EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Automatic target-specific code-generation from Simulink to composable multi-core platforms

Xiao, Liyin

Award date:
2021

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/71df53e9-7047-406c-bb9e-e6bb0cb5c4dc

Technische Universiteit

Eindhoven

University of Technology
Department of Electrical Engineering
Electronic Systems Research Group

Automatic target-specific code-generation from
Simulink to composable multi-core platforms

Master Thesis Preparation Report

Liyin Xiao

Supervisors:
Dr. Dip Goswami
Mojtaba Haghi

1.0 version

Eindhoven, August 2021

Abstract

This thesis provides the implementation of feedback control applications which are designed
in Simulink model-based environment. The targeted embedded platform for implementation is
CompSOC, a predictable and composable system-on-chip. Simulink provides an Embedded coder
which can automatically generate the code of a model-based simulation. Then a part or the whole
of the simulation is uploaded and executed on CompSOC platform. The target-specific simulations
are either processor-in-the-loop or hardware-in-the-loop simulations.

The purpose of this study is to build an automatic code generation tool targeting the predict-
able and composable multi-core platforms. To this aim, the generated code should be compiled
to an executable which has real-time temporal behavior. It also should be able to be divided to
separate executables where each part is executed on a separate core of the platform. PIL is a
simulation method which compiles the generated code from the feedback control model and then
upload and run the code on the embedded platform. HIL or external mode simulation is a method
which is used in the development and testing of control systems with complex operations. To im-
plement PIL and external mode simulations on the embedded platform successfully, A framework
in Simulink environment is proposed to enable automatic code-generation, compile and execution
on the targeted embedded platform.

Model-based hardware-in-the-loop framework for multi-core composable platforms iii

Preface

I would like to extend my deepest gratitude to my head supervisor Dip Goswami for his patience
and thorough feedback on my thesis. Without his consistent and illuminating instruction, this
thesis could not have reached its present form. I shall extend my thanks to my project tutor
Mojtaba Haghi for all his kindness and help. He is a patient person who led me into the world of
research. I would also like to thank my parents. Without their constant encouragement this work
may never have been finished.

iv Model-based hardware-in-the-loop framework for multi-core composable platforms

Contents

Contents v
List of Figures vii
1 Introduction 1
1.1 Composable Multi-core Platform 2
1.2 Problem Definition L e 2

2 The Composable multi-core platform 4
2.1 Virtual processors oL e e 4
2.2 TDM schedule policy on CompSOC 4

3 PIL and external mode simulations 6
3.1 Development environment L Lo 6
3.1.1 Hardware e e e e 6

3.1.2 Softwareo 7

3.2 Control application Lo 7
3.2.1 State-Space Model 7

3.2.2 Considered cases v v i i e e e e e e e e e e 9

3.2.3 Discrete State-Space Model 9

3.3 PIL Simulations e e e 9
3.4 HIL Simulations e 9
3.5 Simulink model and code generation oo 10
3.5.1 Simulink Model 10

3.5.2 Code Generation e 10

3.5.3 Code generation with Real-Time Workshop 11

4 Single-Core simulations implementation 15
4.1 Control Design and Implementation, 15
4.2 As-fast-as-possible Scheduling 16
4.3 Real-time scheduling L L 17

5 Automation for multi-core implementation 19
5.1 The multi-core scheduling Lo 19
5.2 The shared memory block oo 19
5.2.1 To the shared memory o 20

5.2.2 From the shared memory Lo 21

5.3 Choose specific tile and partitionslot 0oL 22
5.4 The hexFile e e e 23
5.5 Casel: model-based controller and hard-coded plant 24
5.6 Casell: model-based controller and code generated plant 25
Model-based hardware-in-the-loop framework for multi-core composable platforms v

CONTENTS

6 Experimental Results 29
6.1 Single core implementation oL L oo 29
6.2 Automated multi-core integrationo Lo 29
6.3 Results and Analysis 30

6.3.1 Conclusion e e e e e 34

7 Conclusions and future plan 35
7.1 Conclusion o e 35
7.2 Futureplan L 35

Bibliography 38

vi Model-based hardware-in-the-loop framework for multi-core composable platforms

List of Figures

1.1 V-steps of Model e 1
1.2 The composition of CompSoC platform 2
2.1 High-level overview of a possible composition of CompSOC 4
2.2 The TDM schedule policy 5
3.1 PYNQ board overviewo e 6
3.2 The motion system L 7
3.3 The feedback control model in Simulink environment 10
3.4 Code generation processo n e e e 10
3.5 Code generation from Real-Time Workshop document 11
3.6 Configuration Parameters L Lo 11
3.7 Solver diagram 12
3.8 Imterface diagram 12
3.9 Templates diagram Lo e e e e e 13
3.10 The File customization template 13
3.11 Code Generation Report 14
4.1 2-DOF controller configuration oL 15
4.2 As-fast-as-possible Scheduling oL oo o 16
4.3 The naive composition of rt_OneStep 16
4.4 The specific TLC code and its corresponding generated embedded code for rt_OneStep
function L e e e e e e 17
4.5 The composition of new rt_OneStep 17
4.6 The specific TLC code and its corresponding generated embedded code for realtime 18
4.7 TDM schedule e e e e 18
5.1 The multi-core scheduling 19
5.2 The third level of automation for multi-core code generation. 20
5.3 legacy write L oL L e e e e 20
5.4 ToSharedMemory e 21
5.5 ToSharedmemory block L 21
5.6 legacy reado e 21
5.7 FromSharedMemory L 22
5.8 FromSharedmemory block oL L oo L 22
5.9 system target file oL oL 23
5.10 Configuration Parameters dialog box Lo 23
5.11 runAvrDude(hexFile) e 24
5.12 Generate hexFile 24
5.13 Control task e e e e 24
5.14 Plant simulation 25
5.15 Hardware architecture 25

Model-based hardware-in-the-loop framework for multi-core composable platforms vii

LIST OF FIGURES

5.16 The control model 26
5.17 The plant model L L 26
5.18 Processor tile and virtual platform oo o0 oo 27
5.19 External mode configurationl L. 27
5.20 External mode configuration2 oL L o 28
6.1 The naive implementation of feedback-feedforward application. 29
6.2 Pulsesignal input. e 30
6.3 Output x[1] with the single core implementation 30
6.4 Output x[2] with the single core implementation 31
6.5 Output x[3] with the single core implementation 31
6.6 Output x[4] with the single core implementation 32
6.7 Output x[1] with the multi-core and hard-coded plant implementation 32
6.8 Output x[2] with the multi-core and hard-coded plant implementation 33
6.9 Output x[3] with the multi-core and hard-coded plant implementation 33
6.10 Output x[4] with the multi-core and hard-coded plant implementation 34
7.1 The final level of automation for multi-core code generation 36
7.2 The model is partitioned to execute concurrently 36
7.3 Multicore target architecture L oo L oL 37
viii Model-based hardware-in-the-loop framework for multi-core composable platforms

Chapter 1

Introduction

Nowadays, the implementation of digital control applications on embedded platform became a hot
research topic since embedded implementation causes several uncertainty in stability and perform-
ance. Embedded implementation is widely used in many industrial topics such as aircraft autopi-
lots, mass-transit vehicles, oil refineries, paper-making machines, and countless electromechanical
servomechanisms|[1].

The process of design and implementation of a digital controller consists of specific steps.
Figure 1.1 demonstrates a V-step model of these steps. The control design usually starts from
model-in-the-loop (MIL) simulations in model-based simulation environments. In this step the
controller is designed in a way to verify control performance requirements. The next step is called
processor-in-the-loop (PIL) which has a non real-time nature. In such simulation, the designed
controller (and possibly the model of the system under study) is executed on the embedded
platform. This simulation enables the designer to verify the functional correctness of control code
while executed on the platform. This step consists of platform-specific code generation for the
control application, uploading and execution of the code on the platform, and the measurement
of the execution times of different tasks. The final step of the implementation is called the
hardware-in-the-loop (HIL). In this step, a real-time simulation verifies the temporal behavior of
the controller on the platform in aspects such as real-time execution, periodicity, interruptions
with other applications on the platforms and so on.

‘/f Requirements Defination K Validation \
&) \. 7 4

\ Hardware-in-the-Loop Simulation
Modeling and Simulation ‘ /-
\ Processor-in-the-Loop Simulation
‘ Rapid Control Prototyping ‘ f
\ Software-in-the-Loop Simulation

Code Generation |

Figure 1.1: V-steps of Model

Embedded implementation of feedback control applications presents several challenges in terms
of stability and performance [2]. In the controller design phase, a common assumption is that con-
trol tasks/software execute periodically, sequentially and without jitter. On widely used platforms

Model-based hardware-in-the-loop framework for multi-core composable platforms 1

CHAPTER 1. INTRODUCTION

such as Raspberry Pi, dSPACE and arduino, strictly periodic, jitter-free execution is difficult
to achieve due to interference from system tasks with other applications that share platform re-
sources. The tailored embedded platforms for real-time applications are interesting targets for
control applications [5]. These platforms offer properties such as determinism in execution times
and composablity in multi-application scenarios (which guarantees interference free execution of
applications). These properties guarantee periodic and jitter-free execution of the control applic-
ations. In this thesis we focus on developing a implementation framework for such platforms and
specifically on a certain platform called CompSOC. Before we continue further, we first describe
the platform.

1.1 Composable Multi-core Platform

The embedded platform used in this project is called CompSOC[6] which is designed for execut-
ing multiple embedded applications. By using Time Division Multiplexing arbitration (TDM),
this platform meets the requirements of predictability and composability, which guarantee non-
interference execution for feedback control applications[5]. For this reason, CompSOC platform is
chosen for the control application.

The Figure 1.2 shows the composition of CompSOC platform[5] which is a tile-based archi-
tecture. Each tile contain its own processor with unique data memory (DMEM) and instruction
memory (IMEM). As a result, the two processor tiles can access to each other using Direct Memory
Access (DMA) through its communication memory (CMEM).

TDM scheduling policy on CompSOC guarantees an isolated and non-interference implement-
ation for each application since this platform uses a predictable and composable micro-kernel
(CoMiK). This kernel creates multiple virtual processors (VPs) and each VP uses part of hard-
ware resources. Under TDM scheduling manner, the utilization of these VPs will not affect each
other. Therefore, the platform is composable and achieves real-time performance. Figure 1.2
shows the TDM scheduling with three partition slots on the first tile.

< »]
¢ »>

4 ¥;
‘_‘W 0] ‘—’l{{ o -t—p

VP1I VP2 IVP3!| VP4 I VP5 I

"CoMik CoMik
Processor Tile 1 Processor Tile 2
3 !
| Memory Tile |

Figure 1.2: The composition of CompSoC platform

1.2 Problem Definition

In this project, we present an HIL framework for model-based simulations targeting composable
multi-core platforms. The framework is an add-on code-generation tool to Simulink [6] environ-
ment. The framework enables the designer to start from a model-based simulation environment
(Simulink) to complete all the steps of the V-model (which are MIL, PIL, and HIL) within the
same environment.

The framework is able to generate the target-specific code for both PIL and HIL simulations,
build an executable out of the generated code and upload it on the platform. Since the platform
is multi-core and is able to run a number of applications simultaneously, the framework enables
to choose the specific core and its scheduling, on which the simulation will execute.

The goals of this project is to develop an HIL framework which has the following features:

2 Model-based hardware-in-the-loop framework for multi-core composable platforms

CHAPTER 1. INTRODUCTION

e It automatically generates the target-specific HIL code for FPGA-based embedded platform
CompSOC from any Simulink models (www.mathworks.com).

e It automatically uploads and executes HIL codes on the platform either with a real-time or
as-fast-as-possible timing fashion.

e It allows for online data logging and parameter tuning while the simulation is running on
the platform.

e It Enables the designer to specify the scheduling of the targeted core on the platform.

e It allows the user to divide a single simulation to different tasks and execute them on different
cores of the platform.

The rest of this report is organized as the following: Chapter 2 discusses the composable
multi-core platform, Chapter 3 describes the PIL and external mode simulations . Chapter 4
indicates single-core simulations implementation. Chapter 5 describes automation for multi-core
implementation. Chapter 6 gives the Experimental Results. Chapter 7 imagines the future plan.

Model-based hardware-in-the-loop framework for multi-core composable platforms 3

Chapter 2

The Composable multi-core
platform

The embedded platform considered in this project is CompSOC which has a tile-based architecture.
Figure 2.1 illustrates a possible composition of CompSOC, which normally consists of processor
tiles and monitor tiles. The processor tile is mainly made up of a MicroBlaze soft-core processor
which plays a role in processing.

IVP1IVP2I I I IVP1IVPZI I I

VP1 VP2 VP1 VP2

Physical processor tile Physical processor tile
[

[]
¥ k4
| Monitor tile | ‘ Monitor tile |

Figure 2.1: High-level overview of a possible composition of CompSOC

2.1 Virtual processors

As illustrated in Figure 2.1, processor tiles consist of a physical Microblaze processor that has an
instruction memory (imem) and a data memory (dmem). These memory are tightly coupled. Since
real-time applications can share the processor resources with other applications, a composable and
predictable micro-kernel is introduced to create multiple virtual processors (VPs) which can be
considered as processing resources [9]. CoMik uses TDM schedule policy to divide the processor
into TDM partition slots. Each VP takes up part of the processing resource available on the
physical processor that is allocated in a TDM schedule policy.

2.2 TDM schedule policy on CompSOC

A periodic time-division-multiplexing (TDM) policy is applied on all processors aiming at achieving
real-time performance with cycle accurate time division. This schedule policy help to maintain the

4 Model-based hardware-in-the-loop framework for multi-core composable platforms

CHAPTER 2. THE COMPOSABLE MULTI-CORE PLATFORM

properties of predictability and composability on this platform. Because each VP utilizes part of
the processing resource, they will not affect each other using TDM schedule policy. Therefore, the
composability on this platform is guaranteed. The application which executed on the platform will
be allocated to a single partition slot and waiting for starting a new CoMiK slot. Predictability
is also a vital property which is needed to be able to guarantee that worst-case performance and
deterministic execution times are met for real-time applications.

The TDM frame include two kinds of slots, the partition slots(¢) and the CoMik slots(w).
Figure 2.2 illustrates a possible schedule of one TDM period with four CoMik slots and four
partition slots which could be different.

w ¢ w
VP1 VP2 VP3 l VP4 .

TDM period

Figure 2.2: The TDM schedule policy

In this instance, the TDM period could be calculated as below:

N
Prpm ZZ%-FN X wW.
i=1
where N represents the number of slots. ¢; and w represent the clock cycle of different partition
slots and CoMik slots. TDM scheduling is achieved by a periodic interrupt that indicates a context
swap between two different virtual processors. Then CoMik’s interrupt routine is considered to
execute the context swap, which preserve the previous VP’s related context and arrange the next
VP[5].

Model-based hardware-in-the-loop framework for multi-core composable platforms)

Chapter 3

PIL and external mode
simulations

This chapter explores the inner workings of the MATLAB-CompSOC integration tool and Simulink
code generation. This includes an introduction to how this tool handles control tasks, and how
Simulink generates code from its model diagrams.

3.1 Development environment

3.1.1 Hardware

The FPGA board chose in this project is PYNQ-Z2 which is cheap, small, and requires minimal
power consumption. This board is based on Xilinx Zynq System on Chip (SoC) and designed to
support an open-source framework PYNQ ((Python Productivity for Zynq). The board uses the
650MHz dual-core Cortex-A9 processor by ARM which, importantly, includes 1G Ethernet and
USB 2.0 High-bandwidth peripheral controllers that can be connected with PC through Ethernet
or USB[7]. Figure Figure 3.1 shows the composition of this board. This allows generated codes to
run on the hardware platform.

FPGA programmed Zynq xc72020 FPGA +
dual core ARM A9 @ 666MHz

Headphone +
512MB DRAM

Raspberry Pl connector
Arduino 3.3V digital I/0

Audio Line in s B HDMI in

Ethernet s

USB - Serial + JTAG s b Arduino 3.3V SPI

Power switch s

er PMOD B

Power input s
7-15v

Arduino 3.3V - analog inputs
Power LED

£ ¢
1 | Prog hﬂbn\ Analog In\ Button 0,1,2.3 LED 0,1,2,3

Switch0 Reset button SD card

Figure 3.1: PYNQ board overview

6 Model-based hardware-in-the-loop framework for multi-core composable platforms

CHAPTER 3. PIL AND EXTERNAL MODE SIMULATIONS

3.1.2 Software

The system is modeled in Matlab R2018b, one of the most common tools for mathematical and
technical calculations.

3.2 Control application
3.2.1 State-Space Model

The control application considered in this project is a dual rotary fourth-order single input multiple
output (SIMO) motion system as depicted in Figure 1.2. It consists of two masses which are
connected by a spring. In addition, there is a motor as the input to drive the first mass. The
attached sensors are used to measure the angular position of both masses.

b Encoders =mm=y
i i
i |
: |
Masses Mo‘tor i
— LY 1

P ""-, A1

gl -== Output ports (encoders)
- -
‘-‘
——
- === Input port

Spring =~

Figure 3.2: The motion system

Based on the description above, the equation of corresponding state-space representation is
given below[7]:

X(t) = AX(t) + BU(t), (1)
Y(t) = CX(t),

where constant matrices A, B and C denote the state matrix, the input matrix and the output
matrix respectively. X(t) is the state array of the system and U(t) is the control input and
Y(t) is the output of the system. System states X consist of the velocity of two masses and the
displacement of two masses: X(t) =[01, 02, w1, ws]’,

The differential equations for the system are given as

J101 = Ky, — k(01 — 02) — d(6, — 62) — b(6) — 65)

Jobly = —k(0y — 01) — d(6y — 61) — b(6 — 6,)

These equations can be simplified to :

J191 =K, im — k)(@l — 92) — (d+ b)(el - 92) (31)

J292 = k(91 - 92) + (d + b)(91 — 92) (32)

Now, to derive the state-pace model of the system, we consider the states vector as

x = |01, 02, w1, ws] where w; =6; and wy = 6

Model-based hardware-in-the-loop framework for multi-core composable platforms 7

CHAPTER 3. PIL AND EXTERNAL MODE SIMULATIONS

Thus, we define our states as :
xy =0

1‘2:6‘2
T3 =wy =0

x4:w2:92

.1512.233
.’E.2:£L'4
. S Kmim k (d+b)))
=0, = — — (61 —09) — 01— 0
i3 =0, 7, J1(1 2) 7 (01 — 02)
. . k d+0b) . .
$4:92:*(91*92)+()(91*92)

Jo Ja

Substituting above values in equations (3.1) and (3.2), we get,

Jll.'.l = Km’Lm — k(iL’l — 93'2) — (d + b)(l’g — 1L’4) (33)

Jody = k(z1 — x2) + (d + b) (x5 — 24) (3.4)
We also know that,

Input to the system = u = 4, and,
Output of the system = y = x;

Thus, we can now write the state-space model for continuous time as,

& = Ax + Bu
7 0 0 1 0 T 0
; 0 0 0 1 0
= | 2= _x & _w@h @ o] e | (3.5)
o g (dJrJé) (Jd'1+b) . 0
4 5 n n Tm Lo 0
and for output,
y=Cx
= y=[10 0 0]z (3.6)
and matrix A, B, C can be expressed as follows,
0 0 1 0
Al 00 RORTPER v (2)
—7.08 x 10 7.08 x 10 —1.1x 10 1.1 x 10
7.08x 104 —7.08 x 10* 1.1 x105 —1.1x10°
0
0
B=11173x 101] " (3)
1
c=1[10 0 0], (4)

8 Model-based hardware-in-the-loop framework for multi-core composable platforms

CHAPTER 3. PIL AND EXTERNAL MODE SIMULATIONS

3.2.2 Considered cases

The calculated values for K and F' as described in the table 3.1.

Gains used in u[k] Values
5*Feedback Gain K | ky | 5.822990811552409
ko | -5.822992246204845
ks | -0.180024323629381
k4 | 0.180023422504676
ks | 0.516351924157763
Feedforward gain F' | - | 0.0000014346524431

Table 3.1: Calculated values of Feedback Gain K and Feed-forward gain F’

3.2.3 Discrete State-Space Model

Since the embedded platform usually works at discrete time. Hence, the continuous state-space
model should be discretized to fit for the sampling period of the controller. The discrete state-space
model can be defined as:

z(k+1) = ¢z (k) + Tu(k), (5)
y(k) = Cx(k),
where, ,
_ eAh — eAs S
6= T /0 Bds, (6)

and h is the sampling period between two samples. Our control task is to design u[k] which makes
y[k] follow r[k].

3.3 PIL Simulations

PIL is a simulation method which compiles the generated code from the feedback control model and
then upload and run the code on the embedded platform. In this control application, the digital
controller is realized by a FPGA-based embedded control system.Because traditional model-based
simulation is not often sufficient to exactly capture control dynamics. This method increases the
realism of the simulation and provide communication with specific hardware platforms. In PIL the
target platform is not a real time environment and the communication with the external embedded
platform is given by using specific functions installed in a simulation integrated environment.

The progress from model-based simulation to implementation on an platform requires de-
velopers to communicate the computer platform with the aimed embedded hardware. The target-
specific object code generated in the host PC and is then downloaded to the target embedded
platform for compiling and execution. The simulation tool in Simulink environment, running on
the host PC, then communicates with the downloaded software.

3.4 HIL Simulations

HIL simulation is a method which is used in the development and testing of control systems with
complex operation. With HIL simulation the physical part of the control system is replaced by
a simulation, using a mathematical model that fully describes the important dynamics of the
physical model. HIL simulation can be performed directly with Real-Time Workshop, which using
a computer as a host and a target in simulation.

In this project, both model and controller are compiled and then upload and run the generated
code on the embedded platform.

Model-based hardware-in-the-loop framework for multi-core composable platforms 9

CHAPTER 3. PIL AND EXTERNAL MODE SIMULATIONS

3.5 Simulink model and code generation

The control application is built in Simulink environment according to the previously shown math-
ematical model. The code generation is done with Real-Time Workshop, which generates the files
that are uploaded and executed on the platform.

3.5.1 Simulink Model

Implementing the control application (Eq. 5 and Eq. 6) in Simulink with reference r[k] and states
x[k] as inputs, and resulted y[k] and new states z[k] as output, this simulink model can be seen
in Figure 3.3:

discrete: multiply: feedforward - reference

single d Xns1 = Axy + By O
1 uU(:) —P reference FFu —@ > z > = Cxu+ D P — »
single y'y Vo= Cxy+ Duy, m

Constant: discrete sensor to actuator delay
multiple of plant sampling period

A 4

old u delay

single

FBu state

single

discrete: multiply: feedback - state

Figure 3.3: The feedback control model in Simulink environment

3.5.2 Code Generation

Code generation is a complex process that involves a large number of intermediate files. The
Simulink environment provides a Embedded coder tool which can transform a Simulink model to
a targeted platforms’ programming code such as C/C++. [8]. After the code is generated, the
user can build and run the compiled code by clicking the Build icon. The code generator builds
the executable and generates the Code Generation Report.

In order to generate code successfully, the first step is to specifying code generation settings
in the Configuration Parameters dialog box. Next is to choose the appropriate solver and code
generation target, and checking the model configuration for execution efficiency. The process starts
with the user’s Simulink model which is converted to the intermediate Real Time Workshop (RTW)
document by SFunctions. The RTW document is then converted to C using Target Language
Compiler (TLC) files. In Figure 3.4 the process and associated file types are enumerated.

Simulink SFunctions Real-Time Code Embedded
Model Workshop Generation Code

Figure 3.4: Code generation process

The Target Language Compiler (TLC) is a tool originally developed for the Matlab Real-Time
Workshop. It then became the integral part of Matlab Embedded Coder. It enables the user to
generate embedded C code directly from Simulink model via using the complete RTW document.
This embedded code consists of three groups: entry point, tasks, and auxiliary. The transition
from the RTW document to embedded C can be seen in the flowchart Figure 3.5.

10 Model-based hardware-in-the-loop framework for multi-core composable platforms

CHAPTER 3. PIL AND EXTERNAL MODE SIMULATIONS

-

Figure 3.5: Code generation from Real-Time Workshop document

The Embedded Real Time (ERT) generator is a particular set of TLC files specialized to
generate codes targeting embedded platforms. It is always used for creating the tasks. This
generator calls related TLC files for each block described in the RTW document to generate its
specific embedded code. The generated file is a set of files that can be built into an executable.
The executable can then be uploaded and executed on the embedded platform. They have the
same name as the initial Simulink model, but with a different suffix and file extension [9].

3.5.3 Code generation with Real-Time Workshop

A Simulink model has been built, then the next is to generate the code for the feedback control
application. Code generation ensures that the code is generated in a effective way, in order to
cope with memory space and speed of the embedded platform.

The Code Generation Options is found under C/C++ Code in the Code menu. Clicking this
button will open the Configuration Parameters dialog. A system target file is chose, CompSOC _ec.tlc,
with the target set for CompSOC embedded platform. The language which is uploaded and ex-
ecuted on the platform is set to C. This can be seen in the Figure 3.6.

hd Configuration Parameters: assignment1_2019_Simulink/Configuration (Active) - + X
|Q Search
Solver | Target selection F
Data Import/Export]
Math and Data Types System target file: |CompSOC_ec,tIc | Browse...
» Diagnostics Language: |C | v |
Hardware Implementat... 7 intion: CompSOC EC Target
Model Referencing escription: - d

Figure 3.6: Configuration Parameters

The option for solver type is Fixed-step solvers which solve the model at fixed time intervals

Model-based hardware-in-the-loop framework for multi-core composable platforms 11

CHAPTER 3. PIL AND EXTERNAL MODE SIMULATIONS

from the start time to the stop time of the simulation. The size of time intervals is set in the
Fixed-step size option which determines the fundamental sample time. Figure 3.7 depicts these
options.

hd Configuration Parameters: assignment1_2019_Simulink/Configuration (Active) - + X

Q

Solver *| sSimulation time
Data Import/Export
Math and Data Types
» Diagnostics
Hardware Implementat...

Start time: 0.0 Stop time: |inf

Solver selection

Model Referencing Type: |Fixed-step - | Solver: |auto (Automatic solver selection) | =
Simulation Target
¥ Code Generation ¥ Solver details
Optimization
Report

Fixed-step size (fundamental sample time): |0.00001

Comments

Figure 3.7: Solver diagram

In the interface dialog, the external mode option is selected because the simulation use the I/0
drivers to communicate with the embedded platform, the application stores contiguous response
data in memory accessible to Simulink until a data buffer is filled. This can be seen in Figure 3.8.

Solver Software environment a
Data Import/Export Code replacement library: |None ‘ -
Math and Data Types
» Diagnostics Shared code placement: |Auto ‘ -
Hardware Implementation support: [/] floating-point numbers non-finite numbers complex numbers
Model Referencing .)))]
absolute time continuous time [] variable-size signals

Simulation Target

¥ Code Generation .
Optimization Code interface
Report Code interface packaging: Nonreusable function -
Comments
Symbols] Remove error status field in real-time model data structure
Custom Code .
Data exchange interface

Interface

Code Style Array layout: Column-major ~
Verification

Templates External functions compatibility for row-major code generation: error T
Code Placement Generate C API for:

Data Type Replacement [] signals [] parameters [] states [] root-level o

CompSOC options
> Coverage [] ASAPZ interface
External mode
External mode configuration

Transport layer: tepip - | MEX-file name: ext_comm

MEX-file arguments: |'10.42.0.229' 1 9876

oK Cancel Help

Figure 3.8: Interface diagram

The ert_code_template.cgt file is chosen for both header and source templates. File customiz-
ation template is used to customize the generated code with a CFP template file.

The CompSOC _ec_file_process.tlc file is used in this thesis to call a code template API to
emit the code into specified sections of generated source and header files. This can be seen in
Figure 3.9.

12 Model-based hardware-in-the-loop framework for multi-core composable platforms

CHAPTER 3. PIL AND EXTERNAL MODE SIMULATIONS

v Configuration Parameters: assignment1_2019_Simulink/Configuration (Active) - + X
Solver *| Code templates
Data Import/Export
Math and Data Types Source file template: |ert_code_template.cgt Browse... Edit...
» Diagnostics Header file template: |ert_code template.cgt Browse... | | Edit...
Hardware Implementat...
Maodel Referencing Data templates

Simulation Target

v Code Generation Source file template: |ert_code_template.cgt m Edl—t
Optimization Header file template: |ert_code_template.cgt Browse... | | Edit...
Report
Comments Custom templates
Symbols
Custom Code File customization template: CompSOC_ec_file_process.tlc m Ed|—t
Interface [] Generate an example main program

Code Stvle

Figure 3.9: Templates diagram

Previously the CompSOC _ec_file_process.tic file is chose to call a code template. From Fig-
ure 3.10, the extra file CompSOC _ec_srmain_ExtMode.tlc is used to generate the main file which
is mean to generate the ert_main.c file. This file is provided by Mathworks to be used as a basis
for custom modifications, and for use in simulation.

" CompSOC_ec_file_process.tlc '|_ + |

%% Create a simple main.
! %1t UseRTOS ==

I %1f LibIsSingleRateModel() || LibIsSingleTasking()
%1f ExtMode

! %assign board = FEVAL("CompSOC_ec.Prefs.getBoard")

%%1T (board != "mega") && (board != "mega2560")
! %%assign errTxt = "External Mode 1s supported on Mega/Mega2560 only (SkE RAM necessary).®
! %%<LibReportError(errTxt)=
i sendlf
| %% We use extra file for main generation with External Mode
k %1include "CompSOC_ec_srmain_ExtMode.tlc"
I %else
| %% Simplified main generation ws/o External Mode

%1nclude "CompSOC_ec_srmain.tle"
! sendif
3 %<FcnsSingleTaskingMain() =

%alse

| %% For the moment, multitasking is not supported
i %1nclude "CompSOC_ec_srmain.tlc"
i %<FcnSingleTaskingMain() =
: %endif

Figure 3.10: The File customization template

Then the next step is to build the Code Generation Report by clicking the Build Model in the
tool bar.

The generated report which shows in Figure 3.11 contains header and source-file for the feed-
back control application, definition files and the file ert_main.c which is an example file for de-
veloping embedded applications. This file provides a basis for custom modifications, and for
use in simulation. ert_main.c is generated from CompSOC _ec_srmain_ExtM ode.tlc file which is
modified by the customer. This can be seen in the next chapter.

Model-based hardware-in-the-loop framework for multi-core composable platforms 13

CHAPTER 3. PIL AND EXTERNAL MODE SIMULATIONS

~ Code Generation Report - + X
< & Find: 4+ % Match Case
Contents Code Generation Report for
1 H 1
Summary: Empty sim33
Subsystem Report -
Code Interface Report Model Information
Traceability Report
)] Author young
—g;atc\)(rt(:ode Metrics Last Modified By root
Model Version 1.180
Code Replacements Tasking Mode SingleTasking
Report
Coder Assumptions Configuration settings at time of code generation

Generated Code
[-1 Model files

Empty_sim33.c System Target File CompSOC _ec.tlc
Empty sim33.h Hardware Device Type Custom Processor
Empty_sim33_private. Simulink Coder Version 9.0 (R2018b) 24-May-2018

Empty sim33 types.h Timestamp of Generated Wed Oct 7 12:00:50 2020
= = Source Code

[-1Data files Location of Generated /home/computation/TEST/Empty sim33 CompSOC/
Empty_sim33 data.c Source Code

Code Information

[+]1 Utility files (2) 1ype of Bulld Model
Memory Information Global Memory: 818(bytes) Maximum Stack:
[+] Interface files (3) . 80(bytes)
] 0 Obiectives Specified ¥4

oK Help

Figure 3.11: Code Generation Report

14 Model-based hardware-in-the-loop framework for multi-core composable platforms

Chapter 4

Single-Core simulations
implementation

The integration tool provides the module ert_main.c as a template example for developing em-
bedded applications. It is provided as a basis for custom modifications, and for use in simulation.
In our project, ert_main.c is generated from CompSOC _ec_srmain_ExtM ode.tlc file. ert_main.c
contains two functions, the first one is rt_OneStep, which is a timer interrupt service routine
(ISR). rt_OneStep calls MODEL_STEP to execute processing for one clock period of the model.
As provided, main function is useful in simulation only when it is modified for real-time execution.

4.1 Control Design and Implementation

In this project, we will concentrate on the 2-DOF controller configuration presented in [8] and
displayed in Figure 4.1. This controller can be defined as:

u(k) = Kx(k) + Fr(k), (7)

where K represents feedback controller which aims to stabilize the outputs for the system
based on an available process model, and F is in terms of feedforward controller which helps to
improve the accuracy of the system output. According to Figure 4.1, the reference signal is known
beforehand and its scaled velocity, acceleration enable a straightforward feedforward tuning.

Control Task Plant Simulation
[FEssscscessssesssssssn) fecccos k]

r/k]| Feedforward | g :u[k],= Plant = |

—p»| Controller | | |

|| Pk L :

| I I I

I (l;eedback ’ !x[k]| :

| ontroller |4 T |

| Kexfk] | 1| |

| I |

Figure 4.1: 2-DOF controller configuration

Model-based hardware-in-the-loop framework for multi-core composable platforms 15

CHAPTER 4. SINGLE-CORE SIMULATIONS IMPLEMENTATION

4.2 As-fast-as-possible Scheduling

The integration tool enables to generate an executable from the simulink model and performs
external mode (HIL) simulations. This executable has a scheduling nature which called ”as-fast-
as-possible”, which refers to the time when the platform reads the reference r[k] and sends the
calculated new states z[k] back to Simulink, then it immediately reads the next reference r[k].
From the Figure 4.2, the Simulink sends reference r[1] to the platform, then the platform calculate
the new states z[1] and sends it back to simulink, then it reads the new reference 7[2] from Simulink
immediately.

Host PC

L

Simulink (S.xls)
(1] 1 A2] T3] T (A4l st tel 17l T 8l

1) x 2L x31) x4l Ks1] el A7)
S T e N N T

| | | | |]l_ .
e e N __.!

—Ts—

PYNQ-Z2 A single partition slot

Figure 4.2: As-fast-as-possible Scheduling

The core of the Embedded Coder program is typically the main function. On each iteration,
the main function executes a background code and checks for a termination condition. The main
loop is periodically interrupted by a timer.

The execution driver, rt_OneStep, sequences calls to the model_step function. In a single-rate
model, rt_OneStep simply calls the model step function. Code compilation is controlled by the
symbol NUMST, which represents the number of sample times in the model. NUMST is defined
to be 1 for a single-rate model; otherwise NUMST is greater than 1. NUMST is defined in the
generated makefile model.mk. In our project, the model achive a Single-Rate Operation, The
following pseudocode shows the composition of rt_OneStep in a single-rate program.

void rt_OneStep()
{

Check for interrupt and other error
Enable "rt_OneStep" (timer) interrupt
ModelStep-Time step combines output,logging,update.

}

Figure 4.3: The naive composition of rt_OneStep

The rt_OneStep function is designed to execute the model process within a single clock period.
In order to achieve this timing constraint, rt_OneStep maintains and checks a timer overrun flag.
This means timer interrupts are disabled until the overrun flag has been checked.

The ert_main.c is generated from a special TLC file and then it will be uploaded to the platform
to do the execution. The left side of Figure 4.4 shows the specific TLC code. The corresponding
generated embedded code is represented on the right side. The pseudocode is a design for a harness
program to drive the model. The ert_main.c program, as shipped, only partially implements this
design. We must modify it according to our specifications.

16 Model-based hardware-in-the-loop framework for multi-core composable platforms

CHAPTER 4. SINGLE-CORE SIMULATIONS IMPLEMENTATION

topenfile tmpBuf

¢assign fcnReturns = "void"

%assign fcnName = "rt_CneStep”

tassign fcnParams = "wvoid"

tassign fcnCategory = "main"

tcreaterecord fcnRec {Name fcnName; Returns fcnReturns;
Abstract ""; Category fcnCategory:;
Type "Utilicy”™}

£<SLibDumpFunctionBanner (fcnRec) >

fundef fcnRec

$<fcnReturns> :$<fcnName> (%<fcnParams>) void rt OneStep (void)
{ l -
static boolean T OverrunFlag = false; static boolean T OverrunFlag = false;
if (OverrunFlag) | if (OverrunFlag) |
$<LibSetRTModelErrorStatus("\ "Overrun\™")>; rtmSetErrorStatus (Empty sim33 M, "Overrun"):
return; return; N N
} }
OverrunFlag = true: OverrunFlag = true;
$<LibCallModelStep(0) >\ Empty sim33 step():
OverrunfFlag = false; OverrunFlag = false;
rtExtModeCheckEndTrigger () ; rtExtModeCheckEndTrigger () ;

} }

Figure 4.4: The specific TLC code and its corresponding generated embedded code for rt_OneStep
function

4.3 Real-time scheduling

The first progress we want to achieve is to change the scheduling of the executable on the platform
from " as-fast-as-possible” to ”real-time” since control tasks/software need to execute periodically,
sequentially and in a jitter-free fashion. Figure 4.5 depicts such real-time implementation, where
T's is the execution time of one step of the simulation and h is the execution period. S.zls is the
simulation model and S.elf is the build executable. The Simulink periodically sends reference r[k]
to the platform with the execution period h.

Host PC
| Simulink (Sxls)
1] 2] 3]
| _x(/] v x[2] 4 3] N
T S.elf | S el
h A single partition slot h
A single partition slot h A single partition slot

Figure 4.5: The composition of new rt_OneStep

The main function which used for performing the control tasks is periodically interrupted by
a timer function. The rt_OneStep function executes processing for one clock period of the model.
What needs to be done is to put a waiting timer asm(” sleep”) of the platform after the rt_OneStep
and this can force the execution to become periodic. Figure 4.6 shows this situation.

Model-based hardware-in-the-loop framework for multi-core composable platforms 17

CHAPTER 4. SINGLE-CORE SIMULATIONS IMPLEMENTATION

boolean T rtmStopReq = %<GET TYPE_ID REPLACEMENT("false")>;
rtExtModePauselfNeeded (%<RTMGet ("RTWExtModeInfo")>, ...
%<NumRuntimeExportedRates>, ...
&rtmStopReq) ;
if (rtmStopReq) {
%<RTMSetStopRequested("true")>;
}

if (%<RTMGetStopRequested()> == true) {
%<LibSetRTModelErrorStatus("\"Simulation finished\"")>;
break;
}
}

/* External mode */

boolean T rtmStopReq = %<GET_TYPE_ID REPLACEMENT("false")=;
rtExtModeOneStep (%<RTMGet ("RTWExtModeInfo")>, ...
%<NumRuntimeExportedRates>, ...
&rtmStopReq) ;
if (rtmStopReq) {
%<RTMSetStopRequested("true")>;
}

}
/*t_iter = *timer;*/

rt_OneStep();
asm("sleep");

&rtmStopReq) ;
1f (rtmStopReq) {
rtmSetStopRequested(assignmentl_2023 Simulink_M, true);
¥

1f (rtmGetStopRequested(assignmentl_2023 Simulink_M) == true) {
rtmSetErrorStatus(assignmentl_2023 Simulink_M, "Simulation finished');
break;
¥
1

/* External mode */

boolean_T rtmStopReq = false;
rtExtModeOnesStep (assignmentl_2023 simulink_M-=extModeInfo, 2, &rtmStopReq);
1f (rtmstopReq) {
rtmSetStopRequested(assignmentl 2023 Simulink M, true);
1
1

J*t_iter = *timer;*/

rt_oneStep();
asm("sleep");

Figure 4.6: The specific TLC code and its corresponding generated embedded code for realtime

This steps requires careful implementation respecting the platform processing power and min-
imum possible sampling period. The following Figure 4.7 shows the TDM schedule in a single-rate

program.

I

TDMSchedule schedule
.index = 0@

}i

volatile TDMScheduleEntry table[] = {

{ .id = 1, .length = ©xleeeee },

.length = sizeof(table)/sizeof (TDMScheduleEntry),

.schedule - (TDMScheduleEntry*) table

Figure 4.7: TDM schedule

where the length of T DM Schedule Entry is the execution time T's of one step of the simulation,
then the simulation goes to sleep until the end of the execution period h which can be seen in

Figure 4.5.

18 Model-based hardware-in-the-loop framework for multi-core composable platforms

Chapter 5

Automation for multi-core
implementation

5.1 The multi-core scheduling

According to Figure 4.1, the 2-DOF control application consist of control model and plant model.
Our final work is to divide the executable into two parts, and map each part to a specific core. As
Figure 5.1 shows, the simulink model is divided into two executable of C.elf (the controller) and
P.elf (the plant) to be executed on two different cores. In this way, the two executable enables to
strictly execute separately and cannot affect each other.

Host PC
| Simulink (PCxls)
e 1] 2] 3] 4]
x[1] x{2] i x(3] x[4]
peir [P et [Pl P
e | u[-’f) ul4 ___
rNez2 o e D D EED O EEEE

—_— T_‘-—)

Figure 5.1: The multi-core scheduling

5.2 The shared memory block

According to Figure 5.2, the shared memory blocks is used to implement the connection between
separate executable on different VP(virtual processor), the controller reads the states z[k] of
system from the shared memory by the ”from share memory” block and sends the calculated new
control input u[k] to the ”To share memory” block. In terms of plant simulation, it reads the new
control input u[k] from the same shared memory address using the ”from share memory”block and
sends the control output y[k] to the shared memory where the controller reads the states from.

Model-based hardware-in-the-loop framework for multi-core composable platforms 19

CHAPTER 5. AUTOMATION FOR MULTI-CORE IMPLEMENTATION

Simulink Model 1 Simulink Model 2
ettt i e T e e }
l Signal ULIEEN C | Task M_[M;. To share : | From share | «/A/ ! Plant Simulaion Y » S |
: Generator » Control fas memory || : e Logger :

|
I |: |
|
I xfk I xfk]
| [k] From share H To share » :
: memory 11 memory |
I I
| o - I
I — T
|
| C code C code
T I R -] - — — — — — —
Automatic j I
Exe Exe
[Tt e T T g o . e e e Do A
i vep, | vEr, BVEP;0 | VEP, | VEPs [- -
l _ CoMik |
Processor Tile 1 Processor Tile 2

Figure 5.2: The third level of automation for multi-core code generation.

In order to achieve this goal, the Legacy Code Tool is used to generate the shared memory
block. This tool can be used to generate fully inlined C MEX S-functions for legacy or custom
code. The S-functions are optimized for embedded components and can be used to call existing C
or C++ functions. This tool can be used to include these types of S-functions in models for which
intend to generate code, use the tool to generate a TLC block file. The TLC block file specifies
how the generated code for a model calls the existing C or C++ function.

5.2.1 To the shared memory

According to Figure 4.1, the controller executable(C.elf) calculates new value of control input u[k]
and then writes this control input to the shared memory. Figure 5.3 shows the legacy code for
writing to the shared memory which generate a masked S-Function block that is configured to call
the existing external code.

def = legacy_code('initialize');

def.SFunctionName = 'Write to Shared Memory';

def.SourceFiles = {'ToSharedmemory.c'};

def.HeaderFiles = {'ToSharedmemory.h'};

def.LibPaths = {' /home/computation/WRITE/'};
def.OutputFenSpec = 'writel(single ull], 1nt32 u2, 1nt32 u3)';
legacy_code('sfcn_cmex_generate', def);
legacy_code('compile', def);

legacy_code('slblock_generate', def);
legacy_code('sfcn_tlc_generate',def);

Figure 5.3: legacy write

In order to generate the "Write to Shared Memory’ block, using the Legacy Code Tool to
transform an existing C function into a C MEX S-function. Figure 5.4 depicts how to integrate an
existing C function into a Simulink model using Legacy Code Tool. This is a function that stores
the value of its floating-point input to the specified address. The function is defined in a source file
named ToSharedmemory.c, and its declaration exists in a header file named T'oSharedmemory.h.

20 Model-based hardware-in-the-loop framework for multi-core composable platforms

CHAPTER 5. AUTOMATION FOR MULTI-CORE IMPLEMENTATION

1 =stdio.h=
2 =string.h=
3 =math.h=
1 #include <ToSharedmemory.h= 4
2 5 wvoid write(float InPutl], i1nt InPut_addr, int Param);
3 wvoid write(float InPut(], int InPut_addr, int Param) 6 #define AXI_BRAM_CTRL_SH_3_S_AXI 0x00020000
4 {
5
[1nt addr = Ox0O000000;
7 addr = addr + InPut_addr;
*, = .
g | float *share_to_2 = addr; ToSharedmemory. h
10 int 1 = 0;
11
12 for { 1 = 0; 1 = Param; 1++)
13 {
14 *(share_to_2 + (10 + 1))= InPutli];
15 1
18
7
12 T

ToSharedmemory. ¢

Figure 5.4: ToSharedMemory

Using legacy_code(’slblock_generate’, def) to insert a masked S-Function block into a
Simulink model. Figure 5.4 depicts this "Write to Shared Memory’ block.

nt32 L’
™
=
™
=

nt32

196608

write(single ulf], int32 u2, int32 u3)

Write_to_Shared_Memory

Figure 5.5: ToSharedmemory block

where the first input represents the value which stores in the shared memory, and the second
input is in terms of base address of the shared memory, and the third input controls the number
of value which write to the shared memory.

5.2.2 From the shared memory

According to Figure 4.1, the plant executable(P.elf) reads control input w[k] from the shared
memory and calculates new states value z[k] using the state-space equations ,then writes these
states to the shared memory. Figure 5.6 shows the legacy code for reading from the shared memory.

1- lect_spec = legacy_code('initialize')

2 - def.SourceFiles = {'Fromsharedmemory.c'Z;

3 - def.HeaderFiles = {'FromSharedmemory.h'};

4 - def.SFunctionName = 'rd_to_sharedmemory';

5 - def.outputFenSpec = 'void read(single| yllnumel{ul)l,single ulll,int32 u2,int32 u3)';
6 - legacy_code('sfcn_cmex_generate', def);

7 - legacy_code('compile', def);

8- legacy_code('slblock_gensrate', def);

g - legacy_code('sfcn_tlc_generate',def);

Figure 5.6: legacy read

In order to generate the 'Read from Shared Memory’ block, using the Legacy Code Tool to
transform an existing C function into a C MEX S-function. Figure 5.7 depicts how to generate a

Model-based hardware-in-the-loop framework for multi-core composable platforms 21

CHAPTER 5. AUTOMATION FOR MULTI-CORE IMPLEMENTATION

specified block into a Simulink model using Legacy Code Tool. This is a function that reads the
value from the shared memory with specified address. The function is defined in a source file named
FromSharedMemory.c, and its declaration exists in a header file named FromSharedMemory.h.

1 #include <Fromsharedmemory.h= 1 #include <stdio.hy]

2 2 # e =string.h=

3 wvoid read(float OutPutll,flest InPutll,int InPut_addr,int Param) 3 #nclude =math.hs=

4 1 2

E 5 wvoid read(float outPutll,fleat InPutll,int InPut_addr,int Param);
6 int addr = ©x00000000; 6 #define AXI_BRAM CTRL_SH 2 S AXI 0x00030000
7 addr = addr + InPut_addr; - - - -

8 | float *share_to 0 = addr;

9

10 int i = 0; FromSharedmemory. h

11

12

13 for {1 =0; 1 = Param; 1++)

14

15 outPutl1] = *(share_to_8 + 1);

16 T
17
18 T

FromSharedmemory. ¢

Figure 5.7: FromSharedMemory

Using legacy_code(’slblock_generate’, def) to insert a masked S-Function block into a
Simulink model. Figure 5.8 depicts this 'Read from Shared Memory’ block.

[1111]

196608 | —

Figure 5.8: FromSharedmemory block

» single
void read(single y1l[numel{ul)],single ulf],int32 uz,int32 u3)
L.

rd_to_sharedmemory

where the first input represents the number of elements in the array, and the second input is
in terms of base address of the shared memory, and the third input controls the number of value
which read from the shared memory. And this function outputs the same number of elements as
the first input.

5.3 Choose specific tile and partition slot

The integration tool generates the code for separate Simulink models and target each executable to
different cores. According to Figure 5.2, the first executable runs on processor tilel and VP2 and
the second executable runs on processor tile2 and VP4. How to choose specific tile and partition
slot is the point of this chapter.

The CompSOC _ec.tlc file is used in this thesis as the system target file which controls the code
generation stage of the build process and also control the presentation of the target to the end
user. Figure 5.9 shows the general structure of a system target file.

22 Model-based hardware-in-the-loop framework for multi-core composable platforms

CHAPTER 5. AUTOMATION FOR MULTI-CORE IMPLEMENTATION

rtwoptions(oldx) .prompt
rtwoptions(oldx) . type
rtwoptions(oIdx) .default
rtwoptions(oldx) .tlcvariable
rtwoptions (oIdx) .makevariable
rtwoptions(oIdx) .callback
rtwoptions(eldx).tooltip

oldx = oldx + 1;

rtwoptions(oldx) .prompt
rtwoptions(eldx).type
rtwoptions(oIdx) .default
rtwoptions(oldx).tlcvariable
rtwoptions(oIdx) .makevariable
rtwoptions(oldx) .callback
rtwoptions (oIdx).tooltip

oldx = oldx + 1;

rtwoptions (oIdx).prompt
rtwoptions(oldx) .type
rtwoptions(eldx).default
rtwoptions(oIdx).tlcvariable
rtwoptions(oldx) .makevariable
rtwoptions (oIdx).callback
rtwoptions(olIdx).tooltip

'Processor tile for PIL application’;
'Edit';

9';

'PIL ProcessorTile’;

sprintf(['Use this parameter to define the Processor tile to be used on CompSOC to execute PIL']);

*Size of the virtual platforms in TDM table for the selected processor tile';
'Edit';

‘[1e600]";

'Size VirtualPlatforms';

sprintf(['Define VP values in a bracket. for example [1000,3000,4600]']);

'"Virtual platform for PIL application';
‘Edit’;

"

PIL VirtualPlatform';

sprintf(['Use this parameter to define the virtual platform to be used on CompSOC to execute PIL']);

Figure 5.9: system target file

The code defines an rtwoptions structure array. The rtwoptions structure and callbacks are
written in MATLAB code, where they are embedded in a TLC file. The pane displays the options
defined in rtwoptions(oldx). Configuration Parameters dialog box can be seen in the Figure 5.10.

-

Q

Solver

Data Import/Export
Math and Data Types
» Diagnostics
Hardware Implementation
Model Referencing
Simulation Target
¥ Code Generation
Optimization
Report
Comments
Symbols
Custom Code
Interface

Configuration Parameters: assi 12019 Simulink/Configuration (Active) - + X

CompSOC instance/Board: |Verintec-DDR version on PYNQ -

Inspect Hardware architecture

Download to board

] makefile Parallel Execution

MB-gcc options

Alternative gcc compiler:

Processor tile for PIL application: |0

Size of the virtual platforms in TDM table for the selected processor tile: |[10000]
Virtual platform for PIL application: |1

Size of PIL Virtual platform in clock cycles: 10000

Figure 5.10: Configuration Parameters dialog box

Here using Processor tile for PIL application defines the processor tile to be used on
CompSOC to execute PIL, using Virtual platform for PIL application defines the virtual
platform for PIL application to be used on CompSOC to execute PIL. From the Figure 5.10, the
processor tileO0 and VP1 are chose to execute the application.

5.4 The hexFile

In order to download

a program to CompSOC platform, the Real-Time Workshop generates the

related hexFile to choose the processor tile and virtual platform for the applications which executed

on the platform.

Figure 5.11 shows

how to choose the specific processor tile and virtual platform.

Model-based hardware-in-the-loop framework for multi-core composable platforms 23

CHAPTER 5. AUTOMATION FOR MULTI-CORE IMPLEMENTATION

PT=get_param(gcs,'PIL ProcessorTile');
VP=get_param(gcs, 'PIL VirtualPlatform');
kopy:safiﬁt‘f cp %s /home/computation/Comps0C ec_target/Verintec v@l SDK/app tile %d %d/out.hex',elf line,PT,VP)

system(copy)

Figure 5.11: runAvrDude(hexFile)

where PT represents the value of processor tile which comes from Processor tile for PIL
application in the Configuration Parameters dialog box, and VP in terms of the virtual platform
which chose by Virtual platform for PIL application. Then we build the model and the
dialog view can be seen in the Figure 5.12.

echo ### Project size
text data bss dec hex filename
24372 620 22784 47776 baad Test.elf
echo ### Created Test.hex successfully (or it was already up to date)
hexFile =
' fhome/computation/Assignment/Test CompS0C/instrumented/Test.elf’
Sending the elf file: shome/computation/Assignment/Test CompSOC/instrumented/Test.elf
copy =
'cp /home/computation/Assignment/Test CompSOC/instrumented/Test.hex /home/computation/CompSOC ec target/Verintec vB1 SDK/app tile 8 1/out.hex’

Figure 5.12: Generate hexFile

where the app_tile_0_1 represent the generated code is uploaded on processor tile0 and virtual

platforml.
In this way, the generated code can be uploaded on specific processor tile and virtual platform.

5.5 Casel: model-based controller and hard-coded plant

According to the Figure 5.2, the integration tool generates the code for separate Simulink models
targeting different virtual platform on different processor tile. The first step is to divide the control
task and the plant.

[1111]
void read(single y1[numel(u1)] single ul[),int32 u2 int32 u3) '*
rd_to_sharedmemory
196608

| 196608 }—a write{single ul(), int32 u2, int32 U3)

Write_to_Shared_Memary

discrete: multiply: feedforward - reference

o Mretesnce e
single

Constant. discrete

single

single

FBu
single

discrete: multiply: feedback - state

Figure 5.13: Control task

Figure 5.13 shows the control model block which reads the new space-states of the system from
a specific point of the shared memory using the ”"From the shared memory” block and updates
the control value using the ”To the shared memory” block. In this system, the plant simulation is
not generated from the Simulink environment. It is manually written into the main.c file which
executed on processor tile2 and virtual platform1. From the Figure 5.14, the plant simulation reads
the updated control value (new_control_input[0][0]) from the same shared memory address using
the ”from share memory”block and updates the space-states (*(shared02+4-0) = state[0][0]) on
the same point of the shared memory that the controller reads the sensed value from.

24 Model-based hardware-in-the-loop framework for multi-core composable platforms

CHAPTER 5. AUTOMATION FOR MULTI-CORE IMPLEMENTATION

float *sharede2 = (float *) AXI_BRAM CTRL SH_3 5_AXI;
*(sharede2+10) = initial condition control _input[e][e];
float prev = initial | condltlon control _input[e][0];

int flag = ©;

while(1){
uint64_t t iter = *timer;

new_control_input[@][@] = *(sharede2+10);

/fupdate plant state
set matrix(N-1, 1, partialA, 0.6f);
set matrix(N-1, 1, partialB, ©.67);

multiply matrix(N-1, N-1, N-1, 1, A, state, partialA);
multiply matrix(N-1, 1, 1, 1, B, new control input, partialB);
add matrix(N-1, 1, partialA, partialB, state next iteration);

state[0][@] = state next iteration[®][0];
state[1][@] = state next iteration[1][0];
state[2][@] = state next iteration[2][0];
state[3][@] = state next iteration[3][0];
if(t1te[0][0]
1 printf I'" 3 %d\n", *timer);
'11' =1;
//send 4 states to shared mem
*(sharedd2+0) = state[0][0];
*(shared@2+1) = state[1][0];
#(shared®2+2) = state[2][0];
*(sharede2+3) = state[3][0];

Figure 5.14: Plant simulation

By building the controller model, the Simulink generates the executable of the control task
and uploads it on the processor tile0 on virtual platforml. The plant simulation is executed on
processor tile2 and virtual platforml. Through the shared memory between processor tile0 and
processor tile2 which can be seen in Figure 5.15, the separate executable running on different
processor tiles can communicate.

1
Processor tile0 [e— 23| Shared 1 G 1o o ccortiet
Memory
2 (4)
Shared Shared
Memory Memory
(5) (6)

Processor tile2

Figure 5.15: Hardware architecture

5.6 Casell: model-based controller and code generated plant

In this level of the multi-core code generation, the feedback-feedforward control application model
is divided into two separate models which shows in Figure 5.2.

Model-based hardware-in-the-loop framework for multi-core composable platforms 25

CHAPTER 5. AUTOMATION FOR MULTI-CORE IMPLEMENTATION

Figure 5.16 represents the controller model and Figure 5.17 represents the plant model.

ence: control objective Feedforward control

Constant: discrete

iscrete: multply: feedback - state

Figure 5.16: The control model

sensor-to-actuator delay discrete-time plant x[k]

; x CT
. mm

L unen 4

Figure 5.17: The plant model

Each of the separate model uses the generated shared memory block for communication. In
the control model, the new calculated control input w[k] is written to the shared memory. The
plant model reads u[k] from the same address of the shared memory and then uses the state-space
equation to calculate the new states x[k]. Then these states are written to the shared memory.
The control model reads the new states z[k] from the shared memory with the same address.

From the Figure 5.2, the separate models automatically generate the executable simultaneously.
Then the executable uploaded to the specific virtual platform for execution. In this project, we
first upload the control executable to the processor tile0 and virtual platforml, then we upload
the plant executable to the processor tilel and virtual platform1. This can be seen in Figure 5.18.

26 Model-based hardware-in-the-loop framework for multi-core composable platforms

CHAPTER 5. AUTOMATION FOR MULTI-CORE IMPLEMENTATION

Configuration Parameters: Plant Configuration Parameters: Plant/
CompSOC instance/Board: |Verintec-DDR v CompSOC instance/Board: |Verintec-DDR ve
Inspect Hardware architecture Inspect Hardware architecture
Download to board Download to board
[] makefile Parallel Execution [] makefile Parallel Execution
MB-gcc options: MB-gcc options:
Alternative gcc compiler: Alternative gcc compiler:
h'ocessor tile for PIL application: |0 I I Processor tile for PIL application: |1 I
Size of the virtual platforms in TDM table fi Size of the virtual platforms in TDM table fo
IVirtuaI platform for PIL application: |1 I I Virtual platform for PIL application: |1 I
Size of PIL Virtual platform in clock cycles: Size of PIL Virtual platform in clock cycles:
Check TDM Check TDM
Communication Protocol: |TCP/IP Communication Protocol: |TCP/IP
Temporal behavior: |As-fast-as-possible Temporal behavior: |As-fast-as-possible
processor tile0 and virtual platform1 processor tile1 and virtual platform1

Figure 5.18: Processor tile and virtual platform

After choosing the related processor tile and virtual platform, we need to connect the host
PC and the target platform. In this project, TCP/IP is selected to support communication for
external mode. TCP/IP is a collective term for a series of network protocols that are used for
most of the network communication. The MEX-file name field specifies the name of a MEX-file
that implements host and target communication on the host side. The default for TCP/IP is
ext_comm, a MEX-file provided with the Simulink Coder software.

The MEX-file arguments let user specify arguments to pass to an external mode interface
MEX-file for communicating with executing targets. For TCP/IP interfaces, ext_comm allows
three optional arguments:

1. Network name of your target processor: For example, 'myComputer’ or ’148.27.151.12’.

2. Verbosity level: 0 for no information or 1 to display detailed information during data
transfer.

3. Port number of TCP/IP server: An integer value between 256 and 65535, with a
default of 17725. A port is used to differentiate among different applications using the same
network interface. It is an additional qualifier used by the system software to get data to the
correct application.

From the figure Figure 5.19, specifying the arguments in the list order. The first argument
which used to specify the network name of the target processor is '10.42.0.229’. The second argu-
ment is set to 1 which indicates that display detailed information during data transfer. The third
argument is 9876 which means the plant application use this number as an additional qualifier.

External mode configuration
Transport layer: tepip « | MEX-file name: ext_comm
MEX-file arguments: |'10.42.0.229' 1 9876

Static memory allocation Static memory buffer size: |20000

Figure 5.19: External mode configurationl

Model-based hardware-in-the-loop framework for multi-core composable platforms 27

CHAPTER 5. AUTOMATION FOR MULTI-CORE IMPLEMENTATION

From the figure Figure 5.20, the only difference is the third argument. In the control applica-
tion, this argument is set to 9878 which means the control application use 9878 as an additional
qualifier.

External mode configuration
Transport layer: tcpip » | MEX-file name: ext_comm
MEX-file arguments: |'10.42.0.229' 1 9878

Static memory allocation Static memory buffer size: (20000

Figure 5.20: External mode configuration2

28 Model-based hardware-in-the-loop framework for multi-core composable platforms

Chapter 6

Experimental Results

This chapter will discuss the results of automation for multi-core code generation method intro-
duced in Chapter 6.

6.1 Single core implementation

The simulink version used in the project is R2018b. The single core implementation of feedback-
feedforward control model in the simulink is illustrated in chapter 4. Implementing the control
application in Simulink with reference r[k] and states x[k] as inputs, and resulted y[k] and new
states z[k] as output.

measurement and visualization
of control input u

—

Scope:u
—>
Feedforward control

crete: ity eecHoraae « refersnce ulK] sensor-to-actuator delay discrete-time plant t x[k] -

BE

Reference: control objective

——

coutie
discrete: muli ply dmechack - stae

Feedback control

Figure 6.1: The naive implementation of feedback-feedforward application

6.2 Automated multi-core integration

To implement the first case in chapter 5, the first step is to achieve the control task to be code-
generated and the plant simulation is still hard coded. Hard-coded data typically can only be
modified by editing the source code and recompiling the executable. Data that are hard-coded
usually represent unchanging pieces of information. In industry, plant simulation is always hard
coded.

In this section, the control model block which reads the new space-states of the system from
a specific point of the shared memory using the ”"From the shared memory” block and updates

Model-based hardware-in-the-loop framework for multi-core composable platforms 29

CHAPTER 6. EXPERIMENTAL RESULTS

the control value using the ”To the shared memory” block. The plant simulation is not generated
from the Simulink environment. It is manually written into the main.c file.

6.3 Results and Analysis

In this thesis, the pulse signal is chose to be as the reference r[k] which can be seen in Figure 6.2.

- Scope: theta discretel
File Tools View Simulation Help

6 |40P 8|5 |a |u- | F@

Figure 6.2: Pulse signal input

According to chapter 3, the new states x[k] is the output of this application. Figure 6.3 shows
the result of x[1] with the single core implementation. Figure 6.4 shows the result of x[2] with the
single core implementation. The purpose of the control task is to design ulk] which makes x[k]
follow r[k] as the states x[1] and x[2] represents the velocity of two masses. From the two previous
picture, we could find that the output x[1] and x[2] of the control task has the same trend as the
reference value after a short period of time.

> Seope: thetat discrete
Fle Tools View Sjmulation Help

O (SOP B> |- B |FF-

i

Figure 6.3: Output x[1] with the single core implementation

30 Model-based hardware-in-the-loop framework for multi-core composable platforms

CHAPTER 6. EXPERIMENTAL RESULTS

-

o -

Ready

Scope: theta2 discrete

0P @ -

(1 (]

L

Eile Tools Wiew Simulation Help

.

-

[

L

-+ x

FiA-

M

U

g

L

Sample based

Vi

T=6.738

Figure 6.4: Output x[2] with the single core implementation

Figure 6.5 shows the result of x[3] with the single core implementation. Figure 6.6 shows the
result of x[4] with the single core implementation. Because the states x[3] and x[4] represents the
displacement of two masses. And we can see from the Figure 6.5 and Figure 6.6, most of the time

the value of two states is equal to zero.

v Scope: =omega1 discrete1 - + X
File Tools Wiew Simulation Help L]
g-lo0rd | B2 f48-
|
Ready Sample based |T=6.738

Figure 6.5: Output x[3] with the single core implementation

Model-based hardware-in-the-loop framework for multi-core composable platforms

31

CHAPTER 6. EXPERIMENTAL RESULTS

FEile Tools View Simulation Help
CRR L NN~
Bl

i

|

Figure 6.6: Output x[4] with the single core implementation

Figure 6.7 shows the result of x[1] with the multi-core and hard-coded plant implementation.
Figure 6.8 shows the result of x[2] with the multi-core and hard-coded plant implementation. From
the two previous picture, we could find that the output x[1] and x[2] of the control task has the
same trend as the reference value after a short period of time.

Elle Tools Wiew Simulation Help

°-08|%|a & | F@

Ready

Figure 6.7: Output x[1] with the multi-core and hard-coded plant implementation

32 Model-based hardware-in-the-loop framework for multi-core composable platforms

CHAPTER 6. EXPERIMENTAL RESULTS

S Scope: theta2 discrete - + X
File Tools Wiew Simulation Help L
@ - @@|g}. Q- |- FEA-

cal

Ready Sample based |Offset=0 |T=12.275

Figure 6.8: Output x[2] with the multi-core and hard-coded plant implementation

Figure 6.9 shows the result of x[3] with the multi-core and hard-coded plant implementation.
Figure 6.10 shows the result of x[4] with the multi-core and hard-coded plant implementation.
Because the states x[3] and x[4] represents the displacement of two masses. And we can see from
the Figure 6.5 and Figure 6.6, most of the time the value of two states is equal to zero.

v Scope:=omegal discretel -+ x
File Tools Wiew Simulation Help L
G- 0®|-|a-|@-|FA-
=
I, 1
I ¥ ¥ i ¥
Ready Sample based | Offset=0 |T=12.276

Figure 6.9: Output x[3] with the multi-core and hard-coded plant implementation

Model-based hardware-in-the-loop framework for multi-core composable platforms 33

CHAPTER 6. EXPERIMENTAL RESULTS

Fle Tools vew Smulation telp
©-00|%-|a-|8-|F-

krv ! I it Lﬁw] . | - s

Figure 6.10: Output x[4] with the multi-core and hard-coded plant implementation

6.3.1 Conclusion

In this chapter, two different implementations are discussed. The single core implementation
is implementing the control application in Simulink environment with external execution. The
automated multi-core integration make use of the shared memory blocks to achieve connection
between separate executable on different VP (virtual processor). The output x[k] of these two
implementation has the same trend and reach a stable value after a short period.

34 Model-based hardware-in-the-loop framework for multi-core composable platforms

Chapter 7

Conclusions and future plan

7.1 Conclusion

This thesis focuses on creating a code generation tool which can generate the whole multi-core
code automatically and enable code execution on the specific platform which ensures composable
and predicable. First, the composable multi-core platform - CompSoC is introduced. We choose
ComSoC to implement multiple applications with TDM scheduling policy on CompSOC which
can guarantee an isolated and non-interference implementation for each application.

We introduce FPGA board which is PYNQ-Z2 as hardware to explore the inner workings of the
MATLAB-CompSOC integration tool and Simulink code generation. First, the process of design
and implementation of a digital controller is introduced to emphasize on HIL simulation and PIL
simulation which can bridge the gap between simulation and final system construction. Then we
introduce the code generation, which generates the files that are uploaded and executed on the
platform. Although code generation is a complex process, the Simulink environment provides the
code generator which can build the executable with no further interaction between users and the
Simulink environment. With the code generator, it enables to generate embedded C code directly
from Simulink model that can be uploaded and executed on the embedded platform.

Using this code generator, we build an executable from the simulink model and performs
external mode simulations with a nature of ”as-fast-as-possible”. By modifying the main function
in the execution driver, the real-time scheduling of the executable has achieved. To achieve
automation for multi-core code generation, the Legacy Code Tool is introduced to generate the
shared memory block which is used for implementing the connection between separate executable.
Therefore, we create the integration tool generates the code for separate Simulink models targeting
different virtual platform on different processor tile.

7.2 Future plan

1. Plant simulation is hard-coded in Chapter 5. This plant code can be replaced by a generated
plant code from a Simulink plant model.

2. Fully automated multi-core integration: In this level, the tool can generate the whole multi-core
code automatically. As shown in Figure 7.1, there is just one simulink model which consists of two
different parts where each part is regarded as different tasks and their target VP (virtual processor)
is defined by users.

Model-based hardware-in-the-loop framework for multi-core composable platforms 35

CHAPTER 7. CONCLUSIONS AND FUTURE PLAN

Simulink Model
e
| I
I Signal yIk] I
| Generator :
| . . Data
I rlk] Plant Simulaion = |
| ¢ Logger :
I Control Task I
|
= |
777777 e
r—-———- L —— = |
' !
| Ccode Ccode |
L — + - - 4 E — —
Automatic I
Exe Exe

-
ver, | vEp, BvEr.] vEP, B vEP; I .-
| O E— CoMik

|
: Processor Tile 1 Processor Tile 2
|
|
|

Figure 7.1: The final level of automation for multi-core code generation

In order to achieve fully automated multi-core integration, the first step is to devide the origin
simulink model into two parts. As shown in Figure 7.2, the modell is responsible for reading
reference r[k] and states x[k], then calculating the control input wu[k], the model2 is responsible
for reading the control input u[k], then calculating the new state x[k].

] i
single D2 single D2
P Inl Outl P Inl Outl
Modell Model2

Figure 7.2: The model is partitioned to execute concurrently

After configuring the model for concurrent execution, the multicore is chosen as the target
architecture which is used to deploy the partitioned model. As shown in Figure 7.3, there are two
cores in this architecture where each sub-model can be mapped to different core.

36 Model-based hardware-in-the-loop framework for multi-core composable platforms

CHAPTER 7. CONCLUSIONS AND FUTURE PLAN

Select:

Ei Data Transfer

+ [@ Tasks and Mapping
- [[] CPU
» i reriodic
. Corel
. Core2

@ System tasks
& Profile report

Figure 7.3: Multicore target architecture

3. Further improvement could be focused on a case where the actual plant is in the loop. In
this case the results can be compared with the external mode simulation. In order to connect the
Simulink model to the actual plant I/O modules for the sensors and actuators drivers should be
provided in Simulink. This could be done by creating I/O driver blocks in Simulink using Legacy
code generator.

Model-based hardware-in-the-loop framework for multi-core composable platforms 37

Bibliography

[1] Albert Thumann D. Paul Mehta, “Handbook of Energy Engineering” in SAMOS, 2008. pp.
305.

[2] D. Goswami, R. Schneider, A. Masrur, M. Lukasiewycz, S. Chakraborty, H. Voit, and A.
Annaswamy, “Challenges in automotive cyber-physical systems design,” in SAMOS, 2012.

[3] H. Yan et al., “H output tracking control for networked systems with adaptively adjusted
event-triggered scheme,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, no. 99,
pp- 1-9, 2018.

[4] G. Frehse, A. Hamann, S. Quinton, and M. Woehrle, “Formal analysis of timing effects on
closed-loop properties of control software,” in RTSS, 2014, pp. 53-62.

[5] K. Goossens et al., “NOC-based multiprocessor architecture for mixedtime-criticality applica-
tions,” Handbook of Hardware/Software Codesign, pp. 491-530, 2017.

[6] M. Haghi, F. Wenguang, D. Goswami, and K. Goossens, “Delay based design of feedforward
tracking control for predictable embedded platforms,” in ACC, 2019.

[7] TUL. PYNQ Z2 User Manual. http://www.tul.com.tw/ProductsPYNQ-Z2.html, 2018. 33

[8] Chris Hote Tom Erkkinen. Automatic Flight Code Generation with Integrated Static RunTime
Error Checking and Code Analysis. AIAA Modeling and Simulation Technologies Conference and
Exhibit, pages 1-2, 2006.

[9] File and Folder Created by Build Process. http://www.mathworks.com/help/rtw/ug/ files-
and-folders-created-by-the-build-process.html, November 2012.

[10] A. Nelson, A. Nejad, A. Molnos, M. Koedam, and K. Goossens, “CoMik: A predictable and
cycle-accurately composable real-time microkernel,” in DATE, 2014.

[11] Andrew Nelson, Ashkan Beyranvand Nejad, Anca Molnos, Martijn Koedam, and Kees Goos-
sens. "CoMik: A Predictable and Cycle-Accurately Composable Real-Time Microkernel”. 2014.
vii, 14, 15

[12] Juan Valencia. ”Composable Platform-Aware Embedded Control Systems on a Multi-Core
Architecture”. 2016. vii, 13, 15, 16, 19

38 Model-based hardware-in-the-loop framework for multi-core composable platforms

	Contents
	List of Figures
	Introduction
	Composable Multi-core Platform
	Problem Definition

	The Composable multi-core platform
	Virtual processors
	TDM schedule policy on CompSOC

	PIL and external mode simulations
	Development environment
	Hardware
	Software

	Control application
	State-Space Model
	Considered cases
	 Discrete State-Space Model

	PIL Simulations
	HIL Simulations
	Simulink model and code generation
	Simulink Model
	Code Generation
	Code generation with Real-Time Workshop

	Single-Core simulations implementation
	Control Design and Implementation
	As-fast-as-possible Scheduling
	Real-time scheduling

	Automation for multi-core implementation
	The multi-core scheduling
	The shared memory block
	To the shared memory
	From the shared memory

	Choose specific tile and partition slot
	The hexFile
	Casei: model-based controller and hard-coded plant
	Caseii: model-based controller and code generated plant

	Experimental Results
	Single core implementation
	Automated multi-core integration
	Results and Analysis
	Conclusion

	Conclusions and future plan
	Conclusion
	Future plan

	Bibliography

