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Abstract

In this thesis, we investigate the challenge of efficiently finding ternary lagged correlations. The
discovery of ternary correlations describes the search for highly correlated groups of three time
series. Ternary ‘lagged’ correlations are similar, but they also allow for each time series to be
shifted in time relative to the others in the group. We propose a solution that supports sliding
windows and expands upon the Matrix Profile calculations and Mueen’s Algorithm for Similarity
Search [13] to allow for the detection of lagged ternary correlations. To make the calculations
as efficient as possible, many optimizations are proposed. The solution comes in the form of an
algorithm, which works efficiently for large window sizes, and an approximation technique, which
can be applied in some specific cases, to further improve efficiency.
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Chapter 1

Introduction

There already exists a lot of research in detecting (cross-)correlations and similarities between
pairs of time series [13, 17, 16]. One way this research is extended is by introducing correlation in
groups, also called multiple-, or multivariate correlation [7]. This has applications in many fields,
from biologists finding links between the color, mineral composition, and botanical order of honey
[4], to climate scientists finding relations between the sea level pressure at three different points
on the globe [11]. Another way pair-wise correlation is extended is by introducing lag. It is useful
since correlations between two time series might not always exist unless they are shifted in time
relative to each other. This method is also widely applicable, from finding strong connections
between the number of people reported to believe in conspiracy theories during a COVID-19 wave
and the number of people reporting to adhere to social distancing guidelines the following wave [2],
to finding time-lagged correlation between prediction methods regarding the growth of sugarcane
[5].

While those two techniques are useful in their own rights, for this thesis we imagined it to
be beneficial to combine the two. In more concrete terms, this combination could mean finding
correlations in the stock market where a spike in the value of two stocks today could influence
another stock a month later. For example, it could detect correlations between spending money
on advertising and finding a spike in sales a week later. Alternatively, it could detect a high
correlation between the value of airplane tickets in March and the value of sunscreen and inflatables
in July. Just like calculating ‘normal’ correlations between three or more variables is trivially
harder than calculating correlations between just two, calculating ‘lagged’ correlations with groups
of time series is also harder than with pairs. Naive solutions can easily become storage- and
computationally heavy. Compared to ‘normal’ correlation detection in groups, lag essentially adds
another dimension to the problem.

An option for comparing two time series is by having a sliding window [13, 6] go over both time
series and then consider all possible placements of both windows to find the highest correlating
subsequences. If m is the window size and n is the number of items in each time series, this
method already has (n−m+ 1)2 options to calculate the best correlation per pair of time series.
Doing the exact same thing for groups of x time series would thus give (n −m + 1)x options to
consider per group. As can be seen, this does not scale well, so a more efficient solution is needed
(for instance, by leaving out options that would not give sensible solutions) and, to make this
process viable for data analysis, the solution needs to be as efficient as possible as well. Because
time series are rarely random data and often contain certain patterns, there might be many speed
gains to be found regarding this aspect.

In this thesis, we propose a new way of finding lagged correlations in groups of three to make it
a more viable data analysis solution. Our investigation is split up into two separate sub-problems,
which can be combined to improve the speed and efficiency of analyzing data this way. See the
Problem definition (Section 2.2) for these sub-problems.

Efficiently discovering ternary lagged correlations 1



CHAPTER 1. INTRODUCTION

1.1 Outline

This thesis is split up as follows: First, we explain a couple of definitions and we lay out the
problem statement in Chapter 2. Next, we look at related work in Chapter 3 and explain how
it can be applied to the research. Then, in Chapter 4 and Chapter 5 the research sub-problems
are extensively explained and a solution is proposed for discovering ternary lagged correlations.
Afterward, the proposed solutions are tested using real-life data using experiments in Chapter 6
before providing a conclusion and future work in the final chapter, Chapter 7.
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Chapter 2

Preliminaries

Before getting into detail, in this chapter, we would first like to go over some re-occurring definitions
and notations in Section 2.1. We also explain the problem definition of discovering ternary lagged
correlations and how this is split up into two research sub-problems in Section 2.2.

2.1 Definitions

Time series Often denoted as T of size n. It represents a string of values defined by the change
of a value over time. It can be seen as a list, array, or vector and might be described in this thesis
as any of those interchangeably.

Query Also called a ‘subsequence’. Often denoted as Q of size m (window size). It represents
a smaller subsection of a time series. It is often gained by taking the values within a window on
the time series. It can also be seen as a list, array, or vector. A collection of multiple queries is
denoted as Q.

Pearson Correlation Often denoted by ‘ρ’, is a very common correlation measure. It can
be used to measure how much linear dependence there exists between two series of values. The
measure results in +1.0 when there exists an exact linear correlation between two series, while −1.0
denotes an exact but inverse linear correlation. The formula for Pearson correlation can be found
below at Equation 2.1, where µ and σ represent the mean and standard deviation respectively.
Pearson correlation also has a strong connection to Z-normalized Euclidean distance. For more
information about this, see Section 4.1.2.

ρ(X,Y ) =

∑
(X − µX) (Y − µY )

σXσY
(2.1)

Sliding window This is the technique of sliding an m sized window along a time series by
moving it from start to end one step at a time. Each window position in the time series can be
called a ‘query’. A sliding window technique over more than one time series is also possible. In
this case, each time series has its own window and the windows move in such a way that all the
possible combinations of window placements in the time series are visited exactly once. See Figure
2.1 for an example.

Lag The lag between two windows is simply the difference in time (or distance) between their
starting positions.

Efficiently discovering ternary lagged correlations 3
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Sliding Window Example

5 6 1 0 3 7 11

2 3 3 9 4 6 2

5 6 1 0 3 7 11

2 3 3 9 4 6 2

5 6 1 0 3 7 11

2 3 3 9 4 6 2

5 6 1 0 3 7 11

2 3 3 9 4 6 2

5 6 1 0 3 7 11

2 3 3 9 4 6 2

5 6 1 0 3 7 11

2 3 3 9 4 6 2

5 6 1 0 3 7 11

2 3 3 9 4 6 2

Figure 2.1: A small section of all window positions considered in a
sliding window procedure for two time series.

Lag bound It is also called ‘enveloping’ and is often denoted by the value l. It can be used to
limit the window placements across multiple time series to within a distance of l of each other. To
clarify: When lag bound is implemented, then for any window, all the other windows are within l
distance of it. More about lag bound and how it is applied can be found in Section 4.3.4.

Multivariate cross-correlation Correlation is usually measured in pairs, but it can also be
calculated for small groups. Almost all of the correlations discussed in the thesis are Pearson
correlations in groups of three. To get sensible results for three time series (because Pearson
correlation normally only works between two time series) two of the three time series need to
be aggregated together and then compared to the remaining one. The aggregation method, by
default, is the mean. The best result of the three ways to aggregate the three time series is reported
together with correlation value of the three time series. This is described in Section 4.2.1 as well.

Z-normalization This is a normalization technique for series of values to make it easier to
compare and find trends between multiple series without scaling issues. For the values in a time
series T it is calculated like Equation 2.2, where µT and σT represent the mean and standard
deviation of T respectively.

T [i] =
T [i]− µT

σT
(2.2)

Whenever we talk about normalized Euclidean distance regarding the Matrix Profile, Z-normalization
is what is inferred.

Motif A motif, in the Matrix Profile context, is a repeating pattern in a time series. It can
consist of two or more instances. STAMP [13] can be used to create a Matrix Profile list from
which motifs can relatively easily be discovered. See Section 3.1 for more info on motifs and the
Matrix Profile in general.

Notation There are a couple of notes to give on the notation in the algorithms and across the
rest of the thesis:

• Values are always denoted by a lowercase letter, like n. (Time) series, lists, or arrays of values
are denoted by a capital letter, like T , and are used interchangeably, since they behave the
same. Higher-dimensional structures, such as lists of lists or two-dimensional arrays are
shown as a bold uppercase letter, such as Q.

4 Efficiently discovering ternary lagged correlations



CHAPTER 2. PRELIMINARIES

• A “..” range is considered inclusive. For instance “1..3” would refer to the range containing
the numbers “1, 2, 3”.

• The X[i..j] notation represents a slice taken from a series of values X from index i to index
j (inclusive). So essentially, X[i..j] = X[i, i+ 1, ..., j − 1, j].

• For all series, lists, arrays, and other objects that can be accessed using indices, indices start
at 0.

• “·” is considered the dot product.

• Operations on series, lists, and arrays are considered element-wise. For instance: A + B,
where both A and B are similarly sized, one-dimensional arrays, would result in a one-
dimensional array where each element from A is added up with an element from B at the
same index. This means that AB is considered the pair-wise product of A and B.

• Building onto that, simple operations on series, lists, and arrays are also considered element-
wise. For example, A + 1 would result in a new array similar to A but with each element
being 1 larger.

• “agg(A, B)” is considered an aggregation by element-wise average. Essentially this can thus
be rewritten as A+B

2 using the notations laid out before.

•
∑
X is used to represent the sum of each element in series of values X. In short:

∑
X =∑

x∈X
x.

This notation can also work for a collection of arrays or two dimensional lists like Y:
∑

Y =∑
Y ∈Y

Y . The result of this would be a one-dimensional array.

• Some arguments of algorithms have a blue part. For example: “Algorithm(1, 2, A = 3,
B = 5)”. These arguments are named arguments. We use this notation for clarification; to
show how the argument given is used in the called algorithm. In most cases, this means that
the blue value does not have to be calculated anymore inside the called algorithm as it has
been calculated already.

2.2 Problem definition

In this section, we give the problem statement of the thesis, as well as the two sub-problems which
we use to tackle it.

2.2.1 Main problem: Efficiently discovering ternary lagged correlations

The goal of the thesis is to find an efficient approach to discover ternary lagged correlations. In
more detail: We want to find an algorithm that can give the window positions inside each of
three time series and the aggregation manner which will give the best (either positive or negative)
Pearson correlation value of all window positions in as little time as possible. Using this algorithm,
we can then find the best combinations of three time series in the data set to report to a data
analyst.

An example result that the algorithm should be able to give can be seen in Figure 2.2. In the
figure, the window positions that give the highest correlation are highlighted and have a small
amount of lag relative to each other. The data comes from the second dataset described in Section
6.1.2.

Efficiently discovering ternary lagged correlations 5
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Ternary Lagged Correlation Example
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Figure 2.2: Highest correlation: 0.974118301573819

Red: Forex, EURSEK
window: [2018-08-12 15:00:00 .. 2018-09-02 10:00:00]

Orange: Forex, EURNOK
window: [2018-08-04 19:00:00 .. 2018-08-25 14:00:00]

Blue: Forex, EURHKD
window: [2018-08-13 03:00:00 .. 2018-09-02 22:00:00]

Correlation of agg(Red, Blue) and Orange

2.2.2 Sub-problem: How can we efficiently discover the strength of tern-
ary lagged correlation within time series?

The first sub-problem aims to find an efficient approach to discover the best placements of a
window in each time series and the best aggregation method to maximize the Pearson correlation
for a group of three time series. This approach materializes in the form of an algorithm that
can efficiently go over each possible window placement and then report the best one in terms of
correlation. Aside from this, we also want to be able to find the best combinations of three time
series from a data set of many. A small technique for this is also proposed. See Chapter 4.

2.2.3 Sub-problem: Can we skip window placements to find lagged cor-
relations faster?

The second sub-problem tries to find an approach to find the best window placement while skipping
as many window positions as possible. This approach can encompass some approximation and
therefore differs from the first sub-problem. However, it might be able to make the approach of
the first sub-problem work even better. See Chapter 5.
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Chapter 3

Related work

In this chapter, we describe all the work that is related to this thesis and helped form it to how
it currently stands. We first go over the Matrix Profile papers (Section 3.1) before touching on
some others as well (Section 3.2).

3.1 Matrix Profile

Similar research regarding comparing time series is done by the collection of papers regarding the
Matrix Profile. The first paper in this series [13] describes how to detect motifs (or similarities) and
discords (anomalies) within a time series or between two different ones. The Matrix Profile (MP)
described can be seen as a sparse distance-matrix consisting of the Euclidean distances between
all possible pairs of n-sized subsequences of both time series. An example of the formation of
one row in the matrix (based on the examples from the STUMPY website1) can be seen below in
Figure 3.1.

Pairwise Euclidean Distance

0 1 3 2 9 1 14 1 2 2 10 7

0 1 3 2 9 1 14 15

15

1 2 2 10 7

7.4 6.9 14.7 19.3 17.7 19.9 15.0 8.2 8.9

Figure 3.1: Example of self-pair-comparison1

Matrix Profile

6.9

1.4

6.2

11.4

7.9

13.6

14.0

1.4

6.2

14.1

6.9

1.4

6.2

7.9

11.4

13.6

14.1

14.0

1.4

6.2

Figure 3.2: Example of Matrix Profile1

The bottom-most row in the figure is formed by sliding the blue (window) box along the series
and calculating the Euclidean distance between the numbers in the green box and the blue box.
Of this row, only the lowest value will be saved. For the Matrix Profile, this is currently 6.9.
Another noteworthy thing is the black box in the first spot. This results from comparing a time
series with itself and is left out of the row because the result would be trivial (namely 0). After
forming the full matrix, it looks like Figure 3.2. The one-dimensional list can be seen as the result
of calculating the Matrix Profile using time series T , or MP (T, T ). As can be seen, storage for
a Matrix Profile is only O(n), as only the list on the right is saved in storage together with an
accompanying list of indices. These indices can be used to find where, in the time series, this
smallest distance was found.

1https://stumpy.readthedocs.io/en/latest/Tutorial_The_Matrix_Profile.html
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MASS and STAMP

10 3 2 9 1 14 15 1 2 2 10 7

10 3 2 9 1 14 15 1 2 2 10 7

Figure 3.3: Example of an iteration in STAMP
supplying MASS with a time series T (green) and
a query Q (blue).

Creating a Matrix Profile using the STAMP algorithm [13] (which runs in O(n2 log n)) is
roughly done by calculating the Euclidean distance between all the pairs. In practice, this is
optimized with Mueen’s Algorithm for Similarity Search (MASS) using Fast Fourier Transform-
and sliding dot product calculations, described in the paper [13]. MASS essentially calculates all
distances between one window position in one time series with all the window positions in the
other time series very efficiently. When this is put in a for-each loop of all window positions,
STAMP is the result. A visual example of an iteration in STAMP can be seen in Figure 3.3.

While the MP is useful for similarity- and anomaly detection, it needs to be tweaked to work
for correlation calculation. Pearson correlation, for example, yields a value between −1 and 1,
where 1 means a high positive correlation and −1 means a high negative correlation. Conversely,
the Euclidean distance between two sequences is an unbounded value larger than 0, where it
being closer to 0 means the sequences are more alike. Luckily, since the MP uses Z-normalized
(see Formula 2.2) Euclidean distance, it is straightforward to convert MASS to return Pearson
correlation instead of Euclidean distance. This conversion method is described in Section 4.1.2.

All in all, the Matrix Profile promises high efficiency and low storage usage for pairwise time
series comparisons, which could come in handy when calculating correlations between multiple
time series as well.

Another benefit of adopting the Matrix Profile is that there are many optimizations done
around it. In the second paper [17], a second algorithm is described, namely STOMP (which
runs in O(n2)). Where STAMP is an anytime algorithm [13], meaning the Matrix Profile can be
constructed asynchronously per row, STOMP constructs the Matrix Profile in an ordered fashion.
This implies that it can use data from the previous iteration (or -row) to speed up calculations.
The algorithm does lose the ability to be used for approximations as now the entire Matrix Profile
always needs to be calculated instead of just one single row.

Another optimization is described in the eleventh paper [16], in the form of the algorithms
SCRIMP and SCRIMP++. This algorithm adopts the running time of STOMP (O(n2)) while
also being an anytime algorithm like STAMP. According to the paper, it converges much faster
than both other algorithms, which would make it more useful in interactive scenarios. It does
need to be noted that the optimizations in place specifically target motif discovery, which might
not apply to correlation discovery directly.

The last relevant paper in the Matrix Profile collection is the sixth [12]. In the paper, the
algorithm mSTAMP is described. The algorithm creates a multi-dimensional Matrix Profile and
can detect auto-motifs (a repeating pattern discovered within a single time series) that happen
simultaneously for multiple time series. An example of what this algorithm can detect is shown
in Figure 3.4.

While the idea of a multi-dimensional Matrix Profile can definitely be used for correlation
detection, the way mSTAMP detects motifs at the same time across different might not be that
useful. This is because for most correlations, the interest lies more in comparing a time series
directly with another (so cross-correlation) instead of with itself (auto-correlation).

8 Efficiently discovering ternary lagged correlations
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Figure 3.4: 3D motif comparison using mSTAMP [12]

3.2 Others

The thesis is mainly built around the Matrix Profile papers, combining some very common cor-
relation concepts like Pearson correlation with aggregation of time series with the Matrix Profile
algorithms. There exist other papers that use similar concepts, but the way they apply those
concepts differs from this thesis. For instance, there are papers that consider lagged correlations
using a sliding window approach, but only in pairs or with a correlation measure other than Pear-
son [6]. While cross-correlation measures like DCCA can provide useful information about the
relation between time series [6, 8, 15], Pearson correlation is still one of the most used correlation
measures. Other papers do consider finding correlations in groups of series but focus on a different
form of lag, such as lag found by dynamic time warping [1], using different time scales [14], or
they do not consider lag at all, instead focusing just on streaming and static data [7].

Efficiently discovering ternary lagged correlations 9





Chapter 4

How can we efficiently discover
the strength of ternary lagged
correlation within time series?

To find the group of three time series with the best lagged correlation, we first need to check all
window positions in each possible group and find the correlation there. The number of possible
groups is defined by

(
n
3

)
= n!

3!(n−3)! , where n is number of time series in the data set. Since

this number gets larger quickly, checking all the window positions inside each group should be as
efficient as possible. To still provide valuable information while not delaying the data analysts too
much, in this chapter we propose an efficient technique, based on the Matrix Profile calculations,
that can give the best correlation and the starting positions of the window in each time series
where it holds.

This technique is explained starting with the MASS and STAMP algorithms from the Matrix
Profile papers, adapting them for ternary correlations and improving their performance. First,
we explain how to calculate lagged cross-correlation (Section 4.1) using the previously mentioned
algorithms as a base. Next, we lay out a relatively simple version of ternary lagged correlation
using a straightforward but inefficient for-loop structure (Section 4.2). The structure contains a lot
of algorithms for which an overview is provided in Table 4.1. Finally, we give a set of optimizations
that are applied to the straightforward version to vastly increase the efficiency (Section 4.3).

The proposed algorithms can only be used for a single group of three time series. We suspect
it to be even more interesting to find the best combinations of three time series in a dataset of
many time series. To efficiently calculate and go over all possible groups in a time series dataset
in a distributed fashion, we propose a small but helpful technique in Section 4.4.

Efficiently discovering ternary lagged correlations 11



CHAPTER 4. HOW CAN WE EFFICIENTLY DISCOVER THE STRENGTH OF TERNARY
LAGGED CORRELATION WITHIN TIME SERIES?

Name and number Description

STAMP-Pearson-3TS
(Alg. 3)

Initial algorithm for finding the best ternary lagged correlation. Traverses
time series TC . Calls STAMP-Pearson-3TS-Sub.

STAMP-Pearson-3TS-
Sub (Alg. 4)

Secondary algorithm for finding the best ternary lagged correlation. Tra-
verses time series TB . Calls MASS-Pearson-3TS.

MASS-Pearson-3TS
(Alg. 5)

Third algorithm for finding the best ternary lagged correlation. Splits
calculations for three aggregation methods. Calls MASS-Pearson and
MASS-Pearson-Agg.

MASS-
Pearson
(Alg. 1)

Finds best correlation for a whole
time series and a query of another.
Calls ComputeSlidingMeanStd.

MASS-
Pearson-
Agg (Alg.
6)

Same as MASS-Pearson but with ag-
gregation of a query from a third
time series. Calls ComputeSliding-
MeanStdWithAgg.

Compute-
Sliding-
MeanStd
(Alg. 2)

Computes the sliding means and
standard deviations of a given time
series.

Compute-
Sliding-
MeanStd-
WithAgg
(Alg. 7)

Same as ComputeSlidingMeanStd,
but with aggregation of a query from
another time series for each window
position.

Table 4.1: Overview of the structure of the algorithms in this chapter.

4.1 Using STAMP for cross-correlation

STAMP is designed for self-similarity using Euclidean distance. In this section, we explain that
it can also be used for cross-comparison and that Euclidean distance can be mapped to Pearson
correlation. This shows that using STAMP (and MASS in its for-loop) can be used as a base in
the search of lagged cross-correlations.

4.1.1 Cross comparison for two time series

The STAMP (Scalable Time series Anytime Matrix Profile) algorithm is the first algorithm de-
scribed to make the Matrix Profile (MP) by the paper [13]. For the MP, the algorithm computes a
self-similarity join matrix profile and only takes a single time series as input. However, it can also
compute a general similarity join by accepting two different time series. This means that STAMP
and MASS can also be used to find similarities between (or cross) time series, which is what we
are interested in. There is no actual modification for the algorithm necessary to achieve this.

4.1.2 Pearson correlation instead of Euclidean distance

MASS [13] produces a Euclidean distance profile between a time series T and a query Q, which is
a piece of another-, or the same time series. This distance profile is essentially an array containing
the distance of Q to each subsequence in T . While this is useful in its own right, we are interested
in Pearson correlation, not distance. Luckily, since it is using Z-normalized Euclidean distance,
this conversion is relatively simple.

A conversion method between Z-normalized Euclidean distance and Pearson correlation is
described in paper [9] and it works by applying Formula 4.1 to convert it to the Pearson correlation
measure:

corr(X, Y ) = 1− 1

2m
d2(X̂, Ŷ ) [9]. (4.1)

In the formula, X and Y represent two time series, X̂ and Ŷ represent the Z-normalized ver-
sions of the time series. m represents the window- / query size and d() represents the distance
function.
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This conversion can directly be applied to the distance formula of MASS. The original is given as
Formula 4.2:

D =

√
2m

(
1− QT−mµQMT

mσQΣT

)
[13]. (4.2)

Here, D is the distance profile. m is again the window- / query size. QT consists of the dot product
between the query Q and all subsequences in time series T (see paper [13] for the algorithm). µQ
and σQ represent the mean and standard deviation of query Q. Finally, MT and ΣT represent the
means and standard deviations of all subsequences in time series T .

Modified to give the “Pearson correlation profile”, it looks like Formula 4.3:

P =
QT−mµQMT

mσQΣT
. (4.3)

We introduce MASS-Pearson (Algorithm 1) as a modified MASS [13] algorithm, replacing the
Euclidean distance with Pearson correlation and introducing a reducer function r to only report
the value and index of the best window position in T instead of the entire array of results.

To calculate the best lagged cross-correlation in pairs (so between two time series), Algorithm
1 can be put in an algorithm similar to STAMP where it would be called for each query Q sliding
across one of the two time series.

Algorithm 1: MASS-Pearson(T , Q, r)
Input: T : time series. Q: query of window size. r: MIN or MAX reducer function,
returns the index and value of best element.
Output: Index of best position of the window in T . Value of the correlation between Q
and that window.

m← |Q| // window size

QT ← SlidingDotProducts(Q, T ) // see [13]

µQ, σQ ← ComputeMeanStd(Q) // computes the mean and standard deviation of Q
MT , ΣT ← ComputeSlidingMeanStd(T , m) // Algorithm 2

P ← CalculatePearsonProfile(QT , µQ, σQ, MT , ΣT , m) // uses Formula 4.3

return r(P )

4.1.2.1 Regarding ComputeSlidingMeanStd

The ComputeSlidingMeanStd algorithm is mentioned in the Matrix Profile paper [13] but not
explicitly given. It is, however, explained. Compared to calculating the standard deviation and
mean for each subsection in time series T , the difference in speed is gained by keeping a cache
of sums and squares. For the sums, as the window slides along the time series, at each iteration,
we subtract the value that has just left the window and add the value that has just entered the
window. For the squares, it is comparable, but then the values are squared. To see our version of
the algorithm in full, refer to Algorithm 2. The algorithm starts by initializing the sums cache with
the sum of the first window, and squares cache with the sum of squares (the dot product). Then,
for each iteration, it uses those two caches to calculate the current mean and standard deviation
and stores them in the MT - and ΣT array, ending the iteration by updating both caches. After
running the algorithm, each element in the arrays can be described by the equations in Formulas
4.4 and 4.5.

MT [i] =

∑
T [i..i+m]

m
(4.4)

ΣT [i] =

√∑
(T [i..i+m]−MT [i])

2

m
(4.5)

A note on notation: X[i..j] represents a slice taken from array X from index i to index j
(inclusive). So essentially, X[i..j] = X[i, i + 1, ..., j − 1, j].

∑
X is used to represent the sum of

Efficiently discovering ternary lagged correlations 13



CHAPTER 4. HOW CAN WE EFFICIENTLY DISCOVER THE STRENGTH OF TERNARY
LAGGED CORRELATION WITHIN TIME SERIES?

each element in array X. In short:
∑
X =

∑
x∈X

x. For more details on the notation, refer back to

the notation part in Section 2.1.

Algorithm 2: ComputeSlidingMeanStd(T , m)
Input: T : time series. m: window size.
Output: Sliding mean- and sliding standard deviation array.

n← |T |
MT , ΣT ← empty arrays of size n−m+ 1
sums ←

∑
T [0..m− 1] // initially the sum of first window

squares ← T [0..m− 1] · T [0..m− 1] // initially the sum of squares of first window (dot product)

for all i ∈ (0..n−m) do
µ← sums/m
MT [i]← µ
ΣT [i]←

√
squares/m− µ2

if i < n−m then
sums ← sums− T [i] + T [i+m]
squares ← squares− T [i]2 + T [i+m]2

end if
end for

return MT , ΣT

4.2 Adding the third time series

The goal of the thesis is to find lagged correlations in groups of three time series. While MASS-
Pearson (and a Pearson-modified STAMP) can be used to find lagged correlations in pairs, we
need to put in some changes to find correlations in larger groups. We want to keep MASS-Pearson
as efficient as possible, using the fast SlidingDotProducts algorithm from the Matrix Profile paper
[13]. Still, we also need to account for the aggregation that needs to occur for calculating Pearson
correlation in groups.

In the following section (Section 4.2.1) we go over a straightforward for-loop structure similar
to STAMP, but modified by us for three time series. We visit the algorithm top-down, meaning
we start with three whole time series. We slide a window over one and we call the next algorithm
for each position. This goes on until we have one whole time series and two queries of the others.
At this stage (Algorithm 5), the aggregation, needed for Pearson, has to take place. While for
one aggregation method, MASS-Pearson (Algorithm 1) suffices, for the other methods, further
modification is necessary. These changes are proposed in Section 4.2.2, which describes how
MASS-Pearson needs to be modified to make it work.

4.2.1 For-loop structure

First of all, we need to have a basic idea of how the algorithm should work. STAMP with two
time series works like Figure 3.3, where a sliding window is moved along one of the two time series,
and each iteration, the values inside the window are compared to all the window positions in the
other time series using MASS(-Pearson). With three time series, the idea is to have two sliding
windows over two time series, like in Figure 4.1, and for each iteration to calculate the Pearson
correlations for all three possible aggregation methods.

This way, MASS-Pearson still gets one whole time series and one query to process. The
way the aggregation works is explained in Section 4.2.2. Having two separate sliding windows is
great for having a better overview of how the algorithm works, but it evades the speed benefits
SlidingDotProducts and ComputeSlidingMeanStd could give. More on how these can still be

14 Efficiently discovering ternary lagged correlations



CHAPTER 4. HOW CAN WE EFFICIENTLY DISCOVER THE STRENGTH OF TERNARY
LAGGED CORRELATION WITHIN TIME SERIES?

Three time series sliding windows with
MASS

10 3 2 9 1 14 15 1 2 2 10 7

65 1 0 3 7 11 15 12 9 2 3 2

32 3 9 4 6 2 7 10 9 13 15 7

Figure 4.1: Example of an iteration in STAMP
with three time series (TA, TB , and TC) supplying
MASS with the whole time series TA (green) and
two queries QB (blue) from time series TB and
QC (red) from time series TC .

applied can be found in Section 4.3. For a complete overview of the structure of the algorithms
in this chapter in relation to each other, see Table 4.1.

The basic structure of the algorithm consists of two loops around MASS-Pearson-3TS (Al-
gorithm 5). The first loop occurs in STAMP-Pearson-3TS (Algorithm 3), where a window is slid
over time series TC and for each position, the query inside the window is given to STAMP-Pearson-
3TS-Sub (Algorithm 4) together with TA and TB . This piece of the algorithm reports the best
positions of the windows in all three time series, the aggregation method used, and the correlation
value.

Algorithm 3: STAMP-Pearson-3TS(TA, TB , TC , m, r)
Input: TA, TB , TC : time series. m: window size. r: MIN or MAX reducer function,
returns the indices, best aggregation method, and value of best window placements.
Output: Indices of best positions of the window in TA, TB , and TC . Aggregation method
used. Value of the best correlation found.

initialize bestCorrelation, bestAgg, bestIndices based on r
TC ← AllSubsequences(TC , m) // give all subsequences in time series of window size

for all iC ∈ (0..|TC| − 1) do
indices, agg, corr ← STAMP-Pearson-3TS-Sub(TA, TB , TC[iC ], m, r) // Algorithm 4

if corr is better than bestCorrelation according to r then
update bestCorrelation, bestAgg, bestIndices

end if
end for
return bestCorrelation, bestAgg, bestIndices

A similar thing happens in STAMP-Pearson-3TS-Sub (Algorithm 4), but then a window is slid
over time series TB and both queries for TB , and TC and the time series TA are then supplied to
MASS-Pearson-3TS (Algorithm 5). This piece of the algorithm reports the best positions of the
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windows in TA and TB given QC , the aggregation method used, and the correlation value.

Algorithm 4: STAMP-Pearson-3TS-Sub(TA, TB , QC , m, r)
Input: TA, TB : time series. QC : query of window size. m: window size. r: MIN
or MAX reducer function, returns indices, best aggregation method, and value of best
window placements.
Output: Indices of best positions of the window in TA, and TB . Aggregation method
used. Value of the best correlation found.

initialize bestCorrelation, bestAgg, bestIndices based on r
TB ← AllSubsequences(TB , m) // give all subsequences in time series of window size

for all iB ∈ (0..|TB| − 1) do
indices, agg, corr ← MASS-Pearson-3TS(TA, TB[iB ], QC , r) // Algorithm 5

if corr better than bestCorrelation according to r then
update bestCorrelation, bestAgg, bestAIndex, bestBIndex, bestCIndex

end if
end for
return bestCorrelation, bestAgg, bestIndices

So far, the algorithm pieces are fairly straightforward, but MASS-Pearson-3TS (Algorithm 5)
is a bit more interesting. This algorithm piece reports the best window position inside TA given
QB and QC , the best of three aggregation methods and, of course, the correlation value. MASS-
Person(-Agg) (Algorithm 1, 6) needs to be run with all aggregation options for the three time
series to get these values.

Since Pearson correlation can only be calculated in a meaningful way between two series, we
need to aggregate the queries of two of the three time series, compare it to the other query in all
three possible ways and then report the best one. So, to be more exact, the algorithm needs to
report the best of corr(agg(QA, QB), QC), corr(QA, agg(QB , QC)), and corr(agg(QA, QC), QB).
For aggregation, the element-wise-average method is used. This aggregation method also proves
handy inside MASS-Pearson-Agg (Algorithm 6).

However, since we want to use MASS-Pearson, which takes a whole time series and (in our case)
two smaller queries, the aggregation becomes more challenging. The second of the aggregation
methods, which in MASS-Pearson-3TS (Algorithm 5) looks like TA and agg(QB , QC), works fine.
Since QB and QC have the same length, they can be aggregated by average and, together with
TA, be supplied to MASS-Person (Algorithm 1).

Although, for the other two cases, the aggregation cannot be done at this stage and needs to
be dealt with at a lower level, inside a further modified MASS-Pearson algorithm that can handle
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these ‘aggregation queries’. More on this in Section 4.2.2.

Algorithm 5: MASS-Pearson-3TS(TA, QB , QC , r)
Input: TA: time series. QB , QC : queries of window size. r: MIN or MAX reducer
function, returns index, best aggregation method, and value of best element.
Output: Index of best position of the window in T . Aggregation method used. Value of
the correlation between Q and that window.

// agg(TA, QB) and QC

PA ←MASS-Pearson-Agg(TA, [QB ], QC , r) // Algorithm 6

// TA and agg(QB , QC)

PB ←MASS-Pearson(TA, QB+QC

2 , r) // Algorithm 1

// agg(TA, QC) and QB

PC ←MASS-Pearson-Agg(TA, [QC ], QB , r) // Algorithm 6

// join the arrays elementwise taking the MIN or MAX of the 3 depending on r

// keeping track of which aggregation method the result belonged to

P ← TakeElementwiseBest(PA, PB , PC , r)
return r(P )

4.2.2 MASS-Pearson with aggregation

As described above, while aggregating two queries of the same length works fine, it is a bit more
cumbersome when each subsection of a full time series needs to be aggregated with a query.
For these cases, MASS-Pearson (Algorithm 1) needs to be modified into MASS-Pearson-Agg (Al-
gorithm 6). This new version can take any number of aggregation queries Qa which are aggregated
with time series T for each of its subsequences before running the normal MASS-Pearson calcu-
lations. Allowing any number of aggregation queries means this algorithm can also work for
MASS-Pearson algorithms with more than three time series in the future.

To make sure all queries from Qa are applied everywhere the subsequences of T are accessed,
MASS-Pearson (Algorithm 1) needs to change in two places: At the SlidingDotProducts- and at
the ComputeSlidingMeanStd algorithm.

After these changes, the result can be found at Algorithm 6.

A note for notation: Some arguments of algorithms have a blue part. These arguments are
named arguments. We use this notation to show how the argument given is used in the called
algorithm if it is otherwise unclear. See the notation section, Section 2.1, for more information
about notations.

Algorithm 6: MASS-Pearson-Agg(T , Qa, Q, r)
Input: T : time series. Qa: array of query arrays to aggregate T with. Q: query of
window size. r: MIN or MAX reducer function, returns index and value of best element.
Output: Index of best position of the window in T . Value of the correlation between Q
and that window.

QT ← SlidingDotProducts(Q, T ) // see [13]

QaE ← ElementwiseProducts(Qa)

QTa ← QT+(QaE · Q)
|Qa|+1

µQ, σQ ← ComputeMeanStd(Q)
M ′T , Σ′T ← ComputeSlidingMeanStdWithAgg(T , m = |Q|, Qa) // Algorithm 7

P ← CalculatePearsonProfile(QTa, µQ, σQ, M ′T , Σ′T , m = |Q|) // uses Formula 4.3

return r(P )
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4.2.2.1 SlidingDotProducts with aggregation

The SlidingDotProducts [13] algorithm takes a time series T and a query Q and returns a new
array QT where each element is a dot product between a subsection of T (of given window size
and thus also |Q|) and Q. A general example of this can be seen in Figure 4.2. We want to modify
it to make sure the result will be an array where each element is the dot product between Q and a
subsection of T , aggregated with all aggregation queries in Qa. In Figure 4.3 an example can be
seen where Qa consists of just one aggregation query. As can be seen in the figure, each value from
a subsection in T is first aggregated by average using Qa before being used in the dot product
with Q.

Original SlidingDotProducts behavior

T : a b c d e

Q : A B

QT : aA+ bB + ... bA+ cB + ...

cA+ dB + ... dA+ eB + ...

Figure 4.2: Sliding dot product QT between
time series T and query Q (window size of 2)

Aggregated SlidingDotProducts
behavior

T : a b c d e

Q : A B Qa : α β

QTa : A ·

a+α
2

+ B ·

b+β

2
+ ...A ·

a+α
2

+ B ·

b+β

2
+ ...

A ·

a+α
2

+ B ·

b+β

2
+ ...A ·

a+α
2

+ B ·

b+β

2
+ ...

Figure 4.3: Sliding dot product QTa between
time series T , aggregated with a one-
dimensional Qa, and query Q (window size of
2)

It is clear what QTa should look like and, luckily, it is also possible to get to this result without
modifying SlidingDotProducts itself. QT can be converted to QTa using Formula 4.6.

QTa =
QT + (QaE ·Q)

|Qa|+ 1
(4.6)

In the Formula 4.6, the aggregated sliding dot product result QTa is calculated using the
‘normal’ sliding dot product result QT , calculated by SlidingDotProducts [13]. The array of
aggregation queries that need to be applied is Qa and QaE is the result of taking the element-wise
product of all the aggregation queries in Qa. To show the formula works, a small derivation is
shown in Figure 4.4, this time, using a two-dimensional Qa.

Firstly, you can see time series T and query Q on the left-hand side of the figure. The window
size is again 2. In this example, Qa consists of two aggregation queries divided by a bold line.
Hence |Qa| is also 2. QT is again calculated by taking the dot product between Q in all its possible
positions in T . QTa calculated similarly, but now again, the values of T are first aggregated by
average with all aggregation queries in Qa. We rewrite all values in QTa to fit inside a single
fraction.

Next, we fill in Formula 4.6 on the right-hand side of the figure using the same values to see if
we get the same result. QaE is, again, the element-wise product of Qa and you can see the result
of what that looks like in the figure. If we next take the dot product of QaE and Q, we get a
single value, as shown in the figure. Finally, we add that value to each value in QT and divide
those by 3, which the value of |Qa|+ 1 in the current example. As can be seen, the result we get
is the same as the rewritten QTa, showing that QTa can also be calculated using QT .

4.2.2.2 Modifying ComputeSlidingMeanStd for aggregation

The second place where the calculation needs to change is at ComputeSlidingMeanStd. However,
while for the sliding means MT it might be possible to apply the aggregation afterward, for
the sliding standard deviations ΣT this is very difficult and perhaps impossible. Hence we need
to modify ComputeSlidingMeanStd itself. See Section 4.1.2.1 and Algorithm 2 for the original
ComputeSlidingMeanStd algorithm.
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QTa derivation

T :

A · a+α+γ+...

3
+B · b+β+δ+...

3
+ ... A · b+α+γ+...

3
+B · c+β+δ+...

3
+ ...

βδ

QaE ·Q = αγA+ βδB + ...

QT+(QaE ·Q)
|Qa|+1 :

aA+αA+γA+bB+βB+δB+...

3

bA+βA+γA+cB+βB+δB+...

3

a b c

Q : A B Qa :
α β
γ δ

QTa :

QTa

QaE : αγ

= αA+ γA+ βB + δB + ...
|Qa| = 2

QT : aA+ bB + ... bA+ cB + ...

rewritten:

aA+αA+γA+bB+βB+δB+...

3

bA+βA+γA+cB+βB+δB+...

3

Figure 4.4: Example to show the derivation of Formula 4.6, so it can be used to get QTa using
QT from Figure 4.2.

Compared to the original ComputeSlidingMeanStd output (MT and ΣT ), where each value in
the mean- and standard deviation array adheres to Formulas 4.4 and 4.5, we want the new ones
(M ′T and Σ′T ) to adhere to Formula 4.7 and 4.8, respectively. In short, each window taken from
time series T first needs to be aggregated by average using all aggregation queries in Qa before
calculating the mean and standard deviation.

To clarify
∑

Qa, seen in the formulas: This represents the element-wise sum of each aggregation
query in Qa. In other words, each array in Qa is aggregated into one by summing up the elements
at the same index in each array. The same element-wise addition happens when this result is
added to a slice of T in both formulas. For more clarification of some of the notation used, see
the notation part in Section 2.1.

M ′[i] =

∑ T [i..i+m]+
∑

Qa

|Qa|+1

m
(4.7)

Σ′[i] =

√√√√∑(
T [i..i+m]+

∑
Qa

|Qa|+1 −M ′[i]
)2

m
(4.8)

We want to be able to calculate the sliding means and -standard deviations without having
to query the time series T for each possible window because then most elements would need to
be queried m times during the calculation. Instead, we want to only have to query each element
one or two times at most to keep the running time constant and use a sums- and squares cache,
similar to the non-aggregated variant of ComputeSlidingMeanStd. For the aggregated means M ′T ,
the fraction can be split up to reuse the calculation for the non-aggregated means MT , for which
we already know it can be calculated entirely using those caches. The calculation to show how
this split-up can be done is shown in Formula 4.9.
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M ′[i] =

∑ T [i..i+m]+
∑

Qa

|Qa|+1

m

=

∑
(T [i..i+m]+

∑
Qa)

|Qa|+1

m
First summing and then dividing is the same as the other way around

=

∑
(T [i..i+m]+

∑
Qa)

m

|Qa|+ 1
Swapping division order

=

∑
T [i..i+m]+

∑
Qa∈Qa

∑
Qa

m

|Qa|+ 1
Distributing sums over each element, since sum(A + B) = sum(A) + sum(B)

=

∑
T [i..i+m]
m +

∑
Qa∈Qa

∑
Qa

m

|Qa|+ 1
Distributing division by m over each element

(4.9)

This means the same sum-cache solution (which provides
∑
T [i..i + m]) can also be applied

to calculate the aggregated sliding means. This can also be done without losing speed since∑
T [i..i+m]
m is the only piece of the formula that is dependent on i. Since this is the same as M [i],

we know this can use the cache. The rest can be pre-calculated once and reused for all is.

For the aggregated standard deviations Σ′T , we would also like to reuse the sum- and squares-
cache,

∑
T [i..i+m] and

∑
T [i..i+m]2 respectively, if possible. The downside is that the formula

for the standard deviation becomes rather large when aggregation is applied. However, in this
expanded form, which is calculated and shown in Formula 4.10, we can look at each individual
term and see how the caches can be applied to ensure we do not have to query full windows from
time series T itself.
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Σ′[i] =

√√√√∑(
T [i..i+m]+

∑
Qa

|Qa|+1 −M ′[i]
)2

m

Σ′[i] =

√
s(i)

m
Splitting up formula

s(i) =
∑(

T [i..i+m] +
∑

Qa

|Qa|+ 1
−M ′[i]

)2

=
∑((

T [i..i+m] +
∑

Qa

|Qa|+ 1

)2

− T [i..i+m] +
∑

Qa

|Qa|+ 1
2M ′[i] +M ′[i]2

)
Distributing square

=
∑(

T [i..i+m]2 + 2T [i..i+m]
∑

Qa + (
∑

Qa)2

(|Qa|+ 1)2
Distributing squares further

−2M ′[i]T [i..i+m] + 2M ′[i]
∑

Qa

|Qa|+ 1
+M ′[i]2

)
=
∑(

T [i..i+m]2

(|Qa|+ 1)2
+

2T [i..i+m]
∑

Qa

(|Qa|+ 1)2
+

(
∑

Qa)2

(|Qa|+ 1)2
Splitting fractions

−2M ′[i]T [i..i+m]

|Qa|+ 1
− 2M ′[i]

∑
Qa

|Qa|+ 1
+M ′[i]2

)
=

∑
T [i..i+m]2

(|Qa|+ 1)2 (a)

+
2
∑

(T [i..i+m]
∑

Qa)

(|Qa|+ 1)2 (b)

+

∑
(
∑

Qa)2

(|Qa|+ 1)2 (c)

Merging down sum

− 2M ′[i]
∑
T [i..i+m]

|Qa|+ 1 (d)

− 2M ′[i]
∑

(
∑

Qa)

|Qa|+ 1 (e)

+mM ′[i]2(f)

(4.10)
For each of the queries, (|Qa| + 1)2 and |Qa| + 1 can be pre-calculated. This value is not

dependent on i and can thus be considered a constant.
The first term, (a), consists of

∑
T [i..i+m]2, which can be obtained by the squares cache.

The second term, (b), is impossible to do with sum- and square caches since it contains a
pairwise product between T [i..i + m] and

∑
Qa. However, summing the pairwise product is the

same as the dot product:
∑

(T [i..i + m]
∑

Qa) = T [i..i + m] ·
∑

Qa.
∑

Qa stays constant for
each i, but as i chances, T [i..i + m] does slide along T . While using the sum- and square caches
might be impossible, we can still use SlidingDotProducts [13] for some extra speed. It can be
called once using T and

∑
Qa and the values calculated can simply be queried using i when this

term is calculated.
The third term, (c), has no components dependent on i, which means the entire component

can be pre-calculated and reused for each i.
The fourth term, (d), contains M ′[i], which we already know can be calculated using just

the caches. Plus, since the standard deviations and means are usually calculated simultaneously,
the results of M ′ can simply be reused for calculating the standard deviations. It also contains∑
T [i..i+m] which can be obtained by the sums cache.
The fifth term, (e), again containsM ′[i], which can be done using caches. It contains

∑
(
∑

Qa),
which also does not depend on i and thus can be pre-calculated and reused.

Finally, the sixth term, (f), consists of just a constant and a value from M ′[i], which we already
know can be given with caches.

Based on these findings, we propose Algorithm 7. The experiments, Section 6.2.3, show that
the algorithm is slower than the non-aggregated variant (Algorithm 2), however, not by much.
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Algorithm 7: ComputeSlidingMeanStdWithAgg(T , m, Qa)
Input: T : time series. m: window size. Qa: array of aggregation queries, each of size
m, to aggregate T with.
Output: Sliding mean- and sliding standard deviation array.

n← |T |
q ← |Qa|+ 1
M ′T , Σ′T ← n−m+ 1 sized empty arras
qaµs ←

∑
Qa∈Qa

Qa

m // each aggregation query’s mean added up

Qas ←
∑

Qa // all aggregation queries aggregated into one by addition

Qasd ← Qas ·Qas // sum of squares of Qas (dot product)

Qass ←
∑
Qas // sum of by-sum-aggregated queries

TQas ←SlidingDotProducts(Qas, T ) // see [13]

sums ←
∑
T [0..m− 1] // initially sum of first window

squares ← T [0..m− 1] · T [0..m− 1] // initially sum of squares of first window (dot product)

for all i ∈ (0..n−m) do
µ← sums/m // calculate mean normally

µ′a ← (µ+ qaµs)/q // apply aggregation to mean

M ′T [i]← µ′a

stdSum← squares/q2

+2TQas[i]/q
2

−2µ′a sums/q
+Qasd/q

2

−2µ′aQass/q
+mµ′2a

Σ′T [i]←
√
stdSum/m

if i < n−m then
sums ← sums− T [i] + T [i+m]
squares ← squares− T [i]2 + T [i+m]2

end if
end for

return M ′T , Σ′T
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4.3 Optimizations for STAMP 3D

Calculating something as heavy as this triple-nested for-loop takes its toll time-wise. So it is all
the more important to apply as many optimizations as possible to make the process more efficient.
Luckily, due to the structure of the problem, there are a couple of possibilities to improve the
algorithms. In this section, we split up the optimizations into vertical and horizontal: Vertical
optimizations (Section 4.3.1) entailing parts of the problem being pre-calculated in a higher level of
the for-loop structure and reused downwards wherever possible. Horizontal optimizations (Section
4.3.2) being where an iteration of a for-loop can provide information to the next iteration at the
same for-loop level, like a cache for sliding dot product calculations. Afterward, we give a brief
overview of all optimizations in place (Section 4.3.3) and we explain how lag bound can also help
to optimize STAMP 3D (Section 4.3.4).

The for-loop structure of the algorithms can be shown as a more generalized version in STAMP-
Pearson-3TS-Generalized (Algorithm 8). We will apply the optimizations to this version of the
algorithm in this section because breaking it up into multiple separate algorithms (as done previ-
ously in this chapter) might over-complicate it. The end result can be seen in Algorithm 10.

Algorithm 8: STAMP-Pearson-3TS-Generalized(TA, TB , TC , m, r)
Input: TA, TB , TC : time series. m: window size. r: MIN or MAX reducer function,
returns the indices, best aggregation method, and value of best window placements.
Output: Indices of best positions of the window in TA, TB , and TC . Aggregation method
used. Value of the best correlation found.

// STAMP-Pearson-3TS (Algorithm 3)

for all QC ∈ AllSubsequences(TC , m) do

// STAMP-Pearson-3TS-Sub (Algorithm 4)

for all QB ∈ AllSubsequences(TB , m) do

// MASS-Pearson-3TS (Algorithm 5)

PA ←MASS-Pearson-Agg(TA, [QB ], QC , r) // Algorithm 6

PB ←MASS-Pearson(TA, QB+QC

2 , r) // Algorithm 1

PC ←MASS-Pearson-Agg(TA, [QC ], QB , r) // Algorithm 6

end for
end for

4.3.1 Vertical optimizations

All vertical optimizations consist of efficiently calculating a set of values in a higher level of the
for-loop structure for reuse downwards.

Here are some that are implemented and tested: Sliding means and -standard deviations
(Section 4.3.1.1) and Sliding dot products (Section 4.3.1.2).

4.3.1.1 Sliding means and -standard deviations

At many points in the algorithm, having a precalculated sliding means and -standard deviations
array can come in handy and save calculations that would otherwise be repeated. At the highest
level, STAMP-Pearson-3TS (Algorithm 3), the sliding means and -standard deviations are calcu-
lated of all three time series.

The calculation of PB in MASS-Pearson-3TS (Algorithm 5) can benefit directly from the
sliding means and -standard deviations of time series TA: MTA

and ΣTA
. These would otherwise
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be calculated inside MASS-Pearson (Algorithm 1) itself anyways, so this saves a lot of work.

The calculation of PC in MASS-Pearson-3TS (Algorithm 5), where a subsection QB of time
series TB is used, can benefit from the sliding means and -standard deviations of time series TB :
MTB

and ΣTB
. Inside Mass-Pearson-Agg (Algorithm 6), the mean and standard deviation of QB ,

µQB
and σQB

, would be calculated anyway, but now it can simply take these values using the
efficiently precalculated ones in MTB

and ΣTB
.

Very similarly, the calculation of PA in MASS-Pearson-3TS (Algorithm 5), where a subsection
QC of time series TC is used, can benefit from the sliding means and -standard deviations of time
series TC : MTC

and ΣTC
. This removes the obligation of having to calculate µQC

and σQC
inside

Mass-Pearson-Agg (Algorithm 6).

All calculations of ComputeSlidingMeanStdWithAgg (Algorithm 7) can benefit from having
the sliding means of the time series T , MT , precalculated. This is because the aggregated sliding

means M ′T can be calculated like M ′T [i] =
MT [i]+

∑
Qa∈Qa

Qa
m

|Qa|+1 (as derived from Functions 4.9 and 4.4).

This means that the calculation of PA in MASS-Pearson-3TS (Algorithm 5) can also benefit from
having MTA

precalculated, since ComputeSlidingMeanStdWithAgg (Algorithm 7) is used inside
Mass-Pearson-Agg (Algorithm 6) to calculate the sliding means and -standard deviations of time
series TA aggregated with query QB : M ′TAQB

and Σ′TAQB
.

The calculation of PC in MASS-Pearson-3TS (Algorithm 5) can benefit from having the ag-
gregated sliding means and -standard deviations of time series TA and query QC : M ′TAQC

and
Σ′TAQC

. These can be calculated once for each window in time series TC at the for-loop level of
STAMP-Pearson-3TS-Sub (Algorithm 4) and reused downwards. As a bonus, like before, MTA

can again be used to save some time when calculating.

Finally, the STAMP-Pearson-3TS algorithm usually is run for many groups of three. A single
time series occurs in multiple groups. Calculating the sliding means and -standard deviations for
each time series each time STAMP-Pearson-3TS is called is a waste of computing power. The
algorithm can benefit a lot from having those calculated once for each time series before and have
these values supplied to the algorithm itself.

4.3.1.2 Sliding dot products

Both the calculation of PA and PC in MASS-Pearson-3TS (Algorithm 5) can benefit from the dot
product between the current query QB and query QC because in these two cases, this corresponds
to the (QaE · Q) part in MASS-Pearson-Agg (Algorithm 6), meaning it does not have to be
recalculated. This value can be efficiently calculated using SlidingDotProducts [13] between time
series TB and query QC , QCTB , at the STAMP-Pearson-3TS-Sub (Algorithm 4) for-loop level and
provided to the level below one at a time for each query QB .

The calculation of PA in MASS-Pearson-3TS (Algorithm 5) can benefit from having the sliding
dot products between query QC and time series TA, QCTA, precalculated. This value represents
QT in Mass-Pearson-Agg (Algorithm 6) and thus prevents the value from being recalculated
multiple times. It can be calculated once for each query QC at the STAMP-Pearson-3TS-Sub
(Algorithm 4) for-loop level and provided downwards.

4.3.2 Horizontal optimizations

Horizontal optimizations consist of providing information from each iteration to the next iteration
on the same for-loop level. These optimizations do take away the ability for the algorithm to be
split up into multiple threads. This is because the previous iteration needs to happen before the
current to get the information in time. Without horizontal optimizations, each iteration could, in
theory, run in parallel. The one horizontal optimization which is tested and implemented is the
sliding dot products cache, for which the concept is explained in Section 4.3.2.1 and its application
in Section 4.3.2.2.
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4.3.2.1 Sliding dot products cache concept

Having the result of SlidingDotProducts(Qi−1, T )[13] is highly beneficial for calculating the result
of SlidingDotProducts(Qi, T ) more efficiently. The speed gain is best seen when the window size is
relatively large. The concept of having a sliding dot products cache is also explored in the second
Matrix Profile paper [17] in the STOMP algorithm. This concept redesigned by us to work for our
3TS variant as well. To explain how, we give a small mathematical explanation in Formula 4.11.

Say we have a time series T and two adjacent queries Qi−1 and Qi:

T =[a, b, c, d, e]

Qi−1 =[α, β, γ]

Qi =[β, γ, δ]

We can then see that the sliding dot products results, Qi−1T and QiT , have some overlap:

Qi−1T =[αa+ (βb+ γc), αb+ (βc+ γd), αc+ βd+ γe]

QiT =[βa+ γb+ δc, (βb+ γc) + δd, (βc+ γd) + δe]

This means that each iteration (except for the first) each element in QT can be expressed using
an element from the previous QT cache, the previous query Qi−1, query Qi, and the time series
T :

QiT [i] = Qi−1T [i− 1]−Qi−1[0] T [i− 1] +Qi[m− 1] T [i+m− 1]

(4.11)

This idea is applied to create UpdateQTCache (Algorithm 9). As can be seen, for the first
iteration, when the cache is still empty, the algorithm simply uses SlidingDotProducts [13] to
initialize the cache. For the next iterations, from back to front, each value in the cache is updated,
finishing off with calculating the first value using a normal dot product.

Algorithm 9: UpdateQTCache(QTcache, Q, T , Qprev)
Input: QTcache: n−m+ 1 sized cache array that will be updated. T : time series of size
n. Q: query of window size. Qprev: previous query (only if QTcache is not empty).

if QTcache is empty then
QTcache ← SlidingDotProducts(Q, T ) [13]

else
// Note: for-loop moves downwards

for all i ∈ (n−m .. 1) do
QTcache[i]← QTcache[i− 1]−Qprev[0] T [i− 1] +Q[m− 1] T [i+m− 1]

end for
QTcache[0]← Q · T [0 .. m− 1]

end if

4.3.2.2 Applying sliding dot products cache

The calculation of PC in MASS-Pearson-3TS (Algorithm 5) can take advantage of the sliding
dot products cache of time series TA and the queries QB from time series TB : QBTAcache. The
value of QT inside MASS-Pearson-Agg (Algorithm 6) can simply be set to QTcache after running
UpdateQTCache (Algorithm 9) on it in the same algorithm. The previous query QBprev can be
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stored at the for loop level of STAMP-Pearson-3TS-Sub (Algorithm 4) and provided to the lower
algorithms, while QBTAcache can be stored at the top-most level.

The sliding dots products between time series TA and query QC , QCTA, and TB and query QC ,
QCTB , at the STAMP-Pearson-3TS-Sub (Algorithm 4) level in use by the vertical optimization
at Section 4.3.1.2 can both also implement the new sliding dot products cache. By storing the dot
products cache of both, QCTAcache and QCTBcache, again at the top for-loop level, as well as the
previous query QCprev, the calculations can be sped up quite a bit.

4.3.3 Vertical- and horizontal optimizations overview

With all these optimizations applied to STAMP-Pearson-3TS-Generalized (Algorithm 8), we pro-
pose STAMP-Pearson-3TS-Generalized-Opt (Algorithm 10).

A note for notation: Some arguments of algorithms have a blue part. These arguments are
named arguments. We use this notation to show how the argument given is used in the called
algorithm. In most cases this means that the blue value does not have to be calculated anymore
inside the called algorithm as it has been calculated already. See the notation section, Section 2.1,
for more information about notations.

Algorithm 10: STAMP-Pearson-3TS-Generalized-Opt(TA, TB , TC , m, r, MTA
, ΣTA

,
MTB

, ΣTB
, MTC

, ΣTC
)

Input: TA, TB , TC : time series. m: window size. r: MIN or MAX reducer function,
returns the indices, best aggregation method, and value of best window placements.
Σs and Ms: Precalculated sliding means and -standard deviations for each time series.
Output: Indices of best positions of the window in TA, TB , and TC . Aggregation method
used. Value of the best correlation found.

// STAMP-Pearson-3TS (Algorithm 3)

QCTAcache, QCTBcache, QBTAcache ← Empty arrays of (respective) size |T∗| −m+ 1
QCprev ← NIL
for all QC , iC ∈ AllSubsequencesWithIndex(TC , m) do

// STAMP-Pearson-3TS-Sub (Algorithm 4)

QCTA ← UpdateQTCache(QCTAcache, QC , TA, QCprev)
QCTB ← UpdateQTCache(QCTBcache, QC , TB , QCprev)
M ′TAQC

, Σ′TAQC
← ComputeSlidingMeanStdWithAgg(TA, m, [QC ], MTA

)
QBprev ← NIL
for all QB , iB ∈ AllSubsequencesWithIndex(TB , m) do

// MASS-Pearson-3TS (Algorithm 5)

PA ←MASS-Pearson-Agg(TA, [QB ], QC , r, QaE ·Q = QCTB [iB ], QT = QCTA,
µQ = MTC

[iC ], σQ = ΣTC
[iC ], MT = MTA

) // Algorithm 6

PB ←MASS-Pearson(TA, QB+QC

2 , r, MT = MTA
, ΣT = ΣTA

) // Algorithm 1

PC ←MASS-Pearson-Agg(TA, [QC ], QB , r, QaE ·Q = QCTB [iB ], µQ = µQB
, σQ = σQB

,
M ′T = M ′TAQC

, Σ′T = Σ′TAQC
, QTcache = QBTAcache, QBprev = QBprev) // Algorithm 6

QBprev ← QB
end for
QCprev ← QC

end for
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4.3.4 Lag bound

Lag bound, also called enveloping, can be used to limit the maximum distance that windows can
be apart during calculations. Depending on the domain, lag bound might be applied to greatly
limit the number of calculations necessary to get a satisfactory result. For instance, it might not
be very meaningful to find a correlation between a stock in January and another in September.

In this section, we first explain the concept of lag bound and the effect it has (Section 4.3.4.1).
Afterward, we give some notes we faced when integrating it (Section 4.3.4.2).

4.3.4.1 Concept

The concept of applying lag bound, denoted by l, to the 3TS STAMP Pearson algorithms consists
of ‘cutting off’ pieces from the other time series while sliding the window over one. See Figure 4.5
for an example.

Lag bound concept example

TA :

TB :

TC :

Figure 4.5: m = 2, l = 1

In the time series TC , the window (in green) is slid over the entire time series, but at each
position, all slots in time series TB that are more than the lag bound away are cut off (colored
gray). The window in these time series will not use the gray slots. This makes time series TB
considerably smaller and removes a lot of positions.

Now, when the window is slid over the remaining piece of time series TB , every slot that is
more than the lag bound away from the window in time series TC ánd the window in time series
TB is cut off, leaving, in this example, just 3 slots or 2 window positions in time series TA that
have to be considered.

Implementing this thus lowers the total amount of window positions from (n−m+ 1)3 = 343
to just 43 in this specific example.

While it might be possible to provide a long and cumbersome formula to give how many
positions are saved for each time series length, window size, and lag bound value, it will be a lot
clearer to show how much time it can save when using it the calculations. This is done in the
experiments section, Section 6.2.2.

4.3.4.2 Note on integration

The combination of lag bound with the STAMP-Pearson-3TS algorithms consists of providing
lower for-loop levels with smaller pieces of the time series. This will ensure that fewer window
positions will be used there. Due to the time series being shorter and potentially starting at
another index than originally, the new starting index must be passed on to the lower for-loop
levels as well. This is to make sure that the correct values are taken from MTB

, ΣTB
, MTA

, ΣTA
,

M ′TAQC
, Σ′TAQC

(Section 4.1.2.1), QCTA (Section 4.3.1.2), QCTBcache, and QBTAcache (Section
4.3.2.2).

4.4 Group-by-Key Method

The chapter, up to here, describes how the lagged correlation within a group of three can be
calculated. What it does not describe yet, however, is how these groups of three can efficiently
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be generated in a data engineering toolkit, such as Apache Spark1, when given a dataset of many
time series. In this section, we propose a technique to do so in an efficient and distributed manner.

To do this, we can take advantage of the groupByKey function, present in most toolsets, and
generate all possible groups of any desired group size. Our method works by building an imaginary
matrix of ‘group size’ dimensions of length ‘amount of time series in the set ’ for each dimension.
After this, each slot is given a unique index, while those which are not needed are omitted. This
includes self-comparisons or those slots that already are paired up.

Next, for each time series in the set, the same amount of key-value pairs are created, namely
for each row, column, etc. in the table of that time series (see Table 4.2 for an example in 2D).
The key in this pair is the number from the table and the value is (a reference to) the time series
itself.

Now to find the groups of time series, simply perform groupByKey on all the key-value pairs,
which can be done very efficiently and in a distributed fashion in a toolkit like Apache Spark2.
This will group all the values (time series) for pairs with the same key.

After using this method, the groups formed can also be distributed evenly across the workers,
which can divide the upcoming calculations effectively.

To be specific, the only values accepted for the matrix (which form this pyramid shape) are
those for which the following holds, where the tuple I represents a multidimensional index for the
matrix (both I and the matrix are assumed to start their index at 0, which corresponds best to
the final implementation):

Index I is allowed in the matrix iff ∀j∈{0,...,|I|−1} ∀k∈{j+1,...,|I|)} Ij − Ik > 0 (4.12)

The value for the specific index is defined using the following formula, again where I is a tuple
representing a multidimensional index and g represents the desired group size:

value(I, g) =
∑

j∈{0,...,|I|−1}

Ij · gj (4.13)

The result of creating a table using those two formulas can be seen in Table 4.2, where there
are 5 time series in the set and groups of 2 are to be found (hence it being a 2D matrix). The
keys for the time series C are highlighted.

A B C D E

A
B 5
C 10 11
D 15 16 17
E 20 21 22 23

Table 4.2: 2D matrix example

The two formulas (4.12, 4.13) were formed by first looking at a 2D example, as seen in the table
(4.2) and then seeing what it would look like in 3D and so on. The formulas are also tested and
proven to work for higher dimensions, but this is difficult to show on paper and prove theoretically.

Since this method already evenly divides the work so well, as is found when using it implemented
for Apache Spark2, it is easy to not look further at other methods. That said, the method does
have its downsides. For instance, when there are a lot of time series and groups of large size need
to be calculated, a lot of work and storage may still be required to save all the indices formed.
Whether there exist faster or more efficient methods is outside the scope of this thesis.

1https://spark.apache.org/
2https://spark.apache.org/
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Chapter 5

Can we skip window placements
to find lagged correlations faster?

One way to further increase the efficiency of finding lagged correlations is by skipping calculations.
Since we are only interested in the best correlation between three time series at certain window
positions, any positions which would result in an as-good or worse correlation can be skipped.

In this chapter, we explain what we discovered trying to save calculations by skipping certain
window positions. Firstly, we look at skipping straight lines (Section 5.1), next skipping repeating
patterns or motifs (Section 5.2). We also look at how the windows to be skipped can be marked
(Section 5.3) and apply this to both techniques to provide algorithms (Sections 5.4 and 5.5).
After that, we apply simplification to improve both algorithms at the cost of accuracy (Section
5.6). Finally, we explain how this skipping of window positions can be applied to the (optimized)
STAMP-Pearson-3TS algorithms of the previous chapter (Section 5.7).

5.1 Straight line skipping

When a time series contains a straight piece larger than the window size, all window placements
where the window is completely inside the straight line will result in the same correlation value.
We show an example of this using two generic time series TA and TB in Figure 5.1. TA consists of
a straight line and TB can contain any values.

Two generic time series

TB :

TA : a+ 1b a+ 2b a+ 3b a+ 4b a+ 5b

c d e f g

Figure 5.1: Windows TA1 and TB2 are highlighted
in green.

Using a window size of 3, there are three possible window positions in TA: TA1 = [a+ 1b, a+
2b, a+3b] (highlighted in green), TA2 = [a+2b, a+3b, a+4b], and TA3 = [a+3b, a+4b, a+5b]. We
now calculate the Pearson correlation for all these window positions and TB2

= [d, e, f ] in Formula
5.1.

In terms of notation: Simple operations on series, lists, and arrays are considered element-wise.
For example, A+ 1 would result in a new array similar to A but with each element being 1 larger.
For more information on notation, see Section 2.1.
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pearson(X,Y ) =

∑
(X −X)(Y − Y )√∑

(X −X)2
√∑

(Y − Y )2
=

∑
(X −X)(Y − Y )

σXσY

TA1
=
a+ 1b+ a+ 2b+ a+ 3b

3
= a+ 2b

σTA1
=
√

(a+ 1b− (a+ 2b))2 + (a+ 2b− (a+ 2b))2 + (a+ 3b− (a+ 2b))2 =
√

2b

TA2 =
a+ 2b+ a+ 3b+ a+ 4b

3
= a+ 3b

σTA2
=
√

(a+ 2b− (a+ 3b))2 + (a+ 3b− (a+ 3b))2 + (a+ 4b− (a+ 3b))2 =
√

2b

TA3
=
a+ 3b+ a+ 4b+ a+ 5b

3
= a+ 4b

σTA3
=
√

(a+ 3b− (a+ 4b))2 + (a+ 4b− (a+ 4b))2 + (a+ 5b− (a+ 4b))2 =
√

2b

TB2 =
def

3

pearson(TA1 , TB2) =

∑
(TA1

− TA1
)(TB2

− TB2
)√

2bσTB2

=

∑
([a+ 1b, a+ 2b, a+ 3b]− a− 2b)([d, e, f ]− def

3 )
√

2bσTB2

=

∑
[−b, 0, b][d− def

3 , e− def
3 , f − def

3 ]
√

2bσTB2

pearson(TA2
, TB2

) =

∑
(TA2 − TA2)(TB2 − TB2)√

2bσTB2

=

∑
([a+ 2b, a+ 3b, a+ 4b]− a− 3b)([d, e, f ]− def

3 )
√

2bσTB2

=

∑
[−b, 0, b][d− def

3 , e− def
3 , f − def

3 ]
√

2bσTB2

pearson(TA3
, TB2

) =

∑
(TA3

− TA3
)(TB2

− TB2
)√

2bσTB2

=

∑
([a+ 3b, a+ 4b, a+ 5b]− a− 4b)([d, e, f ]− def

3 )
√

2bσTB2

=

∑
[−b, 0, b][d− def

3 , e− def
3 , f − def

3 ]
√

2bσTB2

(5.1)
As can be seen, the resulting Pearson correlation is exactly the same for all three window

positions, meaning that if we calculate just one, we would not have to calculate the others anymore.
The downside to this approach, however, is that it only works if the window size is smaller

than the straight line piece in the time series, which we did not encounter often, aside from data
with a lot of interpolation. We speculate that most datasets, especially stock data, fluctuate a lot
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from one point in time to the next. Aside from that, large window sizes are also more commonly
used, since they can sometimes indicate better whether there is a correlation between time series.

5.2 Motif skipping

Since long straight pieces do not occur often in time series of real-world data, we decided to also
take a look at other repeating patterns. If the same pattern occurs multiple times in the same
time series, all window positions fully inside this pattern only need to be checked once since the
correlation would be the same inside a different instance of this pattern. To detect these repeating
patterns or motifs, we once again look at the Matrix Profile [13]. This time, however, we do not
need to modify it, since self-similarity is exactly what the Matrix Profile was built for. In Figure
5.2 we give an example of a small time series with repeating patterns to show how the (Pearson)
Matrix Profile detects them. We did choose to use a Pearson result instead of the Euclidean
distance, since this normalizes the values between −1.0 and 1.0, making them easier to work with.

Time series with Pearson Matrix Profile
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Figure 5.2: Time series (blue) and accompanying Pearson Matrix Profile (red) calculated with a
window size of 5.

As can be seen, the Pearson Matrix Profile becomes 1.0 each time a repeating pattern occurs
in the time series and else 0.0 (there is a small error at index 85, which can occur). Aside from
this, the Matrix Profile also supplies a list of window indices which, for each item in the list, points
at another window index in the time series where the pattern is similar. This can be any other
instance of the same motif or even the same instance in some cases.

Using this indices list and the Pearson Matrix Profile we can utilize the clustering UnionFind
algorithm to build a list of repeating patterns where, for each, only one instance needs to be
checked to find the best correlation.

It does need to be noted that the amount of skippable window placements depends on the
window size. This can also be seen in the relevant experiments, Section 6.3.2. However, when a
data analyst is trying to find a good window size, it could be interesting to determine the window
size based on how many positions can be saved using this approach.

5.3 Marking which window positions to skip

One way to mark which window positions to skip without having to store extra indices is by
simply removing parts of the data in the time series itself. In practice, this is done by setting
them to NaN , as that value can still be stored in a primitive double array. If a window contains a
NaN value, it is skipped in the calculations. An example of this can be seen in Figure 5.3. With
the sliding windows, however, it is not that straightforward which positions of the window can
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be skipped when a repeating part or straight line occurs. This is why we provide some further
explanation.

Time series with removed values

TA :

Figure 5.3: Windows containing any removed (gray) data points are skipped (red example), while
others are still calculated (green example).

Removing values in middle

101010... 9 8 7 6 5 4 4 ...10

101010... 9 6 5 4 4 ...10

Figure 5.4: Blue: Straight piece longer than 2m − 1 where two values can be removed. Green:
Window which when calculated covers the entire straight piece.

Note that the examples, given in this section, only cover the straight line pieces skipping, but
they also apply to the motif skipping. It might however be easier to see how it works with straight
lines.

In Figure 5.4, you can see part of a time series with a straight line inside (blue). Of that line,
only one window position needs to be kept to make sure the best correlation can still be found if
it exists anywhere in this line piece. So, we keep the last m (window size) values of the piece (seen
in green). We can, however, not remove the rest of the piece entirely. This is because window
positions like [10, 10, 9] can still result in the best correlation. This is why m − 1 values at the
start of the piece need to be kept. As a result of this, only for each section larger than 2m − 1
can values be removed. Although, the positions saved for each of these sections are m+ r − 1. r
being the number of consecutively removed elements.

Removing values at the start

10 9 8 7 6 5 4 4 ...10

6 5 4 4 ...

Figure 5.5: Blue: Straight piece longer than m where values can be removed. Green: Window
which when calculated covers the entire straight piece.

If a section touches the beginning or end of the time series, more positions can be saved, since
those m− 1 values are not needed. See Figure 5.5 and 5.6. Depending on the size of the piece, all
but m window positions can be skipped.
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Removing values at the end

10 9 8 7 6 5 410... 10

10 9 810... 10

Figure 5.6: Blue: Straight piece longer than m where values can be removed. Green: Window
which when calculated covers the entire straight piece.

5.4 Straight line skipping algorithm

Now that we know which positions to skip and how to mark them, we can provide an algorithm
for the line skipping approach, explained in Section 5.1. Algorithm 11 scans over the time series
T , keeping track of the current slope. If the slope ends, the algorithm checks whether the slope
touched the start or end. If the slope touches the start of the time series, all but the last m values
inside the slope are set to NaN . If the slope touches the end, all but the first m values inside are
set to NaN . Finally, if the slope touches neither, all but the first m− 1 and last m values inside
are set to NaN .
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Algorithm 11: MarkStraightLinesSkippable(T , m)
T : Time series, m: Query or window size

sstart ← 0
send ← 1 // inclusive

∆← T [0]− T [1] // angle of current slope

for all i ∈ (1 .. |T | − 1) do
// difference between current and next value, ∞ for final round

δ ← if (i = |T | − 1) ∞ else T [i]− T [i+ 1]

if δ = ∆ then
// section continues

send ← i+ i
else

// section ends, check if this section was long enough to cut something out

size← send − sstart
if size ≥ m then

// if slope touches end of time series, set end to NaN, else set middle of slope to NaN

if send = |T | − 1 then
for all j ∈ (sstart +m .. send) do
T [j]← NaN

end for
else

for all j ∈ (sstart +m− 1 .. send −m) do
T [j]← NaN

end for
end if

// if slope touches start of time series, set start to NaN

if sstart = 0 then
for all j ∈ (sstart .. sstart +m− 2) do
T [j]← NaN

end for
end if

end if

// start new slope
sstart ← i
send ← i+ 1
∆← δ

end if
end for
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5.5 Motif skipping algorithm

Applying the marking and skipping of positions in the time series using motif detection (described
in Section 5.2) also requires a bit more explanation. Algorithm 12 shows how we applied it in
practice.

The algorithm takes, aside from the time series T and the window size m, also a Matrix Profile
precision p. This precision is the value the Matrix Profile needs to be above for the corresponding
section to be marked as a motif, i.e. a part that is repeated elsewhere in the series.

When run, the algorithm first uses the normal Matrix Profile [13] algorithm modified to give
Pearson correlation on the supplied time series. After collecting motif instances (subsequences in
the MP with values all larger than p), UnionFind (Algorithms 13 and 14) is used to find clusters of
motif instances that point at each other. Often, motif instances point at multiple other instances.
Hence, only the one it points at most is recognized as a ‘link’ of a cluster.

After forming the clusters of motif instances (each cluster representing a motif), all but one
instance of each motif need to be partially set to NaN . We make sure that if a motif instance
touches the beginning or end of the time series it has the priority of being partially set to NaN ,
as that saves the most window placements. One notable difference from the straight line skipping
algorithm is that for every piece that is marked to be skipped, only m− 1 values need to be kept
at both ends of the piece (unless it is situated at either end of the time series). In the straight
line skipping algorithm, the m values were used to represent the entire skipped section. For motif
skipping, the section is represented elsewhere, in another instance of the same motif.
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Algorithm 12: MarkRepeatingMotifsSkippable(T , m, p)
T : Time series, m: Query or window size,
p: precision (in terms of correlation, so at most 1.0, usually 0.9)

// Using [13] with MP values converted to Pearson

mpp, indices← MatrixProfilePearson(T , m, MAX)
motifInstances← All non-overlapping, as long as possible subsections of mpp that are
entirely ≥ p

Filter motifInstances to only keep the ones that are at least of size 2m− 1 or, if they touch
the start or end, at least of size m.

// Use UnionFind to find clusters of motif instances

clusterIndices← Array of size |motifInstances| filled with −1
for all i ∈ (0 .. |motifInstances| − 1) do

// First collect the indices the motif indices are pointing at using the indices array

pointingAt← motifInstances[i].map(it −→ indices[it])

// Motif instances often point at multiple others. We try to find the other instance it points at

most

bestJ , bestCount← −1
for all j ∈ (0 .. |motifInstances| − 1) do

// We’re only interested in comparing motifs with others of same size

if i = j then continue
if |motifInstances[i]| 6= |motifInstances[j]| then continue

count← count how many of pointingAt are in motifInstances[j]
if count > bestCount then
bestJ ← j
bestCount← count

end if
end for
// Register the link between the current index and the one it points at most in clusterIndices

using UnionFind

if bestJ 6= −1 then Union(clusterIndices, i, bestJ) // Algorithm 13

end for

motifs← List of motifs (motif = list of motif instances) based on their index matching in
clusterIndices[index]
Sort each motif in motifs such that the motif instances touching the start or back of time
series are not first // makes sure the most highest number of values are removed

// Remove all but one occurrence of motif from the time series

for all motif ∈ motifs do
for all i ∈ (1 .. |motifs| − 1) do

// Take out parts of motif based on its position in T

if motif [i].last() = |T | − 1 then
Set all but first m− 1 of motif to NaN in T .

else
Set all but first m− 1 and last m− 1 of motif to to NaN in T .

end if
if motif [i].first() = 0 then

Set all but last m− 1 of motif to NaN in T .
end if

end for
end for
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Algorithm 13: Union(P , x, y)
P : Parent integer array (initially filled with -1), x: integer to match up with y, y: integer
to match up with x

x must be different from y
xSet←Find(P , x) // Algorithm 14

ySet←Find(P , y) // Algorithm 14

P [xSet]← ySet

Algorithm 14: Find(P, i)
P : Parent integer array (initially filled with -1), i: integer for which to find the cluster
returns: the index of the cluster i belongs to

if P [i] = i | P [i] = −1 then
return i

else
return Find(P , P [i])

end if

5.6 Simplification

As can be seen in the experiments (Sections 6.3.1 and 6.3.2), both the straight line skipping
(Section 5.1) and motif skipping (Section 5.2) could be more effective in practice, especially for
larger window sizes. This is likely because real data is more often highly volatile and thus long
straight pieces and identical motifs are uncommon.

One possible way to tackle this is by simplifying the data before searching for repeating patterns
to skip and searching for lagged correlations. Note that the result of this is not exact anymore; it
becomes an approximation of the best lagged correlation. There are many simplification algorithms
that are applicable here, including the Ramer-Douglas-Peucker [10, 3] algorithm. This algorithm
works by removing points from the graph while the resulting graph is still similar enough (the
Hausdorff distance compared to the original is smaller than a certain ε). An example of the effect
of this algorithm can be seen in Figure 5.7.

Simplification using RDP
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Figure 5.7: Blue: Original time series. Red: Ramer-Douglas-Peucker simplified time series.

This algorithm is both useful for the straight line skipping, since straight lines are more common
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by removing points, and also for motif skipping, since simplifying the graph means there is less
noise and thus the Matrix Profile will produce clearer results.

Results of applying these simplifications can be found in the experiments (Sections 6.3.3 and
6.3.4).

5.7 Applying skipping to STAMP-3TS-Pearson

To use the window skipping in the context of this thesis, they have to be able to be applied to the
STAMP-3TS-Pearson algorithms from the previous chapter. This does come with some hurdles,
as the algorithm is already very optimized.

Firstly, when calculating the lagged ternary correlation, the skipping of windows cannot be
applied to time series TA, since that time series is used in its entirety in the Fast Fourier Trans-
form part of the SlidingDotProducts algorithm [13]. The negative impact of this can however be
minimized by ordering the three time series on the amount of NaN values contained in them. The
time series with the most values removed becomes TC , the next TB and the one with the fewest
NaN ’s will have to be replaced by its original version (with all values intact) and become TA.

The (aggregated) sliding means and -standard deviations (Section 4.1.2.1) also suffer in per-
formance from having pieces of the time series set to NaN since they use a sliding window to
save calculations. If they encounter a NaN value, they have to start over and calculate the mean
and standard deviation using all the values in the window again (instead of simply updating the
sliding mean and standard deviation using a single new one). Depending on how many pieces
are set to NaN , the decision can be made to give the sliding means and -standard deviations
the unmodified time series, as that will result in a shorter running time. In the experiments, this
decision is always made.

The same holds for the sliding dot product optimization (Section 4.3.2.1), which also profits
from the calculations of the previous window to calculate the current. For this, in the experiments,
the decision is also always made to provide an unmodified time series.

Finally, we need to look at the combination of the lag bound optimization (Section 4.3.4) and
window skipping. This fix is only relevant for the straight-line skipping. When marking the middle
of a straight piece NaN , the straight line skipping algorithm usually leaves the last m values to
represent the correlation values for the entire straight piece. However, since lag bound can cut off
the time series at any point, it might be the case that these last m values are (partially) cut off
from the time series, meaning that a part of the time series is left unprocessed. A simple fix for
this is to add a single value from the original time series to the first m− 1 values already present
at the start of the section. This makes sure that the correlation value of the entire straight piece
can still be calculated.

A similar fix is needed for the motif skipping. If a motif instance representing a skipped one
is cut off by the lag bound, one of the motif instances inside the lag bound must be restored for
the result to be valid.
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Chapter 6

Experiments

To demonstrate the effectiveness of the proposed solutions to the two research sub-problems, we
provide several experiments.

In this chapter, we first go over the experimental setup (Section 6.1), which includes the
technical details and tools used to implement the algorithms and run the experiments. Next we
give a brief summary of the results in Section 6.1.4. The experiments regarding the first problem
can be found in Section 6.2. This includes the experiments themselves, as well as an interpretation
of the results. The same can be found for the second problem in Section 6.3.

6.1 Experimental setup

To explain how the experiments are executed, in this section we go over the specifications of
the device used to run the experiments (Section 6.1.1) and how the data for the experiments is
gathered (Section 6.1.2). Next, we go over how the experiments and algorithms are implemented
and the tools used (Section 6.1.3).

6.1.1 Computer

All experimental tests are run on a Lenovo Thinkpad W541 with an Intel Core i7-4710MQ CPU
(2.5 GHz x 8), 22 GiB of DDR3 RAM at 33 MHz (+8 GiB of swap memory on the SSD), Samsung
860 EVO SSD (3B6Q), running Arch Linux (kernel version 5.13.13.arch1-1).

6.1.2 Dataset

The dataset used to run the experiments consists of stock data in the year 2018. We use two
differently pre-processed versions of the dataset.

The first consists of the closing prices of all stocks aggregated by average per day. The days
that did not have much data (weekends, holidays) were dropped. After this, all the stocks that did
not have an average value for each of these days were dropped too. Stocks that looked erroneous
when plotted were dropped manually as well. The end result was a relatively small data set of 80
time series of size 252. However, while small, it contains realistic data (no interpolation) and it
proves useful for testing the algorithms on a small scale and with same-length time series.

The second pre-processed version of the dataset aims to provide longer time series and of
different lengths. It contains all days of the year and the data is aggregated by average closing
price per hour. Missing values in the time series are linearly interpolated. This leads to 2182 time
series of sizes ranging between 674 and 8760 (although, most are 8000+).
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6.1.3 Implementation

The first part of the implementation is about reading and (pre-)processing the dataset. Apache
Spark1 was chosen to help doing this job. This library was chosen because it enables us to parse
and manage large amounts of data easily, while also giving us the ability to distribute the work
evenly across multiple threads, or even, multiple computers. The implementation of the algorithms
in the thesis is not dependent on Spark itself. It can be run in any JVM (Java Virtual Machine)
environment. We, however, use Spark for the experiments to parse the data, create all the possible
groups and divide the work evenly in 8 threads.

The programming language chosen for Spark and the rest of the implementation was Jetbrains’
Kotlin2. It can run on the JVM, similar to Java and Scala, and can thus interoperate freely with
Kotlin, Scala, and Java libraries. The language was chosen for its conciseness, readability, features,
and decreased amount of boilerplate code compared to more traditional languages, like Java.

Because Apache Spark at the time of writing only officially supports Scala, Java, R, and
Python, the unofficial Kotlin Spark API by Jetbrains3 was used to apply more of the advantages
of the language to Spark. This includes, among other things, better support for lambda functions,
overloaded operators, and support for Kotlin’s data classes to represent types in Datasets. During
this research, many contributions were made to this open-source project, helping it to a 1.0 release4.

Many of the algorithms proposed in this research involve vector- or array calculations. For
this purpose, the 64-bit floating-point arrays of Jetbrains’ Viktor5 Kotlin library were used. As
described by the library authors, the library brings a couple of Numpy6 features to Kotlin. It
provides Intel SIMD acceleration for some operations, like the dot-product and other element-wise
calculations, as well as some syntactical features.

For the sliding dot product part of the algorithm, a couple of FFT (Fast Fourier Transform
libraries) were tested, many using native code, using a JNI (Java Native Interface), to speed up
calculations. However, as most of the calculations involve arrays that are not that large, it turned
out that keeping the arrays within the JVM was faster than copying them over and back from
native arrays. The Java library JTransforms7 was chosen to handle the FFT calculations because
it is fast, open-source, and purely Java, meaning there is no speed loss for using a JNI to copy
arrays to native ones.

Most plots in the paper are created using the Charts.kt8 library using their provided student
license. Other considered libraries were Plotly.kt9 and Jetbrains’ Lets-Plot for Kotlin10. Charts.kt
was chosen for its more Kotlin-esque approach and descriptive, strongly-typed notation. The other
two libraries are essentially Python ports and are promoted to be used in Jupyter notebooks. This
results in code that prefers runtime failure above compilation, making debugging a lot harder.
Charts.kt is built upon Data2Viz11, an open-source multiplatform Kotlin data visualisation tool-
box. During the research, contributions were also done, bringing SVG rendering capabilities to
the project.

All relevant implementations, algorithms, and source code are made available at https://

github.com/Jolanrensen/EfficientlyDiscoveringTernaryLaggedCorrelations.

6.1.4 Summary of results

First problem The experiments show that the STAMP-Pearson-3TS algorithm is faster than
a naive algorithm (described in Section 6.2.1), but not for small window sizes. The length of

1https://spark.apache.org/
2https://kotlinlang.org/
3https://github.com/JetBrains/kotlin-spark-api
4https://blog.jetbrains.com/kotlin/2021/07/kotlin-api-for-apache-spark-1-0-released/
5https://github.com/JetBrains-Research/viktor
6https://numpy.org/
7https://sites.google.com/site/piotrwendykier/software/jtransforms
8https://charts-kt.io/
9https://github.com/mipt-npm/plotly.kt

10https://github.com/JetBrains/lets-plot-kotlin
11https://github.com/data2viz/data2viz
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the time series influences the computation time similarly for both STAMP-Pearson-3TS and the
naive algorithm. Lag bound has a very large impact on the running time (described in Section
6.2.2). The tighter it is, the shorter the running time. The running time of the sliding means
and -standard deviation algorithms is shorter than the one with aggregation (described in Section
6.2.3), but this is likely a necessary sacrifice. Both versions are similarly affected by time series
size and similarly unaffected by the window size.

Second problem The experiments show that the straight line skipping method (from Section
5.1) cannot skip a large number of window positions in all types of data (described in Section 6.3.1).
This difference is clearly visible between the first dataset (where almost no window positions can
be skipped) and the second dataset (where quite a few can be skipped). The number of window
positions that can be skipped decreases as the window size increases. motif skipping (from Section
5.2) is slower than straight line skipping (as described in Section 6.3.2). It works best using a high
precision value and it has a sweet spot for a window size in terms of how many window positions
can be skipped. After the sweet spot, the number of window positions that can be skipped also
decreases as the window size increases. RamerDouglasPeucker simplification (from Section 5.6)
works to make straight line skipping faster in almost all cases (as described in Section 6.3.3).
However, it does not work to make motif skipping faster (as described in Section 6.3.4). The
more window placements can be skipped, the faster STAMP-Pearson-3TS runs (as described in
Section 6.3.5). For the first dataset, where little to no window placements can be skipped using
straight line window skipping, STAMP-Pearson-3TS without skipping is almost always the fastest
option. For the second dataset, where more windows can be skipped, STAMP-Pearson-3TS is
the fastest with skipping and simplification for larger window sizes. For smaller window sizes the
native algorithm is the fastest.

6.2 First problem

The first problem, worked out in Chapter 4, aims to find an efficient method to find the strength of
ternary lagged correlation for a group of time series. The method found comes in the form of the
optimized STAMP-Pearson-3TS algorithm. To demonstrate the efficiency and strengths of this
algorithm, we provide a couple of tests: The first tests compare the optimized STAMP-Pearson-
3TS algorithm to a naive approach (Section 6.2.1). Next, we show the effect of introducing lag
bound to the algorithm in Section 6.2.2, the running time of the Siding Means and -Standard
Deviations algorithm with and without aggregation in Section 6.2.3.

6.2.1 Optimized versus naive version

To demonstrate the efficiency of the STAMP-Pearson-3TS algorithms, we measure how fast it can
calculate the ternary lagged correlation compared to a naive approach.

The naive algorithm is constructed as follows: The algorithm consists of a triple for-loop to
calculate all combinations of window positions to find the best Pearson correlation. It also has lag
bound built-in, since this is not just an optimization, but also an analytical feature. Of course,
STAMP-Pearson-3TS is very memory efficient. This includes reusing (Viktor) arrays and being
largely functional, avoiding the creation of JVM objects. This philosophy is also adhered to in the
naive version. Combining all these properties, comparing the naive- to the STAMP-Pearson-3TS
algorithm now only comes down to the MASS-Pearson implementation and optimizations put in
place, which are what makes STAMP-Pearson-3TS unique.

For all experiments, STAMP-Pearson-3TS uses all optimizations described in Section 4.3, ex-
cept for the pre-calculation of the sliding means and -standard deviations of the time series (de-
scribed at the bottom of Section 4.3.1.1), as this moves some essential calculations outside the
algorithm, giving it an unfair advantage.

For the first experiment, we take 30 time series from the first dataset and we compare the
running time for calculating the lagged ternary correlation for all 4060 possible groups of three.

Efficiently discovering ternary lagged correlations 41



CHAPTER 6. EXPERIMENTS

The lag bound is set to 10 for both methods and the length of each time series is the same (252).
We are searching for the highest correlation (instead of the lowest), but this has no effect on the
running time. The window sizes are varied. The results can be seen in Figure 6.1.

Running Time per Window Size, STAMP-Pearson-3TS versus Naive, First Dataset
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Figure 6.1: Each data point is the time of the correlation calculation of a single group of 3 time
series.

For the second experiment, we take 7 time series from the second dataset. These specific time
series vary in length from 8640 to 8735, forming 35 unique groups. The reason fewer time series
are used is because of their long length, making the calculations take considerably longer. We
again have a set lag bound of 10, are looking for the highest correlation, and vary the window size.
See Figure 6.2.

Running Time per Window Size, STAMP-Pearson-3TS versus Naive, Second
Dataset
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Figure 6.2: Each data point is the time of the correlation calculation of a single group of 3 time
series.
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The first two experiments (Figure 6.1 and 6.2) show that STAMP-Pearson-3TS is not always
faster than the naive version. When the data consists of longer time series (such as in the second
dataset), using a relatively small window size, the naive Pearson version performs faster on aver-
age. When the window size becomes larger, relative to the time series size, STAMP-Pearson-3TS
seems to perform better. This can most likely be attributed to the amount of time it takes to
reserve and cache all the sliding calculations. When the window size is large enough, however, the
time saved by the sliding calculations outweighs it. So, STAMP-Pearson-3TS is less affected by
window size than the naive version, but there is still a slight impact on performance. This makes
sense since the sliding calculations need to be initialized. This initialization only happens once,
but is still dependent on the window size, making the algorithm a slight bit slower.

The third experiment also uses the second dataset, but this time we are interested in how the
time series length affects the running time. We again take 7 time series, but this time, we cut
them off at different lengths. The window size is fixed at 500, the lag bound at 10, and we are
again looking for the highest correlations. See Figure 6.3.

Running Time per Time Series Size, STAMP-Pearson-3TS versus Naive, Second
Dataset
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Figure 6.3: Each data point is the time of the correlation calculation of a single group of 3 time
series.

Looking at the result we can see a comparison between the effect of time series length on the
Naive version and on STAMP-Pearson-3TS. Since the window size was picked to be 500 and the
second data set is used, STAMP-Pearson-3TS performs better, but this is likely the only reason.
The best takeaway from this result is that STAMP-Pearson-3TS and the naive version are equally
affected by the time series size. This result is to be expected since in both cases, the entire time
series needs to be traversed many times in order to find the best correlation.

6.2.2 Effectiveness of lag bound in STAMP-Pearson-3TS

We want to show the effectiveness of adding a lag bound to the lagged ternary correlation calcu-
lations. For this, we use the first dataset and take again 30 time series of size 252 (resulting in
4060 groups). We use a window size of 10 and we vary the lag bound while looking for the highest
correlation. The results are visible in Figure 6.4.

The results are as expected. The tighter the lag bound, the fewer combinations of window
positions are considered, resulting in a much faster time. The challenge is to find the sweet spot
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Running Time per Lag Bound, STAMP-Pearson-3TS, First Dataset
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Figure 6.4: Each data point is the time of the correlation calculation of a single group of 3 time
series.

for the size of the lag bound where the data analyst would still find an interesting enough lagged
correlation.

6.2.3 Sliding Means and -Standard Deviation with Aggregation

The sliding means and sliding standard deviation calculations needed to be adapted to allow for
some aggregation for STAMP-Pearson-3TS to work correctly. This is explained in Section 4.2.2.2.
While we attempted to make it as efficient as possible, we expect it to still be slower than the
original variant, simply due to the larger amount of calculations.

To test the speed, we calculated the aggregated- and non aggregated sliding means and -
standard deviations for 7 random time series from the second dataset. This we did for each
combination of 6 different window sizes and 8 different time series sizes from the second data set,
resulting in Figures 6.5 and 6.6.

Looking at the results, we can spot several things. First of all, the bulk of tests show that the
aggregated version is almost always slower than the normal one. It is not by much, but it will add
up when it is run many times. It is however a necessary sacrifice since aggregation needs to occur
for correlation in groups of three. What is interesting to see is that the window size does not seem
to significantly impact the running time. This indicates that the sliding behavior works to save
calculations both for the aggregated and non-aggregated versions of the algorithm. Finally, the
time series size impacts the running time as expected.
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Running Time per Time Series Size, Sliding Means and -Stds, With/Without
Aggregation
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Figure 6.5: Each data point represents the time to calculate the sliding means and -stds for one
time series.

Running Time per Window Size, Sliding Means and -Stds, With/Without
Aggregation
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Figure 6.6: Each data point represents the time to calculate the sliding means and -stds for one
time series.

6.3 Second problem

The second research sub-question aims to find correlations even faster by applying approximation-
and window skipping techniques. We first go over testing the straight line skipping technique for
both data sets in Section 6.3.1. Next, we do the same for the motif skipping technique in Section
6.3.2. Afterward, we show the effectiveness of combining simplification with both techniques in
Sections 6.3.3 and 6.3.4. Finally, we show the effect the amount of skipped windows has on the
running time of STAMP-Pearson-3TS in Section 6.3.5.
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6.3.1 Straight line skipping per window size

We want to test the effectiveness of using the straight line skipping technique, described in Section
5.1. We do this by calculating how many window positions can be skipped, after running the
algorithm. This value is purely based on the number of NaN values and the set window size. Lag
bound is not considered.

We first test using all the time series in the first dataset and using various window sizes. See
Figure 6.7.

Straight Line Positions Saved per Window Size, First Dataset
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Figure 6.7: Each data point represents the number of window placements saved for a single time
series.

Next, we test using 100 time series from the second dataset using slightly more window sizes,
since the time series in the second dataset are longer. See Figure 6.8.

As can clearly be seen, the algorithm is almost completely ineffective on the first dataset.
For the second dataset, which has longer time series and of various lengths and contains linear
interpolation, it works better. The aggregations of the time series could be an explanation for
this difference. Stock data is usually quite fluctuating, especially when seen across multiple days.
The second data set is aggregated across hours, where the missing values are linearly interpolated.
This means more long straight pieces can be expected to exist. What is noteworthy, however,
is the decrease of window placements saved when the window size increases. This is of course
explicable, again, by the volatility of the time series. The larger the window is, the less chance it
has of enveloping a piece of a time series that is entirely straight. This might differ when using
another dataset, but we suspect that it is still very common. Although for some data sets a lot
of window positions can be skipped when the window size is small, in practice, larger window
sizes tend to give more useful information, lowering the number of window positions that can be
skipped.

6.3.2 Motif skipping per window size

We also want to test the effectiveness of using the motif technique to skip windows. This technique
was described in Section 5.2.
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Straight Line Positions Saved per Window Size, Second Dataset
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Figure 6.8: Each data point represents the number of window placements saved for a single time
series.

First, we test using all the time series in the first dataset, again using various window sizes.
However, since the motif skipping method can have different precision values, we decided to test
with 4 different Matrix Profile precisions and only show the average amount of window positions
saved.

See Figure 6.9.

Average MP Positions Saved per Window Size, First Dataset

3 4 5 6 7 8 9 10 20 30 50 100
Window size

0

1

2

3

4

5

6

7

W
in

d
o
w

 p
la

ce
m

e
n
ts

 s
a
v
e
d

Matrix profile precision

0.8

0.85

0.9

0.95

Figure 6.9: Each data point represents the average number of window placements saved for all
time series.

Secondly, we test using 30 time series from the second dataset. The number is smaller since
the calculations took a lot longer using the motif detection technique, compared to the straight
line technique. See Figure 6.10.

Now, looking at the results: A big difference with the previous experiments is that the Matrix
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Average MP Positions Saved per Window Size, Second Dataset
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Figure 6.10: Each data point represents the average number of window placements saved for all
time series.

Profile Motif precision is another variable now. When this value is lower, a piece of the time series
is qualified more quickly as appearing in a repeating motif.

What is interesting to see is that this method actually has a ‘sweet spot’ for a window size,
dependent on the data set used. For the first dataset, this lies at a window size of 5, with a
precision of 0.95, for the second dataset it lies at the same precision and a window size of 7.

The best window size is also dependent on the Matrix Profile Motif precision, tending to lie
higher when the motif detection is less precise.

What is surprising is that on average fewer window placements are saved when the motif
detection is less precise. It is hard to say why exactly this is happening, but it could be due to
multiple motifs being detected as a single one, which decreases the number of motif instances that
can be marked to be skipped. It is a convenient result though since a higher precision means that,
when a motif instance is marked to be skipped, the chance is lower that mistakes are made and
that sections of time series are incorrectly marked as skippable.

One last observation is that, again, not many windows are saved for large window sizes.

6.3.3 Straight line skipping with simplification

We want to show the effect simplification has on the ability to skip window positions. The
simplification method, RamerDouglasPeucker, as described in Section 5.6, takes an ε value. The
larger this value, the further the time series are simplified.

The first test is run using all the values in the first dataset. The same window sizes are used
as before and several ε values are tested. The window placements saved are averaged across all
time series. See Figure 6.11 for the result.

The second test is again run using 100 values from the second dataset, with the same window
sizes as before, as well as the same ε values as in the last test. See Figure 6.12.

The simplification comes with an ε value, which represents the maximum Hausdorff distance
of the simplified time series compared to the original. This means that when ε is larger, the time
series is further simplified. With an ε of 0.0, the time series is unchanged.

As also could be seen in Figure 6.7, for an ε of 0.0, on average no window placements are saved
using the first dataset. Although, for larger ε values, more promising results show up, displaying
an overall increase in window placements saved when ε gets larger. There even appear to be a
number of window positions that can be saved using larger window sizes, which is what is more
common in practice. The best ε for the first dataset appears to be 1.0, providing a nice balance
between windows saved, even at larger window sizes, while not over-simplifying the time series.
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Average Straight Line Positions Saved per Window Size, RDP Simplification, First
Dataset
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Figure 6.11: Each data point represents the average number of window placements saved for all
time series.

Average Straight Line Positions Saved, RDP Simplification, Second Dataset
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Figure 6.12: Each data point represents the average number of window placements saved for all
time series.

Why 1.0 performs as well or better than 20.0 is an unclear but welcome result, since the result is
closer to the original time series.

For the second dataset, a similar structure appears, showing a slight increase in window posi-
tions saved as ε gets larger, with a well-performing ε around 0.5..1.0. There is a surprising result,
however, as for larger window sizes no simplification provides more saved window positions com-
pared to with simplification. This proves that the straight line skipping method does not always
benefit from this kind of simplification.

6.3.4 Motif skipping with simplification

We also want to test the effect simplification has on the ability to save window positions using
the motif skipping method. The motif skipping method, however, also has a precision value that
influences this ability, as shown in Section 6.3.2.

For the first test, we look again at the first dataset, using all its time series. While multiple
Matrix Profile precisions are tested, we decided to only show the one which best shows the effect
the simplification has on the result, so we picked the precision to be 0.9. See Figure 6.13.

The second test is similar, but it uses 30 time series from the second dataset again. The Matrix
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Average Motif Positions Saved, RDP Simplification, First Dataset
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Figure 6.13: Each data point represents the average number of window placements saved for all
time series. Matrix Profile precision: 0.9

Profile precision is set to 0.9 again. See Figure 6.14.

Average Motif Positions Saved, RDP Simplification, Second Dataset
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Figure 6.14: Each data point represents the average number of window placements saved for all
time series. Matrix Profile precision: 0.9

It is very clear, in both plots, that having an ε of 0.0 (meaning, no simplification) has the
best result almost all the time. The only exceptions are the window size of 4 for the first dataset,
and for the second dataset, the window sizes 6, 7, and 50. For most of the other cases, the motif
skipping method seems to perform worse as ε gets larger. This might be explained by the fact
that motifs are recognized better when there is a higher level of granularity. The simplification
process could also merge motif instances together with instances of other motifs, making them
individually less recognizable.
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6.3.5 Effectiveness of window skipping in STAMP-Pearson-3TS

Finally, we want to show the effectiveness of skipping windows in terms of STAMP-Pearson-3TS
running time. To do this, for a couple of window sizes we gather groups of 3 time series where
each has the same amount of skipped window positions. We use all the time series from the first
data set with various ε simplification values before using the straight line skipping algorithm to
save window positions. It was, however, not possible to generate a lot of data for time series where
many positions were skipped, since it does not occur often. All time series have the same length,
the lag bound is set to 10 and various window sizes are used. Figure 6.15 shows the STAMP-
Pearson-3TS running time per window positions saved for different window sizes. The number of
data points gathered can be found in Table 6.1. Keep in mind that the significance of the results
decreases when the window size increases, due to the lower amount of data points, however, the
overall slope of the trend line can still be deduced.

To compare the running time of STAMP-3TS with the skipping of windows to the running
time without, we also provide the box plot in Figure 6.16. These results are calculated using the
original STAMP-3TS algorithm, untouched by any window skipping.
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Figure 6.15: Each data point represents the
running time of STAMP-Pearson-3TS with a
group of 3 time series with the same number
of saved window positions. Approximate expo-
nential trend lines are visible. See Table 6.1

.

STAMP-Pearson-3TS Running time, No
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Figure 6.16: Each data point represents the run-
ning time of STAMP-Pearson-3TS with a group
of 3 time series.

Window size Amount of data points
3 114
5 68
8 45
10 31
20 11
30 5
50 2
100 1

Table 6.1: Amount of data points per window size, first dataset

Looking at Figure 6.15, we can see that, for all window sizes, it applies that STAMP-Pearson-
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3TS performs quicker on average when more window positions are skipped. When only a couple
of window positions are saved, the original STAMP-Pearson-3TS (as shown in Figure 6.16), in
some cases, still performs better. This is likely due to the search for skippable straight pieces.
Only when enough windows are skipped, the time saved outweighs this. When about 50 or more
window positions can be saved, the algorithm outperforms the original, which shows that window
skipping does make STAMP-Pearson-3TS faster.

What needs to be noted, however, is in the accompanying table, Table 6.1. It shows that the
number of data points we are able to generate for each window size. A data point represents a
group of three time series where any window position can be skipped. The table clearly shows
that it becomes more and more difficult to skip any window position when the window size gets
larger, which is what we also found in previous experiments. This also means that the trend lines
for larger window sizes need to be taken with a grain of salt.

We can also show the window position saving in practice. To do this, we can revisit the second
experiment in Section 6.2.1, where the running time per window size is measured for a naive
approach (described at the Section 6.2.1), STAMP-Pearson-3TS, and now also STAMP-Pearson-
3TS where window positions are saved. Similar to the other experiment, 30 time series of the first
data set are picked and with a lag bound of 10, the experiments are run again. The straight line
window saving method is used without and with RamerDouglasPeucker simplification with an ε
of 1.0 (since that performed well in Figure 6.11). See Figure 6.17 for the results.

Running Time per Window Size, STAMP-Pearson-3TS versus Naive versus Window
Skipping, First Dataset
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Figure 6.17: Each data point is the time of the correlation calculation of a single group of 3 time
series.

We repeat this for the second data set. 7 time series of this data set are used with a lag bound
of 10. The straight line window saving method is used without and with RamerDouglasPeucker
simplification with an ε of 0.5 (since that performed well in Figure 6.12). The results can be seen
in Figure 6.18.

Applying the window skipping method in practice shows that the naive approach still matches
or beats the normal STAMP-Pearson-3TS for smaller window sizes for both data sets, however,
for larger window sizes it is considerably slower.
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Running Time per Window Size, STAMP-Pearson-3TS versus Naive versus Window
Skipping, Second Dataset
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Figure 6.18: Each data point is the time of the correlation calculation of a single group of 3 time
series.

The window skipping method yields different results depending on the data set. For the first
data set, where almost no windows can be skipped (see Figure 6.7), the search of finding windows
to skip makes the algorithm measurable slower. Adding simplification can make some windows
skippable for very small window sizes (see Figure 6.11) and this is reflected in the plot as well,
seeing the method even beat the normal STAMP-Pearson-3TS at a window size of 3. However,
it is clear that for most window sizes in a data set where window skipping cannot occur often,
window skipping only makes the algorithm slower.

For the second data set, which has larger time series including lots of linearly interpolated (and
thus skippable) values, the window skipping method does give a considerable edge over the normal
STAMP-Pearson-3TS algorithm, especially if the data analyst is willing to get only approximate
results.
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Chapter 7

Conclusions

7.1 Conclusion

There already exists previous research in detecting (cross-)correlations and similarities between
pairs of time series and in groups [13, 17, 16, 14] and its applications [4, 11]. There also exists
research regarding pairwise lagged correlation and its applications [2, 5]. However, the combination
of simple lagged correlations and correlations in groups is something that has not been extensively
researched before until now.

In this thesis, we propose a solution for finding lagged correlations in groups of three time
series in the form of the optimized STAMP-Pearson-3TS algorithm and some window skipping
techniques.

The first solution shows that when trying to detect ternary lagged correlations for relatively large
window sizes, the optimized STAMP-Pearson-3TS proves to be a faster solution than a naive ap-
proach. For long time series and a relatively small window size, the naive approach is still faster.
Lag bound is an essential tool to make longer time series more manageable, getting a faster result
the tighter it is. This does come at the cost of limiting the search space for lagged correlations,
but this can also be viewed as helpful when a data analyst is only interested in correlations with
little lag. As described as future work, in Section 7.2.1.1, by introducing a minimum lag as well,
lag bound could be used as an analytical tool even more.

The second solution shows that window skipping can be used in some cases to speed up cal-
culations, however, this is most effective for relatively small window sizes. When looking at larger
window sizes, which usually provide more helpful information, the number of windows that can
be skipped drops off significantly. Why this amount decreases can be firstly explained by the
fact that there are fewer window positions when the window size is larger. Secondly, since time
series of stocks are fluctuating a lot, the chance of finding a window position with just a straight
line inside decreases when windows get larger. However, in the cases where it does work, the
straight line skipping technique can be seen as an exact and free speed gain, since it can work
even without simplification. Although, when the data has no or just a few window positions that
can be marked as skippable, simply running the window skipping part will make the algorithm
perform slower than the normal STAMP-Pearson-3TS. If a data analyst is willing to only find
approximate solutions and there are windows that can be skipped, simplification can be used in
combination with straight line window skipping to speed up the calculation more. This approach,
however, this still suffers from the decline in the amount of windows that can be skipped when the
window size increases. Using the motif skipping method is another approximate solution. In some
cases and for certain window sizes, it is able to save more positions than the (simplified) straight
line method, but the calculations of motif discovery are a lot heavier than discovering straight
lines. When combined with the fact that simplification does not improve this method we have to
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conclude that the motif skipping method is not a viable solution.

Overall, combining both chapters, we can conclude that the most efficient solution for ternary
lagged correlations, found in this thesis, is:

• When window sizes are relatively small: A well-implemented naive algorithm.

• When lots of windows can be skipped (so longer time series with a lot of linear pieces,
potentially as a result of interpolation): The optimized STAMP-Pearson-3TS algorithm
with straight line skipping (and optional simplification).

• When not many windows can be skipped: The optimized STAMP-Pearson-3TS algorithm
without straight line skipping.

Whether the tool can immediately be adopted by data analysts remains to be discussed. While
there are many applications of this tool, for instance in the financial sector, we think that more
features need to be implemented to make it more usable. A couple of these features are mentioned
in Section 7.2. The aim of the thesis, however, is to make the detection of ternary lagged correla-
tions as fast and efficient as possible. Making it more accessible to use in practice is up for future
work.

7.2 Future work

As mentioned before, this thesis does open the door to plenty of future work. In this section we
go over future work for either sub-problem. The future work of the first sub-problem is discussed
in Section 7.2.1 and the future work of the second in Section 7.2.2.

7.2.1 Regarding first sub-problem

While a lot of thought and time went into the development of the STAMP-Pearson-3TS algorithms,
we decided to group a set of features outside the scope of the thesis. This future work, however,
might be still an interesting addition one day. It includes adding a minimum lag (Section 7.2.1.1),
two optional methods to return more than simply the best correlation in a group of three time
series (Section 7.2.1.2), the idea of introducing a correlation threshold (Section 7.2.1.3), the ability
to calculate the lagged correlation for more than three time series (Section 7.2.1.4), and finally,
considering the option of using other aggregation methods and ways to lock the lag between certain
time series (Section 7.2.1.5).

7.2.1.1 Minimum lag

While the current lag bound implementation only considers a maximum lag bound size, depending
on the knowledge of the data analyst, it might be beneficial to have a minimum lag as well. This
could limit the running time of the algorithm if the data analyst, for instance, were only interested
in correlations lagged by more than two months. While currently not implemented, it might be a
straightforward addition for the future.

7.2.1.2 Getting top-x results

Currently, the STAMP-Pearson-3TS algorithms find the single best window positions and ag-
gregation method based on the correlation within three time series. This is very helpful for the
research question since many groups of time series need to be considered, and the best group
of three time series needs to be found. However, it might also be beneficial to find the top-x
of best windows placements and aggregation methods within a group of three. The current al-
gorithms do not consider this yet, but we can still hint towards two potential tactics: The ability
for STAMP-Pearson-3TS to return multiple values and the ability to skip certain indices.
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Return multiple values The first option would be to modify the returning values of the
algorithms. Instead of returning just the single best correlation and indices, the algorithms would
return multiple ones. This would entail some expanding of the algorithms STAMP-Pearson-
3TS (Algorithm 3), STAMP-Pearson-3TS-Sub (Algorithm 4), MASS-Pearson-3TS (Algorithm 3),
MASS-Pearson-Agg (Algorithm 6), and MASS-Pearson (Algorithm 1). In practice, it might not
be very interesting to look further than a top-5, so the memory usage, while it will increase, will
not increase by much.

Skip indices The second option would be to simply run the algorithms x times and provide a
list of indices to skip after the first run. Compared to the previous method, this method trades
memory for time. Instead of collecting and comparing multiple values at each algorithm, this
version collects the top-x results one at a time. To implement this idea, only MASS-Pearson-Agg
(Algorithm 6) and MASS-Pearson (Algorithm 1) need to be modified.

7.2.1.3 Correlation threshold

Based on what the data analyst is looking for, the algorithm could be tweaked to stop when a
correlation above a certain threshold is measured. While this does not give the absolute best
window placements for correlation, it can give a good indication of whether a group of three time
series has any correlation, all while saving a lot of time.

7.2.1.4 More than three time series

While the current approach already increased the amount of time series considered from two
(from the Matrix Profile papers [13]) to three, this concept could be increased to n time series.
However, the usability of this might be debatable, especially since the number of calculations
will increase exponentially. Although, if a data analyst would require a solution like that, then
STAMP-Pearson-3TS would be a good base to start from.

7.2.1.5 Other aggregation methods and other lag methods

The current implementation is built around the concept of aggregating all unique combinations of
two time series in the group of three by average and checking how it correlates with the third. It
might however also be interesting to look at different aggregation methods, like aggregating the
maximum or minimum value. Aside from that, it might also be interesting to lock the windows
of two time series that are aggregated together. From a data analytical perspective, this could
provide good information about how a single time series can correlate with multiple other time
series at a different point in time.

7.2.2 Regarding second sub-problem

The experiments regarding this sub-problem are not very promising for all types of data. However,
this does not mean that it is impossible to skip certain window positions to speed up the search
for the best ternary lagged correlation in any dataset.

One technique considered is simplifying the time series to just 45-degree angles and trying to
find how the presence of monotonicity can inform the sliding algorithm when to skip a section.
Unfortunately, we are not able to detect any repeating patterns using this.

Another approach looks at where inside the time series the best correlations are usually found,
for instance in a ‘curve point’ (where the time series slope goes from positive to negative or vice
versa) or in a straight piece. Disappointingly, no conclusion can be drawn from this either.

While our research did not find anything usable in this area, there might still be something
here. This, however, has got to be classified as future work.
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