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Abstract

Optical lens design is known to be a formidable problem due to its complex and sensitive
cost function landscape, various physical and manufacturing constraints, and its high depend-
ency on the empirical good starting points. In conventional optical lens design, designers start
with known designs with satisfying performance, which are known as the starting points, and
tune the parameters with their specific goals to obtain a local optima. However, the number
of available starting points is limited, and there lacks a general method to arrive at starting
points with any given property parameters at first.

In this thesis, we focus on the application of machine learning algorithms to the problem
of starting points generation in optical lens design. Specifically, a neural network (NN) is
built to generate lens design parameters from the input lens property parameters. A strong
data augmentation strategy is adopted to address the issue of limited data. In addition, a
hybrid training scheme is designed to take use of the reference designs and the optical key
performance indicators (KPIs). To improve the performance on input specifications with
worse KPIs, the NN is then integrated with the Bayesian Optimization (BO) framework.
The training data for NN are sampled in a smarter way with the acquisition function in BO,
to focus on the hard training samples where the NN currently has the worst KPI.

Experimental results show that the hybrid training scheme and the data augmentation are
valid to produce lens designs with satisfying KPI values at any given reasonable lens property
specifications, and most generated designs outperform the reference designs in terms of the
KPIs. The improved sampling with the BO method shows its superiority over the random
sampling method in the baseline, which yields a better overall performance across the input
space, and a better worst case performance.
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Chapter 1

Introduction

In this Chapter, an introduction to optical lens and optical lens design will be given; then
the challenges and related work in optical lens design will be introduced, which lead to the
motivation and mission of this work. An outline of the remainder of this thesis is given at
the end of this Chapter.

1.1 An Overview of Optical Lens Design

Optical lens design is the process of designing a lens system that meets a given set of
performance requirements and constraints [1]. Specifically, the design of a lens system in-
volves deciding the shape, position, and material for each element in the lens system. The
performance requirements to be satisfied include two aspects. The first aspect include cer-
tain functional optical property parameters of the lens, such as the focal length, F#, Field
of View (HFoV), etc., which quantify the property of the lens. Formal definitions of these
quantities will be given in Chapter 2. It is only necessary for readers to know for now that
these parameters characterize the property and application of the lens. For example, focal
length is a measure of the optical system’s ability to converge or diverge light. A system
with a smaller focal length bends the ray more sharply, bringing light to a point called focus
in a shorter distance. A telescope normally has a large focal length of more than 1000mm,
while for microscopes, the focal length is considerably small, often ranges from 2∼40mm. The
second aspect is to ensure the image formed by the lens is of a high quality. We often see dis-
tortions in photos captured by a camera, as shown in Figure 1.1. The red rectangles mark the
areas with a strong distortion. Real lenses all have such distortions, which are measured by
different types of aberrations in optics, such as the Seidel aberrations [2], and the chromatic
aberrations [3]. They will also be formally introduced in Chapter 2. For optical designers, it
is their mission to design a lens that meets a certain set of property parameters, and to reduce
the aberrations to the best. Besides, in real lens systems, there are often physical constraints
such as the limitations for the cost specifications, and the manufacturing abilities [1].

Figure 1.2 shows a lens system (a photographic/camera lens) which can be seen in camera
shops. Such a lens in Figure 1.2 is normally consisted of multiple glass lens elements, spaced
by air or are glued together. During the propagation of light, it will be refracted or reflected
at the interface of two dissimilar mediums, according to some physical laws, which will be
elaborated in Chapter 2. The shapes, materials and positions of these lens elements determine
the way how lights will be bent when traveling through the system, and the process of lens
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CHAPTER 1. INTRODUCTION

Figure 1.1: Representative aberrations exist in photographs. (a) Geometrical aberration [4].
(b) Chromatic aberration [5].

design is to determine these geometric aspects and the materials of each element in a lens
system. For brevity, we will refer to a lens system simply as a lens in the remainder of the
thesis.

Figure 1.2: An example of the Zeiss Otus 55mm f/1.4 camera lens (up) and the graphical
illustration of its internal lens elements (down).

In this project, we will investigate applications of machine learning algorithms to assist
optical lens design. The general goal is to determine the geometric and material aspects of
elements in a lens to (1) meet certain property parameters, (2) optimize the system’s optical
performance in terms of least aberrations while satisfying other physical requirements.

1.2 Motivation and Related Work

The conventional optical lens design is a two-step process. The first step is the starting
point selection, where optical designers look for an existing solution in the reference database
with similar property parameters, known as the starting point. Next, they will perform a
local optimization with this starting point in commercial software packages like OpticStudio
[6] and CodeV [7]. A customized merit function which takes into consideration their specific
goals, and minimizing the aberrations as well as conforming to other physical constraints,

Machine Learning for Starting Points Generation in Optical Lens Design 3



CHAPTER 1. INTRODUCTION

is implemented in the software as the optimization objective. Then the software will use
built-in optimization methods to search for new local minimums by tuning some parameters.
The search can be combined with methods like evolutionary algorithm [8], particle swarm
optimization [9], saddle point construction [10], etc., to converge to better local minimums
and maintain the variety in output designs. These methods depend heavily on the starting
points that are selected.

However, how to arrive at those good starting points in the first place, is a more difficult
question to answer. Although through hundreds of years’ accumulation in optical design, lens
designs from patents and literature have formed an empirical collection of reference designs,
however the amount of them is still very limited. Apart from this, these lens designs constitute
discrete points in the property space, and are very different in terms of the number of elements
and the types of elements they contained, hence there is no straightforward way to interpolate
in the property parameters’ space to arrive at new designs. In other words, if we are given
a set of desired property parameters of the system with no nearby reference designs in the
starting point collection, there is no good way to take use of the knowledge in the database. In
addition, the performance is very sensitive to variations in lens parameters [11], and there are
many infeasible cases like when the rays cannot reach the image plane (i.e., the total internal
reflection, TIR), and overlapping surfaces, which add to the difficulties in optimization.

In this project, we aim at helping with the first step in optical lens design using machine
learning techniques: to generate lens designs that can serve as starting points for
optical designers to carry on further optimization. To be specific, the algorithm should
be able to produce lens designs for any given input specifications about the property of the
lens, with a satisfying optical performance while meeting other physical requirements.

As this is a rather new research area, applications of machine learning can be found
mainly in recent years. Most of them are using deep learning. Deep Neural Networks (DNNs)
have gained tremendous popularity during the past decades due to its powerful function
approximation ability and the development of the computing power of GPUs, especially in the
field of Computer Vision and Natural Language Processing. However, problems of applying
DNNs to this problem are also obvious: DNNs require huge amount of data, and the complex
cost function of optical performance, and its landscape with discontinuities may give rise to
indifferentiable cases in training.

Despite of all these, researchers have been taking first steps into this field by generating
designs for specific types. Gannon and Liang [12] designed a network for producing the
orthogonal coefficients for freeform lens surfaces, expressed with polynomials. This type of
surface enables them to synthesize great amount of data to train a neural network. The
network receives as input the system’s property parameters like focal length, F#, and HFoV.
However, the polynomial freeform surface is expensive in manufacturing. Other similar works
can be found in designing thin films [13], metasurfaces [14]. For a sequence of lens elements,
Cote et al. [15] first designed a network, to be trained with augmented data from the reference
dataset. They optimized the rooted mean squared error (RMS) of the spot size of a bunch
of rays on the image plane, which is easy to compute and is also a measure of the image
quality. Promising results are obtained for air-spaced doublets with two glass elements. This
is later developed with the adoption of a Recurrent Neural Network (RNN) [16][17], which
is able to learn and generate different types of designs simultaneously. However, their data
augmentation resembles a random sampling, and the network behaves comparably worse
with certain input specifications. In addition, the input space scales with the increase of the
dimension of the problem (i.e., for more complex lens designs), under which circumstances
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CHAPTER 1. INTRODUCTION

training the network sufficiently will require much more training data. Unfortunately, some
details are not disclosed, and their code is not public, therefore it is not able to compare to
and develop upon their work.

1.3 Our Contributions

In this thesis, we first refer to Cote et al. [15] and implement a network similar to their
work. The same data augmentation strategy is adopted. A more informative optical per-
formance KPI, based on the aberration theories, and more physical constraints and infeasible
cases are considered. The process of computing our KPIs, which is based on the physical
model of rays’ propagation, is implemented as a complex differentiable loss function with the
network. Experiments show that our implementation with these modifications and improve-
ments has a promising performance, which is able to generate lens designs with a satisfying
KPI on any given input specification. Compared to the reference lenses in the dataset, our
generated lenses outperform their KPIs. To improve the generated lens’ performance in the
hard area and have a more efficient global optimization, a Bayesian Optimization (BO) based
framework is proposed and incorporated with the baseline model. It is aimed for training the
network with the most valuable samples based on the current performance of the network.
Compare to our baseline model, the improved BO framework is shown to have a better worst
case performance and overall performance.

1.4 Outline

The remainder of this thesis is arranged as follows:

• Chapter 2 provides a detailed introduction to the background knowledge, the involved
optics notions and theories.

• Chapter 3 introduces the deep learning-based model as the baseline method.

• Chapter 4 describes the proposed Bayesian Optimization framework.

• Chapter 5 describes the dataset, including the data augmentation method, pre- and
post-processing of the data.

• Chapter 6 describes the experiments and analysis for the baseline method and BO
method.

• Chapter 7 finally concludes the thesis and discusses further research directions.

Machine Learning for Starting Points Generation in Optical Lens Design 5



Chapter 2

Background for Optics

In this chapter, the relevant physics and optics background, and the definition of crucial
terminologies in optical lens design will be given. These are necessary for formalizing the
problem, and to distinguish the input, output, and define the KPIs that will be used in
optical lens design.

2.1 Basics of Geometrical Optics

In this section, the basic concepts and theories in geometrical optics will be introduced. It
is aimed to establish the basis for the formalization of this problem, connecting readers from
a high school-level knowledge of physics to only the necessary notions in optical lens design.
Therefore, the derivation of some formulas which involves intensive optics knowledge but not
the focus of this work, will be omitted. They will be offered in the appendix and reference
for readers’ interests.

2.1.1 Definition and Assumptions for Geometrical Optics

In this project, the treatment of a lens system will be based on the geometrical optics, also
named ray optics. It is a model to describe how light is propagated, refracted, and reflected,
and the formation of images, embodied with the concept of rays [18]. There are several basic
postulates for geometrical optics [18]:

• Light propagates in straight lines in a homogeneous medium, such that can be embodied
with the concept of rays.

• The angle of incidence equals the angle of reflection. This is called the law of reflection.

• The ratio of the sines of the angles of incidence and refraction, at the interface of two
dissimilar mediums, is a constant which depends only on the mediums. This is known
as the famous Snell’s law, which will be formally introduced in section 2.1.2.

2.1.2 Important Theorems in Geometrical Optics

A basic theorem to be used in computing the direction and position of the ray after
refracting at each surface is the Snell’s law [19], which is stated as:

n sin(i) = n′ sin(i′) (2.1)

6 Machine Learning for Starting Points Generation in Optical Lens Design



CHAPTER 2. BACKGROUND FOR OPTICS

with n and n′ being the refractive index of the first and second medium, which is defined by:

n =
c

vm
(2.2)

where c is the velocity of light in vacuum, and vm is the velocity of light in the medium. The
angles i and i′ are the angles of incidence and refraction.

Another important theorem, which will be involved in deriving the optical performance of
the system, is the theorem of Malus and Dupin. In order to arrive at this theorem, two basic
optical notions need to be firstly introduced. The first one is the optical path length. It is
defined as the product of the distance of the physical path a ray travels in the medium and
the refractive index of that medium. The second notion is the wavefront. For rays emitting
from the same point on the object, the wavefront is a surface composed of points with the
same optical path lengths from that source. Figure 2.1 shows an illustration of these two
notions.

Figure 2.1: Illustration of the optical path and the wavefront.

In Figure 2.1, there are three optical paths AB1C1D1, AB2C2D2 and AB3C3D3 from the
same object point A. For example, for optical path AB1C1D1, its length is computed as the
sum of all segments:

[AB1C1D1] =
∑

nidi (2.3)

In the ray segment AP1, AP2, and AP3, since they are in the same medium, it is clear that
the sphere locus centered at A, where P1, P2, P3 lie on, is a wavefront. The wavefront of the
locus of Q1, Q2, Q3 is generally not on a sphere because of the refraction in the glass lens
leads to different lengths of optical paths B1C1, B2C2, and B3C3. The theorem of Malus and
Dupin states that rays are the normal of the geometrical wavefronts [3].

2.1.3 Representation of a Lens System

A lens system is composed of multiple lens elements, including the glass lenses and stops.
The necessary variables for describing these components will be introduced in this section.

The Coordinate System

To geometrically represent an optical lens system, firstly the coordinate system and some
notations should be defined. Optical design is commonly performed in a symmetrical system,
which means the system is symmetric with respect to an axis of revolution. This axis is called

Machine Learning for Starting Points Generation in Optical Lens Design 7
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the optical axis, which passes the center of all elements in the lens. The system is therefore
called a symmetric, centered system. It is the type of system most frequently met in optical
lens design [3]. Figure 2.2 shows an illustration of such a system. The convention is to use
the right-hand Cartesian coordinate system, with Z-axis being the optical axis which passes
the center of each lens, and Y-axis in the plane of the paper and is orthogonal to Z-axis, and
X-axis orthogonal to the other two axes, pointing into the plane of the paper . The rays are
defined as traveling from left to right in Z-direction.

Figure 2.2: The coordinate system for a lens.

Assume the object to be imaged by the lens system is placed in front of the lens system.
The object plane is the plane this object is located on, and contains object points that are
emitting rays. The image plane locates at the end side of the lenses, which is the plane an
image is formed on. This means the optical system is in between the object plane and the
image plane. Points on this plane formed by rays from the object points are called the image
points. In Figure 2.2, two rays emitting from the same object point in the object plane, travel
along the optical axis through a lens, and meet at the same point in the image plane. The
result that they meet at the same image point, is called ideal image formation. It in fact only
exists in the paraxial zone, which will be introduced in section 2.2.1.

Lenses and Surfaces

Lenses can now be expressed in the defined coordinate system. Figure 2.3 shows an
example of a lens with 2 lens elements, plotted in the Y-Z plane, which is also called the
meridian plane.

As mentioned in Chapter 1, a lens system (or simply lens) is composed of multiple glass
lenses. Each of these lenses has a thickness, therefore splits the space into three parts with
its two surfaces. Since the refraction happens at the change of the medium, it is a common
method in optical design to use the surface representation for the elements. The lens system
in Figure 2.3 is composed of 2 lens elements with 4 surfaces. Each surface is defined with 4
parameters: the curvature c, thickness t, refractive index n, and Abbe number v.

The curvature c describes the shape of the surface, which is the reciprocal of the radius
R of a reference sphere centered at an on-axis point:

c =
1

R
(2.4)

8 Machine Learning for Starting Points Generation in Optical Lens Design
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Figure 2.3: An example lens system with the surface representation.

The thickness t is the distance from the center of this surface to the center of next surface.
The refractive index n is the ratio of light’s speed in vacuum to its speed in the medium
behind this surface, as has been defined in Equation 2.2. Since the velocity of light with
different wavelengths in are different in a certain medium (i.e., the dispersion in optics), the
refractive index of a medium hence depends on the wavelength of light. The Abbe number v
of a medium reflects this change in refractive index with the wavelength, and is defined as:

v =
nD − 1

nF − nC
(2.5)

where nC , nD and nF are the refractive indices of that medium at the wavelengths of the C
line (Hydrogen red light), D line (Helium yellow light), and F line (Hydrogen blue light) in
the Fraunhofer lines [20].

Stops

We have seen the glass lenses in an optical system, and until now there is no restriction
put on the diameter of the lenses and the size of the object. However, in real lens systems,
the rays that are allowed to pass through the system are limited by the diameter of the lens
surfaces, and some internal diaphragms. For example, Figure 2.4 shows a case when the rays
emitting from the object point Q is limited by the diameter of the lens, and only the rays
within the shaded area can reach the image plane. These kinds of limitations on the rays
that are allowed to pass through the system are imposed by optical elements called stops.
They exist in the form of physical iris diaphragms, with a centered hole which allows the
transmission of rays; or the rim of a lens, where the rays out of the rim of the lens will miss
this lens surface and be blocked by the system.

There are different types of stops in a lens system. An aperture stop limits the maximum
amount of light from an object point that can pass the optical system. The lens shown in
Figure 2.4 is an aperture stop. For the convenience of analysis, the diameter of its center hole
is not directly defined, and the convention is to define the diameter of the entrance pupil,
which is the image of the aperture stop formed by the lenses in front it when the viewer look
from the object plane, as is shown in Figure 2.5. This diameter is called the Entrance Pupil
Diameter (Enpd). The position of the entrance pupil is flexible. Sometimes it can be a
physical diaphragm, as in Figure 2.5; in some cases, the surface of a lens can also function

Machine Learning for Starting Points Generation in Optical Lens Design 9
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Figure 2.4: Function of an aperture stop. In this case the lens is the aperture stop.

as an aperture stop. When there is no lens in front of the aperture stop, the diameter and
position of the entrance pupil are identical with the aperture stop, which is the case in Figure
2.4.

Figure 2.5: Aperture stop, entrance pupil and the entrance pupil diameter.

In addition, when the object is very large, it will not be completely imaged by the lens. A
field stop is another type of stop which limits the portion of the object to be imaged by the
lens system. Figure 2.6 shows a simple model of a single-lens box camera, and we can see the
height of the object point affects the amount of light that will be obstructed by the system.
The proportion of obstructed light is termed as vignetting. For Q1 in the object plane, all
the light can pass the lens and hit the image plane, therefore it has a vignetting of 0%; at Q2,
vignetting increases to 50%; Q3 is the extreme case with vignetting=100%, and light from
points higher than Q3 can never hit the image plane. For the field stop, the parameter we
care about is the angle of the ray which passes its rim when vignetting=50% (the lower green
ray at Q2). Its angle with the optical axis is called the Half Field of View (HFoV) of the
system, which is also marked in Figure 2.6.

10 Machine Learning for Starting Points Generation in Optical Lens Design
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Figure 2.6: Definition and function of the field stop.

2.2 KPIs for Optical Performance

We have seen how a lens system can be represented with geometrical optics. In this
section, the performance evaluation of lens systems will be introduced.

Basically, the requirements for a lens system is that it forms an image with a good quality,
with no defects in sharpness, shape, and colors, etc. This can be quantified with the aberra-
tions. Section 2.2.1 and 2.2.2 will give an introduction to related notions in the aberration
theory. Then the monochromatic and chromatic aberrations that are used in this project
will be introduced in section 2.2.3 and section 2.2.4, respectively. In addition, constraints
from manufacturing limits, and physically infeasible cases should also be considered. This
corresponds to section 2.2.5.

2.2.1 Paraxial Optics

As mentioned in section 2.1.3, the ideal image formation, i.e., the property that rays
starting from the same object point will meet at the same image point, is only valid for the
so-called paraxial region. The paraxial region is a region close enough to the optical axis
where only small ray angles and heights are involved, and some approximations can be made,
e.g., ray angles are sufficiently small such that sin(θ) ≈ tan(θ) ≈ θ.

In most cases, rays from the same object point do not converge at the same point in the
image plane, and this attributes to the existence of defects in an image, such as the reduction
in sharpness, shape, and colors (recall Figure 1.1). In optics, the formal terminology for this
phenomenon is called aberration.

2.2.2 Preliminaries for Aberration Theories

A general concept of aberration can be interpreted as the failure of an optical system to
conform to the mode of ideal image formation; in other words, aberrations are the deviation
of the system from the ideal imaging in the paraxial region.

Aberrations are related to both the lens’ geometry (the parameters c, t, n, v of each
surface), and two critical rays that pass through the system: the marginal ray and the

Machine Learning for Starting Points Generation in Optical Lens Design 11
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chief ray [18]. They are determined by the aperture stop and the field stop, or to say, the
Enpd and HFoV of the system. Figure 2.7 shows a simple lens system in the meridian plane
(the Y-Z plane) with its elements and the two critical rays. The marginal ray is the ray in
blue, which passes through the center of the object and the edge of the aperture stop; the
chief ray in red is the ray which passes through the center of the aperture stop and the edge
of the field stop.

Figure 2.7: Important rays and components in a lens system.

A third property parameter that relates to the computation of aberrations is the Effective
Focal Length (EFL) of the system. It is a measure of the ability of a lens to converge or
diverge light. In paraxial optics, parallel rays passing through a single convex lens will be
brought to the same point; and for concave lens, a point source should be placed in front of
the lens to form parallel rays after the lens. This point is called the focal point (or focus),
and the distance from the center of the lens to the focal point is called the focal length. The
shorter this length, the stronger the ability of the lens to diverge or converge light. For a
lens system with multiple surfaces, the EFL is measured from the center of a hypothetical
plane where the refraction of incident rays happens, to the focal point. This plane can be
regarded as a virtual single lens equivalent of the system, as illustrated in Figure 2.8. The
EFL is therefore the distance from the center of the virtual single lens equivalent to the focal
point of the system.

In optical lens design, Enpd, HFoV and EFL are often given as the desired property para-
meters of the system, and the mission can be concluded as to determine the lens parameters
which produce an image with good quality under the given property parameters. In this
project, the image quality is measured by the aberrations.

Figure 2.8: Illustration of the EFL and the virtual single lens equivalent
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2.2.3 Monochromatic Aberrations

In this section, the monochromatic aberrations will be introduced. They are the type of
aberration that are computed only at a certain wavelength.

In real lenses, outside the paraxial region, the ideal imaging is not satisfied. This means
rays starting from the same object point will not converge at the same point in the image
space. Figure 2.9 shows an illustration of this situation.

Figure 2.9: Definition of the wavefront aberration.

This deviation from the ideal imaging is termed as the wavefront aberration, and can be
measured in the optical path difference (OPD). The aberrated wavefront is expressed
with respect to a reference sphere, with its center O’ as the paraxial image point.

The wavefront aberration can be expanded into multiple terms with the series expansion
[2], with each of them corresponding to a different type of aberration. Among them, the
most widely used aberrations are the five Seidel aberrations. They are widely used not only
because the computation of them only requires to trace two rays through the system, but
also the correction of the Seidel aberrations is a necessity for minimizing the effect of other
higher-order aberrations [2] in the total wavefront aberration. In addition, all of them can
be expressed in a form of the contributions of each surface, which provides optical designers
insights to locate the weak points in the system.

The derivation of the Seidel aberrations can be found in many classical optics books, e.g.
[2] and [3]. Here a simple version of the derivation of the first term, S1, is included in Appendix
A for readers’ interests. However, the derivation for other terms requires computation for off-
axis points (points that do not locate on the optical axis), and is significantly more tedious
and involves more optics preliminaries. Since the deviation is not the focus of this project,
we will directly borrow as conclusion their forms [3]:

Spherical aberration:

S1 =
∑
−A2hδ(

u

n
) (2.6)

Coma:

S2 =
∑
−AAhδ(u

n
) (2.7)

Astigmatism:

S3 =
∑
−A2

hδ(
u

n
) (2.8)

Field curvature:

S4 =
∑
−H2cδ(

1

n
) (2.9)
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Distortion:

S5 =
∑ A

A
(b3 + b4) (2.10)

with A = n · i is the product of the refractive index n with the incidence angle i of the
marginal ray, which is also known as the refraction invariant. The notations with a bar over
them denote the same quantities of the chief ray. The incidence angles of the marginal ray
and chief ray can be computed as i = hc+ u and i = hc+ u (derivation can be found in [2]),
where h is the marginal ray’s height to the optical axis at a surface (the distance from the
intersection of the ray at the surface to the optical axis); u is the angle between the incidence
marginal ray and the optical axis. The other two notations with a bar u and h denote the
same quantity for the chief ray. H = n(uh − uh), which is called the Lagrange invariant.
The δ means the difference of the quantity after and in front of the surface. The Σ in these
coefficients means to sum over all the surfaces. Among these variables involved, it is clear
that the only unknown variables are the ray angles u and u, and the ray heights h and h
of the marginal ray and the chief ray, after refracted by each surface. These variables are
computed through the process called ray tracing, which will be introduced later in 2.3.

The total wavefront aberration is computed as [2]:

W =
1

8
S1 +

1

2
S2 +

1

2
S3 +

1

4
(S3 + S4) +

1

2
S5 (2.11)

The weights of the terms are derived with each term, and are fixed.
There is another equivalent expression of the total wavefront aberration, in which the

derivation is using a different method and another set of notions, but has a close final form
which can be linked with the Seidel aberrations. This is useful for our further analysis, so it
is also presented here[3]:

W = W
(
r2, η2, rη cosϕ

)
= b1r

4 Spherical aberration

+ b2ηr
3 cosϕ Coma

+ b3η
2r2 cos2 ϕ Astigmatism

+ b4η
2r2 Field curvature

+ b5η
3r cosϕ Distortion

+ etc.

(2.12)

with r being the segment of the ray’s intersection at the image plane to the center of the
image plane (please refer to Figure 2.10 for an illustration); η is the segment of the ray’s
intersection at the entrance pupil’s plane to the center of this plane; ϕ is the included angle
of these two segments; b1 to b5 are five coefficients.

2.2.4 Chromatic Aberrations

The Seidel aberrations, are by definition monochromatic aberrations which are only cor-
rected for light with a certain wavelength. However, these aberrations depend on the refractive
index of the material of the medium, and the refractive index is a function of the wavelength
of the light. This chromatic variation, called dispersion, is reflected in the Abbe number of
the material. The chromatic aberrations are the type of aberration to quantify this variation.
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Figure 2.10: Geometrical illustration of a ray traveling through the pupil plane and hit the
image plane.

In our project, two chromatic aberrations, the axial color aberration and the lateral color
aberration, are also included in the optical performance KPIs:
Axial color:

C1 =
∑

Ahδ(
δn

n
) (2.13)

Lateral color:

C2 =
∑

Ahδ(
δn

n
) (2.14)

When computing the total chromatic aberration, the contributions of the axial and lateral
color are both 0.5 [3]:

C =
1

2
C1 +

1

2
C2 (2.15)

A geometrical illustration of these two chromatic aberrations is shown in Figure 2.11.
The axial color aberration is essentially the change of the on-axis intersection length with
wavelength. And the lateral color aberration is the transverse magnification with wavelength.

Figure 2.11: Definition of the chromatic aberrations. (a) Axial color aberration. (b) Lateral
color aberration.

In this project, the designing of achromatic aplanats are investigated. They are lenses that
has no Spherical aberration and no Coma aberration, which are the S1 and S2 in Equation
2.11, and is corrected for the wavelength between the C line (red light) and F line (blue light)
in the Fraunhofer lines [20]. Therefore, the sum of the first and second terms in Equation 2.11,
and the two color aberrations, will be used as our optical performance KPI for image quality.
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In the ray tracing for computing the Seidel aberrations, the yellow helium D line in between
the C and F lines with a wavelength of 587.6nm is used. Additionally, by pushing these two
color aberrations to zero, the system is ensured to have equal axial and lateral magnifications
for lights between the C line and F line, in other words, no chromatic aberrations. Such
simple lens modules can be the building blocks for more complex systems, therefore it is very
important to have these cornerstones with a satisfying optical performance.

To give readers a direct view of the five Seidel aberrations and the two chromatic aberra-
tions, an illustration of them are shown in Figure 2.12 and Figure 2.13.

Figure 2.12: An illustration of the five Seidel aberrations from [21].

2.2.5 Physical Constraints and Infeasible Cases

Apart from minimizing the aberrations of the lens system, there are cases when not all
the rays can successfully reach the final imaging plane, and when the designed elements are
unrealistic (far away from real lenses), which will cause other problems in manufacturing or
costs. Therefore, these cases should be considered: two adjacent surfaces overlapping with
each other, total internal reflection (TIR), and lenses with undesired aspect ratios in their
shapes.

16 Machine Learning for Starting Points Generation in Optical Lens Design



CHAPTER 2. BACKGROUND FOR OPTICS

Figure 2.13: An illustration of the two chromatic aberrations from [22].

• Overlapping of surfaces When the distance or the thickness between two adjacent sur-
faces is too small or even negative, two surfaces might overlap with each other, which
is impossible in design. Therefore a penalty term for the range of thickness is devised
to impose this constraint on the distance between two consecutive surfaces.

Figure 2.14: The Sagitta values and the space of two consecutive surfaces.

For two consecutive spherical surfaces, as is shown in figure 2.14, the value of the axial
displacement of their edge z can be computed as [23]:

z =
c · h2

1 +
√

1− h2c2
(2.16)

where c is the curvature of the surface, and h is the height of the marginal ray at the
surface, i.e., the distance of its intersection with the surface to the optical axis. This
quantity z is called Saggita, which gives a measure of the axial displacement of a curved
surface, as is plotted in figure 2.14. Additionally, we would like the space between two
surfaces to be greater than a threshold zrange for the ease of manufacturing, so the KPI
can be set as the accumulated negative value of:

δz = zi+1 + ti − zi − zrange (2.17)

over all the surfaces:
LOP =

∑
all surfs

δz2 (2.18)
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• Total Internal Reflection (TIR) When a ray travels from a medium with a higher re-
fractive index to a medium with a lower refractive index, the ray could be completely
reflected backwards and therefore never reaches the next surface, as r′2 in Figure 2.15.
This is known as the total internal reflection (TIR):

Figure 2.15: An example of ray failure, when total internal reflection occurs.

When this happens in a lens system, the ray can never hit the image plane. To distin-
guish this kind of ray tracing failure, the product n1 sin i1 in Snell’s law of refraction is
computed over all the surfaces. Since the refractive index of air is 1, n2 sin i2 can never
be greater than 1, therefore the product n1 sin i1 should not be greater than 1. A KPI
to be minimized can be computed as the sum of this quantity’s difference with 1, when
it is equal to or greater than 1. Such a value will lead to no solution to the refraction
angle i2, which is the case of TIR.

f = n1 ∗ sin(arccos(N · u))

LTIR =
∑

all surfs

max(f − 1, 0)2 (2.19)

• Aspect Ratio of Glass Surfaces As a matter of fact, glass lenses that are either too
thin or too thick are not desired. A lens that is too thin will be brittle and adds to the
difficulty and cost in manufacturing; on the other hand, light will attenuate in traveling
through very thick lenses. Therefore, a penalty is imposed on the aspect ratio of the
lens’ shape, which is computed as the ratio of its diameter d to its thickness t:

ar =
d

t
=

2h

t
(2.20)

where d takes the maximum of that at the front and back side of the element. An
illustration of its computation is shown in Figure 2.16. The half of d, h3, can be
computed as the sum of the absolute values of the Y coordinates of the marginal ray
and chief ray [24]:

h3 = h1 + h2 (2.21)

In manufacturing, the recommended limit for the aspect ratio is between 1∼30 [25].
Therefore, the penalty for an undesired out-of-bound aspect ratio for glass lenses is
computed as:

LAP =
∑

all surfs

(−min(|d
t
| − 1, 0) + max(|d

t
| − 30, 0)) (2.22)
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Figure 2.16: The aspect ratio of a glass lens.

2.3 Ray Tracing

Implementation-wise, for computing the Seidel aberrations and the chromatic aberrations,
four variables are needed to be computed at all surfaces: the angle u and ray height h of the
marginal ray, and the angle u and ray height h of the chief ray. This can be observed from
Equation 2.6 to 2.10, and Equation 2.13 to 2.14. Besides, they are also the necessities to
compute the penalty terms for our devised three infeasible cases. This process of iteratively
computing the angles and positions of a ray through all the surfaces, is called ray tracing.

Ray tracing can be done with commercial optical designing software such as OpticStudio
[6] and CodeV [7], which are rather convenient tools for optical designers equipped with their
knowledge in optics. But it is not a good option for data scientists to carry on the model-
oriented optimization. Therefore, in this work, a Python ray tracer is implemented to perform
the ray tracing process and compute the aberrations and other KPIs.

The Python ray tracer implemented in this work performs the paraxial ray tracing process
and compute the aberrations basing on the ray matrix formalism, referred to Noel et al. [26].
In the ray matrix formalism, lens elements are modeled using 2x2 matrices, named the transfer
matrix:

M =

[
ma mb
mc md

]
(2.23)

in whichma, mb, mc andmd are the elements to be determined with geometrical computation.
The ray traveling through the lens system is defined as a vector:

r ≡
[
h
u

]
(2.24)

with h being its distance to the optical axis and u the angle between the ray and the axis.
With Snell’s law and geometrical calculations, the transfer matrices of the two elements

that are used in modeling our lens designs can be expressed. Here we direct borrow the
derived forms of our interests from [27]. For a spherical surface with n1 and n2 being the
refraction indexes of the mediums before and after it, and c being its curvature, the transfer
matrix can be written as:

M =

[
1 0

− (n2−n1)·c
n2

n1
n2

]
(2.25)
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For the propagation of rays in a free space of a distance d, the transfer matrix is:

M =

[
1 d
0 1

]
(2.26)

With the transfer matrices and vectorized representation of rays, the effects of the lens
elements on a ray can be modeled using the left matrix multiplication of the series of surface
matrices:

r′ = Mi · · ·M2M1r

= Tf (r, 1, i)
(2.27)

which completes the tracing of a ray from its initial state r at the first surface to its final
state r′ after refracted by i curved surfaces. We denote this as a function Tf (r,m, n), which
stands for the forward tracing of ray r from surface m to surface n.

In addition, the backward tracing can be also derived to obtain the former states of a ray,
at surfaces which are ahead of its current position, denoted as a function Tb:

r = M−1
1 M−1

2 · · ·M−1
i r′

= Tb(r′, i, 1)
(2.28)

In order to perform forward or backward ray tracing, we need to firstly setup the initial
position and angle of the chief ray and marginal ray. This can be computed from the given
Enpd and HFoV. In the design phase, it is a convention to set the object distance to be
infinity. In other words, we will work with a parallel beam, i.e., parallel rays with a certain
height.

Since the chief ray is defined with the field stop, its angle and position at the first surface
can be computed as [3]:

u1 = tan(HFoV )

h1 = −u ∗ zEP
(2.29)

with zEP the position of the entrance pupil on Z-axis with respect to the center of the first
surface. For computing this, we need to trace a ray rs with a small angle (which is empirically
set as 0.001rad) at the center of the aperture stop backwards, and obtain r′s at the first surface:

r′s = Tb(rs, s, 1) (2.30)

Then zEP can be computed as:

zEP =
h′s

tan(u′s)
≈ h′s
u′s

(2.31)

with h′s and u′s being the position and angle in r′s.
The setup of the marginal ray at the first surface is much easier. Since the object is placed

at infinity, the initial angle of the ray is 0, and the height of the beam is the half of Enpd:

u1 = 0

h1 =
Enpd

2

(2.32)

With their initial positions and angles, and the transfer matrix representation of the
refraction of surfaces, the ray heights and angles at each surface can be computed. The
Seidel aberrations and chromatic aberrations at each surface, and the KPIs for the other
three infeasible cases are therefore obtained.
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2.4 Summary

In this Chapter, preliminaries for the involved optics notions and theories are introduced.
An optical lens system, composed of a sequence of optical surfaces and stops, can be placed in
a right-handed Cartesian system. Each optical surface is defined with its curvature, thickness,
refractive index, and the Abbe number. With these parameters for each surface, the propaga-
tion paths of rays through the system are determined. Two stops, the aperture stop and field
stop, are additional elements to limit the size of rays and the object. And the property of
the optical system thus can be described using a triplet (Enpd, HFoV, EFL). The design of
such an optical system can be concluded as determining the four parameters for each surface
in order to satisfy the desired property triplet.

The KPIs in this problem are built for the image quality and penalty for infeasible cases.
In the ideal image formation, which is in the paraxial region, rays starting from the same
object point will meet at the same point in the image plane, therefore there is no aberration
in the system. But for real lenses, leaving the paraxial region, aberrations appear and should
be reduced as an important requirement in optical lens design. The monochromatic Seidel
aberrations and the chromatic aberrations are included as the image quality measure. Besides,
physically infeasible cases including overlapping of two consecutive surfaces, total internal
reflection and an undesired shape of lens are also considered. The computation of these
KPIs is done by the process called ray tracing. It is to iteratively compute the angles and
positions of a ray at each surface through the system. With these two values, our KPIs can
be computed.
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Chapter 3

The Baseline Neural Network for
Lens Design

In this chapter, the baseline model, which is a deep neural network based framework is
introduced. A hybrid training strategy which combines supervised and unsupervised training
is adopted, and the loss for each part will be formalized.

3.1 Model Structure

In [15] and [16], a stacked deep neural network of multiple dense layers with small di-
mensions is introduced to generate a specific type of lens design from the given propery
parameters, which is empirically proved to have results with better KPIs than larger and
deeper networks. Hence, we decided to use the same structure as Côté et al. in [15] and
[16]. As their source code is not given, the code is implemented from scratch, but sticking
to the authors’ design and what they have illustrated as the best structure in their work.
This project is fully implemented in PyTorch [28], a popular Python-based deep learning
framework.

Specifically, a stack of multiple DNNs work jointly in parallel, and their prediction results
are ensembled by computing the average. Each of them has the same structure (but with
different initialization) known as the self-normalizing neural network (SNN). It adopts the
scaled exponential linear units (SELUs) proposd by Klambauer et al. [29] as the non-linear
activation unit, which is a variant of the Exponential Linear Unit (ELU). Klambauer et al.
derived the hyper-parameters in SELU, and mathematically proved for their recommended
hyper-parameters and initialization method, the activation will follow a normal distribution
N ∼ (0, 1). This is called the self-normalization property, contrary to the external normaliz-
ation techniques like Batch Norm. Results show that this makes the network converge faster,
and the learning more robust and free from gradient vanishing and exploding problems. The
structure of each SNN used by Cote et al. [15] is a consequence of 7 dense layer + SELU
non-linear activation blocks, as is shown in Figure 3.1.

The outputs of all networks are averaged to yield the final prediction of output variables.
Essentially, it resembles training a single SNN with different initialization for multiple times
and ensemble their results. The authors found increasing the number of stacks, i.e. the times
of training the small network, yields better results than increasing the dimensions and number
of layers of the network itself. In our project, the number of stacks is 5 for all the experiments.
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Figure 3.1: Illustration of the network structure.

3.2 Training Process

In order to train the model, one has to consider the data and proper loss functions. The
data will be discussed in detail in Chapter 5. For lens design, we have two main goals: the
first goal is to learn from known designs, for which we have the design parameters of the
input data, i.e. the curvatures, thickness for each surface. This is a regression problem,
and a supervised problem. The other goal is to optimize the KPIs for optical performance
which have been introduced in Chapter 2, i.e., minimizing the aberrations, and minimizing
the penalty on infeasible cases. For this goal, we do not have any labels, other than the
ray tracer as a function for evaluating the KPIs. This forms an unsupervised, constrained
optimization problem. Therefore, the overall objective contains a supervised term and an
unsupervised term. The ray tracer to evaluate the aberrations is also implemented as a
differentiable module in PyTorch, and enables us to use the gradient descent method and the
auto-differentiation ability of PyTorch to conveniently do the combined optimization.

3.2.1 Supervised Term

In the supervised training, the input data, consisting of our desired property parameters
(EFL, Enpd, HFoV) of the lens system, together with the allowed thickness ranges for each
surface, are fed into the network. The network generates the parameters that describe the
surfaces, i.e., the c, t, n, and v for each surface, which are then used to compute the mean
squared error with the true value (the true c, t, n, v of the corresponding surfaces of the
reference lens in the training dataset) as the supervised loss:

Ls =

Dout∑
i=1

1

Dout
(yi − ŷi)2 (3.1)

where yi stands for the ith dimension in the output vector, which can be c, t, n, or v in the
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lens’ design parameters, depending on its index. For example, the first 4 dimensions in the
vector correspond to the c, t, n, and v of the first surface, respectively, and then the 5th
dimension is the c for the second surface, etc. A complete description of the data will be
given in Chapter 5. Dout stands for the dimensionality of the output vector.

3.2.2 Unsupervised Term

In the unsupervised training, we aim at two goals for optimization: the first goal is to
ensure the optical performance of the generated lens system. As introduced in Chapter 2, the
Seidel aberrations and the chromatic aberrations in the image plane are used as the measure
for the image quality. We aim to optimize the total aberrations of certain types, which is a
weighted sum of these terms. The second goal is that we expect the generated lens design is
feasible. This requires there to be no ray failure in the ray tracing process, which means the
marginal ray and the chief ray are traced successfully by reaching the image plane, without
missing an optical surface or encountering total internal reflection. In addition, the thickness
of lenses should be neither too thick or too thin, since a very thin lens will be brittle thus
difficult for manufacturing, and rays will encounter severe attenuation due to very thick lenses.
Therefore the unsupervised loss is composed of these two parts: the image quality measure,
and penalty for all these infeasible cases.

• Image Quality Measure As has been introduced in Chapter 2, in this thesis the Seidel
aberrations are used as the measurement for the image quality. For the achromatic
aplanats, they should be free from spherical aberration, off-axial coma, and the two
chromatic aberrations. Therefore, a weighted sum of these 4 corresponding terms is
computed as the image quality loss, written as Lq:

Lq =
1

8

√
S2

1 +
1

2

√
S2

2 +
1

2

√
C2

1 +
1

2

√
C2

2 (3.2)

For simplicity, this weighted sum will be addressed as weighted Seidel hereafter in this
thesis.

• Penalties for Infeasible Cases The infeasible cases include total internal reflection,
overlapping of surfaces, and restriction for the aspect ratio of glass lenses. Recall Equa-
tion 2.18, 2.19, and 2.22 in Chapter 2, the penalty for each case writes as:

LOP =
∑

all surfs

δz2

LTIR =
∑

all surfs

(f − 1)2

LAP =
∑

all surfs

(−min(|d
t
| − 1, 0) + max(|d

t
| − 30, 0))

Ideally, these penalty terms will be 0 when there is no ray tracing failure and all the
surfaces are with reasonable thicknesses, and will be positive otherwise.
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• Total Unsupervised Loss The total unsupervised loss is a weighted sum of the image
quality measure and the penalty terms:

Lu = cq · Lq + cOS · LOS + cTIR · LTIR + cAP · LAP (3.3)

The cq, cOS , cTIR and cAP are coefficients reserved to scale these terms. In the exper-
iments, cq is empirically set to be 10, and the other three all being 1. This is to put a
larger weight on the image quality measure, and the weights update of the network will
be more affected by this loss.

3.2.3 Hybrid Training

The training of the whole model takes an iterative approach. In the supervised training
process, the network will learn from the reference data in the training dataset, while in the
unsupervised training process, the network will learn to optimize the optical performance,
and also to extrapolate from these known points in the dataset to points (of lens property
specifications) where we do not have former reference designs. This comes to taking two
batches of samples in each epoch, one for supervised training, that is, performing a regression
on the reference data; and the other is for the unsupervised optimization, which is combined
with the differentiable ray tracer we implemented. Detailed data generation and process
pipeline in the training and testing will be elaborated in Chapter 5. The sum of these two
terms are used as the total loss for one training epoch:

Ltotal = Lu + λsLs (3.4)

λs is used to balance the two terms. In our experiments, it is set empirically to be 10, with
the aim to keep the value of unsupervised loss and supervised loss at a similar scale. An
analysis of the respective influences of the supervised and unsupervised terms, by switching
on and off each of them, is made in Chapter 6. The classical mini-batch gradient descent is
performed. The gradient of this combined loss will be computed and back propagated to the
weights of the network. Figure 3.2 concludes the hybrid training framework.

Figure 3.2: The hybrid training framework.
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Bayesian Optimization for Training
Samples Selection

This chapter introduces the Bayesian Optimization (BO), and how it will be combined
with the DNN to obtain a better global optimization. In section 4.1, the framework and the
core concepts in BO will be introduced, including its procedures, the surrogate model, the
acquisition function and how the inference is made. In section 4.2, the combined framework
of our DNN model in the Bayesian Optimization framework will be introduced.

4.1 Background of Bayesian optimization

In this section, the preliminary knowledge for Bayesian Optimization will be introduced.
A general review of the algorithm will be firstly given. Then the core concepts including the
surrogate model and the acquisition function will be introduced.

4.1.1 Introduction to Bayesian Optimization

Bayesian Optimization is known for optimizing black-box functions, for which only the
input and output are known, and the internal computation process could not be obtained.
The problem is to maximize some objective f [30]:

max
x∈A

f(x) (4.1)

where x is the input to the model, and A is the feasible domain.
A statistical model, also known as a surrogate model, is what we used to derive the

posterior probability given the prior distribution, based on the Bayes’ rule:

p(w|D) =
p(D|w)p(w)

p(D)
(4.2)

where w is the parameters of the model, and D is the training data. In this equation,
p(w|D) is the derived posterior; p(D|w) is the likelihood; p(w) is the prior that is put over
the model, which represents our belief about the model. Essentially, we are refining the
model with information from the newly observed data through Bayesian posterior updating.
An acquisition function α is then built with the derived posterior, which incorporates the
considerations of exploitation around known maximum, and exploitation to area with a high
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uncertainty. The optimization of this acquisition function leads to the next point to be
sampled.

A pseudo-code of the classical Bayesian Optimization paradigm can be found in [31], which
is shown as below:

Algorithm 1 Bayesian Optimization

1: for n=1, 2, ... do
2: select new xn+1 by optimizing acquisition function α
3: xn+1 = arg maxx

4: query objective function to obtain yn+1 = f(xn)
5: augment data Dn+1 = {Dn, (xn+1, yn+1)}
6: update statistical model
7: end for

4.1.2 The Gaussian Process

The Gaussian Process (GP) is a widely used surrogate model in Bayesian Optimization.
A Gaussian Process is a collection of random variables, and any finite number of variables
form a joint Gaussian distribution [32]. A GP can be fully defined with its mean function
and variance function. For the real process f(x), a surrogate GP can be defined as:

f(x) ∼ GP(m(x),K(x, x′)) (4.3)

with m(x) and K(x, x′) being the mean and covariance function of f :

m(x) = E[f(x)]

K(x, x′) = E[f(x)−m(x)(f(x′)−m(x′))]
(4.4)

For simplicity, m(x) is often set to be 0. This gives an identical result in the following
derivation.

In this surrogate model, the random variable represent the value of f(x) at a certain x.
Under a GP, the prior is Gaussian:

f |X, θ ∼ N (0,Σ) (4.5)

where X = {x1, x2, · · · , xn} is the training data, and f = {f(x1), f(x2), · · · , f(xn)} is the
collection of values of f . The Σ denotes K(X,X), which is the covariance matrix composed
of Ki,j = K(xi, xj), and θ stand for the hyper-parameters in the model.

When there is noise ε in the observation, which is normally assumed to be an i.i.d. Gaus-
sian distribution ε ∼ N (0, σ2I), the observation y can be expressed as:

y = f(x) + ε (4.6)

The joint distribution of the observations y and the test output f∗ (with test input X∗)
under the prior is: [

y
f∗

]
∼ N (0,

[
Σ + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

]
) (4.7)
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The predictive distribution then can be derived by conditioning the joint Gaussian prior
distribution on the observations, and since p(y), p(f∗), and p(y, f∗) are all Gaussian, p(f∗|y)
is also Gaussian, and can be computed analytically [32]:

f∗|X,y, X∗ ∼ N (f∗, cov(f∗)) (4.8)

where

f∗ = E[f∗|X,y, X∗] = K(X∗, X)[K(X,X) + σ2I]−1y

cov(f∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2I]−1K(X,X∗)
(4.9)

The covariance function K(X,X ′) introduced to represent the covariance of the output
is also called the kernel, which largely controls the properties of GP. Representative kernels
include the radial basis function (RBF) kernel and the Matern kernel, etc, which are discussed
in [32], as is shown in Table 4.1.

Table 4.1: Several commonly-used kernel functions. The kernel function is written as either
a function of X,X∗, or a function of r = |X −X∗|.

covariance function expression

constant σ2
0

linear
∑D

d=1 σ
2
dXdXd

∗

polynomial (X ·X∗ + σ2
0)p

radial basis function exp(− r2

2l2
)

Matern 1
2(ν−1)Γ(ν)

(
√

2ν
l r)νKν(

√
2ν
l r)

exponential exp(− r
l )

Typically, the RBF kernel and the Matern kernels are the most common choices. The
optimization of the hyper-parameters in the kernels (such as the length scale l in the RBF
kernel) is to estimate the hyper-parameters that maximize the marginal likelihood p(y|X, θ),
which is the integral of the product of the likelihood p(y|f , X, θ) and the prior p(f |X, θ):

p(y|X, θ) =

∫
p(y|f , X, θ)p(f |X, θ)df

=

∫
N (f , σ2I)N (0,Σ)df

= N (0,Σ + σ2I) = N (0,Σθ)

(4.10)

The log of the marginal likelihood is:

L = ln(p(y|X, θ)) = −1

2
yTΣ−1

θ y − 1

2
ln(detΣθ)−

n

2
ln2π (4.11)

Then by maximizing this log marginal likelihood the estimation for the hyper-parameters can
be obtained.
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4.1.3 Acquisition Functions

With the above-mentioned ingredients for the surrogate model, the posterior can be es-
timated. And the next step is to use the acquisition function and decide where to sample
next, and iteratively update the posterior using our new observations. When choosing the
acquisition function, there is a trade-off between exploitation and exploration: we want to
choose the places near a high mean, which are more likely to give the maximum value; we
are also interested in the places with high variance, which indicates a higher uncertainty and
potential to give high values. Typical acquisition functions including the Thompson Sampling
(TS) [33], Expected Improvement [34], Upper Confidence Bound [35], etc.

The Thompson Sampling is a classical heuristic sampling method in the multi-armed
bandits problem. The main idea is to choose the action which maximizes the expected reward.
Applied as the acquisition function in BO, it will be sampling from the GP and take the
maximum [36]:

αTS(x;Dn) = p(f∗|x) (4.12)

The Expected Improvement is to measure the amount of improvement upon the former
optimal τ . The improvement function is defined as:

I(x, f, θ) = (f − τ)I(f > τ) (4.13)

The indicator function I(f > τ) equals 1 if f > τ , otherwise will be 0. Due to the posterior
is a Gaussian, this acquisition function can be derived in an analytical form [34]:

αEI(x;Dn) = E[I(x, f, θ)]

= (µn(x)− τ)Φ(Z) + σn(x)φ(Z)
(4.14)

with

Z =

{
µn(x)−τ−ξ

σn(x) if σn(x) > 0

0 if σn(x) = 0
(4.15)

In Equation 4.14, φ is the probability distribution of Z, and Φ is the cumulative density
function. It puts more effort into exploration when ξ is larger, by lowering the importance of
the predictive mean. A recommended default value of this parameter is 0.01.

Another straightforward, and also widely used acquisition function, the Upper Confidence
Bound, writes as follows:

αUCB(x;Dn) = µn(x) + βnσn(x) (4.16)

The general idea is to exploit around the predictive maximum point, and βn is the parameter
to control the extent of exploration to points with higher variance.

4.2 The Combined Framework

The main idea of combining Bayesian Optimization and DNN is to use Bayesian Optim-
ization to guide the learning of the neural network. The image quality KPIs, quantified with
aberrations, are functions of the network inputs (EFL, Enpd, HFoV) and the lens design
parameters (c, t, n, v). Prior knowledge from optical designers says that when the Enpd is
high, the first term in the Seidel aberrations is difficult to be optimized. This can be partially
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observed from the original series expansion form of Seidel aberrations 2.12: the first term b1r
4

contains the 4th-order of r, which is highly related to Enpd. But since this effect is coupled
with other variables, there is not a determinant function to describe this relation.

In other words, some input triplets (EFL, Enpd, HFoV) are harder samples for the network
to optimize the KPIs, but the exact function of this relationship is not known to us. Therefore,
we aim to select those harder training samples, and intentionally train the network on those
samples in order to have better KPIs on those harder points.

With this motivation, a Gaussian Process is established as the surrogate model from
network inputs to the KPIs. But different from the traditional Bayesian Optimization, the
black-box function is known to us. It is in fact the network with the ray tracer, and the
KPIs can be directly computed from it. Our aim is to use the acquisition function to select
those hard samples where the network currently does not behave well, i.e., the generated lens
designs are of the highest KPI.

Different from a classical Bayesian Optimization problem, our black-box function will be
continuously optimized to have an improving performance, therefore the observed data will
also be continuously updated during the BO training process. The surrogate model, which is
parameterized using the typical Gaussian Process, will take the input of the network as input,
aka the lens property parameter triplets, and outputs the weighted Seidel. As the other three
penalty terms are easier to be optimized and will be 0 for most of the time, and also to avoid
a coupled behavior at the beginning, we only establish the GP as a single task regression for
the weighted Seidel.

In the training of the BO, the GP and DNN will be iteratively optimized. Firstly a batch
of random data sampled from the input domain forms the BO training dataset that is fed
into the network to train for the first epoch. Then the first batch of observations are made
by evaluating these first samples using the trained network, and the GP is updated on this
dataset. The next sample(s) is then proposed by optimizing the acquisition function within
the bounds of the input variables, and added to the original BO dataset which composes
the augmented BO training data. Then, the network is updated on the augmented training
data, and we query the network again to obtain the current image quality KPI, i.e., the
weighted Seidels, which are the targets of the BO dataset to train the GP. These procedures
are repeated until a preset stopping condition is reached, for example, a pre-defined loss
threshold or a maximum total training epochs. Algorithm 2 describes the detailed process of
the BO training framework.

Algorithm 2 Combined Bayesian Optimization Framework

1: Train the NN on x1, compute the Seidel loss s11 on these samples from the ray tracer
2: Obtain the initial BO dataset D1 = (x1, s11)
3: for n=1, 2, ... (each BO loop) do
4: Update the GP on Dn

5: Select new xn+1 by optimizing the acquisition function α:
6: xn+1 = arg maxx α(x;Dn)
7: Train the NN on (x1:n, xn+1)
8: Query the NN and the ray tracer to obtain sn+1,1, sn+1,2, ..., sn+1,n+1

9: Augment the dataset Dn+1 = (x1, sn+1,1), . . . , (xn+1, sn+1,n+1)
10: end for
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Dataset

In this chapter, the dataset and the data processing operations will be introduced. In
section 5.1, a brief introduction about the dataset we use, the Zebase dataset, and the type of
lens design investigated will be shown. Section 5.2 will introduces how the data is structured,
and the necessary data pre- and post-processing. Section 5.3 then gives the project-oriented
data augmentation method for the supervised and unsupervised training that are mentioned
in Chapter 3.

5.1 The Zebase Dataset

In this project, the lens designs in the Zebase 6 [37] database are used as the training data.
It is a library of over 600 canonical lens designs from M. Laikin’s book [38]. They are collected
from historic patents and papers, which cover a wide range of usage, e.g., microscopes, eye-
pieces, magnifiers, projection lenses, telescopes. Each lens design consists of different number
of surfaces (ranging from 1 to 36) and different types of surfaces (glass, air, mirror, etc.).
The layout of these lenses also vary with their applications and optical elements. In some of
them, all the elements are symmetrical and are placed coaxial; but there are also other types
in which the optical axis is folded. As a summary of this database, they all serve as good
starting points with different property parameters (i.e., the EFL, Wfno, HFoV, etc.) of the
system, for optical designers to carry on further optimizations and designs.

5.2 Structurize and Processing of the Data

The complex and different representation of the lens designs brought up a challenge in
structurizing the data to be a unified form that can be processed by the machine learning
model. Most machine learning algorithms can only deal with input features with a fixed
length, and there are specific data type requirements for the input features (numerical, cat-
egorical, etc.). Therefore, to adapt to our DNN model, we firstly focus on lenses of a specific
sequence of surface types, disregarding their application and usage in a broader sense. This
is due to the reason that for different types of surface, the number of interest variables will
be different. For air surfaces, their refractive index n and Abbe number v are fixed, therefor
we only have c and t for air surfaces. In other words, the number of surfaces in the lens, and
the surface types, are essentially embedded with each dimension in the input and output.

Machine Learning for Starting Points Generation in Optical Lens Design 31



CHAPTER 5. DATASET

5.2.1 Representation of the Lens Designs into Vectors

The type of lens design we chose to work with is the air-spaced doublets, which is a
sequence of four surfaces GAGA, where G stands for a glass surface, and A stands for an air
surface. For a glass surface, 4 parameters are needed for describing the surface: its curvature
c, thickness t, the material related variables refractive index n and Abbe number v; for an
air surface, since its material is fixed, we will have n = 1 and v = 1e6. Therefore, only
the other two variables curvature c and thickness t are needed to describe an air surface. In
addition, as a way to guarantee the generated system has the expected EFL, the curvature
cl and thickness tl of the last surface are reserved and solved manually (they can be seen as
functions of Enpd, EFL, and the ray height and angle at the next to last surface):

tl = −yl−1

ua

cl =
nl ∗ ua − nl−1 ∗ u
−y(nl − nl−1)

(5.1)

where nl−1 and nl are the refractive indices at the next to last and the last surfaces; u and y
are the ray angle and ray height of the marginal ray at the next to last surface; ua is the exit
angle of the lens to ensure the image is formed at the focus, and is computed by:

ua =
−Enpd
2 ∗ EFL

(5.2)

Therefore, for a GAGA lens, the output vector should be:

y = [c1, t1, n1, v1, c2, t2, c3, t3, n3, v3] (5.3)

where the subscripts of numbers represent the index of the surface this variable is affiliated
to.

The input to the model should contain the specified property parameters of the system,
including the EFL, Enpd, and HFoV. In the meantime, as is in [15]and [17], as enriched
features, the allowed thickness ranges for each surface are also provided to the model.

5.2.2 Normalization of the Variables

For the normalization of the optical variables in this project, a special method considering
the property of the optical system is adopted. Since in lens design, the lens system and the
aberrations in general scale with the EFL, therefore we normalize the variables to the unit
EFL. Specifically, all the length-related variables are divided by the EFL:

EFL′ = 1

Enpd′ =
Enpd

EFL

c′ =
1

R/EFL
= c ∗ EFL

t′ =
t

EFL

(5.4)

where the notations with a prime are the ones after normalization. Other non-related variables
are not touched, such as the angle HFoV and coefficients n, v. But since the computation
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of KPIs are based on the true values of the parameters of the system, in other words, the
ray tracer is a function of both the lens parameters and the property parameters, so before
computing the KPIs with the ray tracer, the variables need to be de-normalized to the system’s
original EFL. The same normalization and de-normalized is performed for the GP in the BO
framework.

5.2.3 De-correlate the Lens Material Variables

For real glass materials, the refractive index n and Abbe number v have an intimate
correlation, as is shown in 5.1. So they are de-correlated by projecting to the two principal
axes using a Principal Component Analysis (PCA) model trained on a dataset of n and v
values of commonly used lens material, named Schott’s glass catalog [39]:

(g1, g2) = PCA(n, v) (5.5)

Figure 5.1: The Schott glass catalog.

And due to a material with a high refractive index will be very expensive in manufacturing,
especially when above 2.0 (typically, the refractive index of diamond for 587nm light is 2.4),
the generated lens material should be forbidden in certain range. Therefore, a tanh non-
linear transformation is added to the network’s raw output of n and v to limit them within
the desired range. In this project, the bounds for these two variables are set as [1.4, 2.0] and
[20, 90]. And a linear mapping will shift the tanh output from [-1, 1] to the desired range.

For the output of the network, an inverse PCA will be performed to obtain the true n
and v:

(n, v) = PCA−1(tanh(g1, g2)) (5.6)

5.2.4 Mapping of the Thickness

In order to limit the output thickness within the pre-defined thickness ranges in the input,
we follow the operation taken by Cote et al. in [15], which uses a softplus activation to map
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the raw thickness into the proper interval (tmin, tmin + trange), using the below equation:

t′ = tmin + softplus(t− tmin, β)− softplus(t− tmax, β) (5.7)

where t’ is the transformed bounded thickness, and t is the raw output thickness of the
network. tmin and tmax = tmin + trange are the minimum and maximum allowed thickness
values for a surface. These two variables tmin and trange are set up for floating the thickness
of each surface, similar as in conventional optical design. They will also be given as input to
the network. The parameter β is set to be 8 in our experiments.

5.3 Data Augmentation for Learning

To have enough training data for the supervised training and unsupervised training, a
strong data augmentation based on the limited dataset is necessary. For the type of design
we are working with, the GAGA sequence, there are only 17 available reference designs in the
database. Therefore the unsupervised training will be of great importance to the extrapolation
to input property specifications where there are no reference designs in the database.

For the thickness ranges, uniform distributions tmin ∼ U [am, bm], trange ∼ U [ar, br] are
defined for each of the surfaces as to draw the augmented data. For data used in supervised
training, the network aims to learn from those existing reference designs, therefore for each
surface the allowed range for floating the thickness of that surface is defined by expanding
the true thickness of that surface by ±0.25 under the unit EFL, as is shown in Table 5.1.

Table 5.1: The lower and upper bounds for thickness ranges.

tmin trange

a max(t-1.25, 0) t+0.25
b max(t-0.25, 0) t+1.25

For unsupervised training, the lower and upper bounds for each of the surfaces will be
drawn from the global lower and upper bound of that surface in the dataset.

As for EFL, HFoV, and Enpd, in supervised training, they will be fixed as those of the
reference designs; in unsupervised training, the strategy is similar to that for the thickness
ranges. Each variable will be randomly drawn from a uniform distribution, with its lower and
upper bound calculated as the global minimum and maximum of that variable in the dataset,
with a ±25% expansion of its original domains. For example, for EFL, this distribution will
be:

EFL ∼ U [EFLmin · 0.75, EFLmax · 1.25] (5.8)

To summarize, the input vector to the model will be a 11-dimensional vector, composed
of 3 lens property variables (Enpd, HFoV, EFL), and 8 thickness bounds for the 4 surfaces:

(Epnd′, HFoV,EFL, t1min, t1range, t2min, t2range, t3min, t3range, t4min, t4range) (5.9)

where the number in the subscript for each t indicates the surface index it corresponds to.
During testing, the input lens property specifications (EFL, Enpd, HFoV) will be specified

by the user, and the allowed thickness ranges are randomly drawn from the prior distributions
and concatenated to the lens property variables as a source of randomness.
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The data processing pipeline with the model, from the external input to the final output,
can be concluded in Figure 5.2.

Figure 5.2: The data processing pipeline.
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Experiments

In this chapter, experiments will be described and results will be presented. Comparisons
and analysis are firstly done for the baseline framework described in Chapter 3 in section
6.1; in section 6.2, the effectiveness of the proposed Bayesian Optimization framework will be
shown.

6.1 The Baseline Framework

In this section, the baseline method with only the DNN will be first tested to show our
implemented algorithm’s performance. Since some details in Cote et al.’s work [15] are not
disclosed, and some improvements are also made, it is necessary to examine the performance
of our model, on both the reference dataset and a generated dataset with input specifications
across the input space. Then an ablation study will be made to illustrate the effectiveness of
the hybrid training framework.

6.1.1 Verification of the Differentiable Ray Tracer Module

In order to train this end-to-end model, the ray tracer is firstly implemented together with
the network in PyTorch, as introduced in Chapter 3. This enables the unsupervised optical
KPIs to be differentiated and their gradients with respect to the model parameters be back
propagated to the network. Therefore, on top of all the experiments, a fundamental step is
to verify the correctness and consistency of the implemented PyTorch ray tracer module and
the results of the ray tracing in commercial optical design software OpticStudio. For this
purpose, a comparison of the Seidel aberrations and chromatic aberrations of the PyTorch
ray tracer and those computed by OpticStudio on the reference dataset is made, as is shown
in Table 6.1. Since it is verbose to give all the results for each design, only two examples and
the averaged relative error on all reference designs is shown here. The detailed results can be
found in Appendix B.

It can be seen the differences between them are very small. All the relative difference
for the seven aberrations are smaller than 3%, within the tolerance range. The difference
is considered to be acceptable because of the accuracy in different programming languages.
In Python, the default datatype float has 32 bits where 23 bits are used for the mantissa,
therefore only about 7 decimal digits are significant. And since the Seidels are computed in
an accumulative way through all the surfaces, the small difference is accumulated as well.

36 Machine Learning for Starting Points Generation in Optical Lens Design



CHAPTER 6. EXPERIMENTS

Table 6.1: Comparison of the OS and the PyTorch ray tracer.

S1 S2 S3 S4 S5 C1 C2

A 006
OS 0.001630 0.001251 0.003107 0.001205 -0.000107 -0.001126 0.001256
PyTorch 0.001618 0.001252 0.003107 0.001205 -0.000107 -0.001125 0.001256

A 013
OS -0.000784 -0.000057 0.000382 0.000277 0.000001 -0.001369 0.000032
PyTorch -0.000790 -0.000058 0.000382 0.000277 0.000001 -0.001369 0.000032

Mean
(relative)

2.1322% 0.0039% 0.0001% 0.0002% 0.0002% 0.0024% 0.0002%

Another possible reason is some approximations we made when computing the paraxial ray
tracing with python (such as sin(i) = tan(i) = i) might not be totally the same with that
in the software. However, it is noted that S1 is much larger than the other six. This is
due to in the computation of S1 (Equation 2.6), the A is much larger than other terms. It
contains the angle of the marginal ray, which is in general much larger that that of the chief
ray. Confirmed with our optical designer, we think the implemented PyTorch ray tracer is a
usable implementation.

6.1.2 Experiment Settings

The framework and data processing pipeline are implemented fully in PyTorch to take
advantage of its automatic differentiation feature. In each epoch, a batch of supervised
samples and a batch of unsupervised samples will be generated. The supervised loss, MSE
(Equation 3.1), is computed on the supervised batch, and the unsupervised loss, the optical
KPIs (Equation 3.3) can be computed on both the supervised samples and unsupervised
samples. For simplicity, in the hybrid training, we will only compute the unsupervised loss
for it. The total loss is computed according to Equation 3.4 and the total gradients are back
propagated to the network parameters. For each batch of samples, the batch size is set as
1024. The learning rate starts from 2e-5 and increases to 2e-3 with a linear warm-up manner.
Then it gradually reduced to 2e-5 using a cosine annealing scheduler. The network is trained
for 200k epochs and 4% of the total epochs are reserved for the warm-up phase.

In all the experiments, the network structure is fixed as a 5-stack parallel structure with
7 repetitive blocks, and each block contains one fully-connected layer with 32 hidden units,
and one SELU activation layer. The output of the last layers are averaged then connected
with corresponding non-linear mappings and de-normalization operations to be mapped into
the desired ranges.

6.1.3 Performance evaluation for the optical KPIs in the Input Space

In real use cases, a triplet of desired property parameters (EFL, Enpd, HFoV) is given
by the users, and the model should give the corresponding design parameters of the lens.
Therefore we need to evaluate the model’s performance across the input space of (EFL,
Enpd, HFoV). The allowed thickness ranges in the input are randomly drawn from the pre-
defined ranges and attached to the property triplet as the input to the neural network. For
each triplet, 10 groups of thickness ranges are generated and 10 different designs will be given
by the network, and the averaged optical KPIs will be computed as the performance on this
given property triplet.

Since each of the values is continuous, it is only possible to take discrete points with fixed
steps. The upper and lower bound for drawing each variable in the property triplet are set
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as the maximum and minimum value of that in the dataset. Figure 6.1 shows the values
of the weighted Seidel at a certain EFL value. The color encodes the value of the weighted
Seidel. For visibility we have taken the logarithm of the weighted Seidels. A brighter color
indicates a bigger value, thus a worse performance at that point. From top to the bottom is
the performance profile when EFL=1, 100, and 1000, respectively.

Figure 6.1: Performance profile of the weighted seidel at a certain EFL in the input (HFoV,
Enpd) space. (a) EFL=1. (b) EFL=100. (c) EFL=1000.

In general, the network is able to produce lens designs that have a small weighted Seidel
at most (HFoV, Enpd) coordinates, except for the top region when the Enpd is large (in other
words, when the Wfno of the system is small), and a narrow strip around the top right area
of the input space. The first area can be understood from Equation 2.12, since the r is highly
related to Enpd and is much larger than other variables, therefore the Seidels are harder to
be reduced at a large Enpd. This is also a normal case we will encounter when we buy camera
lenses, that a lens with a smaller Wfno (or a high Enpd) is in general more expensive.

The mean of the weighted Seidel throughout the test space is also computed as the overall
performance of the model. For the infeasible cases to be penalized, which are the Total
Internal Reflection (TIR), Overlapping of surfaces (OP), and an aspect ratio which is smaller
than 1 or greater than 30 (AP), a different approach is adopted for evaluation. Whenever the
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value of the penalty term is not zero, that lens design is regarded as a failure. The average
failure rate for each case can be therefore computed for each EFL value. These statistics are
shown in Table 6.2.

Table 6.2: Comparison of the OS and the PyTorch ray tracer.

EFL Seidel mean TIR OP AP

1 2.73677e-6 0.074% 100% 0.028%
100 1.00948e-4 0.074% 6.95% 0.028%
1000 9.68709e-4 0.074% 4.09% 0.028%

It can be clearly seen from Table 6.2 that the value of the weighted Seidel scales roughly
with the EFL of the system. For all three EFLs, the generated lens design all have a rather
small mean weighted Seidel across the input space. The failure rates of the TIR and AP
are also very small. This means most of the generated designs are free from TIR, and the
aspect ratios of the glass surfaces are within the desired ranges. It should be noted that in
the computation of OP, a threshold for the minimum gap is also included, which will become
significant when the EFL is very small. This contributes to a high failure rate of OP when
EFL=1.

6.1.4 Comparison to the Reference Lens Designs

Comparison of the generated lenses to the reference dataset is also made. In this compar-
ison, the input property triplets will take the values of those values in the reference dataset.
For each of the lens design, 100 groups of thickness ranges will be randomly drawn and at-
tached to the triplet as input to the network. Then similar to in the previous experiment,
the averaged weighted Seidel of the outputs, and the failure rates of each infeasible cases will
be computed, but only for each specific design. Results are shown in Table 6.3.

Table 6.3 shows the weighted Seidel, TIR and OP of the reference data (the ref column)
and the generated designs (the gen column) of a specific design. The APs are all 0, therefore
to save space they are not shown. For the reference lens, the three values are the exact values
of that lens design; for the generated lens, the Seidel is the average of the 100 output designs,
and the TIR and OP are the failure rates of the 100 designs. For most property triplets,
the generated lens designs have smaller Seidels and most of them are successful designs with
no failures. Though in the first three lines, the averaged weighted Seidels of the generated
lenses are not better than the reference design, some better ones among the 100 outputs
can still be found. In fact, it is not surprising that the network is able to come up with
designs with a much smaller weighted Seidel, since the reference designs in the database are
not only optimized for the Seidel aberrations. In the conventional lens design process, the
optical designers will first have those designs with a very small Seidel as starting points, and
then use the optical designing software to do a local optimization with their customized merit
functions for different goals. Therefore, it is expected our network should be able to produce
lens designs with a small weighted Seidel as those good starting points in the first place.
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Table 6.3: Comparison to the reference dataset.

name EFL HFoV Enpd
ref gen

Seidel TIR OP Seidel TIR OP

A 006 100 2 25 0.002020 0 0 0.0034254 0 0.12
A 007 100 2 25 0.001520 0 0 0.0040912 0 0.14
A 008 100 2 25 0.001672 0 0 0.0040047 0 0.09
A 010 40 1.5 6.249 0.000121 0 0.11 0.0000102 0 0.14
A 011 2800 0.5 200 0.000664 0 1.14 0.0001347 0 0
A 012 2000 0.5 200 0.000826 0 0 0.0011370 0 0
A 013 100 1 14.29 0.000882 0 0 0.0000139 0 0.03
A 014 100 1 14.28 0.000679 0 0 0.0000130 0 0.1
A 015 100 1 14.28 0.000172 0 0 0.0000112 0 0.03
A 017 100 1 33.33 0.004407 0 0 0.0001114 0 0.1
A 018 100 1 35.71 0.004306 0 0 0.0013946 0 0.07
A 019 100 1 35.71 0.006999 0.023 0 0.0011093 0.02 0.09
A 020 100 1 13.99 0.0002765 0 0 0.0000128 0 0.09
A 024 1000 0.5 125 0.0022022 0 0 0.0001111 0 0
A 025 1000 0.5 125 0.0014837 0 0 0.0000961 0 0
A 028 100 1 20 0.0002764 0 0 0.0000300 0 0.05
A 029 100 1 20 0.008974 0.016 0 0.0000415 0 0.1

6.1.5 Visualization and Simulation Analysis of Generated Lens Designs

To illustrate the generated design in a more direct way, we also exported the output
lens parameters into OpticStudio to plot their layouts and analyze them using the tool. Two
generated lens designs are plotted and their corresponding reference designs, A 007 and A 012
are also plotted for comparison. Figure 6.2 and Figure 6.3 show the layout of each group and
the computed Seidels of the reference design and the generated design.

Table 6.4 and Table 6.5 show their corresponding design parameters. For each parameter
type in (c, t, n, and v), the four lines from top to the bottom correspond to the value from
the first to the last surface, respectively.

Table 6.4: Design parameters for the lenses in Figure 6.2 (A 007).

Curvatures (c) Thicknesses (t) Refractive indexes (n) Abbe numbers (v)

Ref

0.020309,
-0.021988,
-0.023971,
-0.0048665

5,
2,
3,
90.8608

1.5168,
1,
1.6483,
1

64.1673,
1e6,
33.8412,
1e6

Gen

0.016766377,
-0.009023238,
-0.0146893505,
-0.0104005793

3.4962142,
3.7846093,
3.6049125,
92.57241058

1.5457263,
1,
1.9979012,
1

75.8944,
1e6,
20.258234,
1e6
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Figure 6.2: Visualization and analysis of a generated lens in OpticStudio (A 007). (a) the
reference design, weighted seidel=0.00152. (b) the generated design, weighted

seidel=0.00002.

Figure 6.3: Visualization and analysis of a generated lens in OpticStudio (A 012). (a) the
reference design, weighted seidel=0.000826. (b) the generated design, weighted

seidel=0.00003.

It can be seen from the parameters and layouts that the generated lens designs are different
from the reference design, and are indeed satisfying and usable ones with a better KPI.

6.1.6 Ablation Study

In order to show the influence of the supervised and unsupervised terms in the hybrid
framework, an ablation study is made. In this part, the network will be trained with mere
the supervised data and the unsupervised data respectively, and results will be compared to
the hybrid framework. Figure 6.4 is an illustration of the other two, the pure supervised and
unsupervised training schemes.

In the supervised training, only the supervised batch of data will be used. The unsu-
pervised term will be also computed for the generated designs. And for the unsupervised
training, only the unsupervised data will be used, and the MSE will not be computed since
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Table 6.5: Design parameters for the lenses in Figure 6.3 (A 012).

Curvatures (c) Thicknesses (t) Refractive indexes (n) Abbe numbers (v)

Ref

0.00086266,
-0.0019956,
-0.001966,
-0.00036909

34.8887,
2,
19.318,
1967.311

1.4866,
1,
1.5584,
1

84.468,
1e6,
54.1572,
1e6

Gen

0.0008024741,
-0.00043567273,
-0.0006658985,
-0.00045022965

41.626442,
49.408054,
51.44473,
1902.1765136

1.5724175,
1,
1.9967525,
1

72.61028,
1e6,
20.399572,
1e6

Figure 6.4: Illustration of the single supervised and unsupervised training schemes. (a)
supervised scheme. (b) unsupervised scheme.

we do not have any labeled data. The other settings follow the same as in the hybrid training
scheme.

Similar to section 6.1.3, the trained models are tested across the whole (HFoV, Enpd)
space, but only for EFL=100 since this is a good value to compare both the weighted Seidel
and the penalty terms. The mean weighted Seidel for each scheme and the performance profile
of the three schemes are shown in Table 6.6 and Figure 6.5.

Table 6.6: Comparison of the hybrid training, supervised training and unsupervised training
schemes.

Seidel mean TIR OP AP

Hybrid 7.66691e-5 0.11% 6.76% 0.07%
Supervised 2.41006e-2 10.92% 7.17% 31.32%
Unsupervised 4.10439e-3 0.015% 0.01% 4.06%

It can be seen from Table 6.6 that the hybrid scheme provides the best mean weighted
Seidel (the Seidel mean in the Table) among the three methods, and the supervised training
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Figure 6.5: Comparison of the seidel profile for the three schemes. (a) supervised. (b)
unsupervised. (c) hybrid.

alone is not able to extrapolate to input property triplets that are not in the dataset, as can
be seen from the many distinct points with a high value of Seidel in Figure 6.5(a). It has the
highest mean weighted Seidel among the three. The unsupervised training alone, provides
a moderate level of Seidel, but is still inferior to the hybrid training scheme. However, an
interesting phenomenon is the growing trend of the Seidels from the bottom to the top in the
unsupervised training, as in Figure 6.5(b). It conforms to the fact in optical design that lenses
with a smaller Wfno is more difficult to design and manufacture, as introduced in Chapter 4.

The loss curves of the three schemes are plotted in Figure 6.6. Combined with the loss
curves, we can find that the supervised training leads to a significant reduce in the Seidel at the
beginning of the training, which helps the network to converge faster; and the unsupervised
training in effect encourages the network to try at places other than those in the dataset,
therefore leads to a better extrapolation. The combined way inherits the merits of both ways
and yields the best performance.

Comparisons to the reference lens designs are also made. For each input property triplet
in the reference dataset, 100 designs are generated by the network and their averaged KPIs
are computed. Results are shown in Table 6.7. Because of the space limitation, only the
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Figure 6.6: The loss curves of the three schemes during training.

weighted Seidel is shown here. The detailed results including the failure rates for the three
infeasible cases can be found in Appendix C.

Table 6.7: Comparison of the supervised, unsupervised and hybrid training on the reference
dataset.

name EFL HFoV Enpd Seidel (reference) Seidel (supervised) Seidel (unsupervised) Seidel (hybrid)

A 006 100 2 25 0.0020198 0.0068457 0.009129 0.0034254
A 007 100 2 25 0.0015204 0.0073526 0.0090359 0.0040912
A 008 100 2 25 0.0016723 0.0071939 0.009043 0.0040047
A 010 40 1.5 6.249 0.0001214 0.0030492 0.0013179 0.0000102
A 011 2800 0.5 200 0.0006635 0.1561404 0.0178965 0.0001347
A 012 2000 0.5 200 0.000826 0.0984978 0.0246195 0.0011370
A 013 100 1 14.29 0.000882 0.0151772 0.0026499 0.0000139
A 014 100 1 14.28 0.0006794 0.0040694 0.0026558 0.0000130
A 015 100 1 14.28 0.0001723 0.0195816 0.0026497 0.0000112
A 017 100 1 33.33 0.0044074 0.0323314 0.0166836 0.0001114
A 018 100 1 35.71 0.0043064 0.0361291 0.0194597 0.0013946
A 019 100 1 35.71 0.0069992 0.0320959 0.0199378 0.0011093
A 020 100 1 13.99 0.0002765 0.0170383 0.0025199 0.0000128
A 024 1000 0.5 125 0.0022022 0.0235061 0.0194048 0.0001111
A 025 1000 0.5 125 0.0014837 0.041862 0.0193032 0.0000961
A 028 100 1 20 0.0002764 0.004118 0.0052507 0.0000300
A 029 100 1 20 0.008974 0.0090515 0.0049588 0.0000415

The previous conclusion still holds. Among the three methods, the hybrid training gives
the best results. And the supervised training alone with the optimization for the Seidels does
not lead to better designs than the reference designs. This is because for the supervised train-
ing alone, some reference lens designs in the dataset have similar property triplets as inputs
with close or even identical values, but they correspond to very different design parameters
(c, t, n, v). The network is essentially a regressor which learns to minimize the MSE loss and
in consequence tends to average all the labels with the same input. In this case, the super-
vised signal from the dataset may accelerate the training of the network at the beginning, but
eventually serves as a negative guidance for the training. Nevertheless, the supervised signal
leads to a faster convergence of the training, and the extrapolation from the unsupervised
signal leads to a good performance throughout the input space.
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6.2 Comparison of Baseline with BO

In this section, the effectiveness of the proposed Bayesian Optimization framework will be
tested. Experiment settings are firstly explained in section 6.2.1. The results, analysis and
visualization are given in the following sections.

In the proposed BO framework, the neural network has the same structure as in the
baseline. The difference lies in the samples that are fed into the network. Essentially, the
way of sampling is changed. In the baseline approach, the samples in each training epoch are
drawn in a totally random manner. While in the BO approach, the next points to sample
are proposed by the surrogate model, i.e., the Gaussian Process, by considering the places
which are more possible to have a higher Seidel using the acquisition function. Therefore,
the training dataset is augmented dynamically according to the current performance of the
network, in the hope that within limited tries the BO can explore those more valuable points.
In each BO loop, when the training dataset needs to be augmented with a new sample, the
current most “difficult” point for the network, where the network has the worst performance,
i.e., the highest Seidel, is expected to be suggested by the acquisition function and then added
to the training data of the NN.

6.2.1 Experiment Settings

In our experiments, the BO framework is incorporated and tested with the unsupervised
scheme in 6.1 for simplicity, without losing the power to verify its effectiveness. It is also
possible to be incorporated with the hybrid training scheme, but in this case two GPs will be
needed, since the input spaces for the supervised and unsupervised schemes are different. In
the supervised scheme, the property triplet is fixed as those in the dataset, and the network
will look in the thickness ranges for the next samples. So the input space for the supervised
scheme is the 8-dimensional thickness ranges. In the unsupervised scheme, the property triplet
is also randomly drawn, therefore it has 11 dimensions. Therefore we will need 2 GPs for
the two processes. Meanwhile the training time will be at least doubled, which is expensive
to carry on initial experiments and parameter tuning. Another reason is that our goal is to
observe the difference brought by changing the sampling method, and the influence by adding
the reference data can be coupled with the effect, therefore is to be avoided.

The BO is implemented using the BoTorch [40] library, which is built on top of the efficient
and scalable Gaussian Process library GPyTorch [41] in PyTorch, and takes advantage of its
GPU acceleration and provides light-weighted high-level APIs. The network is firstly trained
on a set of initial samples, and the number is set to be 100. In each BO loop, after the
training dataset is augmented with a new sample, the network will be trained for a certain
number of epochs, which is set to be 10 in our experiments. The BO loop is repeated for
900 times to get a total number of 1000 samples. This is the BO phase. And since the later
added samples may not be seen by the network for enough times, after the training of the BO
phase, the network will be trained for another 51,000 epochs as an extension. As the total
number of training samples is greatly smaller than in the baseline method, the total number
of training epochs is also reduced, which adds up to 60,000. Since the number of training
samples is rather small, this is pretty enough for the network to overfit on the dataset. An
early stop policy will be adopted, where the network will be tested throughout the input
space for multiple times during the training, and as long as an increasing trend of the Seidel
is observed, the training will be stopped. The batch size is set as 1024 in each epoch. These
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parameters are all tuned empirically through experiments.

As for the training of the GP, in order to save labor in tuning the parameters, the default
optimizer in BoTorch, which is the L-BFGS-B optimizer with the default parameters is used.
And as for the kernel to be used in the GP, and the acquisition function in the BO process,
there are multiple options. Due to the previous experiment results, no obvious periodical
tendency can be observed from the seidel profile, therefore two popular and widely used kernels
are tested: the RBF kernel and the Matern 3/2 kernel. As for the acquisition function, the
Thompson Sampling method, the Upper Confidence Bound and the Expected Improvement
are tested.

6.2.2 Comparison with the Baseline

Evaluation is made using the same method by computing the mean of the weighted Seidels
throughout the (HFoV, Enpd) space at EFL=100. In the meantime, in order to show the
effectiveness of integrating the BO, the standard deviation and maximum value of the Seidels
throughout the input space is also computed. A smaller standard deviation indicates a more
even performance of the model throughout the input space, and a smaller maximum Seidel
indicates a better worst case of the model’s performance. Results with different kernels and
acquisition functions are shown in Table 6.8.

Table 6.8: Comparison of the mean, std, and max of the Seidels of the baseline and BO
approaches.

mean std max

baseline 0.004121 0.005151 1.417223

RBF
TS 0.00372 0.004406 0.032865
UCB 0.003648 0.004344 0.031931
EI 0.003974 0.00481 0.032964

Matern3/2
TS 0.004041 0.004885 0.032321
UCB 0.003675 0.004404 0.032479
EI 0.003974 0.00481 0.032964

In terms of the mean, standard deviation, and the maximum of the Seidels across the input
space, the BO method with all option combinations all give a smaller value than the baseline
method. The difference between the kernels are not very significant. As for the acquisition
functions, the UCB method seems to be a bit better that the other two. Nonetheless, all
of the 6 combinations reduced the mean Seidel level, with a more even performance and a
better worst case. Essentially, the BO approach selects the worst point with the acquisition
function in each BO epoch, and add it to the training dataset for the network, so it focuses
more on the hard points, and in the end improves the worst performance of the model. And
as an overall effect, the difference of the performance throughout the input space is reduced,
which gives rise to a smaller standard deviation of the Seidels. And the mean is also reduced,
which indicates that this optimization focusing on the hard points is more efficient than the
random sampling optimization.

Figure 6.7 shows the distribution of all the generated lens designs of the three acquisition
functions using the Matern kernel with ν = 3/2. The Seidels of all generated lenses have been
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plotted, without taking the mean for a specific input specification, therefore more bad cases
can be seen. To show them more clearly, the logarithm of the Seidel values have been taken.

Figure 6.7: Distribution of the seidels of the generated lens designs for the BO approaches
and the baseline.

Compared to the three BO approaches with different acquisition functions, there are more
number of lens designs which have a very high Seidel, which are outliers in the fourth boxplot.
This overall view shows that the BO based approach has less failures throughout the input
space.

6.2.3 Visualization and Analysis

A visualization of the proposed samples of different methods is also made. Since it is
only able to plot 3 dimensions of the input data, only the values of the (EFL, HFoV, Enpd)
triplets of the data are plotted here. Figure 6.8 shows those with the Matern 3/2 kernel. The
samples with the RBF kernel are pretty similar, therefore we only give the visualization for
one case.

Compare to the random sampling in the baseline method, the changes of the sampling
method are directly reflected in the spacial distribution of the samples. Differences are not
significant when choosing different kernels, but can be found when comparing different ac-
quisition functions. For the Thompson Sampling and Upper Confidence Bound, it is more
straightforward as can be seen in the analytical form of their acquisition functions. They focus
more on the high Seidel area by considering the posterior mean in the input space. Therefore
the area with a high EFL and Enpd is more frequently exploit, which is the difficult zone.
And when that area is over-exploit, the uncertainty at other places also increases and be-
comes significant, which lead to the exploration to the low Enpd zone. But still the EFL is
the dominant factor in the Seidels. For the Expected Improvement, another pattern can be
observed. The sampled points spread over the EFL range and stretch to higher Enpd and
HFoV values when the EFL is low. This can be partially explained by looking at Equation
2.12. The Enpd is highly related to the radius r in Equation 2.12, therefore a high Enpd will
lead to a large S1. And the height of the ray, r cosϕ, grows linearly with HFoV. The EFL
is however not directly visible in the equation, but it is inter-related to the height of the ray
and the parameter HFoV. Lenses with a very small EFL and a large Enpd, normally indicate
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Figure 6.8: Samples by different acquisition functions and in the baseline, using the Matern
3/2 kernel. (a) Thompson Sampling. (b) Upper Confidence Bound. (c) Expected

Improvement. (d) Baseline.

a high HFoV, which means the lens needs to have a very strong ability to converge the rays
coming from a wider view. As a fact, there are very few reference designs of this type, which
to some extent indicates they are difficult to design.

48 Machine Learning for Starting Points Generation in Optical Lens Design



Chapter 7

Conclusions and Further Discussion

In this work, the application of deep learning to the problem of starting points generation
in optical lens design is investigated. A stacked 7-layer baseline neural network is firstly built
to generate lens parameters given the desired property parameters of the lens system. A
hybrid training method is adopted, in which the network learns both from the reference data
and optimizes the optical KPIs. In addition, due to the scarcity of optical data, a strong data
augmentation is used.

Results show that for the achromatic aplanat doublets, the network is able to produce
designs for any given input property triplet, with small optical KPIs, and most of them are
even better than those in the reference dataset. Compared to the supervised training or
unsupervised training alone, the hybrid training which combines the two yields designs with
better optical KPI values.

To improve the network’s performance at the area in the input space with a high KPI value,
a Bayesian Optimization based joint learning framework is proposed. A Gaussian Process is
built as the surrogate model to describe the function from network inputs to optical KPIs, in
order to select the hard, or most valuable points as the samples for the network to be trained
on. Results show the effectiveness of this improved method integrated with the Bayesian
Optimization framework. Experiments are done with multiple options for the kernel and
acquisition function, and all of them exceed the performance of the baseline approach. The
BO assisted approaches have better worst case performance than the baseline approach.

The type of design which is studied in this work, the air-spaced doublet achromatic
aplanat, turns our to be a relatively simple lens for the neural network to design. If the
input space is sufficiently sampled, the proposed baseline approach with random sampling
is already able to generate satisfying results. And the advantage of the proposed Bayesian
Optimization approach is not very notable if compared to the sufficient random sampling.
However, the BO approach indeed shows its superiority when the input space cannot be suf-
ficiently sampled, therefore it is very likely that the difference will become significant with
the increase of the dimension of the problem, in other words, when the type of design to be
investigated is more complex.

Nonetheless, this work serves as an initial step of the machine learning assisted automated
starting point generation in optical lens design, with the focus on a simple and fundamental
building block of optical lenses. And the framework as well as the differentiable ray tracer
built from scratch, are highly extendable for more complex lens types in further study. In
future work, many meaningful and interesting aspects can be the directions. For example,
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investigating into more complex types of lens designs with increased number of elements; or
improving the glass model to be closer to preferred materials; or incorporating objectives
which consider the problems in manufacturing, and so on.
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timisation via thompson sampling. In International Conference on Artificial Intelligence
and Statistics, pages 133–142. PMLR, 2018. 29

[37] Zemax optical design collection: Zebase 6. http://zemax.tw/ZMXLLC/media/

PDFLibrary/Brochures/Zebase-sell-sheet_141120-(1).pdf?ext=.pdf. Accessed
July 29, 2021. 31

[38] M. Laikin. Lens design. CRC Press, 2018. 31

[39] Schott glass catalog. https://www.schott.com/advanced_optics/english/products/
optical-materials/optical-glass/optical-glass/index.html. Accessed March
25, 2021. 33

[40] Botorch. https://botorch.org/. Accessed July 29, 2021. 45

[41] Gpytorch. https://gpytorch.ai/. Accessed July 29, 2021. 45

Machine Learning for Starting Points Generation in Optical Lens Design 53

http://zemax.tw/ZMXLLC/media/PDFLibrary/Brochures/Zebase-sell-sheet_141120-(1).pdf?ext=.pdf 
http://zemax.tw/ZMXLLC/media/PDFLibrary/Brochures/Zebase-sell-sheet_141120-(1).pdf?ext=.pdf 
https://www.schott.com/advanced_optics/english/products/optical-materials/optical-glass/optical-glass/index.html
https://www.schott.com/advanced_optics/english/products/optical-materials/optical-glass/optical-glass/index.html
https://botorch.org/ 
https://gpytorch.ai/ 


Appendix A

Derivation of the Spherical
Aberration (S1)

The Spherical Aberration can be derived in many ways. Here one simple version from [2]
is shown.

Figure A.1: Spherical aberration at a single surface.

In Figure A.1, AB is a spherical lens surface with a radius R. Point O is the object point
on the optical axis, and O′ is the corresponding image point. The height of the ray at this
surface is denoted as h. The object distance and image distance is denoted as l and l′, and
the refractive index of the first and second medium is n and n′, respectively. The Spherical
Aberration in the total wavefront aberration is computed as the difference of the lengths of
two optical paths [OBO′] and [OAO′]:

W = [OAO′]− [OBO′]

= n(OA−OB) + n′(AO′ −BO′)
(A.1)

The problem is then transformed into finding the appropriate approximation of OB and BO′.
In geometrical optics, there are several sign conventions:

• Ray heights of the rays are positive if the rays are above the optical axis, and are
negative if the rays are below the optical axis.
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• Distances are positive if they are to the right of a surface, and negative to the left of a
surface.

• Ray angles are positive if their slopes in the meridian plane are positive, and are negative
if the slopes are negative.

For OB,
OB2 = (z − l) + h2 (A.2)

where z is the axial displacement of the ray’s intersection at the surface, computed by:

z =
1−
√

1− c2h2

c
(A.3)

If we considers zc, it can be expressed using a power series in h2:

zc = 1−
√

1− c2h2

= 1−
(

1− 1

2
c2h2 − 1

8
c4h4 − 1

16
c6h6 − · · ·

)
(A.4)

Therefore we have an approximation of z:

z =
1

2
ch2 +

1

8
c3h4 +

1

16
c5h6 + · · · (A.5)

In deriving the Seidel aberrations, the terms with h6 and higher orders are ignored. If we
substitute Equation A.2 with Equation A.5, we obtain:

OB2 =

(
1

2
ch2 +

1

8
c3h4 − l

)
+ h2

OB2 = l2
[
1−

(
c− 1

l

)
h2

l
−
(
c− 1

l

)
c2h4

4l

] (A.6)

In the paraxial zone, h� l, hence we have:

OB = −l +
1

2
h2

(
c− 1

l

)
+

1

8
c2h4

(
c− 1

l

)
+

1

8l
h4

(
c− 1

l

)2

(A.7)

and

OA−OB = −1

2
h2

(
c− 1

l

)
− 1

8
c2h4

(
c− 1

l

)
− 1

8l
h4

(
c− 1

l

)2

(A.8)

Similarly, we can obtain

AO′ −BO′ = −1

2
h2

(
c− 1

l′

)
− 1

8
c2h4

(
c− 1

l′

)
− 1

8l′
h4

(
c− 1

l′

)2

(A.9)

Then the Spherical Aberration can be computed by:

W = n(OA−OB) + n′(AO′ −BO′)

=
1

2
h2

[
n′
(
c− 1

l′

)
− n

(
c− 1

l

)]
+

1

8
c2h4

[
n′
(
c− 1

l′

)
−
(
c− 1

l′

)]
+

1

8l′
h4

[
n′

l′

(
c− 1

l′

)2

− n

l

(
c− 1

l′

)2
] (A.10)
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If O′ is a paraxial image point, we have [2]:

n′

l′
=
n

l
+ (n′ − n)c (A.11)

or

n′
(
c− 1

l′

)
= n

(
c− 1

l

)
(A.12)

Hence, Equation A.10 can be simplified to:

W =
1

8l′
h4

[
n′

l′

(
c− 1

l′

)2

− n

l

(
c− 1

l′

)2
]

(A.13)

Since in the paraxial zone,

u = −h
l

u′ = −h
l′

i = u+ hc

(A.14)

Substitute them into Snell’s law A = ni = n′i′ (in the paraxial zone sin(i) = i),

A = n(hc+ u) = n′(hc+ u′)

nh

(
c− 1

l

)
= n′h

(
c− 1

l′

)
(A.15)

This gives us:

c− 1

l
=

A

nh

c− 1

l′
=

A

nh′

(A.16)

Substitute them into Equation A.13, we get:

W =
1

8
h4

[
n′

l′

(
A

n′h

)2

− n

l

(
A

nh

)2
]

=
1

8
A2h

(
h

n′l′
− h

nl

)
=

1

8
A2h

(
u

n
− u′

n′

)
= −1

8
A2hδ

(u
n

)
(A.17)

with

δ
(u
n

)
=
u′

n′
− u

n
(A.18)

which gives the final form in Equation 2.6.
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Appendix B

Comparison of the implemented ray
tracer on the dataset.
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APPENDIX B. COMPARISON OF THE IMPLEMENTED RAY TRACER ON THE
DATASET.

SPHA S1 COMA S2 ASTI S3 FCUR S4 DIST S5 CLA S6 CTR S7

A 006
OS 0.001630 0.001251 0.003107 0.001205 -0.000107 -0.001126 0.001256
PyTorch 0.001618 0.001252 0.003107 0.001205 -0.000107 -0.001125 0.001256

A 007
OS 0.000389 0.000771 0.002254 0.001314 -0.000012 -0.001869 0.000307
PyTorch 0.000370 0.000772 0.002254 0.001314 -0.000012 -0.001869 0.000307

A 008
OS -0.000228 0.000719 0.002076 0.001326 0.000007 -0.002416 0.000157
PyTorch -0.000212 0.000719 0.002076 0.001326 0.000007 -0.002416 0.000157

A 010
OS 0.000248 0.000004 0.000165 0.000120 0.000001 -0.000171 -0.000005
PyTorch 0.000248 0.000004 0.000165 0.000120 0.000001 -0.000171 -0.000005

A 012
OS -0.000784 -0.000057 0.000382 0.000277 0.000001 -0.001369 0.000032
PyTorch -0.000790 -0.000058 0.000382 0.000277 0.000001 -0.001369 0.000032

A 013
OS 0.004425 -0.000129 0.000105 0.000097 -0.000006 -0.000431 0.000097
PyTorch 0.004418 -0.000130 0.000105 0.000097 -0.000006 -0.000430 0.000097

A 014
OS 0.001850 -0.000140 0.000158 0.000111 0.000001 -0.000746 -0.000010
PyTorch 0.001845 -0.000140 0.000158 0.000111 0.000001 -0.000745 -0.000010

A 015
OS -0.000037 0.000076 0.000166 0.000111 0.000003 -0.000242 -0.000018
PyTorch -0.000039 0.000076 0.000166 0.000111 0.000003 -0.000241 -0.000018

A 017
OS 0.015911 0.000988 0.001042 0.000585 -0.000003 -0.003502 0.000364
PyTorch 0.015763 0.000991 0.001042 0.000585 -0.000003 -0.003494 0.000364

A 018
OS 0.015445 0.000214 0.001157 0.000538 -0.000008 -0.004047 0.000495
PyTorch 0.015417 0.000215 0.001157 0.000538 -0.000008 -0.004045 0.000495

A 019
OS 0.023586 0.001579 0.001031 0.000694 0.000004 -0.006347 0.000148
PyTorch 0.023787 0.001575 0.001031 0.000694 0.000004 -0.006355 0.000148

A 020
OS -0.000642 -0.000002 0.000169 0.000109 0.000000 -0.000379 0.000013
PyTorch -0.000633 -0.000002 0.000169 0.000109 0.000000 -0.000380 0.000013

A 024
OS -0.003934 0.000652 0.000308 0.000206 0.000000 -0.002709 0.000057
PyTorch -0.003952 0.000652 0.000308 0.000206 0.000000 -0.002712 0.000057

A 025
OS -0.000323 -0.000059 0.000298 0.000205 0.000000 -0.002720 0.000105
PyTorch -0.000339 -0.000059 0.000298 0.000205 0.000000 -0.002714 0.000105

A 028
OS 0.000342 0.000013 0.000331 0.000206 0.000000 -0.000382 0.000072
PyTorch 0.000321 0.000014 0.000331 0.000206 0.000000 -0.000379 0.000072

A 029
OS -0.017991 -0.010798 0.000024 0.000134 -0.000021 -0.002365 0.000296
PyTorch -0.018085 -0.010799 0.000024 0.000134 -0.000021 -0.002361 0.000296

Average
relative
difference

2.1322% 0.0039% 0.0001% 0.0002% 0.0002% 0.0024% 0.0002%
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Appendix C

Detailed evaluation of the
supervised, unsupervised and the
hybrid training schemes on the
reference dataset.
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APPENDIX C. DETAILED EVALUATION OF THE SUPERVISED, UNSUPERVISED
AND THE HYBRID TRAINING SCHEMES ON THE REFERENCE DATASET.
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