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Abstract

Intersections have a notable influence in traffic congestion and traffic accidents, especially in
urban environments. A possible solution to these problems is automation of intersections and
vehicles. The majority of research into this topic considers fully autonomous vehicles. The
focus of this thesis, however, is suggesting appropriate speed advices to the driver in order to
pass an unsignalized intersection in a safe manner and to optimize traffic flow.

As the controller expects a reaction from the driver to the speed recommendation, the
approach also needs to account for any possible uncertainties that can occur in that reaction.
A distributed scenario-based model predictive control (MPC) regime is proposed as a suitable
method. The scenario-based MPC draws independent and identically distributed samples of
the uncertainty from a bounded interval and calculates an optimal solution over the scenarios.
The guarantees on avoiding collisions are directly related to the number of scenarios that is
user defined. As the controller needs to account of for all the scenarios, the number of total
constraints and therefore computation time significantly increases with the number of scen-
arios. To reduce the computational burden of the approach the Convex-Concave Procedure
and Cutting Planes technique are introduced. With this method only the most restrictive
constraints are involved in the optimization.

The scenario-based MPC regime is evaluated through simulations w.r.t. a control scheme
that does not consider uncertainties. The results from the simulations display the capability
of the approach to ensure safe passage of all interacting agents even under uncertainties from
the driver reaction.
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Chapter 1

Introduction

The number of vehicles in the European Union is rapidly increasing over the last decades,
which results in an increasing amount of traffic congestion [36]. Intersections in particular are
known to decrease the traffic flow, as current regulators (stop signs, roundabouts and traffic
lights) require vehicles to stop and wait their turn to cross the intersection. Furthermore,
intersections are prone to traffic accidents since individual vehicle trajectories cross. Statistics
from the EU show that 43% of all road injury accidents are related to intersections, while
96% of those accidents are attributed to drivers [45]. Similar numbers can be seen in the
US [13]. Intersections would be safer if they are controlled by an autonomous cooperative
intersection algorithm that ensures no collision between vehicles happens. Furthermore, the
algorithm would decide the crossing order and vehicle’s speed for maximum time and energy
consumption efficiency. Although the potential for improvement is highest for highly or fully
automated vehicles, their series production is still in the not so near future. For that reason it
is investigated how to issue recommendations to the driver in terms of vehicle speed in order
to cross the intersection in a safe and optimal manner.

1.1 Problem definition and research objectives

An ideal intersection management system ensures safe passage of all vehicles, while accounting
for maximum time and energy efficiency, and comfort. The main contribution of this thesis
is designing a controller for intersection management that gives a driver advices in terms of
recommended speed. To do so, it is needed to:

• Develop an appropriate representation of the driver reaction on speed recommendation
and implement it into the controller and the simulation environment.

• Define and model the possible and relevant uncertainties that come from the driver.
The reaction of the driver consists of the necessary time for the driver to react to the
controller suggestion and the action of the driver. Furthermore, deviations from the
suggested speed are expected as humans cannot accurately achieve and maintain an
exact speed.

• Create a computationally efficient controller that takes into account these uncertainties
while satisfying the safety related non-convex constraints. This is a challenging task, as
the number of non-convex constraints is expected to grow.
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CHAPTER 1. INTRODUCTION

• Perform simulation-based evaluation of the control regime.

In terms of optimal control, the control objectives are formalized as objectives to be
optimized. Then, the optimization problem might consider the following objectives:

• Minimize absolute accelerations to optimize fuel consumption

• Minimize jerk to increase comfort level

• Minimize the deviation of the velocity from its set point (e.g., speed limit)

• Minimize non-smooth velocity recommendations (being the control action)

subject to the following constraints:

• Avoid collisions with other agents (non-convex constraints)

• Minimum and maximum vehicle recommended speed

• Minimum and maximum vehicle velocity

• Minimum and maximum vehicle accelerations

The control problem is to be distributed among the agents in accordance to [29], where
every agent has to solve its local Optimal Control Problem (OCP). The work in this report
leverages the scenario-based MPC as an appropriate method to account for the modelled
uncertainties. To reduce the computational burden of the local OCP, a different technique for
solving the problem is proposed. Simulation results show the effectiveness of the algorithm.

1.2 Outline

The thesis is comprised of several chapters and appendices and a brief description of each of
them is given below.

Chapter 2 provides a review of the available literature related to the research topic. The
chapter is structured such that first different control approaches for intersection automation
are presented. Furthermore, methods for modelling the driver reaction are introduced as well
as control algorithms that can deal with parameter uncertainties.

Chapter 3 covers the modelling of the intersection collision points, inter-vehicle distances
and the prediction model. The coordinate systems of the vehicles and the necessary safety
gap are explained in the intersection collision point section, as well as the vehicle geometry.
The other section in this chapter covers the composition of the prediction model.

In Chapter 4 first the control problem is described for the distributed case where time
delay is not considered. In order to solve the non-convex OCP, the SDP relaxation of the
optimization problem is presented as a way to solve the problem. This control method
is denominated as the nominal control algorithm as it does not directly account for any
uncertainties.

Chapter 5 presents the scenario-based MPC approach as an uncertainty-aware control
method. First, the definition of the control method and algorithm which extends the approach
in chapter 4 are presented. Furthermore, the technique that reduces the computational time

2



CHAPTER 1. INTRODUCTION

is described. Finally, the research approaches in dealing with time delay in the system and
the difficulties that occur are described.

In Chapter 6 the simulation setup and results are shown. First a comparison between
the nominal and the scenario control methods is presented, showing the necessity for an
uncertainty-aware approach and its effectiveness in dealing with the uncertainties. The second
study analyses the capability of the approach to account for time delay in the model.

Finally, Chapter 7 concludes the thesis with a summary and the general conclusions of all
chapters and gives suggestions for future research topics.
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Chapter 2

Literature review

One way the automation of intersections is conducted is by considering only full autonomous
vehicles, while another way could be to give advices to each driver how to pass the inter-
section. For the case where fully automated vehicles are considered the algorithm demands
acceleration from the vehicle. In the other case the driver translates the speed advice to
vehicle acceleration. Due to potentially time varying driver reaction, the driver is identified
as an uncertain part of the control loop. Model Predictive Control algorithms for application
of intersection automation with the driver as uncertain part of the control loop have not been
analysed in previous works. For that reason it is beneficial to first investigate approaches
that only consider highly automated/autonomous vehicles as they have been greatly covered
and provide a good basis of the problem (intersection collision point modelling, how to solve
the non-convex problem, priority management etc.). In order to extend such an algorithm it
is investigated how the driver reaction can be modelled as part of the control loop. Finally,
algorithms that can consider parameter uncertainties are presented.

2.1 Highly automated/autonomous vehicles

The automation of intersections is a topic that has been greatly covered in recent literature.
A general overview of the challenges that come from intersection management and proposed
algorithms can be found in [11] and [49]. One of the common approaches is using Model
Predictive Control (MPC). Some of the advantages that MPC provides are its ability to
consider multiple objectives, anticipation capabilities and that the constraints are considered
in the design phase of the controller. In general MPC can either be centralized, where every
vehicle sends information to one control unit which solves the control problem and sends the
information back or decentralized/distributed where the vehicles solve the control problem by
themselves and communicate between each other. According to [17] there are three apparent
advantages of a distributed approach: (1) Agents can coordinate in order to trade-off their
own objectives and a global goal, while ensuring safety; (2) Robustness guarantees to a single
agent failure; (3) Only the control inputs of a single agent are considered instead of having
the control inputs of all agents in the Optimal Control Problem (OCP); (4) Low data rates,
dropouts or proximity-based communication can be sufficiently handled.

The main task in automated intersection management is to ensure safety of all involved
agents. Formulating and applying this safety constraint is what varies most in the available
literature. In [8] the safety constraint is expressed as a critical set that needs to be avoided

4



CHAPTER 2. LITERATURE REVIEW

by the agent. The constraint is of non-convex nature. In order to formulate this constraint
as convex, the problem is divided into two sub-problems. Problem A states that an optimal
control policy needs to be found such that agent i enters the intersection after all preceding
agents, whereas problem B states that agent i exits the intersection before any preceding
agents. Both problems can be handled as convex problems. At each time t, agent i solves
problems A and B and chooses the control with the lowest cost. Furthermore, the distributed
control problem is solved sequentially where every agent takes his decision for intersection
crossing according to an a priori fixed decision order. The main advantages are its low
complexity and scalability.

In [34] the safety constrains are based on a minimum distance between the agents that
ensures no collision, while the priority assignment is based on arrival time. The arrival time
for agent i is calculated as: τi =

di,0
vi(0)

, where di,0 is the distance between vehicle i and the

intersection, and vi(0) is the agent speed. The safety constraints are formulated based on
this priority assignment. The approach applies soft-constrained MPC to ensure feasibility
and reduce the conservatism of the collision constraint. Furthermore, the paper provides a
scenario when one of the vehicles is replaced by a platoon of vehicles and modifies the cost
function to ensure optimal crossing.

A different approach is presented in [38] where a transformation from the original time
domain to spatial domain is performed. The safety constraint is formulated such that the
time when vehicle k exits the critical set must be less than or equal to the time when the
following vehicle in the sequence enters the critical set. As there is no easy way to obtain
the optimal entry/exit times due to the variable speed, the domain transformation is used.
In addition to the domain transformation, a variable change is performed by replacing the
vehicle speed with its inverse. With this the time dependent non-convex safety constraints
are translated into convex position dependent linear constraints. This centralized approach
provides a minimization of the sum of all cost functions for all agents.

In [42] the authors build on their previous work [23] where a bang-bang priority preserving
control law is proposed. The shortcomings of this approach is that it leads to non-smooth
vehicle behaviour and increased fuel consumption due to the requirements from the control law
to either maximally brake or accelerate the vehicle. This is thus the reason why the authors
looked into solving the problem with MPC. The paper suggests two sequentially solved MPCs.
Based on a predetermined priority order the highest prioritized agent (agent 1) solves the
problem first and transmits its future states to the lower prioritized agents. After that the
second prioritized agent solves the optimization problem by enforcing a priority-preserving
constraint w.r.t agent 1 and transmits its future states and so on. The first MPC approach is
based on a simple linear prediction scheme to estimate future states, also assuming that prior
vehicles maintain constant velocities during the considered time horizon. The second MPC
approach predicts the future states of prior vehicles by using the results from the previous
time step. From the simulations that are conducted it is concluded that the second MPC
approach performs better in terms of fuel consumption.

Apart from MPC strategies, papers like [18] use constrained Extended Kalman Filter
(EKF) to estimate the states of a nonlinear 5-state vehicle model. The proposed sparse traffic
optimization algorithm uses the coupled EKFs estimates to determine the optimal controls
for each agent by minimizing the average delay of the agents that approach the intersection.
The delay is defined as the amount of additional time required for a vehicle to traverse the
intersection due to the predefined priority of other vehicles.

5



CHAPTER 2. LITERATURE REVIEW

The work presented in [35] suggests a Cooperative Intersection Control (CIC) that relies
on V2V communication. The CIC methodology consists of two control levels: (1) execution
level which controls the vehicle dynamics; (2) supervisory level that manages the access to the
intersection. The control of the vehicle dynamics is based on two concepts: path following for
lateral control and virtual platooning for longitudinal control. The virtual platooning con-
trol expands the functionality of the Cooperative Adaptive Cruise Control (CACC) into two
dimensions by using coordinate transformations. For intersecting vehicles a collision region
is defined and collision is avoided if one vehicle passes first. The passing order is determined
from the supervisory level control which is based on First Come First Serve crossing sequence.
To assess the functionality and illustrate the benefits from CIC two simulations are performed.
In the first scenario two vehicles cross the intersection, while in the second scenario a com-
parison between an intersection automated with CIC and an intersection controlled by traffic
lights is given. It is concluded that the CIC maintains a higher average velocity and a lower
average delay than traffic lights control.

In [19] all constraints and cost functions are based on time of access. In order to solve
the problem with Mixed Integer Linear Programming (MILP), any discontinuity in the cost
functions and constraints needs to be removed. Depending on the discontinuity either a con-
version from OR logic to AND logic is performed or a slack variable is introduced. Although
the approach in [4] is not about managing intersections, it provides a different collision avoid-
ance strategy. The paper presents the agents on a collision course as circles and by using
Minkowski addition transforms one agent in a geometric point. A sufficient and necessary
condition for two agents to be on a collision course is:

l̇ij(t0) < 0
χ̇1(t) · χ̇2(t) ≤ 0,

(2.1)

where, l̇ij is the change of relative distance between the two agents and χ̇1, χ̇2 are the change
in the limit angles. Collision avoidance can thus be ensured if the sign of one of the conditions
is changed. The problem is then formulated as a constrained optimization problem and the
optimal solution is obtained by a Lagrangian function.

Other approaches like [26], [25], [27] exploit hybrid systems theory and [2], [7], [15], [14] a
scheduling based approach.

In the previous work, described in [29], a parallelized distributed MPC is created to
automate intersections. The approach takes the vehicle as a point mass model and therefore
models its dynamics as a double integrator. The drivetrain dynamics are modelled as a first
order lag element.

The distributed optimal control problem for each vehicle is subjected to the system dy-
namics and input, state and safety constraints. The non-convex safety constraint needs to
be prioritized in order to avoid deadlock-like situations from happening. For that reason
the time to react (TTR) is used, which indicates how much time is left for the system until
a braking manoeuvre with the maximum deceleration cannot avoid a collision at all times.
Less reaction time results in higher priority. In order to solve the non-convex quadratically
constrained quadratic problem (QCQP), it is reformulated into a Rank Constrained Semi-
definite Problem. The problem is then transformed into a convex one by using semidefinite
relaxation. This relaxed problem is solved by using known and developed techniques, such
as the randomization technique described in [16]. To evaluate the approach a simulation
intersection scenario involving four agents is created. The conclusion from the simulation is

6
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that the approach is real-time capable. The overall advantages of the suggested approach are:
(1) multiple vehicles can enter the intersection simultaneously; (2) the distributed optimal
control problem is solved in parallel without any nested iterations; (3) constraint prioritiza-
tion is a generic approach without prescribing any passing order; (4) the number of required
non-convex safety constraints is reduced to a minimum.

2.2 Driver as part of the control loop

The above mentioned approaches, however consider only fully autonomous vehicles. Including
the driver as a part of the system raises additional challenges. One of those challenges is how
to appropriately model the behaviour of the driver. This is a topic that many different authors
have investigated over the years. In [1] the author gives a detailed historic review of driver
acceleration models. The work itself focuses on car-following scenarios and the suggested
acceleration model is either in a car-following regime (i.e., the speed is adjusted to the vehicle
in front) or free-flow regime (i.e., no vehicle in front). The regime is decided based on a time
headway threshold value. A driver model that is based on driving data analysis is presented in
[48]. This model represents turning vehicles at signalized intersections. Based on observations
from the data a speed profile model is created as: v = c1t

3 + c2t
2 + c3t+ c4, where c1, c2, c3, c4

are coefficients that are adjusted towards the data. The speed profile model is however not
influenced by signals, pedestrians or other vehicles. In [39] a detailed control modelling of
humans’ sensory dynamics is presented. The paper takes into account the visual, vestibular
and somatosensory systems and gives transfer functions of each system. The gain coefficients
of the transfer functions are also provided which are based on previous work conducted by the
group. The dissertation [40] suggests a speed control method based on anticipated acceleration
reference. The driver is modelled as a proportional gain combined with time delay. This is
the simplest way of modelling the driver. A similar approach is seen in [41]. In [9] two driver
modelling approaches are presented. The first approach is a black box model which function
has the following form:

udk = fd(xdk, x
e
k, d

u
k). (2.2)

This function directly maps the current features of the vehicle and environment [xdk, x
e
k] to

the driver inputs udk with uncertainty duk . The second approach is using stochastic hybrid
system models where the state of the driver is represented by a random variable with an
associated transition probability function. The driver commands are dependent on the driver
state, and this dependency is modelled by a stochastic process. Black box methods are used
for applications that require a driver model for a specific manoeuvre, while stochastic hybrid
systems are used to represent transition between manoeuvres in a systematic manner.

2.3 Uncertainty-aware Model Predictive Control

Another challenge is how to include driver uncertainties in a computationally efficient control
method. In [20] and [21] the same author presents two similar approaches of implementing
the driver’s uncertainties for a lane keeping and obstacle avoidance scenario. The controller in
both papers is designed to only apply the correcting control action that is necessary to avoid
violation of the safety constraints. The uncertainty that comes from the driver is presented
as a deviation in the steering angle. One approach takes the uncertainties as the maximum

7



CHAPTER 2. LITERATURE REVIEW

deviation between the estimate of the steering angle and the actual steering angle, while in
the other approach the uncertainty lies in a normally distributed interval. The approaches
then create a feedback equation for the driver model that includes the uncertainty and solves
the problem by using a Robust Model Predictive Control or a Stochastic Model Predictive
Control.

In [9] two control approaches that handle uncertainties are summarized, with one of them
being similar to the approach in [21]. The other approach that the paper suggests is a
scenario-based MPC (SCMPC) which includes the uncertainty in the system via samples;
also described in [44]. Any model-based or data-based approach can be used for generating a
sufficient number of samples for the uncertainties. Moreover, the uncertainties can follow an
arbitrary distribution which does not need to be known explicitly. A scenario is defined as an
independent and identically distributed sample of the uncertainty variables. Each scenario
can lead to a different outcome of the vehicle dynamics, driver actions and/or the traffic
environment. Therefore, the corresponding predictions of the vehicle states, driver states and
the environment states become deterministic, but dependent on the control inputs and the
scenario. SCMPC is highly intuitive, flexible in handling many types of uncertainties and
generally easy to implement. For a higher number of scenarios, the likelihood of a constraint
violation decreases. Scenario MPC has been applied in centralized control schemes for lane
change assistance [43] and powertrain control of hybrid electric vehicles [28].

2.4 Conclusions

By including the driver, the control problem translates into giving direct recommendations
in terms of suggested speed instead of demanding an acceleration from the vehicle. The
driver itself then translates the suggestion to vehicle accelerations. The challenge of such
an approach comes from the fact that the reaction of the driver is time varying and can be
recognized as an uncertain part of the control loop. From the conducted literature review, a
MPC based approach for intersection automation where the diver reaction is involved and is
uncertain is not investigated. The work in this thesis presents an approach that accounts for
the modelled driver uncertainties and satisfies the control objectives.

8



Chapter 3

Modelling

This chapter covers the modelling of the intersection collision points, inter-vehicle distances
and the model that is used for control purposes. The report considers only non-signalized
four-way intersections with vehicles that are moving straight forward, as shown in Figure 3.1.
Traffic signs and traffic rules such as vehicle on the left has to yield to the vehicle on the right
do not hold any more, as it is left to the algorithm to decide the passing order for optimal
and safe transition. Further assumptions that are made are:

• All vehicles are driven by a human driver

• The desired route and velocity of every agent passing the intersection are a priori known
and do not change during the manoeuvre

• All vehicles are equipped with Vehicle-to-Vehicle (V2V) communication

• Data that has been send out at time k is available to every other vehicle at time k + 1

• System states are measurable and not subject to uncertainty

The vehicle’s geometry is modelled as a rectangle with its width and length denoted as
W [i] and L[i]. The geometrical centre defines the current vehicle position and is used as a
reference point in calculating the distances between agents.

Figure 3.1: Four-way intersection as considered in this thesis

9
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3.1 Intersection collision points

In order to ensure a safe transition for all participants, it is necessary that every agent knows
the collision points with other agents in the intersection. The collision point between two
agents i and j is defined as the intersection point between their respective trajectories and is

denoted as p
[i,j]
col . The areas that are dangerous lie before and after the collision point.

The intersection infrastructure, origin and destination of each vehicle are defined in a
global coordinate system with its origin being in the centre of the intersection. The control
problem, however, is solved within the vehicle’s own coordinate system and thus the collision
points have to be transformed from the global to the vehicle’s coordinate system. With
this transformation a collision point between two vehicles can have different values for each
vehicle. First the vehicle’s origin is specified w.r.t the global coordinate system and with
that the starting position of each agent is known. Knowing the origins and routes of all
vehicles, the exact position of all collision points are calculated in the global coordinate
system. Depending on the route of a vehicle, the distance between the geometrical centre of
an agent and its collision point is computed. The collision point with the smallest distance
to the considered agent is chosen as the origin of the vehicle’s own coordinate system. Thus,
the initial position of an agent is transformed into a negative value. The positive direction of
this coordinate system is along the vehicle’s driving path.

3.1.1 Safety distance gap

To ensure a safe passage between two vehicles that have a common collision point, a minimum

safety distance gap (d
[i,j]
safe) is defined. By knowing the distances to the collision point for each

vehicle, it can be defined that two vehicles are not colliding as long as the following equation
holds. ∣∣∣d[i]col∣∣∣+

∣∣∣d[j]col

∣∣∣ ≥ d[i,j]safe. (3.1)

In order to ensure safety, the safety distance gap is additionally multiplied by a safety
coefficient Sx. Different kinds of interaction between two vehicles lead to different safety
distance gaps. As the scope of this thesis is only to consider straight passing vehicles the
calculation of dsafe is performed only for this scenario. The largest distance between two
vehicles for which a collision occurs is shown in Figure 3.1.1.

From the figure the safety distance gap is defined as:

d
[i,j]
safe = Sx · (d[i]col,I + d

[j]
col,I), (3.2)

with d
[i]
col,I and d

[j]
col,I being equal to:

d
[i]
col,I =

L[i]

2
+
W [j]

2

d
[j]
col,I =

L[j]

2
+
W [i]

2
.

(3.3)

The calculated safety distance gap is used in the safety constraints which are further
elaborated in section 4.1.
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Figure 3.2: Largest distance leading to collision for two straight passing vehicles

3.2 Prediction model

By considering the driver as a part of the control loop, the prediction model consists of two
parts: the driver reaction to a speed recommendation and the vehicle dynamics. Generally,
the control systems issues a speed recommendation vx,ref to the driver who transfers that
recommendation into a reference acceleration. That reference acceleration is the input to the
vehicle dynamics model. Figure 3.3 presents a schematic overview of the proposed model. As
can be seen, the driver reaction to the recommended speed consists of a gain (Kd) and time
delay parameter (τ). This approach is extended by considering the fact that drivers cannot
exactly follow a speed advice, meaning that the recommended speed is subjected to additive
disturbance ∆vd. From a Human-Machine-Interface (HMI) point of view, by introducing this
additive disturbance it allows for showing an allowed speed interval instead of an exact speed
which is more convenient for a human driver. In this chapter first the vehicle dynamics are
specified after which the model dynamics including the driver reaction with and without time
delay are described.

Figure 3.3: Prediction model scheme

3.2.1 Vehicle dynamics

The vehicle is taken as point mass and thus its longitudinal dynamics are simplified as a
double integrator, while the drivetrain dynamics are presented by a first order lag element.

11



CHAPTER 3. MODELLING

This behavior is mathematically expressed as:

ȧ[i]x = − 1

Tax
· a[i]x +

1

Tax
· a[i]x,ref

v̇[i]x = a[i]x

ṡ[i]x = v[i]x ,

(3.4)

where Tax is the powertrain time constant, ax is the acceleration, vx is the speed, sx is the path
coordinate and ax,ref is the reference acceleration. Although the simplest representation of
vehicle and drivetrain dynamics, it is sufficient for the intersection scenario where no deviation
from the a priori known trajectory is assumed. Due to the double integrator the controlled
system is marginally stable. In the closed-loop MPC setting, however, the model can directly
be used without any pre-stabilizing feedback gain [32].

3.2.2 Driver reaction to the recommended speed without time delay

When no time delay is present (τ = 0) the reference acceleration is written as:

a
[i]
x,ref(t) = K

[i]
d e(t) and substituted in (3.4), whereK

[i]
d ∈ [Kd,Kd], e(t) =

(
v
[i]
x,ref(t) + ∆v

[i]
d − v

[i]
x (t)

)
and ∆v

[i]
d ∈ [∆vd,∆vd]. A continuous time state-space representation of the model is of the

following form:

{
ẋ[i] = A[i]x[i] +B[i]u[i] + E[i]w[i]

y[i] = C [i]x[i] +D[i]u[i]
(3.5)

or 

ȧ
[i]
x

v̇
[i]
x

ṡ
[i]
x

 =

− 1
Tax

−K
[i]
d

Tax
0

1 0 0
0 1 0


a

[i]
x

v
[i]
x

s
[i]
x

+

K
[i]
d

Tax
0
0

u[i] +

K
[i]
d

Tax
0
0

w[i]

y[i] =
[
0 1 0

] a
[i]
x

v
[i]
x

s
[i]
x

 ,
(3.6)

with D[i] = 0, u[i] being equal to the recommended speed v
[i]
x,ref and w[i] denotes the exogenous

disturbance ∆v
[i]
d and refers to the allowed velocity offset to the speed advice. This system is

discretized with the zero-order hold discretization technique. In essence:

x
[i]
k+1 = eA

[i](Ts)x
[i]
k +

∫ (k+1)·Ts

k·Ts
eA

[i](Ts·(k+1)−s)dsBu
[i]
k +

∫ (k+1)·Ts

k·Ts
eA

[i](Ts·(k+1)−s)dsEw
[i]
k .

(3.7)

The discreteA[i], B[i] and E[i] matrix are: A
[i]
d = eA

[i]Ts ;B
[i]
d =

∫ (k+1)·Ts
k·Ts eA

[i](Ts·(k+1)−s)dsB[i];

E
[i]
d =

∫ (k+1)·Ts
k·Ts eA

[i](Ts·(k+1)−s)dsE[i], with Ts being the sampling time and C
[i]
d = C [i]. Finally,

the discrete-time state space model is:
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a
[i]
x,k+1

v
[i]
x,k+1

s
[i]
x,k+1

 = A
[i]
d

a
[i]
x,k

v
[i]
x,k

s
[i]
x,k

+B
[i]
d u

[i]
k + E

[i]
d w

[i]
k

y
[i]
k = C

[i]
d

a
[i]
x,k

v
[i]
x,k

s
[i]
x,k


(3.8)

3.2.3 Driver reaction to the recommended speed with time delay

As the system has a feedback loop around the time delay, an arbitrary time delay (τ is
irrational multiple of the sample time) would result in an infinite dimension of the system
dynamics [5]. To cope with this issue the time delay is taken as an integer multiple of
the sampling time that in the system is represented as a shift in the input. The reference
acceleration in this case is:

ax,ref (t) = Kd(vx,ref (t− τ) + ∆vd(t− τ)− vx(t− τ)). (3.9)

The continuous time state space can be written as:{
ẋ(t) = A1x(t) +A2x(t− τ) +Bu(t− τ) + Ew(t− τ)

y(t) = Cx(t),
(3.10)

where A1 =

− 1
Tax

0 0

1 0 0
0 1 0

 , A2 =

0 − Kd
Tax

0

0 0 0
0 0 0

 , B =

 Kd
Tax
0
0

 andE = B. The A2 matrix can

be written as: A2 = A2
′ξT with A2

′ =

− Kd
Tax
0
0

 andξ =

0
1
0

. It can be noticed that A2
′ = −B.

Using this representation and by defining e(t−τ) = u(t−τ)+w(t−τ)−ξTx(t−τ) to represent
the delayed velocity tracking error, the ẋ(t) equation is written as:

ẋ(t) = A1x(t) +Be(t− τ), (3.11)

The zero order hold is applied to both vehicle dynamics and driver reaction model. In the
following A1,d and B1,d denote the discretized version of A1 and B computed with the zero-
order hold technique. The discrete time state space is of the following form:{

x̄k+1 = Āx̄k + B̄ēk

ȳk = C̄x̄k,
(3.12)

or {
x̄k+1 = Āx̄k + B̄ūk + Ēw̄k

ȳk = C̄x̄k,
(3.13)
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with Ā =

[
Γ1 Γ2

Γ3 Γ4

]
, B̄ =



0
...
1
0
0
0


and has (time delay+3,1) size, Ē = B̄, and C̄ =

[
Γ5 0 1 0

]
.

Γ1 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
0 · · · · · · · · · 0

 and is of (time delay, time delay) size;

Γ2 =


0 0 0
0 0 0
...

...
...

0 −1 0

 and is of (time delay,3) size;

Γ3 =
[
B1,d 0(3,time delay−1)

]
and has (3,time delay) size;

Γ4 = A1,d and is of (3,3) size;
and Γ5 is of (1,time delay) size and of Γ5 =

[
0 · · · 0

]
form.

Example of the system dynamics for time delay of 3 time steps is:





xτ3,k+1

xτ2,k+1

xτ1,k+1

x1,k+1

x2,k+1

x3,k+1

 =



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 −1 0

B1,d(1, 1) 0 0 A1,d(1, 1) A1,d(1, 2) A1,d(1, 3)
B1,d(2, 1) 0 0 A1,d(2, 1) A1,d(2, 2) A1,d(2, 3)
B1,d(3, 1) 0 0 A1,d(3, 1) A1,d(3, 2) A1,d(3, 3)





xτ3,k
xτ2,k
xτ1,k
x1,k
x2,k
x3,k

+



0
0
1
0
0
0

uk +



0
0
1
0
0
0

wk

yk =
[
0 0 0 0 1 0

]


xτ3,k
xτ2,k
xτ1,k
x1,k
x2,k
x3,k

 .
(3.14)

In the later phases of this project a system representation that can consider arbitrary time
delay is found. This representation exploits the structure of the system dynamics and its full
form is shown in Appendix A. In this report the current representation (where time delay is
a integer multiple of the time sample) is kept and used and the formulation mentioned in the
Appendix A can be considered as a future extension of the model.

With the presence of time delay in the system it is expected that unstable poles can be
obtained. This issue raises the need for a pre-stabilizing gain in the MPC formulation.

3.3 Conclusions

This chapter presents the definition of the intersection collision points and inner-vehicle dis-
tances that are necessary to define the safety distance. Furthermore, it covers the model used

14
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for control purposes, which is consisted of vehicle dynamics and driver reaction model, in the
cases when time delay is and is not present.
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Chapter 4

Distributed Model Predictive
Control

This chapter presents the first control approach that was taken which does not directly account
for the possible uncertainties in the driver reaction. The approach is denoted as the nominal
MPC scheme. The idea of MPC is to obtain optimal control actions w.r.t. the applied system
model by solving an optimal control problem subject to constraints. In a MPC environment
usually a linear or linearised discrete-time process model is used. When using MPC, at every
time step k a finite-time optimal control problem is solved over a finite prediction horizon
of length Hp. The controls are applied over a control horizon Hu of length Hu ≤ Hp. After
optimization only the first control input from the sequence is applied and then at the next
time step the optimization is executed over a shifted horizon.

The optimal control problem is formed and solved in a distributed way by applying a
primal decomposition technique to the centralized OCP in the same manner as in [29]. With
this technique the centralized OCP is translated into local OCPs with coupled constraints.
The collision avoidance constraint is a global objective that couples the agents. In the follow-
ing, the notation {·}(·|k) refers to the full prediction horizon data of the variable {·}.

On a general level, the full control approach can be summarized with the following al-
gorithm:

Algorithm 1 Distributed MPC, agent i at time k

1. Receive data via V2X. Receive the trajectories (d
[j]
i,(·|k)) of all agents.

2. Optimize. Formulate and solve the OCP of agent i and obtain optimal control sequence

u
[i],∗
(·|k).

3. Broadcast predicted trajectory via V2X. Compute the distances of agent i to

collision points with other agents j (d
[i,j]
col,(·|k)) and broadcast information. This distance

is defined as: d
[i,j]
col,(·|k) =

∣∣∣s[i]x,(·|k) − p[i,j]col,(·|k)

∣∣∣
4. Apply control. Apply the first element of the computed optimal control sequence
u∗(k|k).

5. Increment time. k = k + 1. Go to step 1.
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CHAPTER 4. DISTRIBUTED MODEL PREDICTIVE CONTROL

The key steps are how to form and solve the OCP. For that reason in this chapter first
the optimal control problem is stated along with the constraints that are imposed in order to
satisfy the control objectives. Following, the intersection prioritization is explained and the
method for solving the Optimal Control Problem is described. Finally, the conclusions from
this chapter are shown.

4.1 Optimal Control Problem

The calculation of the control signal is based on the minimization of a cost function, which
is formed based on the main objectives. The velocity vx of every agent i at the predicted
time should be close to the speed limit vlimit in order to optimize traffic flow. The speed limit
refers to the actual speed limit of the intersection or a virtual speed limit and is constant
for straight passing vehicles. The changes of the advised speed ∆u should be kept small in
order to achieve convenient speed advices to the driver. Finally, an increase of fuel efficiency
and to provide comfortable driving experience the longitudinal acceleration and jerk should
be minimized. These objectives are summarized in the following cost function:

J [i](x
[i]
0 , u

[i]
k ) ,Q[i]

Hp∑
m=1

(v
[i]
limit,(k+m|k) − v

[i]
x,(k+m|k))

2 +R[i]
Hu−1∑
j=0

∆u
[i],2
(k+m|k)+

S[i]

Hp∑
m=1

a
[i],2
x,(k+m|k) + T [i]

Hp∑
m=1

∆a
[i],2
x,(k+m|k),

(4.1)

where Q[i], R[i], S[i] and T [i] are positive weighting coefficients.

In addition to the objectives in the cost function, objectives that are formed as constraints
are incorporated in the problem. First, the minimum and maximum advised speed is bounded
such that the upper bound corresponds to the legal speed limit and the lower bound is equal to
zero. With these bounds the vehicle is not allowed to drive backwards and has to drive slower
than the intersection speed limit. This objective translates in the following input constraint:

0 ≤ u[i](k+m|k) + ∆v
[i]
d,(k+m|k) ≤ ū

[i]
(k+m|k). (4.2)

Furthermore, the actual vehicle velocity and absolute accelerations that result from the
driver reaction to the speed advice are constrained to a reasonable range to encourage safe
driving. These two objectives are formulated in the following state constraints:

0 ≤ v[i]x,(k+m|k) ≤ v̄
[i]
x , (4.3)

a[i]x ≤ a
[i]
x,(k+m|k) ≤ ā

[i]
x . (4.4)

For feasibility reasons, it needs to be ensured that the prediction horizon covers the co-
ordinate set Sc , [pcol,in, pcol,out] in which potential collisions may occur between agents.
If the optimization problem is not feasible, then the agent conducts an emergency braking
manoeuvre in a brake safe distance dbrake. In essence, this is when the agent is entering the
set Scb , [pcol,in − dbrake, pcol,out]. To achieve this objective, the minimum mean velocity is
bounded by:
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1

Hp + 1
(v

[i]
x,k +

Hp∑
m=1

v
[i]
(k+m|k)) ≥ v

[i]
mean (4.5)

If sx,k ∈ Scb, i.e., if the agent has approached the brake safe distance, and the agents
with higher priority have not left the conflict region, the minimum mean velocity (vmean) is

calculated by dividing the remaining distance to p
[i]
col,out by the preview time covered by the

prediction horizon. Otherwise, vmean is set to zero. Further details on the prioritization of
the agents is given in section 4.2.

Finally, the control regime must assure collision avoidance which is the most important
control objective. Theoretically, the safety constraints are defined such that the sum of the
distances between two interacting agents and their common collision point must be greater
than the safety distance gap. The safety distance gap is defined in section 3.1.1. The distance
between the controlled agent i and the collision point is defined as the distance between the

vehicle’s position s
[i]
x,(·|k) and the position of the common collision point p

[i,j]
col . The distance of

the colliding agent and the collision point is denoted as d
[j]
col,(·|k) and is broadcasted via V2X

communication. Mathematically the safety constraint is written as:∣∣∣s[i]x,(k+m|k) − p[i,j]col

∣∣∣+ d
[j,i]
col,(k+m|k) ≥ d

[i,j]
safe,m ∈ 1, . . . ,Hp. (4.6)

This constraint is rearranged in the form of a non-convex quadratic inequality constraint:

(
s
[i]
x,(k+m|k) − p

[i,j]
col

)2
≥
(
d
[i,j]
safe − d

[j,i]
col,(k+m|k)

)2
, d

[j,i]
col,(k+m|k) ≤ d

[i,j]
safe,m ∈ 1, . . . ,Hp. (4.7)

The safety constraint is imposed only when the non-squared right side of the inequality is

larger than zero
(
d
[i,j]
safe − d

[j,i]
col,(k+m|k)

)
, as in the other cases it is satisfied anyway. No rear end

collision avoidance constraints are considered in addition, as it is assumed that the driver is
capable of avoiding rear end collisions with other agents at intersection crossings.

All of these objectives can be summarized as a non-convex quadratically constrained
quadratic optimization problem that is solved independently by each agent:

min J [i](x
[i]
0 , u

[i]
(·|k))

s.t. system dynamics (3.12)

input constraints (4.2)

state constraints (4.3), (4.4) & (4.5)

safety constraints (4.7).

(4.8)

4.2 Agent prioritization

For non-convex problems there is no unique way on how to deal with coupling constraints. By
simply imposing safety constraints pairwise it might lead to deadlock situations or collisions
when solving the problem in parallel. The reason is the fact that the agents are not finally
aware of what the other agents’ purpose might be. In order to overcome this issue instead of
solving pairwise safety constraints, the safety constraints are prioritized.
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The prioritization of the agents is determined by the Time To React (TTR). TTR is a
function of the Minimum Time (MT) and the Time To Stop (TTS). Minimum time is defined
as the minimum time in which an agent reaches its nearest collision point without taking into
consideration other agents. Time To Stop is defined as the minimum time an agent needs to
stop the vehicle such that it does not pass the collision point. The TTS is computed with the
prediction model taking into consideration the maximum allowed velocity and deceleration.
Finally, TTR is the subtraction of TTS from MT. Figure 4.1 illustrates this relation. In
essence, TTR is the time in which the agent could start a braking action in order to stop the
vehicle in front of the first common collision point.

Figure 4.1: Time to react

The agent with the shortest Time To React gets the lowest value (i.e., priority equal
to 1) and is the highest prioritized agent. Additionally, agents without a common collision
point with any other agent, meaning vehicles on a non-collision route, do not calculate their
TTR. They are not considered in the priority order and receive a special integer equal to
the highest ranked vehicle. It is important to note that prioritized safety constraints do not
imply any intersection crossing order, but a priority order in case of a potential conflict. An
agent with lower priority has to yield for the higher prioritized agent, however an agent can
transverse the intersection first if it satisfies the given safety constraint. To be independent
of any centralized priority coordination regime, it is assumed that priorities are negotiated
in a distributed way among the agents once when the scenario is established at time t0 and
then remain constant for the entire manoeuvre.

4.3 Solving the non-convex distributed optimal control prob-
lem

The non-convex quadratically constrained quadratic problem (QCQP) can be written as:

min
u
[i]
(·|k)

u
[i],T
(·|k)P0u

[i]
(·|k) + q

[i],T
0 u

[i]
(·|k) + r

[i]
0

s.t. u
[i],T
(·|k)Pj,(k+m|k)u

[i]
(·|k) + q

[i],T
j,(k+m|k)u

[i]
(·|k) + r

[i]
j,(k+m|k), d

[j,i]
col < dsafe &

priority(j) < priority(i)

input constraints (4.2)

state constraints (4.4) & (4.5)

(4.9)

The P
[i]
0 matrix is a positive semidefinite matrix, while the P

[i]
j,(k+m|k) indicate the non-

convex part of the safety constrains and because of that is a negative semidefinite matrix.
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Furthermore, q
[i]
0 , q

[i],T
j,(k+m|k) are vectors while r

[i]
0 , r

[i]
j,(k+m|k) are affine terms.

By defining U [i] , u
[i]
(·|k)u

[i],T
(·|k) as described in [6], the QCQP with prioritized constraints is

reformulated as a rank constrained semidefinite program:

min
U [i],u

[i]
(·|k)

Tr(U [i]P
[i]
0 ) + q

[i],T
0 u

[i]
(·|k) + r

[i]
0

s.t. Tr(U [i]P
[i]
j,(k+m|k)) + q

[i],T
j,(k+m|k)u

[i]
(·|k) + r

[i]
j,(k+m|k) ≤ 0, d

[j,i]
col < dsafe &

priority(j) < priority(i)

S[i] ,

[
U [i] u

[i]
(·|k)

u
[i]
(·|k) 1

]
≥ 0, rank(S[i]) = 1

input constraints (4.2)

state constraints (4.4) & (4.5)

(4.10)

S[i] is the Schur complement matrix of U [i] − u[i](·|k)u
[i],T
(·|k), and with S[i] ≥ 0 and rank(S[i]) = 1

it is stated that U [i] = u
[i]
(·|k)u

[i],T
(·|k). The Tr(·) stands for the trace of a square matrix.

The problem is solved by dropping the rank(S[i]) = 1 constraint and with that a semidefin-
ite relaxation (SDR) of the original problem is obtained, [6]. Mature optimization techniques
already exist for such problems that provide efficient solutions. The technique that is adopted
to obtain a feasible solution of the OCP is a variant of the randomization technique shown
in [16]. The development of this approach was part of previous work performed by the group
at the Ford Research and Innovation centre. The full approach and algorithm, as well as the
feasibility and optimality are mentioned in [29]. The same approach is used in solving this
OCP.

4.4 Conclusions

This chapter shows how to form the intersection management problem into an Optimal Con-
trol Problem embedded in a MPC-based framework. Furthermore, it showed the SDP relax-
ation method as a technique to solve the originally non-convex, now convex problem while
ensuring feasibility.

The nominal MPC approach considers the driver parameters to be constant. It is assumed
that the value of these constants are determined and adjusted based on previous behaviour of
the driver. However, drivers often change behaviour due to external reasons (tiredness, mood,
environmental occurrences, etc) or when a different person is driving the same vehicle (spouse
or friend). Therefore, the controller model parameters might mismatch with the actual driver
parameters present in the system. This mismatch between the predicted and actual behaviour
can lead to violation of the imposed constraints, especially critical for safety constraints.
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Chapter 5

Distributed Scenario-based Model
Predictive Control

The approach described in the previous section is not able to consider any uncertainties that
can come from the driver reaction model. Thus, it is expected that a miss-match between the
predicted value in the control model and the actual driver can occur. According to literature
[9], [44] the scenario-based MPC is an uncertainty-aware control scheme. The approach gives a
probabilistic guarantee on constraint satisfaction by sampling the uncertainties in the system
in multiple scenarios.

Let δ
[κ]
(k|k) be independent and identically distributed sample of the uncertainty at time k.

A scenario σ
[κ]
k is defined as the full horizon sample: σ

[κ]
k ,

{
δ
[κ]
(k|k), . . . , δ

[κ]
(k+Hp−1|k)

}
. These

randomly selected scenarios reflect the potential driver reaction.

5.1 Scenario Optimal Control Problem

The optimal solution of the problem using scenario-based MPC is found by optimizing over
all scenarios. To implement this approach the formulation of the OCP, step 2) of the nominal
control approach algorithm (algorithm 1), is modified. In essence:

Algorithm 2 Scenario OCP, agent i at time k

1. Scenario Generation. Sample K scenarios.

2. Scenario Constraints. For every scenario impose input, state and safety constraints.

3. Scenario Optimization. Solve a single OCP that finds an optimal solution over K
scenarios s.t. scenario constraints.

It is assumed that the driver reaction does not change over a short period of time. This

translates into fixing the driver gain K
[i,κ]
d ∈ [K

[i]
d ,K

[i]
d ] and time delay τ [i,κ] ∈ [τ [i], τ [i]]

parameters over the prediction horizon. Every scenario still covers a different realization of

the parameters. On the other hand it is expected that the offset to the suggested speed ∆v
[i,κ]
d

varies over a short period of time. As such it is sampled from the bounded interval [∆v
[i]
d ,∆v

[i]
d ]
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for each time step of the prediction horizon. As a result of the varying parameters, a different
system model is obtained for every scenario{

x
[i,κ]
k+1 =A

[i,κ]
d x

[i,κ]
k +B

[i,κ]
d u

[i]
k + E

[i,κ]
d w

[i,κ]
k

y
[i,κ]
k =C

[i]
d x

[i,κ]
k .

(5.1)

For each of these scenarios separately, the state and safety constraints of the nominal OCP
have to be implied. The input and the state constraints on the velocity and acceleration are
expanded to:

0 ≤ u[i,κ](k+m|k) + ∆v
[i,κ]
d,(k+m|k) ≤ u

[i]
(k+m|k) (5.2)

v
[i]
x,(k+m|k) ≤ v

[i,κ]
x,(k+m|k) ≤ v

[i]
x,(k+m|k) (5.3)

a
[i]
x,(k+m|k) ≤ a

[i,κ]
x,(k+m|k) ≤ a

[i]
x,(k+m|k). (5.4)

In the same manner, the minimum mean velocity constraint is imposed for every scenario.
In essence:

1

Hp + 1

v[i]x,k +

Hp∑
m=1

v
[i,κ]
(k+m|k)

 ≥ v[i]mean. (5.5)

Defining the safety constraints for the Scenario MPC is more challenging as they depend
on the sampled trajectories of other agents j. In order to avoid every agent transmitting all
of its sampled trajectories for all scenarios, causing a large amount of data that is transmitted
through V2V, a different approach is taken. First the agent j calculates its path coordinate

trajectories s
[j,κ]
x,(·|k) for every scenario. Due to the uncertainties, the predicted trajectories vary

per scenario. Then, agent j determines its minimum and maximum path coordinate at the
predicted step k +m, i.e.,

s
[j]
x,(k+m|k) ,min

κ∈K
s
[j,κ]
x,(k+m|k)

s
[j]
x,(k+m|k) ,max

κ∈K
s
[j,κ]
x,(k+m|k).

(5.6)

To account for these trajectories, the length of the agents is artificially enlarged as:

∆L
[j]
(k+m|k) , s

[j]
x,(k+m|k) − s

[j]
x,(k+m|k), (5.7)

and a new geometrical centre of the vehicle is calculated

p̂
[j]
(k+m|k) ,

1

2

(
p
[j]
(k+m|k)+ , p

[j]
(k+m|k)

)
. (5.8)

The artificial enlargement and the new geometrical centre are shown in Figure 5.1.

The trajectory d̂
[j]
col,(·|k) that is broadcasted via V2V communication is determined based on

the artificial vehicle position trajectory ŝ
[j]
x,(·|k). Furthermore, the artificially enlarged length is

broadcasted to the other agents as it is considered in the safety constraints. Having calculated
these parameters, the safety constraints for agent i and scenario κ are stated as:
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Figure 5.1: Artificially enlarged vehicle and new geometrical centre

(
s
[i,κ]
x,(k+m|k) − p

[i,j]
col

)2
≥
(
d̂
[i,j]
safe − d̂

[j]
col,(k+m|k)

)2
, (5.9)

with d̂
[i,j]
safe , d

[i,j]
safe + ∆L

[j]
(k+j|k).

The scenario OCP is obtained by formulating the cost function (4.8) for every scenario.
The distributed scenario OCP finds the optimal solution to the problem by optimizing on
average over all scenarios subject to all scenario constraints. In essence:

min
u
[i]
(·|k)

1

K

K∑
κ=1

J [i,κ](x
[i]
0 , u

[i]
(·|k))

s.t. system dynamics (5.1)

safety constraints (5.9)

input constraints (5.2)

state constraints (5.3), (5.4) & (5.5).

(5.10)

For a centralized scheme in [43], [44] it is proven that the scenario constraints are satisfied
by chance. In the distributed setting, the uncertainties of every agent are independent of each
other and as such, samples and scenarios are generated independently. A direct correlation
between number of scenarios and the chance of constraint violation is presented in [9].

Let S
[i,κ]
safe,(k+m|k) denote a set of path coordinates at time k + m that satisfy the safety

constraint (5.9) for an arbitrary scenario κ̃. The probability of constraint violation is denoted
as:

Pr

{
s
[i,κ̃]
k+m|k /∈

⋂
κ∈K

S
[i,κ]
safe,(k+m|k)

}
≤ 1

1 +K
. (5.11)

By broadcasting the worst case scenarios to the other agents, in the worst case at least the
same upper probability bound on constraint violation as in the centralized case is achieved.

The control problem is solved with the same approach as described in section 4.3.

The scenario MPC considers a significantly larger number of constraints and solving such
a problem has a high computational burden. As one of the goals of the thesis is to create
a computationally efficient algorithm, it is investigated how this goal can be achieved. The

23



CHAPTER 5. DISTRIBUTED SCENARIO-BASED MODEL PREDICTIVE CONTROL

following subsection outlines a different numerical optimization approach to efficiently solve
the OCP.

5.2 Convex-Concave Procedure

The main computational burden comes from the non-convex safety constraints as these re-
quire the optimization problem to be formulated as a SDP. The Convex-Concave Procedure,
described more in detail in [31], retains all the information from the convex part and linearises
the non-convex part. In this thesis in particular, the Penalty Convex-Concave Procedure is
used as this approach removes the necessity for an initial feasible point. The optimization
problem is relaxed by adding slack variables and penalizing the sum of the violations. In
essence, by initially putting a low penalty on violations, it is allowed for constraints to be
violated so that a region with lower objective value is found. In standard Penalty CCP, a
slack is used for every non-convex constraint. An addition that is made to this algorithm is
to leverage the MPC setup and instead of imposing slack variables for the full prediction ho-
rizon, slacks are only introduced for the steps where safety constrains are enforced. This way
some computation time is reduced. The complete algorithm of the Penalty CCP is presented
below. Solutions coming from this approach are local.

Algorithm 3 Penalty Convex Concave Procedure [31]

given an initial point x0, τ0 > 0, τmax, and µ > 1.
n := 0.
repeat

1. Convexify. Form ĝi(x;xn) , gi(xn) +5gi(xn)T (x− xn) for i = 0, . . . ,m

2. Solve. Set the value of xn+1 to a solution of
minimize f0(x)− ĝ0(x;xn) + τn

∑m
i=1 si

subject to: fi(x)− ĝi(x;xn) ≤ si, i = 0, . . . ,m
si ≥ 0, i = 0, . . . ,m

3. Update τ . τn+1 := min(µτn, τmax).

4. Update iteration. n := n+ 1.

until stopping criterion is satisfied.

In this algorithm, si is the slack variable, τn is the slack variable multiplication coefficient,
τmax is the user defined maximum slack multiplication coefficient and µ is a user defined
coefficient that increases τn each iteration. As the cost function is linear the function ĝ0(x;xn)
is equal to zero. Equivalently, the function ĝi(x;xn) is equal to zero for the input and state
constraints and exists only for the non-convex constraints. The convergence of the algorithm
is also shown in [31]. To further reduce computation time this algorithm is extended with
the Cutting Planes technique. The method keeps track of a set of active constraints while
ignoring constraints that are well satisfied, which usually is a large set. In this thesis instead
of including all the active constraints, the technique is modified to include only the constraints
that are violated the most. This technique is applied in the first step of the Penalty CCP and
its procedure is explained in algorithm 4.

With this algorithm it is ensured that the technique takes only the most restrictive con-
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Algorithm 4 Cutting Planes Technique

1. Find most severe violations. After step 1. of algorithm 3 separate the linear con-
straints (input (5.2) and state (5.3), (5.4) constraint), the non-convex constraints (5.9)
and the minimum mean velocity constraint (5.5) from each other. From each of these
sets find what constraints are violated the most by:
if n = 1

Based on the optimal solution found in the previous time step u∗(k−1) calculate
which state and safety constraints of the current time step k are going to be violated
the most for each step of the MPC prediction horizon Hp.
else

Based on the optimal solution found in the previous CCP iteration u∗(n − 1)
calculate which state and safety constraints of the current CCP iteration n are going
to be violated the most for each step of the MPC prediction horizon Hp. If violated
constraints are found add them to the ones found in the previous CCP iteration.
end

2. Optimize. In step 2 of algorithm 3 use only the calculated most restrictive constraints
to calculate optimal solution.

straints and calculates an optimal solution based on them. Figure 5.2 visually shows how
the most restrictive constraints are selected per iteration. In the figure, the x-axis shows the
value of the safety constraint (5.9) which is modified as:(

d̂
[i,j]
safe − d̂

[j]
col,(k+m|k)

)2
−
(
s
[i,κ]
x,(k+m|k) − p

[i,j]
col

)2
≤ 0. (5.12)

Value of a point greater than zero means that the safety constraint is violated. The y-axis
indicates each scenario. Every column of points (indicated with a different colour) are the
steps of the prediction horizon where safety constraints are imposed. Each step of the figure
(n = 1,2,3) show the satisfaction of the safety constrain for one agent before the OCP is solved
and the red circles indicate the most restrictive constraints that are found and are included.
It can be seen that the algorithm keeps the most restrictive constraints found in the previous
time step and adds them to the current ones. The figure step (n = 3*) is the safety constraint
after the final step of the method using the optimal solution that is later on applied to the
plant. This step illustrates that no constraints are violated while not sacrificing optimality
as the most restrictive constraints are closer to the borders than in step n = 3.

By reducing the number of constraints that are included in the optimization process, the
computation time is significantly reduced especially when compared to the SDP relaxation op-
timization procedure. To illustrate the computation benefits, the execution times of the SDP
relaxation, the Penalty CCP and Penalty CCP extended with the Cutting Planes technique
are compared in Table 5.1.

The time advantages of the Penalty CCP with Cutting Planes approach are immense
compared to the SDP relaxation algorithm while providing very similar results, shown in
Appendix B. In the appendix a comparison between the optimization results coming from
both methods is presented. The Penalty CCP optimization method is used in the simulation
results described in Chapter 6.
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Table 5.1: Execution time comparison

SDP relaxation Penalty CCP Penalty CCP with Cutting Planes

mean [s] max [s] mean [s] max [s] mean [s] max [s]

Vehicle 1 0.418 4.897 0.146 0.187 0.036 0.049

Vehicle 2 2.105 13.443 0.165 0.406 0.042 0.067

Vehicle 3 2.137 10.512 0.173 0.558 0.044 0.067

Vehicle 4 4.140 21.123 0.206 0.661 0.052 0.102

Figure 5.2: Cutting Planes technique for each CCP iteration

5.3 Considering time delay

The final extension of the prediction model is to include an uncertain time delay. The equa-
tions shown in section 3.2.3, indicate that the time delay is present in both state and input
of the system. Time delay in the model represents the required time for the driver to react
to the recommended speed and take the necessary action (brake or accelerate). Appropriate
literature is analysed in order to specify the bound from which the time delay is randomly
sampled. Based on naturalistic driving data in [1], [22], [46], and [47] it is found that a human
driver needs from 0.5 seconds to 2.5 seconds to react, with the 90th percentile usually being
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at approximately 1.5 seconds. Attentive drivers on the other hand, have a reaction time from
0.5 seconds up to 1 second.

It is known that time delay is frequently a source of instability and deteriorates perform-
ance in many systems. A way to counteract these effects is to make closed-loop instead of
open-loop predictions. Some stabilization methods have been developed for state and input
delay systems via state feedback controllers. In [3] and [30] the problem is reduced to a delay-
free system by the Artstein model reduction. [37] propose an LMI-based iterative algorithm
in order to design the state feedback stabilization controller. Other approaches such as [24],
[33], [51] create a guaranteed cost controller for uncertain time delay systems for both con-
tinuous and discrete time systems. However, apart from having an uncertain time delay in
both state and input, the prediction model has also additional uncertainties coming from the
driver reaction. Dealing with such systems is not greatly covered in the available literature.
The two approaches that are found and tried [12], [50] develop a memoryless state feedback
guaranteed cost control law. In the approaches first a sufficient condition for the existence
of a guaranteed cost control law is derived and then proven that this condition is equivalent
to the feasibility of a certain LMI. The feasible solutions to this LMI are used to construct
the guaranteed cost controllers. A convex optimization problem is introduced to select the
optimal guaranteed cost controller that minimizes the upper bound of the cost function. The
difference between [12] and [50] is the LMI that they use, as well as the cost function and the
constraints it is subject to. The difference is due to that [12] has a different derived sufficient
condition.

5.3.1 Considered approaches and their shortcomings

Both of the above mentioned methods are implemented and in order to validate the imple-
mentation it is attempted to replicate the results from the numerical examples. Regarding the
approach in [50], the results from the example are closely replicated. When the approach is
tried with our system, the results are infeasible, as the method does not seem to be applicable
to our type of system. In [12] it is mentioned that the approach in [50] could give infeasible
solutions to certain systems and state that their approach overcomes this issue. However, it
is not possible to replicate the results from their numerical examples. Therefore, it cannot
be guaranteed that the solution with this method for our system is valid. Since no error was
found in the implementation, a different approach is considered.

A different approach that is tried is to calculate an optimal gain K̄ using the infinite
horizon Linear-quadratic regulator for discrete-time state-space system. The calculated gain
K̄ is such that the state feedback law u[n] = −K̄x[n] minimizes the quadratic cost function:

J(u) =
∞∑
n=1

(
x[n]TQx[n] + u[n]TRu[n] + 2x[n]TNu[n]

)
, (5.13)

subject to the system dynamics.

A feedback controller causes all system states to approach the equilibrium point, i.e., the
acceleration, velocity and position converge to zero. The position and velocity are not desired
to be zero as that means the vehicle comes to a standstill. For that reason the system is
reduced to a two state system by dropping the position state. The acceleration and velocity
state are substituted by the desired operating points (ax − 0 and vx − vx,lim). In essence the
modified system states that are used to find a feedback gain are:
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xk =



xτ,n|k
xτ,n−1|k

...
xτ,1|k
ax − 0

vx − vx,lim


(5.14)

with the delayed states xτ,n|k, . . . , xτ,1|k being the error between the recommended and actual
speed and vlim equal to the desired speed to cross the intersection.
The feedback control law is of the following form:

u
[i]
k = K̄ [i]x

[i]
k − K̄

[i]
[
0
[i]
1,time-delay+1 v

[i]
x,lim

]T
+ u

[i]
k−1 + ∆u

[i]
k , (5.15)

with u
[i]
k−1 being the control input from the optimization in the previous time step, or equal

to v
[i]
lim in the first computation and ∆u

[i]
k being the input compensation computed with the

optimization process, i.e. the new control variable that is set by the MPC regime. The

−K̄ [i]
[
0
[i]
1,time-delay+1 v

[i]
x,lim

]T
+ u

[i]
k−1 is an affine part.

When designing the scenario-based MPC, the system dynamics change with every scenario
(κ) due to the random values of the driver parameters and offset driving, it is necessary to
calculate the gain K̄ for every scenario in order to find the most suitable value per scenario
specifications. After computing the gain the closed-loop state matrices are obtained as:

Ac =(Ad +BdK̄)κ

Bc =Bd

Ec =Ed

Cc =Cd.

(5.16)

The controller input u in the original system (3.10) is substituted by (5.15). The affine
part is inserted in the prediction of the next free state variable:

xk+1 = Acxk −BcK̄
[
0(1,time−delay+1) vx,lim

]T
+ Ecwk +Bcuk−1 +Bc∆uk. (5.17)

The state affine feedback controller computed with the LQR method stabilizes the plant.
However, as there is a different K̄ for every scenario it means that no unique control solution
can be found. In essence, the control action that should be applied to the plant cannot be
determined unambiguously as there are different control inputs for every scenario:

u
[1]
k = uk−1 − K̄ [1]x0 + K̄ [1]xk + ∆uk

u
[2]
k = uk−1 − K̄ [2]x0 + K̄ [2]xk + ∆uk

...

u
[N ]
k = uk−1 − K̄ [N ]x0 + K̄ [N ]xk + ∆uk.

(5.18)

In an attempt to calculate the uniform feedback gain for the discrete-time system the problem
is formulated as a LMI. The general problem is stated as:
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eig(A(m) +B(m)K̄) are inside unit disk, (5.19)

where, m = 1, . . . ,K is the respective sampled scenario. To find the feedback gain vector K̄,
the problem is stated for each realization of the system as a LMI derived from the Lyapunov
stability function. In essence:

V (k + 1)− V (k) < 0

x(k + 1)TPx(k + 1)− x(k)TPx(k) < 0; P > 0

x(k)TATPAx(k)− x(k)TPx(k) < 0; P > 0

ATPA− P < 0; P > 0

(5.20)

Since the closed loop of the system is analysed, the A matrix is equal to Ac = (A+BK̄).
The inequality problem (5.20) is thus:

(A+BK̄)TP (A+BK̄)− P < 0; P > 0 (5.21)

Using the Schur complement formula this inequality is transformed to:[
−P−1 A+BK̄

(A+BK̄)T −P

]
< 0; P > 0⇔

⇔
[
I 0
0 P−1

] [
−P−1 A+BK̄

(A+BK̄)T −P

] [
I 0
0 P−1

]
< 0; P−1 > 0⇔

⇔
[

−P−1 AP−1 +BK̄P−1

P−1AT + P−1K̄TBT −P−1
]
< 0; P−1 > 0

(5.22)

By defining X1 = P−1 and X2 = K̄P−1 (5.22) is written as:[
−X1 AX1 +BX2

X1A
T +XT

2 B
T −X1

]
< 0; X1 > 0 (5.23)

After solving the LMI for X1 and X2 the feedback gain is calculated as:

K̄ = X2X
−1
1 (5.24)

The difficulties that occur from this approach are twofold. When implemented, the com-
putational demand of the approach is immense and the current platform runs out of compu-
tational memory for more than fifteen scenarios. Furthermore, when the number of scenarios
is reduced in order for the computation to be possible, the solver gives an infeasible solution
for multiple unstable systems.

As it is not succeeded in creating a feedback gain from the commonly known approaches
and the ones from available literature, the scenario MPC is unchanged and makes open-loop
predictions. Since creating an approach that is not covered in literature is not in the scope
of the thesis, further separate research should be conducted in this topic. The scenario MPC
with open-loop predictions can still account for time delay when the drivers are considered
to be attentive without violating safety constraints. This is one of the studies shown in the
following chapter 6.
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5.4 Conclusions

This chapter presents the scenario-based MPC as a control method that is able to account
for the parametric uncertainties of the driver reaction model. The Penalty Convex-Concave
Procedure which is extended with the Cutting Planes technique significantly improves the
computational efficiency without altering the results. Finally, methods for dealing with time
delay in the system by means of feedback gain are shown, as well as their shortcomings w.r.t
the used system dynamics. It is concluded that further research is needed in this specific topic
under these conditions and that the scenario MPC can be used for attentive drivers without
feedback gain.
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Chapter 6

Simulations

This chapter presents the simulation setup and results of different studies using the control
methods described in Chapter 4 and Chapter 5. The first study shows a comparison between
the nominal MPC and the Scenario-based MPC in order to illustrate the issues that can occur
if an uncertainty unaware control algorithm is used. Furthermore, it shows the benefits of
using the Scenario-based MPC in terms of control objectives stated in Chapter 1. In the
second study the result from the case when also time delay is present in the prediction model
is shown.

The software package where the simulation model is implemented is Matlab and Simulink.
The definition of initial conditions and calculation of agent priority and safety distances is done
offline. The initial conditions are summarized in Table 6.1. Based on these initial conditions
the priority order of the agents and the safety distances are calculated offline based on the
methods in section 3.1.1 and in section 4.2. From this calculation the following time-invariant
priorities are obtained: γ(1) = 1; γ(2) = 2; γ(3) = 3; γ(4) = 4.

Table 6.1: Initial conditions

Initial conditions

Description Variable Value

Initial velocity agent 1-4 v
[1−4]
0 13.9 [m/s]

Initial position agent 1 s
[1]
0 -68.3 [m]

Initial position agent 2 s
[2]
0 -69.0 [m]

Initial position agent 3 s
[3]
0 -72.3 [m]

Initial position agent 4 s
[4]
0 -81.3 [m]

The other general parameters are presented in Appendix C. These parameters are used
for all simulation scenarios that are analysed.

6.1 Study 1: Nominal MPC vs Scenario-based MPC

The goal of this study is to show that the nominal MPC approach cannot satisfy the safety
constraints and with that motivate the necessity of implementing the Scenario-based MPC.
Furthermore, it manifests the benefits of using the Scenario-based MPC algorithm when
dealing with parameter uncertainties.
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6.1.1 Simulation setup

Table 6.2 provides the parameter values used in the nominal MPC algorithm for this particular
study. It is considered that no time delay (τ) is present and thus this parameter is equal to
zero for both control algorithms. As the nominal MPC cannot account for uncertainties that
can occur in the prediction model, a miss-match between the simulation and controller setup
in the driver reaction gain and speed offset parameters is expected. The simulation parameters
for the gain and speed offset are part of the general parameters shown in Appendix C. To
solve the local OCPs, YALMIP with SDPT3 is applied as SDP solver.

Table 6.2: Nominal MPC parameters

Nominal MPC

Description Variable Value

MPC driver reaction
gain- agent 1

K
[1]
d 0.6 [-]

MPC driver reaction
gain- agent 2

K
[2]
d 1.2 [-]

MPC driver reaction
gain- agent 3

K
[3]
d 0.5 [-]

MPC driver reaction
gain- agent 4

K
[4]
d 1.1 [-]

MPC driver speed offset-
agent 1-4

∆v
[1−4]
d 0 [m/s]

The parameters used in the Scenario-based MPC are shown in Table 6.3. By choosing
the number of scenarios to be 99, a constraint violation probability of at most 1% can be
guaranteed. The assigned speed offset corresponds to a range of ≈ ±5 km/h which is suitable
to account for possible uncertainties as well as for HMI design when suggesting a speed range.
Regarding the driver gain parameter, [10] suggests a range which in this work is extended in
order to consider a more comprehensive reaction possibility. With the range that is used in
this thesis, for example an error vref − v of 3 m/s with the selected lower and upper bound
corresponds to an acceleration of ax,ref ranging from 0.3 m/s2 to 3.6 m/s2. The solver used
is qpOASES.

Table 6.3: Scenario-based MPC parameters

Scenario-based MPC

Description Variable Value

Number of scenarios K 99 [-]

MPC driver reaction lower bound K
[i]
d 0.1 [-]

MPC driver reaction upper bound K
[i]
d 1.2 [-]

MPC driver speed offset lower bound ∆v
[i]
d -1.5 [m/s]

MPC driver speed offset upper bound ∆v
[i]
d 1.5 [m/s]

32



CHAPTER 6. SIMULATIONS

6.1.2 Results

Figure 6.1 illustrates the results coming from the nominal MPC. Each row of the figure rep-
resents the results of an agent in terms of path coordinate trajectory, velocity and acceleration
shown in each column of the figure respectively. In the velocity column, the actual, maximum
(solid black line) and minimum mean velocity are displayed along with the recommended
speed and the speed limit. Regarding the path coordinate, a coordinate of zero refers to the
first collision point in the reference frame of the agent in consideration. Furthermore, every
other agent that might potentially be in conflict with the considered agent is depicted in the
same reference frame. In case when the considered agent is in conflict with a higher priority
agent, a coloured polygon is displayed that indicates an area that must not be intersected by
the trajectory of the considered agent. The fifth row provides an enlarged illustration into
these conflict regions.

Figure 6.1: Nominal MPC with parametric uncertainties in driver reaction gain and speed
offset

Since agent 1 has the highest priority, it crosses the intersection first without the need to
react on any other vehicle. The defined speed offsets in the simulation setup result in agent
1 driving slightly faster than the advised speed. Agent 2 and agent 3 both are on collision
course with agent 1 and thus have to maintain a safe distance to it. In the fifth row a closer
insight into the conflict regions for agent 2 and agent 3 is shown in the first and second
column respectively. The trajectory of agent 3 intersects the conflict polygon which indicates
that a collision between agent 1 and agent 3 occurs. The cause for the collision is due to the
uncertain behaviour of the driver that deviates from the predicted one by the controller. The
controller suggests for the vehicle to stop as a possible way to avoid the collision, however
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since the driver of agent 3 is reacting in a moderate way (Kd = 0.1) to the suggested speed
it does not manage to avoid the collision. Furthermore, suggesting to make a full stop at
that particular time violates the minimum mean velocity constraint. Agent 4 is on a collision
course with both agent 2 and agent 3 and since it has the lowest priority it has to yield to
both. Due to the parameter uncertainties, the controller suggests increasing the velocity as
a way to avoid collision with both agents. However, due to the lethargic reaction of agent 3
the position of that agent is not where the controller predicted and thus a collision between
the two agents occurs. In an attempt to avoid the collision the controller abruptly suggests
a full stop. This suggestion violates the minimum mean velocity constraint and furthermore
its sudden nature results in not satisfying the control objectives in terms of input change and
acceleration change.

In summary the nominal MPC causes collisions between multiple agents due to the fact
that it cannot account for any possible uncertainties in the drivers behaviour. Furthermore,
the control algorithm suggests speeds that are not suitable for driver comfort and efficient
crossing in terms of fuel economy.

The results coming from the Scenario-based MPC approach are illustrated in Figure 6.2
with the rows and columns indicating the same parameters as the previously analysed Figure
6.1. As the approach is able to consider uncertainties in the driver reaction, it successfully
gives speed recommendations to the drivers of each agent, such that collisions are avoided.
A consequence of this approach, however, is reduced performance as the agents keep larger
separation from the safety region (polygons in the fifth row) than what is actually required.
However, as the control approach needs to account for all potential driver reactions that

are specified on the intervals [K
i]
d ,K

[i]
d ] and [∆v

i]
d ,∆v

[i]
d ] this behaviour is reasonable and

expected. Furthermore, the speed recommendations do not have any rapid changes and as
such can be followed by a human driver. Moreover, comfortable driving is assured as the
resulting accelerations are smooth.

To conclude the results from this simulation study, the scenario-based MPC successfully
avoids collisions even when uncertainties are present in the drivers’ behaviour. Furthermore,
the recommendations in terms of suggested driving speed are smooth and possible to be
followed by a human driver. Likewise, the accelerations coming from this approach are such
that they do not cause discomfort to the driver. In essence, the scenario approach satisfies
all of the control requirements mentioned in section 1.1 and therefore is a suitable approach
when dealing with model uncertainties in terms of Kd and ∆vd.
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Figure 6.2: Scenario-based MPC with parametric uncertainties in driver reaction gain and
speed offset

6.2 Study 2: Scenario-based MPC with uncertain Kp,∆vd and
τ

This study shows the ability of the scenario-based MPC to also deal with time delay besides
the other parametric uncertainties. An assumption is made however, that only attentive
drivers are present, thus limiting the driver reaction to maximum one second. Due to the
issues discussed in section 5.3, the result of considering non-attentive drivers and solving the
OCP with the same approach is shown in Appendix F.

6.2.1 Simulation setup

The setup for this study differs from the previous such that it is extended by including the
ability of the MPC to account for uncertain time delay. The delay parameters used in the
simulation and controller are shown in Table 6.4.

6.2.2 Results

Figure 6.3 depicts the results coming from the scenario-based MPC that also considers the
delayed reaction of the drivers. The setup of the figure is the same as the previous two figures
in this chapter. Due to the fact that the controller needs to account for this delayed reaction,
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Table 6.4: Time delay parameters

Time delay parameters

Description Variable Value [s]

Agent 1 simulation time delay τ [1] 0.5

Agent 2 simulation time delay τ [2] 0.75

Agent 3 simulation time delay τ [3] 1

Agent 4 simulation time delay τ [4] 1

MPC time delay lower bound τ [i] 0.5

MPC time delay upper bound τ [i] 1

the algorithm in the first time steps suggests a high deceleration to all agents that are on
collision course and have lower priority (i.e., agent 2, 3 and 4). By advising to the vehicles to
slow down in the beginning of the simulation, the controller allows itself to have more time
in the future steps to adjust the speed recommendations such that no collision occurs. As
visible in the fifth column of this figure, the algorithm successfully manages to avoid collision
for all vehicles. However, when closely looking at the speed recommendations it is noticeable
that they have abrupt changes and thus can be difficult to be followed by a human driver-
especially for agent 4. The cause for these changes is the satisfaction of the safety constraint
and the effect cannot be mitigated by modifying the cost function weights. Furthermore, the
resulting accelerations from this approach would cause discomfort and would decrease fuel
efficiency.

Figure 6.3: Scenario-based MPC with parametric uncertainties in driver reaction gain and
time delay, and speed offset
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A conclusion that comes from this study is that the scenario-based MPC can avoid col-
lision for all involved agents when the driver reaction time is also considered. However, the
acceleration and recommended speed to the driver can have sudden changes. This room for
improvement thus presents a suitable motivation for further research into this topic.

37



Chapter 7

Conclusions and Recommendations

The aim of this research project is to create a distributed stochastic controller for intersection
management that would give advices to the driver in terms of vehicle speed. Additionally,
the controller needs to be able to consider parametric uncertainties that come from the driver
reaction to the suggested speed and to be computationally efficient. This chapter recapitulates
the conclusions drawn throughout this report and is followed by recommendations for future
research into the topic.

7.1 Conclusions

In this report non-signalized four-way intersections with straight passing vehicles are con-
sidered. To improve the safety and lower congestions at such intersections, a stochastic
distributed Model Predictive Control method is proposed. As the vehicles are driven by a
human driver, this controller issues speed recommendations. The vehicle dynamics are im-
plemented as a double integrator, and the vehicles geometry is modelled as a rectangle. The
reaction of the driver consists of a gain parameter that reflects how the driver translates
the recommended speed to acceleration (i.e., how hard he/she presses the acceleration/brake
pedal) and of a time delay parameter that indicates the time the driver needs to react to the
suggestion. Furthermore, to resemble human driving, an offset to the recommended speed is
implemented as an additional disturbance to the model.

The control approach that is developed is a scenario-based MPC as this method is able
to account for parametric uncertainties that may occur due to the uncertain driver reaction.
Each scenario is an independent identically distributed sample of the uncertainty, sampled
from a defined bounded interval. The control objectives that need to be met are summarized
in a control function and subject to constraints. In order to reduce the computational burden
of the algorithm, the Optimal Control Problem is solved using the Penalty Convex-Concave
Procedure extended with the Cutting Planes Technique. With this method all of the non-
convex constraints are linearised and only the most restrictive constraints are included when
solving the problem. The results from this method are indistinguishable when compared to a
solver that includes all constraints without linearising them, while immense improvement is
achieved w.r.t the computation time. From the first simulation study the advantages of the
scenario-based MPC are shown when compared to a uncertainty unaware control algorithm.
It is shown that the scenario-based MPC is able to avoid collisions under the considered
uncertainties and also satisfy the other control objectives.
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It is noticed that introducing time delay into the system significantly decreases perform-
ance and could lead into system instability. If only attentive drivers are considered, then the
scenario-based MPC can avoid collision for all agents, without the need to design an additional
feedback gain as the prediction model is stable. However, a deterioration of performance in
terms of suitability of the suggested speed to be followed by a human driver is noticed. This
is one of the tasks that can be further investigated in the future and can improve the control
algorithm. Further research suggestions are made in the following section.

7.2 Recommendations

A possible extension and improvement for the current scenario-based MPC would be to design
a stabilizing feedback gain for the cases when larger time delay is present. The challenge of
this task is, as mentioned in the report, to find a uniform gain that stabilizes all realizations
of the system. The difficulty of finding such gain is due to the fact that the time delay is
present in both state and input of the system and simultaneously the system has uncertain
driver reaction parameters in terms of driver gain and speed offset.

Another topic that can be investigated is to make a real world driving study in order to
improve the parametrization of the driver reaction model. Drivers with different character-
istics (age, driving experience, sex, etc) are needed to cover the range of possible reactions.
Furthermore, the study should be conducted at intersection crossings, in order for the results
to be more applicable to the algorithm.

Ideally the created control algorithm would be experimentally tested and validated for real
world conditions. Implementing such an algorithm to a real-time platform raises additional
challenges. Some of the common problems that occur is that running the algorithm on the
platform has higher computation time than in the simulation setup. Furthermore, delay or
loss of V2X messages can happen and the position from the GPS signal needs to be filtered.

Considering recent developments in the field of Machine Learning and Deep Learning
techniques, it is possible to leverage those techniques in this algorithm. The way that these
techniques can be implemented is to predict the uncertainty in the driver reaction parameters
and then hand over those parameters to the controller.
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Appendix A

Prediction model when delay τ is
not a multiple of the sample time Ts

This appendix gives a representation of the prediction model where the time delay is not
multiple of the sample time and is an extension of the presented model in Section 3.2.3.

The vehicle dynamics in continuous time for x(t) = [ax(t), vx(t), sx(t)]T and ũ(t) = ax,ref
are written as:

ẋ(t) =

− 1
Tax

0 0

1 0 0
0 1 0

x(t) +

 1
Tax

0
0

 ũ(t) (A.1)

Assuming that u(t) = u(k) for k ≤ t ≤ k + 1 and k = kTs it is obtained:

x(k + 1) =eATsx(k) +

∫ Ts

0
eAsdsBũ(k)

=

 e−Ts/Tax 0 0

Tax[1− e−Ts/Tax ] 1 0

TsTax − T 2
ax[1− e−Ts/Tax ] Ts 1

x(k) +

∫ Ts

0

 1
Tax

e−s/Tax

1− e−s/Tax
s− Tax[1− e−s/Tax ]

 dsũ(k)

=

 e−Ts/Tax 0 0

Tax[1− e−Ts/Tax ] 1 0

TsTax − T 2
ax[1− e−Ts/Tax ] Ts 1

x(k) +

 1− e−Ts/Tax
Ts − Tax[1− e−Ts/Tax ]

1
2T

2
s − TsTax + T 2

ax[1− e−Ts/Tax ]

 ũ(k)

(A.2)
Let τ = nTs − τ̃ for some positive integer n, where 0 ≤ τ̃ ≤ Ts. Taking the complete

reaction of the driver the input to the vehicle dynamics is formulated as:

ũ(k) = ax,ref (k) = Kd[vx,ref (k−nTs+τ̃)−vx(k−nTs+τ̃)] = Kd[vx,ref (k−n+τ̃)−vx(k−n+τ̃)]
(A.3)

Since:

 e−τ̃/Tax 0 0

Tax[1− e−τ̃/Tax ] 1 0

τ̃Tax − T 2
ax[1− e−τ̃/Tax ] Ts 1

x(k) +

 1− e−τ̃/Tax
τ̃ − Tax[1− e−Ts/Tax ]

1
2 τ̃

2 − τ̃Tax + T 2
ax[1− e−τ̃/Tax ]

 ũ(k) (A.4)
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the velocity is written as:

vx(k + τ̃) =
[
Tax(1− e−τ̃/Tax) 1 0

]
x(k) + [τ̃ − Tax(1− e−τ̃/Tax)]ũ(k) (A.5)

or:

vx(k − n+ τ̃) =
[
Tax(1− e−τ̃ /Tax) 1 0

]
x(k − n) + [τ̃ − Tax(1− e−τ̃ /Tax)]ũ(k − n) (A.6)

Using the extended state x̄(k)T = [ax(k), vx(k), sx(k), vx(k−1+τ̃), vx(k−2+τ̃), . . . , vx(k−
n+ τ̃)]T it is obtained:

x̄(k + 1) =



e−Ts/Tax 0 0 0 . . . 0 −Kd[1− e−Ts/Tax ]
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1
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2
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...

...
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...
. . .

...
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...
0


vx,ref (k − n+ τ̃)

(A.7)
or by using the extended state x̄(k)T = [ax(k), vx(k), sx(k),Kd(vx,ref (k − 1 + τ̃)− vx(k −

1 + τ̃)),Kd(vx,ref (k − 2 + τ̃)− vx(k − 2 + τ̃)), . . . ,Kd(vx,ref (k − n+ τ̃)− vx(k − n+ τ̃))]T :

x̄(k + 1) =



e−Ts/Tax 0 0 0 . . . 0 1− e−Ts/Tax
Tax[1− e−Ts/Tax ] 1 0 0 . . . 0 Ts + Tax[1− e−Ts/Tax ]

TsTax − T 2
ax[1− e−Ts/Tax ] Ts 1 0 . . . 0 1

2T
2
s − TsTax + T 2
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(A.8)
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Appendix B

CCP and SDP solver comparison

To illustrate the similarity of the two approaches (Convex Concave Procedure with Cutting
Planes and SDP relaxation) that solve the OCP, a comparison between the input signals is
conducted. The setup of the simulation is the same as shown in section 6.1, where also the full
results are shown. In the figure B.1 below in the first column the input signal of the controller
which solves its OCP with the CCP and SDP procedures is shown for each agent involved in
the intersection. The second column depicts the difference between the two solvers.

Figure B.1: Control input of CCP and SDP approach and their difference

The control input difference between these two approaches is negligible and thus it can
be concluded that the complete results when the control problem is solved with the CCP
approach are similar to the SDP results. This analysis supports the motivation to use the
CCP with Cutting Planes method as an approach for all further simulation studies as it is
more computationally efficient than the SDP and manages to have identical results.
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Appendix C

Simulation parameters

In this appendix the simulation parameters that are used for all simulation studies are shown
in the table C.1 below. By choosing the sample time to be equal to 0.25 seconds and prediction
horizon length of 20 steps, a preview time of 5 seconds is obtained. The length and width of
the vehicle correspond to a Ford Mondeo.

Table C.1: Simulation parameters

General parameters

Description Variable Value

Sampling time Ts 0.25 [s]

Vehicle length L[i] 4.87 [m]

Vehicle width W [i] 1.85 [m]

Dynamic powertrain constant Tax 0.3 [s]

Length of prediction horizon Hp 20 [-]

Length of control horizon Hu 20 [-]

Weighting factor for control
outputs

Q 0.5

Weighting factor for changes
of control inputs

R 6

Weighting factor for absolute
accelerations

S 1

Weighting factor for acceleration
changes (jerk)

T 1

Safety coefficient for
safety constraints

Sx 1.2 [-]

Safety distance gap dsafe 8.04 [m]

Desired velocity vdes 13.9 [m/s]

Velocity lower bound vlb 0 [m/s]

Velocity upper bound vub 15.18 [m/s]

Acceleration lower bound alb -9 [m/s2]

Acceleration upper bound aub 5 [m/s2]

Simulation driver reaction
gain- agent 1

K
[1]
d 0.55 [-]
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Simulation driver reaction
gain- agent 2

K
[2]
d 1.0 [-]

Simulation driver reaction
gain- agent 3

K
[3]
d 0.1 [-]

Simulation driver reaction
gain- agent 4

K
[4]
d 1.2 [-]

Simulation driver speed offset-
agent 1

∆v
[1]
d 0.5 [m/s]

Simulation driver speed offset-
agent 2

∆v
[2]
d -0.3 [m/s]

Simulation driver speed offset-
agent 3

∆v
[3]
d -0.7 [m/s]

Simulation driver speed offset-
agent 4

∆v
[4]
d 0.6 [m/s]
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Appendix D

Influence of uncertain driver
reaction parameters

This appendix investigates the uncertainty influence of each driver reaction parameter (driver
gain, time delay and speed offset) in order to show the effects that can arise if they are not
considered by the control algorithm. Therefore, three simulation studies are shown simulated
with the nominal MPC.

D.1 Study 1: Uncertain driver gain Kd

The driver gain in this study for the simulation environment is the same as shown in Table
C.1, while the gain in the MPC of each agent is shown in table 6.2. The time delay and speed
offset for this study are zero for both MPC and simulation. This way only the influence of a
mismatch in driver gain is presented. Figure D.1 presents the results. The rows and columns
of the figure indicate the same parameters as described in section 6.1.2.

Figure D.1: Influence of uncertain driver gain
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As seen from the figure, agent 3 and agent 4 violate the safety constraint and a collision
occurs for both agents.

D.2 Study 2: Uncertain reaction time τ

In this study the driver gain is identical for the simulation environment and respective MPC
and have values as shown in table C.1, while the speed offset is zero. Each agent have the
following time delay parameters:

Table D.1: Time delay parameters

Study 2 parameters

Description Variable Value [s]

MPC driver delay agent 1 τ
[1]
MPC 1.5

MPC driver delay agent 2 τ
[2]
MPC 2.25

MPC driver delay agent 3 τ
[3]
MPC 1.5

MPC driver delay agent 4 τ
[4]
MPC 1.25

Simulation driver delay agent 1 τ
[1]
Sim 1.25

Simulation driver delay agent 2 τ
[2]
Sim 1.75

Simulation driver delay agent 3 τ
[3]
Sim 2.5

Simulation driver delay agent 4 τ
[4]
Sim 1.5

Figure D.2 illustrates the results from this study. As seen, due to the time delay, oscillating
behaviour in the control input of agent 2 is visible which is a cause for violation of the velocity
and acceleration constraints. Furthermore, agent 2 and agent 3 violate the safety constraints.

Figure D.2: Influence of uncertain driver reaction time
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APPENDIX D. INFLUENCE OF UNCERTAIN DRIVER REACTION PARAMETERS

D.3 Study 3: Uncertain speed offset ∆vd

The last study of this appendix investigates the effects of uncertain speed offset. For that
reason mismatch occurs only in the ∆vd parameter. The simulation parameters are indicated

in table C.1, while the MPC parameters are as follows: ∆v
[1]
d = 0.5,∆v

[2]
d = 0.2,∆v

[3]
d =

0.4,∆v
[4]
d = −0.3. Figure D.3 illustrates the results. When compared to the previous two

studies, the effects of mismatch in speed offset has the least severe effects on the overall
behaviour of the agents. However, it can still lead to a safety constraint violation that occurs
for agent 4, which is highly undesirable.

Figure D.3: Influence of uncertain speed offset
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Appendix E

Cost function weights sensitivity
study

This study analyses the influence of the cost function weighting parameters on the optimisa-
tion results. The cost function (4.1) has four parameters (Q, R, S and T ) that weight the
deviation from the desired speed (vlim−vx), the input change deviation (0−∆u), the acceler-
ation deviation (0− ax) and jerk deviation (0−∆ax) respectively. The sensitivity analysis is
preformed by investigating six cases where the weighting parameters are varied (Table E.1).
The first case is a base case where all parameters have equal values. In the second, third
and forth case only one parameter is varied in order to investigate how does each parameter
influence the results. The fifth case shows one selection where all parameters are different,
while the sixth case shows the chosen parameters that are used in the simulation studies and
are selected based on the results from the previous case.

Table E.1: Weighting parameters per case

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Q 1 1 1 1 1 0.5

R 1 1 1 4 4 6

S 1 3 1 1 2 1

T 1 1 4 1 2 1

To investigate the performance of each case the minimum, maximum, mean and root mean
square value are computed for each of the weighting objectives. Table E.2 shows the results
of this computation. The ideal study has a minimum and maximum value that are closest to
zero and as low as possible mean and root mean square value. The green fields on the table
indicate the most ideal value for each case. As can be seen the sixth case has the most green
fields and excels in performance especially compared to the other case where all parameters
are varied.
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APPENDIX E. COST FUNCTION WEIGHTS SENSITIVITY STUDY

Table E.2: Parameter sensitivity study

Deviation from speed (vlim − vx)
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Minimum 0.0111 0.0111 -0.0021 0.0111 0.0111 0.0111

Maximum 6.8340 6.3894 7.1279 6.2696 6.5565 6.6554

Mean 2.4498 2.7282 2.6235 2.9335 2.8457 2.9377

RMS 3.3839 3.4264 3.7337 3.6682 3.6284 3.7170

Acceleration deviation (0− ax)
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Minimum -3.4627 -2.7351 -3.3474 -3.1141 -2.8431 -2.4716

Maximum 4.8606 4.8803 7.2956 4.0409 4.1244 4.4224

Mean 0.0134 0.0388 -0.0153 0.0137 0.0222 0.0308

RMS 2.2490 1.9717 2.5412 2.2090 2.0145 1.9245

Jerk deviation (0−∆ax)

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Minimum -0.7221 -0.5933 -1.2281 -0.76430 -0.6686 -0.3243

Maximum 0.5230 0.3994 0.4159 0.3690 0.3038 0.2277

Mean 0.0192 0.0139 -0.0038 0.0137 0.0075 0.0240

RMS 0.2081 0.1693 0.3049 0.2292 0.1851 0.1174

Input change deviation (0−∆u)

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Minimum -3.4627 -2.7351 -3.3474 -3.1141 -2.8431 -2.4716

Maximum 4.8606 4.8803 7.2956 4.0409 4.1244 4.4224

Mean 0.0134 0.0388 -0.0153 0.0137 0.0223 0.0308

RMS 2.2490 1.9717 2.5412 2.2090 2.0145 1.9245
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Appendix F

Scenario-based MPC with
parametric uncertainties under
larger time delays

This appendix illustrates the influence of time delay grater than 1 second to the system. More
detailed, the setup of this simulation study is shown in table F.1. The selected time delay
range is appropriate to a normal human reaction time that occurs and as it is often considered
in literature.

Table F.1: Time delay parameters

Time delay parameters

Description Variable Value [s]

Agent 1 simulation time delay τ [1] 0.5

Agent 2 simulation time delay τ [2] 1.25

Agent 3 simulation time delay τ [3] 1.25

Agent 4 simulation time delay τ [4] 1.5

MPC time delay lower bound τ [i] 0.5

MPC time delay upper bound τ [i] 2.5

As seen from Figure F.1 the larger time delay causes oscillating behaviour in the control
input (agent 2) and is the reason for serious performance deterioration. The created scenario-
based MPC cannot counteract these occurrences with the current setup. Therefore, the results
from this study motivate the need for further research on how to create a feedback gain that
stabilizes the prediction model and resolves these issues.
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APPENDIX F. SCENARIO-BASED MPC WITH PARAMETRIC UNCERTAINTIES
UNDER LARGER TIME DELAYS

Figure F.1: Influence of larger time delays to the system
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