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B-Spline Surface Modelling with Coverage Path
Planning towards Autonomous Vitrectomy

L.T. Coerver, Y.G.M. Douven and M.J.G. van de Molengraft
Department of Mechanical Engineering

Eindhoven University of Technology

Abstract—Robotic systems have successfully been used to assist
surgeons in various operations. The use of such systems increases
instrument accuracy and reduces tremors of the surgeons hands.
One of the most occurring eye operations is the vitrectomy. The
difficulty of this operation lies in the required high precision
movements for prolonged periods of time. Using a robotic system
to perform this operation could result in fewer complications
and shorter operation times. This paper explores a method for
a robotic system to autonomously perform a vitrectomy. To this
end, a B-Spline surface model of the eye is created from distance
measurements taken from the tip of the robot’s instrument. Based
on this model a path is planned that allows for the removal
of the vitreous without damaging the eye. This path is then
executed and adjusted based on model updates from new distance
measurements.

NOMENCLATURE

V Control point vector or matrix.
φ Rotation around the x-axis.
ψ Rotation around the y-axis.
σ Standard deviation.
A Working space within the eye.
Bi,k kth order B-Spline at knot interval [ti, ti+k].
Cn Continuous up to the nth derivative.
Cl Cone that originates fron the scleral entry and extends

around the lens, lying tangent to its surface.
k Order of the B-Spline (curve or surface).
N Number of control points.
rc Cleaning radius of the vitrectome.
z Depth of the vitrectome into the eye.

I. INTRODUCTION

IN recent years many breakthroughs have been achieved
on the topic of surgical robots [1] [2]. Most of these

robotic systems assist the surgeon during surgery by scaling
down their movements, filtering out tremor, giving haptic
feedback or even guiding the surgery via a vision system.
As of yet the most advanced systems, such as the Da Vinci
Surgical System, can prevent the surgeon from making harmful
movements but cannot move themselves. This is done by
analysing the operation area and setting virtual constraints on
the robot’s movements [3] [4]. Currently no system exists that
can perform an operation completely autonomous.

One of the most occurring eye operations is the vitrectomy.
During a vitrectomy, the vitreous is removed from inside the
eye and replaced with a balanced saline solution. Many reasons
exists why a person could require a vitrectomy. The most

frequent ones are: retinal detachment, epiretinal membranes,
macular holes, blood in the vitreous (due to trauma or diabetic
retinopathy) or floaters. Performing a vitrectomy requires very
high precision, preferably 1 to 10 µm [2]. The human hand
can achieve a precision of about 100 µm for durations of
up to 20 seconds. Besides this lack of precision, the surgeon
is also limited by the stereoscopic visual input through a
microscope and almost non-existent sense of touch. This
makes a vitrectomy very difficult to perform.

This paper explores a method for the Preceyes Surgical
System (PSS) to autonomously perform a vitrectomy. The
system autonomously finds its way through the eye based
on distance measurements taken via an optical coherence
tomography (OCT) sensor. The OCT-sensor scans the retina
and part of the tissue behind it. Each scan is then analysed
to determine the location of the retina with a precision of 20
µm. Based on the distance measurements and encoder data of
the robot, a model is created of the eye. This model is then
used to create a path that will cover the eye to remove the
vitreous.

To create the model, a surface has to be fitted on a set
of unorganized points. Much research has been done on this
problem since it arises in many applications such as computer
graphics, 3D scanning and medical imagery. Methods used to
approximate surfaces from point clouds range from Coulomb
Potentials [5] to B-Splines [6], Radial Basis Functions [7] [8]
and even Self-Organizing Neural Networks [9]. However, most
of these methods assume the dataset to be entirely available a
priori. In this paper, data points are becoming available over
time and the surface fitting method used should be able to
handle this in an efficient manner. This changes the problem
to one of recursive fitting. Solutions to this problem have been
found using a Kalman Filter to determine the influence of new
measurements on the fitting of a B-Spline curve [10] [11].
This paper will build upon the results from [10] and [11] to
recursively fit a B-Spline surface.

To remove the vitreous a path needs to be planned that
covers the model. The go to approach for 3D volume coverage
path planning (VCCP) is to decompose the volume into a
series of 2D layers [12]. A paper on coverage path planning
with application to robotic intracerebral haemorrhage evacu-
ation [12] deals with 3D VCPP without a 2D decomposition
by minimizing the task space distance travelled. This seems
like a promising strategy since minimizing surgery duration
and movements inside the eye are important to reduce change
of complications. However, besides minimizing the distance
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travelled, it is also important to minimize contact with the
vitreous due to its connection to the retina. Moving it will pull
on the retina with the possibility of it tearing. To minimize
the chance of this happening, interaction should be kept to
a minimum. A second reason to minimize interaction is to
prevent the vitreous from moving through the eye. The robot
has as of yet no way to detect the vitreous and clears it by
simply covering the entire eye. If vitreous would move to an
already covered area it would remain after the operation and
possibly result in complications. Removing the vitreous layer
by layer minimizes interaction to only the tip of the vitrectome.
To realize a layer by layer path, a cost function would need
to be used in the 3D VCCP algorithm that can accommodate
this. The 2D layer decomposition strategy inherently works in
this way and because of this reason the coverage path planning
used in this paper will build upon this strategy.

This paper is constructed in the following way. Chapter II
analyses the procedure of a vitrectomy and describes how it
could be performed by an autonomous robotic system. Chapter
III describes how measurements of the retina are used to create
a model using a B-Spline surface and Kalman Filter. Chapter
IV gives the coverage path planning that uses the model to plan
a path through the eye that updates online. Finally, chapter V
gives the conclusions and future work.

II. THE AUTONOMOUS VITRECTOMY

The vitrectomy consists of many steps, normally all exe-
cuted by the surgeon. This section will examine the steps that
are taken over by the robotic system. From these steps and
their translation to autonomy, requirements can be taken that
will determine what the capabilities of the model and coverage
path planning algorithm should be.

A. The procedure

This paper will focus on removing the vitreous of a patient
with a fully attached retina. It is important for the retina to be
attached since the PSS has currently no method of detecting
and avoiding the retina when it is floating in the eye. The
starting state of the robot is assumed to be as follows: any
peripherals necessary for the operation have been placed at
their position, the system is calibrated and the tip of the
vitrectome is positioned just inside of the eye. The operation
consists of various steps [2], three of which are of importance
here. These are the removal of vitreous around the incision site,
the removal of the vitreous core, and the shaving of vitreous
close to the retina. Together these steps take approximately 15
to 17 minutes for a specialised surgeon to perform. At the end
of these steps, the vitreous is largely removed at which point
the surgeon takes over to perform the final steps. One of these
final steps is the detachment of the vitreous from he optic
nerve. This is a very critical step to the successful removal
of the vitreous. During this step there is a higher chance to
cause retinal tears due to the stronger connection between the
vitreous and the optic nerve. The surgeon gradually detaches
this connection bit by bit. What makes this step so difficult
to perform is the difficulty of determining if the connection
is fully severed. Due to the required involved motions and

Figure 1: Adapted from [13]. Shows the robot entering the
eye at the scleral entry. The scleral entry acts as the remote
center of motion around which the robot can rotate over the
angles φ, ψ and θ. The depth of the into the eye is given by
z. Attached to the probe are the vitrectome and the distance
sensor.

Figure 2: Visualization of the vitrectome entering the eye,
adapted from [14]. Based on where the robot can position
itself without touching the retina or the lens, a working area
is determined and indicated in green. The two black lines
inside the working area are the rough trajectories of the
measurements shown in Figure 3b and 3c.

inability of the robot to detect the connection, this step is
better performed by the surgeon. The final step is to check if
any vitreous remains by staining it with a special dye. This is
also done by the surgeon, as the robot has as of yet no way
of detecting the stained vitreous.

B. The working area inside the eye

Figure 2 gives a schematic overview of the eye and the robot
entering it. The vitrectome is inserted at the scleral entry. In
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the case of an eye with a natural lens this point lies 4 mm
away from the border between the sclera and the cornea [14].
During the operation, measurements of the retina along with
the average dimensions of the human eye [15] are used to
create a working area that prevents interaction with anything
other than the vitreous. This working area is marked in green
in Figure 2 and is restricted by three elements. These are: the
retinal surface, the posterior section of the lens and the trochar
used to insert the vitrectome into the eye. The retinal surface
is indicated in the figure as the circular part of the red line.
The limitations of the lens on the working area are indicated
by the straight section of the red line. This represents a cone
shaped surface that extends from the scleral entry and lies
tangent to the surface of the posterior section of the lens. The
lens’ position cannot be measured by the robot. To ensure it is
not touched, this virtual cone is placed around it. The position,
shape and size of the cone are based on the dimensions from
[15]. Finally the protrusion length of the trocar into the eye
limits the vitrectome from clearing the area close to the entry
point. Depending on the type, the total length of the trocar
varies from 4-6 mm [16]. The thickness of the sclera at the
scleral entry approximates to 0.50±0.11 mm [17]. This leaves
a radius of at most 5.5 ± 11 mm around the entry point that
cannot be reached.

C. Safety requirements

To guarantee the safety of the operation the model needs to
represent the retina with a certain level of accuracy. An expert
vitreoretinal surgeon stated that the instruments were moved as
close as 0.5 mm to the retina. To guarantee safety, the accuracy
of the model will need to be high enough to allow for these
precise movements to fall within the confidence bounds of the
model. In other words, every orientation the robot can take,
as close as 0.5 mm from the retina, needs to fall inside the
working area with a specified certainty. This required certainty
is assumed to be 99.99%, though may change as required.

III. MODELLING

The distance measurements taken from the retina can be
used to create a model. This model should be able to represent
the retina in such a way that allows for the safe execution of the
surgery. This means that the model can guarantee movements
as close as 0.5 mm to the retina to be safe. The model will
be used to plan a path that will be executed by a robot. It
is preferred that the model is smooth enough for the robot to
follow the edges from as close as 0.5 mm without it having to
make adjustments to the path to guarantee a smooth trajectory.

A. Structure of the retinal surface

During the procedure, measurements of the retina are taken
using an OCT-probe. This small sensor is fitted on the tip
of the vitrectome and creates a 1-dimensional depth scan of
a point up to 3.7 millimetres in front of it. If the retina
is within range, its position can be determined from the
scan. This occurs at a rate of 700 Hz. The noise of these
measurements has a Gaussian distribution with a standard
deviation of approximately 20 µm.

Figure 3 shows in-vivo distance measurements taken from
the retina of a human eye. The y-axis gives the distance
between the scleral entry and the position of the retina. When
taking a closer look at Figure 3 many details can be seen that
the model will have to handle. Figure 3a shows a 19 second
stationary measurement of a single point on the retina. It
visualizes the influence of the patient’s heartbeat and breathing
on the retinal position. These repetitive movements cause a
shift in the retinal position that with future work will be
compensated for, resulting in measurements of a stationary
retina. As of yet, the heartbeat and breathing are still included
in the measurements and will therefore be assumed to be
Gaussian noise. Band-passing the data in Figure 3a to filter out
the heartbeat and breathing movements shows that these have
a standard deviation of 7.2 and 5.9 µm respectively. Together
with the standard deviation of the distance sensor the assumed
Gaussian noise on the measurements becomes 22.1 µm.

Figures 3b and 3c show measurements taken in a straight
line across the retina. The black lines in Figure 2 shows
the rough location of these measurements. This visualizes
its typical structure and the expected shape that needs to
be modelled. Video recording from the surgery shows some
measurements to have been disturbed by movements of the
patient. Occurrences of these movements can be seen in Figure
3b and 3c around x = 4 and x = 11 respectively. Since these
disturbed measurements do not accurately represent the retinal
surface, they have been grayed out and will not be used when
testing the surface fitting.

In short, the most important disturbances in measurement
data that need to be correctly handled by the model are: gaps
between the available measurements caused by the retina not
being in range, heartbeat, breathing, movements of the patient
and measurement errors.

Besides disturbances and measurement artifacts that need
to be excluded by the model, it is also important to know
what the model will have to fit. In other words, what is the
shape of the retina. According to P. Nogueira et al. (2011) the
retina can be approximated as a sphere with an average radius
of 10.74 mm. However, since this is an approximation, the
model should be able to handle deviations from this shape.
These include varying radii within an eye, resulting in more
of an ellipsoid. Analysing the measurements from Figures 3a
and 3b shows a maximum deviation of 0.41 mm from their
respective average radii. The fovea is another element that
causes the eye’s shape to deviate from a sphere. According to
[18], the vertical thickness of the fovea measured between the
inner- and external limiting membrane varies from 0.15 mm at
the center to 0.40 mm at the rim. This results in a difference
of 0.25 mm that occurs over a distance of approximately 1.2-
1.5 mm. The model should be able to describe these small
deviations from the otherwise almost spherical shape of the
eye.

B. Modelling the retinal surface

The model of the retina should be able to describe its almost
spherical form and the indentations caused by the fovea at
an unknown location. To do this a B-Spline surface will be
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Figure 3: Shows three different parts of the measurements from
a patients retina. (a) is an 11 second measurement of a single
point on the retina. It clearly shows the patients heartbeat as
a series of peaks with an amplitude less than 50 µm. (b) and
(c) show measurements in which the robot moved in a straight
line across the retina. The distance on the y-axis is measured
from the scleral entry to the retina. Video recording from the
surgery shows some measurements to have been disturbed
by movements of the patient. These measurements have been
marked gray.

used. A B-Spline curve or surface is a piece-wise polynomial
function [19] [20] [21]. One of its strengths is that coefficient
changes only have local effects [22]. Inversely, this means that
when new measurements are incorporated into the model the
affected coefficients only consist of a small local group based
on the order k of the B-Spline. This is a very useful property
to keep the computational cost of model updates low and
allows for effective scaling. It also has the added benefit of the
measurements not influencing areas of which no information is
available. The eye is organic after all, there are no guarantees
that unmeasured areas equal the average human anatomy.

A B-Spline curve of order k is a piece-wise polynomial
function of order k − 1 that uses N control points to shape
N number of kth order B-Splines into a polynomial [19]. The
power of this method is that multiple low order polynomials
(B-Splines) are used to create a single high order curve.
Instead of having to re-evaluate all of the curve’s parameters
with every measurement, only the local k control points
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Figure 4: B-Splines of orders 1, 2 and 3.

of one polynomial piece have to be adjusted. This is less
computationally expensive. The B-Spline curve is defined over
a set of knots that form the connections between the separate
pieces. These knots are positioned along the curve in a non-
decreasing sequence t := (ti) [19]. A first order B-Spline with
k = 1 has the following definition

Bi,1(t) =

{
1, if ti ≤ t < ti+1

0, otherwise . (1)

It has the value one between the two knots ti and ti+1 and
zero elsewhere. A B-Spline is defined over a series of knots
and outside of this interval has a value of zero. The amount
of knots over which the B-Spline is defined depends on its
order k. A kth order B-Spline has k + 1 knots [20]. One
of their core strengths is that higher order B-Splines can be
created by combining lower order ones through recurrence in
the following way [21]:

Bi,k(t) =
(t− ti)Bi,k−1(t)

ti+k−1 − ti
+

(ti+k − t)Bi+1,k−1(t)

ti+k − ti+1
(2)

Figure 4 shows B-Splines of orders 1, 2 and 3 respectively. The
first-order B-Spline is defined between two knots and consists
of a constant piece. The second-order B-Spline is defined
between three knots and consists of two linear pieces. The
third order B-Spline is defined over four knots and consists of
three quadratic pieces that form a smooth piecewise quadratic
function with connections at the knots. Using (2), a B-Spline
of any order k can be created in k − 1 recursive steps.
To create a B-Spline curve, multiple B-Splines can be added
together. Each B-Spline adds to a part of the curve over a
subset of the knot vector. The individual B-Splines that make
up this curve can then be scaled to mould the curve into the
desired shape. This is shown in Figure 5, where five B-Splines,
shown in the lower sub-plot, are scaled and summed to create
the curves shown in upper sub-plot. Creating a B-Spline curve
from summing multiple scaled B-Splines can be done by using
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Figure 5: Third order B-Splines scaled with the control point
values [1 2 1 3 2]. When summed, this creates the curve seen
in the upper sub-plot. Since the B-Splines are third order, the
B-Spline curve is only defined at points where three B-Splines
are non-zero. This is valid for t ∈ [ti+2, ti+5].

(3), where t is a position along the knot vector and M is the
total number of knots equalling N + k [10].

y(t) =

M∑
i=1

V (ti)Bi,k(t) (3)

Determining a point on the B-Spline curve using (3) would
require running through all individual B-Spline functions,
calculating their value at t and scaling these values with their
respective control point V (ti). Doing this using (2) can be
rather computationally expensive due to its recursive nature. To
improve the computational cost, the equation can be rewritten
to a matrix representation that allows the evaluation of a point
on the B-Spline curve by a single calculation. This requires
the knots to be equally spaced. To show how this is done, an
example using three 3rd order B-Splines is given in Figure
6. In this case, the knot interval [ti, ti+1] has one section of
each of the three 3rd order B-Splines that contribute to it. To
determine the value of a point t along the B-Spline curve, its
respective knot interval [ti, ti+1] has to be selected and the
point has to be translated to a normalized value inside that
knot interval, meaning tnorm = t−ti

ti+1−ti . The functions of the
three B-Spline sections in the knot interval are then evaluated
for tnorm and summed. To find these functions, the B-Splines
are determined in (4) using (2). The bold parts of each B-
Spline in (4) are the quadratic functions that together create
the part of the B-Spline curve that lies between the knots ti
and ti+1.
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Figure 6: Three third order B-Splines can create a fully defined
B-Spline curve section between the knots ti and ti+1.

Bi−2,3 =
1

2
[(t2 + 4t+ 4)Bi−2,1(t)

+ (−2t2 − 2t+ 1)Bi−1,1(t)

+ (t2 − 2t + 1)Bi,1(t)]

Bi−1,3 =
1

2
[(t2 + 2t+ 1)Bi−1,1(t)

+ (−2t2 + 2t + 1)Bi,1(t)

+ (t2 − 4t+ 4)Bi+1,1(t)]

Bi,3 =
1

2
[(t2)Bi,1(t)

+ (−2t2 + 6t− 3)Bi+1,1(t)

+ (t2 − 6t+ 9)Bi+2,1(t)]

(4)

The bold parts of (4) can be translated to a matrix that
calculates this section of the B-Spline curve for t ∈ [0, 1].
This results in (5) [19].

M2T (t) =
1

2

 1 −2 1
−2 2 1
1 0 0

t2t
1

 (5)

For a 4th order B-Spline curve the matrix becomes

M3T (t) =
1

6


−1 3 −3 1
3 −6 0 4
−3 3 3 1
1 0 0 0



t3

t2

t
1

 (6)

These matrices now give the ability to evaluate a point
on the B-Spline curve by only inserting the desired position
between two knots as t ∈ [0, 1] and scaling the resulting B-
Spline parts with their respective control points. This changes
(3) to the new form

yi(t) = V i,kMkT (t) (7)

With V being the k + 1 control points around knot interval i
defined by [Vi−b k+1

2 c, . . . , Vi+d k
2 e].

Equation 7 gives a B-spline curve in 2D. To model a B-
Spline surface in 3D an extra dimension is added in which the
B-Splines are evaluated. The control points vector Vi,k now
becomes a (k + 1)× (k + 1) matrix consisting of all control
points that influence a point on the surface. To evaluate the B-
splines and their control points in the new dimension T (y)>

and M>
k are used. This results in (8) [19]. Figure 7 gives a

visual example of B-Splines evaluated in 3-dimensional space.

z(x, y) = T (y)>M>
k V i,j,kMkT (x) (8)
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Figure 7: Shows third order B-Splines in 3D space. When
scaled with control points and summed these basis functions
will form a surface in the same way that was shown in Figure
5.

To allow the B-Spline surface to represent a sphere, a ge-
ometric transformation is used in which the three dimensions
of the surface represent the angles φ and ψ and depth zr of
the robotic system from Figure 1. Using (9), the x, y and z
coordinates of the sphere can be determined.

x = zr · sin(φ)

y = zr · sin(ψ) · cos(φ)

z = zr · cos(ψ) · cos(φ)

(9)

Figure 8 shows a set of 225 control points that form a sphere
using this method. The control points are uniformly spaced
over φ and ψ.

C. B-Spline fitting using an Extended Kalman Filter

In order to fit the model to the distance measurements of
the retina an Extended Kalman Filter (EKF) is used [10]. The
use of an EKF allows also for the inclusion of movements of
the eye into the position of the retina.

The state consists of all control points in the system and
the input consists of the current orientation of the instrument
given as in (10).

x̂k =


V11
V12

...
Vmn

 , uk =

[
φ
ψ

]
(10)

Measurements are given as

zk = z + d (11)

Using (8), the system estimates an expected measurement
based on the current position of the robot [φ, ψ] with

z̃(φ, ψ) = h(xk|k+1, uk) = T (ψ)>M>
k V i,j,kMkT (φ)

(12)

0
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15
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10

20

25

10

y

0

x

0
-10 -10

Figure 8: A set of 225 control points used to represent a sphere.
The control points are uniformly spaced at fixed intervals over
the angles φ and ψ of the robot’s coordinate frame.

It then compares this to the measurement obtained from the
OCT-sensor and calculates the innovation term

ỹk = zk − h(x̂k|k+1, uk) (13)

The covariance estimate prediction, its innovation term and
the Kalman gain are computed as follows

P k|k−1 = P k−1|k−1 + Qk (14)

Sk = HkP k|k−1H
>
k + Rk (15)

Kk = P k|k−1H
>
k + S−1k (16)

These can then be used to update the state estimate and
covariance estimate with

x̂k|k = x̂k|k−1 + Kkỹk (17)

P k|k = (I −KkHk)P k|k−1 (18)

The covariance of the observation noise R equals the square of
the standard deviation of the measurement noise. As explained
in section III-A, assuming the measurement noise is Gaussian,
this value equals 0.0221 mm. This results in R = 0.000488
mm. The covariance of the process noise is given by the
(m · n) × (m · n) matrix Q. As of yet it is assumed that
the environment is static and therefore Q equals 0. In section
III-E it will be explained how Q can be used to describe model
uncertainties that increase over time.

R = 0.000488, Q =

0 · · · 0
...

. . .
...

0 · · · 0

 (19)

The covariance of the state estimate is given by the (m ·n)×
(m · n) matrix P .
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D. Fitting the Retina with B-Splines and an EKF
To create a proper fit of a surface, two properties of a

B-Spline are important. These are the density of the control
points and its order k.

1) Choosing the B-Spline order: The continuity at the
knots of the B-Spline surface is dependent on its order. With
order k the continuity at the knots will be equal to Ck−1

[23]. Meaning k − 1 derivatives will be continuous at the
knots. This could be beneficial if higher order derivatives
need to remain smooth in these areas. The downside of this
is that with increasing order the resulting surface will be
smoothed out over its control points, which can be seen as
a form of low-passing. At the start of this chapter it was
stated that the path planned based on the model should be
smooth without any adjustments. Creating a path that can be
executed smoothly requires the acceleration to be bounded.
This results in the path having to be at least C1 continuous.
Since the edges of the path will be following the B-Spline
surface model, it is beneficial to have the model also be at
least C1 continuous. To achieve this, a second order B-Spline
surface can be used. To further increase smoothness of the
path the jerk can also be bounded. The model can take this
into account by using a third order B-Spline surface.

2) Choosing the control point density: The second property
of the B-Spline surface that needs te be determined is the
density of the control points. Choosing an optimal density
results in an optimal balance between the resulting fit and
the required number of measurements to converge to that fit.
Having a too high density allows the model to follow the
environment very accurately, but requires many measurements
to do so. This is because the affected area of each control point
gets smaller as the density increases. Having a too low density
allows the model to converge very quickly to a fit, but the fit
might not be as accurate.

To determine what the influence of the control point density
is in the case of fitting the retina, several different densities
have been tested using a second order B-Spline. The test
consists of fitting the two sections from Figures 3b and 3c
as well as a 9 mm section of the foveal area of the retina.
The foveal area has been chosen due to it having the highest
rate of change. As explained in section III-A, in this area the
position of the retina varies 0.25 mm over approximately 1.2-
1.5 mm. The two straight lines are used to test how the model
will fit a regular area of the retina. All of these measurement
sections have noise laid over them from the patient’s heartbeat,
breathing and the distance sensor’s noise. To create a ground
truth from which the model fitting error can be calculated
the measurement sections are low passed at just below 0.9
Hz. This removes the noise from the heartbeat and distance
sensor and leaves the low frequency breathing and retinal
shape. Removing the breathing noise was not possible without
removing parts of the retinal structure as well. The resulting
assumed ground truths of each data section are shown as the
black lines in Figures 9, 10 and 11.

Each section will be fitted using all data points of the ground
truth from that section for varying control point densities.

TABLE I: Standard deviations σ of the error for varying
control point spacings.

Standard deviation σ [µm]
Spacing [mm] Fovea Line 1 Line 2 99.99% bounds [µm]

1 26.7 8.1 29.8 115.9
3 51.8 25.9 71.4 277.8
6 67.1 27.0 87.5 340.4
9 120.7 27.8 99.0 469.6

18 120.7 27.8 118.0 469.6

These are 1, 3, 6, 9 and 18 mm between consecutive points.
Figures 9, 10 and 11 show the resulting fits and their errors for
the various densities. An upper bound of 18 mm was chosen
due to the length of the measurement section from Figure
11. In the case of Figures 9 and 10 the data section length
approximates 9 mm. When having 9 mm spacing between
control points, a single knot interval of a second order B-
Spline curve is defined over a length of 9 mm. This means
that increasing the spacing beyond this point will have no
changes on the sections from Figures 9 and 10. The length of
the data section from Figure 11 approximates 18 mm and its
fit will not change for increasing spacing beyond this point.

Assuming the fitting errors are Gaussian, Table I shows
their standard deviations. It shows an increasing error margin
for higher control point spacings, though this increase seems
irregular and dependent on the particular section. To determine
if the fits are accurate enough such that positions as close as
0.5 mm from the ground truth fall within the 99.99% confi-
dence bounds, the bounds are determined using the highest of
the three standard deviations for each density. This results in
the confidence bounds shown in the last column of Table I.
Based on these confidence bounds, all various densities create
fits that fulfill the requirements. Therefore a spacing of 9-18
mm is used to keep the number of measurements required for
convergence low. The next step would be to simulate even
lower densities on larger sets of data to find the point where
the confidence bounds cross the 0.5 mm threshold.

E. Uncertainty estimation

The variance of the environment estimate ẑ for a certain
position [φ, ψ] can be calculated based on the current state
estimate x̂. To do this, the correlation between the relevant
local control points and the system estimate needs to be
determined. This can be done by adapting the method from
[24] to a B-Spline surface as follows.

Using (8), a point [φ, ψ] in the environment is estimated by
the model using the n × n control points from V . Where n
is the 1+order of the B-Spline surface. To determine how the
environment estimate is correlated with these control points at
the position, the Jacobian ∂z(φ,ψ)

∂x̂k
is calculated. This results in

Ĥφψ =


Ĥ11

Ĥ12

...
Ĥmn

 . (20)

Which gives the correlation between between the environment
estimate and its influencing control points at [φ, ψ]. Since
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Figure 9: The upper plot shows the fits of 12000 measurements
taken from foveal area for varying control point densities. The
lower plot shows a boxplot of the errors for each fit. The blue
box marks the 25th and 75th percentiles of the errors. The
black lines extend to the most extreme values that are not
considered outliers. The red lines indicate the outliers.
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Figure 10: The upper plot shows fits for varying control point
densities of 39000 measurements that form a straight line
across the retina. The lower plot shows a boxplot of the errors
for each fit. The blue box marks the 25th and 75th percentiles
of the errors. The black lines extend to the most extreme values
that are not considered outliers. The red lines indicate the
outliers
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Figure 11: The upper plot shows fits for varying control point
densities of 45000 measurements that form a straight line
across the retina. The lower plot shows a boxplot of the errors
for each fit. The blue box marks the 25th and 75th percentiles
of the errors. The black lines extend to the most extreme values
that are not considered outliers. The red lines indicate the
outliers.

only the control points of V are correlated with this specific
location, only their respective entries in Ĥφψ are non-zero.
Looking at (8), it can be determined that the correlation terms
in Ĥφψ are only dependent on the coordinates φ and ψ and
the static matrix Mk. This means that they do not change and
Ĥφψ can be completely determined preemptively for every
position in the environment.

With Ĥφψ known, the variance of the state estimate x̂ at
[φ, ψ] then equals Σx̂(φ,ψ) = ĤφψP . The variance of z̃(φ, ψ)
can then be found by

Σẑ = |h(Σx̂, φ, ψ)| =
∣∣∣h(ĤφψP )

∣∣∣ (21)

As an example, the 99.99% certainty interval then equals

ẑ ± 3.891
√

Σẑ (22)

1) Choosing an initial P: An important aspect of this
certainty interval is its initial value. When the model and
EKF are in their initial states, the given certainty interval
should be such that the retina will always fall within its
bounds. This can be achieved by correctly setting the initial
values of P . As explained in section II-B the retina can be
described as a sphere with an average radius of 10.74 mm.
This means that to be sure the retina always falls within the
certainty interval, even without any measurements, the initial
values of P need to result in a certainty interval greater than
10.74 mm. Figure 12 shows this value to be 21.3.

2) Time dependent uncertainty estimate: The retina is
organic material and moves with the patient. Therefore, it
cannot be stated with absolute certainty that an area remains
exactly the same between two measurements. Especially as
time between measurements increases, it should be assumed
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Figure 12: The initial 99.99% certainty interval for increasing
values of P. The radius of the sphere that fits the average
human retina equals 10.74 mm. P is initialized with 21.3 on
its diagonal to create a certainty interval that guarantees to
cover the retina even without measurements.

that the shape or position of an area could have changed. To
include this time dependent growing uncertainty in the EKF,
the covariance matrix of the process noise Q can be used to
let P grow every iteration of the EKF by

P k|k−1 = P k−1|k−1 + Qk. (23)

By changing the diagonal terms of Q to be non-zero, the
variance of the states given by the diagonal of P will increase
over time. This results in an increasing Kalman gain (16),
which allows for quicker convergence to new measurements
based on (17). Setting the off-diagonal term to non-zero causes
the covariance between the states to increase over time. This
will cause measurements to influence control points outside
of their local group V . Doing this can be useful to allow
points that remain unmeasured for long periods of time to be
modelled based on other areas.

IV. COVERAGE PATH PLANNING

Before a path can be planned, it is important to create a
strategy that will be applied to remove the vitreous. Moving
through the vitreous will have two important effects that need
to be considered. The first is that the vitreous is attached to
the retina. Moving the vitreous will pull on the retina, which
can result in it detaching from the surface. The second effect
is that the surgery system cannot detect the vitreous. So
the only way to guarantee its entire removal is to cover the
workspace in the eye entirely, while making sure the vitreous
does not move to previously cleared areas. To minimize
both these effects, the vitreous is cleared using a 2D layer
decomposition strategy [12]. Starting at the scleral entry the
vitreous is removed layer by layer, putting only the tip of the
vitrectome into contact with the vitreous.

A. Creating the path

Figure 14 gives an example of the path. To create it, the
model is divided into layers based on the radius rv of the
area around the vitrectome that is cleaned when stationary.
These layers are positioned at fixed depths zl = l · rv , with
l = [1, . . . ,

⌊
zmax

rv

⌋
]. The layered path will be based on the

B-Spline model. The exact size and shape of the model varies
over time and the path planning should be able to follow these
changes. It does this by basing the outer ring each layer on
the shape of the model at that layer’s depth zl . Figure 13
visualizes how the models shape at zl is determined. First, as
shown in Figure 13a, a flat surface is positioned at zl. Then the
model and surface are transformed to the coordinate frame of
the robot, shown in Figure 13b. Finding the intersecting points
is done numerically by subtracting the two surfaces and finding
the points with errors closest to zero. The resulting points are
then interpolated to create a continuous and smooth outer line
for the path. This outer line can then be scaled inwards based
on rv to cover the layer. Once all layers are filled using this
method, they are connected to create a single path that covers
the entire model. The connections between the lines and layers
are made such that the path can ’open up’ and encircle the
posterior section of the lens. Every time the model is updated,
the path will follow by updating the outer lines of each layer.
An extra check is performed to guarantee that the path does
not collide with the posterior section of the lens. Any points
along the path that lie within the lens’ cone as explained in
section II-B will be removed.

B. Guaranteeing complete coverage

A grid of checkpoints is used to determine if the robot has
covered the entire inside of the eye, assuming the model is a
perfect fit of the retina. This coverage grid is uniformly spaced
throughout the eye. Once the robot cleans a checkpoint it is
marked as such. Figure 15 plots the percentage of unmarked
cells against the path completion. At the end only six cells
(0.0012%) of 1 mm3 remain unmarked. After completion
of the covering path, a new path will be planned visiting
all unmarked checkpoints inside the model. To find a near-
optimal route for this Traveling Salesman Problem (TSP) an
Ant Colony System is used [25]. Once the last checkpoints are
cleaned the entire model has been covered and, assuming the
model represents the eye, the vitrectomy has been successfully
completed.

V. CONCLUSION AND RECOMMENDATIONS

B-Splines have been used in combination with an Extended
Kalman Filter to create a modelling algorithm that can
create a surface model of the retina built up from distance
measurements. Through this model a volume covering path is
planned that allows the robotic system to remove as much of
the vitreous as possible. With this goal in mind a second or
third order B-Spline surface is advised in order to maintain
sufficient continuity at the knots. Based on simulations with
in-vivo distance measurements a spacing of 9-18 mm between
control points is advised to create a fit of the retina using a
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Figure 13: To determine the outer line of a path layer at
depth zl, the intersecting line between the model and a surface
placed at zl is determined. (a) shows this surface and the
model. (b) shows them transformed into the coordinate frame
of the robot.

Figure 14: The left figure shows one of the layers that form
the path. The outer line takes on the shape of the model. This
line is then scaled inwards to cover the entire layer. The right
figure shows the various layers that make up the entire path.
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Figure 15: Shows the percentage of unmarked cells plotted
against the path completion. The cells have a size of 1 mm3.
At the completion of the path only six cells remain unmarked.

second order B-Spline surface. Though simulations of larger
data sets are necessary to check if this spacing can increase
further.

The path planning uses a 2D layer decomposition strategy
to divide the volume of the eye. This has the advantage of
allowing the robot to remove the vitreous layer by layer,
minimizing contact between it and the vitreous. This reduces
chances of tearing the retina as well as moving vitreous to
already cleaned places. To check if the robot has completely
covered the eye a coverage grid is used. Once a robot cleans
a point on the grid it is marked as such. The remaining
checkpoints will be cleaned one by one at the end of the
surgery to guarantee complete coverage.

In this paper, the control points were uniformly placed
on the retina. To further improve upon this work it is advised
to research the advantages of adjusting the control point
positions online. The ability to move or even add control
points would allow areas with higher detail to use more
control points as needed and be fitted better. Areas with low
detail could on the other hand use less control points and be
fitted faster requiring less measurements to converge.

The intersecting line between each layer of the path
and the model is currently determined numerically. This has
limitations based on the resolution of the evaluation of the
model. Finding the intersection algebraically will possibly
yield a more optimal result and could be computationally less
expensive.

The model has as of yet no method to cope with movements
of the patient. Ideally, when the eye is moved by external
factors the model should be able to detect this and shift along
to remain accurate. A method of adding extra states to the
EKF that describe the position of the center of the eye could
be created based on [26].
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