may cause incorrect results if we do not take care of any necessary conversions.

4.6 Connections

Lastly we need connections to bring all of the 5D DT components together. Most notably we will
require connections between our physical entity and the virtual entity. For this many approach are
possible. In the case that the DT is mostly stationary, even simple wired connections can work.
Our case obviously does not support this, so this would be out of the question. Looking at wireless
solutions, we could have the robots be connected to a local Wi-Fi network from which they send
their data and communication to a computer or server. The advantage with an approach like this
is that this connection can also be extended later to work over greater distances, by sending this
data in the local network over the web to a remote computer.

In case that the data is not coming from a robot but rather locally from a simulator, a slightly
different approach would be necessary. Instead of connecting to a local Wi-Fi network, the data
can just remain on the same device that is actually emulating the data. In this case a simple
locally hosted TCP connection may suffice. The simulator could be compiled into an executable
that is then loaded into our DT to provide the data directly. When assessing the current state of
the turtle soccer robots in Chapter 3, we also went over Tech United’s use of the RTDB to handle
much of their communications. If possible this would also be an interesting approach to handle
our connection, where we can send data either from the real robots or the simulator to our DT
using shared memory.
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Chapter 5

Resulting DT

This chapter describes how the techniques mentioned in Chapter 4 were applied in combination
with the existing artifacts to realize the Turtle DT. In Section 5.1 we first go over the approach
we have taken to create our DT. We then step through each of the components in the 5D DT and
describe what work we have done related to it in order to create our DT.

• We start with the physical entity in Section 5.2 where we quickly go over the state of the
actual robots and how we apply the simulator in our development

• Next in Section 5.3 we describe how we reuse the existing services, specifically the TRC, to
manage and control our DT

• Then in Section 5.4 we cover how we have labeled the data that we use in our DT

• After this in Section 5.5 we go over the work we have done to reuse Tech United’s current
communication channels to create the connection necessary for our DT

• We then cover the focus of our work, the virtual entity, in Section 5.6. Here we describe the
creation of our 3D model, how we created the data connection, and all the new features that
our DT provides. Notice that this order is different than the previous chapter. This was
done because work done in the virtual entity section relies on the things we have achieved
in the other sections

Then lastly in Section 5.7 we summarize the work that we have done and describes our final
baseline DT.

5.1 Workflow

In the previous chapter we have taken a look at the 5D DT and used it as a guide to dissect what
we require of each of the components of our DT, and what methods we can employ to realize
them. To follow the same decomposition here, we shall go through each of the components again,
now looking at how we can reuse each of their respective artifacts:

• Physical entity: the actual turtle soccer robots. These are already quite mature and require
no work from our side.

• Virtual entity: the virtual entity that mimics the turtle soccer robots. We have some base
3D models of the robot available that we can use as a starting point.

• Services: interfaces and tools that we can use to control our DT. Here we have tools available
that Tech United already uses, such as the TRC which they use to control the Turtle robots
and simulators. This can be extended to then also control our to be created VE and any
VE-related services.
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• Data: information that is generated by the entities in the system. We wish to introduce
relevant data from the Turtle soccer robots into our DT to create new behaviour and func-
tionality.

• Connections: the connections between our DT and other components of the system. We can
reuse Tech United’s current communication channels that they already use for other parts
of the robots here.

To tackle this work, we will approach each of the DT components one by one. For each of them
we will investigate the state of the relevant artifacts, and then based on that apply the methods
described in the previous chapter to them. This then culminates in our creation of a baseline DT
for the Turtle soccer robots. For a graphical representation of our workflow, refer to Figure 5.1.

Start DT creation 
process

Determine DT
requirements

Verify/update PE Create VE Create/reuse
services

Integrate historical
and/or real time data

Establish
connections 

Creating DT functionality

Import 3D model into
digital environment

Create data
connection with

digital environment

Send relevant data
to digital

environment

Create baseline
movement and
camera controls

Add new features to
DT

Prepare 5D components

Figure 5.1: Workflow diagram of the approach taken to create the Turtle DT

5.2 Physical entity

The physical entity, in this use case the turtle soccer robot, is quite mature as we have observed
earlier. They are already equipped with a plethora of sensors to measure many of their components
in operation. This is of great benefit to us, as this means that for our initial baseline DT, we do
not need to do any hardware modifications to the physical entity in order to gather our data.
There is however the challenge of actually getting access to the robots. Since these are not always
available to us and take some time to set up as well, it was not feasible for us to be at the Tech
United headquarters and have them set up the robots for us such that we could develop our DT.

This is where the simulator that was described in Chapter 3 comes into play. Since the team
has a simulator that is capable of emulating the data and behaviour of the actual robots virtually
on a computer using the simulator to test out any of their code changed, we can also use it help
create our DT. Instead of using data from the actual robots to build and test our DT, we shall
thus be using the simulator instead. Since the simulator is capable of running the same code and
communication channels as the real robots, doing this exchange should be relatively safe without
causing too many discrepancies compared to building the DT based off data from the real robots.

5.3 Services

As we discussed in Chapter 4, we would like to have services capable of interacting with our DT.
Luckily, Tech United also has an artifact available here that can be of use: the TRC. The TRC,
which is used to control robots and manage the team, is also used when controlling them in the
simulator. In fact, the simulator itself is built into the TRC, from where it can be booted up.
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This comes as a great benefit to us, but to the team as well. We can use the TRC to manage the
robots in our DT without any adjustments to the TRC itself. This means that we do not have to
create a service for this of our own, and Tech United can use tools they are acquainted with to
control the DT later as well.

For functionalities that the TRC does not offer, such as the camera control and data monitoring
in our DT that we will see later, we need to create these ourselves. When we create these new
functions, we will not do so by changing the TRC, but will instead do it in the digital environment.
This way we do not have to potentially break their TRC by making our changes, we keep the DT
decoupled from their service that they use for other endpoints as well, and we make the DT easier
to use too; the TRC will remain reserved for functionality that Tech United is already acquainted
with, but all other new functionality will be constrained to the

5.4 Data

For the data the biggest challenge in working with such a long standing project is not in being able
to obtain data, but more about figuring out which data is of importance. Tech United has over the
lifespan of the turtle robot project added a large number of data sources and parameters that they
can use. Now that we wish to use it in our DT project, we have to determine which information
is of interest. As mentioned in the previous chapter, we will focus on data that is necessary for
the baseline behaviour of the DT, and then expand from there to create new features. This was
done by a combination of reading through Tech United documentation, investigating the software
repository, trying (parts of) sample scripts provided by the team, and having meeting with team
members to guide us. We determined which data elements were relevant to our project, and then
created a shared library file that exposed these data elements, as will be described in Section 5.5.
An example of this can be seen in Figure 5.2.

Figure 5.2: Determining some of the most important data for the DT

5.5 Connections

To feed data from the Turtle robots into our digital environment a connection between the Mat-
lab models that drive the Turtle robots and our digital environment software will need to be
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established. To pull this data, we first created a C/C++ file. In this file we create methods
for the relevant data, such as getting the Turtle positions and the Turtle status. Each of these
methods has a set of parameters which are data elements that are accessible using this method.
This method can be called, with the parameters passing the retrieved data via reference. The
inclusion of the RTDB library from Tech United is what allows us to pull this data from either the
real robots or one of the simulators interchangeably. For example, calling the function on line 64
in Listing A.3 as get turtle position(1, x, y, z, rot) would put the X, Y, Z and rotation
values of the Turtle robot with ID 1 in the respective passed parameters.

The challenge now is getting this all into our digital environment. For starters, the software
that we are going to use for our digital environment (which we will discuss in Section 5.6.2)
uses C#, compared to the C/C++ that the Turtle robots use. To solve this incompatibility, the
applied solution is to compile the plugin to a library file. Specifically, the code was compiled into
an Executable and Linkable Format called Shared Object (.so). Such .so files can be seen as the
Unix analogue to a .dll file in Windows. Our digital environment is then capable of importing such
files and accessing the functions that are available in them. A Makefile file was then created to aid
in compiling this plugin to a shared object file, as well as placing it within our digital environment
project files. The Makefile that compiles the earlier mentioned script it into a shared library can
be seen in Listing A.4.

5.6 Virtual entity

In this section we describe how the above described components come together with the work we
applied to adjust the artifacts we wish to use in our DT, and create the virtual entity. First in Sec-
tion 5.6.1 we describe the how the 3D model was created, textured, and rigged. In Section 5.6.2
we cover how the digital environment was setup and the baseline functionality was realized. The
digital environment is of importance, as it holds the 3D model and any associated physics and
scripting support necessary to make our DT work. Then in Section 5.6.3 we go over all the newly
added features and enhancements that have been created in our DT.

5.6.1 3D model

The first step in creating the virtual entity is to create a 3D model of the Turtle robot such
that it can be used in the DT. To do this the provided CAD model of the robot was used. The
following sections describe the steps that were taken to reuse this artifact. In Section 5.6.1.1 we
describe the preparation work done on the provided 3D model artifact. Then in Section 5.6.1.2
we go over the actual modeling of our new 3D model. We proceed with Section 5.6.1.3, where
we explain the UV mapping process of the 3D model. Section 5.6.1.4 covers the texturing of the
model. We then describe the rigging of the model for animation purposes in Section 5.6.1.5. Lastly
in Section 5.6.1.6 we recap the resulting 3D model.

5.6.1.1 Preparing for modeling

To do the 3D modeling several options are available to us, such as Autodesk 3DS Max, SolidWorks
and Blender. The latter was chosen for this project. Blender is a free, open source 3D modelling
program, capable of full 3D modeling workflows [39]. The choice to use Blender was made because
it is free (most other 3D modeling programs require significant fees), well suited to the workflow
mentioned earlier, and author experience is the greatest with this program. This does lead to
another issue however; the CAD format used by Tech United’s models is not supported by Blender.
To remedy this a program like CAD Assistant [40] can act as a middle man to convert it to a
format that Blender does accept.

First some preparatory work has to be done. We encountered our first issue after importing
the converted CAD model into Blender: all of the objects that the model consists of had rather
ambiguous names. This makes it rather challenging to identify which component is which from the
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list of objects, which would of importance later on when applying the high to low poly workflow as
well. However, the original names were luckily still available in the mesh data. In order to extract
these we had to manually look into the metadata of each object and copy paste the information
to the object name in Blender. Since there are over a thousand objects in the provided model, we
have written a small Python script (which is the scripting language that Blender uses) to do this.
The script in Listing A.1 goes over all the currently selected objects and renames them to the
name variable found in the mesh data. After this, a small modification to naming had to be done.
Namely, postfixing the names of all the objects by ”.high”. This serves two functions; for one it
is more easy to recognise these objects as the dense, high polygon objects from the CAD model,
and some texturing programs also specifically look for this tag when baking. To not have to do
all this by hand a very similar script was created for this, which can be seen in Appendix A.2.
Similarly here, plainly selecting all objects in the scene and running the script will append all
of them with ”.high”. Figure 5.3a show the metadata of the objects in Blender, and Figure 5.3b
shows the names of the objects after running the scripts.

(a) Name metadata stored in the objects (b) Object names after running the scripts

Figure 5.3: Object names in Blender before and after running the scripts

5.6.1.2 3D Modeling

With the provided 3D model now in our 3D modeling software of choice, we can go about doing
the work necessary to get a 3D model capable of being used in our DT. We opted to apply a high
to low poly workflow here for a number of reasons:

• The provided CAD model is, as described earlier, out of date, so some components had to
be remodeled and updated.

• The CAD model is very dense: about 2.5 million triangulated faces. Given that in a standard
match one would have ten robots, that would lead to over 25 million faces in total in frame.
That is a significant amount of computational power to spend, especially considering that
there are more things to render, such as the environment the robot is in.

• Many of the details on the robot, such as the threading on the wheels or nut and bolts
holding the components together, are of visual interest yet increase the amount of polygons
by a lot

To give an example of some of the discrepancies between the real Turtle robots and the provided
3D models, take a look at the following images:
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(a) Wheels on the CAD model (b) Wheels on the physical robot

Figure 5.4: Comparing the wheels in the 3D CAD model to the actual wheels on the robot

In Figure 5.4a we can observe the wheels as they are in the CAD model, and as they are in
reality. The wheels in the provided CAD model have two OmniWheels on each side, where each
of the sub wheels seemingly contain rollers embedded within as well. However in reality there are
three OmniWheels on each side of the robot, and the subwheels are now of a solid, treaded type.

Furthermore, the wheels on the CAD model also have a great deals of internal parts, down
to every bolt and ring, included in it. While nice to have visually (for those parts that are
actually visible), they do not add much to the model, while they do take up significant graphical
computation time.

These points make it prudent that we create new models for the wheels, one that is high poly
and contains details such as the threading of the wheels, and one that is a lightweight, low poly
version.

(a) New high poly wheels (b) New low poly wheels

Figure 5.5: Newly created 3D wheels of the Turtle’s OmniWheels

In Chapter 4 we went over several approaches that are possible for creating the low poly model
in the high to low poly workflow. For our use case the method where we remove modifiers that add
extra resolution, like a subdivide surface modifier, is not possible: since the model was originally
made in CAD, no such modifiers are available when it is imported in Blender. We can however
make use of modifiers for any new parts that we have had to model, which makes it easier to later
make modifications and keep the model up to date due to the non-destructive nature. For the
parts from the CAD model a combination of the second and third methods were used. Fitting
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with the high to low poly workflow, a high poly, detailed model (Figure 5.5a), and a low poly,
lightweight, model (Figure 5.5b) was created.

5.6.1.3 UV mapping

Next the techniques described in Section 4.3.1.3 were applied to the new low poly model. Initially,
it was attempted to fully unwrap the model using the smart UV projection method. While this
was really fast, it led to some results, where many of the textures were either looking stretched or
in the wrong place altogether. This is mostly due to the rather large number of objects that the
robot consists out of. The smart UV projection method cuts every object up into several pieces,
and then scales the pieces in the UV mapping according to their size relative to each other. Lastly
they are packed together using a packing algorithm. The downside of this is that many UV islands
(the faces of the object cut out into 2D shapes) may be packed together very closely. This causes
the seams of the islands to become rather noticeable, and sometimes even bleed colors from other
parts into it, leading to the bad visuals.

In order to remedy this, the manual method of adding seams was used for some of the biggest
components. This improved the situation significantly already, as the problems are not that visible
on smaller components. Furthermore some of the components that can be found in multiple places
on the robot were set up such that they share UV islands, further reducing the total number needed.
Lastly a margin was added between all the islands to prevent bleeding. The final UV map can be
seen in Figure 5.6.

Figure 5.6: UV map of the whole robot
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5.6.1.4 Materials and texturing

After the robot’s shape was modeled in detail, the next step was to texture it. This is done to
aid in the fidelity and recognizability of the components of the robot. Photos of the robot were
made that were used as reference for the texturing. In order to save on drawcalls, a single material
was used for the whole robot. This material would use 4K textures to still provide enough visual
clarity. A color ID map was created in Blender to distinguish which parts of the UV map belongs
to each part of the robot. The texturing was done in Substance Painter 2 [41], a 3D texturing
program. This program then produced the following four image files, which were subsequently
added to our digital project project files:

(a) Albedo Transparency texture (b) Ambient Occlusion texture

(c) Metallic Smoothness texture (d) Normal texture

Figure 5.7: Created textures necessary to make a PBR material in our digital environment for the
3D model
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Figure 5.8: Material of the robot model in the
digital environment

The reason for these four images is that this
is how the shaders of the software that we will
use (and the shaders of many other similar soft-
ware as well) are set up to render their materi-
als. In Figure 5.8 we can see the material of the
robot in that software, with the above textures
applied to it.

The basemap contains the Albedo Trans-
parency texture, which gives colors to the ro-
bot and includes an alpha layer for e.g. glass.

Then the metallic map has the Metallic
Smoothness texture, which contains informa-
tion for the renderer to know which parts are
reflective and which are not.

Next is the normal map, which contains our
Normal texture. This is important for all the
detail from our high-poly model, the provided
CAD file. This allows us to create the illusion
of detail without actually spending rendering
capacity on it.

Lastly there is the occlusion map, which is map to the Ambient Occlusion texture. Ambient
Occlusion, also known as AO, is the ambient lighting that can be found around edges and crevices
of the model. The shadow this creates has been recorded into a texture and applied to the model,
increasing the visual quality without incurring a rendering impact.

5.6.1.5 Rigging

Given that the original model was not rigged while it would still be desirable to have animations
for e.g. the robot shooting with the leg, these had to be created from scratch as well. In order to
make animating easier, this rig was equipped with the inverse kinematics described in Chapter 4.
IK is a commonly used process in robotics, making it even more apt to apply here. Currently we
have a rig that is connected to the shooting leg of robot and its associated plunger.

Figure 5.9: The rig on the 3D model
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This whole setup can be operated using a single control bone. Moving this bone makes it
possible to move the leg forward and backward to imitate the robot taking a shot, as well as up
and down to adjust whether the ball will be shot through the air or across the field. The plunger
will move automatically as required of the leg it is attached to as well. Constraints have been
put into place to make sure that the virtual leg can only be moved according to the freedom
of movement it has in reality. This makes it quite simple to create animations for the shooting
mechanism. In the future, this can be expanded to other moving parts as well in a similar fashion,
for example for the wheels. The correctness of the rig is currently based upon the workings of
the mechanics of the robots as demonstrated in person to us by Tech United. While the exact
movements of the real robot might not be fully correct (since they are just done from memory and
image references), the movement is quite easy to adapt by simply changing a set of constraining
parameters. Later when the DT might also be used to test the physics behaviour of certain
components of the robot, the rig could be adapted to more precisely mimic the range of movement
of the real robot.

5.6.1.6 Resulting 3D model

By applying all the aforementioned techniques we have created the following 3D model. It is up
to date, textured, has a rig, and, most importantly, is a lot less computationally intensive as well.
It contains about 50 thousand faces when triangulated, a significant improvement upon what we
had with the provided 3D model. Since we have applied a non destructive workflow with parts
automated with scripts as well, adjusting the model later is easier to do as well.

(a) With the protective case (b) Without the protective case

Figure 5.10: Renders of the final Turtle robot model
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5.6.2 Setting up digital environment

In the Chapter 4 we have discussed what the purpose of a digital environment is, and some of the
software choices available to us here. We now need to choose a digital environment to use, and do
some preparation work for it to be used in our DT. For our project we have opted to use Unity.

Unity, developed by Unity Technologies, was initially released in 2005 as a Mac OS X-exclusive
engine that focused on mobile and web products. It has since been extended to a multitude of
platforms and is a popular engine to use for creating games [42]. This makes Unity better suited
for our purposes, as other options such as Unreal engine focus more on high end graphics, while
our target user group’s hardware is not likely to support that.

Besides games, other applications in Unity see use too, such as in engineering and architec-
ture [43]. DTs have been created in it before [44], and even whole companies have designed their
DT software packages in it, such as Prespective’s DT toolset [45]. It also offers support for several
subsystems that could be of interest when creating applications for the DT, such as a physics
system, VR [46] and machine learning support [47]. Lastly due to author experience with Unity
being the greatest amongst the choices, it was decided to use Unity for this project.

To use our 3D model and associated textures into Unity, is very straightforward. This is done
by simply dragging the exported 3D model into our scene. The real challenge comes from making
it respond to information from the physical entity. Note that in our case the PE is actually the
simulator, as we described in Section 5.2. To do this we will first cover how the shared library
file that was compiled from our plugin script (that exposes the data from the simulator) will be
integrated into Unity in Section 5.6.2.2. Then in Section 5.6.2.3 we use this data to implement
the baseline behaviour for the robots to play a match.

5.6.2.1 Render pipeline

As of this writing, Unity is currently in the long term process of consolidating and modernizing
their workflow. There are currently two main workflows available: the High Definition Render
Pipeline (HDRP) [48] and the Universal Render Pipeline (URP) [49]. The former is aimed at
higher end systems, while the latter at lower end systems.

Since both render pipelines have quite differing feature sets [50] that each have their own
roadmap [51] [52] for future changes, it is important to determine early which workflow to use.
We wish to have a high fidelity setup, but photorealistic visuals are not required. Rather we would
have it that all members of Tech United can run the DT. Therefore, the choice was made to use
URP for this project.

5.6.2.2 Loading the library in Unity

Subject
+ myAction: Delegate

+ invoke(): void

Observer
+ onEventUpdate() : void

Observes

0..*

0..*

Figure 5.11: UML Class diagram for the Observer
pattern

In Section 5.5 we created a C/C++ file
that exposes the data from the PE using
Tech United’s RTDB. This file was then com-
piled into a library file, that was then ad-
ded added to our Unity project. What
remains for us to do now is to create a
C# script in Unity that calls it such that
we can actually use our data. Naturally
many other entities within our digital envir-
onment would need the data pulled by this
script. To this end it was decided to set this
script up following the Observer design pat-
tern [53].

In the Observer design pattern one class is
defined as the subject, and one or more other
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classes as observers. Instead of having a tightly coupled setup where everything that requires
information from the robots needs access to an object providing this information, all files that
require data (the observers) simply listen to one file (the subject) that provides them with this
data whenever an update is available. To achieve this, in our C# subject file we have some deleg-
ates defined which get invoked every frame after an update has been pulled from the PE. Other
files dedicated to specific functionalities, like the movement of the robots or interfaces that display
the status of the robots, can then subscribe to these delegates. When these delegates then get
invoked, they can receive information and act on that data accordingly.

The advantage of this approach is that the system as a whole is more likely to remain function-
ing if one of the components is removed or fails, as this just leads to no action being undertaken
with regards to those respective subject(s) and observer(s). Furthermore adding new functional-
ities later is easier to do as well, is it would require new scripts to just simply subscribe to the
subject as well to receive any information that they may need. We will now go over the structure of
this main communication file to showcase how the Observer pattern has been set up to handle the
data exchange for our project. The full code can be seen in Listing A.5, although some snippets
will be included below for ease of reference.

First we import the functions from the shared library file. These can be imported using the
”DllImport” tag in C#. This then allows them to be matched with C# functions in this file.
These functions can then by called and variables passed by reference to get the relevant data in
them. An example of this can be seen in Listing 5.1.

1 [ DllImport ( ”Turt l ePlug in ” , Cal l ingConvent ion = Cal l ingConvent ion . Cdecl ,
EntryPoint = ” g e t t u r t l e p o s i t i o n ” ) ]

2 p r i va t e s t a t i c extern void g e t t u r t l e p o s i t i o n ( i n t agent , r e f double robot x ,
r e f double robot y , r e f double robot ph i ) ;

Listing 5.1: Excerpt of the importing functions from the shared library file
(TurtleCommManager.cs, Listing 5.1)

After this several Action events are defined, as can be seen in Listing 5.2. Actions are native
implementations of delegates in C# that can take input variables but do not return anything.
For example, a robot controller class listens to the robotPosUpdateEvent. When this event gets
invoked all Observer classes listening to this event get notified and passed the necessary variables.
This happens every frame after pulling fresh data from the RTDB. The diagram of the Observer
pattern applied to this project in which these Actions are used can be observed in Figure 5.12.

1 // Act ions f o r obse rve r pattern
2 pub l i c s t a t i c event Action<bool , double , double , double> ballUpdateEvent ;
3 pub l i c s t a t i c event Action<int , bool , double , double , double>

robotPosUpdateEvent ;
4 pub l i c s t a t i c event Action<int , IntPtr , IntPtr , IntPtr , double , double , double>

robotDataUpdateEvent ;

Listing 5.2: Delegates defined to handle communication (TurtleCommManager.cs, Listing 5.1)

Next is one of Unity’s native functions, the Start function. This function is called before the
very first frame in the scene is rendered. Commonly, this is where initialization takes place. In
the case of our TurtleCommManager, we call our first external function from the shared library
file, check db status. This is a quite simple function that returns 0 if the RTDB has been suc-
cessfully initialized (which happens when loading the shared library file), and 1 otherwise. This
is a simple check that we can do before starting the DT to ensure that our data connection is
working properly. If this is not the case, an error will be printed and the Unity Editor will stop
play mode automatically.

Finally we have another major Unity function: Update. This function gets called for every
frame that is rendered. Here we are going over every of our robots and request their information
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from the RTDB using our external functions, get turtle position and get turtle info. After
the updated data has been received, the respective Actions get invoked such that any listeners can
receive the new information. An external function gets called each frame as well for receiving the
current ball position, also invoking an Action to inform listeners about that update.

The majority of scripts that shall be used in Unity implement Mono [54]. Instead of creating
objects of the classes in these scripts like is normally done in OOP by calling constructors, these
scripts are instantiated by attaching them to an object in the scene. In Unity, these objects are
referred to as GameObjects (to avoid some confusion with other definitions of the word object).
Usually these are attached to GameObjects that the script itself is related to (as we will see in the
next subsection). Since our TurtleCommManager is more of a general script for many things in the
scene, we shall instead attach it to an Empty GameObject. This is a simple, invisible zero-sized
GameObject in our scene.

All of the files that observe the main communication file and receive data from these delegates
can be seen in the Class diagram in Figure 5.12. We will describe the functionality that each of
these files serve in the next sections.

TurtleCommManager
+ ballUpdateEvent: Delegate
+ robotPosUpdateEvent: Delegate
+ robotDataUpdateEvent: Delegate

+ invoke(): void

BallController
+ onBallUpdate() : void

RobotController
+ onRobotPosUpdate() : void
+ onRobotDataUpdate() : void

DataPanelScript
+ onRobotPosUpdate() : void
+ onRobotDataUpdate() : void

FloatingTextScript
+ onRobotPosUpdate() : void
+ onRobotDataUpdate() : void

Observes

CSVLogger
+ onRobotPosUpdate() : void
+ onRobotDataUpdate() : void

Figure 5.12: UML Class diagram for main observer-subject setup as applied in our project
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To get more insights into how the calling order of these classes work, refer to the Sequence
diagram of our project in Figure 5.13.

Figure 5.13: UML Sequence diagram of our project

5.6.2.3 Creating baseline movement

With the connection between the Matlab Turtle robot models and Unity now established, the next
step would be to establish the foundation of our DT’s functionality: movement of the robots and
the ball within the digital environment. This is achieved using dedicated scripts that are observers
to the TurtleCommManager subject script mentioned above.

As can be seen in Listing A.6, in the two native Unity functions OnEnable and OnDisable we
subscribe and unsubscribe to the events. These functions get called when the GameObject that
the script is attached to is enabled (which happens upon starting the DT) or disabled, respectively.
This ensures there is one function subscribed to the Action whenever it is necessary.

5.6.3 Newly introduced features

Now that the baseline data flow and movement of the robots has been created, next some new
features will be created. We aim to demonstrate some of the possibilities that our setup has, and
the ease of adding new functionalities. We can already create some functions that are currently
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not available in the Turtle software ecosystem. This way our result will have benefits for Tech
United, no matter how far we get in our total development.

5.6.3.1 Camera controls

To allow for a clear view of the DT in action from a multitude of possible angles, proper camera
controls will be necessary.

Figure 5.14: Dropdown available in the GUI of
the DT used to change camera target

To this end it was decided to create an orbit
camera setup. With this approach the camera
will focus on a target, and the user can control
the rotation and zoom of the camera using the
mouse. This provides users with an easy to
use method of observing the entities within the
DT.

A dropdown that is automatically filled
with objects in the scene with the ”CamTar-
get” tag was added to the user interface as well.
This allows for easy switching of the camera’s
orbit target. Current targets include every in-
dividual robot, the field as a whole, and the
ball. Since this list is filled dynamically based
on all objects in the scene with the CamTarget
tag, it is thus easy to add more possible targets
by assigning this tag to them.

Figure 5.15: One of the Turtle robot objects shown with the CamTarget tag

5.6.3.2 Motion Smoothing

Currently the digital environment is set up to pull data at least on every rendered frame in Unity.
Depending on the user’s device however, this experience may not be smooth enough. Even though
steps have been undertaken to reduce the performance load (such as the low poly model), it still
demands a noticeable effort from the host computer.

To provide a remedy for this, a smoothing functionality has been added. If enabled, the
incoming positional data regarding the robots and the ball will be linearly interpolated over several
frames, instead of plainly setting the transform values on every update. As a result of this the
objects will more smoothly move through the scene. Since a downside of this approach can be
that the shown positions are not always accurate, it may not always be desirable to have this
functionality on. The smoothing can thus be simply toggled on and off at any time using Unity’s
inspector window. Code for the smoothing can be found in Listing A.6.
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Figure 5.16: Inspector window of the TurtleCommManager script’s smoothing toggle

5.6.3.3 Data panel

Figure 5.17: Data panel image in the GUI of the
DT

To provide more information about specific ro-
bots in play, a data panel has been created.
This panel is part of the UI, and shows some
of the pulled data from the RTDB about a spe-
cific robot. The currently selected robot is de-
termined in by the current camera target set
via the earlier mentioned dropdown. This data
currently includes the robot’s ID, team it is on,
position and rotation and battery status.

As this data panel also works according to
the Observer pattern, adding new information
is as simple as adding it to the shared library
file and creating a text element in the panel for
it. The elements in this panel are also anchored
to corners and containers in the GUI, ensuring
that the interface is readable in a wide range
of screen resolutions.
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5.6.3.4 Heatmap

With data now coming into Unity, it would now be expedient if it would be possible to in-
troduce a functionality not available in the current Turtle robot software package. To this
end it has been decided to introduce a heatmap functionality, based on the robot’s position.

Figure 5.18: Example of one of the live generated
heatmaps

The data for the heatmap is created by emit-
ting a ray downwards from the currently selec-
ted robot. The collision of this ray with the
field below the robot is recorded. The recor-
ded collision is then transformed into a tex-
ture coordinate, which gets fed into a float ar-
ray for a heatmap shader. This shader will
draw these datapoints on top of a texture of
the field. The more concentrated data points
are, the more intense this region will be dis-
played on the heatmap. The heatmap is cus-
tomizable, with many options being exposed
in the inspector window when the heatmap UI

element is selected, as can be seen in Figure 5.19.

Figure 5.19: Inspector window of the heatmap
shader

This heatmap can then be used to get more
insights into where a robot spends most of its
time in the field. For example, one team’s ro-
bots may spend a significant amount of time
playing aggressively while on the offense, but
may then be too slow at falling back during
defense. Or perhaps when using one of the
strategies, one robot taking on a certain role
may be out of position for too long. This may
especially prove to be of interest when some of
the robots use a different iteration of the soft-
ware than others. These findings can then be
used to make changes in the robot’s strategies,
or change the weighing of certain actions that
they take, in order to improve the overall per-
formance of the team. The itself shader may
also be adapted to use different data, such as
where passes take place or where robots collide
with other robots. The baseline of the shader
used to create this heatmap was made by E.
Albers [55].

5.6.3.5 Data export

Most of the current logging available for the robots, in the form of the historic data, is intended
for the 3D simulator. The data can be loaded in the 3D simulator to get a sort of replay of a
match. This data is not very readable and in a format generally only intended for Matlab. To
provide a data endpoint that is human readible, can be used for different purposes and loaded
into external programs as well, a CSV logger was created. This logger keeps track of each robot’s
data every time the data gets updated. It is then possible to export this data into a CSV file for
each of the robots. To make this easily accessible and allow users to export the CSVs on demand
instead of at all times, an entry in Unity’s top bar menu has been added to provide quick access.
It can be pressed at any time while the DT is running to export to CSVs the data of the robots
up to that time.
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Figure 5.20: Menu item that can be used to export the robot data to CSV

An example excerpt of one of these log files can be seen in Figure 5.21

Figure 5.21: Example of one of the exported CSV files of the robots in Excel

These logs can be used to get an overview of the data and see how some values developed over
time. They can also be used to generate e.g. graphs or fed into other data processing programs
to gain more insight in their robot’s behaviour. The code for this CSV logger can be seen in
Listing A.10. Ideally this functionality this functionality could also be extended in the future to
work live within Unity itself (similar to the heatmap), such as a live graph showing ball possession.
Similarly to all other added functionalities, this CSV logger also makes uses of the benefits of the
Observer pattern, so extending the data that is logged and exported should be relatively simple.

5.7 Resulting DT

With our work we set about to create a DT for the Turtle robot soccer project. Using Tao et al.’s
DT definition, we investigated what artifacts were available for the project, and adapted them for
use:

• For the physical entity we have not made any changes, as the robots were already satisfactory.
The simulator was similar in this, allowing us to replicate the behaviour of the real robots
accurately enough

• The virtual entity is where we did most of our work. The 3D CAD artifact was used to create
new, up to date and lightweight 3D model. This model was place in our digital environment,
Unity. The 3D model was than scripted to move according to the data that is being fed into
Unity. This setup was then finally enriched with several other functionalities

• We reused the TRC control interface to control our result as well. This saved us time in
creating a new interface, and saves Tech United’s members from having to learn to use a
new interface

• The live data available from the simulator was used to provide our digital environment with
data. This data was used to move the robots and ball in the environment, but also to provide
other metadata about the robots that can be used to infer other statistics
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• We used the existing RTDB connection artifact in our setup, which we used to expose
required data endpoints by compiling it into a library file acceptable by Unity. Reuse of this
artifact allows for ease of scalability, use by Tech United, and integration with the rest of
the Turtle soccer robot project

With this we have created a baseline platform that already provides a significantly improved
visualization, and some new functionalities too. Tools to observe, investigate and analyse the
robots have been added to showcase some of the possibilities of that a DT of the Turtle soccer
robots may have.

While following the true definition of a DT however, our work cannot be considered a DT.
Using Tao et al.’s 5D DT definition as guidance, we have managed to create nearly all of the 5D
components. The most significant component that is still lacking though, is the ”Connections”
aspect of the 5D model. Namely, this component is described as bidirectional communication
between each of the other 5D components. In our case however, we do not have this; there is
communication between our PE and our VE (the simulator feeding Unity with data), but not the
other way around (Unity providing data back to the simulator. The physical entity is currently
unaware of any changes that happens in our digital environment. Therefore our final result is in
reality not a true DT yet, but rather a digital shadow, a term that we introduced in Chapter 1.

Figure 5.22: The DT in operation
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Conclusions

In this chapter we will draw conclusions from the work that has been done in this thesis project,
and suggestions will be made for future work. Section 6.1 provides a short recap of what steps
have been undertaken in this graduation project. Next Section 6.2 answers the research questions
that have been defined in Section 1.3. Finally in Section 6.3 suggestions for future research and
continued work on this project will be given.

6.1 Summary

In this thesis project steps were taken to develop a DT for Eindhoven University of Technology’s
soccer robot team, Tech United. Being such a long standing project of over ten years, it forms
a suitable use case for DT development with reuse of artifacts. More specifically, it allows for an
investigation into the benefits and challenges faced in creating a DT for a project of this age.

We defined what our requirements for a DT would be in Chapter 4, which was based on Tao et
al.’s 5D DT definition. Then after investigating the Turtle robot ecosystem and contact with Tech
United, the available artifacts have been gathered and analyzed. We made them suitable for usage
in a DT. This included creating a new lightweight model that is also textured and rigged, applying
the RTDB to establish a connection with Unity and the Turtle Matlab models, and creating a
baseline DT implementation. This implementation was then extended with several features to
make the DT easier to use and provide some functions not currently available in the Turtle robot
software ecosystem.

While our resulting work is a product that introduces new functionalities, improved visualiza-
tion, and contains many of the elements that constitute a DT, by our earlier defined requirements
it is not truly a digital twin. Instead, our result can rather be classified as a digital shadow. This
is due to the lack of bidirectional communication between the physical entity and virtual entity.
This manifests itself in the fact that currently Unity only receives data from the simulator, which
as explained before, we have used instead of the physical robots using the same TRC interface,
but Unity does not send anything back.

Despite this, we still obtained some interesting findings. The artifacts that were available to
us in this project, most notably the simulator, the RTDB communication library, and the 3D
models, were of great aid. The simulator and associated models driving the robot saved us a
significant amount of work. Without them, we would need to have access to several of the robots
in working condition for multiple hours, several days a week. This is already near impossible for us
as outsiders to the project, especially with the pandemic conditions during which this project was
executed. The simulator allowed us to work on the project at will without having the members of
Tech United aid us at all times. The usage of the RTDB allowed us to quickly set up a connection
between the PE (or simulator in our case) and the VE. The flexibility of this library also ensures
us that swapping the simulator with the real robots later on is as painless as possible. Furthermore
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using the same communication channels in our project as in the rest of the Turtle soccer robot
project helps Tech United in maintaining and using our final product.

From these findings, we can generalize methods when faced with the development of a DT
from (some) existing artifacts. The reuse of artifacts saved us a significant amount of work, so
neglecting to use them seems like a great waste. Therefore when faced with creating a DT for
an already long established project, it would be expedient to first investigate what artifacts are
available. Documentation, software repositories, and, if the DT developers are not the same as
the developers of the physical object, contact with the developers. The latter is especially of
importance, as this will allow for the requirements engineering of the DT. Knowing what the
desires and expectations of future users of the DT are helps in determining which artifacts are
relevant, and what work is to be done to make them usable. The work following this will be highly
dependant on a case by case basis. There may be situations where not many of the artifacts are
close to being able to be applied, and require a lot of work to get them to this state. While other
cases may have artifacts that are very flexible, such that they can be easily adapted for usage in
a DT. Regardless of what the case may be, it would still be of interest to try and make use of the
artifacts. Reuse of the artifacts minimizes any increase in complexity of the soft- and hardware of
the overall project at hand, since many previously applied tools that are reapplied.

6.2 Research questions

RQ1: What are the requirements for the virtual entity of a digital twin for turtle soccer
robots?

Knowing what is required to make a DT provides us with a baseline indication of
what steps we need to go through in our development, as well as a way of checking
if our result actually constitutes as a DT.
The requirements for the virtual component of the DT first stem from the definition of a DT. This
was established in Section 1.2, and could be observed in some of the use cases in Section 2.1 as
well.

• Naturally the first requirement of our DT would be a physical entity. For the turtle soccer
robots, this entity is the robot itself and the software running on the robot. With the soccer
robot project being this long standing it is quite mature already, satisfying all that we require
of the physical entity for now.

• After this there is a virtual visualization aspect to consider. Since a DT would require
a high fidelity environment to provide the necessary immersion to make all components
recognisable, we have opted that 3D models will be required. Since the visualization by
itself can already be seen as a benefit of the DT for this use case, effort was to be put into
creating an accurate, high fidelity model. The provided model did not meet these demands
right away, nor was it suitable for usage in Unity. This extended the requirement for the 3D
model to also be lightweight, textured and rigged to fulfill our high fidelity demands.

• Next a digital environment in which the 3D model can be placed will be necessary. While a
wide range of options are available, for this use case Unity was used. The advantage of game
engines like Unity is that they provide a free, feature rich platform that are easy to extend,
have wide range of resources available, and natively provide useful systems like physics out
of the box.

• After creating a digital environment with a 3D model of the physical entity in it, next the
data will be necessary. To create the utmost basics of the DT, data needs to be available
on the position on the robots and the ball. This will be required to move our 3D models in
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our digital environment. Extra data beyond this will be necessary to create more advanced
features in the possible future.

• Finally to communicate this data, data connections will be necessary. These connections
are needed to send data back and forth between the other components, and to send any
feedback/commands to each other. The requirements for our DT is that these connections
are two way, compatible with our digital environment of choice (Unity) and fast enough
for DT. The latter is in our setup determined by data pulls that are done for every frame
rendered by Unity, i.e. it should support at least 10 to 60 pulls per second (based off the
average, common frame rates when using the DT). Note that this requirement we did not
satisfy in our use case as we have no bidirectional communication. the RTDB that was used
is capable of this however, we have just not been able to implement it yet.

RQ2: What currently existing artifacts can be used in creating the virtual entity of the
digital twin?

Knowing what interesting artifacts are available and what their current state is of
great importance for our goals.
The artifacts that have been reused in creating the virtual entity for this DT are the 3D CAD
models, the Matlab models that form the driving software of the robots, the TRC interface, the
simulators, the real time data and the RTDB. Note that while we ended up with a DS instead of
a DT because of our lack of bidirectional communication, this is not to blame on our connection
artifact, the RTDB. The RTDB is actually capable of back and forth data transfer, we have just
not implemented it in our work.

Interestingly if looking at the definition of a DT according to Tao et al., this means that
artifacts that would likely not be classified as directly part of the virtual entity have played a role
in creating this virtual entity. The TRC and simulators are part of the services, and the RTDB
mostly fits with the connections, as we have observed in Chapter 5. Tao provides no concrete
insight in this aspect with regards to artifacts, so no there are no strict rules in place that dictate
us that artifacts can only belong to one 5D component.

While these artifacts are not necessarily needed to construct the DT, they definitely did speed
up development. This would imply that when investigating the available artifacts for constructing
a DT, it is not sufficient to look at artifacts directly associated with the virtual entity. As Tao et
al.’s 5D model would suggest, all components are interconnected, and therefore so are the artifacts.

RQ3: What tools and methods can we apply to create the virtual entity of a digital twin
for the turtle soccer robot?

There is no set recipe for creating a DT (or DS) as of yet, and many factors that differ
on a case by case basis play a big part too. As we set out about creating our DT, we
investigated several tools and methods that were available. This was done that our
development process was as smooth and efficient as possible given the limited time
frame that we had. It might also provide us with a more generalized way of working
for DT/DS creation from existing artifacts. Answering this RQ lies in the analysis of the
artifacts, the possible goals, and the requirements of the DT. As was established in Chapter 5,
the physical entity is already sufficient for creating our DT, so nothing had to be done for this
component.

For our VE a 3D model was be necessary. To create a 3D model naturally 3D modeling
techniques are necessary. The methods that will need to be applied will depend on the requirements
of the DT. If models have been provided that are not too computationally impactful and not much
else is necessary, then possibly little to no work has to be done here. Much more likely however,
is that the available artifacts are not directly satisfactory. If the model is outdated or too dense,
then a new, more lightweight model will need to be created. If the visualization aspect if of any
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importance at all as well, then texturing the model, rigging it and creating animations will also
be required. After all this there may also be some work involved in getting the model in the
digital environment of choice. Textures, scaling, and rigging may all require a different workflow
depending on the environment that is used.

For the digital environment we have decided to go with Unity, so knowledge of Unity and the
programming language it uses, C#, will be necessary. To get our 3D model into Unity, we simply
export the model from Blender in a format that is supported by Unity, such as FBX. The textures
are to be exported in a file format that work with Unity’s render pipeline as well, as was shown
in Section 5.6.1.4.

The necessary data needs to come from the real time information feed containing positions of
the robots, ball, and any other extra data necessary for desired functionalities. Since there are
already examples available of the data that is available and how they should be used (including
in which units they are) from the simulator, these can be used as reference to create the DT.
This data is stored in variables in C/C++ since that is what the majority of the turtle software
is written in. These data types and structures will need to be mapped to an equivalent pairing in
C# that Unity uses.

Lastly to get this data into Unity we need a connection from the physical entity/simulator.
For this the RTDB was used. Since the RTDB is also written in C/C++, a way of getting it to
work in C# was needed. To this end it was compiled into a shared library file which could be
loaded into Unity. For when we wish to turn our DS into a proper DT later, this can be done
using the same approach, where the compiled library should then also have the ’put’ functions
exposed. Having to undertake more work to make the artifacts like the RTDB compatible is a
possible challenge in other use cases where DTs are developed for a long standing project. Legacy
or otherwise incompatible technologies are likely to be found in these projects, which may pose to
be a source of conflicts in development.

Looking at the methods and tools that we have applied, we can observe that knowledge of
3D modeling, digital environment software, communication methods are important to have for
DT/DS development. Many different options are available here, the choice of which depend on
the preference of the creators and the goals of the DT/DS. However, not for all other use cases
our experiences may represent what can be generally applied. For example, a 3D model is not a
hard requirement to have in a DT/DS. Thus in use cases where a 3D model is not used, knowledge
about 3D modeling is naturally not necessary either. Because of the many different factors that
can play a part in creating a DT/DS, coming up with a general technique that can be applied when
creating a DT/DS from artifacts is quite hard. For the methods we applied a similar consensus
holds. While we can recommend e.g. the high to low poly method that we employed, this may not
always be applicable, even if a 3D model is used (such as when the 3D model artifact is already
lightweight enough).

What we can do however is provide a possible workflow plan. As we had observed in Section 6.1
already, it is expedient to look at what artifact are available, come up with requirements for the
DT/DS, and then investigate what artifacts are relevant to these requirements and what work
they require to make them applicable. The prioritization of each component of the DT/DS will
differ, just like in any other software engineering project. However, identifying what is required
to create some of the most basic functionality (in our case, movement of the robots and the ball)
is a good starting point, as other functionalities will likely need to build on this anyway.

RQ4: What discrepancies between the virtual and physical entities are of significance in a
digital twin for the turtle soccer robots, and how can they be negated if necessary?

There will always be differences between the actual physical system and a digital
counterpart. How significant the impact of these discrepancies are will not be the
same for every project, but possible ways to mitigate or minimize those that are of
significance is important if time and resources allow it. Some discrepancies are of
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such magnitude that they prevent the operation of the DT as a whole, while other
discrepancies are actually introduced on purpose
Since a DT’s aim is to create a replication of the physical counterpart that is fit for the purposes of
the DT, there will realistically be some differences between a DT and the actual physical object.
Similarly to human biological twins, digital twins also feature several discrepancies from each
other, even if hard to distinguish. Even with access to a theoretical, perfect, 1 to 1 virtual replica
of the physical robot with all the same functionalities and data, some sacrifices have to be made
somewhere (for example, there will always be a delay in transmitting information, compared to
just observing the physical entity with your own eyes). On a case by case basis some elements
may also be purposely given less attention, as they do not play a major role in the use case at
hand.

An example of this in this use case can be found in the 3D modeling aspect. The 3D CAD
model provided a very highly detailed model, down to every bit and bolt used on the robot. In
reality however, most of these tiny components are not of interest when using the DT. To this end
several pieces were simply left out, or baked into the textures such that there is still semblance of
them visible. The resulting lightweight model is not fully accurate either, with some non essential
parts not included, such as small bolts, wires and connectors. Nevertheless, the created model is
accurate enough and has a degree of fidelity such that the components are recognisable and look
correct.

The biggest possible discrepancy between the digital entity and the physical entity in this use
case is the usage of the simulator. Used as a replacement for the actual physical robot during
development of the DT, in theory the whole physical entity has not played a part its creation.
While certainly of great benefit, it is conceivable that, given the complexity of the whole robot,
the simulator is not capable of fully simulating every aspect of the actual robot accurately. Some
elements are even impossible to achieve in the simulator compared to real life operation. For
example visual information from actual cameras is vastly different from simulated data in a 2D
space. Despite this, care has been taken to cause as few problems as possible. The possible dis-
crepancies are minimized by using data that is only available for both the simulator and the real
robots, and by using the same communication channels. The usage of the RTDB should in theory
allow anything that is capable of providing the relevant data to be connecting using the same
channels, whether that be a simulator or actual robot. The mitigation of discrepancies between
the digital and physical entities thus further ties into one of the advantages of reusing artifacts in
creating DTs: the usage of already applied technologies to minimize technical issues, and making
the DT easier to use and maintain.

When it comes to discrepancies in DTs/DSs and how to deal with them however, there is
no black and white answer. DTs can include such a great amount of subsystems, sensors and
data that differences between reality and the virtual will always exist. Not to mention that some
discrepancies are introduced on purpose. Just like in our 3D model where some small pieces of
the robots are not modeled on purpose, discrepancies were introduced just because they were not
relevant enough to include in the DT.

This brings us to a two step approach to dealing with them. First is to determine whether
the discrepancies are of any significant impact. Just like the discrepancies that we introduced on
purpose, these had no impact on the actual requirements of the DT. In fact, trying to mitigate this
discrepancy would have actually been negative for the DT, as it would impact the performance
unfavorably. If a discrepancy is undesirable to have, then steps will need to be undertaken to
do something about it. Here the approach will vary based on the type of discrepancy, and how
severely it impacts the overall DT.

RQ5: Given the available artifacts, what findings and functionalities can be realized using
the digital twin?

In the end, we wish that our use case not only provides a usable result, but also
interesting generalized findings for DT development as a whole when working with a
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long standing project and its artifacts.
The answer to this RQ is rather broad. Theoretically, the artifacts can be seen as just an aid
in creating a DT more easily. Once the DT has been fully established, all desired findings and
functionalities can be realized that make use of the advantages of a DT (barring some case by case
limitations). To formalize this answer more to this use case, the focus shall be put on findings and
functionalities more directly associated with the used artifacts. Furthermore the answers can also
be split up in two distinction categories; findings related to DTs as a whole and findings related
to this specific use case.

The physical entity artifacts speak for themselves. In our use case the physical entity was
already quite mature, with no work necessary from our side. When developing a DT from artifacts
for an already long standing project such as this, this would likely be a common situation. The
most notable work that could be necessary on the physical side would be the application of
sensors and connections to supply the necessary data and communication back and forth between
the physical entity and virtual entity.

For the virtual entity the 3D CAD model artifact provided to be a great benefit in the creation
of the DT. Using it a to-scale model could be created a lot more quickly than starting from
scratch. Furthermore it also provided a great insight in many of the components of the robot that
were not visible at a first glance. The resulting new 3D model can then play a vital role in the
overall functioning of the DT. To summarize this to a more general answer, the existence of 3D
model artifacts can aid in increasing the understanding of the physical entity and speed up DT
development. For any 3D artifacts it is preferable for them to be to scale, up to date, accurate,
capable of animations, and equipped with the proper materials. If one of these aspects is not
necessary (or at least not to the degree that is available), they can always be removed/reduced.
This is often a lot less time consuming than making any missing properties from scratch.

With regards to services artifacts, the TRC and simulators were available. The TRC provided
a good interface already for controlling much of our DT. Reusing it saves work on creating our
own interface, and operating the DT will be easier for Tech United when we use the same control
interfaces that they are already used to. The simulator was an extremely beneficial asset to have,
as it meant that the DT could be developed at all times without the need of an actual physical
robot nearby to provide data. Not only did this speed up development from a technical standpoint,
but also from an organizational one. Getting access to the robot every day is simply not feasible.
Being able to develop at all time from home is therefore of great benefit. The simulator also served
as a comparison check for the DT. Data that is being used in both the simulator and the DT can
be compared to make sure that e.g. all units conversions are done correctly. A possible finding
here is that the reuse of service artifacts (such as interfaces) not only saves time in creating the
DT, but also makes the DT easier for the intended audience to use. Other services that can mock
the data and behaviour of the actual physical entity can be of great benefit when the physical
entity is not readily available at all times. This is not an unrealistic scenario to consider, especially
when creating DTs for sizeable entities such as aircraft, or collective entities like factories or cities.

Data wise, the real time data available was used in this use case. Since these data variables
were already defined and in use in the simulator, there were ample examples to learn from on
how they could be applied. The historical data that was available has no use as of yet and did
not have many applications already available to learn from, so this could be a future avenue of
research. The real time data was used to create the baseline functionalities necessary for the DT,
such as the movement of the robots. This data was then used to create some new functionalities
not currently available, such as the data panel, heatmap and CSV exporter. Since the data is
so crucial to the functioning of the DT, it was beneficial to have these artifacts available. This
should extend to DTs in general as well. While the scale, complexity, accuracy or availability of
the data may differ on a case by case basis, creating a DT without data is naturally out of the
question. An investigation into the data that may be available as an artifact, how they have been
used before and any documentation that may exist for it is thus an expedient step to undertake
when developing a DT.

Lastly there are artifacts with regards to the connections between all the components of our
DT. In our use case this artifact was their method of utilising shared memory via a RTDB. This
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artifact proved to be a great help in creating the DT, as it provided a tried and tested method
of communication. The RTDB’s data scheme is easy to understand, is efficient in use and can be
applied for the communication between virtually any component due to being built on a black
box basis. The biggest challenges in using this RTDB were actually caused by Unity, where some
work had to be done to compile the RTDB in a library format acceptable by Unity. Nevertheless,
a system capable of connecting different components already being available as an artifact meant
that a lot of time was saved on our end. Instead of having to create e.g. a TCP connection of
our own, we could simply reuse the data connections they already have in place. This not only
saves us time, but also makes it easier for Tech United to use and maintain the connection, and
possibly mitigate any discrepancies, as was already described in our answer to RQ4. Since the
connections are so fundamental to bringing all the components of DT together, it is important to
lay a good foundation from the start of DT development. We had contact with the Tech United
team about this aspect to ensure that our communication matches up with their current setup as
much as possible, making a possible future integration of our result into their software stack easier.

In the end from our use case’s perspective, we can definitely say that the reuse of existing
artifacts has helped us tremendously in our creation process. Some of the artifacts needed no
work to apply at all, saving us a lot of time. Others needed some adjustment to make them
work, but even then this was a lot less time consuming then making them from scratch. Artifacts
also provided us with a good insight of the inner workings of the Turtle robot project already,
allowing us to more quickly get to work on creating the DT. This leaves us to conclude that, even
though the state of the artifacts can differ greatly on a case by case basis, it is still lucrative to
investigate, and possibly integrate, any existing artifacts. It should still be noted however, that
care has to be taken in this. As we will discuss in Section 6.3 as well, it could be possible that
some artifacts differ too greatly from the intended goal to realistically make them work. In this
case, the amount of work required to apply them in a DT for a specific goal may not be in line
with the investment that needs to be made in order to create something for that goal from scratch.
Taking our 3D CAD model as an example: say that the provided model is very outdated, not
to scale, and is lacking many important components. In this case, it may be faster to create a
new model from scratch based on recently taken images, compared to going through the provided
artifact, verifying every single piece, and then recreating/adjusting many of the provided parts,
while checking continuously whether what we are doing is still correct.

6.3 Future work

Regarding future work in relation to this project, there are two perspectives to consider: that of
this use case, and the wider perspective of reusing artifacts in the creation of a DT.

For the case of the Turtle soccer robot use case, the main priority is to turn it into a proper
DT, instead of a DS. This can be achieved by adding bidirectional communication to the project,
such that not only a change of state in the physical will result in a change of state in the virtual,
but vice versa as well. The project should also be tested more in depth with the actual robots,
instead of just the simulator as we have done.

Furthermore the extra added functionalities, while new to the Turtle robot software stack, do
not make optimal use of all the benefits of a true DT. In the future, it would be desired that this
aspect is expanded further. Several avenues are available to explore here:

• One application could for example include swapping in certain components and testing how
they behave. Since CAD models are created for new candidate components anyway, it would
be possible to adapt them easily to the lightweight model, place the new model in Unity,
and then use Unity’s own physics system to test the behaviour. This would save on having
to machine several components in real life and manually attaching them to the real robots
in order to test what design is the best.

• Another application of the DT in this use case can be analysis of data flow in real-time.
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When the DT data that is being communicated between the physical and virtual entity has
been expanded, it would be possible to process and analyze this data as a match is ongoing.
We introduced the heatmap functionality to provide an example analysis method, but many
more analysis possibilities exist that make more use of the capabilities of a DT than this.
For example, online real-time analysis can be employed to analyse data of the robots in play
over a large period of time, which can then be used to update parameters of the robots on
the go.

• Building off the concept of tournaments, another interesting application of the DT would
be troubleshooting from afar. Since the robot soccer tournaments are organized in differing
locations across the globe every year and the Tech United team is quite sizeable, it is not
unlikely that not every member can attend every tournament at all times. Since each team
member has their own specialization as well, this could lead to the team missing out on
someone’s knowledge and skills when the need arises. Using a DT however, a member
could accurately monitor the performance, actions, and issues of the robots from far away.
Hereby possible issues can be noticed by simply observing the robot as if that person was
actually there. Findings can then be communicated with the team on site, or even software
adjustments may be made from afar.

• Lastly, Unity itself has many different interesting technologies available as was noted in Sec-
tion 5.6.2. VR could be used to observe individual components in detail while the DT is
running, and the robot could be virtually taken apart without having to disassemble an
actual machine. Machine learning could be applied to develop new strategies for the robot
by applying reinforcement learning, something that Unity’s ML agents have been applied
for before. Technologies such as Prespective’s DT tools could be integrated to allow for e.g.
more in depth testing of mechatronic processes.

With respect to DTs/DSs as a whole, some possible conclusions can be made. In this use case
the artifacts, while they required work to make them usable, definitely saved time. The overhead
incurred by adapting the artifacts definitely outweighed our estimated necessary time investment
to create the components from scratch. Applying the artifacts also led us to reusing many of the
same methods and technologies that were already known to Tech United. This makes the DT
easier for them to understand, maintain, and possibly integrate in their workflow in the future.

While we conclude that for this use case the artifacts were of great benefit in the development
process, it is still just one use case in the end. To truly generalize these findings, it would be
expedient if more case studies were to be conducted. In differing instances of reusing artifacts
the experience may be different. Perhaps in some cases the work required to reuse the artifacts
outweigh the benefit that they may bring. It would be especially interesting to consider not
only different artifacts across these use cases, but also which stage of development these artifacts
originate from.

For example, the 3D model that was used in our use case needed a bit of work since it was
made during the construction stage of the project. Usage in a real time lighting setting was never
considered at that time, and as such it was not taken into consideration when creating the 3D
model. However, a different use case may have a 3D model from a later stage, such as during a
release stage. Here the 3D model may have actually been created to produce renders, instructional
videos or promotional material. A 3D model from this stage may be a lot more apt to directly
apply in a DT without much work necessary, as it may already be lightweight, textured and
animated when used for other purposes. It is thus recommended to not only make a distinction
on the context of future research use cases, but also on the context of the artifacts themselves to
truly generalize the findings in this thesis report.
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Appendix A

Code listings

1 import bpy
2 import math
3
4 c u r r e n t s e l e c t e d o b j = bpy . context . s e l e c t e d o b j e c t s
5 f o r x in c u r r e n t s e l e c t e d o b j :
6 i f x . type == ’MESH’ :
7 x . name = x . data . name

Listing A.1: Renames the Blender objects to the name value stored in the object’s data (mesh-
to-obj-name.py)

1 import bpy
2 import math
3
4 c u r r e n t s e l e c t e d o b j = bpy . context . s e l e c t e d o b j e c t s
5 f o r x in c u r r e n t s e l e c t e d o b j :
6 i f x . type == ’MESH’ :
7 x . name = x . name + ’ . high ’

Listing A.2: Appends ”.high” to the selected object names (append-high.py)

1 #inc lude <s t d i o . h>
2 #inc lude <s t d l i b . h>
3 #inc lude <un i s td . h>
4 #inc lude <s i g n a l . h>
5 #inc lude <math . h>
6 #inc lude <u t i l i t y >
7 #inc lude ”/home/robocup/svn/ trunk/ s r c /Turt le3 /Libs /mu l t i c a s t / rtdb/ r tdb use r . h”
8 #inc lude ”/home/robocup/svn/ trunk/ s r c /Turt le3 /Libs /mu l t i c a s t / rtdb/ r tdb ap i . h”
9 #inc lude ”/home/robocup/svn/ trunk/ s r c /Turt le3 /Libs /mu l t i c a s t /worldmodel /

KinectShared . h”
10 #inc lude ”/home/robocup/svn/ trunk/ s r c /Turt le3 /Libs /mu l t i c a s t /worldmodel /Bal lShared .

h”
11 #inc lude ”/home/robocup/svn/ trunk/ s r c /Turt le3 /Libs /mu l t i c a s t /worldmodel /

StrategyShared . h”
12 #inc lude ”/home/robocup/svn/ trunk/ s r c /Turt le3 /Libs /mu l t i c a s t /worldmodel /

TRC2SimLocal . h”
13 #inc lude ”/home/robocup/svn/ trunk/ s r c /Turt le3 /Libs /mu l t i c a s t /worldmodel /SimLink . h”
14 #inc lude ”/home/robocup/svn/ trunk/ s r c /Turt le3 /Libs /mu l t i c a s t /worldmodel /Sim2Turtle .

h”
15 #inc lude ” proce s s . h”
16 #i f MSC VER // t h i s i s de f i ned when compi l ing with Visua l Studio
17 #de f i n e EXPORT API d e c l s p e c ( d l l e xpo r t ) // Visua l Studio needs annotat ing exported

func t i on s with t h i s
18 #e l s e
19 #de f i n e EXPORT API // XCode does not need annotat ing exported funct i ons , so d e f i n e

i s empty
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20 #end i f
21
22 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
23 // Plugin i t s e l f
24
25 // Link f o l l ow i n g func t i on s C−s t y l e ( r equ i r ed f o r p lug in s )
26 extern ”C”
27 {
28 #de f i n e DEVPC 0
29 #de f i n e TURTLE 1
30
31 // Dec la r ing v a r i a b l e s
32 i n t end2 = 0 ;
33 i n t t BS = 0 ;
34 i n t t SS = 0 ;
35 i n t t SL = 0 ;
36 i n t t ST = 0 ;
37 i n t age ST = 0 ;
38
39 s t r u c t Bal lShared S BS ;
40 s t r u c t StrategyShared S SS ;
41 s t r u c t TRC2SimLocal TSL ;
42 s t r u c t SimLink SL in ;
43 s t r u c t Sim2Turtle ST ;
44
45 // I n i t i a l i z e RTDB
46 in t r e t = DB init ( ) ;
47
48 s t a t i c void s i g n a l c a t c h ( i n t s i g )
49 {
50 end2 = 1 ;
51 }
52
53 EXPORT API in t check db s ta tus ( ) {
54 i f ( r e t != 0)
55 {
56 re turn 1 ;
57 }
58 e l s e
59 {
60 re turn 0 ;
61 }
62 }
63
64 EXPORT API void g e t t u r t l e p o s i t i o n ( i n t agent , double ∗ robot x , double ∗ robot y ,
65 double ∗ robot ph i )
66 {
67 t SS = DB get ( agent , STRATEGY SHARED, &S SS ) ;
68 ∗ robot x = ( double ) S SS . cur rent xyo [ 0 ] ∗ 0 . 0 0 1 ;
69 ∗ robot y = ( double ) S SS . cur rent xyo [ 1 ] ∗ 0 . 0 0 1 ;
70 ∗ robot ph i = ( double ) S SS . cur rent xyo [ 2 ] ∗ 0 . 0 0 1 ;
71 }
72
73 EXPORT API void g e t b a l l p o s i t i o n ( double ∗ ba l l x , double ∗ ba l l y ,
74 double ∗ b a l l z )
75 {
76 t ST = DB get (Whoami( ) , SIM2TURTLE, &ST) ;
77 ∗ ba l l x = ST. ba l l x y z [ 0 ] ∗ 0 . 0 0 1 ;
78 ∗ ba l l y = ST. ba l l x y z [ 1 ] ∗ 0 . 0 0 1 ;
79 ∗ b a l l z = ST. ba l l x y z [ 2 ] ∗ 0 . 0 0 1 ;
80 }
81
82 EXPORT API void g e t t u r t l e i n f o ( i n t agent , char ∗ teamColor , char ∗ batteryVoltage ,
83 char ∗ emergencyStatus , double ∗ motorTemperature1 , double ∗ motorTemperature2 ,
84 double ∗ motorTemperature3 )
85 {
86 t SS = DB get ( agent , STRATEGY SHARED, &S SS ) ;
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87 ∗ teamColor = S SS . teamColor ;
88 ∗ batteryVol tage = S SS . batte ryVol tage ;
89 ∗ emergencyStatus = S SS . emergencyStatus ;
90 ∗motorTemperature1 = ( double ) S SS . motor temperature [ 0 ] ;
91 ∗motorTemperature2 = ( double ) S SS . motor temperature [ 1 ] ;
92 ∗motorTemperature3 = ( double ) S SS . motor temperature [ 2 ] ;
93 }
94 } // end o f export C block

Listing A.3: Main communication file that exposes data endpoints for Unity (TurtlePlugin.cpp)

1 # Def ine compi le r and f l a g s
2 CC = gcc
3 CFLAGS = −c −g −fPIC −O3
4
5 # Create t u r t l e p lug in
6 tu r t l e−p lug in :
7 @# Create ob j e c t f i l e
8 $ (CC) $ (CFLAGS) −o bu i ld /Turt l ePlug in . o s r c /Turt l ePlug in . cpp
9 @# Create shared l i b r a r y l i nked with RTDB l i b r a r y

10 $ (CC) −shared −o bu i ld /Turt l ePlug in . so bu i ld /Turt l ePlug in . o −l r t db
11 @# Create debug f i l e
12 objcopy −−only−keep−debug bu i ld /Turt l ePlug in . so bu i ld /Turt l ePlug in . debug
13 s t r i p −−s t r i p−debug bu i ld /Turt l ePlug in . so
14 @# Copy r e s u l t i n g f i l e s to Unity Assets
15 cp −t ” . . / Unity/Turt l eDig i ta lTwin /Assets /Plug ins /Linux/” bu i ld /Turt l ePlug in . so

bu i ld /Turt l ePlug in . debug
16
17 # Clean up the output d i r
18 c l ean :
19 $ (RM) −r . / bu i ld

Listing A.4: Used to compile the communication plugin to a shared library (MakeFile)

1 us ing System ;
2 us ing System . Runtime . I n t e r opSe rv i c e s ;
3 us ing UnityEngine ;
4
5 pub l i c c l a s s TurtleCommManager : MonoBehaviour {
6 /∗∗
7 ∗ Importing a l l nece s sa ry f unc t i on s from shared l i b r a r y
8 ∗/
9 [ DllImport ( ”Turt l ePlug in ” , Cal l ingConvent ion = Cal l ingConvent ion . Cdecl ,

EntryPoint = ” t e s t ” ) ]
10 p r i va t e s t a t i c extern i n t t e s t ( i n t agent ) ;
11
12 [ DllImport ( ”Turt l ePlug in ” , Cal l ingConvent ion = Cal l ingConvent ion . Cdecl ,

EntryPoint = ” g e t t u r t l e p o s i t i o n ” ) ]
13 p r i va t e s t a t i c extern void g e t t u r t l e p o s i t i o n ( i n t agent , r e f double robot x ,

r e f double robot y , r e f double robot ph i ) ;
14
15 [ DllImport ( ”Turt l ePlug in ” , Cal l ingConvent ion = Cal l ingConvent ion . Cdecl ,

EntryPoint = ” g e t b a l l p o s i t i o n ” ) ]
16 p r i va t e s t a t i c extern void g e t b a l l p o s i t i o n ( r e f double ba l l x , r e f double

ba l l y , r e f double b a l l z ) ;
17
18 [ DllImport ( ”Turt l ePlug in ” , Cal l ingConvent ion = Cal l ingConvent ion . Cdecl ) ]
19 p r i va t e s t a t i c extern i n t check db s ta tus ( ) ;
20
21 [ DllImport ( ”Turt l ePlug in ” , Cal l ingConvent ion = Cal l ingConvent ion . Cdecl ,

EntryPoint = ” g e t t u r t l e i n f o ” ) ]
22 p r i va t e s t a t i c extern void g e t t u r t l e i n f o ( i n t agent , r e f IntPtr teamColor , r e f

IntPtr batteryVoltage , r e f IntPtr emergencyStatus , r e f double
motorTemperature1 , r e f double motorTemperature2 , r e f double
motorTemperature3 ) ;

23
24 /∗∗
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25 ∗ Dec lar ing v a r i a b l e s (make them pub l i c or append them with
26 ∗ [ S e r i a l i z e F i e l d ] to make them v i s i b l e in the i n sp e c t o r )
27 ∗/
28 [ Header ( ”Smooth out robot and b a l l movement?” ) ]
29 [ Too l t ip ( ”Enable t h i s to smooth out the movement o f the robots and b a l l by ”
30 + ” l i n e a r i n t e r p o l a t i n g t h e i r p o s i t i o n s between updates . This w i l l l ead to a ”
31 + ” s l i g h t de lay between data coming in and may not always a 100% rep r e s en t ”
32 + ” t h e i r exact po s i t i on s , so d i s ab l e t h i s i f you would p r e f e r a more abso lu t e ”
33 + ” r ep r e s en t a t i on . ” ) ] [ S e r i a l i z e F i e l d ] bool smoothMovement ;
34 double robot x = 0 . 0 ;
35 double robot y = 0 . 0 ;
36 double robot ph i = 0 . 0 ;
37 IntPtr teamColor ;
38 IntPtr batte ryVol tage ;
39 IntPtr emergencyStatus ;
40 double motorTemperature1 ;
41 double motorTemperature2 ;
42 double motorTemperature3 ;
43 double b a l l x = 0 . 0 ;
44 double b a l l y = 0 . 0 ;
45 double b a l l z = 0 . 0 ;
46 const i n t MAXROBOTS = 6 ;
47
48 // Act ions f o r obse rve r pattern
49 pub l i c s t a t i c event Action<bool , double , double , double> ballUpdateEvent ;
50 pub l i c s t a t i c event Action<int , bool , double , double , double>

robotPosUpdateEvent ;
51 pub l i c s t a t i c event Action<int , IntPtr , IntPtr , IntPtr , double , double , double>

robotDataUpdateEvent ;
52
53 // Star t i s c a l l e d be f o r e the f i r s t frame update
54 void Star t ( ) {
55 // Check i f the RTDB has been c o r r e c t l y i n i t i a l i z e d
56 i f ( check db s ta tus ( ) != 1) {
57 Debug . Log ( ”RTDB su c c e s f u l l y i n i t i a l i z e d ” ) ;
58 } e l s e {
59 Debug . LogError ( ”RTDB was not c o r r e c t l y i n i t i a l i z e d ! Aborting ” ) ;
60 UnityEditor . Ed i to rApp l i ca t i on . i sP l ay ing = f a l s e ;
61 }
62 }
63
64 // Update i s c a l l e d once per frame
65 void Update ( ) {
66 // I t e r a t i n g over a l l the t u r t l e s
67 f o r ( i n t i = 2 ; i < MAXROBOTS; i++) {
68 // Get a l l Turt le p o s i t i o n s and r o t a t i o n s
69 g e t t u r t l e p o s i t i o n ( i , r e f robot x , r e f robot y , r e f r obot ph i ) ;
70 // Not i fy robot po s i t i o n l i s t e n e r s
71 robotPosUpdateEvent ? . Invoke ( ( i − 1) , smoothMovement , robot x , robot y ,

robot ph i ) ;
72
73 // Get data from the Turt l e s
74 g e t t u r t l e i n f o ( i , r e f teamColor , r e f batteryVoltage , r e f

emergencyStatus , r e f motorTemperature1 , r e f motorTemperature2 , r e f
motorTemperature3 ) ;

75 // Not i fy robot data l i s t e n e r s
76 robotDataUpdateEvent ? . Invoke ( ( i − 1) , teamColor , batteryVoltage ,

emergencyStatus , motorTemperature1 , motorTemperature2 ,
motorTemperature3 ) ;

77 }
78
79 // Get b a l l p o s i t i o n
80 g e t b a l l p o s i t i o n ( r e f ba l l x , r e f ba l l y , r e f b a l l z ) ;
81 // Not i fy b a l l l i s t e n e r s
82 bal lUpdateEvent ? . Invoke ( smoothMovement , ba l l x , ba l l y , b a l l z ) ;
83 }
84 }
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Listing A.5: The subject file in the Observer pattern that handles all the data communication for
the robot’s data (TurtleCommManager.cs)

1 us ing System ;
2 us ing System . Co l l e c t i o n s ;
3 us ing System . Co l l e c t i o n s . Generic ;
4 us ing UnityEngine ;
5
6 pub l i c c l a s s RobotContro l l e r : MonoBehaviour {
7 [ S e r i a l i z e F i e l d ] p r i va t e i n t tu r t l e ID ;
8 p r i va t e f l o a t speed = 7 .0 f ;
9 p r i va t e IntPtr currentTeam = ( IntPtr ) 0 ;

10
11 p r i va t e void OnEnable ( ) {
12 // Subsr ibe to the RobotDataUpdateEvent
13 TurtleCommManager . robotPosUpdateEvent += OnRobotPosUpdate ;
14 TurtleCommManager . robotDataUpdateEvent += OnRobotDataUpdate ;
15 }
16
17 p r i va t e void OnDisable ( ) {
18 // Unsubsribe to the RobotDataUpdateEvent
19 TurtleCommManager . robotPosUpdateEvent −= OnRobotPosUpdate ;
20 TurtleCommManager . robotDataUpdateEvent −= OnRobotDataUpdate ;
21 }
22
23 p r i va t e void OnRobotPosUpdate ( i n t turt l e ID , bool smoothMovement , double robot x

, double robot y , double robot ph i ) {
24 i f ( tu r t l e ID == th i s . tu r t l e ID ) {
25 // Set Turt le p o s i t i o n s and r o t a t i o n s in Unity
26 // Inve r t depending on team , va lue s are r e l a t i v e to cent e r o f f i e l d ,
27 // own s i d e determining p o s i t i v e and negat ive va lue s
28 i f ( currentTeam == ( IntPtr ) 0) {
29 i f ( smoothMovement ) {
30 Vector3 currentPos = th i s . t rans form . po s i t i o n ;
31 Vector3 newPos = new Vector3 ( ( f l o a t )−robot x , t h i s . t rans form .

po s i t i o n . y , ( f l o a t )−robot y ) ;
32 t h i s . t rans form . po s i t i o n = Vector3 . Lerp ( currentPos , newPos ,

speed ∗ Time . deltaTime ) ;
33 } e l s e {
34 t h i s . t rans form . po s i t i o n = new Vector3 ( ( f l o a t )−robot x , t h i s .

t rans form . po s i t i o n . y , ( f l o a t )−robot y ) ;
35 }
36 t h i s . t rans form . eu l e rAng l e s = new Vector3 (0 , ( f l o a t )−robot ph i ∗ 10 ,

0) ;
37 } e l s e {
38 i f ( smoothMovement ) {
39 Vector3 currentPos = th i s . t rans form . po s i t i o n ;
40 Vector3 newPos = new Vector3 ( ( f l o a t ) robot x , t h i s . t rans form .

po s i t i o n . y , ( f l o a t ) robot y ) ;
41 t h i s . t rans form . po s i t i o n = Vector3 . Lerp ( currentPos , newPos ,

speed ∗ Time . deltaTime ) ;
42 } e l s e {
43 t h i s . t rans form . po s i t i o n = new Vector3 ( ( f l o a t ) robot x , t h i s .

t rans form . po s i t i o n . y , ( f l o a t ) robot y ) ;
44 }
45 t h i s . t rans form . eu l e rAng l e s = new Vector3 (0 , ( f l o a t ) robot ph i ∗ 10 ,

0) ;
46 }
47 CSVLogger . In s tance . Log ( t h i s . t rans form . p o s i t i o n . x ) ;
48 }
49 }
50
51 p r i va t e void OnRobotDataUpdate ( i n t turt l e ID , IntPtr teamColor , IntPtr

batteryVoltage , IntPtr emergencyStatus , double motorTemperature1 , double
motorTemperature2 , double motorTemperature3 ) {
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52 i f ( tu r t l e ID == th i s . tu r t l e ID ) {
53 t h i s . currentTeam = teamColor ;
54 }
55 }
56 }

Listing A.6: Moves the robots in Unity to the correct places according to the received data
(RobotController.cs)

1 us ing System . Co l l e c t i o n s ;
2 us ing System . Co l l e c t i o n s . Generic ;
3 us ing UnityEngine ;
4
5 pub l i c c l a s s Ba l lCon t r o l l e r : MonoBehaviour
6 {
7 p r i va t e f l o a t speed = 7 .0 f ;
8 p r i va t e void OnEnable ( ) {
9 // Subsr ibe to the RobotDataUpdateEvent

10 TurtleCommManager . bal lUpdateEvent += OnBallUpdate ;
11 }
12
13 p r i va t e void OnDisable ( ) {
14 // Unsubsribe to the RobotDataUpdateEvent
15 TurtleCommManager . bal lUpdateEvent += OnBallUpdate ;
16 }
17
18 p r i va t e void OnBallUpdate ( bool smoothMovement , double ba l l x , double ba l l y ,

double b a l l z ) {
19 i f ( smoothMovement ) {
20 Vector3 currentPos = th i s . t rans form . po s i t i o n ;
21 Vector3 newPos = new Vector3 ( ( f l o a t ) ba l l x , 2 .439 f , ( f l o a t ) b a l l y ) ;
22 t h i s . t rans form . po s i t i o n = Vector3 . Lerp ( currentPos , newPos , speed ∗ Time

. deltaTime ) ;
23 } e l s e {
24 t h i s . t rans form . po s i t i o n = new Vector3 ( ( f l o a t ) ba l l x , 2 .439 f , ( f l o a t )

b a l l y ) ;
25 }
26 }
27 }

Listing A.7: Handles the movement of the ball (BallController.cs)

1 us ing System ;
2 us ing System . Co l l e c t i o n s ;
3 us ing System . Co l l e c t i o n s . Generic ;
4 us ing System . Linq ;
5 us ing UnityEngine ;
6
7 pub l i c c l a s s OrbitCameraScript : MonoBehaviour
8 {
9 [ Header ( ”Camera and Target ” ) ]

10 [ S e r i a l i z e F i e l d ] p r i va t e Camera cam ;
11 [ S e r i a l i z e F i e l d ] p r i va t e Transform ta rg e t ;
12
13 [ Header ( ”Zoom” ) ]
14 [ S e r i a l i z e F i e l d ] p r i va t e f l o a t minZoom = 1.5 f ;
15 [ S e r i a l i z e F i e l d ] p r i va t e f l o a t maxZoom = 30.0 f ;
16 [ S e r i a l i z e F i e l d ] p r i va t e f l o a t zoomSpeed = 10 .0 f ;
17 [ S e r i a l i z e F i e l d ] p r i va t e f l o a t currentZoom = 8.0 f ;
18
19 p r i va t e Vector3 cu r r en tPo s i t i on ;
20 pub l i c GameObject [ ] camTargets ;
21
22 // Star t i s c a l l e d be f o r e the f i r s t frame update
23
24 void Star t ( ) {
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25 // Ret r i eve a l l p o s s i b l e t a r g e t s by the ”CamTarget” tag
26 camTargets = GameObject . FindGameObjectsWithTag ( ”CamTarget” ) ;
27 // Sort t h i s array
28 camTargets = camTargets . OrderBy (p => p . name) . ToArray ( ) ;
29 }
30
31 // Update i s c a l l e d once per frame
32 void Update ( )
33 {
34 Vector3 d i r e c t i o n = new Vector3 (0 , 0 , 0) ;
35 // Get the cur rent po s i t i o n on the i n i t i a l c l i c k o f LMB
36 i f ( Input . GetMouseButtonDown (0) ) {
37 cu r r en tPo s i t i on = cam . ScreenToViewportPoint ( Input . mousePosit ion ) ;
38 }
39
40 // Ca lcu la te the new po s i t i o n on draggin with LMB down
41 i f ( Input . GetMouseButton (0 ) ) {
42 Vector3 newPosit ion = cam . ScreenToViewportPoint ( Input . mousePosit ion ) ;
43 d i r e c t i o n = cu r r en tPo s i t i on − newPosit ion ;
44 cu r r en tPo s i t i on = newPosit ion ;
45 }
46
47 UpdateCamera ( target , d i r e c t i o n ) ;
48 HandleZoom ( ) ;
49 }
50
51 /// <summary>Handles the zooming in and out o f the camera</summary>
52 p r i va t e void HandleZoom ( ) {
53 // S c r o l l i n g up loads to zooming in
54 i f ( Input . mouseScro l lDe l ta . y > 0) {
55 currentZoom −= zoomSpeed ∗ Time . deltaTime ;
56 }
57 // S c r o l l i n g down l ead s to zooming out
58 i f ( Input . mouseScro l lDe l ta . y < 0) {
59 currentZoom += zoomSpeed ∗ Time . deltaTime ;
60 }
61
62 Mathf . Clamp( currentZoom , minZoom , maxZoom) ;
63
64 }
65
66 /// <summary>Updates the camera pos i t i on , r o t a t i on and t r an s l a t i on </summary>
67 /// <param name=”ta rg e t”>The camera ’ s o r b i t target</param>
68 /// <param name=”d i r e c t i o n”>The d i r e c t i o n the camera should move</param>
69 p r i va t e void UpdateCamera ( Transform target , Vector3 d i r e c t i o n ) {
70 cam . trans form . po s i t i o n = ta rg e t . p o s i t i o n ;
71
72 cam . trans form . Rotate (new Vector3 (1 , 0 , 0) , d i r e c t i o n . y ∗ 180) ;
73 cam . trans form . Rotate (new Vector3 (0 , 1 , 0) , −d i r e c t i o n . x ∗ 180 , Space .World )

;
74 cam . trans form . Trans late (new Vector3 (0 , 0 , −currentZoom ) ) ;
75 }
76
77 /// <summary>Sets the camera t a r g e t to passed parameter</summary>
78 /// <param name=”ta rg e t”>The ta r g e t the camera should orb i t</param>
79 pub l i c void SetCameraTarget (GameObject t a r g e t ) {
80 t h i s . t a r g e t = ta rg e t . t rans form ;
81 }
82
83 /// <summary>Gets a l l camera o rb i t ta rge t s </summary>
84 /// <returns>Array o f GameObjects conta in ing cameras</returns>
85 pub l i c GameObject [ ] GetCameraTargets ( ) {
86 re turn t h i s . camTargets ;
87 }
88 }

Listing A.8: Allows the user to control the camera using the mouse (OrbitCameraScript.cs)
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1 us ing System . Co l l e c t i o n s ;
2 us ing System . Co l l e c t i o n s . Generic ;
3 us ing UnityEngine ;
4 us ing UnityEngine . UI ;
5
6 pub l i c c l a s s PopulateDropdownScript : MonoBehaviour
7 {
8 pub l i c OrbitCameraScript orb itCameraScr ipt ;
9 pub l i c GameObject camContro l ler ;

10 pub l i c GameObject [ ] camTargets ;
11 pub l i c TMPro .TMP Dropdown targetDropdown ;
12 // Star t i s c a l l e d be f o r e the f i r s t frame update
13 void Star t ( )
14 {
15 // Get the dropdown component on the cur rent gameobject
16 targetDropdown = th i s . gameObject . GetComponent<TMPro .TMP Dropdown>() ;
17 // Get the o rb i t camera s c r i p t
18 orb itCameraScr ipt = camContro l ler . GetComponent<OrbitCameraScript >() ;
19 // Get the t a r g e t s from OrbitCameraScript
20 camTargets = orbitCameraScr ipt . GetCameraTargets ( ) ;
21 PopulateDropdown ( targetDropdown , camTargets ) ;
22
23 // Add l i s t e n e r s
24 targetDropdown . onValueChanged . AddListener ( de l e ga t e {
25 DropdownValueChanged ( targetDropdown ) ;
26 }) ;
27 targetDropdown . onValueChanged . AddListener ( de l e ga t e {
28 DataPanelScr ipt . OnDropdownChange ( targetDropdown ) ;
29 }) ;
30 targetDropdown . onValueChanged . AddListener ( de l e ga t e {
31 HeatmapScript . OnDropdownChange ( targetDropdown ) ;
32 }) ;
33
34 // Set the t a r g e t i n i t i a l l y to Stadium i f p o s s i b l e
35 fo r each (TMPro .TMP Dropdown . OptionData opt ion in targetDropdown . opt ions ) {
36 i f ( opt ion . t ex t == ”Stadium” ) {
37 targetDropdown . va lue = targetDropdown . opt ions . IndexOf ( opt ion ) ;
38 }
39 }
40 }
41
42 p r i va t e void PopulateDropdown (TMPro .TMP Dropdown dropdown , GameObject [ ]

opt ionsArray ) {
43 List<s t r i ng> opt ions = new List<s t r i ng >() ;
44 Debug . Log ( ”nr o f t a r g e t s : ” + opt ionsArray . Length ) ;
45 fo r each ( var opt ion in opt ionsArray ) {
46 opt ions .Add( opt ion . name) ;
47 }
48 dropdown . ClearOptions ( ) ;
49 dropdown . AddOptions ( opt ions ) ;
50 }
51
52 p r i va t e void DropdownValueChanged (TMPro .TMP Dropdown change ) {
53 orb itCameraScr ipt . SetCameraTarget ( camTargets [ change . va lue ] ) ;
54 }

Listing A.9: Dynamically fills the camera target dropdown list with possible targets
(PopulateDropdownScript.cs)

1 us ing UnityEngine ;
2 us ing System . Co l l e c t i o n s ;
3 us ing System . Co l l e c t i o n s . Generic ;
4 us ing System . IO ;
5 us ing UnityEditor ;
6 us ing System ;
7 us ing System . Linq ;
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8
9 pub l i c c l a s s CSVLogger : MonoBehaviour

10 {
11 // This c l a s s i s used f o r wr i t i ng CSV log f i l e s o f the robot
12 // note that t h i s approach may not be the most e f f i c i e n t , i t saves qu i t e a
13 // l o t o f data in memory without l im i t , i t i s more to demonstrate and lay
14 // the foundat ion f o r fu tu r e implementat ions
15
16 // Folder path f o r l og f i l e s
17 p r i va t e s t a t i c s t r i n g d i r ec toryPath = ”Assets /Logs” ;
18 // L i s t to keep track o f robot data
19 p r i va t e s t a t i c L i s t<DataEntry > [ ] da taL i s t = new List<DataEntry > [ 6 ] ;
20 // Sanity check to make sure data ends up in c o r r e c t l i s t
21 p r i va t e bool [ ] entryDone = new bool [ 6 ] ;
22
23 p r i va t e void OnEnable ( ) {
24 // Subsr ibe to the RobotDataUpdateEvent
25 TurtleCommManager . robotDataUpdateEvent += OnRobotDataUpdate ;
26 TurtleCommManager . robotPosUpdateEvent += OnRobotPosUpdate ;
27 }
28
29 p r i va t e void OnDisable ( ) {
30 // Unsubsribe to the RobotDataUpdateEvent
31 TurtleCommManager . robotDataUpdateEvent −= OnRobotDataUpdate ;
32 TurtleCommManager . robotPosUpdateEvent −= OnRobotPosUpdate ;
33 }
34
35 p r i va t e void Star t ( ) {
36 // F i r s t check i f l ogg ing f o l d e r e x i s t s
37 i f ( ! D i r ec to ry . Ex i s t s ( d i r ec toryPath ) ) {
38 // I f not , then c r e a t e i t
39 Di rec to ry . CreateDirec tory ( d i r ec toryPath ) ;
40 }
41 // I n i t i a l i z e f i r s t l i s t entry
42 f o r ( i n t i = 0 ; i < dataL i s t . Length ; i++) {
43 dataL i s t [ i ] = new List<DataEntry>() ;
44 dataL i s t [ i ] . Add(new DataEntry ( ) ) ;
45 }
46 }
47
48 [MenuItem( ”Tools /Write CSV f i l e s ” ) ]
49 p r i va t e s t a t i c void WriteCSVFiles ( ) {
50 Debug . Log ( ” Sta r t wr i t i ng out CSV log f i l e s ” ) ;
51 // Write out f i l e s f o r a l l robots
52 f o r ( i n t i = 0 ; i < dataL i s t . Length ; i++) {
53 s t r i n g f i l ePa t h = di rec toryPath + ”/ robot ” + i + ” l o g s ” + DateTime .

Now. ToString ( ”yyyyMMdd hhmmss” ) + ” . csv ” ;
54
55 Debug . Log ( ”Writing CSV log f i l e f o r robot ” + i + ” : ” + f i l ePa t h ) ;
56 StreamWriter wr i t e r = new StreamWriter ( f i l ePa t h ) ;
57 wr i t e r . WriteLine ( ”time , ID , x , y , ro ta t i on , team , battery , motor1 temp ,

motor2 temp , motor3 temp” ) ;
58 fo r each (DataEntry entry in dataL i s t [ i ] ) {
59 wr i t e r . WriteLine ( entry . GetEntryCSV ( ) ) ;
60 }
61 wr i t e r . Flush ( ) ;
62 wr i t e r . Close ( ) ;
63 }
64 Debug . Log ( ”Writing out CSV log f i l e s f i n i s h e d ” ) ;
65 }
66
67 p r i va t e void OnRobotDataUpdate ( i n t turt l e ID , IntPtr teamColor , IntPtr

batteryVoltage , IntPtr emergencyStatus , double motorTemperature1 , double
motorTemperature2 , double motorTemperature3 ) {

68 s t r i n g timeStamp = Time . t imeSinceLevelLoad . ToString ( ” 0 .00 ” ) ;
69 dataL i s t [ tu r t l e ID ] . ElementAt ( dataL i s t [ tu r t l e ID ] . Count − 1) . SetRobotData (

timeStamp , turt l e ID , teamColor , batteryVoltage , motorTemperature1 ,
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motorTemperature2 , motorTemperature3 ) ;
70 i f ( entryDone [ tu r t l e ID ] ) {
71 dataL i s t [ tu r t l e ID ] . Add(new DataEntry ( ) ) ;
72 entryDone [ tu r t l e ID ] = f a l s e ;
73 } e l s e {
74 entryDone [ tu r t l e ID ] = true ;
75 }
76 }
77
78 p r i va t e void OnRobotPosUpdate ( i n t turt l e ID , bool smoothMovement , double robot x

, double robot y , double robot ph i ) {
79 s t r i n g timeStamp = Time . t imeSinceLevelLoad . ToString ( ” 0 .00 ” ) ;
80 dataL i s t [ tu r t l e ID ] . ElementAt ( dataL i s t [ tu r t l e ID ] . Count − 1) . SetRobotPos (

timeStamp , turt l e ID , robot x , robot y , robot ph i ) ;
81 i f ( entryDone [ tu r t l e ID ] ) {
82 dataL i s t [ tu r t l e ID ] . Add(new DataEntry ( ) ) ;
83 entryDone [ tu r t l e ID ] = f a l s e ;
84 } e l s e {
85 entryDone [ tu r t l e ID ] = true ;
86 }
87 }
88
89 p r i va t e c l a s s DataEntry {
90 p r i va t e s t r i n g timeStamp { get ; s e t ; }
91 p r i va t e i n t tu r t l e ID { get ; s e t ; }
92 p r i va t e s t r i n g team { get ; s e t ; }
93 p r i va t e IntPtr batte ryVol tage { get ; s e t ; }
94 p r i va t e double motorTemperature1 { get ; s e t ; }
95 p r i va t e double motorTemperature2 { get ; s e t ; }
96 p r i va t e double motorTemperature3 { get ; s e t ; }
97 p r i va t e double robot x { get ; s e t ; }
98 p r i va t e double robot y { get ; s e t ; }
99 p r i va t e double robot ph i { get ; s e t ; }

100
101 pub l i c void SetRobotData ( s t r i n g timeStamp , i n t turt l e ID , IntPtr teamColor ,

IntPtr batteryVoltage , double motorTemperature1 , double
motorTemperature2 , double motorTemperature3 ) {

102 t h i s . timeStamp = timeStamp ;
103 t h i s . tu r t l e ID = tur t l e ID ;
104 i f ( teamColor == ( IntPtr ) 0) {
105 t h i s . team = ”Magenta” ;
106 } e l s e i f ( teamColor == ( IntPtr ) 1) {
107 t h i s . team = ”Cyan” ;
108 } e l s e {
109 t h i s . team = ” ” ;
110 }
111 t h i s . batte ryVol tage = batteryVol tage ;
112 t h i s . motorTemperature1 = motorTemperature1 ;
113 t h i s . motorTemperature2 = motorTemperature2 ;
114 t h i s . motorTemperature3 = motorTemperature3 ;
115 }
116
117 pub l i c void SetRobotPos ( s t r i n g timeStamp , i n t turt l e ID , double robot x ,

double robot y , double robot ph i ) {
118 t h i s . timeStamp = timeStamp ;
119 t h i s . tu r t l e ID = tur t l e ID ;
120 t h i s . robot x = robot x ;
121 t h i s . robot y = robot y ;
122 t h i s . r obot ph i = robot ph i ;
123 }
124
125 pub l i c s t r i n g GetEntryCSV ( ) {
126 re turn t h i s . timeStamp + ” , ” + th i s . tu r t l e ID + ” , ” + th i s . robot x + ” , ”

+ th i s . robot y + ” , ” + th i s . r obot ph i + ” , ” + th i s . team + ” , ” +
th i s . bat teryVol tage + ” , ” + th i s . motorTemperature1 + ” , ” + th i s .
motorTemperature2 + ” , ” + th i s . motorTemperature3 ;

127 }
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128 }
129 }

Listing A.10: Records the robot data and allows the user to export the results to CSV files
(CSVLogger.cs)

Towards Digital Twins for Soccer Robots: a use case in reusing artifacts 65


	Contents
	List of Figures
	Introduction
	Project context
	Definition of a Digital Twin
	Project objectives & Research questions

	Related work
	Use cases of Digital Twins
	Advantages of a Digital Twin

	Background
	Robot soccer
	The Turtle robots
	Motion
	Vision
	World model
	Strategy
	Communication
	Refbox

	Simulator
	2D simulator
	3D simulator

	3D model

	Elements of a Turtle Digital Twin
	Requirements
	Physical entity
	Virtual entity
	3D model
	High poly model
	Low poly model
	UV mapping
	Materials and texturing
	Rigging

	Digital environment

	Services
	Data
	Connections

	Resulting DT
	Workflow
	Physical entity
	Services
	Data
	Connections
	Virtual entity
	3D model
	Preparing for modeling
	3D Modeling
	UV mapping
	Materials and texturing
	Rigging
	Resulting 3D model

	Setting up digital environment
	Render pipeline
	Loading the library in Unity
	Creating baseline movement

	Newly introduced features
	Camera controls
	Motion Smoothing
	Data panel
	Heatmap
	Data export


	Resulting DT

	Conclusions
	Summary
	Research questions
	Future work

	Bibliography
	Appendix
	Code listings

