
 Eindhoven University of Technology

MASTER

Behavioral competencies of a successful software architect in ASML
Effect of behavior on performance

Wolberink, S.W.R.

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/db1ba6fd-12c1-401c-9664-697fae066fd9


  1   
 
 

 

 

 

 

Eindhoven University of Technology 

Master Thesis final report 

In partial fulfillment of the requirements for the degree of Master of Science in Innovation Management 

 

 

 

 

Behavioral competencies of a successful software architect in ASML 

Effect of behavior on performance 

Eindhoven, Februari 2021 

 

 

 

 

 

 

 

Author: 

S.W.R. Wolberink 

Supervisors: 

M. Razavian (1st supervisor TU/e) 

H. de Groot(supervisor ASML) 

A. Serebrenik (2nd supervisor TU/e) 

A. Kleingeld (3rd supervisor TU/e  



  2   
 
 

 

Eindhoven University(Tu/e) 

Department of Industrial Engineering & Innovation Sciences 

Master Thesis Innovation Management 

Keywords: Software architect, behavioral competencies,  stakeholder perception, manages complexity, 

communicates effectively 

Abstract: In modern times of meetings and alignments the software architect should not only focus on 

technical competencies, but also behavioral competencies. In this explorative case study we look at 

which behavioral competencies are important for a software architect and how they lead to success. 

Two clear top clusters of important behavioral competencies were found, with on top manages 

complexity and communicates effectively. In addition, there were indications on how often a 

combination of behavioral competencies lead to success and how trust plays a key role as pre-requisite.  

 

  



  3   
 
 

 

Acknowledgments 
I am profoundly grateful to my university and company supervisors Maryam, Harmke, Alexander and Ad. 

For me as a student who has never conducted a full scientific research the deep ocean I ended up in felt 

overwhelming. Without their support and knowledge my research would not have been possible. In my 

ambition I often heard the words ‘stop trying to solve the world’, . By lending their knowledge from their 

varying areas of expertise I felt myself growing in my role as researchers, but also as a person. I did not 

solve the world, but I am proud of what I created.  

I would also like to specifically thank ASML and all the people whom I’ve met there. Not only did they 

give me a welcome feeling but without their interest and participation this research would not have 

been possible. 

Finally, I would also like to give a special thanks to friends and family for supporting me during the 

research and writing stage.    



  4   
 
 

 

Summary 
This research is an explorative case study of the behavioral competencies of a software architect. Both 

in literature and in the industry, most topics have addressed the technical side of the software 

architect(Muccini et al., 2018) and less then 5% have incorporated elements of behavior(Lenberg et al., 

2015). Existing literature has addressed behavior in software architects in various ways(Bass et al., 

2008a; Bredemeyer, 2002; Bredemeyer & Malan, 2002; Clements et al., 2007; Erder & Pureur, 2017; 

Hoorn et al., 2011; Klein, 2016; Kruchten, 1999, 

2008), however there is still a lack of understanding 

on which of these behaviors are the most important 

and how they are important. One of the ways of 

operationalizing behavior is via (behavioral) 

competencies, often used in consultancy(Bartram, 

2005; Bredemeyer, 2002; Kornferry, n.d.). Few case 

studies have been conducted before to analyze the 

behavioral of software architect in the field(Martini 

et al., 2014; Premraj et al., 2011). This research aims 

to address these gaps by conducting an explorative 

case study with the following research question:  

 (RQ): What are the most important behavioral competencies of a successful software architect? 

The internally used behavioral competencies of the company are used since employees are already 

familiar with these and since internal frameworks are more transparent for the researcher. The internal 

framework defines 20 behavioral competencies(Kornferry, n.d.) which all have leadership aspects, the 

20 behavioral competencies are given in table a. These behavioral competencies will be used to identify 

the most important behavioral competencies of a software architect. In order to understand which 

behavioral competencies are important, it first has to be clear what an architect does. In general, the 

architect is the technical leader responsible for the systems integrity(Bass et al., 2008; Britto et al., 2016; 

Eeles, 2006; Weinreich & Groher, 2016). In this role there seem three distinct hierarchal levels: system-

level architects, product-level architects and team-level architects(Britto et al., 2016; Martini et al., 

2014). Team-level architects are excluded from the scope. The activities of the architect, overview in 

figure a,  can be described as activities focusing on getting input, architecting activities and activities 

focusing on providing information(Kruchten, 2008).  

Methods 
This research is an explorative case study with the goal of expanding the knowledge of the software 

architects behavioral competencies. In order to know which and how behavioral competencies are 

important for a successful software architect a multi-method approach was taken. First, a literature 

study was conducted to orient and create expectations on the which question. The literature study 

followed the snowballing procedure of Wohlin(2014) selecting the starting articles from the leading 

sources as recommended by Webster & Watson(2002). A questionnaire was held, following the 

principles of Blumberg et al.(2011) to gather quantitative data to analyze both the ranking and compare 

different groups in order to answer the which-question. Follow-up interviews were used, designed 

 
Figure a: What do architects really do?(Kruchten, 2008) 



  5   
 
 

 

following the steps of Turner(2010) to get more in-depth information in how these important behavioral 

competencies lead to success.  

Questionnaire results 
The questionnaire used an implied ‘success’ asking the 220 participants to rank all 20 behavioral 

competencies(Kornferry, n.d.) on a numeric scale of 1 to 7 on how important they were for successful 

software architects. Both the mean-based automatic clustering method scott-knott ESD, figure b, and 

the absolute ranking showed how the behavioral competencies manages complexity(BC4) and 

communicates effectively(BC3) were the top cluster of important behavioral competencies. Every single 

group or subgroup had these as their top 2, supporting hypotheses 1 and 2 which saw these two as 

‘most’ important. The second cluster consisted of Decision quality(BC20) and Collaboration(BC12), which 

were either the 3rd or 4th most important behavioral competencies for both stakeholders(n=161) and 

architects(n=59). This would reject the hypotheses 3 stating decision quality being the most important, 

since it is not part of the top cluster. This does not mean it is not important, it is just not the top cluster. 

However, stakeholders and architects did switch them around, where architects valued collaboration as 

the 3rd ranked and stakeholders decision quality as 3rd ranked. 

Figure b: Scott Knott ESD cluster results     

The mann-whitney U-test found decision quality to be almost significantly lower(p-value= 0.065 for 

architects compared to stakeholders. However, in the exploration of the sub-groups this difference 

seemed to be caused by the product-level architects whom valued Decision quality almost significantly 

lower(p-value= 0.072) than system-level architects. Next to this there were significant differences in 

plans and aligns and balances stakeholders between architects and stakeholders. Since the difference 

between architects and stakeholders on Collaboration was not significant, hypotheses 5 was rejected. 

Since Decision quality was almost significant and is expected to become significant with increased 

sample size, this would indicate a difference. However, since it was not significant, the formal conclusion 

would be to deem the outcome of hypotheses 4 to be inconclusive.  

Table a: list of behavioral competencies(Kornferry, n.d.) 

1 Ensures accountability 6 Cultivates innovation 11 Plans and aligns 16 Business insight 

2 Develops talent 7 Drives engagement 12 Collaborates 17 Strategic mindset 

3 Communicates effectively 8 Drives results 13 Build effective teams 18 Demonstrates self-awareness 

4 Manages complexity 9 Values differences 14 Optimizes work processes 19 Self-development 

5 Instills trust 10 Situational adaptability 15 Balances stakeholders 20 Decision quality 



  6   
 
 

 

Interview results 
The 11 interviews explored how the top ranked behavioral competencies led to success. First, it 

confirmed the top 4 behavioral competencies, them being present in all 11 interviews. Communicates 

effectively seemed to happen both in the process of gathering information, but also when convincing 

others. Manages complexity was seemed linked to the knowledge an architect has and dealing with all 

the different information inputs, some also addressed it being part of knowing what to communicate to 

others. Collaboration happened both in working together in order to assemble all information and get to 

the problem, but also working together to make the decision and execute it together. Decision quality 

was more often seen as the decision itself focused on both making an individual decision or guiding the 

decisions in order to create a joint decision. Interesting was how instills trust was present in 9 out of 11 

interviews. Instills trust seemed to be required in order to have success when convincing others.  

Conclusion 
To answer the research question: What are the important behavioral competencies for a successful 

software architect? The most important behavioral competencies of a software architect are manages 

complexity and communicates effectively. However, there is a second cluster consisting of collaboration 

and decision quality which can also be considered important. Furthermore, instills trust seems to be a 

pre-condition for success. 

The questionnaire contributes to existing literature by creating a sense of prioritization but also 

indications how different groups could perceive what is important differently. The interviews allowed 

for these important behavioral competencies to be mapped on the different activities of the software 

architect(Kruchten, 2008), as can be seen in figure c. However, maybe even more important it indicated 

how multiple behavioral competencies are used together in order to be a successful software architect.  

Limitations and future research 
This last insight shows how observing single behavioral competencies does not always create the full 

dynamics. With the knowledge of which behavioral competencies are important, future research should 

focus on combinations of behavioral competencies 

in order to understand their dynamics. In addition, 

more research is needed to explore the different 

dynamics of the behavioral competencies and how 

they lead to success. Furthermore, one of the major 

drawbacks is that success has not been defined, but 

rather was implied by the participants. The insights 

are still valuable with a high response(n=220), 

however, more research is needed to explore what 

success really means. In addition, the interviews 

gave insights but they could be biased based upon 

the case context, more case studies are required to 

verify the findings of this research.   

  
Figure c: Behavioral competencies mapped on the 
architects activities 



  7   
 
 

 

Table of contents 

Acknowledgments ......................................................................................................................................... 3 

Summary ....................................................................................................................................................... 4 

Methods .................................................................................................................................................... 4 

Questionnaire results ................................................................................................................................ 5 

Interview results ....................................................................................................................................... 6 

Conclusion ................................................................................................................................................. 6 

Limitations and future research ............................................................................................................ 6 

List of Figures .............................................................................................................................................. 10 

List of Tables ............................................................................................................................................... 10 

Chapter 1: Introduction .............................................................................................................................. 11 

1.1 ASML ................................................................................................................................................. 11 

1.1.1 Problem analysis ........................................................................................................................ 12 

1.1.2 Existing roles and scope ............................................................................................................. 12 

1.2 State of the art .................................................................................................................................. 13 

1.2.1 Behavioral competency ............................................................................................................. 14 

1.2.2 Operationalizing competencies ................................................................................................. 15 

1.2.2 The architect .............................................................................................................................. 16 

1.2.3. Different architect levels ........................................................................................................... 17 

1.3 Research question ............................................................................................................................. 17 

1.4 Research methodology ..................................................................................................................... 18 

Chapter 2 Theory ........................................................................................................................................ 20 

2.1  Methodology .................................................................................................................................... 20 

2.1.1 Snowballing ................................................................................................................................ 20 

2.1.2 Selection criteria ........................................................................................................................ 21 

2.1.3 Iterations and evaluations ......................................................................................................... 23 

2.2 Academic literature ........................................................................................................................... 23 

2.2.1 Software engineering domain .................................................................................................... 23 

2.2.2 Behavior and the software architect ......................................................................................... 24 

2.2.3 Competency ............................................................................................................................... 25 



  8   
 
 

 

2.3 Important behavioral competencies................................................................................................. 26 

2.3.1 The most important competencies ............................................................................................ 26 

2.3.2 Including hierarchy ..................................................................................................................... 28 

2.3.3 Stakeholders .............................................................................................................................. 29 

2.4 summary findings literature review .................................................................................................. 31 

Chapter 3: Quantitative research: Questionnaire ...................................................................................... 32 

3.1 Methodology of the questionnaire ................................................................................................... 32 

3.1.1 Goal of the questionnaire .......................................................................................................... 32 

3.1.2 Design of the questionnaire ....................................................................................................... 32 

3.1.3 Participant selection .................................................................................................................. 33 

3.1.4 Measurements ........................................................................................................................... 34 

3.1.5 Privacy and data storage ............................................................................................................ 36 

3.2 Outcome questionnaire .................................................................................................................... 36 

3.2.1 Demographics ............................................................................................................................ 36 

3.2.2. ‘Most’ important behavioral competencies ............................................................................. 37 

3.2.2 Stakeholders and architects ....................................................................................................... 38 

3.2.3 System-level architects and product-level architects ................................................................ 40 

3.2.4 Comparing different stakeholder sub-groups ............................................................................ 41 

3.3 Summary results questionnaire ........................................................................................................ 44 

Chapter 4: Qualitative research interview .................................................................................................. 45 

4.1 Interview setup ................................................................................................................................. 45 

4.1.1 Interview research question ...................................................................................................... 45 

4.1.2 Participant selection .................................................................................................................. 46 

4.1.3 Testing ........................................................................................................................................ 46 

4.2 Data and coding setup ...................................................................................................................... 46 

4.2.1 Coding ........................................................................................................................................ 47 

4.3 Interview results ............................................................................................................................... 47 

4.3.1 What behavioral competencies contribute to the success ....................................................... 48 

4.3.2 How the top-ranked behavioral competencies lead to success ................................................ 48 

4.3.3 What performance outcomes indicate success ......................................................................... 52 

4.3.4 The role of knowledge in the software architect ....................................................................... 52 



  9   
 
 

 

4.4 summary interview chapter .............................................................................................................. 53 

Chapter 5 Conclusion .................................................................................................................................. 54 

5.1 Top cluster ........................................................................................................................................ 54 

5.2 The other two important behavioral competencies ......................................................................... 55 

5.3 Never just one behavioral competency ............................................................................................ 56 

5.4 Additional findings of knowledge management and performance outcomes indicating success ... 57 

Chapter 6 Discussion ................................................................................................................................... 58 

6.1 Theoretical implications .................................................................................................................... 58 

6.1.1 Mapping behavioral competencies on the architecting activities ............................................. 58 

6.1.2 Differences between system-level and product-level architects .............................................. 61 

6.1.3 performance outcomes indicating success ................................................................................ 61 

6.1.4 Role of knowledge management ............................................................................................... 62 

6.2 Managerial implications .................................................................................................................... 62 

6.3 Limitations and future research ........................................................................................................ 63 

6.4 Final summarization .......................................................................................................................... 64 

References .................................................................................................................................................. 66 

Appendix ..................................................................................................................................................... 70 

Appendix A: behavioral competencies (Kornferry, n.d.) ........................................................................ 70 

Appendix B: Literature overview ............................................................................................................ 71 

Appendix C: Full questionnaire ............................................................................................................... 72 

Appendix D: Full overview of data transformation................................................................................. 83 

Appendix E: Architect and Stakeholder interview coding output .......................................................... 86 

 

  



  10   
 
 

 

List of Figures 
• Figure 1a: Hierarchal structure in case company 

• Figure 1b: Architect types in case company 

• Figure 1c: Visualization of literature gaps 

• Figure 1d: What do architects really do?(Kruchten, 2008) 

• Figure 1e: Map of expertise on the architect activities(Razavian & Lago, 2015) 

• Figure 1f: mapping of hierarchal layers 

• Figure 1g: research methodology overview 

• Figure 2a: snowballing procedure(Wohlin, 2014, p.4) 

• Figure 2b: Overview research model 

• Figure 3a Gender demographics 

• Figure 3b Age categories demographics 

• Figure 3c Participant roles architects and participants stakeholders  

• Figure 3d: Scott Knott ESD cluster results  

• Figure 4a: Iterative coding cycle with final overview 

• Figure 5a: The interview findings regarding Manages complexity and communicates effectively 

• Figure 5b: The interview findings about collaborates and decision quality 

• Figure 6a: Top 5 behavioral competencies mapped on architecting activities (Kruchten, 2008) 
 

List of Tables 
• Table 2a: Systematic literature study selection criteria  

• Table 2b: Evaluation based on searching another search engine 

• Table 3a: different type of groups and coding number 

• Table 3b: Descriptive statistics behavioral competencies 

• Table 3c: forced choice top 3 mentions 

• Table 3d: Overview of the 6 most important behavioral competencies in general, for 
stakeholders and for architects. 

• Table 3e: descriptive statistics and u-test stakeholders and architects 

• Table 3F: Ranking difference between system-level architects and product-level architects 

• Table 3g: descriptive statistics and u-test architect sub-groups 

• Table 3h: stakeholder sub-group competency rankings 

• Table 3I: ANOVA  of different stakeholder subgroups 

• Table 3J post-hoc of sub-groups stakeholders 

• Table 4a: Role categories of interview participants 

• Table 4b: overview behavioral competencies in interviews 
  



  11   
 
 

 

Chapter 1: Introduction 
From the software engineers to the highest architects, social interactions have become an unavoidable 

part of the job. Think about the amount of alignment and requirements management that have to be 

done to create software products. In all these interactions with people, the behavior of individuals 

becomes more and more important. One of the roles in which the behavior and interactions are even 

more important is the software architect. The software architect can be described as the technical 

leader responsible for maintaining the system integrity(Bass et al., 2008; Britto et al., 2016; Eeles, 2006) 

and is often seen as a decision-maker(Fowler, 2003). Half of the role of the software architect is related 

to gathering and giving other roles information(Kruchten, 2008). But which types of behavior should a 

software architect apply to be successful? 

Research in technical fields, like the software engineering field, is slowly starting to realize the 

importance of these behavioral aspects of a job. However, less than 5% of the software engineering 

literature incorporates behavior as an element(Lenberg et al., 2015). In contrast, the roles within 

software engineering becoming more social. And the bigger the company, the more potential 

interaction is required of every role. Both in literature and in practice most topics that have been 

researched in the past have had a technical focus(Muccini et al., 2018). Behavior affects success in the 

software engineering domain(Lenberg et al., 2015), and thus for the role software architect. Companies 

often operationalize behavior by expressing it via (behavioral) competencies(Bartram, 2005; 

Bredemeyer, 2002; Kornferry, n.d.).  Competencies are a combination of knowledge, skills and behavior, 

and can be trained. Technical competencies focus on the tasks, tools and knowledge required to do the 

‘hard’ part of the job like using a certain tool or coding language. Behavioral competencies, also 

expressed as non-technical or ‘soft’, focus on the people and deductive part of the job. This research 

aims to contribute to the field of behavioral software engineering by exploring which behavioral 

competencies are important for a software architect and in what context.  

1.1 ASML 
ASML is a company with over 28,000 employees and 14 billion in net sales(ASML, 2020) making it a big 

player in the semiconductor industry. The European Union wants to secure Europe’s relevance in the 

global semiconductor industry, this will enforce this giant European company’s relevance on a global 

scale(ASML, 2022). In addition, the growth is not about to stop since there is a global chip shortage 

which even lowered car production by 100,000(BBC, 2021). The company creates highly complex 

machines which can ‘print’ layers on small plates creating a chip. These layers are expressed in 

nanometers, requiring precise and highly technological equipment. The machines themselves are about 

the size of a bus containing 100,000 parts and 2km cables requiring multiple cargo planes when 

shipping(Wired, 2021). Developing these machines is a lengthy and costly process where ASML invested 

6 billion euros over 17 years in R&D(ASML, n.d.-c). However, this development is required to stay 

competitive in the market. In addition to developing, older products like the PAS and TWINSCAN 

systems are still supported. 

These big complex machines are not only a bunch of hardware thrown together, but it also contains a 

lot of software. The success of software projects is crucial as it is used for user interfaces, measuring, 

automated responses, steering hardware, and various other purposes. Different components can 



  12   
 
 

 

contain software steering the sub-element itself, but can also be a separate module that measures 

certain elements in the machine itself. Logically, it is a daunting task for software architects to maintain 

system integrity and control the dependencies of software as it is both crucial for success, but also 

dependent on hardware. Even though there is evidence on the importance of the role of behavior on 

success in software projects, we know little about how it exactly functions. This case study will focus on 

the software side of the machine.  

1.1.1 Problem analysis 
ASML is a large company creating complex products where many separate groups need to work 

together, the structure of the case company can be found in figure 1a. To create a new scanner the 

machine is split up into components, there are multiple different clusters referred to as SF’s all 

addressing a component. Every component has different functionalities, the responsibility of function 

groups(FC’s) Every FC has multiple sub parts. This structure creates a complex structure of decision-

making and interactions. This structure follows a matrix function where in the SF’s there is a long term 

and a short term focus. The long-term focus(5 year) is represented on the platform side whereas the 

short-term (2 year) focus is represented on the product side, overview of architects can be found in 

figure 1b.  

Architects work together with multiple stakeholders of different types. Apart from working with 

(internal) customers, as a technical leader, they often work with engineers. They are also placed in the 

‘3-in-a-box’ which is a decision triangle with project and product management.  

ASML already has an existing framework containing 12 behavioral competencies plus 8 leadership 

competencies making together 20 behavioral competencies. They have been selected out of the 

internationally known Korn-Ferry framework as being the most important competencies within the 

ASML context(ASML, n.d.-b, n.d.-a). The definitions of these competencies can be found in appendix A. 

Muccini et al.(2018) addressed the lack of knowledge on the behavior of software architects in both 

literature and practice. As ASML is growing a lot, it is important to know the impact of behavioral 

competencies and their importance at different levels as it will help to create effective succession plans 

and train people for the next level in their careers. It can also help to create better profiles when 

searching for new candidates externally.  

Where the size and growth of ASML presents a challenge on their part, it creates a research opportunity. 

Having a large complex system with a lot of dependencies creates the need for multiple architects 

maintaining the technical elements and integrity And the size of the development ensures that there are 

more architects available to study than there are in an ordinary company.  

1.1.2 Existing roles and scope 
This research will focus on experienced architects as for starting architects there can be a discussion on 

their role, for example, is it more lead designer or is it also including other non-architect tasks. By 

starting at the FC level we will talk to both architects as well as stakeholders who have enough 

experience to explicate their views on what makes a software architect successful and who have seen 

enough developments to differentiate based on experience between successful and contra-paradigms of 

working. The first layer of software architect roles which are included are functional software 



  13   
 
 

 

architects(FCA) and functional software test architects(FCT). The FCA is responsible for the mid- and 

longer-term reference architecture of the FC.  Where its test counterpart is responsible for test-strategy, 

testability and quality.  In this layer, there are also have train architects, who are architects responsible 

for the execution of development for the coming ~1.5 years when product definition is agreed upon. 

The role of FCA and train architect is sometimes combined and sometimes separated. The layer above 

consists of architects responsible for a larger overview like an entire product or an entire subfunction, 

namely: SF architect, platform architect, or product architect. An overview of all the architects and their 

segments is given in figure 1b.   

 

 

Figure 1a: Hierarchal structure of case company Figure 1b: Architect types in case company 
 

The literature describes three layers of software architects(Britto et al., 2016). First, the system-level 

architects are responsible at a system-level where multiple products have to work together. They focus 

on high-level design and risks(Britto et al., 2016). In ASML’s context, this would be the department 

architect, product architect and platform architect. As shown in figure 1b, their responsibilities are over 

multiple groups over the two scope axis, which is also supported by literature(Britto et al., 2016; Martini 

et al., 2014). Second, the product-level architects. Where they have more responsibilities regarding 

solving problems directly with teams(Britto et al., 2016), they are responsible for the practical decisions 

and execution involved with the decisions made on the system level. They are still responsible for risk 

management and design decisions, and work often with system-level architects. In ASML’s structure, 

these would be seen as the FCA, FCT and train architect who both have the in-between responsibilities 

between architecture and a team while still not micro managing. The third hierarchal layer, team-level 

architects, was not included in this scope.  

1.2 State of the art 
The state of the art is a result of the literature review. This chapter will present the main status focusing 

on the gaps In literature, and the research question. Chapter 2 will address the methodology of the 

literature study and focus on forming hypotheses. The visualization of the research question can be 

found in figure 1c. 



  14   
 
 

 

 

Figure 1c: Visualization of literature gaps 

Existing literature in the entire software engineering domain has included behavior, but not often. The 

field of behavioral software engineering has been getting more attention but less than 5% of the 

research has focused on behavioral elements(Lenberg et al., 2015). Even though only a limited number 

of behavioral elements have been linked to success on a team, project, or organizational scale(Baltes & 

Diehl, 2019), there is a clear link on behavioral elements that influence being successful. These findings 

originate from the software engineering domain, and even though the software architect is part of this 

domain findings for this specific sub-category are even more difficult to find. This is not only a research 

gap but also a gap for practitioners where in the past 25 years both industry and literature have mainly 

focused on technical aspects of the software architecture(Muccini et al., 2018). Consequently, there is a 

lot of information on the technical elements of the software architect. If there is research about the 

architect and its expected skills, the focus originates from this technical focus studying the role and task 

descriptions(Bass et al., 2008; Kruchten, 2008) or from analyzing job offers(Ahmed et al., 2015). Filling 

the gap by turning towards behavioral competencies instead of only focusing on the technical tasks at 

hand will also benefit the technical solution space in the future. It is known that in architecture-related 

issues, 40% is not related to architecture itself but rather in elements like communication(Premraj et al., 

2011).  Additionally, research should not only take the perspective of the task description of a software 

architect but should also focus on the gap where practitioners show what they consider to be important. 

There are case studies like Britto et al. (2016) or studies using consultancy frameworks as its 

base(Kruchten, 2008; Razavian & Lago, 2015) which include behavior, but rarely do they explore how 

competencies lead to success and which are related to being successful from the perspective of the 

practitioner. In addition, there is a lack of case studies verifying findings from literature in regards to the 

software architect.  

1.2.1 Behavioral competency 
In literature, many different terms have been used to address the behavior of the software architect. In 

a certain sense, depending on the definition you use, people might address the same thing with a 

different name. To define competency, “A competency is the set of behaviour patterns that the 

incumbent needs to bring to a position in order to perform its tasks and functions with 



  15   
 
 

 

competence”(Bass et al., 2008). Competence is being seen as: “Being competent, adequacy, possession 

of suitable or sufficient skills OR creating valuable results without using excessively costly behavior.” 

(Bass et al., 2008, p.5). Few use the term competency directly(Bass et al, 2008; Bredemeyer, 2002), 

however many talk about different aspects of an architect which would be included in this definition of 

competency like skills, knowledge or experience(Bass et al., 2008; Bredemeyer, 2002; Clements et al., 

2007; Hoorn et al., 2011; Klein, 2016; Kruchten, 1999, 2008; Razavian & Lago, 2015). As mentioned 

before, much of the literature focuses on technical elements of the software architect like the technical 

competencies. However, this creates a larger gap in the knowledge surrounding behavioral 

competencies of a software architect, even though behavioral competencies are a widespread concept 

in industry and consultancy(Bredemeyer, 2002).  

1.2.2 Operationalizing competencies 
Measuring behavior or behavioral competencies has been a difficult subject to research, let alone in 

engineering fields like software engineering. This research made a clear scoping towards focusing on the 

less common behavioral competencies over the more explored technical competencies. Technical 

competencies focus on more concrete skills like knowing a specific methodology or tool in a specific 

domain. One widely used tool to measure ‘people’ is the Myers-Briggs Type Indicator(MBTI) which is a 

personality type of research. Good software architects would be introvert, intuition-based, thinking 

people who would either have a judging or perceiving personality(Kruchten, 1999). But, this tool mainly 

focuses on personality, rather than behavior competencies. In addition, MBTI has been criticized in the 

past and has rarely been used in software engineering research in the past making previous findings less 

relevant due to the change into agile working methods(Sach et al., 2010).  

Behavioral competencies mainly find usage in consultancy frameworks like Bredemeyer's (2002) or 

ASML’s used Kornferry (n.d.) framework. Articles like Kruchten(1999, 2008) used the Bredemeyer 

framework as a base for his work. These frameworks are not transparent to people outside the 

organization but are known inside the organization creating the preference to use these in research. 

There is a strong preference to use internal frameworks in research, not only due to the availability of 

definitions and material, but also the better fit between organization and model. Therefore the 

Kornferry model will be chosen over one like Bredemeyers. 

Alternatively, there are competency models outside of the software engineering domain one such 

model would be ‘The great eight competencies’(Bartram, 2005). A huge drawback of using generic 

competency models would be the lack of context and the mismatch between terms and definitions used 

within the software engineering domain. In addition, even though this model is scientifically validated, it 

is based on the SHL consultancy firm. This firm is a leader but it experiences the same untransparent 

issues as other models. The choice of using the internal framework is clear, but a comparison between 

Kornferry (n.d.)and Bartram (2005) could be beneficial due to the scientific relevance of the great eight 

competencies.  

The framework connects the behavioral competencies with the big five personality traits: 

Agreeableness, extraversion, contentiousness, openness and Neuroticism. The 20 behavioral 

competencies of Bartram(2005) compared to the 20 behavioral competencies of Kornferry(n.d.) seem to 

have a lot of similarities. The main difference between the two models is the lack of tailoring on specific 



  16   
 
 

 

architect elements where there is too much noise, however, what is there is more elaborate and 

focused on specific sub-elements. In general, all elements are present, but Bartram has a more generic 

description. This description splits up elements like communication and managing complexity into 

separate elements. Kornferry is more adapted to software architects where the pillars are more in line 

with company policy, this creates a more effective operationalization in this context. In addition, the 

definitions are simpler yet allow for more focus on the view of what a person should know like business 

insight and how it relates to what a business needs like drives results and drives engagement. One of the 

most important inclusions of Kornferry would be the inclusion of Decision quality itself as a behavioral 

competency. As will be shown in the next chapter, making decisions and the quality of them is a critical 

part of what an architect should do. With only a few differences and practical differences in how it is 

shown these frameworks generally express the same sentiment, however, the differences favor the 

usage of the existing framework of Kornferry.  

1.2.2 The architect 
To further understand the gaps in existing literature, we have to know what a software architect is. 

There is an agreement of the agrees that the main responsibility of a software architect is the system's 

integrity(Bass et al., 2008; Britto et al., 2016; Eeles, 2006; Weinreich & Groher, 2016) however, there are 

also some arguments of an additional mentor(Britto et al., 2016) or leadership(Bass et al., 2008) role for 

the software architect. Even though it is clear what is expected from the architecting part of the 

software architect, what is expected in the role of technical leader or knowledge manager still sees 

some debate. This could be considered an element that requires attention in future research.  

One of the clearest descriptions of the software architects' role and activities divides the role into three 

elements: architecting, inwards communication, and outwards communication(Kruchten, 2008). These 

three elements have an optimal balance, given in figure 1d, where the architect should get input 25% of 

the time. This focuses on getting and analyzing input like user requirements, knowledge about 

technology, and architectural knowledge. In addition, the architect should spend 50% of the time on 

architecting activities like designing, documenting, prototyping, and validating. The final part is providing 

information that focusses on the communication of the architecture and assisting stakeholders.  

 

 
Figure 1d: What do architects really do? (Kruchten, 
2008) 

Figure 1e: Map of expertise on the architect 
activities(Razavian & Lago, 2015) 



  17   
 
 

 

In addition, four antipatterns are identified which indicate the wrong behavior in software architects. 

These antipatterns could be useful in identifying a lack of certain competencies in practice. These are 

Goldplating, the architect in the ivory tower, the absent architect, and being the consultant. If it is doing 

too much architecting or only focusing only on one type of communication, all these patterns are seen 

as undesirable. Even though this does indicate what architects should do, it does not discuss what 

successful behavior is attached to it. There is a direct relation between the model of Kruchten(2008) and 

(feminine) expertise being mapped on it, figure 1e. For example, cherish relationships and 

communication were observed to be part of providing information.  Even though expertise is related but 

not the same as behavioral competencies, it does show how the relationship between behavior and the 

core activities is present and relevant.    

1.2.3. Different architect levels 
Just like with ASML, the case study of Oce(Premraj et al., 2011) shows different levels of architects and 

different types of roles working with software architects, figure 1f. Where roles depend on context, the 

previous chapter defined the different layers and linked them to ASML’s context. The two models 

describe the different roles as follows. (Britto et al., 2016) separates a system-level, product-level, and 

team-level architect based upon what they refer to as being a guardian or a mentor in combination with 

being a decision-maker or a problem solver with the team as was defined by (Fowler, 2003). Martini et 

al.(2014) created a framework where a chief, governance, and team architect were separated with 

responsibilities and focus for each role. This focus mainly included what level of design decisions are 

being taken, what type of risks management should be conducted, and what type of documenting 

should be generated. Chief architects focused on high-level decisions and architecture. Governance 

architect focused on inter-feature architecting and testability. The team-level architect does not have to 

be a dedicated role, but can be distributed responsibilities(Martini et al., 2014) and is the executor of 

the detailed design decisions made. Both include the architecture as the main responsibility including 

the flow of hierarchy of these decisions through the different levels. Britto’s(2016) definitions are used 

from the context of an Ericson case 

study. The origin of these definitions is 

based on the role of the architect where 

system-level architects focus more on 

decision making, the team-level 

architect are more team-oriented and 

help solve problems on that level. This 

description fits the perception and tasks 

of ASML’s roles as explained before. 

 

1.3 Research question 
As shown in the previous section existing literature provides a solid platform on what to base this 

research on. One of the previously mentioned limits of existing literature is the origin of existing 

literature. Literature originates from either existing work breakdowns(Kruchten, 1999) or job 

vacancies(Ahmed et al., 2015), or when it does involve case studies it focuses on what architecting 

 
Figure 1f: mapping of hierarchal layers 



  18   
 
 

 

activities are(Oliveira et al., 2019). Literature coming from consultancy frameworks like 

Bredemeyer(Bredemeyer, 2002) or the generic ‘great eight’ framework based on the work of a 

consultancy firm(Bartram, 2005)are focused on this point of view too. The case studies that did happen 

were limited to IT organizations(Hoorn et al., 2011), Oce(Premraj et al., 2011), and Ericson(Britto et al., 

2016) from which only Ericson could even be compared to this cases situation. More field research 

should be conducted in companies.  

As mentioned before who the software architect is and what he should do is described. There are 

sources taking into account behavioral competencies(Bass et al., 2008a; Bredemeyer, 2002; Bredemeyer 

& Malan, 2002; Clements et al., 2007; Erder & Pureur, 2017; Hoorn et al., 2011; Klein, 2016; Kruchten, 

1999, 2008), even though less than 5% of the total architecting literature addresses behavior(Lenberg et 

al., 2015). However, these sources do not focus on how and why these competencies are important. In 

addition, even though there are a lot of similarities between the models like the need for intrapersonal 

skills(Bass et al., 2008; Bredemeyer, 2002; Clements et al., 2007) or communication(Bass et al., 2008; 

Bredemeyer, 2002; Ferrari et al., 2009; Kruchten, 2008; Razavian & Lago, 2015). But there are also many 

inconsistencies or differences, as addressed before. This is in combination the rarity of taking different 

stakeholders or differences in different hierarchal roles(Britto et al., 2016; Martini et al., 2014) into 

account. This might have more implications considering the future of research should consider the 

relation of competencies with multiple other perspectives like the organization(Bass et al., 2008) and 

teams(Kruchten, 1999; Tang et al., 2017). This all is even separated from the lack of knowledge on what 

it means to be successful as a software architect, within software projects the architect is structurally 

underrepresented(Agarwal & Rathod, 2006).  

Based on the case company goal and following the literature the main research question is formed: 

Research question(RQ): What are the most important behavioral competencies of a successful 

software architect?  

We partly also answer the question of why these are most important in a complex D&E environment.  

SQ 1. Which behavioral competencies are important for a successful software architect? 

SQ 2. How do these important behavioral competencies make a software architect successful? 

SQ 3. Are there any differences between architects and stakeholders in which behavioral 

competencies are considered important for a successful software architect? 

1.4 Research methodology 
As mentioned in the introduction the role of a software architect is difficult to research since there are 

few architects within a company, if they even have architects. The large size of the new product 

development in ASML allows this research to be effective when conducted in ASML. Existing research 

has shown to have some gaps which led to a wider research question. To answer the research question, 

this explorative study tries to get to know which behavioral competencies are important but also how 

they function in practice. To do this a mixed-method approach was taken to answer different elements 

of the research question itself. First, a literature study has been conducted to gather existing knowledge 

about the behavior and behavioral competencies of software architects. This literature study maps the 



  19   
 
 

 

existing knowledge and will form a basis from which hypotheses can be formed. Since literature about 

behavioral competencies is very limited in the software engineering domain, this systematic literature 

study follows the research method of snowballing. Snowballing is especially useful in explorative 

research(Wohlin, 2014), like this study. Chapter two addresses the existing knowledge and hypotheses 

following the systematic literature study, trying to create a body of knowledge and create an 

expectation to answer the research question.   

Chapter three will address a quantitative research element, in the form of a questionnaire, to get a basic 

understanding of which behavioral competencies are considered to be more important for software 

architects. It will help answer sub-question 1 and 3. A quantitative element helps the researcher to 

create a more objective answer to which behavioral questions are considered important. A 

questionnaire is an efficient data collection mechanism when the researcher knows exactly what is 

required and how variables of interest are measured(Sekaran & Bougie, 2016). In addition, it also helps 

to reach a wider audience. Even though in this research the quantitative element is based on human 

evaluations, the ‘wisdom of the crowd’ principle still creates a reliable way to answer the question 

“which” behavioral competencies are most important. The 20 behavioral competencies(Kornferry, n.d.), 

overview in appendix A, used within ASML form the base of this questionnaire. Participants will be 

familiar with these concepts and definitions. Where the data collected from a questionnaire could also 

help find differences and similarities between groups, it does not answer the ‘how’ and ‘why’ questions.  

The how represented in sub-question 2, can be answered with a questionnaire next to also verifying the 

answers given in the third chapter on which behavioral competencies are important for a successful 

software architect(SQ1). The drawback of a questionnaire is the inability to find in-depth reasoning 

behind the answer. To answer this ‘how’, semi-structured interviews are used to elicit in-depth 

information to identify the critical factor(s) and fill the knowledge gap(Sekaran & Bougie, 2016). 

Alternatively focus groups can be used for exploratory studies aimed at generating generalizations to 

answer the ‘why’-question(Sekaran & Bougie, 2016). However, due to restrictions given by the company 

regarding the time the option of focus groups is not used.  

Every chapter in this report will elaborate more upon the specific methodology used, followed by the 

results of the chapter itself. It will follow the structure as described above and is visualized in figure 1g.  

 

Figure 1g: research methodology overview 

  



  20   
 
 

 

Chapter 2 Theory 
This chapter will address the conducted literature review forming the existing body of knowledge. In this 

research setup, the literature study itself was part of a preliminary study conducted to build the rhetoric 

of this study. As a result of the search for knowledge to create an understanding of what makes a 

software architect successful, the primary goal of this thesis is to expand the body of knowledge on 

behavior competencies for software architects and use this knowledge to further the utility of 

behavioral competencies in practice. First, this chapter will address the methodology of the literature 

study and will then address the outcome.   

2.1  Methodology 
Based on the problem context for the case company, the goal of this systematic literature review is to 

explore the body of knowledge and identify what behavioral competencies are important for a software 

architect. However, the term behavioral competency is not widely used in the software engineering 

domain. Luckily, the actual goal was not only to gather specific behavioral competencies but to gather 

the different non-technical elements or behavioral elements of the software architects and their 

operationalization. The aim was to gather knowledge and find specific gaps in the literature in regards to 

the role and behavior of the software architect. This was a clear first step in answering the research 

question: which behavioral competencies are important for software architects.  This led to the 

following literature review research question:  

LR-RQ: What are the gaps in the literature regarding the role and competencies of a software architect? 

To answer the literature research question four sub-questions were formed to guide the findings : 

LR-SQ1: How is the role of the architect currently described in the literature? 

LR- SQ2: What are the existing competencies of software architects? 

LR- SQ3: How are these competencies operationalized? 

LR- SQ4: How do the SA competencies help create success? 

2.1.1 Snowballing 
There are two common methods of literature research: systematic literature reviews and systematic 

mapping studies. Search queries, the often choice for literature reviews, require clear and well-defined 

strings, and snowballing, a systematic mapping form, requires a starting set of papers from which other 

sources and citing articles are reviewed. The snowballing method is especially suited for exploratory 

studies(Wohlin, 2014), like this one. In addition, forming good search terms for behavior in software 

architects proved to be difficult due to the small focus on behavioral research in the software 

engineering domain(Lenberg et al., 2015).  

Wohlin(2014) describes a method for the snowballing methodology, as shown in figure 2a. The first step 
is to identify a start set of papers. From the existing literature we know that the body of behaviorally 
oriented articles in the software engineering domain is very limited(Lenberg et al., 2015), let alone trying 
to take into account the software architect specifically. This is confirmed by searching in search engine 



  21   
 
 

 

Scopus for terms like ((“competency” OR “competencies”) AND “Software architect”) or (Competency 
AND software AND architect) yielding a respective three and eighteen results from which none would 
have been included based on the search criteria. Webster & Watson(2002) suggest selecting the set of 
papers from leading sources. Initially, this research concept originated from the idea of (Kruchten, 
2008), (Razavian & Lago, 2015) and (Mendes et al., 2021). Kruchten is one of the leading authors 
concerning software architects and this research is conducted with inspiration from Razavian & 
Lago’s(2015) perspective of linking the central role of the software architect to different types of 
experiences a person can have. The article of Mendes et al.(2021) is a recent, but leading, publication 
focused on the relationship between decision-making styles and personality in the software engineering 
domain. Primarily, this was included because of the linking of personality into a more behavior-like topic 
in the software engineering domain.  

The second step is the snowballing procedure itself, Scopus was used as the search engine for this 
research. First of all, snowballing is an iterative approach analyzing the source list and citing articles 
where each iteration is expected to experience a fall-off in relevant articles(Wohlin, 2014). In every 
iteration the source list of each new primary source is evaluated for potential relevant sources, this 
process is rereferred to as backwards-snowballing. In addition, forwards snowballing, the process of 
evaluating the citing articles, is used similarly to the backwards-snowballing. The initial considerations 
are based upon the title, reference place, and abstract where the content is judged on selection 
criteria(which will be elaborated upon in the next paragraph). The final decision is based upon the full 
paper and iterations will stop if no new papers are found.   

 

 

 

 

 

 

 

 

 

Figure 2a: snowballing 

procedure(Wohlin, 2014, p.4) 

2.1.2 Selection criteria 
In the iterative process, the scope started to differentiate between findings about the software architect 

and findings in the software engineering domain. Since the software architect is part of the software 

engineering domain, articles from this domain do not always (fully) apply to the software architect. In 

addition, there were some subjects, like decision making, which were not included in the scope. 

Snowballing requires a selection procedure, to make the selection process more rigorous selection 



  22   
 
 

 

criteria are formed. However, there are primary articles focusing on the behavioral competencies of a 

software architect or direct elements of this. But there are also potentially useful articles addressing the 

software engineering domain or other aspects outside of the scope like decision making. To distinguish 

between these there direct literature is identified as primary, while other (relevant) literature is 

classified as supportive literature.  

The selection criteria, overview in table 2a, are based on the research question, research goal and are a 

result of the iterative research within literature. For example, even though the software architect is 

placed within the software engineering domain the article of Mendes et al.(2021) and articles following 

Mendes were considered supportive. Where the specific focus on decision making could yield 

interesting findings it was not in line with the scope of this research, thus it was considered supportive. 

The first criteria, I1 and I2, are formed due to the basic demands of research trying. The research 

question tries to focus on software architects and the literature review tried to find the existing behavior 

and role of the software architect. These are represented in I3, I4, and I5. Decision-making was a difficult 

topic since some articles referred to decision-making as part of the role of the software architect, but 

others referred to it as a more technical element. In addition to this distinguishment, some articles 

addressed not the software architect but addressed the software engineering domain, focusing on the 

generic domain, software teams of software project success. Naturally, the software architect is part of 

the software engineering domain., however, if sources do not specifically distinguish the software 

architect it is uncertain if these also fully apply to the software architect. The findings of these studies 

could be valuable but the research scope specifically focuses on the software architect. To distinguish 

these sources addressing the software architect indirectly while still fulfilling the previous requirements 

are included as supportive sources. However, this requires exclusion criteria to balance what isn’t 

included. The first two exclusion criteria, E1 and E2, are based on the practicality of research. The third 

exclusion criteria are based upon the previous inclusion of other sources from the software engineering 

domain and other domains which directly refer to the behavioral aspects found to be important for a 

software architect. One additional difference which has to be made is the exclusion of articles that 

address technical elements, the research question specifically explored the behavioral competencies 

and not the technical competencies. These sources would address the architecture of systems and/or 

sub-systems. The differentiation between primary and supportive articles can be found in appendix B. 

Table 2a: Systematic literature study selection criteria 
Inclusion criteria: 

I1. Studies and sources published in academic 
journals and conferences but also book chapters 
and publications 

I2. Sources are written in English  
I3. Articles referring to the role, duties, or behavior of 

software architect 
I4. Articles referring to decisions made by and 

behavior of software architect when referring to 
software architecture 

I5. Articles referring to behavior in software 
engineering in which software architects are 
included as supportive sources(decision making, 
project management, etc.) 

Exclusion criteria: 
E1. Duplicates or later versions of the same article 
E2. Articles that were not available or traceable for 

full-text review 
E3. Articles outside the software engineering domain 

that do not address any specific  
E4. Articles addressing the architecture of systems or 

subsystems 
 



  23   
 
 

 

2.1.3 Iterations and evaluations 
The snowballing procedure finished in the third iteration where no new papers were found, the split 

between primary and secondary articles is represented in Appendix B. As mentioned before the results 

are evaluated in two ways. In the first check, there is no reason to doubt the findings of this literature 

study as it did not seem to contradict existing systematic literature reviews from (Lenberg et al., 2015) 

and (Baltes & Diehl, 2019). In general, many excluded articles did have the technical focus and the 

included articles followed the perspective of being written from a technical perspective. However, the 

role of the architect has seen discussion in literature and these articles do include behavior or elements 

of the behavior of a software architect. Using google scholar, three different search terms were used 

from which the first 50 results were screened. The search terms were a spread ranging from the most 

basic scope of the software architect to excluding technical sources focused on architecture and sources 

focusing on enterprise (architects). Just short of half of the primary sources show up in these results, 

confirming at least having touched a relevant part of literature regarding the software architect and its 

behavior.  

Table 2b: Evaluation based on searching another search engine 

Search term Included 
sources 

(software architect) 16 

(“Software architect”) AND (Competencies OR competency OR skill) 13 

(“Software architect”) AND (Competencies OR competency OR skill) 
NOT(Architecture OR Enterprise) 

15 

2.2 Academic literature 
As mentioned before the final articles which were included as starting articles were the preliminary 

studies of Razavian & Lago(2015) and Kruchten(2008) supported by the software engineering study of 

Mendes(2021).  

2.2.1 Software engineering domain 
Research in the software engineering domain has been trying to introduce behavioral elements in their 

studies. The field of behavioral software engineering(Lenberg et al., 2015) and existing literature of 

software engineering only explored a limited number of these behavioral elements leading to success on 

a team, project, or organizational scale(Baltes & Diehl, 2018). Less than 5% of the research has been 

focusing on behavioral elements(Lenberg et al., 2015). Even though the software architect is part of the 

software engineering domain, logically their behavioral elements have also not been well researched. 

Both industry and existing literature mainly focused on technical aspects of software 

architecture(Muccini et al., 2018). There is literature on what a software architect should do(Hoorn et 

al., 2011; Kruchten, 2008; Kruchten, 1999; Clements et al, 2007; Bass et al., 2008; Bredemeyer, 2002), 

should know (Bredemeyer, 2002; Hoorn et al., 2011; Bass et al., 2008; Martini et al., 2014) and a start on 

who they are(Erder & Pureur, 2017; Kruchten, 1999; Klein, 2016;Bredemeyer, 2002; Bredemeyer & 

Malan, 2002). All literature agrees that the main responsibility of a software architect is the system's 

integrity (Britto et al., 2016; Eeles, 2006; Bass et al., 2008), however there are also some arguments of 

an additional mentor(Britto et al., 2016) or leadership Bass et al., 2008) role for the software architect.  



  24   
 
 

 

The literature lacks explanation on different types of software architects, what if this could explain the 

differences between literature? The role of software architect could be split up using three hierarchal 

levels(Britto et al., 2016;Martini et al., 2014). Other studies often assume one type of software architect, 

a clear gap in the literature, which negates the different roles and expectations attached to different 

hierarchal levels. Britto et al.(2016) separates a system-level, product-level, and team-level architect 

based upon what they refer to as being a guardian or a mentor in combination with being a decision-

maker or a problem solver as was defined by Fowler(2003). Martini et al.(2014) created a framework 

where a chief, governance, and team architect were separated with responsibilities and focus for each 

role. Both sources can be seen as complementary since they don’t oppose each other's fundamentals. In 

addition to hierarchy, there could also be differences in the specific role and responsibilities of a 

software architect since the role of a software architect could be executed by different people (Eeles, 

2006).  Incorporating these different types of context and types of architects will fill multiple gaps in the 

literature.  

With a wide range of ‘flavors’ of software architects' context, it becomes even more important in 

conducting research. Existing literature about competency, skills, or knowledge has often analyzed the 

software architect from the point of view of the role and task descriptions(Kruchten, 2008; Bass et al., 

2008) or job offers(Ahmed et al., 2015). When looking at the behavior, skills, or competency existing 

research either is set in a case study (Britto et al., 2016) or based upon a consultancy 

framework(Kruchten, 2008; Razavian & Lago, 2015). All these previous options look at what is being 

done and not which competencies are actually leading to success or are desired for success and how 

they do this.   

2.2.2 Behavior and the software architect 
Kruchten(2008) identified the key components of the role of the software architect as architecting 

activities, inwards communication, and outwards communication in a 50/25/25 split. However, there 

are also some undesirable behaviors of software architects represented in four antipatterns. These 

antipatterns are identified as creating the perfect architecture for the wrong system, creating the 

perfect architecture but too hard to implement, architects in their ivory tower and the absent 

architect(Kruchten, 2008). Each of these groups show different behavior in one of the key components 

of the role of the software architect. However, there is a lack of understanding on what causes these 

antipatterns or how they can be avoided. There are (feminine) expertise’s linked to the different 

components, the expertise’s intuition, embracing ambiguities and exploring problem and solution space 

and are linked to the architecting component(Razavian & Lago, 2015). However, these types of research 

are few in number, in line with findings of behavioral software engineering research(Lenberg et al., 

2015).  To fill the gap in understanding the antipatterns of software architects and why they occur the 

behavioral elements have to be explored. These behavioral elements are separated from the technical 

elements, thus are sometimes referred to as non-technical. 

This is even more important when considering the social element of the role of the software architect. 

The relation between software architecting and organization has been mentioned before (Bass et al., 

2008). An interesting element is a lack of understanding in the existing literature about what is meant 

with success or being successful for software architects. While there is literature about what entails 



  25   
 
 

 

success in software projects(Agarwal & Rathod,2006[s]), no research has been conducted on what this 

means specifically for a software architect.  The whole social side of the ‘technical leader’ the software 

architect can include roles like mentoring(Britto et al.,2016; Bass et al.,2008) but also leadership and 

management(Bass et al., 2008). However, more often literature mentions the need for 

communication(Clements et al., 2007; Kruchten,2008, Razavian & Lago, 2015), collaboration(Sherman et 

al., 2016), and political maneuverability(Bredemeyer, 2002). Some see the role of software architect as a 

joint decision-maker (Rosa et al., 2020[s]; Tang et al., 2017). Razavian & Lago(2015) address the 

importance of diversity within software teams in which they separate feminine competencies relevant 

to the role of the software architect. Dyba et al.(2014) needs leaders/managers to shape and create an 

organizational context that can support clusters of competencies to be used by the organizations' 

projects.  Software decisions are often made in group environments, it requires an understanding of 

how software professionals in groups invoke knowledge in their communication, reasoning, and decision 

making(Tang et al., 2017). A team, in this research, is defined as: “a small number of people with 

complementary skills who are committed to a common purpose, performance goals and approach for 

which they hold themselves mutually accountable.”(Katzenbach & Smith, 1993) 

Behavioral competencies contribute to for example joint decision making(Rosa et al., 2020[s]),  

communication(Kruchten, 1999;Kruchten, 2008; Oliveira et al., 2014). What happens more is the 

mention of competencies being important due to the fit with the task description of the software 

architect(Kruchten, 1999; Bass et al, 2008; Clements et al., 2007; Kruchten, 2008; Razavian & 

Lago(2015). Bass et al.(2008b) see a key role for the organization to stimulate and coordinate 

competencies. The mention of software architecting teams(Kruchten, 1999), the role of software 

architect being executed by multiple roles(Eeles, 2006), many of these sources describe a connection 

between competencies and an organization, a team, performance, or a project. But very few address 

how they do this and what they influence.  

2.2.3 Competency 
One way existing way to represent behavioral elements of a role is to use the term 

competency(Bredemeyer, 2002; Bass et al., 2008).  As cited by Bass et al.(2008): “A competency is the 

set of behaviour patterns that the incumbent needs to bring to a position in order to perform its tasks 

and functions with competence”(Woodruffe, 1993, p.29). This definition requires an additional 

definition where competence is seen as “Being competent, adequacy, possession of suitable or 

sufficient skills OR creating valuable results without using excessively costly behavior.” (Bass et al., 2008, 

p.5). This will be the definition used in this report. Using this definition means skills would be included 

under competency since it is part of the competence definition. A software architect needs to have both 

domain expertise as well as software expertise(Kruchten, 1999; Oliveira et al, 2019; Bass et al., 2008), 

this would at least suggest the need for knowledge to have competence. 

A software architect is seen as the technical leader or decision-maker(Fowler, 2003; Britto et al., 2016; 

Eeles, 2006) with the additional mentor or leadership role. Within these sources, there are various views 

of different competencies. Many sources include communication as competency in different 

forms(Kruchten, 1999; Oliveira et al., 2019;Clements et al., 2007; Kruchten, 2008; Bredemeyer, 2002; 

Razavian & Lago, 2015) and split communication into outward, inward communication(Bass et al., 2008; 



  26   
 
 

 

Clements et al, 2007) or getting input & providing information(Kruchten, 2008; Razavian et al., 2015). 

Sometimes in general(Bass et al., 2008) or both(Clements et al., 2007) are separated. 

Oliveira et al.(2019) claims that the roles, responsibilities, activities, and tasks performed by software 
and system architects are still largely unknown and diffuse in organizations. A bold statement with the 
existing literature and consultancy work focusing on these tasks and responsibilities. Hoorn et al.(2011) 
separate 5 different architecting activities: Communication, decision making, quality assessment, 
documentation, and knowledge acquisition. Which are explored with the supportive methods of 
decision management, search efficiency, community building, intelligent advice, and knowledge 
management 
Leadership skills(Kruchten, 1999; Eeles, 2006; Clements et al, 2007; Bredemeyer, 2002) which is referred 
to as technical leadership(Kruchten, 1999; Eeles, 2006). For Bass et al.(2008) leadership skills is an 
element of work skills alongside Effectively managing workload(Bass et al., 2008; Clements et al, 2007), 
excelling in a corporate environment(Bass et al., 2008; Clements et al, 2007) and skills for handling 
information(Bass et al., 2008; Clements et al, 2007).  Bredermeyers's (2002) framework would add team 
context(vision), decision making, team building, and motivating others to this dimension of leadership. 
Interpersonal skills can be split between ‘within team’ and ‘with other people’ (Bass et al., 2008; 
Clements et al, 2007). Razavian & Lago(2015) add intuition, exploration of problem and solution space, 
and embracing ambiguities as non-technical competencies. The exploration of problem and solution 
space and the embracing ambiguities are also present in the Bredemeyer(2002) framework and the skill 
and knowledge (Bass et al., 2008). 
 

2.3 Important behavioral competencies 
As mentioned before the body of literature provides for a baseline in knowledge. However, the 

literature review helps answer the research question by providing knowledge that can help create 

hypotheses. Hypotheses can be tested in the different methods. Each of the sub-chapters will form 

hypotheses focused on addressing a specific gap in the literature.  

2.3.1 The most important competencies 
This chapter will interpret the results from the literature study to form hypotheses. This sub-chapter will 

address the expectations focused on the gap in which behavioral competencies can be considered 

important.  

2.3.1.1 Communications 

From prior literature(Bass et al., 2008; Clements et al., 2007; Kruchten, 1999, 2008; Razavian & Lago, 

2015) being able to communicate effectively with a diverse set of stakeholders has been identified as 

one of the most important behavioral competencies for SW architects. Kruchten (2008) argues the 

relevant balance of an optimal software architect to be 50 percent architecting, 25 percent inwards 

focus(getting input) and 25% outwards focus(providing information), for both of which effective 

communication is a key parameter. In the definition the inwards focus is defined as getting input from 

the outside world: listening to customers, users, product manager, and other stakeholders (developers, 

distributors, customer support, etc.)(Kruchten, 2008). Learning about technologies, other systems’ 

architecture and architectural practices.” Outwards focus is defined as “providing information or help to 

other stakeholders or organizations: communicating the architecture: project management, product 



  27   
 
 

 

definition.” Within these definitions listening to customers, users, product managers, and other 

stakeholders is emphasized in combination with being able to present the architecture to a multitude of 

stakeholders. This seems to fit the definition of the behavioral competency ‘Communicates Effectively’: 

“Developing and delivering multi-mode communications that convey a clear understanding of the unique 

needs of different audiences”. (Kornferry, n.d.). Clements et al.(2007) see external communication, 

internal communication, and general communication skills as sub-groups of communication skills that 

are identified as important for an architect. In addition to this interacting with stakeholders is seen as 

one of the key duties of a software architect(Bass et al., 2008)where the different stakeholders are seen 

as clients, developers, and others.  

Communication is present in various forms, and it is uniformly seen as an important part of the software 

architect(Bass et al., 2008; Bredemeyer, 2002; Clements et al., 2007; Kruchten, 1999, 2008; Oliveira et 

al., 2019; Razavian & Lago, 2015). This creates the expectation that communicates effectively will be 

identified as one of the top 3 most important behavioral competencies for SW architects both by 

architects themselves as well as by their internal stakeholders.  

Hypothesis 1 The behavioral competency “communicates effectively” is one of the top three 

behavioral competencies identified as instrumental to be a successful software architect by SW 

architects 

2.3.1.2 Decisions and gathering knowledge 

One of the key tasks of a software architect is maintaining the architectural integrity of the system(Bass 

et al., 2008; Clements et al., 2007; Fowler, 2003; Kruchten, 1999, 2008). In an ideal situation, the 

architect should be architecting(design, validation, prototyping, documenting, etc) 50% of the time. The 

software architect is considered the technical leader(Bass et al., 2008; Britto et al., 2016; Kruchten, 

2008), however, being a technical leader is ultimately responsible for the technical elements. One of the 

views was the software architect being an important decision-maker(Fowler, 2003), others saw a clear 

role in joint decision making led by the software architect((Mendes et al., 2021). Minimum viable 

architecture, facilitate decision making, experience, and knowledge of using the relevant tools at the 

appropriate time, deal with ambiguous contexts can all be seen as part of the decision-making process 

of a software architect(Erder & Pureur, 2016). In many cases, decision-making seems one of the clear-

cut behavioral competencies of a software architect.  

With the core activity of a software architect being architecting itself in which decision making seems 

very important, the content and impact of these decisions should naturally be important. This fits the 

description “Making good and timely decisions that keep the organization moving forward”, the 

definition of the behavioral competence ‘Decision Quality’.  

Software projects get wicked problems, but wicked problems have no good or bad solutions, there is no 

single formula (van Vliet & Tang, 2016). In consequence, the requirements change too and become 

more difficult to satisfy(Spinellis, 2016). The one responsible for these requirements: the software 

architect. One of the key skills emphasized are decision making(Tang et al., 2017) and problem-solving 

(Bass et al., 2008; Clements et al., 2007). Much existing research on the software architects focuses on 

decision-making (Lenberg et al., 2015; Muccini et al., 2018; Tang et al., 2017). Weinreich & Groher 



  28   
 
 

 

(2016) argues the team role of the architect which is not only a decision-maker but also a knowledge 

manager. There is some form of irreversibility within architecture that drives complexity (Fowler, 2003). 

This is a logical consequence when considering software architecture itself as the structure or structures 

of a system that is comprised of software components, the externally visible properties of those 

components, and the relations among them(L. Bass et al., 1997). It encompasses the set of significant 

decisions about the organization of a software system i.e. selection of structural elements and 

interfaces, behavior regarding the collaborations of those elements, and the composition of these 

structural and behavioral elements in a larger subsystem. In these complex structures, a natural need 

for expertise in exploring the problem and solution space or embracing ambiguities(Razavian & Lago, 

2015) arises.  

As explained previously, the need for the nature and role of being a software architect is highly 

intertwined with having, managing, and understanding knowledge and information.  The intensity of 

information on these subjects indicates the importance of  ‘Manages complexity’, defined as “Making 

sense of complex, high quantity, and sometimes contradictory information to effectively solve problems”. 

In addition to making sense of the complex information, Bass et al(2008) and Clements et al(2007) 

would also emphasize the handling of the unknown factors and unexpected developments as two 

additional important skills specifically for a software architect. These situations require problem-solving 

and analytical skills while being adaptable and flexible(Bass et al., 2008). Reacting to unknown and 

unexpected situations indicate the need for a certain degree of adaptability, Oliveira(2019) would even 

argue the continuous change of the role of software architect because of this. Creating the expectation 

of ‘situational adaptability’, defined as “Adapting approach and demeanor in real time to match the 

shifting demands of different situations.”, which is important for being a successful software architect. 

Hypothesis 2: The behavioral competency “Manages complexity is one of the top three behavioral 

competencies identified as instrumental to be a successful software architect by SW architects 

Hypothesis 3: The behavioral competency “Decision quality” is one of the top three behavioral 

competencies identified as instrumental to be a successful software architect by SW architects 

2.3.2 Including hierarchy 
One of the gaps was focused on only a few sources including hierarchal differences for software 

architects. One thing became clear there is a difference between hierarchal layers of software 

architects(Britto et al., 2016; Martini et al., 2014), but does this also result in different behavioral 

competencies being important? This is a relevant topic due to the industry interest in what is required in 

each layer.  

First of all, the definition of Britto et al. (2016) is more similar to the definitions used by the case 

company. Seeing the system-level architect as someone who has to tie multiple products together to 

maintain the system(Britto et al., 2016) fits well with the roles of department architect, product 

architect and platform architect. As shown in chapter one these roles are focused more on the high-level 

design and decisions. The product-level architects would be considered the functional architect(FCA) 

and functional test architect(FCT) who are responsible for the execution of the different high-level 



  29   
 
 

 

design decisions while still being involved in the decisions themselves. Sub-function architects would be 

considered as team-level architects, directly being involved with the teams.  

This research scoped down to the system-level architect and the product level-architect, changing the 

question to are the important behavioral competencies different between system-level architects and 

product-level architects? The main difference between these is the level of design decisions taken(Britto 

et al., 2016; Martini et al., 2014) but the product-level architects could also be seen as the problem-

solver solving problems together with the engineers(architectus oryzus)(Britto et al., 2016). Previously 

the mentor and leadership role of the software architect was addressed(Bass et al., 2008; Bredemeyer, 

2002; Britto et al., 2016). 

With the main responsibility of every different hierarchal architect being rooted in system integrity and 

maintainability(Britto et al., 2016) the aim of every layer would be the same. In addition, every layer is 

trying to enforce design(Britto et al., 2016; Martini et al., 2014). When looking at the core of the 

software architect there is the architecting, getting input, and providing information(Kruchten, 2008). To 

maintain system integrity, even though this happens with a different focus,  all these steps are required 

from every software architect. With the system-level and product-level architects, both are required to 

gather information and provide information. Even though product-level architects might be placed 

closer to the engineering teams themselves, the system-level architects still have to gather information 

and provide information. Given, this would be from and to a different spectrum of stakeholders, the 

required skillset and the same behavior is expected from both layers of architects. In addition, both 

groups work together often and are depending on the other group in regards to how the system 

integrity is maintained(Britto et al., 2016; Martini et al., 2014). The similar core dynamics in combination 

with the close working together does create interest in the difference between how system-level 

architects and product-level architects rank the important behavioral competencies. With a potential 

difference and the difference having relevancy in practice since there are distinguishable layers(Britto et 

al., 2016; Martini et al., 2014). This study should explore the potential differences between the different 

hierarchal layers of architects, resulting in the following exploration:  

Exploration question 1: Are there any differences in which behavioral competencies are seen as 

important between the system-level software architects and product-level software architects?  

2.3.3 Stakeholders 
One of the gaps in the literature is considering what is important only from the perspective of the 

software architect. This research specifically includes the stakeholders. Even though literature does not 

include stakeholders some concepts suggest potential differences in what is considered important for a 

software architect. Literature referred to the architect with its role as a decision-maker(Britto et al., 

2016; Eeles, 2006; Fowler, 2003) but also as a joint decision-maker(Rosa, 2020). In addition, the 

antipatterns show the need for an architect to be involved and not rule from its ivory tower(Kruchten, 

2008). If anti-patterns exist and are founded in how much they balance gathering input, architecting, 

and providing information the consequences of these antipatterns should also affect someone to be 

perceived as ‘negative’. From the previously mentioned 



  30   
 
 

 

One of these antipatterns was the architect in the ivory tower who is mainly focused on the architecting 

itself(Kruchten, 2008). One of the other antipatterns is being just a consultant, which relates to the 

architect not architecting but mainly providing others with information(Kruchten, 2008). The final 

antipattern is the goldplating where the architect lacks the balance in regards to not giving enough 

information to others(Kruchten, 2008). All these things have one thing in common, stakeholders feel the 

consequences of an architect not behaving as expected. One behavioral competency which impacts 

stakeholders more than architects themselves would be ‘decision quality’. If decisions are not made at 

the right moment or the wrong decisions are made the ones who have to deal with this are the ones 

making the software. This could be the reason for a different perception between stakeholders and 

architects about the behavior competency decision quality where stakeholders would find it more 

important than architects.  

Hypotheses 4: It is expected that stakeholders will rank the behavioral competency ‘decision quality’ 

higher compared to software architects.  

Architects depend on others when gathering input it being 25% of the activities of a software 

architect(Kruchten, 2008), if others do not provide input there is not much to architect. There is a reason 

why interpersonal skills both within the team(team player, balanced participation, and working 

effectively with superiors, colleagues, and customers) and with other people(being diplomatic and 

committed to others' success) are considered important for a software architect(Bass et al., 2008). The 

architect depends on others for at least 25% of their activities in the form of gathering input(Kruchten, 

2008) and requires interpersonal skills to work well with their team and others. This is expected to 

create a higher sense of importance from architects towards behavioral competencies which make them 

dependent on others. The behavioral competency closest to this is ‘collaboration’ is most related to the 

architects depending on others where they have to work together.  This would create the following 

hypotheses: 

Hypotheses 5: It is expected that software architects will rank the behavioral competency 

‘collaboration’ higher compared to stakeholders. 

Within the stakeholder group, there are also various types of stakeholders. The Oce-canon group case 

showed the existing roles in Oce where above every team there was in a triangle with a project 

management and a system integrator(Premraj et al., 2011). In addition to this, every team had an 

architect with software developers under the architect. As previously shown in chapter 1, ASML has 

similar roles with architects being placed in the 3-in-a-box with a long-term and short-term stakeholder.  

As with the architect, there being multiple types of stakeholders could give different perceptions on 

what is important in a software architects behavior. The software engineers under an architect might 

have different expectations since their dependency is different than that of a project manager. Just like 

hierarchy being present in software architects, hierarchy is in place with stakeholders. Due to their 

difference in positions, there could be different opinions. In line with the previous exploration, there is 

not enough evidence to support a hypothesis. There is enough indication to want to explore the 

different stakeholders. Next to the management roles and the engineers similar to the Oce case 

study(Premraj et al., 2011), ASML also has roles related to their agile structure. This would result in 



  31   
 
 

 

three categories of stakeholders to be observed: management, agile-roles, and engineers. This leads to 

the following exploration: 

Exploration question 2: Are there any differences in which behavioral competencies are seen as 

important between the different stakeholder sub-groups: management, agile-roles, and engineers?  

 

Figure 2b: Overview research model 

2.4 summary findings literature review 
In conclusion, this literature study tried to analyze the existing body of literature regarding the software 

architect. A complete overview of the included hypotheses and exploration topics can be found in figure 

2b. It included the perceptions of the role of the software architect but also defined what is considered 

a (behavioral) competency. It expects to find communicates effectively, manages complexity and 

decision quality as an answer to the research question. Furthermore, no differences are expected 

between hierarchal layers, however, there are expected preferences where architects are expected to 

value collaboration over decision quality. Stakeholders would have this preference switched.  

  



  32   
 
 

 

Chapter 3: Quantitative research: Questionnaire 
This chapter will discuss the methodology and results of the questionnaire. The quantifiable data will be 

used to answer the research questions and test the hypotheses.  

3.1 Methodology of the questionnaire 
A questionnaire is an efficient data collection mechanism when the researcher knows exactly what is 

required and how variables of interest are measured(Sekaran & Bougie, 2016). The behavioral 

competencies which are used by ASML are known and people are expected to be familiar with them. In 

addition, a questionnaire will be able to reach a wider audience of various roles. Questionnaires also can 

produce more responses increasing the quantifiability of any results. Questionnaires will be used to 

answer which behavioral competencies are considered important for software architects and by whom. 

However, questionnaires are less suitable for research where it is unknown ‘why’ behavioral 

competencies are important and how successful is perceived. The questionnaire should provide the 

right balance between validity, reliability and practicality(Blumberg et al., 2011). The creation of the 

questionnaire will follow the principles of Blumberg et al. (2011). 

3.1.1 Goal of the questionnaire 
There are a large number of software architects in ASML, this allows for quantitative research. The goal 

of this questionnaire is to gather ‘opinions’ about which of the 20 behavioral competencies are 

important for software architects. With this quantity, it will allow for analyzing the outcome in regards 

to the set hypotheses. Hypotheses 1, 2, and 3 are straightforward interested in a ranking, the analysis 

should produce evidence if Communicates effectively, Manages complexity and decision quality are 

indeed the most important. Hypotheses 4, 5, and 6 will require the comparison of the behavioral 

competencies between multiple groups. Hypotheses four will require evidence if there is any difference 

in the ranking of important behavioral competencies between system-level architects and product-level 

architects. Hypotheses 5 and 6 will compare architects to stakeholders and should try and prove the 

expected difference in preference over which behavioral competencies are important. Any other 

findings will be addressed too.  

3.1.2 Design of the questionnaire 
The full questionnaire can be found in appendix C. Overall this research will follow the guidelines set by 

Blumberg et al. (2011) asking administrative questions first, then classification questions, and finally the 

target questions. The questions should be able to answer the hypotheses. Numerical scale type of 

questions provides both an absolute measure of importance and a ranking(relative measure) of the 

items rated(Blumberg et al., 2011, p.362), allowing for both being able to compare and rank values. It 

does require participants to answer to which of the previously set categories they belong to. The 

numerical scale questions will have equal intervals separating the numeric scale points. These types of 

questions will produce quasi-interval data. Numeric scales often have 5-point, 7-point or 10-point 

scales(Blumberg et al., 2011). With these questions, a clear middle point preferred ruling out the 10 

point scale. However, the 5 point scale risk answers finding everything important more than a 7-point 

scale. Thus 7-point scale questions about the 20 different behavioral competencies will be used in the 

questionnaire.  To mitigate the risk of people not being able to make a choice or not knowing the 



  33   
 
 

 

difference between a score of 6 and an equal score in another category, an evaluative question is 

created. This forced-choice question will require the participant to select a top 3 of most important 

behavioral competencies.  

The data-collection instrument should avoid poor selection of content and should not be confusing or 

ambiguous for participants(Blumberg et al., 2011), thus creating the requirement of practicality and 

comfort for participants. For this reason, the expected duration of the questionnaire should be under 10 

minutes, as was required by the case company. In addition, a final question was added. This question 

functioned as a backup however would allow participants to freely describe any (additional) details 

regarding important behavioral competencies. One final step before the usage of these survey results is 

pre-testing(Blumberg et al., 2011) evaluation on clarity, time restriction, and any other problems. The 

questionnaire was tested with stakeholders from three different hierarchal layers. Based on feedback 

the introduction and questions were updated. There were no major updates outside of clarifications.   

3.1.3 Participant selection 
In the introduction, the different types of software architects were introduced. This research targets all 

of them, in this case department architects, products architects, and train architects working within a 

software department or with software products will be considered software architects. The identified 

different stakeholders working with software architects were Agile-roles(internally referred to as SAFe 

roles), R&D management, product management, customer support related roles, and developer or 

competence engineers. All different types of management are classified as management stakeholders. 

The SAFe roles are classified as the middle layer representing agile roles. The developer or competence 

engineers will hierarchically be seen as the lowest level stakeholder and will be referred to as engineer-

level stakeholders. Repeating the design-choice that in these stakeholder categories the team-level 

software architects are included in the developer or competence engineer category.  

Participants who fall either in the architect of stakeholder categories are approached as long as they are 

part of the departments located within the MX cluster. There could be a risk where different 

departments could have different cultures. However, since these departments have the same structure 

and sending it to multiple departments would create a larger sample size outweigh the risk of cultural 

differences. As mentioned before the amount of software architects within companies is considered 

low, making it hard to do quantitative research. In this case, there are more than 1000 software 

developers from which 161 responded, 59 architects responded. Within the questionnaire, there are 

two tracks, one for software architects and one for non-software architects. Types of software architects 

were obtained from internal information, types of non-software architects were formed following 

internal recommendations. Questions were reformed depending on the point of view, i.e. instead of 

asking ‘how long have you been working as software architect?’ non-software architects were asked 

‘how long have you been working with software architects?’. The age brackets were adapted following 

internal usage. Participants under 18 and people not giving their informed consent cannot be included in 

this research and will be referred to the end of the questionnaire.  



  34   
 
 

 

3.1.4 Measurements 
This chapter will discuss how the information gathered can be transformed into the theoretical 

section(Blumberg et al., 2011), and its limitations. It will also explain how the statistical tools help 

measure.  

First, success was not defined but rather implied by where it reflects the perception of the participant. 

The evidence here would follow the ‘wisdom of the crowd’ principle where if a majority of participants 

would grade something a certain way, this would be interpreted as the truth. This holds up due to the 

large sample size in this context(220 employees in the same context) in an explorative research setting 

were creating a base is the goal. All hypotheses can be observed visually via a ranking. Even though this 

does not tell anything about the statistical difference, it is valuable information that could form the 

argument in favor of arguing differences in rankings and between the ranking of different groups. This 

ranking is based upon the 1-7 Likert scale. IBM SPSS will be used as the main tool for analyzing the data, 

however, in one instance R-studio was used to cluster the variables of the dataset. Next to tools, the 

main focus will be on deduction and logic.  

3.1.4.1 Method ‘most’ important claims 

The first three hypotheses claim certain behavioral competencies to be the most important. There are 

two ways to show this. First, the behavioral competencies rank the highest. This method is simple yet 

gives the sense of priority, however, as mentioned before it does not say anything about the statistical 

differences. Even if statistical tests do not deem a certain competency significant, the relative rankings 

can still be used to argue interest in a variable. Since the focus of this research is based upon the 

important behavioral competencies the scope will be on the upper segment. 

To statistically show the difference between hypotheses 1, 2, and 3 one assumption is made where 

‘most’ important variables should be clustered or at least statistically not different from each other. 

Alternatively, if they would not be clustered together, only the top clustered would be seen as ‘most’ 

important. This does not mean the others are not important but could indicate gradations in 

importance.  Classic methods like the t-test could do this, however, there would be a lot of tests 

required to analyze the same dataset. This drawback of the appropriate paired t-test is that it functions 

in a way where there is a 5% chance error acceptance in the test. If too many tests would be done this 

would result in a huge combined bias. In the software engineering domain, there is a tool that 

automatically clusters the results based on the mean, the Scott Knott ESD. The Scott-Knott Effect Size 

Difference(ESD) leverages a hierarchical clustering by transforming the treatment means into 

statistically different groups(Tantithamthavorn et al., 2018).  

The results from the statistical test will show clusters, each individual expectation will be checked if they 

are in the top segment. If there are multiple clusters near the top, they will be discussed, and depending 

on the data, they might be considered important.  

3.1.4.2 Comparing groups 

The next topics are all regarding group comparisons. Once again, the first step is observing the relative 

rankings, if there are differences in these rankings they will be discussed provide indications. To know if 

these differences are statistically different they should be compared.  



  35   
 
 

 

The groups are created of separate groups. Normality can be assumed based on (large) sample 

sizes(Field, 2013) and the number n=30 has been used before however behavioral research rarely shows 

normal distributions eluding the results not to be normally distributed and some subgroups do not fulfill 

this requirement of n>30. Using the Sharpino-wilk test as an advised test for normality(Field, 2013), 

none of the variables were indicated to have normality. Since this would violate the normality 

assumption of independent t-test an alternative non-parametric test has to be used. Homogeneity will 

be discussed in the subchapters. The Wilcoxon rank-sum and Mann-Whitney u test are both the non-

parametric equivalents of the independent t-test(Field, 2013). The Mann-Whitney U-test is a median-

based test, which interprets significant p-values as there is a difference between the two variables.  

Using this test hypotheses 4 and 5 can be tested by showing if there is a difference between architects 

and stakeholders in Collaboration and Decision quality. Since there is a hypothesis, the one-sided p-

values will be interpreted and presented. Since this is explorative research other variables are also 

observed, however without hypotheses the two-sided p-values are presented.  

To answer the explorative question 1, the differences between the two types of architects are observed. 

This will be done via the relative rankings and a statistical test. This will once again make use of the 

Mann-Whitney u-test since the variables violate the normality assumption of the independent t-test.  

The second cluster of stakeholder sub-groups is a test that includes 3 groups: management-roles, agile-

roles, and engineer-roles. These statistical differences will be tested with the ANOVA test. The ANOVA 

test is considered robust, which does not require normality but should be interpreted with caution if the 

normality assumptions are not met. Values that indicate differences are explored in the post-hoc 

analysis. In the sub-groups the means are different from each other, therefore the respective values are 

corrected with the mean of the subgroups.  

For tests of homogeneity, the Levene’s test for equality of means is used. This variable tests 

homogeneity, if this test gives a significant value, equal variances should not be assumed. Otherwise, 

the equal variances assumed category of the t-test can be observed. 

3.1.4.3 Data preparation 

A full overview of the data transformation can be found in appendix D. Entries with missing data will be 

removed, just like participants who did not give informed consent. Answers including ‘other’ in regards 

to their role will be reviewed and placed into one of the existing categories if applicable, all ‘other’ 

answers were placed into the existing categories. One entry was deleted due to an unusable answer in 

one of the categorization questions.  

Additional columns were created with ‘corrected’ values which had corrected values based upon the 

mean of their group. This created corrected columns both based upon being a software architect or a 

stakeholder, and on the hierarchal layer the participant was added, the values are the original values 

corrected by the mean of all answers by that specific category. As an example, if architects averagely 

answered with 5 overall behavioral competencies then every value of every architect will be corrected 

with 5 in a separate setup.  

Finally, the different types of roles for both software architects and stakeholders were grouped 

following their function. Additionally, columns were added with the different classifications to prepare 



  36   
 
 

 

to answer the explorative questions and hypotheses 4 and 5. The overview of the different groups can 

be found in table 3a. Following Britto et al.(2016) the mid-level software architect, in this case, the FCA 

and FCTs, are referred to as a product-level architect. The high-level software architects, in this case, 

everything above FCA and FCT i.e. product, platform, department software architects, will be referred to 

as system-level architects.   

3.1.5 Privacy and data storage 
To ensure participants' privacy, all personal data will 

be fully anonymized. In addition, participants will not 

be asked to leave their personal information for the 

follow-up qualitative research. It will ask the 

participant to reach out via e-mail. The data will be 

stored safely and will not be shared with any third 

parties.  

3.2 Outcome questionnaire 
First, this chapter will discuss some demographics after which the findings of the data analysis will be 

presented. The questionnaire itself was open from 15/11/2021 until 07/12/2021 and gained 226 

complete responses from which 5 without informed consent and 1 additional entry was excluded based 

upon unusable categorical answers.  

3.2.1 Demographics 
The demographics asked for a function, gender, and experience in both role and ASML. As seen in figure 

3a you can see the overwhelming majority of participants being male. This seems however similar but a 

bit worse than the normal distribution of about 10% females versus 90% males. In addition, there are 

fewer ‘younger’ people in this questionnaire which is not surprising.  

 

Table 3a: different types of groups and coding 
number 
Architects Stakeholders 

1 (system-level architects) 3 (management) 

2 (Product-level architect) 4 (Agile projects) 

- 5 (Engineers) 

  
Figure 3a Gender demographics Figure 3b Age categories demographics 

Overview Participant 
gender 

Man; Woman; Other/prefer not to say;
0

10

20

30

40

50

60

70

80

90

19-30 31-40 41-50 51-60 60>

Overview of participants age(in 
years)



  37   
 
 

 

An additional context is that the different stakeholders are not uniformly distributed. This is a logical 

consequence of occurring roles however it might be relevant in later stages. There are a multitude more 

FCA, FCT roles than other architects. In addition, there are a lot more develop or competence engineers 

(note that competence engineer here is an engineer focused on a specific competence). This is 

unsurprising since there simply are more functional clusters or engineering jobs as for departmental 

jobs. 

 
 

Figure 3c Participant roles architects and participants stakeholders 
 

3.2.2. ‘Most’ important behavioral competencies 
This chapter will try to analyze the data to test 

hypotheses 1, 2, and 3. Since there were three ‘most’ 

important behavioral competencies, it is tested if 

these are really at the top. First, the ranking will be 

observed, after which the different variables are 

tested. To be considered the most important, each of 

these variables should be present at the top of the 

ranking. The top-ranking, as shown in the most left 

column of table 3d, shows the number one and two 

spot to being manages complexity and communicates 

effectively. After this, an absolute gap seems to be 

present until the number three, decision quality. After, 

the number four collaboration seems closer to the 

number three. And the top 5 is closed by instills trust, 

however, visually instills trust seems to be closer to 

the number 6 than the number 4. In the ranking, it 

would seem like indeed the three expected behavioral 

competencies are present in the top 3. However, there 

does seem to be a larger set between the number 1 

and 2, and the other categories.     

 

Table 3b: Descriptive statistics behavioral competencies 

 Complete dataset 

 N M SD 

1. Ensures Accountability 220 4.97 1.21 

2. Develops Talent 220 4.65 1.33 

3. Communicates Effectively 220 6.41 0.82 

4. Manages Complexity 220 6.5 0.80 

5. Instills Trust 220 5.82 0.87 

6. Cultivates Innovation 220 5.55 1.04 

7. Drives Engagement 220 4.92 1.22 

8. Drives Results 220 4.95 1.18 

9. Values Differences 220 4.99 1.11 

10.  Situational Adaptability 220 5.5 1.07 

11.  Plans and Aligns 220 4.92 1.24 

12. Collaborates 220 6.02 0.92 

13. Builds Effective Teams 220 4.21 1.43 

14. Optimizes Work Processes 220 4.36 1.37 

15. Balances Stakeholders 220 5.53 1.21 

16. Business Insight 220 5.15 1.23 

17. Strategic Mindset 220 5.75 1.01 

18. Demonstrates Self-awareness 220 5.1 1.11 

19. Self-development 220 5.3 1.12 

20. Decision Quality 220 6.16 0.88 



  38   
 
 

 

The second part of the argumentation for this would be the statistical comparison between the different 

variables, using the Scott Knott clustering method. The outcome, shown in figure 3d, shows the 

automatic clusters generated. In this, the number 1 manages complexity, and the number 2, 

communicates effectively are clustered. Following the set assumption which sees ‘most’ important as 

the top-ranked, this would seem to support hypotheses 1 and 2 but would reject decision quality as the 

most important behavioral competency. However, this does not mean decision quality is unimportant. 

The second bracket of decision quality and collaboration can still be viewed as important as they are a 

cluster that is placed above average, but not the most important. Also note how the following cluster 

would be instills trust and strategic mindset, making it the third cluster in importance.  

Figure 3d: Scott Knott ESD cluster results 

As the number 3 and 4, this would suggest a secondary category of 

the importance of collaboration and decision quality, making them 

not the ‘most’ important but also be considered very important for 

software architects by all participants. This difference is also shown in 

the forced-choice question ranking, table 3c, where manages 

complexity and communicates effectively are in the top-3 a 

respective 150 and 140 times out of the 220. After this, there seems 

to be a drop-off after which the rest of the competencies are 

mentioned more often. Note that the interpretation here is the 

number of mentions in the top-3.  

3.2.2 Stakeholders and architects 
Hypotheses 4 and 5 expected a difference between stakeholders and architects in how their respective 

ranking between collaboration and decision quality would be expressed. To see if there are any 

differences between stakeholders and architects first the relative rankings are compared to each other. 

Then the two groups are compared with the Mann-Whitney U-test on each of the 20 behavioral 

competencies to test hypotheses 4 and 5, but also explore if these would be the only differences. The 

group of 220 participants contained 59 software architects and 161 stakeholders. Based on the 

descriptive statistics the top of both groups is shown in table 3d. Where the complete dataset shows the 

top three as ‘manages complexity’, ‘communicates effectively’ and ‘decision quality’, on average 

Table 3c: forced-choice top 3 
mentions 

 Behavioral competency 

1 Manages complexity(150) 

2 Communicates 
effectively(140) 

3 Decision quality(59) 

4 Strategic mindset(46) 

5 Collaborates (42) 

6 Instills trust(36) 



  39   
 
 

 

software architects seem to value collaboration more than decision quality switching them around in 

the number 3 and 4 spot. The number 1 and 2 seem to be the same for both groups, just like the 

number 5 instills trust. Communicates effectively and manages complexity being number 1 strengthens 

the support of, even for different groups, these are the most important.  

The second part of the analysis is the independent t-test between the two groups. Based on the 

Levene’s test all variables full fill the homogeneity assumption. Both groups are violated the normality 

assumption. Because of the hypotheses, the one-sided p-value will be observed for collaboration and 

decision quality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3d: Overview of the 6 most important behavioral competencies in general, for stakeholders 
and for architects. 

 Total Stakeholders Software architects 

1 Manages complexity (6.50) Manages complexity(6.47) Manages complexity(6.58) 

2 Communicates 
effectively(6.41) 

Communicates 
effectively(6.39) 

Communicates effectively 
(6.47) 

3 Decision quality (6.16) Decision quality (6.23) Collaboration(6.20) 

4 Collaboration(6.02) Collaboration(5.95) Decision quality(5.97) 

5 Instills trust(5.82) Instills trust(5.79) Instills trust(5.90) 

6 Strategic mindset(5.75) Strategic mindset(5.75) Balances stakeholders(5.85) 

Table 3e: descriptive statistics and u-test stakeholders and architects 

 Stakeholders Architects  

  N M SD Md N M SD Md U P 

1. Ensures Accountability 161 4.98 1.24 5 59 4.95 1.12 5 4671.5 .845 

2. Develops Talent 161 4.6 1.37 5 59 4.81 1.21 5 4277 .242 

3. Communicates Effectively 161 6.39 0.87 7 59 6.47 0.68 7 4628.5 .744 

4. Manages Complexity 161 6.47 0.82 7 59 6.58 0.72 7 4421.5 .361 

5. Instills Trust 161 5.79 0.88 6 59 5.9 0.85 6 4368 .329 

6. Cultivates Innovation 161 5.6 1.06 6 59 5.44 0.99 6 4307 .266 

7. Drives Engagement 161 4.93 1.25 5 59 4.9 1.13 5 4635.5 .777 

8. Drives Results 161 4.93 1.21 5 59 5.02 1.11 5 4626.5 .759 

9. Values Differences 161 5.05 1.08 5 59 4.81 1.18 5 4254 .217 

10.  Situational Adaptability 161 5.5 1.08 6 59 5.49 1.04 6 4691 .884 

11.  Plans and Aligns 161 5.06 1.21 5 59 4.54 1.26 5 3647.5 .006 

12. Collaborates 161 5.95 0.97 6 59 6.2 0.76 6 4145 .121 

13. Builds Effective Teams 161 4.16 1.45 4 59 4.36 1.35 4 4332.5 .307 

14. Optimizes Work Processes 161 4.28 1.39 4 59 4.59 1.3 5 4108.5 .116 

15. Balances Stakeholders 161 5.42 1.27 6 59 5.83 1 6 3924.5 .039 

16. Business Insight 161 5.22 1.2 5 59 4.95 1.29 5 4179.5 .157 

17. Strategic Mindset 161 5.77 0.99 6 59 5.69 1.06 6 4536.5 .594 

18. Demonstrates Self-awareness 161 5.09 1.13 5 59 5.15 1.06 5 4689 .879 

19. Self-development 161 5.33 1.1 5 59 5.22 1.18 5 4558.5 .632 

20. Decision Quality 161 6.23 0.84 6 59 5.97 0.96 6 4032.5 .065 



  40   
 
 

 

In the u-test, table 3e, a few differences come up. The Mann-Whitney U test revealed architects to score 

decision quality almost significantly lower(Md= 6, n=61) compared to the stakeholders(Md=6 , n=159), 

U=4032.5 , z=-1.842, p=0.065). Even though not fully significant, in this real-world setting it is expected 

to become significant when more samples are taken. Considering this full-support would not be correct, 

however, due to the expectancy of it becoming significant with more samples of architects it would also 

not be correct to reject this hypothesis. By reviewing the sub-groups in the later stage, the evidence 

might help support hypothesis 4. The difference which is not shown as different is collaboration, this 

would show evidence of rejecting hypotheses 5. 

The other differences were not expected. The test revealed architects to score plans and aligns 

significantly lower(Md= 5, n=61) compared to the stakeholders(Md=5 , n=159), U=3647.5, z=-2.733, 

p=0.006). And revealed architects to score balances stakeholders significantly lower(Md= 6, n=61) 

compared to the stakeholders(Md=6 , n=159), U=3924, z=-2.059, p=0.039). 

3.2.3 System-level architects and product-level architects 
This chapter aims to answer the first explorative question: are there any differences in which behavioral 

competencies are seen as important between the system-level software architects and product-level 

software architects?  

The first step was the observation of the ranking of the different sub-groups of architects based on the 

descriptive statistics of table 3g. The top of this ranking can be viewed in table 3f. With more than a full 

point above their average, both types of architects Have manages complexity and communicates 

effectively on their number 1 and 2 spot. Note here how the system-level architects score the absolute 

value of communicates effectively nearly on level with manages complexity where product-level 

architects score communicates effectively closer to collaboration. The most notable other differences 

are the drop-off of decision quality from the 3rd  to the 6th spot with product-level architects, with 

product-level architects scoring decision quality almost half a point lower on average than system-level 

architects. Additionally, in absolute values it seems like after dropping below scoring thins above around 

.75 higher on average, there is a visual observation of a new bracket being in the below .6 above 

average category.    

The second part of this explorative comparison was using the Mann-Whitney U-test, results can be 

found in table 3g. No homogeneity assumptions are violated. The Mann-Whitney U test revealed 

product-level architects to score decision quality almost significantly lower(Md= 6, n=34) compared to 

the system-level architects(Md=6 , n=25), U=314.5 , z=-1.801, p=0.072). This is the only notable finding. 

To answer, the explorative question. There might be an indication from both observations and from 

Table 3F: Ranking difference between system-level architects and product-level architects 

  Software architects(combined) System-level architects Product-level architects 

1 Manages complexity Manages complexity(1.27) Manages complexity(1.21) 

2 Communicates effectively  Communicates effectively(1.26) Communicates effectively(1.03) 

3 Collaboration Decision quality (.908) Collaboration(.942) 

4 Decision quality Collaboration(.748) Instills trust(.589) 

5 Instills trust Balances stakeholders(.548) Balances stakeholders(.442) 

6 Balances stakeholders Instills trust(.508) Decision quality(.412) 



  41   
 
 

 

statistics where product-level architects and system-level architects perceive the importance of decision 

quality differently. With these small sample sizes, it is expected for this value to become significant 

when the sample size is increased.  

3.2.4 Comparing different stakeholder sub-groups 

Table 3g: descriptive statistics and u-test architect sub-groups 

 System-level architects Product-level architects  

  N M SD Md N M SD Md U P 

1. Ensures Accountability 25 4.80 1.22 5 34 5.06 1.04 5 383 .499 

2. Develops Talent 25 4.76 1.13 5 34 4.85 1.28 5 406 .760 

3. Communicates Effectively 25 6.60 0.65 7 34 6.38 0.70 6 345 .163 

4. Manages Complexity 25 6.60 0.58 7 34 6.56 0.82 7 413.5 .832 

5. Instills Trust 25 5.84 1.03 6 34 5.94 0.69 6 419.5 .926 

6. Cultivates Innovation 25 5.32 0.90 6 34 5.53 1.05 5.5 386.5 .527 

7. Drives Engagement 25 4.96 1.24 5 34 4.85 1.05 5 392 .597 

8. Drives Results 25 4.92 1.08 5 34 5.09 1.14 5 401 .702 

9. Values Differences 25 4.96 0.89 5 34 4.71 1.36 5 371.5 .394 

10.  Situational Adaptability 25 5.44 0.96 6 34 5.53 1.11 5.5 409.5 .804 

11.  Plans and Aligns 25 4.48 1.08 5 34 4.59 1.40 5 399.5 .687 

12. Collaborates 25 6.08 0.76 6 34 6.29 0.76 6 353.5 .235 

13. Builds Effective Teams 25 4.20 1.41 4 34 4.47 1.31 5 382.5 .501 

14. Optimizes Work Processes 25 4.64 1.32 5 34 4.56 1.31 5 408 .788 

15. Balances Stakeholders 25 5.88 1.09 6 34 5.79 0.95 6 389 .563 

16. Business Insight 25 4.92 1.55 5 34 4.97 1.09 5 415.5 .880 

17. Strategic Mindset 25 5.64 0.91 6 34 5.74 1.16 6 388.5 .557 

18. Demonstrates Self-
awareness 

25 
5.00 1.26 5 

34 
5.26 0.90 5 

392.5 .601 

19. Self-development 25 5.36 1.25 6 34 5.12 1.12 5 350 .227 

20. Decision Quality 25 6.24 0.78 6 34 5.76 1.05 6 314.5 .072 

 Table 3h: stakeholder sub-group competency rankings ( 

  Stakeholders Management Agile-roles Competence engineers 

1 Manages complexity Manages complexity(1.01) Manages complexity(1.16) Manages complexity(1.14) 

2 Communicates 
effectively 

Communicates 
effectively(1.01) 

Communicates 
effectively(.849) 

Communicates 
effectively(1.11) 

3 Decision quality Collaboration(.955) Decision quality(.974) Decision quality(.904) 

4 Collaboration Decision quality (.677) Collaboration(.599) Collaboration(.561) 



  42   
 
 

 

The last chapter compared the sub-groups of the software architect, it observed the differences 

between the two different classifications of architects. This answered the first explorative question of 

the hypotheses. In chapter 3.2.2 a difference between stakeholders and architects was observed. This 

chapter will address the second explorative question of the hypotheses: Are there any differences in 

which behavioral competencies are seen as important between the different stakeholder sub-groups: 

management, agile-roles, and engineers? 

The first method of comparing these groups was via observing their ranking. To do this the ranking 

followed the corrected descriptive statistics, which can be found in table 3h. The top of the ranking is 

shown in table 3I, with the corrected averages between brackets. Note that findings in this chapter 

should be interpreted with caution, the management group only consisted of 18 participants versus the 

32 participants of the agile-project roles and the 111 competence engineers. The correction of all the 

groups was 5.601 for the management stakeholders represented as 3, 5.276 for the agile-stakeholders 

represented with a 4, and with 5.3125 for the engineer. 

5 Instills trust Strategic mindset(.510) Instills trust(.599) Instills trust(.453) 

6 Strategic mindet Situational 
adaptability(.510) 

Strategic mindset(.505) Strategic mindset(.399) 

Table 3I: ANOVA  of different stakeholder subgroups 

Measure Management 
Agile-
role 

Engineer 
Sum of 
Squares 

df 
Mean 

Square 
F Sig. 

  M SD M SD M SD        

1. Ensures Accountability -0.05 1.15 -0.21 1.27 -0.45 1.23 3.318 2 1.659 1.095 0.337 

2. Develops Talent -0.82 0.81 -0.93 1.36 -0.67 1.44 1.808 2 0.904 0.483 0.618 

3. Communicates Effectively 1.01 0.50 0.85 1.16 1.12 0.80 1.862 2 0.931 1.257 0.287 

4. Manages Complexity 1.01 0.61 1.16 1.11 1.14 0.76 0.297 2 0.149 0.218 0.804 

5. Instills Trust 0.18 0.73 0.60 1.07 0.45 0.84 2.055 2 1.028 1.325 0.269 

6. Cultivates Innovation 0.29 0.83 0.22 1.14 0.26 1.07 0.057 2 0.029 0.025 0.975 

7. Drives Engagement -0.43 1.10 -0.53 1.16 -0.38 1.30 0.572 2 0.286 0.182 0.834 

8. Drives Results -0.05 0.98 -0.43 0.99 -0.46 1.27 2.647 2 1.323 0.932 0.396 

9. Values Differences -0.66 0.94 -0.15 1.26 -0.27 1.06 3.092 2 1.546 1.305 0.274 

10.  Situational Adaptability 0.51 0.90 0.29 1.13 0.07 1.06 3.702 2 1.851 1.645 0.196 

11.  Plans and Aligns -0.88 1.18 -0.28 1.39 -0.18 1.16 7.62 2 3.81 2.611 0.077 

12. Collaborates 0.95 0.51 0.60 1.07 0.56 0.96 2.402 2 1.201 1.335 0.266 

13. Builds Effective Teams -1.49 1.23 -1.49 1.24 -1.03 1.53 7.288 2 3.644 1.736 0.18 



  43   
 
 

 

The ranking results in the following observation: the number 1 and 2 spot being taken once again by 

manages complexity and communicates effectively. However, where the agile roles and competence 

engineers rank the same competencies in their top 5, the management stakeholders rank collaboration 

higher just like the product-level architects. Additionally, instills trust is not in their top 5.  

 

The F-test(ANOVA) is used to analyze the statistical differences. The homogeneity requirement is 

violated for BC15 ‘balances stakeholders’  following the Levene’s test, the Brown-Forsythe F will be 

shown instead of the Welch test. The homogeneity assumption is not met for the management group, 

even though the ANOVA is seen as a robust test this means results for the management group should be 

interpreted with caution. Also, note that the distribution of subgroups is as expected since there are 

fewer management roles than the other stakeholders in ASML. Due to the explorative nature of this 

research findings are still considered valuable. Table 3F shows the results of the ANOVA.  

The results in the ANOVA do not produce any statistical evidence to support differences between the 

different stakeholders. However there was an almost statistically different result for plans and aligns, 

F(2, 217) = 1.335, p = 0.077 and for business insight F(2, 217) = 2.317, p = 0.102 . Since there were no 

hypotheses the post-hoc test will be analyzed for these two values, table 3J.  In this table the difference 

in plans and aligns is caused by a significant difference, p=0.006, between the management (1) and 

engineers(3) layers where the management layer scored plans and aligns a lot lower compared to the 

almost average scoring of the engineers of this behavioral competency. The observation of the posthoc 

test of business insight gave no additional results. When regarding the effect sizes, the decision quality 

variable has a medium effect size, the point estimate is .526. This is then followed by communicates 

effectively with an effect size of .352. Indicating the utility of this variable in the real world when 

comparing the different stakeholder subgroups. 

Table 3J: post-hoc of sub-groups stakeholders 

Dependent variable  95% confidence interval 

 (i) (j) MD SE P LB UB 

11_COR_hierarchy 1 2 -.3356790 .2405742 .345 -.903412 .232054 

 3 -.6858444 .2204990 .006 -1.206202 -.165487 

2 1 .3356790 .2405742 .345 -.232054 .903412 

 3 -.3501654 .1908074 .161 -.800453 .100123 

14. Optimizes Work 
Processes 

-1.60 1.03 -1.15 1.34 -0.94 1.46 7.049 2 3.524 1.812 0.167 

15. Balances Stakeholders 0.40 0.69 0.01 1.35 0.06 1.30 2.066 2 1.033 0.652 0.522 

16. Business Insight 0.29 0.90 0.10 1.04 -0.25 1.25 6.389 2 3.195 2.317 0.102 

17. Strategic Mindset 0.51 1.02 0.51 1.07 0.40 0.96 0.401 2 0.2 0.206 0.814 

18. Demonstrates Self-
awareness 

0.07 0.69 -0.12 0.99 -0.34 1.20 3.226 2 1.613 1.293 0.277 

19. Self-development 0.07 0.91 -0.03 1.05 -0.02 1.14 0.114 2 0.057 0.047 0.954 

20. Decision Quality 0.68 0.67 0.97 0.95 0.90 0.84 1.064 2 0.532 0.748 0.475 



  44   
 
 

 

3 1 .6858444* .2204990 .006 .165487 1.206202 

 2 .3501654 .1908074 .161 -.100123 .800453 

16_COR_hierarchy 1 2 .0297192 .2393161 .992 -.535045 .594483 

 3 .1304137 .2193459 .823 -.387223 .648050 

2 1 -.0297192 .2393161 .992 -.594483 .535045 

 3 .1006945 .1898095 .856 -.347239 .548628 

3 1 -.1304137 .2193459 .823 -.648050 .387223 

 2 -.1006945 .1898095 .856 -.548628 .347239 

3.3 Summary results questionnaire 
This chapter answers the research question, it gives a list of behavioral competencies namely manages 

complexity, communicates effectively and decision quality, collaboration and instills trust as the 

respective top 5 important behavioral competencies. This supports hypotheses 1, 2, and 3 which claim 

manages complexity, communicates effectively and decision quality as most important behavioral 

competencies.  However, the clustering showed how decision quality was not in the top cluster, unlike 

manages complexity and communicates effectively. This would be the evidence with which decision 

quality is not the most important behavioral competency, rejecting hypotheses 3. In addition, the 

number three decision quality is perceived as less important as collaboration switching to the number 

four spot for software architects. This is mainly due to the opinion of what is important by product-level 

architects who see decision quality as less important for them compared to system-level architects. This 

would provide support to reject hypotheses 4 which expected no difference between these levels of 

architects. Stakeholders perceived the same five competencies as the most important however on 

average valued decision quality moreover collaboration with both being on the number three and four 

spots just like with architects. The number five for both groups is considered to be ‘instills trust’.  

  



  45   
 
 

 

Chapter 4: Qualitative research interview 
The questionnaire produced evidence on answering which behavioral competencies are most important. 

However, it does not answer sub-question 4 which wants to know how the important behavioral 

competencies actually interact in practice. This chapter will follow up on the interviews by exploring 

how the behavioral competencies lead to success. This is expected to create a context that will expand 

knowledge on how the behavioral competencies function in practice. In addition, it also validates the 

results found in the questionnaire. This chapter will focus on the important behavioral competencies, as 

is the focus of the research question.  

4.1 Interview setup 
Interviews often provide in-depth information about the interviewee’s experiences and viewpoints of a 

discussed topic (Turner, 2010). The flexibility of a semi-structured interview allows for the elaboration of 

information necessary for the participants of the interview(Gill et al., 2008). The goal of this interview is 

to explore how (important) behavioral competencies lead to success. Since Interviews can adapt the 

questions based on the interactions(Turner, 2010), interviews are the right method.  

The interviews will be set up following the principles of Turner(2010) which emphasizes the importance 

of preparation, selecting candidates, pilot testing, constructing effective research questions, 

implementing the interview, and interpreting data. The design will have to adhere to the time restriction 

given by the case company of a maximum of 1-hour interviews with people including introductions and 

closing statements.  In addition, due to the global pandemic, the interviews will take place digitally. 

Questions will ask about descriptive examples of different situations in which a software architect was 

successful. Follow-up questions focus on how specific behavioral competencies led to success, these 

competencies are selected based upon the outcomes of chapter 3. 

4.1.1 Interview research question 
To structure the interviews a specific research question is created for the interview section. To know 

how behavioral competencies lead to success it has to be analyzed which are present in success 

situations. This leads to the following research question for this chapter:  

Int-RQ: How do behavioral competencies contribute to success? 

Chapter 3 gave some expectations where behavioral competencies like communicates effectively, 

manages complexity, collaboration, and decision quality are expected to be present. To know how the 

different behavioral competencies are used in practice, it should be known which are present forming 

the following sub-questions: (Int-SQ1) What behavioral competencies contribute to success? In both 

these questions, the term ‘success’ is implied by the participants, however, interviews could explore 

what this ‘success’ would be. Note here is that the main focus will be on the behavioral competencies 

however this also provides the opportunity to learn more about what success means for software 

architects This forms the explorative sub-question: (Int-SQ2) What are the performance outcomes 

which indicate success? 



  46   
 
 

 

4.1.2 Participant selection 
The second preparation step is the selection of candidates. Participants for the interviews were selected 

based on their role, experience and their connections. The experience is relevant since more 

experienced people, more often than not, can articulate examples better and have a better 

understanding of what creates success in their role. Furthermore, since the requirement for the 

questionnaire was people who are or work with software architects, this requirements sticks. This 

causes at minimum for the interviewee to value a potential outcome. In the questionnaire, different 

roles were seen as either stakeholder or architect and in a certain bracket of hierarchy. The interviews 

will target all the different groups to explore as many perspectives as possible creating a minimum of 5 

interviews. However, the majority of the weight of the interviews is expected to be on the higher end 

due to the previously mentioned experience expectation. Since the questionnaire was sent out in the 

wider MX in which MCI is placed this will be taken into account by including another department to 

diversify the explorative potential of the interview.  

For the selection of participants the method was as follows, at the end of the questionnaire a message 

was created that asked people interested in a follow-up to contact the researcher. Out of this group, a 

few people from the same department (MCI) volunteered and approached. Based on their group leads 

advice, experienced people were approached. The second set of interviews followed the same line. One 

experienced architect volunteered, and via his group lead every other role-slots was filled based on the 

experience they had from the group leads perspective. Note that from the first group people were 

included with more experience and more management expertise while in the second group more wider 

spread of stakeholders was taken into account. Once again this is due to the early scope to focus on a 

higher hierarchal level.  

Table 4a: Role categories of interview participants 

 Role category <Poule A> <Poule 2> 

SA System-level ASML_03; ASML_10 ASML_08 

 Product-level ASML_09; ASML_06 ASML_05  

stakeholder Management ASML_11 ; ASML_04 ASML_01 

 Agile-role  ASML_02 

 Engineer  ASML_07 

4.1.3 Testing 
As a test for the interview set up, a group session with a whiteboard was held within an architect 

meeting to review if the questions are clear and if the definitions are viewed similarly. After this test, the 

questions focused more on asking specific examples, rather than the definition as the examples show 

types of behavior. No other changes were made to the interview setup.  

4.2 Data and coding setup 
The collected recordings will be transcribed. The data will be stored safely with both the company 

and the researchers and will not be shared with third parties. The processed data will not show any 

names or specific technical elements to protect both the participants' and the companies' interests. 

Participants' names will be transformed as ASML_XX, where XX is the number of the interview held. 

In addition to the recordings also the raw interview notes are stored following the same naming 

structure as the interviews.  



  47   
 
 

 

4.2.1 Coding  
Coding is an iterative process. The interviews are coded in word using excerpts marked by a comment. 

To answer the first interview sub-question deductive coding will be used where the starting set and 

definitions of the 20 behavioral competencies(Kornferry, n.d.), overview given in table 4b. Excerpts of 

the 20 behavioral competencies are marked in 

yellow and a short summary will be given in the 

comments to protect the interest of the 

company. The identified behavioral 

competencies will be added to the excerpts 

with BC## where ## represents the number of 

the behavioral competencies. Using the same 

color for markings was a result of the iterative 

process where examples often contained 

multiple behavioral competencies. A few 

examples given are examples of bad behavior. 

Often these interactions do show what is 

valued, and what isn’t in an example. In the 

coding, these negative examples are marked 

with a ‘-’ next to the related behavioral 

competency(BC). 

Every interview will contain multiple examples, therefor the same behavioral competency could be 

present multiple times in the interviews. To answer which are present, the amount of times something 

is mentioned in each interview will be structured.  

To explore the context of success, by searching 

for answers to the second sub-questions of what 

‘success’ would entail, anything related to the 

output of success for software architects was 

marked in green. This will specifically search for 

performance outcomes that influenced the 

perception of success in a project or situation. 

Any other findings will be addressed as such, 

other. If any patterns emerge they will get their 

own color. In this iterative process, a new other 

category emerged: knowledge management.   

4.3 Interview results 
This chapter will discuss the outcome of the interview. Note how this is part of an exploratory study, the 

findings aim to further the understanding of the important behavioral competencies of a software 

architect in support of which behavioral competencies are important. It will first discuss the behavioral 

competencies, after these the success outcome variables and knowledge management findings will be 

presented.  The last two are more exploratory in nature.  

Table 4b: overview behavioral competencies in 
interviews 

Behavioral competency Code 
number 

Occurrence 
ratio 

Communicates effectively 3 11/11 

Manages complexity 4 11/11 

Collaboration 12 11/11 

Decision quality 20 11/11 

Instills trust 5 9/11 

Balances stakeholders 15 6/11 

Strategic mindset 17 6/11 

Business insights 16 3/11 

Drives results 8 2/11 

Plans and aligns 11 2/11 

Figure 4a: Iterative coding cycle with final overview 



  48   
 
 

 

4.3.1 What behavioral competencies contribute to the success  
To answer the first question an overview of the present behavioral competencies in the interview is 

made, table 4b. The behavioral competencies communicates effectively(BC3), manages 

complexity(BC4), collaboration(BC12), and decision quality(BC20) are present in multiple examples in 

every interview. This is in line with the findings of chapter 3. Instills trust(BC5) is present often but is 

more prevalent in the examples of stakeholders. Finally, there is a third segment of behavioral 

competencies which appear sporadically, these results will not focus on these behavioral competencies. 

The full overview of excerpts and related behavioral competency can be found in appendix E. 

4.3.2 How the top-ranked behavioral competencies lead to success 
As mentioned in the methodology, in the iterative process many examples contained multiple 

behavioral competencies in the same situation. Take the example from ASML_09 which described a 

specific deduction of the complexity where by using rationale the architect realized there were actually 

different intentions of the project, being able to simplify the old requirements into a single clear new 

requirement. To verify this simplification the architect turned to his project management counterpart 

and convinced him and others with various means via meetings. The architect had to take into account 

all different types of information and perceptions of different stakeholders to come to the realization of 

how this could be simplified, which shows the managing complexity behavioral competency(BC4). To 

start this change the architect had to first convince and then work together with stakeholders to reach 

their shared goal of finishing the project as well as they can, which exemplifies the usage of network and 

collaborating with it(BC12). This convincing was done via various meetings and stances where the 

architect tried to communicate in the right format depending on the interest of the stakeholder(BC3).  

This example illustrates what is present in many different examples of success: rarely just a single 

behavioral competency is present in success for software architects.  There are similar examples 

showing this trend like when ASML_03 where by reviewing documents and talking to people the 

architect(BC3) identified how things were not in line with the roadmap(BC4) which allowed the architect 

to intervene by working with the engineers and steering them towards a better direction(BC12). This 

was done by using the right communication methods in order to convince the engineers(BC3) and all 

was done in order to create a better decision that is in line with the roadmap(BC20-). This shows how 

the answer to which behavioral competency is important in success situations is expected to be more 

than one behavioral competency.   

In both situations, a combination of behavioral competencies was present in a single example. All 

interviews show a similar trend where in most cases it is not just one behavioral competency in the 

example of success. With this in mind, the next paragraph will exemplify how specific behavioral 

competencies lead to success.  

4.3.2.1 How communicates effectively and collaboration lead to success 

Four behavioral competencies were present in all interviews in a variety of ways. Two of these were 

communicates effectively and collaboration, this subchapter will explore how these are represented in 

the interviews. The definition of communicates effectively seems to focus more on the delivery of a 

clear understanding of the unique needs of different audiences. This would be more focused on the 



  49   
 
 

 

giving information part of Kruchten(2008)’s circle. Interviews do confirm this perception of 

communicates effectively but also expand on it. On one side communicating effectively is part of the 

information gathering process like having formal and informal one-on-one talks, doing whiteboard 

sessions, and having formal meetings(ASML_08) to gather the input. The informal talks are more chats 

that can happen at any place at the coffee machine and don’t necessarily have to be about work. 

Meetings are structured moments with clear goals for the meeting itself and often the moment to 

converse with stakeholders. A whiteboard session is a more brainstorm-like meeting focused on 

discussion and free-thinking. On the other side, communicates effectively helps to convey the message 

like for example the interaction where the architect needed different methods to convince others of the 

decisions(ASML_04).  

In both the conveying the message and gathering information sides, the architect should be able to use 

a variety of methods to get the right information and to give the appropriate information, while being 

able to clearly express their intentions. Even though these perspectives are different, literature already 

indicated there are multiple different ways of splitting communication. For an architect, however, this 

would mean the original definition would be challenged and widened or split up since both perspectives 

seem to have a complementary relationship in the role of the software architect.   

Architects should be able to express themselves to get people on board with ideas but also to gather 

their information. Good communication prevents miscommunications but in consequence also bugs and 

errors(ASML_09). This indicates the relation between the communicative side with the technical side of 

the architects' job.  

This social and side of the architect is also present in the collaboration competency. Collaboration 

follows the same split, where it is important in both gathering input but also giving information. On the 

gathering input side, ASML_09 realized how a different department was needed and started to involve 

them and work with them to improve the organization as a whole. This is an iterative process where 

both sides need to take into account the pro’s and con’s of the other. In one example a 

stakeholder(ASML_01) saw how the architect saw an opportunity in getting rid of a weekly report which 

was also done daily. The architect used the meetings to work together with people and used meetings, 

one on one conversations in order to let people accept this change. However, the architect wanted to 

get rid of the larger element, all the details were created in a collaborative effort to simplify the process 

with the stakeholders.  

However, different from communicates effectively, collaboration is more a single term, collaboration is 

seen as a process and architects strive to be part of this team process which allows both for gathering 

the information, but also making sure the solution is supported. ASML_03 mentioned always striving for 

getting more opinions, involving more relevant people, being a team player but also mentioned having 

to get involved when he observes people making mistakes. The interactive process of both involving 

people but also reacting to the same people is the dynamic of collaboration in a software architect. 

Alternatively, collaboration could also be seen as a part of the (joint) decision-making process. This will 

be discussed in the next sub-chapter.  



  50   
 
 

 

4.3.2.2 How manages complexity and decision quality lead to success 

The previous chapter mentioned how collaboration could be seen as part of the joint decision-making 

process. This paragraph address this finding and the dynamics of manages complexity and decision 

quality.  

First, decision quality is loosely defined as making the right decision at the right moment, something an 

architect is expected to do. However, in the interviews decision quality and the decision itself were 

often as an intermediary moment. Making the right decision was often preceded and succeeded by 

other important behavioral competencies. An example from ASML_03, after having reviewed a project's 

documents the architect identified a mismatch between what was being done and the 

roadmap(Manages complexity). By finding this in time, the architect was able to intervene and steer the 

team towards another solution(collaboration and communicates effectively). This steering led to the 

decision itself being better since it now is in line with the roadmap(Decision quality). Had it been 

unnoticed it could have become a problem later on. Intervening was an individual decision, but also the 

direction to which was steered was a made technical decision. However, to make this decision work the 

architect had to work together with the team(collaboration) to get the new change actually executed. 

This exemplifies how decision quality is related to managing complexity as making decisions without 

having managed the information input is like going in blind. In addition, without the collaboration the 

original direction would probably not have changed and the new direction would not have been 

executed as it is meant to be. This is also where the previously mentioned joint decision-making comes 

in. Often the architect gathers information, makes an overview of the possible choices, and then jointly 

make a decision with the team(ASML_10). This does not mean the architect does not already have a 

preference of where he wants to go(ASML_11). It does mean that making the decisions together with 

the team indicates more success. ASML_05 indicated how making decisions that have a lot of resistance, 

will cause a drop in motivational level of the executing team(s). After which he mentioned being “more 

of a moderator of the decision process than actually making the decision”(ASML_05).  Whereas an 

architect often there are multiple different possible decisions. Which decision will be chosen does not 

matter as long as it can be viewed as good and does not interfere with the system's integrity, only if the 

options are less good the architect will steer the others away from that option.   

The findings indicate how there are two distinct concepts surrounding behavioral competency decision 

quality. First, decision quality seems to require other behavioral competencies like communicates 

effectively, manages complexity, and collaborates to get to the decision, but also to make the decisions 

execution by the teams. If you explain your reasoning well, people will get on board and they will make 

the decision in your line of thinking(ASML_10). This brings us to the concept of joint decision-making. 

The architect can be viewed more as a moderator of the decision process(ASML_05) which works 

together with the teams to make the decision jointly together(ASML_10). This could be a consequence 

of the architect being dependent on the correct execution of the concepts by the executing parties. All 

of these examples show how decision quality as a behavioral competency does have its orientation in 

the technical side where it could be perceived as part of the architecting itself.  

This being part of the architecting itself could also be considered for the behavioral competency 

manages complexity. Managing vast amounts of information comes in many forms, but based on 



  51   
 
 

 

chapter 3 is also a critical skill for the architect. The argument could be made where manages 

complexity is part of the architecting itself because all information is translated into technical solutions. 

In one of the examples, ASML_09 used his technical knowledge and ability to manage the different 

information to see how a set of requirements were not actually the requirements. By talking to people 

the architect was able to go back to the history and motives behind the creation of these requirements. 

In a certain way, managing the different information streams and coming to a realization based on this 

exemplifies how manages complexity can also be viewed as a cognitive ability of the architect. Without 

the deductive skills with all different information and knowledge, this realization would not have been.   

A different way is for the architect to manage the complexity of a system in smaller pieces to 

understand and enable others to understand it(ASML_03). Alternatively, an architect can split up larger 

improvements into smaller chunks to make them more feasible or make it easier to convince others to 

commit resources to the change(ASML_01). Splitting up could also be important because otherwise 

having too many details, would increase the complexity and harm the project because they cannot be 

managed(ASML_04). 

Even though different, the examples above show why manages complexity is so important for an 

architect. Without it the architect would not understand the systems, without it the architect would not 

know which would be the best options or what the interests and dependencies are. Managing 

complexity represents the transfer of raw knowledge into useful knowledge in the context of the 

technical leader, the software architect. It is related to all other behavioral competencies and can be 

seen as the inexplicable way in which architects are successful.   

4.3.2.3 Instills trust as a pre-requisite 

Another interesting finding was the role of instills trust. Instills trust is seen as gathering the confidence 

and trust of others. In the interviews, trust was regularly present in the form of being a pre-requisite. On 

many occasions, stakeholders mentioned how they trusted an architect. In one of the examples 

stakeholder ASML_07 explained how architects have to make the right calls and decisions. However, 

they need the people involved and mandate to get the trust to do this. This trust was created based on 

experience and track record(ASML_07). In addition, ASML_07’s trust was also influenced when he saw 

an architect being seen makes an impact on the project. This indicates how trust is a boundary for 

success. However, most of the time the architects themselves did not directly address trust themselves. 

They do indicate behavior that tries to build this trust like ASML_05 who mentioned: “I'll talk to them, I 

make them feel welcome, lower my own boundaries for them so they can talk to me or say there's not 

this high ranking architect somewhere that's people don't directly talk to you are approachable, so I 

spent more time there.”. One architect did specifically mention how you have to build trust, otherwise, 

they will not believe you and it will make convincing others a lot more difficult(ASML_03). As a side 

note, this architect was one of the more experienced architects.  

The dynamic of trust seems to be that of a pre-requisite. It builds over time and seems affected by 

experience and your track record. However, based on the information from ASML_03 and the 

stakeholders, it seems like it is more of a problem when there is no trust, making it hard to convince 

others. In success situations, other architects almost naturally build trust like ASML_05 but their motive 

seems more to be approachable rather than use it consciously for convincing others.  



  52   
 
 

 

4.3.3 What performance outcomes indicate success 
One of the ‘other’ findings was the exploration of the term ‘success’ and what type of performance 

outcomes would indicate success. The interview provided information on what it means to be successful 

as a software architect. A few of the interviews mentioned factors of the classical triangle cost, quality, 

and time. However, the interesting part is how architects focus more on the long-term technical view. 

Architect ASML_03 explained how sometimes stakeholders want to finish a project quickly, which is the 

time of the classical triangle. However, architects seek the best (technical) solution, trying to avoid 

technical debt. In this way, ASML_03 split the difference between the long-term perspective on the 

success of architects and the short-term perspective on the success of stakeholders. This example is 

enforced by ASML_05 who explains how a faster machine being a more complex machine with fewer 

options to expand on it, would not necessarily be chosen over a less complex and more expandable 

machine. This, however, contrasts with the perception of architect ASML_10 who mentioned happy 

customers, meeting expectations, having a happy crew, and doing it in a short timeframe as the reasons 

why a certain project was successful from his perspective. One explanation could come from ASML_04 

who mentioned how an architect needs quite a lot of awareness and knowledge to realize what success 

for a project means in a specific architectural context.  

The central takeaway here would be how outside of the classical triangle cost, time, and quality, other 

performance outcomes indicating success can also be present. From the interviews, the content of 

stakeholders or the own team could also be seen as a performance outcome. Additionally, and maybe 

even more important for the software architect specifically, would be the future perspectives of the 

project. Architects seem to focus on the long-term technical roadmap which also takes into account the 

maintainability and expansion opportunities of the project. In general, architects try to avoid 

unnecessary dependencies and technical debt. 

4.3.4 The role of knowledge in the software architect 
In the literature review, one of the sources addressed the perspective of the architect being a 

knowledge manager rather than a decision-maker(Weinreich & Groher, 2016). The interviews showed 

how knowledge plays an important role in the success of a software architect. Previously, manages 

complexity already partly relied on knowledge. Instills trust, was sometimes based on knowledge or the 

perceived previous knowledge in the form of a track record. Knowledge almost seems like a tool present 

in decision situations but also in own cognitive processes, like with manages complexity. When 

gathering information, knowledge is generated. When giving information, knowledge is transferred. And 

in between knowledge is churned. In the interviews, various connections between knowledge and 

behavioral competencies. Previously, the architect its role and responsibility had been the main focus, 

however, the term popped up often enough to get noticed to indeed indicate how sometimes the 

architect almost seems a knowledge manager. Steering and arguing, using knowledge as the tool to get 

things done. ASML_05 referred to how communicates effectively boils down to transferring information. 

The importance of (domain) knowledge in the architect is exemplified by having very few people who 

actually start as an architect(ASML_04) suggesting previous experience is needed. On the other side, 

having too much knowledge can also be harmful as ASML_09 expressed an example of avoiding getting 

more knowledge because otherwise, he would not be able to manage this stream of information. This 



  53   
 
 

 

latter example indicates a connection between knowledge and behavioral competency manages 

complexity.  

This additional finding should not come as a surprise considering half of the description of the architect 

being focused on gathering input and giving output(Kruchten, 2008). This came forth in the interview 

with ASML_10 who mentioned how all the pre-alignments were held to gather all the information 

before the definitive meeting itself. This example was previously used in support of the behavioral 

competencies collaboration and manages complexity. Also, remember how ASML_03 showed how 

knowledge was operationalized by managing the various information streams to avoid bad decisions 

which addressed how reviewing documents allows for the verification of the ideas being in line with the 

roadmap. This exemplified how knowledge plays an important role in identifying opportunities and 

problems. The architect has to know about specific company elements, software engineering concepts, 

and its own architectural elements. 

The results do not give any conclusive evidence, however, they do indicate how knowledge is important 

for software architects. In addition, knowledge seems to have relations with the behavioral 

competencies manages complexity, collaboration, and communicates effectively. 

4.4 summary interview chapter 
To know what behavioral competencies are important, it is also required to know how these behavioral 

competencies lead to success. This chapter confirms the findings of the four important behavioral 

competencies found in chapter 3, all of these are present in all the interviews. The interviews do not 

provide any further information about the clusters from chapter 3. Communicates effectively happens 

both when gathering information and when convincing others. Manages complexity has close ties to 

managing all knowledge of the architect. However, It mainly focuses on managing the input of 

information and managing what information to give to others. Collaborates and decision quality are 

linked via joint decision making where making the decision together is related to the execution of the 

decision but is guided by the architect. Collaborates is also important for an architect to get information 

from others to get a more complete overview. The other side of decision quality focuses on the 

individual decisions an architect makes like wanting to make a change or deciding to intervene with 

others. Knowledge seems to play a role in a lot of these behavioral competencies, however, not enough 

information was available to make a decisive conclusion about how exactly.  

 

  



  54   
 
 

 

Chapter 5 Conclusion 
Since there were multiple different elements in this thesis let’s summarize. This research tried to answer 

the question what are the most important behavioral competencies of a software architect. This chapter 

will summarize the findings of both the questionnaire and the semi-structured interviews together.   

5.1 Top cluster 
As expected, the most important behavioral competencies are manages complexity and communicates 

effectively. The questionnaire showed how they were placed number 1 and number 2 without 

exception, even in the different sub-groups there was this commonality forming a part of the answer to 

exploration 1 and 2. In addition, these formed a cluster, making them both the top cluster of behavioral 

competencies. This provides support for hypotheses 1 and 2.  

In addition, as shown in figure 5a, the interviews provided insights into how communicates effectively 

and manages complexity both seemed to have multiple purposes within the different architecting 

activities. Architects needed to communicate effectively to both gather information and to convince 

others. Architects cannot know everything, therefore they rely on the input of others. However, they 

also rely on others to follow and execute the different architectural decisions. In both cases, the 

architect should use a multimode of communication methods and tools to convey their message 

depending on the interlocutor. To be able to know what to ask but also know what to say to convince 

others, the architects do need knowledge about their conversation partners and their interests.  

Figure 5a: The interview findings regarding Manages complexity and communicates effectively 

This knowledge of conversation partners is also present in the managing complexity behavioral 

competency. In all facets of the job, an architect deals with information. This would also create the main 

argument on how managing complexity could be considered as part of the architecting of the job. In 

almost all situations the architect needs to manage all information available from different stakeholders, 

but also from the domain and the architect’s personal knowledge. Managing the complexity would be 



  55   
 
 

 

required for the incoming information to know what to ask. But also in the outcoming information 

where it is required to know what to say to convince others.  

5.2 The other two important behavioral competencies 
The answer to the most important behavioral competencies is answered above. However, this does not 

mean the other behavioral competencies are not important. The second cluster of important behavioral 

competencies was composed of collaboration and decision quality. 

In chapter 3, Decision quality took the 3rd spot, which seemed to support hypothesis 3. However, 

Decision quality was not clustered with communicates effectively and manages complexity. It was 

clustered with the 4th ranked collaboration. This immediately rejects hypothesis 3, decision quality as 

‘most’ important, since ‘most’ was defined as being clustered together at the top. IMPORTANT this does 

not mean it is not important, it is just not the ‘most’ important. Considering the subgroups, there was an 

almost significant difference between architects and stakeholders considering decision quality. Since it is 

not significant it would suggest rejecting stakeholders ranking decision quality higher, hypotheses 4. 

However, in absolute ranking, there is a difference where collaboration and decision quality are 

switched around. Between the architect-levels, this seemed to be mainly from the product-level 

architects, with the difference in Decision quality ranking with system-level architects being almost 

significant too. In chapter 4, decision quality happened in various situations and is related to a lot of the 

other important behavioral competencies. Regarding the decision quality itself, there were two types of 

decisions: individual decisions and guiding the decisions in a joint decision making. This could explain 

why there are differences in how decision quality is viewed. In the end, hypothesis 4 cannot be 

supported as the difference is not(yet) significant. However, with there being visual evidence, the 

expectancy of becoming significant with increased architect sample size and different types of decisions, 

fully rejecting this hypothesis would seem irresponsible in an explorative setting like this. Evidence 

surrounding hypothesis 4 is inconclusive. 

The other behavioral competency of the 2nd cluster is collaboration. In the overall absolute ranking, it 

takes the 4th spot but overall the architects would place it on the 3rd spot. In general, this would seem to 

support hypothesis 5, collaboration being valued more by stakeholders than architects. Interestingly 

though is where product-level architects value collaboration on the third spot, system-level architects 

value decision quality as 3rd with collaboration being 4th.  This is the same ranking as the agile roles and 

engineers stakeholder subgroups. In addition, the management stakeholder subgroup values 

collaboration as the 3rd rank, over the 4th of decision quality.  

However, this difference between architects and stakeholders is not significant and is not expected to 

become significant with increased sample sizes. In addition, the values with which collaboration is 

scored is similar between both groups. This, in combination with the difference being not significant, 

rejects hypothesis 5. Collaboration is still part of the 2nd cluster of important behavioral competencies 

being either the number 3 or number 4. Just like communicates effectively the dynamics of 

collaboration are both in the gathering input and giving input side. Working together happens both to 

get the information input and create the overview via meetings, informal chats, and other methods. But 

when a plan or decision is made, collaboration is also required to create a successful implementation. 



  56   
 
 

 

The execution of decisions is also seen as a collaborative process where the architect is open to changes. 

Guiding people towards the change and making the decision together is an important part of creating 

support for the execution itself and was often deemed as an important part of success. This joint 

decision-making seems a combination of collaborative and decision-making competencies for a software 

architect.  

Figure 5b: The interview findings of collaborates and decision quality 

5.3 Never just one behavioral competency 
The previous two paragraphs exemplify the finding of chapter 4. In success situations, there are nearly 

always multiple behavioral competencies present in the behavior of a software architect. This is a logical 

outcome when considering how all the different architectural activities are needed to create a 

successful situation. As exemplified by the interaction between manages complexity and communicates 

effectively, if there is no communication, the information input will be very limited. However, if the 

complexity is not already managed to some extent, it will be very difficult to structure the information 

input in an effective way to get the right input.  

When considering the role each behavioral competency plays, the important behavioral competency 

Decision Quality exemplifies how a behavioral competency could play a central role in forming a central 

point from which to work to of from. Another found dynamic was how the 5th ranked behavioral 

competency Instills Trust could be a pre-requisite. In the interviews trust, based upon both knowledge 

but also personal relation and track record, seemed to form the base on how stakeholders will view the 

words of the architects. Just like it is impossible to know all the details for the architect, it is impossible 

to know all the different forces and choices as a stakeholder. Stakeholders need to trust the architect to 

accept this larger unknown. In the behavior of architects, it becomes clear how they try to be 

approachable to generate this trust to do their job. The consequence of the loss of trust could be the 

failure of a project. However, in the context of success, trust seems to function more like a pre-requisite 

whereas in success situations the architects have trust.  



  57   
 
 

 

5.4 Additional findings of knowledge management and performance outcomes indicating 

success 
One of the additional observation of chapter 4 indicated how knowledge management seemed to have 

an important role in the successful behavior of a software architect. One other additional question 

posed in chapter 4 was how behavioral competencies contribute to success. To answer this question 

one sub-question asked what performance outcomes would indicate success.  The interviews provided 

the following potential performance outcomes: classical triangle elements namely cost, quality and 

time. These were always to consider, however, there were also interviews in which architects 

themselves focused less on time and cost, but more on their future potential. 

  



  58   
 
 

 

Chapter 6 Discussion 
Chapter 5 combined the different findings from chapter 3 and chapter 4. This chapter will discuss how 

the findings relate to existing bodies of literature. The quick and dirty answer to the research question: 

what are the most important behavioral competencies of a successful software architect. The most 

important behavioral competencies of a software architect are manages complexity and communicates 

effectively. However, there is a second cluster consisting of collaboration and decision quality which can 

also be considered important. Furthermore, instills trust seems to be a pre-condition for success.  

6.1 Theoretical implications 
This research contributes by expanding the knowledge about the behavior of software architects within 

the behavioral software engineering domain(Lenberg et al.,2015; Baltes & Diehl, 2018). In general, the 

findings have been in line with the previous work of Kruchten(2008) and Razavian & Lago(2015). One 

important contribution of this research provides insights into practitioners' perspectives on which 

behavioral competencies are important but also gives insights in the context of these behavioral 

competencies of successful software architects. This allows for the mapping of these competencies on 

the architecting activities. In addition, the performance outcomes and knowledge management 

perspectives will be discussed shortly.  

6.1.1 Mapping behavioral competencies on the architecting activities 
The full overview of the mapped behavioral competencies can be found in figure 6a.  

6.1.1.1 Internal and external activities 

The role of communication was been widely regarded as important. As it was one of the key duties of 

the architect(Bass et al., 2008; Clements et al., 2007; Kruchten, 1999, 2008; Razavian & Lago, 2015). 

Where the internal framework of the case company mainly defines communication as externally 

focused(Kornferry, n.d.), other sources have split communication into outward, inward 

communication(Bass et al., 2008; Clements et al, 2007) or getting input & providing 

information(Kruchten, 2008; Razavian et al., 2015). This research supports how communicates 

effectively is one of the most important behavioral competencies. However, as seen from the 

interviews, communicates effectively is a required competency to get information and also for executing 

and convincing others of the architecture. This would place the used behavioral competency 

communicates effectively in both the internal and external focus of the architecting activities 

map(Kruchten, 2008). This would contrast the placement of communication in only the outward 

communication(Razavian & Lago, 2015).  



  59   
 
 

 

 

Figure 6a: Top 5 behavioral competencies mapped on architecting activities (Kruchten, 2008) 

A similar argumentation would be used for collaboration. Where collaboration was initially not expected 

to be the most important behavioral competency, it was in the 2nd cluster of competencies. This cluster 

was still considered to contain important behavioral competencies. In addition, in contrast to what was 

expected, collaboration seemed to be important for both architects and stakeholders. This could be 

explained with the support of the interviews where collaboration included examples of the preparation 

and iterations of proposals and decisions, but also took a role in convincing and actually executing 

proposals and enforcing decisions. In the activities map, this would provide a similar position as 

communicates effectively in both internal and external focus sections. This importance of collaboration 

for architects could have been expected since they depend on others for their information and 

execution. In addition, the role of being a team player, and working effectively with superiors, 

colleagues, and supporters had been deemed an important skill in literature(Bass et al., 2008). The 

differentiating between working together to get the information overview and working together to 

make the idea happen did not get a lot of attention. These dynamics require further investigation in the 

future.  

6.1.1.2 Architecting activities  

Chapter 4 showed how manages complexity and decision quality were both considered to be technical 

dynamics. Manages complexity was one of the behavioral competencies which found close ties with 

other behavioral competencies. Manages complexity had a lot to do with information, as it was defined 

as managing large sums of, sometimes contradictory, information. This managing information input and 

output was expected from literature(Kruchten, 2008). However, architects should also have knowledge 

in the computer science domain, about existing technologies and platforms, and about the 

organization's context and management(Bass et al., 2008a). These types of knowledge are not only 



  60   
 
 

 

technical in nature but also focus on key players and their intentions within the company(Bredemeyer, 

2002). Managing vast amounts of knowledge is the backbone of the architect. This also shows why this 

behavioral competency is so important. Without managing the complexity, an architect will have no clue 

what is going on and how things will affect the system. Interviews mentioned how architects do not only 

guide other technically, but also have to convince other by giving alternatives and showing their 

consequences. If the architect did not manage all the information, both conversation and 

documentation, the architect will not be able to have the overview, let alone see the consequences. 

Where the gathering of the information requires different behavioral competencies, the management of 

complexity is directly related to the architecting activities cognitive process. Therefor, this research 

would argue manages complexity to be mainly part of the architecting activities, but requiring the 

information input, directly emphasizing why this relation between gathering input and architecting is so 

important.    

Just like manages complexity, decision quality has a lot of dynamics with other behavioral competencies. 

Mainly to get to the decision quality other behavioral competencies are required, and in the execution 

of this decision it is also the other behavioral competencies that present themselves. Chapter 4 showed 

how decision quality could be related to both individual and group decision-making. Literature also 

considers both sides where decisions about the architecture can be seen as part of the individual 

software architects decision-making process(Erder & Pureur, 2016) and the role of the architect as a 

joint decision-making facilitator(Rosa et al., 2020; Tang et al., 2017). As the technical leader(Bass et al., 

2013; Britto et al., 2016) who is busy with architecting activities half of the time(Kruchten, 2008) it 

would seem logical to have to make individual decisions as an architect. However, a few interviews 

emphasized how an architect can not know everything. Joint decision making was also addressed to 

have a direct relation with collaborating, addressing the collaboration in the execution and formation of 

a decision. In a sense, this is more linked to solving a problem on how to make a certain change rather 

than what exact steps have to be taken. The software architect is known to be a problem solver(Bass et 

al., 2008b; Clements et al., 2007; Fowler, 2003).  

But what if there is both individual and joint decision-making? In a lot of the interviews, it was implied 

that an architect already found a gap. And when the architect decided to act on it a joint decision 

process was created to fill in the details. If joint decision-making is the active part where the architect 

has to listen and tweak the original decision to make a change, the decision to attempt a change of 

direction would be an individual decision. This individual decision would be highly related to managing 

large sums of information. The architect would fulfill the technical leader role in the joint decision 

process, guiding it towards acceptable decisions from a system or product level perspective. This would 

create the concept of decision quality actually originating more in the technical side of the software 

architect and representing the cognitive and deductive ability of the architect. Thus decision quality 

would mainly be part of the architecting activities but be actively producing decisions that are 

operationalized in the information output. Note how this also allows for the decision to be tweaked 

based upon the collaborative efforts afterwards, but the activation of the decision has already 

happened.  



  61   
 
 

 

6.1.1.3 pre-condition trust 

Chapter 4 argued that trust is a pre-condition and therefore instills trust also being part of creating the 

setting of that pre-condition. By having trust, stakeholders trust the architect’s decisions and 

knowledge. This was found to have a basis in previous projects outcomes and argumentation of the 

architects. Existing literature had indicated the architect needed to be trusted advisors(Bredemeyer & 

Malan, 2002; Eeles, 2006; Klein, 2016), however, this has a direct link to the consultant 

antipattern(Kruchten, 2008). This research would argue this trust to go further than suggested by the 

literature. Trust is mainly required to successfully execute decisions, going further than just being an 

advisor. Both literature and these findings would place trust in the outwards communication part of the 

architecting activities, based upon this execution and convincing element. However, there are also cases 

where trust could contribute to the gathering of information due to it making the architect 

approachable.  

6.1.2 Differences between system-level and product-level architects 
One of the other findings was how there were indications of decision quality being different between 

system-level and product-level architects. This finding fit existing frameworks where higher-level 

architects are busy with higher-level decision-making (Martini et al., 2014) and in a certain sense, the 

product-level architects are enforcing and executing those high-level decisions. This could explain why 

decision quality would be viewed differently between the two groups. In addition, following the 

architect classifications of Fowler(2003), system-level architects were more pure decision-makers 

whereas product-level architects were both decision-makers and problem-solvers(Britto et al., 2016). 

With exploration 1, no difference was expected in behavioral competencies but rather in execution, this 

now seems to be challenged. However, product-level architect work closer to the work floor requiring 

them to work closer with these people(Britto et al., 2016; Martini et al., 2014). In addition, they suggest 

a more individual decision-making style compared to what has been found regarding joint decision-

making. More research is required to see if the different hierarchal layers are different, and this research 

provides a good starting point: decision quality.  

6.1.3 performance outcomes indicating success 
The additional findings regarding the performance outcome consisted of cost, quality and time(triangle), 

stakeholder satisfaction and future plans, maintainability, and reducing dependencies(future 

perspectives). Even though this was not the main aim of this research, the role of knowledge for an 

architect has been discussed before. An architect should be knowledgeable in their domain (Berenbach, 

2008; Kruchten, 1999) and over 100 knowledge areas for practicing architects have been identified 

(Clements et al., 2007). It is even discussed how storing and expanding architectural knowledge are non-

technical activities of a software architect(Farenhorst & Van Vliet, 2009). This follows the point of view 

that the architect should be less of a lonesome decision-maker but focus more on their nature of being a 

knowledge sharer(Hoorn et al., 2011). This literature did not address what performance outcomes 

would indicate success. When broadening the view to generic forms of success like project success the 

findings do seem explicable. In the generic perception of project management success, there is indeed 

the triangle of quality, cost, and time(Atkinson, 1999; Baccarini, 1999; Collins & Baccarini, 2004; 

Westhuizen & Fitzgerald, 2005). The findings of satisfaction of stakeholders would be part of project 

management success in the different subdimensions of software project success(Sudhakar, 2012). The 



  62   
 
 

 

findings of this research would argue for this future perspectives dimension to be considered a very 

important performance outcome that indicates the success of a software architect. The role of the 

software architect is being responsible for system integrity, within this integrity, scalability can be 

considered part of the responsibility(Bondi, 2009). This research does not give any conclusive evidence 

nor was it the intention of it, it does indicate how the future perspectives are an important performance 

outcome for architects specifically. With the amount of literature about (software) project success, it is 

very viable to do a study on what project success entails for software architects specifically.   

6.1.4 Role of knowledge management 
The interviews in chapter 4 do find indications of the dynamics of knowledge management in the role of 

software architects. There were indications on how knowledge management is important for software 

architects and how there seems to be a link between knowledge and manages complexity, 

collaboration, and communicates effectively. The importance of knowledge in the role of the software 

architects has been discussed(Babar et al., 2009; Capilla et al., 2016; Bass et al., 2013; Clements et al., 

2007) and some even go as far as mentioning the software architect being a knowledge manager over a 

decision-maker(Weinreich & Groher, 2016). Existing literature has considered how a combination of 

collaboration, with subpart joint decision making and communication, and knowledge management are 

beneficial for successful design of software architectural solutions(Sherman et al., 2016), potentially 

explaining why these connections are there. This research does not give any definitive answers, it does 

indicate how there is a possible relation between behavioral competencies and knowledge 

management. 

6.2 Managerial implications 
One of the most important aspects of research and specifically research in innovation management is 

the application for practice. The industry played an important role in the origin of this research, what did 

they gain from the answer to the question of which behavioral competencies are important for a 

software architect? 

First of all, it shows the order in chaos by showing that the top 2 and maybe even the top 5 behavioral 

competencies are consistent. The list can be used to express to architects what is expected and guides 

the direction for new architects of really building the network, use your technical knowledge to support 

and guide stakeholders, and value the informal and formal communications. The base of work is trust 

which consists of the technical contributions but also your way of making these contributions. Especially 

in larger organizations, like the case company, these secondary elements can be the difference between 

success and failure.  

In addition, where stakeholders are in agreement over the importance of communicates effectively and 

manages complexity, the priority in seeing collaboration and decision quality is different. The perception 

of decision quality potentially lies within the product-level architects who see decision quality as less 

important whereas system-level architects rate it more similar to collaboration. This information could 

be valuable when considering moving architects up the ladder. This research did not produce a 

conclusive explanation, it is advised to work on the network and gather the perspectives of 

stakeholders(which they do value as it is part of collaboration). This, however, should be explicitly linked 



  63   
 
 

 

to the decision quality where decision quality seemed to be relevant since it directly impacts the 

stakeholders.  

Literature takes the perspective of individual decision-making or joint decision-making when talking 

about decision-making, but this research would suggest using both. As an individual, it is necessary for 

the architect to make technical decisions in line with the roadmap. In addition, the architect should be 

able to decide on how to split something into smaller more conceivable chunks. However, architects 

should know how to incorporate alternatives or other ideas when a good reason presents itself from 

stakeholders. To get to know the reasons it is required to make this decision together with stakeholders, 

the joint decision making. Furthermore, architects should provide clear and sound reasoning for 

stakeholders to relay their idea. If the reasoning is not sound, or there are major objections the 

execution of a decision could become faulty. To create the best decision successful architects often 

persuade stakeholders by involving them in the decision process and guiding them towards acceptable 

technical decisions.  

Managers can anticipate there being both individual and joint decision-making for software architects. 

Especially in the joint decision-making process it is highly recommended to guide teams into a position 

that allows them to trust architects. Experienced architects can rely on their track record or by showing 

their knowledge. Managers should specifically support starting architects to build a network, but also 

create some form of success in smaller projects before moving to larger projects facilitating this ‘track 

record’.   

In general, stakeholders should realize the value of architects. They are there to avoid larger problems in 

the future but their work process is slow and methodical. Structurally an architect should be able to 

gather the right information, which is in the best interest of everyone. If there really is something the 

architect should be about, a climate should be created in which this is normal to do, stakeholders in a 

sense bear the responsibility to provide the architect with useful information. This is really labor-

intensive and something which is not present in the findings but is important is the pressure on 

architects. Good architects have to talk to a lot of people for alignments, while still fulfilling their role to 

actually do the architecting work, which is half of their job following the findings of Kruchten(2008). This 

research does not provide concrete evidence on how to structure this. What this research can advise is 

to create opportunities for the architect to be able to do the aligning, collaborating, and network 

building, which came forward as important behavioral parts of the software architect.  

6.3 Limitations and future research 
First of all, earlier this chapter a finding was presented that indicated how multiple behavioral 

competencies are used in situations in which the software architect was successful. This is a clear 

opportunity for future research to search for the clustering or packages of behavioral competencies. 

Next to this, a large limitation was the implication of the term success. By not defining success there is 

some ambiguity in what the participants saw as success. The interviews did provide some exploration of 

performance outcomes which seemed in line with general literature about project success, as seen in 

paragraph 6.1.3. But more research is required to find what is seen as a success for a software architect 

specifically, and what it exactly affects.  



  64   
 
 

 

One of the issues with case studies is the difficulty in distinguishing what is generalizable and what is 

contextual. The demographics seemed to be in line with previous findings(Razavian & Lago, 2015), and 

in general, the literature confirmed the findings. There are still open discussions like how communicates 

effectively could be split into either one, two, or three segments. However, in any case, these segments 

would be important too. What is difficult is to distinguish how much these results are influenced by the 

culture of ASML. Even though these findings are relevant and useful, more case studies are required to 

verify if these findings are in different contexts. Tied into this is how the differences between different 

groups regarding Decision quality were very close, but not significant. This is expected to become 

significant with an increased sample size of architects, however, this might be a problem since the 

existing response(n=220) was already considered high. In addition, a lot of the total amount of architects 

responded(n=59) which is almost a third of the 161 responses of stakeholders. The differences in group 

sizes affect the absolute rankings of groups where 1 subgroup could influence the whole overarching 

group. This might have happened in the explorative part with the stakeholder subgroups where the 

management subgroup only had 18 responses but these responses indicated something slightly 

different from the other stakeholder subgroups. More data would be required to distinguish more 

subgroups and create large enough sample sizes to compare these subgroups. Future research could not 

only help verify these findings but could also contribute more data to create explore more groups and 

subgroups. In addition to this, the sub-groups of stakeholders were not based on literature, but rather 

on deduction based on their role. Future research could focus on mapping the different types of 

stakeholders of a software architect, however, this would deviate from this line of research. Another 

group-related limitation was the exclusion of team-level architects from the scope. Even though this was 

the right choice, excluding it was still a limitation.  

Additionally, this research did not include which architects the different stakeholders worked the most 

with and vice versa. Even though this would only widen the scope and not directly affect these findings, 

it could show more potential differences between the architect subgroups. 

Next, even though the choice of the definitions is warranted it should be considered how these came to 

be. Where consultancy firms base their models on experience and literature, they are not transparent. 

Using something scientifically proven like Bartram(2005) would give a lot of drawbacks, but would give 

more scientifically proven terms. As discussed before, there are enough similarities and the behavioral 

competencies used by Kornferry(n.d.) are a lot less generic but still, it could be seen as a limitation.  

Finally, conducting semi-structured interviews always has subjective elements, even though as a 

researcher everything is done to make these as objective as possible. Even though the eleven interviews 

showed certain similarities, the results still only give direction and potential context instead of hard 

evidence. Future research should focus on exploring how the important behavioral competencies 

function in different contexts.    

6.4 Final summarization 
There is a simple answer to  the research question, what are the important behavioral competencies of 

a successful software architect. Manages complexity and communicates effectively are the clear top 

cluster followed by collaboration and decision quality. However, the simple answer is just a first step. 



  65   
 
 

 

With the help of the interviews, the start of a next step was taken in uncovering how these behavioral 

competencies show themselves. The interviews allowed for the mapping of the found important 

behavioral competencies on the different architecting activities(Kruchten, 2008). Both communicates 

effectively and collaboration were needed in information gathering and information providing architect 

activities. Manages complexity and decision quality both were required to do the architecting activities, 

but had different forms depending on if it was part of the problem finding or solution creation. With all 

examples of successful software architects, multiple behavioral competencies seemed to be important. 

This research contributes to the existing understanding of the behavioral competencies of software 

architects, but so much more is there to be found. It can be said how this only seems the tip of the 

iceberg in understanding what and how behavioral competencies lead to success for a software 

architect.  

  



  66   
 
 

 

References 
Agarwal, N., & Rathod, U. (2006). Defining “success” for software projects: An exploratory revelation. International 

Journal of Project Management, 24(4), 358–370. https://doi.org/10.1016/j.ijproman.2005.11.009 

Ahmed, F., Campbell, P., Beg, A., & Fernando Capretz, L. (2015). Soft Skills Requirements in Software Architecture’s 
Job: An Exploratory Study. 

ASML. (n.d.-a). Internal document 20 leadership competencies. 
https://my.asml.com/sectors/es/hro/peopledevelopment/myGrowth/Pages/20 competencies/Our 20 
Leadership Competencies.aspx?FilterField1=Location&FilterValue1=The 
Netherlands&FilterField2=Company&FilterValue2=ASML 

ASML. (n.d.-b). Internal document behavioral competencies. 
https://my.asml.com/sectors/es/hro/peopledevelopment/myGrowth/Pages/Competencies/Competencies.a
spx?FilterField1=Location&FilterValue1=The Netherlands&FilterField2=Company&FilterValue2=ASML 

ASML. (n.d.-c). Products: EUV lithography systems. https://www.asml.com/en/products/euv-lithography-systems 

ASML. (2020). 2020 Anual Report. https://www.asml.com/en/investors/annual-report/2020 

ASML. (2022). European Chips Act- ASML position paper. https://www.asml.com/en/news/press-
releases/2022/asml-position-paper-on-eu-chips-act 

Atkinson, R. (1999). Project management: Cost, time and quality, two best guesses and a phenomenon, its time to 
accept other success criteria. International Journal of Project Management, 17(6), 337–342. 
https://doi.org/10.1016/S0263-7863(98)00069-6 

Babar, M. A., Dingsøyr, T., Lago, P., & Van Vliet, H. (2009). Software architecture knowledge management: Theory 
and practice. In Software Architecture Knowledge Management: Theory and Practice. Springer Berlin 
Heidelberg. https://doi.org/10.1007/978-3-642-02374-3 

Baccarini, D. (1999). The Logical Framework Method for Defining Project Success. Project Management Journal, 
30(4), 25–32. https://doi.org/10.1177/875697289903000405 

Baltes, S., & Diehl, S. (2019). Towards a theory of software development expertise. Lecture Notes in Informatics 
(LNI), Proceedings - Series of the Gesellschaft Fur Informatik (GI), P-292, 83–84. 
https://doi.org/10.18420/se2019-22 

Bartram, D. (2005). The great eight competencies: A criterion-centric approach to validation. Journal of Applied 
Psychology, 90(6), 1185–1203. https://doi.org/10.1037/0021-9010.90.6.1185 

Bass, Clements, P. C., Kazman, R., & Klein, M. H. (2008). Models for evaluating and improving architecture 
competence. Software Engineering Institute, March, 87. http://repository.cmu.edu/sei/308 

Bass, L., Clements, P., & Kazman, R. (1997). Software architecture in practice. Addison-Wesley Professional. 

Bass, L., Clements, P., & Kazman, R. (2013). Software architecture in practice (3rd ed.). Addison-Wesley 
Professional. 
https://books.google.nl/books?hl=en&lr=&id=ZY6UZTjBnGQC&oi=fnd&pg=PA1&dq=+software+architecture+
in+practice&ots=gspt_rO1kg&sig=TEzScUKzLDsCnYBPj-vcxafn-Wk#v=onepage&q=software architecture in 
practice&f=false 

Bass, Len, Clements, P., Kazman, R., & Klein, M. (2008). Evaluating the software architecture competence of 
organizations. 7th IEEE/IFIP Working Conference on Software Architecture, WICSA 2008, 249–252. 



  67   
 
 

 

https://doi.org/10.1109/WICSA.2008.12 

BBC. (2021). Car productino hit by “pingdemic” and global chip shortage. https://www.bbc.com/news/business-
58002724 

Berenbach, B. (2008). The other skills of the software architect. Proceedings - International Conference on Software 
Engineering, 7–11. https://doi.org/10.1145/1373307.1373310 

Blumberg, B., Cooper, D. r., & Schindler, P. s. (2011). Business research methods. McGraw-Hill Education. 

Bondi, A. B. (2009). The software architect as the guardian of system performance and scalability. Proceedings of 
the 2009 ICSE Workshop on Leadership and Management in Software Architecture, LMSA 2009, 28–31. 
https://doi.org/10.1109/LMSA.2009.5074861 

Bredemeyer. (2002). Technology Consulting Strategy Leadership Organizational Politics. 2002. 

Bredemeyer, D., & Malan, R. (2002). The Role of the Architect. http://www.bredemeyer.com 

Britto, R., Šmite, D., & Damm, L. O. (2016). Software Architects in Large-Scale Distributed Projects: An Ericsson Case 
Study. IEEE Software, 33(6), 48–55. https://doi.org/10.1109/MS.2016.146 

Capilla, R., Jansen, A., Tang, A., Avgeriou, P., & Babar, M. A. (2016). 10 years of software architecture knowledge 
management: Practice and future. Journal of Systems and Software, 116, 191–205. 
https://doi.org/10.1016/j.jss.2015.08.054 

Clements, P., Kazman, R., Klein, M., Devesh, D., Reddy, S., & Verma, P. (2007). The duties, skills, and knowledge of 
software architects. 2007 Working IEEE/IFIP Conference on Software Architecture (WICSA’07), 20–23. 
https://doi.org/10.1109/WICSA.2007.41 

Collins, A., & Baccarini, D. (2004). Project success - A survey. Journal of Construction Research, 5(2), 211–231. 
https://doi.org/10.1142/S1609945104000152 

Eeles, P. (2006). Characteristics of a Software Architect. The Rational Edge, IBM Resource, 1–7. 
http://research.cs.queensu.ca/home/ahmed/home/teaching/CISC322/F08/files/CharacteristicsOfASoftware
Architect.pdf 

Erder, M., & Pureur, P. (2016). What’s the Architect’s Role in an Agile, Cloud-Centric World? IEEE Software, 33(5), 
30–33. https://doi.org/10.1109/MS.2016.119 

Erder, M., & Pureur, P. (2017). What Type of People Are Software Architects? IEEE Software, 34(4), 20–22. 
https://doi.org/10.1109/MS.2017.103 

Farenhorst, R., & Van Vliet, H. (2009). Understanding How to Support Architects in Sharing Knowledge. In 
International Conference on Software Engineering (31st : 2009 : Vancouver, B.C.) (pp. 17–24). IEEE. 

Farshidi, S., Jansen, S., & van der Werf, J. M. (2020). Capturing software architecture knowledge for pattern-driven 
design. Journal of Systems and Software, 169, 110714. https://doi.org/10.1016/j.jss.2020.110714 

Ferrari, R., Madhavji, N. H., & Wilding, M. (2009). The impact of non-technical factors on software architecture. 
Proceedings of the 2009 ICSE Workshop on Leadership and Management in Software Architecture, LMSA 
2009, 32–36. https://doi.org/10.1109/LMSA.2009.5074862 

Field, A. (2013). Discovering statistics using IBM SPSS statistics (4th editio). SAGE Publications Inc. 

Fowler, M. (2003). Who needs an architect? IEEE Software, 20(5), 11–13. 
https://doi.org/10.1109/MS.2003.1231144 



  68   
 
 

 

Gill, P., Stewart, K., Treasure, E., & Chadwick, B. (2008). Methods of data collection in qualitative research: 
interviews and focus groups. https://do. 

Hoorn, J. F., Farenhorst, R., Lago, P., & Van Vliet, H. (2011). The lonesome architect. Journal of Systems and 
Software, 84(9), 1424–1435. https://doi.org/10.1016/j.jss.2010.11.909 

Klein, J. (2016). What makes an architect successful? IEEE Software, 33(1), 20–22. 
https://doi.org/10.1109/MS.2016.9 

Kornferry. (n.d.). Interally used framework: selection of 20 behavioral competencies as found in ASML(n.d.-b;n.d.-c) 
out of the 39 competencies framework of Kornferry. 
https://neprisstore.blob.core.windows.net/sessiondocs/doc_10cd2119-d549-47ac-8784-215eb85cdc8f.pdf 

Kruchten, P. (1999). The software architect. Working Conference on Software Architecture, 565–583. 
https://doi.org/10.1145/1230819.1241667 

Kruchten, P. (2008). What do software architects really do? Journal of Systems and Software, 81(12), 2413–2416. 
https://doi.org/10.1016/j.jss.2008.08.025 

Lenberg, P., Feldt, R., & Wallgren, L. G. (2015). Behavioral software engineering: A definition and systematic 
literature review. Journal of Systems and Software, 107, 15–37. https://doi.org/10.1016/j.jss.2015.04.084 

Manteuffel, C., Avgeriou, P., & Hamberg, R. (2018). An exploratory case study on reusing architecture decisions in 
software-intensive system projects. Journal of Systems and Software, 144(May), 60–83. 
https://doi.org/10.1016/j.jss.2018.05.064 

Martini, A., Pareto, L., & Bosch, J. (2014). Role of architects in agile organizations. In Continuous Software 
Engineering (Pp. 39-50). Springer, Cham., 9783319112, 39–50. https://doi.org/10.1007/978-3-319-11283-1 

Mendes, F., Mendes, E., Salleh, N., & Oivo, M. (2021). Insights on the relationship between decision-making style 
and personality in software engineering. Information and Software Technology, 136(September 2020), 
106586. https://doi.org/10.1016/j.infsof.2021.106586 

Muccini, H., Lago, P., Vaidyanathan, K., Osborne, F., & Poort, E. (2018). The History of Software Architecture - In the 
Eye of the Practitioner. March 2019. http://arxiv.org/abs/1806.04055 

Oliveira, M. R., Vieira, F. J. R., Misra, S., & Soares, M. S. (2019). A Survey on the Skills, Activities and Role of the 
Software Architect in Brazil. In Lecture Notes in Computer Science (including subseries Lecture Notes in 
Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 11623 LNCS. Springer International Publishing. 
https://doi.org/10.1007/978-3-030-24308-1_4 

Premraj, R., Nauta, G., Tang, A., & Van Vliet, H. (2011). The boomeranged software architect. 
https://doi.org/10.1109/WICSA.2011.19 

Razavian, M., & Lago, P. (2015). Feminine expertise in architecting teams. IEEE Software, 33(4), 64–71. 
https://doi.org/10.1109/MS.2015.84 

Razavian, M., Paech, B., & Tang, A. (2019). Empirical research for software architecture decision making: An 
analysis. Journal of Systems and Software, 149, 360–381. https://doi.org/10.1016/j.jss.2018.12.003 

Sach, R., Petre, M., & Sharp, H. (2010). The use of MBTI in software engineering. Open Research Online. 
https://doi.org/10.5860/choice.51-2973 

Sekaran, U., & Bougie, R. (2016). Research Methods For Business : A Skill-Building Approach. In Sekaran dan 
Bougie. 



  69   
 
 

 

Sherman, S., Hadar, I., Levy, M., & Unkelos-Shpigel, N. (2016). Enhancing software architecture via a knowledge 
management and collaboration tool. In In Knowledge, Information and Creativity Support Systems (pp. 537-
545). Springer, Cham. (Vol. 416). https://doi.org/10.1007/978-3-319-27478-2_44 

Spinellis, D. (2016). The Changing Role of the Software Architect. IEEE Software, 33(6), 4–6. 
https://doi.org/10.1109/MS.2016.133 

Sudhakar, G. P. (2012). A model of critical success factors for software projects. Journal of Enterprise Information 
Management, 25(6), 537–558. https://doi.org/10.1108/17410391211272829 

Tang, A., Razavian, M., Paech, B., & Hesse, T. M. (2017). Human Aspects in Software Architecture Decision Making: 
A Literature Review. Proceedings - 2017 IEEE International Conference on Software Architecture, ICSA 2017, 
107–116. https://doi.org/10.1109/ICSA.2017.15 

Tantithamthavorn, C., McIntosh, S., Hassan, A. E., & Matsumoto, K. (2018). The Impact of Automated Parameter 
Optimization for Defect Prediction Models. IEEE Transactions on Software Engineering. 
https://doi.org/doi:10.1109/TSE.2018.2794977 

Turner, D. W. (2010). Qualitative interview design: A practical guide for novice investigators. Qualitative Report. 
15(3), 754–760. http://www.nova.edu/ssss/QR/QR15-3/qid.pdf 

Van Der Ven, J. S., & Bosch, J. (2016). Busting Software Architecture Beliefs: A Survey on Success Factors in 
Architecture Decision Making. Proceedings - 42nd Euromicro Conference on Software Engineering and 
Advanced Applications, SEAA 2016, 42–49. https://doi.org/10.1109/SEAA.2016.35 

van Vliet, H., & Tang, A. (2016). Decision making in software architecture. Journal of Systems and Software, 117, 
638–644. https://doi.org/10.1016/j.jss.2016.01.017 

Webster, J., & Watson, R. T. (2002). Analyzing the Past to Prepare for the Future: Writing a Literature Review. MIS 
Quarterly, 26(2), xiii–xxiii. https://doi.org/10.1.1.104.6570 

Weinreich, R., & Groher, I. (2016). The Architect’s Role in Practice: From Decision Maker to Knowledge Manager? 
IEEE Software, 33(6), 63–69. https://doi.org/10.1109/MS.2016.143 

Westhuizen, D. Van Der, & Fitzgerald, E. P. (2005). Defining and measuring project success. European Conference 
on IS Management, Leadership and Governance, 1–17. 
http://eprints.usq.edu.au/346/1/DependentVariableArticleV8.pdf 

Wired. (2021). The $150 Million Machine Keeping Moore’s Law Alive. https://www.wired.com/story/asml-extreme-
ultraviolet-lithography-chips-moores-law/ 

Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and a replication in software 
engineering. ACM International Conference Proceeding Series. https://doi.org/10.1145/2601248.2601268 

Woods, E., & Bashroush, R. (2017). A model for prioritization of software architecture effort. Lecture Notes in 
Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 
Bioinformatics), 10475 LNCS, 183–190. https://doi.org/10.1007/978-3-319-65831-5_13 

  



  70   
 
 

 

Appendix 

Appendix A: behavioral competencies (Kornferry, n.d.) 
Ensures accountability Holding self and others accountable to meet commitments 

Develops talent Developing people to meet both their career goals and organizations goals 

Communicates 
effectively 

Developing and delivering multi-mode communications that convey a clear 
understanding of the unique needs of different audiences 

Manages complexity Making sense of complex, high quantity, and sometimes contradictory 
information to effectively solve problems 

Instills trust Gaining the confidence and trust of others through honesty, integrity, and 
authenticity.  

Cultivates innovation Creating new and better ways for ASML to be successful 

Drives engagement Creating a climate where people are motivated to do their best to help 
ASML to achieve its objectives 

Drives results Consistently achieving results, even under though circumstances 

Values differences Recognizing the value that different perspectives and cultures bring to an 
organization 

Situational adaptability Adapting approach and demeanor in real time to match the shifting 
demands of different situations 

Plans and aligns Planning and prioritizing work to meet commitments aligned with ASML’s 
goals. 

Collaborates Building partnerships and working collaboratively with others to meet 
shared objectives 

Build effective teams Building strong-identity teams that apply their diverse skills and 
perspectives to achieve common goals 

Optimizes work 
processes 

Knowing the most and efficient processes to get thing done with a focus on 
continuous improvement 

Balances stakeholders Anticipating and balancing the needs of multiple stakeholders 

Business insight Applying knowledge of business and the marketplace to advance the ASML 
goals 

Strategic mindset Seeing ahead to future possibilities and translating them into breakthrough 
strategies 

Demonstrates self-
awareness 

Using a combination of feedback and reflection to gain productive insights 
into personal strengths and weaknesses 

Self-development Actively seeking new ways to grow and be challenged using both formal 
and informal development channels 

Decision quality Making good and timely decisions that keep the organization moving 
forward.  

  



  71   
 
 

 

Appendix B: Literature overview 
Key articles: 

C1. (Razavian & Lago, 2015) 
C2. (Kruchten, 2008) 
C3. (Mendes et al., 2021) 

Primary: 
P1. (Kruchten, 1999) 
P2. (Fowler, 2003) 
P3. (Bredemeyer, 2002) 
P4. (Premraj et al., 2011) 
P5. (Hoorn et al., 2011) 
P6. (Martini et al., 2014) 
P7. (Sherman et al., 2016)  
P8. (Britto et al., 2016) 
P9. (Van Der Ven & Bosch, 2016) 
P10. (Woods & Bashroush, 2017) 
P11. (Oliveira et al., 2019) 
P12. (Bredemeyer & Malan, 2002) 
P13. (Bass et al., 2008a) 
P14. (Bass et al., 2008b) 
P15. (Clements et al., 2007) 
P16. (Clerc et al., 2007) 
P17. (Eeles, 2006) 
P18. (Erder & Pureur, 2017) 
P19. (Farenhorst & van Vliet, 2009) 
P20. (Bass et al., 2013) V3 Or the older version 2 ( Bass 

et al., 2003) 
P21. (Agarwal & Rathod, 2006)* 
P22. McBride(2007) 
P23. Bondi(2009)* 
P24. Correa(2013)* 
P25. Booch(2011)* 
P26. (Babar et al., 2009) 
P27. (Rekhav & Muccini, 2014) 
P28. (Klein, 2016) 
P29. (Galster et al., 2017) 
P30. (Hohpe et al., 2016) 
P31. (Erder & Pureur, 2016) 
P32. (Weinreich & Groher, 2016)  
P33. (Downey & Babar, 2008) 
P34. (Ahmed et al., 2015) 

Supportive:  
S1. (Manteuffel et al., 2018) 
S2. (Razavian et al., 2019) 
S3. (Farshidi et al., 2020) 
S4. (Hofstede et al., 2010) 
S5. (Damian et al., 2007) 
S6. (Curtis et al., 1988) 
S7. (Madison, 2010) 
S8. (Liang et al., 2009) 
S9. (van der Raadt et al., 2008) 
S10. (Drury et al., 2012) 
S11. (McAvoy & Butler, 2009) 
S12. (Martini et al., 2013) 
S13. (Wateridge, 1997) 
S14. (poort et al, 2009) 
S15. (Chow & Cao, 2008)  
S16. (Bang et al., 2013) 
S17. (Lenberg et al., 2015) 
S18. (Groher & Weinreich, 2015) 
S19. (Sonnentag, 1998) 
S20. (Manteuffel et al., 2018) 
S21. (Dingsøyr & van Vliet, 2009) 
S22. (Jansen & Bosch, 2005) 
S23. (Galster & Weyns, 2016) 
S24. (Tyree & Akerman, 2005) 
S25. (van Vliet  & Tang, 2016) 
S26. (Buchgeher et al., 2016) 
S27. (Acuna & Juristo, 2004) 
S28. (Takey & Carvalho, 2014) 
S29. (Capilla et al., 2016) 
S30. (Cockburn & Highsmith, 2001) 
S31. (de Rezende et al., 2021) 
S32. (James et al., 2017) 
S33. (Hofstede et al., 2005) 
S34. (Li et al., 2011) 
S35. (Rekhav & Muccini, 2014) 
S36. (Bi et al., 2021) 
S37. (Bass & Berenbach, 2008) 
S38. (Berenbach, 2008) 
S39. (Dybe et al., 2014)  
S40. (van Vliet & Tang, 2016) 
S41. (Cunha et al., 2016) 
S42. (Tang et al., 2010) 
S43. (Razavian et al, 2016) 
S44. (Rose et al., 2007) 
S45. (Spinellis, 2016) 
S46. (Kruchten, 2013) 

 



  72   
 
 

 

Appendix C: Full questionnaire 

Important behavioral competencies of a successful software architect 
Survey for an innovation management master thesis in a collaboration between 
ASML and TU/e 
* Required 

Introduction 
Thank you for participating in this survey for my master thesis! 

 
This is survey is part of the master thesis project for innovation management study. The goal is to identify the most 
important behavioral competencies which make a software architect successful. The target group is 
every software architect and everyone working with the software architect. The study will contain a few 
demographic questions and the main questions about which competencies are most important for being a 
successful software architect. It is expected to finish this survey within 10 minutes. 
 
As part of the scientific research conduct I will need your informed consent for voluntary participation, please read 
this information before answering the question below with 'I do' or 'I do not'. 
 
---------informed consent information------------ 
Aim and benefit of the study 
This study is part of a project conducted by Sietse Wolberink which in turn is part of a broader interdisciplinary 
study lead by Maryam Razavian, assistant professor at the Information systems group at Eindhoven University of 
Technology. With the current study we aim to obtain insight into what makes a software architect successful. The 
findings of this study hopefully contribute to a better understanding of how and which behavioral competencies 
affect the success of software architects. 

 
Procedure and anonymity 
You received an invitation because you currently have at least part-time employment and are not self- 
employed (“ZZP”) at ASML. For this study, we ask you to complete a questionnaire, which takes about 10 minutes. 
This questionnaire is completely anonymous. This means that we will collect no data from which 
your identity could become known. You will not be asked to provide your name, email address or any other 
information that could identify who you are. The data will be accessible to the researcher(s) and will be 
published in aggregated form with the exception of the final open question which could be cited. Data shared with 
the company will be fully anonymized. 
 
Participation and risks 
Your participation is completely voluntary. You can refuse to participate without giving any reasons and you can 
stop your participation at any time during the study. The study does not involve any risks, detrimental 
side effects, or cause discomfort. 
 

Code of ethics 
This research adheres to the Code of Ethics of Eindhoven University. 
 
Further information 
If you would like more information about this study, the study design, or the results, you can contact 
Sietse Wolberink( sietse.wolberink@asml.com (mailto:sietse.wolberink@asml.com)) or Maryam 
Razavian(m.razavian@tue.nl). 
 

mailto:sietse.wolberink@asml.com
mailto:sietse.wolberink@asml.com


  73   
 
 

 

I give my informed consent for voluntary participation: * 
 

 I do 
 

 I do not 
 

Demographic questions 
These questions will ask about some basic information about your role and experience. Time indication: 
2-3 minutes 
 

Gender * 
 

 Woman 
 

 Man 
 

 Non-binary 
 

 Prefer not to say 
 

 Prefer to self-describe 
 
 
 

If chosen 'Prefer to self-describe' in previous question(2) please disclose: 
If you answered this question with a different answer, please leave this question empty 
 

 
 
 

Age (years) * 
 

 <18 
 

 19-30 
 

 31-40 
 

 41-50 
 

 51-60 
 

 >60 

 
What is your current role in ASML? * 
 



  74   
 
 

 

 (Software) Architect 
 

 Other 
 
 
 

If you are a software architect yourself, which type of software architect? * 
 

 Department architect, Cluster architect 
 

 FCA, FCT 
 

 Platform Architect 
 

 Product architect 
 

 System engineer/architect(Focus on software) 
 

 Train architect 
 

Other 
 

f you are not a software architect, what is your role within ASML(if multiple apply, pick the one 
you feel most related to)? * 
 

 Architect(not software related) 
 

 Customer support related role 
 

 Developer or competence engineer 
 

 Factory related role 
 

 Product management(PCM, PL, etc.) 
 

 R&D management(GL, DM, etc.) 
 

 SAFe roles(PO, CPO, scum master, RTE, etc.) 
 

Other 
 
 
 



  75   
 
 

 

If you are not a software architect yourself, which type of architect do you work with the most? 
* 
 

 Department architect, Cluster Architect 
 

 FCA, FCT 
 

 Platform architect 
 

 Product architect 
 

 System engineer/architect(focus on software) 
 

 Train architect 
 

Other 

How long have you been working with software architects(years)? * 
 

The value must be a number 
 
 
 

How long have you been working as a software architect(years)? * 
 

The value must be a number 
 
 
 

How much experience do you have in ASML(in years)? * 
 

The value must be a number 
 

Survey questions 
In this section two types of questions are asked in regards to the competencies of a software architect. One 
questions asks you to evaluate how important a competency is for being a successful software architect on a scale 
of 1(completely unimportant) to 7(crucial). Some competencies might not be applicable to the software architect, 
you can give them a low score. The other question asks you to pick a top 3 out of these competencies. 



  76   
 
 

 

 
The final open question is an optional question. 

 
Tip: If you are in doubt on what score to give, pick your first gut feeling. 

 
There are only 20 rating questions and 3 ranking questions, they are expected to take around 5 minutes. The 
optional open question is the final question. 
 

How important is each of these competencies for a successful software architect? * 

 



  77   
 
 

 

 



  78   
 
 

 

 



  79   
 
 

 

 

Ranking the 3 most important competencies for being a successful software architect from the 
previous question: what is the number 1 most important competency for a successful software 
architect? * 
 

 1. Ensures accountability 
 

 2. Develops talent 
 

 3. Communicates effectively 
 

 4. Manages complexity 
 

 5. Instills trust 
 

 6. Cultivates innovation 
 

 7. Drives Engagement 
 

 8. Drives results 
 

 9. Values differences 
 

 10. Situational adaptability 
 

 11. Plans and aligns 
 

 12. Collaborates 
 

 13. Builds effective teams 
 

 14. Optimizes work processes 



  80   
 
 

 

 

 15. Balances stakeholders 
 

 16. Business Insight 
 

 17. Strategic mindset 
 

 18. Demonstrates self-awareness 
 

 19. Self-development 
 

 20. Decision quality 
 

Ranking the 3 most important competencies for being a successful software architect from the 
previous question: what is the number 2 competency? * 

 1. Ensures accountability 
 

 2. Develops talent 
 

 3. Communicates effectively 
 

 4. Manages complexity 
 

 5. Instills trust 
 

 6. Cultivates innovation 
 

 7. Drives Engagement 
 

 8. Drives results 
 

 9. Values differences 
 

 10. Situational adaptability 
 

 11. Plans and aligns 
 

 12. Collaborates 
 

 13. Builds effective teams 
 

 14. Optimizes work processes 
 

 15. Balances stakeholders 
 

 16. Business Insight 
 

 17. Strategic mindset 



  81   
 
 

 

 

 18. Demonstrates self-awareness 
 

 19. Self-development 
 

 20. Decision quality 
 

Ranking the 3 most important competencies for being a successful software architect from the 
previous question: what is the number 3 competency? * 

 1. Ensures accountability 
 

 2. Develops talent 
 

 3. Communicates effectively 
 

 4. Manages complexity 
 

 5. Instills trust 
 

 6. Cultivates innovation 
 

 7. Drives Engagement 
 

 8. Drives results 
 

 9. Values differences 
 

 10. Situational adaptability 
 

 11. Plans and aligns 
 

 12. Collaborates 
 

 13. Builds effective teams 
 

 14. Optimizes work processes 
 

 15. Balances stakeholders 
 

 16. Business Insight 
 

 17. Strategic mindset 
 

 18. Demonstrates self-awareness 
 

 19. Self-development 
 

 20. Decision quality 



  82   
 
 

 

 

  



  83   
 
 

 

Appendix D: Full overview of data transformation 
Data transformation steps: 

1. Remove the rows without informed consent (id= 15, 79, 80, 152, 199)  

2. Remove  columns start time, completion time, email and name since they are either empty, 

anonymized or unneeded.  

3. Other answers of software architects 

a. 47 SW test architect is actually already defined as the FCT so this will become an FCA, 

FCT. The other rows are emptied since a small mistake occurred in the initial phase 

when chosen Other with software architect. Answers to questions with If you are not a 

software architect, are removed. Answer from how long have you been working with 

software interchanged with answer how long have you been working as a software 

architect. 

b. 57 SW sub-function architect is actually pre-defined as a stakeholder by design in this 

scope. Current role changed to other and content of if you are a software architect 

removed. Due to a mistake in the forms until reaction 160 this actually produced the 

right questions afterwards for a stakeholder.  

c. 91 is a competence architect however in the original dataset specifically calls itself a 

software architect. This competence architect will be formed into the FCA, FCT category 

since it is the closest to the description while still considering itself a software architect. 

Competence architect within departments is most of the time technically oriented and 

the role is working the most with a department/cluster architect suggests at least a 

middle layer of architect. Therefor this choice is acceptable over removing over the 

dataset. ‘’ if you are not a software architect’….’ Questions removed content. Answer 

from how long have you been working with software interchanged with answer how 

long have you been working as a software architect.  

d. 134 identified itself as test architect which is the FCA, FCT category, category changed 

e. 147 ID mentioned being a feature architect which is a SW architect for specific 

applications. Since the person itself specifically mentions being a software architect this 

will not be changed. A feature architect is most similar to the FCA, FCT 

f. 155 identified as a sub-function architect which was specifically taken as 

developer/competence engineer here. Current role is changed into Other, and non-

software architect type into developer or competence engineer which was specifically 

predefined for the role sub-function architect. For a subfunction architect it can be 

assumed that it works the most with the FCA, FCT which is both expected from 

description, hierarchy and dataset. Transforming this into this category is acceptable. 

Working as and working with columns swapped.  

g. 177 identified itself as a software architect category other: CIDT architect which is a CPD 

integrated development toolkit(software). Which is specific for calibration performance 

and diagnostics. This is most similar to a product architect since CIDT is a 

specific(internal) product. Alternatively this would be a platform architect however, this 

suits less due to the nature of CIDT. 



  84   
 
 

 

h. 198 identifies as a feature architect. Similar to 147 this will be transformed into FCA, FCT 

i. 200 identifies as sub-fucntion architect. Following the same reason and transformation 

as 155 it will be transformed.  

j. **************207 identifies as a product test architect. Even though product is 

specified. As a test architect this will be transformed into the FCA, FCT category where 

the FCT entails test architects.  

k. 221 identified as sub-function architect and follows the same reasoning and 

transformations as 155 

4. Non- software architect transformations: 

a. 45 identified as intergrator. This is a unique true other role. However, it answered roles 

of these architect unknown, everyone gets this title with the who do you work the most 

with. Therefor, this is unworkable as an answer or category and thus removed from the 

dataset.  

b. 59 answered he was a software architect but is currently a grouplead. Following the 

nature of this questionnaire this is changed to the R&D management category 

c. 60 answered lead engineer, this is a developer or competence engineer role. However 

this answer was given a few times. Future research should consider it to be a separate 

category like sub-function categories.  

d. 66 answered lead engineer, same process applies as with 60. 

e. 101 answered software designer, part of the developer category 

f. 108 answered lead designer, same applies as for the lead engineer. Transformed in 

Develo9per or competence engineer.  

g. *****110 mentioned being test infra lead, to developer or competence engineer.  Same 

as 108 

h. 135 is a functional intergrator which even though is a different role, would be 

considered to be an engineer.  

i. 165 lead engineer of embedded software same argument as 60. Now developer or 

competence engineer 

j. 175 softwaer engineer, engineer is a developer.  

k. *********185 industrial engineer. Industrial engineer is a senior mediator role 

responsibe for certain products and should be considered either as product manager or 

R&D manager. In this case R&D due to the nature of software development as core 

focus would be more appropriate.  

l. 227 software design engineer is developer or competence engineer same argument as 

60.  

5. The working the most category has the following transcribtions: 

a. 30 RTE is a SAFe role Assuming this one will work the most with a train architect since 

this is the ‘SAFe’ architect 

b. 44 identified as working the most with a comptentene architect as seen before this role 

is most comparable or part of the FCA, FCT category (seen with 3c. ) 

c. 73 mentioned managing archietcts and other developers, suggesting a  more senior role 

managing architects and other developers which could be considered one of R&D roles, 



  85   
 
 

 

which it also is. This suggests this person does work the most with architets and 

transforming this one into an FCA, FCT following the input description.  

d. 77 mentioned multiple roles instead of the most:’ Train Architect, FCA, FA, Product 

Architects’. It starts with train architect therefor this is assumed to be the most 

important.  

e. 138, 192 and 227 mentioned sub-function architect here. Since this one is not taken into 

account it will be changed to the first next layer, FCA, FCT in line with the scope of this 

research.  

6. Duplicate ‘What is your current role  in ASML?’ and transform into binary where 0 = non-

software architect or stakeholder and 1=software architect 

7. Duplicate if you are a software architect twice 

a. 1 based on the role where: Department architect =1, FCA, FCT=2; Platform architect =3; 

product architect=4; system architect = 5; train architect = 6 

b. Another based on SA_hierarchy where 1= highest hierarchy of Department, platform, 

product and system architect. ; 2 = FCA, FCT and train architects 

8. Duplicate non software architect roles twice where 

a. Based upon role with Customer support related role =1, Developer or competence 

engineer=2; Product management =3; R&D management =4; SAFE roles = 5 note here 

that the non-software architects and factory related roles do not occur and thus are not 

used.  

b. Hierarchy where Developer or competence engineer and customer support related role 

is considered the lowest layer =5 ;; the SAFe roles and customer support related role are 

mid level = 4;; product management and R&D are considered high level hierarchal roles= 

3 

i. Note that future research should create more distinguishments in developer or 

competence engineer due to the large amount of answers and potentially 

including also mid layer roles 

9. Working the most with line duplicated and coded following the same deviation as 7a: 

Department architect =1, FCA, FCT=2; Platform architect =3; product architect=4; system 

architect = 5; train architect = 6 

a. Another was created following the hierarchy: Another based on SA_hierarchy where 1= 

highest hierarchy of Department, platform, product and system architect. ; 2 = FCA, FCT 

and train architects 

All [1-20] competency scale parts have the language answer attached. Removed it excess text. 

  



  86   
 
 

 

Appendix E: Architect and Stakeholder interview coding output  
 

 Software architects 

 Excerpt summary Behavioral 
competencies 

03 Making the right decision not for now but for the longer term(BC20) 20 

 Stakeholders push for faster and have their own priorities however tha 
rchitects should make the right thing independent of time (BC4 & BC20) 

4 
20 

 Seeing the opportunity to create disable options in a user interface and 
make it configurable creates more work but it is a long term option. (BC4 & 
BC17 & BC20) 

4 
17 
20 

 If you already have the idea(BC4) then it is easier to convince people(BC3) 
of the smaller pieces which they want implemented(BC20)  

4 & 3 
20 

 Making a strong business case helps convince budget and money changes 
for the long term view(BC16) 

16 

 It helps to have a good relation with people (BC5/BC12) 5 & 12 

 You have to build trust, otherwise they will not believe you and it will make 
convincing others a lot more difficult(BC5) 

5 

 Explaining your roadmap to different stakeholders and other architects to 
create awareness(BC3) this is a very good way to align with 
stakeholders(BC12) 

12 

 Administrating possible changes based on the questions and struggles of 
people(BC4) which are than transelated in the update(BC17 but not 
breakthrough) 

4 
17 

 Reviewing documents and seeing how things are not in line with the 
roadmap(BC4) allows the architect to intervene and steer towards another 
solution(BC3 & BC12) resulting in a different and hopefully better 
decision(BC20) 

4 
3 & 12 
20 

 Sometimes convincing is not easy, disagreements can come up in the dm 
process(BC20) 

20 

 Always has been a teamplayer which want to involve others, hear 
opinions(BC12) 

12 

 In the documentation creation process meetings, design meetings and 
brainstorms are used(BC3) in order to make the right decisions(BC20) 

3 
20 

 Going step by step via different type of communication methods(BC3) In 
order to shape and shape the design together by agreeing with 
intermediary pauses(BC20) 

3 
20 

 Trusting others is also important since it gives resonsabilities(BC5) 5 

 Really understand how decisions fit in the roadmap but also see how they 
affect user friendliness and customers and balancing the needs(BC15)  

15 

 Using meetings to get the discussions going with stakeholders and pre-
align as muc as possible.( BC3 BC4 BC20)  

3 & 4 & 20 

 Doing small iterations and have more interactions with the team(BC12) 12 

 In order to avoid misunderstandings have pre-discussions with drawings, 
reviews or documents to really check if everything was done like 
agreed(BC3) 

3 



  87   
 
 

 

 Architects need to anticipate things which are expected to be known, not 
to be known. Use simple words and translate it into the big overview(BC4 
BC3) 

3 
4 

 Explaining your reasoning well, it will really get people on board and they 
will make decisions(BC20) which are  more in line of your own way of 
thinking. Use your rationale. (BC4 BC12) 

20 
4 
12 

 A key part of being an architect is having the complex system and chopping 
it up in smaller pieces and managing all the dependencies(BC4) 

4 

 A decision has multiple alternatives and the decision itself is related to the 
surroundings.(BC20) Having that long-term scope but also having other 
departments requires a lot of working together(BC12) and seeing what 
other solutions would be.  

20 
12 

05 Making new people feel welcome so they are approachable (BC5) + 
network building(BC12) 

5 
12 

 Not being able to review everything yourself(BC4) 4 

 Have the trust so people come to you which is a result of building the 
network and collaborating(BC5->BC12) 

5 
12 

  architect required for guidance and removing doubt(BC4 &BC3) 3 & 4 

 Architects depend on people for information and their specific 
needs(Communicates effectively) but also pre-requisite to gather 
information(Pre-requisite Manages complexity) 

3 & 4 

 Example how architects dont make the decision(20). They work together 
towards the central goal(BC12), they have to develop the knowledge of the 
different needs by communication well(Implied BC3) Calling Decision 
making more the moderation of the decision process(Which implies BC4 
but also BC20) 

20 
12 
3 
4 

 More options mean more criteria that have to be reviewed (BC4) 4 

 Getting to know the perspectives of the stakeholders (BC3) 3 

 Making sense of all the different situations(BC4) and than using the right 
method to steer towards a direction(BC3) 

4 
3 

 Also being able to take company perspective(BC16) which implied strategy 
making based on this(BC17) 

16 
17 

 Showing how company, engieneer, marketing and non-technical peoples 
views all have to be taken into account(BC4) 

4 

 Much considerations of either redesigning or fixing existing elements(BC4) 
after which you need to convince everyone by using network in order to 
get all drawbacks out(BC12) 

4 
12 

 Requiring a lot of talking and understanding, explaining stakeholder(BC3) 3 

 Using the right arguments (BC3) but it implies BC4 3 & 4 

 Changing the methods of communicating the ideas depending on who you 
are talking to(BC3) 

3 

 Build network via coffee chats etc with a lot of people(BC12) you get to 
know when to contact who (BC4) 

12 
4 

 Taking into account more opinions creates more requirements (BC4) 4 

 A lot of input & questions(BC4) which requires a lot of 
communication(BC3) and working together(BC12) 

4  
3 & 12 

 Make sense of all the different things going on and different 
perspectives(BC4) 

4 



  88   
 
 

 

 A lot of tradeoffs in the process of maintaining old machines (BC4) which 
are required to make the right decision(BC20) 

4 
20 

 Example of wrong assumptions which affect the future decisions but they 
cannot be changed anymore since the hardware is now fixed(BC20) but in 
order to realize this and how to fix it requires a lot of information and 
making sense of it(BC4) 

20 
4 

08 Architecting realizing something doesn’t make sense(BC4) after which the 
others are steered by sending them to check certain things(BC12) which is 
done in a format suiting the specific stakeholders(BC3) 

4 
12 
3 

 Choosing the right moment for a constructive discussion(BC3) 3 

 The improved relation creating the consideration of the architect being 
part of the team rather than a checkbox(BC5) 

5 

 If decisions are made, (external) customers in the field may think what 
happened here. Gathering information from them requires using the 
connections and working together(BC12) but in order to convince them of 
the tradeoffs you need to communicate well with the right intentions(BC3) 
after which they can make the decision(BC20) 

12 
3 
20 

 Decisions have impact not only on the software bu also on its structure. 
That impact is not always desirable since it would require more effort and 
complications(BC20)  

20 

 There was a lack of alignment, mixed information and interpretations(BC4) 
after realizing this a couple of meetings wer used and a hackaton to align 
everyone(BC3) 

4 
3 

 Wrong information being conveyed(BC3-) making the design itself coming 
out wrong(BC20) 

3 
20 

 Using different methods to communicate a message in different forms 
depending on the audinece(BC3) 

3 

 Next to formal meetings just talking to people and doing whiteboard 
sessions to create an understanding(BC3) 

3 

 Collaboratino(BC12) being a tool to work together on talking through the 
different elements to make the right design(BC20)  

12 
20 

 Working together with project management(BC12) is better for the 
relations with business as it aligns concepts and ideas and makes you 
realise what is important for everyone(BC3 & BC16) 

12 
3 
16 

 Finding a link (BC4) led to proposing changes with the stakeholders and 
working with them in order to do thisbut it was trimmed down as result of 
working together with the stakeholders. (BC12) This also implied having 
the right communicating methods for the convincing(BC3) 

4 
12 
3 

09 A different department is required for a project. After discussing with 
them, a they were pointed to a direction in line with the roadmap(BC4 was 
needed in prep, BC12) 
It is difficult to convince others but people are often open to the benefits 
of others too(BC15) 

4 
12 
15 

 Making a good story in order to transelate the technical environment to 
facilitate discussion based upon the architecture and explain why 
alternatives are preferred(BC3) 

3 

 Preparet he story in based upon the common interest and take everything 
outside of their own scope(BC3) 

3 



  89   
 
 

 

 Architects should take the technical perspective and not concern too much 
about projects, deadlines and pressure in order to create the best 
solution(BC4 as pre-requisite to making the right decision BC20) 

4 
20 

 Giving in and being pragmatic by for example phasing a change in order to 
help other reach their commitments(BC15) 

15 

 Someone requested an extension on a module which the architect wanted 
to phase out. The architect realized the implications on his long term vision 
with this new information(BC4) which led to a discussion about the 
alternatives working together to still meet the required 
functionalities(BC12)  

4 
12 

 Gathering information by asking people from project in which the architect 
has previously been working(BC12 & BC3) 

12 
3 

 Specific deduction of the complexity where by using rationale the architect 
realized there were actually different intentions of the project, being able 
to simplify the old requirements into a single clear new requirement(BC4)  
This was then directly taken to his project counterpart who agreed(BC12) 
and was able to convince others by showing how this would simplify their 
problems(BC3) This could all be viewed in context of preparing the decision 
to change this feature(BC20) 

4 
12 
3 
20 

 Making poor decisions will give consequences in future projects(BC20-). 
You can always come back to decisions if you know they are wrong 

20 

 Out of all the options and information the architects saw an opportunity to 
simplify(BC4) leading to the decision to push for this change(BC20)  

20 
4 

 After futher discussion and working together towards this 
simplification(BC12) the decision was made together with a lot of people 
so the decision itself was good(BC20) 

12 
20 

 Previous example where the other department was open to arguments of 
the other side in order to improve as collective(BC12) 

12 

 Being approachable and honest is needed and this will bring you far with 
stakeholders(BC5) 

5 

 Having discussions is really important, even if this gives long days having 
the chats is valuable, these have priority(BC3) 

3 

 Communicates effectively prevents miscommunications, bugs and 
errors(BC3) 

3 

 To be more successful an architect should mainly focus on conveying a 
clear understanding of others needs. This should be done for different 
audiences.(BC3) 

3 

 With all different kind of stakeholders and solutions communication is 
important in convincing others(BC12) In addition aligning all these types of 
information forces concessions(BC4) 

12 
4 

 Trying to assemble information but getting too much can harm lnog term 
because of not coping with the complexity(BC4) -> KM 

4 

10 Working together with an end customer to install and analyze on 
location(BC12) 

12 

 Working together with the end customer working towards 
improvement(BC12) overcoming language barriers with pieces of papers, 
translation machines and handsigns(BC3) 

12 
3 



  90   
 
 

 

 Depending what you see as decision quality(no bugs i.e.) having the proper 
balance between different elements for example doing things in a short 
timeframe(BC20) 

20 

 Making the decision together with an overview of possible choices (BC20) 20 

 Identifying a certain opportunity and identify gaps from the start of a single 
product(BC4) 

4 

 Coming to an shared agreement with stakeholders which includes taking 
into account other aspects(BC12 & BC15) 

12 
15 

 Doing a late session as a tool in order to push for decisions and 
convergence(BC3) 

3 

 Pre-align with every stakeholder in order to be able to have all the 
knowledge in the meeting itself. (BC3 where smart communication is 
needed, but also BC4 in managing all these inputs, and then BC12 since this 
is part of the collaborative process) 

3 
4 
12 

 Zooming out in order to identify the context & stakeholders incl their roles 
and the bigger picture(BC4) 

4 

 Pre-alignment had been useful(BC12), but now under time pressure action 
was taken(BC20) 

12 
20 

 Seeing the skill to summarize(BC3) in order to set direction (BC20) 20 

 Gathering all the inputs is required to make a balanced proposal(BC20) the 
architect has to understand the people and context but also the knowledge 
of the impact on the software(BC4). This is all gathered by working 
together with people and getting their view(BC12) 

20 
4 
12 

 Transelate all the different terms into simple language depending on the 
audience(BC3) 

3 

 Underestimating new technical changes and the availability of replacing a 
tool might cause the misunderstanding of consequences of having a 
completely new design. This is caused by bad communication(BC3) 

3 
 

 As an architect you should know where you are and where you want to go, 
think of intermediary steps and then making it explicit(BC17 & BC4) 

17 
4 

 Using the architectural knowledge in order to work together with people 
via workshops(BC3) and making a joint breakdown and structure 
together(BC12 & BC20) 

3 
12 
20 

 Use workshops to align and understand stakeholders(BC3) 3 

 

 

 Stakeholders 

 Excerpt summary Behavioral 
competencies 
numbers 

01 Design sessions are needed to facilitate the discussions between 
stakeholders. (BC12) In addition architects should split up larger 
improvements into smaller chunks(BC4) 

12  
4 

 After identifying how a data transformation could be done easier(BC4) 
others had to be convinced for the investment in it by realizing their 
benefits(BC3) 

4 
3 



  91   
 
 

 

 A testing protocol including reporting was made daily and weekly. The 
architect took in all the information and saw the opportunity(BC4) avoiding 
the double cost of doing it multiple times.  

4 

 Continuation last example. The architects cant just instantly remove this, a 
lot of people are familiar with the weekly version. Architects should take 
away any unrest(BC5) by having a lot of small meetings next to the large 
meetings. Many have to be informed(BC3) but after working together to 
get rid of the weekly report, people will accept it(BC12) 

5 
3 
12 

 Using different methods like powerpoint or test runs to convince people 
changing the message depending on their specific needs(BC3). In additon, 
having the decision team execute the teams to build trust(BC5)  

3 
5 

 The stakeholder found the felt supported and comfortable by the architect, 
he knew the technical side was under control(BC5) suggesting the trust in 
the technical decision ability of the architect(BC20) 

5 
20 

 An architect made an instructural video(BC3) but it made it look like 
making test cases was easy. Different people did not understand the 
nuance with this where not all test case making is the same, some even 
being manual. This created discontent with engineers but also created 
misunderstandings between how different stakeholders viewed this(BC15-) 
and bad decision timing(BC20-) 

15 
20 

 Not pre-aligning cause the problem of misunderstandings in the whole 
community, the architect should have included others(BC12-) 

12 

 If one architect gets bypassed this might make the project miss an approval 
closer to the date of signoff(BC12-) 

12 

 If multiple projects are present in the same team, you want to have more 
detailed knowledge about the overview, whats happening in the teams and 
the feasibility overview(BC4) 

4 

 Making a timepath for projects, do feasibility, realization and then 
functionality implementation(BC11) in order to make the right decision 
after alignment and prototyping(BC20) 

11 
20 

 Gathering the insights into the different shortcuts, acceptable boundaries, 
repair future, consequences and the complexity of the whole system(BC4) 

4 

 By working with the different engineers and seeing what they have to redo 
over and over again(BC12) the architect can look at what is going on and 
what to anticipate on(BC4 BC20) 

12 
4 
20 

04 Not being able to manage the complexity (BC4-) Consequence being 
replaced. Also implies the drop of trust(BC5-) 

4 
5 

 Creating trust based on seniority, knowledge and skills(BC5) 5 

 Incorporating views of others and set new direction with it(BC3 & BC4 in 
preparation but example of BC17 This requires the network(BC12) 

3 & 4 
12 

 Using the right communication methods to achieve the path forward(BC3) 
by invertorazing and making sense of a lot of different perspectives(BC4) 

3 
4 

 Long term planning and making the right decisions (BC11 & BC20) 11 & 12 

 Using whiteboard sessions, face-toface meetings(BC3) to collectively build 
a proposal(BC12) 

3 

 Large designs can get you lost in detail quite quickly, architects need to 
manage this(BC4) 

3 
12 



  92   
 
 

 

 Reviewing all proposals and validating(BC4) needed to help teams get 
unstuck by working together(BC12) 

4 
12 

 Architects missing coding details leading to multiple reworks after the first 
decision(BC20-) 

20 

 Working on too much detail, not knowing about some changes(BC4-) 4 

 Relying on the autonomously managing their work and execution of the 
architectS(Implicitly BC5) 

5 

 Digging into the problem even down to code level, but finding the 
solution(BC4) 

4 

 Creating an image of not sitting on sidelines(BC5) 5 

 Understand context and spend time gathering knowledge and come up 
with proposals(BC17) 

17 

 Being able to explain to a wide range of audiences what is happening and 
changing tune when needed(BC3) 

3 

 Architect should be an effective communicator and be aware of the 
different expectations of the different audiences(BC3) 

3 

 If you cannot convey your message, it does not matter which stakeholder 
you are talking to(BC3-) 

3 

 Communicating and conveying message is critical for clearly explaining 
thing to the people doing the work(BC3 but requirement for BC12) 

3 
12 

07 Working with multiple clusters, with time pressure in a complicated project 
the architect has to get a design which actually works now and in the 
future(BC4) 

4 

 Big project can go all over the place with different voices and opinions(BC4) 
being the driving force for the direction of the cluster under though 
circumstances (BC8) 

4 
8 

 Architects have to show to make that they make the right calls(BC20) but in 
order to do this they need the trust of teams and people surrounding them 
in order to get the mandate to make bigger decisions. This support is build 
through experience(BC5) 

20 
5 

 Architect starts involving different stakeholders and spar and communicate 
with them(BC 3 & BC4) but this also generated trust by seeing him do this 
and seeing the impact on the projects of this architects(BC5) 

3 
4 
5 

 There is a bigger scope and people get lost in it. So many stakeholders, 
ideas, procedures and opinions have to be managed(BC4) but if you 
transform this in to the right arguments it shows how you know what you 
are doing(BC3) 

4 
3 

 Asking about the teams problems and thining of a solution together(BC12) 
which in combination with the delivery demands of the project requires 
the management of stakeholders(BC15) 

12 
15 

 Having to balance ideas in long term and short term goals requires a lot of 
convincing otherwise of the benefits(BC3) 

3 

 The software archtiect should be involved when key decisions are being 
made(BC20) 

20 

 Architects should adhere to their policies but that also means sometimes 
products don’t happen, there still needs to be budget and they have to 
work with instead of work around others(BC12)  

12 



  93   
 
 

 

 The consequencies of changing elemetns could have a lot of impact on 
multiple other groups, this had to be realized(BC4) 

4 

 Communicating thoughts and preferences clearly will help stakeholders 
understand the tradeoff. They might not like it, but they will 
understand(BC3) 

3 

 Giving all the different documents to everyone with all the options(BC4 
+KM) Communicating this via regular meetings in which stakeholders can 
give all their problems(BC3/BC12) 
 

4 
3 
12 

 Clear communication and tradeofs with alternatives fitted to the 
audience(BC3) 

3 

 With a lot of stakeholders, a good decision could please everyone(BC20) 
but it also needs to be taken into account how stable this design would 
be(BC4) 

20 
4 

 An architect working with the team to help them out with his technical 
knowledge to make the product work(BC12) 
 

12 

 Architct basing not doing something on extensibility(BC20) 20 

11 Know how to communicate to a larger group(BC3) 3 

 Combining a good story wit reality to connect people together(BC3) and 
recognize that the existing way of working was not maintainable(BC4)  

3 
4 

 Finding commonalities in the bigger picture(BC4) 4 

 Finding the commonality so it benefits all releases or products because the 
work is done only once (BC4) but also find the benefit for others(BC3) 

4 
3 

 Technical; Creating better ways for ASML to be successful(BC10);; really 
making a plan together to get to the goals(BC12) 

10 
12 

 Having informal chats with all types of stakeholder top down and convince 
them step by step using a variety of methods both formal and informal(BC3 
BC12) 

3 
12 

 Taking stakeholders along in order to make them realize that there is a 
problem and think of the soluition together Joint decision making about 
solutions(BC20) 

20 

 Bad example: architect being direcotrive and mandatory tone. (BC3-/BC12-
) 

3 
12 

 Example of being willing to listen to others. Making the decision of going 
there together(BC12/BC20) 

12 
20 

 Architect does not know everything(BC4) 4 

 Organizain gsessions to gather input and explain what problems they are actually facing(BC3). 
After doing this individually, a meeting with all stakeholders was held and in a few hour the 
direction and decisions were clarified(BC12/BC20) 

3 
12 & 20 

 Sometimes there are choices which have to keep being aligned(BC12), creating an very long 
discussion. The architect should then make the choice and convince others of this 
choice(BC20).  

12 
20 

  Listen, get input, explain why decision was made(BC3) and make people 
stick to a decision(BC20) 

3 
20 

 Combining sticking to the decision(BC20) but also listening and explaining it in a simple 
manner to others(BC3) 

3 

 Good decisions(BC20) are a result from setting the right direction and 
showing all alternatives(BC4) then communicating the decision table in a 

20 
4 



  94   
 
 

 

simple and easy to understand manner depending on the person and the 
persons habbits(BC3) 

3 

 Decision quality includes timing, quality, technical debt,  team satisfaction, 
documentation. You name it. All of the the the non product timing quality 
(BC20) 

20 

 Having knowledge of where the product is in a life time cycle(BC4) but also 
realizing that due to it being end of life it should be phased out(BC20) then 
convincing the others of the same perspective(BC3) and work together to 
to best product(BC12) 

4 
20 
3 
12 

 Having knowledge of where the product is in a life time cycle(BC4) but also 
realizing that due to it being end of life it should be phased out(BC20) then 
convincing the others of the same perspective(BC3) and work together to 
to best product(BC12) 

4 
20 
3 
12 

 Convincing others in different ways depending on their need and 
goals(BC3) 

3 

 A worried stakeholder was taken into a meeting(BC12) using a combination 
of listening and explaining (BC3) which made the stakeholder trust the 
architect and at least felt his worries were heared(BC5) 

12 
3 
5 

 Knowing when to make what decision by acknowledging there are risks 
(BC20) 

20 

 Architect not being able to split something up(BC4-) 4 

 Example of not working together with consequence of project getting 
cancelled and chaos in team(Bc12-) 

12 

 By being very open and creating a clear structure and planning(BC12) while 
aligning the different puzzle pieces and managing its complexity(BC4) the 
architect managed to get a project back on the rail. When 10 people start 
without a direction things will go everywhere. The architect supports them 
in the technical element with this(BC12) 

12 
4 
12 

 By using meetings and informal catchups(BC3) the architect manages to get 
information, know about plans and setback(BC4, BC12) this created the 
position where issues are shared and the architect is approachable(BC5) 
one engineer even saw the architect as a father figure.  

3 
4 
12 
5 

 Example where zooming in and out when needed helps further the 
project(BC3 BC4) by showing other the bigger picture which requires the 
simplification of all larger parts 

3 
4 

 Required to manage complexity(Bc4) to do this and than use different 
communication methods to find the right information(BC3).  

4 
3 

  an architect can be open and transparent also in what he actually 
contributes which builds trust with the people they work with(BC5) But 
also helpful by working towards a common goal together in various 
ways(BC12) 

5 
12 

 It is required to manage a lot of information without needing the 
detail(BC4) 

4 

 

 



  95   
 
 

 

 Other findings 

 Excerpt summary Category 

01 Using the reduction of maintenance effort as a argument to 
convince others (Success variable Maintanability) 

Success metric 

03 Stakeholders view short term perspective where architects view the long 
term success 

SM 

 Some stakeholders just want to finish projects SM 

 Success for project management is quick where architects want the best 
solutions.  

SM 

04 Succes factor: met major milestones Success metric 

 Success factor reduce number of dependencies Success metric 

 Few people start as architect, they grow into the role  KM 

 Success factor: Within scope ,Within budget Success metric 

 Realizing what can be viewed as success needs quite a lot of awareness 
and knowledge 
Success factors: Minimum requirements and maintainability 

Success metric 

05 Outcomes for software(success outputs) 
Testability, Maintainability, Usefullness, Cost, Complexity, time 

SM 

 Everything is about transferring information KM 

07 Giving all the different documents to everyone with all the options(BC4 
+KM) 

KM 

 Success factors: architect thought of future extendabilities SM 

09 Archtiect happy if others take into account & get convinced by the future 
maintainability(success factor) 

SM 

 Avoid getting overloaded with knowledge input KM KM 

10 Successful when expectations are met, award received, customers happy  SM 

 Combining knowledge of the difficulties in software changes with increases 
in throughput = KM 

KM 

 Success outcomes: Happy customer, short timeframe, happy crew SM 

11 It is required to manage a lot of information without needing the detail KM 

 

 


