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Abstract

A huge amount of text is being generated daily such as emails, reports, articles, documents, post-
ings, ..etc. Text analytics has consequently become an increasingly valuable field for research.
Text analytics can provide businesses with beneficial insights about the market and the clients’
sentiment towards their products or services. However, text analytics can be very challenging,
given the unstructured and inconsistent nature of this text. Furthermore, global and local privacy
regulations have restricted businesses by different laws that enforce individuals’ privacy. Con-
sequently, it is crucial to preserve the privacy of individuals mentioned in any textual data to be
analyzed with minimal information loss. This project aims to investigate the challenges that entail
anonymizing personal names in unstructured Dutch text. The objective is to enable text analytics
without breaching individuals’ privacy nor losing links between personal name records. Given the
inconsistency of syntax of personal names, detecting and linking names in an unstructured text
can be a complex task. In this project, we tackle two types of inconsistencies: (1) Typographical
errors, and (2) Name variants (e.g., nicknames, or alternative spellings). Our approach consists of
3 phases. The first phase is detecting all personal name records in the given unstructured Dutch
text. The accuracy of the personal name detection, using Stanza named-entity recognition system
and the list-based combination approach, is 92%. Personal names with different typographical
error types were detected from the text with an accuracy of up to 90%. This was achieved using
the properties of edit-based distance (e.g., Levenshtein distance). The second phase is linking
records by matching co-referent personal name records that refer to the same individual. Using
learnable similarity classifications, different static similarity scores were used as features to train
a machine learning model to classify co-referent and non-co-referent name pairs. The model was
able to classify pairs of names with an accuracy of approximately 79%. Finally, in the last phase,
all personal name records were anonymized using one-way hashes, that do not allow data retrieval.
Moreover, all the links were stored between records that can assist in further text analytics.

Keywords Text Analytics . Data Anonymisation . Named-entity Recognition . Learnable
Similarity Classification . Static Similarity Scores
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Chapter 1

Introduction

This master thesis is a graduation project for Erasmus Mundus Joint Master Degree in Big Data
Management and Analytics (BDMA) with specialization in Business Process Analytics at Math-
ematics and Computer Science department of Eindhoven University of Technology (TU/e). The
first section of this chapter covers an introduction to the context of this graduation project. In
the second section, the research question which we have aimed to answer is formulated. The next
section presents the steps carried out while doing the project. Finally, this chapter ends with an
outline of the following chapters.

1.1 Thesis Context

Humans generate a massive amount of unstructured text data on regular basis through emails, so-
cial media postings, instant messaging, documents, and others. Many corporations store massive
amounts of this unstructured text to earn a competitive advantage in their markets. Consequently,
text analytics has become crucial for businesses that are willing to enhance their business intelli-
gence strategy through their data assets. Text analytics aims to analyze and obtain information
from unstructured text. However, privacy concerns have been raised when analyzing such data.
Different forms of text can contain identifiers such as surnames, given names, date of birth, or
address information. Consequently, data anonymization has become necessary in many fields of
research including text analytics. The term “anonymization” refers to the process of removing
the ability to identify individuals in a data set. Data anonymization has become a tool to extract
valuable insights from data analysis while minimizing the risks to people involved. When personal
data is anonymized, it is no longer considered to be personal data. As a result, the processing of
such data falls outside the scope of the Data Processing Act according to the The Dutch Data
Protection Authority (Dutch DPA) [2]. One example could be medical research where most of the
data can include patients’ identifiers such as medical reports. To be able to analyze these data for
insights, all personal identifiers have to be anonymized.

Many pieces of research have been conducted to find a way to anonymize those identifiers
without completely comprising the usability of the data for secondary analysis. Many challenges
are encountered in solving the problem of detecting names in unstructured text. The first chal-
lenge is the typographical errors and misspellings of names in the text. Personal names in an
unstructured text can be inconsistent and mistyped which makes it challenging to detect them.
Another challenge is that personal names in the text usually have a many-to-many relationship
with individuals. Meaning that one individual can be referred to in the text by different name
variants such as nicknames, whereas two similar names can refer to two different individuals.
Therefore, the objective is to find co-referent name variants before anonymization to minimize
information loss without compromising privacy.

In the next section, the goal of this project and the defined research question are discussed.

Personal Names Records Detection And Linkage In Unstructured Dutch Text 1
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1.2 Problem statement

This project aims to investigate and understand how accurately we can detect personal names in
unstructured Dutch text. In addition, we explored ways to link personal name records in the text
that refer to the same individuals to minimize information loss after anonymization. The research
goals of this thesis project were formulated as follows:

Research Goal Anonymising personal names in unstructured Dutch text to allow text analytics
without breaching the privacy of individuals mentioned in the text.

Identifying and linking personal names in an unstructured text can be a huge benefit that
unleashes the potential of textual data for analytics. It is the main issue that when solved, can
consequently solve the problem of comprising the usability of the data when anonymized. This
can only happen when personal names records are linked before anonymization so that all name
variants that refer to the same individuals are recognized. At the beginning of this project,
we investigated methods by which we can most accurately detect names in unstructured Dutch
text including names with different types of typographical errors. Afterward, we proposed a
supervised classification approach for record linkage. This method relies on learnable similarity
metrics between name pairs to decide if they are co-referent pairs or not. Co-referent names and
non-co-referent names are classified using a machine learning model that is trained on features
extracted using labeled pairwise string comparisons (e.g., static similarity scores). To conclude, the
following research question was proposed. The details of how we tackled these research questions
are provided in chapter 4.

Research Question How to detect all personal names in unstructured Dutch text as well
as linking all the possible variations of records that refer to the same individual to minimize
information loss after anonymization?

1.3 Research Approach

To achieve the previously mentioned goals of this project, the following steps were undertaken:

Literature Review: At the beginning and during the project, we did a thorough examination
of the existing literature on named-entity recognition, string similarity metrics, record linkage,
and data anonymization. This review helped us to get a better vision and learn more about the
state of the art.

Tools: To identify names in the text, we utilized Stanza', an open-source python natural lan-

guage processing package. It includes tools for text tokenization, part of speech and morphological
tagging, and named entity recognition. Moreover, we used SK-learn?, a python machine learning
library for predictive analysis, to build a classification model for record linkage. Finally, we de-
cided to utilize inforcehub® to anonymize personal names in the text with on-way encrypts that
does not allow data re-retrieval.

Method: The followed method to tackle the proposed research questions was divided into three
modules. The first module addresses the problem of detecting names in unstructured Dutch text.
The second module is dedicated to record linkage of personal names where we classify co-referent
and non-co-referent name pairs in the text. Finally, the last module is the phase where all names
in the text are anonymized and links between names are stored.

Thttps://stanfordnlp.github.io/stanza/
2https://scikit-learn.org/stable/
Shttps://inforcehub.readthedocs.io/en /latest /modules/anon.html
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CHAPTER 1. INTRODUCTION

Test case generation: To evaluate the method followed to achieve the main goals of this
project, a test case was generated. Firstly, a function was created to embed random typographical
errors to the personal names in the text. Pieces of text were generated with personal names with
different types of typographical errors which are insertion, deletion, transposition, substitution,
and replication errors. This is meant to evaluate our method in detecting names in unstructured
Dutch text with typographical errors. On the other hand, we asked different Dutch individuals
to provide us with a list of Dutch names with their variants to evaluate the performance of the
classification model in identifying co-referent and non-co-referent pairs.

Evaluation of results: The project’s final phase is to assess and evaluate the outcomes. This
step is critical in any research since it gives an overview picture of the benefits and drawbacks
of a proposed strategy. It will also make it easier to comprehend how to improve the research in
future studies. In this thesis, we evaluated by investigating how effective the followed method is
in allowing text analytics after anonymization of personal names in the text.

1.4 The Structure of This Thesis

This thesis is structured as follows:

Chapter 2 provides background information of the theories and tools used throughout this
project such as named-entity recognition, and different similarity metrics including edit-based
such as Levenshtein distance and Jaro-Winkler, and token-based such as cosine similarity and
Jaccard similarity.

Chapter 3 presents an overview of the state-of-the-art methods and techniques related to
named-entity recognition, record linkage, and data anonymization.

Chapter 4 presents the method and implementation steps followed to achieve the main goals
of this project.

Chapter 5 presents the results and the performance evaluation.

Chapter 6 is the last chapter where the whole performed work and the outcome are summarized.
Furthermore, possible developments and contributions are discussed.

Personal Names Records Detection And Linkage In Unstructured Dutch Text 3
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Chapter 2

Preliminaries

In this section, we introduce concepts and tools utilized throughout the research conducted for
this chapter.

2.1 Named Entity Recognition

Named entity recognition (NER) is an information extraction task that recognizes and categorizes
mentions of various named entities in textual data, such as people’s names, organizations’ names,
places, dates/times, monetary values,..etc. NER is a form of natural language processing (NLP)
that is concerned with computers processing and analyzing natural languages. NER tools leverage
supervised machine learning where the recognition of the named entities is typically modeled as
a sequence prediction task. The objective is to assign a specific tag to each word in an input
sentence of text. In this research, we utilized Stanza, a tool developed by the Stanford NLP group
[3] in 2020, which contains a collection of accurate and efficient tools for the linguistic analysis of
many human languages.

2.1.1 Stanza

Stanza ' is a python package that contains various NER tools. It was built with neural network

components that enable efficient training and evaluation with annotated data. It contains tools,
which can be used in a pipeline, to convert a string containing human language text into lists of
sentences and words, to generate base forms of those words, their parts of speech and morpho-
logical features, to give a syntactic structure dependency parse, and to recognize named entities.
Stanza can recognise names in the text by considering the structure of the words and their pos-
ition in the sentence. Figure 2.1 provides a summary of Stanza full neural network pipeline for
robust text analytics, including tokenization, multi-word token (MWT) expansion, lemmatization,
part-of-speech (POS) and morphological features tagging, dependency parsing, and named entity
recognition.

Thttps://stanfordnlp.github.io/stanza
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| Tokenization & Sentence Split | %‘H | Bonjour! | % H"i”"i

e el e B
Multi-word Token Expansion _
| CAIZBIE ! || Hallo! || xin chao! || AHEDHR! |

| Lemmatization | Multilingual: 66 Languages
RAW TEXT

| POS & Morphological Tagging |
Dependency Parsing
DEPPARSE
| Named Entity Recognition | .

Fully Neural: Language-agnostic

PROCESSORS DOCUMENT

Figure 2.1: An overview of Stanza’s neural network NLP pipeline [1]

2.2 Similarity Measures for Text Analysis

This section provides an overview of different similarity measures used in this research for the
following two purposes.

1. Detection of personal names in the text with typographical errors.
2. Record linkage of personal name variants that refer to the same individual.

The similarity measures are divided into 3 types: edit-based , token-based, and phonetics.

2.2.1 Edit-based Similarity Measures

The edit-based measures approach compares two strings by counting the minimum number of
operations required to transform the string into the other. This method calculates character-by-
character distances between two terms by examining certain combinations of the following two
factors (1) the number of identical characters, and (2) the number of edit operations used to
convert one name to the other (the operations being: insert, erase, and transpose) [4]. This type
of measure is able to detect minor differences between strings such as typographical errors. For
example, if we are to compare the string 'Micheal’ and Michiel’, the edit-based measures can
easily detect the resemblance between the two strings. This enables us to recognize name variants
in an unstructured text that resulted from data entry errors or misspellings. We will consider the
following edit-distance functions:

Levenshtein Distance

Levenshtein distance also called as minimum edit distance, measures the number of edits to trans-
form one string to another. it assigns a unit cost to all edit operations according to the following
equation [5]. The Levenshtein distance between two strings a,b (of length |a|, |b] respectively) is
given by lev,, where:

Max(i,j), If Min(i,j) =0,
levg p(i —1,5) + 1
levap (i, j) = ) ’b<z. : o .
' Min § levg p(i,7 — 1) +1 otherwise.
16Ua7b(i — 1,j — 1) + 1a¢7ébj
6 Personal Names Records Detection And Linkage In Unstructured Dutch Text
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Where i,j presents the terminal character position of string a, b respectively. a; refers to the
character of string a at position ¢. Similarily b; refer to the character of string b at position j.
14,26, indicates that the function is equal to 0 is a; # b; and equals 1 otherwise. For example, the
levenshtein distance between ’Anna’ and ’Antje’ is 3. Since , at a minimum, 3 edits are required
to change one into the other corresponding to the following operations :

1. substitution of 'n’ to t’

2. substitution of 'a’ to ’j’

3. insertion of ’e’ at the end

Jaro-Wrinkler

Jaro-Wrinkler is a string metric measuring an edit distance between two sequences. It is a variant
proposed in 1990 by William E. Winkler of the Jaro distance metric [6]. Promising results were
achieved in the record-link literature using variants of this method that is based on the number
and order of the common characters between two strings. The Jaro Similarity sim; of two given
strings s1 and ss is

_ {0 if m=0,
simj = 4 4 s .
3 (\%I + ‘;”—2‘ + %) otherwise.
where |s;| is the length of the string s;, m is the number of ”matching characters” , and ¢ is the

number of transpositions . Note that, two characters from s; and sy respectively, only matches if

max(|s1],s2])
2

they are the same and more than { J — 1 far characters apart. The number of matching

(but different sequence order) characters divided by 2 defines the number of transpositions.
Jaro—Winkler similarity [6] uses a prefix scale p which higher score to strings that share the same
prefix of length ¢. Given two strings s; and ss, their Jaro—Winkler similarity sim,, is

simy, = sim; + €p(1 — sim;),

where sim; is the Jaro similarity for strings s; and sg, £ is the length of common prefix at the
start of the string up to a maximum of 4 characters, and p is a constant scaling factor for how
much the score is adjusted upwards for having common prefixes. Note that, p should not exceed
0.25, otherwise the similarity could become larger than 1. The standard value for this constant in
Winkler’s work is p = 0.1. The Jaro—Winkler distance d,, is defined as d,, = 1 — sim,,.

2.2.2 Phonetics-based Similarity Measures

In this approach, two strings are compared by the difference between the phonetic representation.
These can also be referred to as the common key method. Those methods reduce the names
to a key or code based on their pronunciation. One of the well-known common key methods
is Soundex, patented in 1918, it maps different transformations of the letter depending on how
similar this letter sounds to different numbers [4]. This allows names with similar pronunciations
to be mapped to the same values. For example, Cyndi, Canada, Candy, Canty, Chant, Condie
share the code C530. Another more accurate approach is the Metaphone algorithm, developed
in 1990, followed by the Double Metaphone algorithm [2]. The Double Metaphone returns two
codes: a primary key and a secondary key so you have more chances to match items. According
to the algorithm, there are 3 matching levels as follows:

1. The strongest match when primary keys of two names match.

2. The normal match when a primary key of one name matches a secondary key of another

name.
3. The weakest match when secondary keys of two names match.

Personal Names Records Detection And Linkage In Unstructured Dutch Text 7
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2.2.3 Token-based Similarity Measures

Token-based similarities are more complicated measures than edit-based. They examine the text as
a set of tokens (words) which allows for the semantic sense of words to be considered as well as the
processing of vast documents. Since you can use word vector representations (word2vec) to explain
each word in the text and then compare vectors, semantic meaning plays a role. Furthermore, using
a bag of words approach and the TF-IDF tool, it is possible to compare the semantic similarity of
entire texts (although not between independent words). Similarities based on tokens are commonly
used in various fields. It is, without a doubt, the most well-known method of working with texts.
Nonetheless, it is inapplicable to a wide variety of scenarios. To compute token-based distances,
strings are considered multisets of tokens. Two strings are compared by looking at the intersection
between their tokens. Table 3.1 shows an example of the term frequency vector of sample names
2-character tokens

Name/Token ’al’ ’Ib> ’be’ ’er’ ’rt’ ’'ro’ ’ob’

Albert 1 1 1 1 1 0 0
Robert 0 0 1 1 1 1 1

Table 2.1: Term-frequency vector using 2grams

Jaccard Similarity

The Jaccard index, also known as Intersection over Union and the Jaccard similarity coefficient, is
a metric for determining how similar and diverse sample sets are. The Jaccard coefficient, which
is defined as the size of the intersection divided by the size of the union of the sample sets, is a
measure of similarity between finite sample sets.

Cosine Similarity

The cosine similarity metric is used to determine how similar strings are regardless of their size.
It calculates the cosine of the angle formed by two vectors projected in a multi-dimensional space
mathematically. In this project context, those vectors are arrays that contain letters counts of two
strings. Because of the cosine similarity, even if two identical strings are separated by the Euclidean
distance (due to the size of the strings), they are likely to be oriented closer together. The higher
the cosine resemblance, the smaller the angle. The cosine similarity is described mathematically
as the division between the dot product of vectors and the product of the euclidean norms or
magnitude of each vector as shown in the following formula [7].

AB S AiB;
HANIBI /> A2/ BY

where A; and B; are components of vector A and B respectively.

similarity = cos(0) =

8 Personal Names Records Detection And Linkage In Unstructured Dutch Text
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Chapter 3

Literature Review

In this chapter, we explored existing research focusing on detecting, linking, and anonymizing
names in unstructured text. This review provides us with useful information on the direction of
ongoing research and potential ways to contribute to this field of study. Anonymisation of private
data in a structured text has been widely studied in recent years, whereas anonymizing data in
unstructured remains a manual task that needs researchers’ attention. The main challenge with
unstructured text is that it is schema-less which makes it very difficult to quantify possible privacy
risks. We studied different approaches from recent research papers that investigate record linkage,
similarity metrics, and data anonymization in text analytics. The following sections show the
outcome of the investigation done regarding this topic.

3.1 Anonymization of Unstructured Data via Named-Entity
Recognition

Hassan and et al. [8] developed an approach that aims to build a system that is able to detect
attributes that have any privacy implications in unstructured text. As a proof of concept, the
paper focused on locating disease names in medical records. The paper proposes a model of the
recognizer for named entities that consists of 3 main steps as follows:

1. Tokenizer
2. Feature extractor
3. Conditional Random Field (CRF) Model

In the first step, the tokenizer splits the sentences of a given text into tokens. Those tokens are then
used in the next step to extract features using a window of 3 words (current word, previous word,
and next word). In the feature extraction step, four features were considered for each token/word
as follows:

e Word stem, where stems of the words are extracted (e.g. the stem of ‘illness’ is ‘ill’).
e Word length, which denotes the length of the word/token.

e Word Shape, which represents the shape of the word (e.g. ‘lowercase, ‘uppercase’, ‘capital-
ized’, or ‘mixed’).
e Word POS, which is the part of speech for the word.
Lastly, in the third step of the model architecture, the CRF model takes the features extracted

from the second step and produces a sequence of tags for the whole sentence. Consequently, the
proposed model based on CRF is able to extract diseases names from a given medical record by

Personal Names Records Detection And Linkage In Unstructured Dutch Text 9
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predicting a sequence of corresponding tags. The machine learning-based approach proposed in
this paper is argued to out-performs the dictionary-based named-entity recognition approaches
where problems usually arise when the entities to be detected are not in the dictionary in use.

3.2 Combining Neural Networks and Knowledge-based Ap-
proaches to Named-Entity Recognition in Polish

This paper proposes another framework for named-entity recognition that combines knowledge-
based feature extractors and a deep learning model including contextual word embeddings, long
short-term memory (LSTM) layers and conditional random fields (CRF) inference layers [9]. The
general architecture of the proposed framework consist of the following four modules:

1. An entity linking model based on Wikipedia

2. A feature extractor module, which integrates the aforementioned entity linker and a number
of lexicons.

3. LSTM model
4. CRF model

To support the detection of named entities, the presented approach uses a number of feature
extractors where some use static resources and others are based on heuristic rules. The purpose
of the feature extractor module is to assign labels to words in the input sequence. One of the
distinctive features of this system is the use of Wikipedia as a supplementary resource to help in
detecting named entities. The use of Wikipedia involves labeling the articles with tags correspond-
ing to named entity categories (e.g. people, organizations, ..etc.). An entity linking method was
utilized from the Wikipedia Miner toolkit so that linked entities were assigned labels that were
then inputted into the deep learning model. This was achieved by creating a mapping between
mentions of named entities in text and their reference in the knowledge base (e.g. Wikipedia)
which are a pre-defined set of labels. The data pipeline of the proposed system starts by creating
a vectorized representation of a word by concatenating a pre-trained word embedding output, a
trainable character-level encoder, and a set of one-hot vectors from the feature extraction mod-
ule. A number of bidirectional LSTM layers then compute a hidden word representation. This
representation is given to a CRF output layer, which is in charge of predicting a label sequence
Y that maximizes the probability P(Y|X), where X is the word vector sequence. Finally, the
two deep learning models results in two output sequence Y, q:n for main categories and Y, for
sub-categories of named-entities.

3.3 Learning to Combine Multiple String Similarity Met-
rics for Effective Toponym Matching

Santos and et al. [10] presents a performance evaluation on the use of different string similarity
metrics over toponym matching task. In addition, the paper reports the results of experimentation
involves the use of supervised machine learning for combining multiple similarity metrics. The
experiments were conducted based on a dataset of five million pairs of toponyms, half of which
are matching pairs that correspond to alternative names for the same place. Firstly, the paper
presents some characterization statistics for the dataset such as the difference in length between the
pairs of the matching and the non-matching class, the different similarity measures range between
the pairs, and the number of pairs per country. It was shown that different similarity metrics
achieve very similar results in terms of matching quality. The best results in terms of accuracy
were achieved using the Jaro-Winkler score followed by the Damerau-Levenshtein metric. The
paper also presents experiments on the dataset involving machine learning with a two-fold cross-
validation methodology. Experimentation was conducted using 13 different similarity metrics as

10 Personal Names Records Detection And Linkage In Unstructured Dutch Text
For Anonymisation



CHAPTER 3. LITERATURE REVIEW

features for 4 different classification models which are support vector machines, random forests,
extremely randomized trees, and gradient boosted trees. These models were used to combine
multiple similarity metrics and avoid the manual tuning of similarity thresholds. The decision
trees model is proven to achieve good results in matching toponyms with an accuracy of 78.63%.

3.4 Name2Vec: Personal Names Embeddings

The paper [11] proposes creating name-embeddings by employing Doc2Vec methodology by which
we can predict names in text that refers to the same entities. The method considers each word
as a document and each letter is considered to be a word. This study is motivated by the record
linkage research, where name similarity measures are crucial features in determining records that
refer to the same entity. Word embedding is the process of mapping vocabulary to vectors of
real numbers. The vocabulary is composed of 26 lower-case English letters. After the name-
embedding models were generated, cosine similarity scores were calculated between all the name
pairs. For test purposes, random name pairs were generated to test the effectiveness of the model
to distinguish between matched and unmatched name pairs. There are various parameters were
used that can affect the model which are: epochs (number of iterations over corpus during model
training), vector_size (the dimensions of the features vector), and window (the maximum distance
between the current and predicted word within a document). Different values for each parameter
were considered to result in 864 unique combinations of parameters to test. The outcome of
the best-performing model was then analyzed to evaluate the performance and the consistency.
Moreover, the effect of the parameters was investigated to show the effect of each of the parameters
on the quality of the model.

3.5 Private Record Linkage: Comparison of Selected Tech-
niques for Name Matching

P. Grzebala and M. Cheatham [12] present an extensive systematic analysis that examines common
flaws to name-based data entry that includes typographical errors, optical character recognition
errors, and phonetic errors. The results are compared to typical name-matching metrics on un-
protected data, and the article examines the applicability, accuracy, and speed of three different
basic methods to this challenge (along with numerous variants). While these methods are not
novel, this study examines a variety of datasets that feature systematically induced defects typical
to name-based data input. the main contributions of this paper can be summarized as follows:

e A nuanced analysis of the effectiveness of various distinct name-based similarity metrics using
a sophisticated name matching benchmark creation tool. Moreover, the paper examines the
impact of the threshold value used to each of the measures in the research, which takes into
account a variety of real-life mimicking sources of mistake.

e The accuracy of privacy-preserving similarity metrics is compared to that of regular string
metrics on unprotected data. This is done to determine the compromise of accuracy to
support data privacy.

e The privacy-preserving similarity metrics’ computational performance is also compared to
that of regular string metrics.

The paper firstly discusses some of the challenges that make record linkage of names a difficult
task. These challenges involve name spellings that can be malformed in a variety of ways, including
punctuation, abbreviation, pronunciation, spelling, writing order, usage of prefixes, typos, and
optical recognition mistakes, to mention a few. Furthermore, privacy considerations have made
it difficult to locate publicly available data that may be used as a benchmark, particularly a
collection of names that truly reflects global name distribution rather than being US-centric. The
absence of appropriate benchmarks was a significant challenge during the research, prompting the
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usage of a recently released name matching benchmark creation method. The benchmark datasets
were created using an advanced personal data generation tool called “GeCo”. The tool has two
main functionalities: data generation and data corruption. The paper introduces six different data
corruption techniques as follows:

1. Missing values.

2. Character edits (random character of string edit operations(e.g., insertion, deletion, substi-
tution, and transposition)).

3. Keyboard edits (simulating human typing mistakes)

4. Optical character recognition (OCR) errors (simulate OCR, software mistakes).

5. Phonetic edits (replace a substring by its phonetically matching variation).

6. Categorical value swapping ( replaces an attribute value with one of its possible variations).

The uncorrupted dataset was cross joined with each of the corrupted datasets of each of the
string metrics to evaluate the performance of the string metrics. The metrics considered were the
Soundex algorithm and four variations of the Q-gram techniques to be compared with Jaro and a
normalized version of Levenshtein. Joining datasets based on Soundex encodings was not a viable
option because it failed to find a correct match for more than half of the records when the name is a
corrupted record contained one error, and nearly 70% of the records when the name is a corrupted
record contained two errors in a single name. For linking datasets based on encrypted names,
Q-grams-based algorithms appear to be a promising choice. While their precision is slightly lower
than that of unencrypted data metrics like Jaro or Levenshtein, this can be easily remedied by
altering the threshold value that determines when two g-grams are likely to correspond to the
same name.

3.6 Conclusion

In the previously mentioned papers, different ways were proposed for detecting and linking records
in textual data. Some rely on dictionary-based NER which can be very useful for structured data.
However, problems usually arise when entities do not exist in the dictionary in use. Other research
papers leverage the power of machine learning in solving such problems. Deep learning models
were used to detect and link entities using different similarity metrics to extract features. On the
other hand, different similarity measures were analyzed to find the advantages and disadvantages
of using certain measures for certain use cases. In this project, we combine different similarity
measures for different use cases such as detecting personal names with typographical errors and
recognizing co-referent name variants. Furthermore, we utilize machine learning models in learning
similarities between co-referent names for record linkage. In the next chapter, the method and
implementation steps that address the research question for this project are presented.
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Chapter 4

Method

With the large amounts of textual data that humans produce every day, there should be a system-
atic way to analyze this data while preserving the privacy of the subjects the data might refer to.
We aim to create a pipeline that receives the unstructured text document as an input and outputs
the same text where different personal names are linked for anonymization. Anonymizing names
risk the utility of the data for secondary analysis. The evaluation of the utility of the data can be
dependent on the intended use of this data. Since the intended use of the data can widely vary, we
think of the utility of the data in terms of information loss. We studied the possible information
loss that can result from anonymizing names in textual data and attempt to keep this information
after anonymization with minimal risk of re-identification. In this project, we tackle the problem of
information loss due to name variants. Our objective is to keep linkage between different subjects
to enable recognizing names that belong to the same subject after anonymization. Therefore, we
minimize the information loss resulting from anonymization. Figure 4.1 outlines the procedures
taken to achieve this goal.

Module 1: Finding Personal Module 2: Record Linkage of Module 3: Anonymization
Names in (Dutch) Text Personal Name Variants

Figure 4.1: Summary of defined methodology for the proposed approach

The method consists of three modules, where each separate performs a specific task as a part
of the whole pipeline. Briefly, in module 1, we explore efficient ways to recognize individuals’
names in unstructured text. In module 2, we use similarity measures to recognize possible name
variants. Lastly, in module 3, we anonymize all names while storing links between them.

4.1 Module 1: Finding Personal Names in unstructured
Dutch Text

In most western countries, personal names usually consist of a given name, an optional middle
name, and a surname or a family name. However, this format is not always followed especially
in unstructured text. ‘Elizabeth J. Smith’, ‘Liz Smith’, and ‘E. J. Smith’ can refer to the same
individual. Furthermore, people often use (or are given) nicknames in informal unstructured text.
These forms are usually a short form of their given names (like ‘Rick’ for ‘Richard’ or ‘Tina’ for
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‘Christina’). In Dutch, typical forms for nicknames are to truncate parts of the name and add
a (t)je, k(e), p, or s to it (like ‘Anje’ or ‘Anke’ for ‘Anna’ and ‘Betje’ or ‘Bep’ for ‘Elisabeth’)
[13]. Therefore, recognizing all these different types of variations is a challenging task. The
following cases are examples of the inconsistent syntax that can be found in unstructured text,
e.g., user-generated text.

e Spelling variations (e.g., ‘Eric’ and ‘Erik’) due to typographical errors that don’t affect

phonetical structure of a name;

Phonetic variations (e.g., ‘Sinclair’ and ‘St. Clair’)

Alternative names, such as nicknames, married names or other deliperate name changes;
Out of order components (e.g., ‘Diaz, Carlos Alfonzo’ - ‘Carlos Alfonzo Diaz’); and
Initials (e.g., ‘J. E. Smith’ - ‘James Earl Smith’)

Named Entity Recognition (NER) is the task of recognizing and classifying named entities
in the text according to a pre-defined set of entity types. The term was coined to the MUC-6
conference [14]. The objective is to detect general entity types such as persons, organization,
locations, etc. in any given text. In this module, we focus on personal names detection in
unstructured text and the followed approach in addressing particular challenges in finding person
names entities in Dutch text. The following section outlines the initial approach to find names in
the text. It also provides an overview of the possible risks of using such a method and its impact
on the quality of the results.

4.1.1 Named Entity Recognition Model and List-based Hybrid Ap-
proach for Names Detection

To detect names in unstructured text, we started by exploring two different methods for NER.
The first method was the list-based approach, whereas the second method was NER systems. We
collected a data set of 3,302 Dutch given names and 88,223 surnames from Marteens institute'
[15] Dutch first names and surnames database. Using this dataset, our initial approach was to
use a list-based approach. This approach was applied by comparing the whole text to the Dutch
names dataset. Firstly, NER models were used to tokenize the text into words. Those tokens
were equated to the list of Dutch given names and surnames. Although this method is easy to
implement and somehow efficient in detecting a wide range of names, this efficiency does not hold
when faced with unstructured text where names contain initials or misspellings, or variations.

Consequently, we decided to follow a hybrid approach that incorporates NER systems in de-
tecting personal names in text. NER systems use linguistic grammar-based techniques as well as
machine learning models. They use pre-trained models to locate and classify named entities in
textual data. The precision of these tools can differ depending on the format and structure of the
text. In our application, we used Stanza ? which is a Python open-source library that contains
various NER tools. Stanza has a NER module that recognizes mention spans of a particular entity
type (e.g., person or organization) in input sentences and it supports 8 languages including Dutch.
Using Stanza’s module, we were able to extract a list of names from the text. Finally, names
recognized by Stanza and those detected by being compared to the names list were compiled into
one list.

The combination of these methods does not ensure detecting all personal names especially in
the free-form text where names can be misspelled or mistyped. To minimize some of those risks,
we modified our previous method to analyze the text and enable us to detect misspelled names and
typographical errors in the text in the names detecting phase. In the next section, we highlight
the steps followed to minimize some of the risks of the initial method.

4.1.2 Detecting Personal Names with Typographical Errors

In the context of anonymization, detecting typographical errors helps us in linking mistyped
personal name records that refer to the same individuals. The objective of adding this step is to

Thttps://www.meertens.knaw.nl/cms/nl/collecties /databanken
2https:/ /stanfordnlp.github.io/stanza
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find personal names with typographical errors in the text and correct them before resuming further.
After the text was processed, the list of detected names, using the names list and NER systems,
was compiled. The rest of the text was then inspected for possible names with typographical
errors. Stanza’s part-of-speech (POS) module was used to retrieve labels for all the words in the
text. These labels are mainly the universal POS (UPOS) tags that present the morphological
features of each word. The idea of using these tags is to identify nouns and proper nouns in the
text that can refer to a mistyped name that was not detected as a name in the text. Despite
that, a mistyped name part-of-speech can be neither a noun nor a proper noun in some specific
cases, most of the misspelled names fall in this category. Moreover, the choice of specific tags
(i.e nouns and proper nouns) enables us to reduce the number of words to be compared to the
detected names list; therefore, the number of false positives is reduced. All the extracted nouns
and proper nouns are then compared to the list of names that were detected in the previous step
using Levenshtein edit-based distance. Levenshtein edit-based distance measures the number of
edit operations between two strings (i.e. deletion, insertion, transposition, and substitution). Edit-
based distance measures are well-fitted for detecting words with typographical errors that result
from minor changes in a string. When the Levenshtein distance between a detected name and
another word in the text is less than a specific threshold, this indicates a potential typographical
error.

Note that, this method relies on the assumption that each personal name in the text is men-
tioned once in the correct form. In case a name is consistently mistyped throughout the whole text,
extracted nouns and proper nouns from the text can be all compared to the whole list of names
collected for names detection. However, this solution can result in many false positives, where
nouns and proper nouns can be similar to more than one name in the names list. For example,
the word ‘Algred’ was extracted from the text as a potentially mistyped name, and compared to
our names list, it would be matched with ‘Albert’, ‘Alfred’, or ‘Aldret’. Although we can still find
similar names in the text, finding multiple similar names can be very rare. On the contrary, when
a name is compared to the collected list of most possible names, one name can be matched with
multiple names at a time. Consequently, limiting our sample to names previously detected in the
text can improve the accuracy of the results.

After detecting all the names including the misspelled names in the text, we aim to identify all
records in the text that refer to the same individuals. In the following module, we explore record
linkage research in identifying co-referent and non-co-referent names in Dutch text.

4.1.3 Example

Input Text “Anna houdt van Engelse en wiskunde. Haar wiskundeleraar heet Michial.
Micheal is een zeer goede leraar. Haar lerares Engels heet Mieke. Miek geeft Antje graag
veel opdrachten. ”

In this step, we extract and compile all the names detected by NER in combination with
the name’s list. Three individuals were mentioned in the above text i.e ‘Anna’, ‘Michael’, and
‘Mieke’. Two of the names (i.e. Anna, Micheal) were detected using NER, whereas one name
was detected using the names list. Table 4.1 shows a list of all detected using the NER and list-
based combination method. There are other mentions of the same people which different spelling
mistakes and variations (e.g., ‘Anna’ is referred to as ‘Antje’, Micheal is misspelled as ‘Michial’,
and ‘Mieke’ is misspelled as ‘Miek’). As shown in this example, the NER tool does not always
detect the complete list of names in the text. On the flip side, completely relying on the list-based
approach would limit the results to those names that exist in the list. Therefore, combining a NER
tool with a list of names can be essential to ensure better accuracy in finding as many personal
names in the text as possible.

Personal Names Records Detection And Linkage In Unstructured Dutch Text 15
For Anonymisation



CHAPTER 4. METHOD

Table 4.1: Output of first step of module 1: Finding Personal Names

Firstly, we extract all the nouns and proper nouns from the text excluding all the names that

Name Source
Anna NER

Micheal NER
Mieke | Name’s List
Antje NER

were already detected as shown in table 4.2.

Table 4.2: Output of second step of module 1: Detecting Misspelled Names and Typographical

Errors
Words Tags
wiskunde noun
Michail proper noun
leraar noun
lerares noun
Engels proper noun
Miek proper noun
opdrachten noun

All the extracted names in table 4.2 are compared to the ones detected in the text in table
4.1 using Levenshtein distance. After we compute all the Levenshtein similarities with a threshold
equals 2. We finally yield the following table 4.3 with all the names including the mistyped names.

Table 4.3: Final Output of second step of module 1

Mistyped Name
Michail
Mieke

Original Name | Levenshtein Distance
Michael 1
Miek 1

4.2 Module 2: Record Linkage of Personal Name Variants

When names are the only unifying data point, correctly matching similar names becomes more
crucial; however, the variability and sophistication of names make name matching a particularly
difficult challenge. Missed matches can be caused by nicknames, translation mistakes, multiple
spellings of the same word, and other factors. Although there are various search methods available,
name search necessitates a radically different approach than document search. To link those name
forms in unstructured text, we need to find ways to compare them and relate them to each other.

For example, if we encountered the name ’Alexander’ in a given text then the name ’Alex’, we
can assume that those two names refer to the same individual. However, matching the two names
requires computing an appropriate similarity measure that would capture the interchangeability
of the two names. In this section, we discuss the approach followed to link different name variants
in unstructured text. Firstly, we started our analysis by exploring similarity measures that can
assist in solving the addressed problem.

4.2.1 Computing Similarities

Our initial approach was to compute a similarity distance between the names in the list of names
derived from the document. At first, we computed the Levenshtein distance between Dutch names
in our collected names list and names detected from the text. Table 4.4 shows an example of
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computations between names from the collected names list and names recognized from a sample
unstructured text.

Table 4.4: Sample Levenshtein distance computations

Names from names list | Names from text | Levenshtein distance
Roger Rogar 1
Daniel Daniil 1
Daniela Daniil 2
Andrea Andrey 1
Audrey Andrey 1

These pre-computed distances can map names in the text to one or multiple similar names
in the collected names list. However, the following issues emerged as a result of this strategy.
The first concern was that some of the names did not have any reference in the names list. The
second concern was that, although our names list does not have any identical names, knowing the
similarity gap between a name in the text after anonymization and other names from the names
list will facilitate re-identifying the name in the document. The pre-computed distances between
the anonymized names and the list of stored names will reveal details such as the number of letters
in the anonymized name and its variations.

To avoid the risk of re-identification by storing the Levenshtein distance between names in text
and the names list, we decided to compute similarities only among names inside the text. This will
allow exploring the closeness of the names to each other without comparing them to any external
data source. On the other hand, it was found that static similarity measures cannot accommodate
variability that may occur due to data entry errors, or multiple ways of expressing the same word
or individual such as misspellings, abbreviations, nicknames, or alternate spellings. To capture the
variability of name forms in unstructured text, we considered three types of similarity measures:

1. Type 1 Edit-based distances that capture the spelling differences between different occur-
rences of a name in text. For our research purposes, we considered the following 2 edit-based
distances:

e Levenshtein Distance The Levenshtein distance is the minimum edit operations to
convert one string to another discussed in chapter 2.

Benefits Approximate string matching aims to find matches for short strings in a
large number of longer texts in situations where only minor variations are predicted.
In other words, Levenshtein distance is mostly used to check misspellings. This has a
wide range of applications, for instance, spell checkers, correction systems for optical
character recognition. In our project, Levenshtein distance can represent similarity
between misspelled names or typographical errors. Table 4.5 shows some example of
the Levenshtein ratio between different co-referent name variants. The results show
that the Levenshtein similarity can accurately match spelling variations of names (like
‘Robbert’ and ‘Robert’).
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Table 4.5: Levenshtien distance between different name variations types

Name 1 | Name 2 | Ratio | Name Variant type
‘Michael” | ‘Michiel’ 1 Spelling variation
‘Robbert” | ‘Robert’ 1 Spelling variation
‘Marie’ ‘Rie’ 2 Alternative naming
‘Antonia’ “Tonie’ 3 Alternative naming
‘Francisca’ | ‘Ciskca’ 5 Alternative naming
‘Robert’ ‘Bob’ 4 Alternative naming
‘Anna’ ‘Netje’ 5 Alternative naming

e Jaro-Winkler Distance, is another edit-based distance, derived from the Jaro meas-
ure which is the weighted sum of the percentage of matched characters from each string
and increased strings. Winkler increased this measure for matching initial characters,
then re-scaled it by piecewise function, whose interval and weights depend on the type
of string. [16]. In other words, Winkler’s measure gives more importance to words with
identical prefixes.

Benefits The Jaro-Winkler similarity measure gives more importance to names that
have the same prefix. This was found effective in matching some name forms since
fewer errors are typically found at the beginning of names [17]. The Winkler measure
can perform well with parsed names that are divided into given- or surnames. Table
4.6 shows some examples of a computed Jaro-Winkler distance between different co-
referent name pairs. The results show that the Winkler measure is useful for matching
alternative naming (i.e. nicknames), especially if they share similar prefixes.

Table 4.6: Jaro-Winkler distance between different name variations types

Name 1 | Name 2 | JW Distance | Name Variant type
‘Frederik’ ‘Fred’ 0.90 Alternative naming
‘Erik’ ‘Eric’ 0.88 Spelling variation
‘Robert’ ‘Bob’ 0.67 Alternative naming
‘Antonia’ ‘Tonie’ 0.71 Alternative naming
‘Francisca’ | ‘Ciskca’ 0.39 Alternative naming
‘Marie’ ‘Rie’ 0.0 Alternative naming
Disadvantages Although these comparisons are quick, those distances do not catch lin-

guistic complexity. All edits are assigned the same amount of weight. Thus, changing “c” to
“p” has the same weight as changing “c” to “k,” although in English, the latter substitution
can more specifically mean a similar word, as in ‘Catherine’ vs. ‘Katherine.”. Moreover,
those measures ignore the similarity between strings given that are far apart in terms of the
difference in size( e.g., ‘Alexander’ - ‘Alex’). They can also be sensitive to string length. For
example, the Levenshtein distance between ’Anna’ and ’Pete’ is 4 which is the same as the
Levenshtein distance between ‘Bernardina’ and ‘Bernardientje’. Although the ‘Bernardina’/
‘Bernardientje’ pair is more similar than the ‘Anna’/‘Pete’ pair, the Levenshtein distance is
the same. Moreover, it does not take into account the semantic meaning of the strings in
comparison.

Use Cases Edit-based distances can directly capture resemblance between words such as
"Michael” and "Michiel’. This means that can detect minor differences between strings that
can happen due to typographical errors or misspellings.
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2. Type 2 Token-based distances that compare two strings by looking at units (Tokens) of
strings (e.g., n-grams).

e Jaccard Similarity Coefficient is one of the simplest token-based distances which is
defined as the magnitude of the intersection (common tokens)divided by the magnitude
of the union (unique tokens) of two sets [1]. Those sets represent multisets of tokens of
the two strings to be compared [4].

Benefits Jaccard similarity simply counts the number of members which are shared
in both sets. This can be helpful for co-referent name pairs that share the same root.
Table 4.7 shows that Jaccard similarity results can be similar to edit-based distances.
It gives high scores for co-referent names that have the same length and shares most of
their characters.

Table 4.7: Jaccard similarity between different name variations types

Name 1 | Name 2 | Jaccard Index | Name Variant type
‘Robbert’ | ‘Robert’ 1.0 Spelling variation
‘Frederik’ ‘Fred’ 0.66 Alternative naming
‘Erik’ ‘Eric’ 0.60 Spelling variation
‘Francisca’ | ‘Ciskca’ 0.44 Alternative naming
‘Antonia’ ‘Tonie’ 0.37 Alternative naming
‘Robert’ ‘Bob’ 0.28 Alternative naming
‘Anna’ ‘Netje’ 0.0 Alternative naming

e Cosine Similarity Cosine similarity approximates how similar two words vectors are
by computing the cosine of the angle between two vectors to quantify how similar two
words are. The smaller the angle, the higher the cosine similarity. These vectors can be
term-frequency vectors created by computing the frequencies of the string tokens [4].

Benefits Cosine similarity is a widely used measure in the information retrieval com-
munity since it excels in representing similarities between names that are far apart
by edit-based distances. In this regard, results from table 4.8 show that the cosine
similarity gives higher scores for co-referent names than the Jaccard similarity index.

Table 4.8: Cosine simialrity between different name variations types

Name 1 | Name 2 | Cosine Similarity | Name Variant Type
‘Robbert” | ‘Robert’ 0.95 Spelling variation
‘Frederik’ ‘Fred’ 0.90 Alternative naming
‘Erik’ ‘Eric’ 0.75 Spelling variation
‘Francisca’ | ‘Ciskca’ 0.68 Alternative naming
‘Antonia’ ‘Tonie’ 0.60 Alternative naming
‘Robert’ ‘Bob’ 0.47 Alternative naming
‘Anna’ ‘Netje’ 0.0 Alternative naming

Disadvantages Token-based distances can be more efficient for phrases from multiple
words rather than single words or short phrases from several words.
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Use Cases Those metrics are advantageous because even if the two similar strings are far
apart by the edit-based distances, chances are they may still be oriented closer together.
Furthermore, Cosine Similarity gives the length of the strings less importance. In other
words, uneven lengths of strings do not affect the accuracy of the cosine similarity measure
between the two strings. For instance, the similarity between ‘Alex’ and ‘Alexander’ is
better represented using a token-based distance since they have a significant intersection
even though they vary significantly in length.

3. Type 3 Phonetics-based algorithms investigate the similarities between strings depending
on how close they sound.

¢ Hamming Distance is an edit-based distance between two strings depending on how
they closely sound. However, hamming distance is only measured between two strings
of equal length. To take into consideration the content of the words regardless of the
order and size, we obtain the factor of distance given by the following formula [18]:

MAX (len(strl), len(str2)) — hammingDistance
MAX (len(strl),len(str2))

Distance factor =

Benefits This distance measure is more descriptive than other lexical edit-based dis-
tance such as Levenshtein, which gives the same weight to all edit operations. For
example, the Levenshtein distance between ‘Sophia’ and ‘Sofie’ is 3, whereas the ham-
ming distance between the same pair is 1. This is because the hamming distance
account for interchangeable characters due to their phonetical similarity (i.e. ‘ph’ and
‘t”). Table 4.9 shows hamming distance between different co-referent name pairs.. Res-
ults show that Hamming distance match spelling variations more accurately than other
edit-based distances such as Levenshtein distance; however, it fails to match alternate
names that are significantly different than the original name.

Table 4.9: Phonetics edit distance between different name variations types

Name 1 | Name 2 | Hamming Distance Factor | Name Variant type
‘Michael’ ‘Michiel’ 1.0 Spelling variation
‘Robbert” | ‘Robert’ 1.0 Spelling variation
‘Marie’ ‘Rie’ 0.75 Alternative naming
‘Antonia’ ‘Tonie’ 0.47 Alternative naming
‘Francisca’ | ‘Ciskca’ 0.44 Alternative naming
‘Robert’ ‘Bob’ 0.0 Alternative naming
‘Anna’ ‘Netje’ 0.2 Alternative naming

Disadvantages These algorithms compare words based on how they sound. However,
these methods do not take into account the semantic meaning of words. In our case, we need
to match variations of names. Those variations also include nicknames that are phonetically
very different than the name (e.g., Robert - Bob).

Use Cases Phonetics-based measures can be very effective in detecting errors. Moreover,
it can recognize similar names with different spellings (e.g., Eric - Erik).

To clarify the differences between those measures, let’s consider the following pairs for com-
parisons: pair (1) is ’Alex’ and ’Alexander’, pair (2) ’Antonia’ and "Tonny’, pair (3) 'Robert’ and
'Bob’, pair (4) ‘Robert’ and ‘Albert’, and pair (5) ‘Robert’ and ‘Rublev’. Table 4.10 shows the
values for different similarity measures comparing the aforementioned pairs of names. The three
pairs reflect some variations of names that might refer to the same individual.
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Table 4.10: Similarity measures overview

Similarity Measures Pair 1 | Pair 2 | Pair 3 | Pair 4 | Pair 5
Levenshtein Ratio 0.62 0.29 0.44 0.66 0.5
Jaro-Winkler 0.89 0.53 0.67 0.78 0.70
Jaccard Index 0.44 0.57 0.28 0.50 0.33
Cosine Similariy 0.75 0.57 0.47 0.67 0.50
Hamming Distance Factor 0.44 0.42 0.0 0.66 0.50

The results (see Table 4.10) show that different measures can detect similarities between differ-
ent forms of text. For example, the similarity between pairs 1,3 is best captured using edit-based
distances, where token-based similarity is better suited to represent the similarity between pair 2.
On the other hand, the dissimilarity between pair 4 and pair 5 is best represented by the Jaccard
similarity. This evaluation merely depends on the type of application that the analysis aims for.
For this project, our objective is to match all these forms of names in unstructured text.

Static approaches, such as cosine and Levenshtein similarities, impose a predefined penalty for
each unit (character or multi-character token) of difference between two strings. Considering the
variability of personal names in unstructured text, relying on a single static similarity measure
has proven ineffective. Therefore, we decided to explore learnable similarity metrics which can be
trained on classified examples of co-referent and non-co-referent names.

4.2.2 Supervised Classification for Record Linkage

Learnable similarity metrics use machine learning classifiers trained on features extracted using
labeled pairwise string comparisons (e.g., static similarity scores). This can be achieved using
classification similarity learning which is a supervised machine learning task that targets learning
a similarity function to decide whether a new pair of unlabeled objects belongs to the same class.
By considering pairs of strings labeled as similar or dissimilar as training instances, we face a
binary classification problem that can be solved through a classifier that decides whether a pair
of strings is similar. The classifier is trained on different static similarity metrics as a set of
features between each pair of strings. This kind of input data injects the classifier with additional
knowledge because the use of a distance measure is an implicit match between the characteristics
of two objects.

Model Training Dataset

Firstly, we searched for an appropriate dataset by which we can train and test a classification
model on co-referent names and non-co-referent names. The dataset® was web-scrapped from a
Wikipedia page [13] for Dutch names hypocoristic forms using Beautiful Soup. Beautiful Soup * is
a Python package for parsing HTML and XML documents. It creates a parse tree for parsed pages
that can be used to extract data from HTML, which is useful for web scraping. The scrapped
dataset contains 150 Dutch names (76 females, 74 males) with 1757 different forms for all the
names. However, this dataset was still unusable for classification since it only contains co-referent
names. This problem can be referred to as the problem of classification class imbalance. To
overcome this addressed problem, we manually created 1820 non-co-referent pairs of names to
balance the distribution of the classes for binary classification. Figure 4.2 shows the difference in
the number of characters between co-referent and non-co-referent pairs. It indicates that there
is no specific correlation between the difference in the number of characters and if the pair is a
match or not.

3https://en.wiktionary.org/wiki/Appendix:Dutch_diminutives_of_given_names
4https:/ /www.crummy.com /software/BeautifulSoup/bs4/doc/
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Figure 4.2: Distribution for the difference in the number of characters per matching/non-matching
pair.

As part of our characterization of the dataset, we analyzed the distribution of the name pairs
according to different similarity measures. This can be related to the difficulty in performing
automated classification. Figure 4.3 shows the results of the Levenshtein distance scores between
pairs which shows that non-matching pairs have higher values. Figure 4.4 shows the results of the
cosine similarity scores that are better representative of the co-referent pairs as values increase
for the co-referent pairs. This indicates that token-based similarities such as Cosine similarity
are better suited for this dataset, considering the clear cut between values for matching and non-
matching name pairs.
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Figure 4.3: Distribution for the number of pairs according to the Damerau-Levenshtein similarity
between the strings
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Figure 4.4: Distribution for the number of pairs according to the Cosine similarity between the
strings

Classification Models

In a supervised learning setting, the objective to decide the target outcome, whether two names
are co-referent or not. Under this scope, the Wikipedia dataset [13] was used to train and test
the classification model. The dataset contains a target class called ”Match” where data is labeled
with either 1 or 0.

- 1: co-referent pair

- 0: non-co-referent pair

The objective of creating a classification model is to be able to combine multiple similarity
measures for better performance than single static measures. Five semantic similarity measures
were used as training features. Two of those measures are token-based, 3 are edit-based distances,
and FuzzyWuzzy® score. Firstly, all the similarity scores were normalized to range between (0 and
1), 1 being the most similar and 0 being the least similar pair. Secondly, the dataset samples were
split into a train and test set (80% training, 20% testing). Finally, several classification models
were trained and tested to compare their results.

Models were evaluated using three metrics: accuracy score, log loss, and the area under the
receiver operating characteristic curve (ROC AUC). Model accuracy is defined as the number of
classifications a model correctly predicts divided by the total number of predictions made. Accur-
acy is a crucial component in assessing the model; however, it captures one aspect of the model
evaluation. Log-loss is indicative of how close the prediction probability is to the corresponding
actual/true value (0 or 1 in the case of binary classification). The more the predicted probability
diverges from the actual value, the higher the log-loss value is. Another important metric that is
indicative of the quality of the model is the ROC - AUC. The AUC - ROC curve is a performance
measurement for the classification problems at various threshold settings. ROC is a probability
curve, while AUC represents the degree or measure of separability. It tells how much the model
is capable of distinguishing between classes [19]. The higher the AUC, the better is the model in
distinguishing co-referent and non-co-referent pairs.

Figure 4.5 shows an overview of all the models’ performance in terms of accuracy, log-loss, AUC
score. The linearSVC (linear Support Vector Classification) and the gradient boosting classifier
were ones the best performing models in terms of accuracy with 86%, the log-loss is 4.7, AUC score
is 0.9. However, the gradient boosting classifier was found to have significantly (approximately 8
times) higher computational speed than the linear support vector classifier in both training and
testing. Therefore, the gradient boosting classifier was chosen for our classification problem. Table
4.6 provides a summary for all the models, that were trained and tested on our dataset, along
with their accuracy, log-loss, and AUC score after testing.

Shttps://pypi.org/project /fuzzywuzzy/
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Figure 4.5: Model Comparison

Classifier Accuracy LogLoss AUC

LinearSVC 86.125385 4.792158 0.902633
GradientBoostingClassifier 86.125385 4.792172 0.906838
NuSVC 85.817061 4.898644 0.884359

KernalisedSVC 85.714286 4.934144 0.883704
GaussianNB  85.200411 5.111629 0.887542
RandomForestClassifier 83.350462 5.750609 0.890756
KNeighborsClassifier 82.322713 6.105580 0.855816

DecisionTreeClassifier 79.856115 6.957511 0.820216

Figure 4.6: Overview of the models performance in terms of accuracy, log loss and AUC

4.2.3 Example

Using the same example from the first module, The input for this module would be the pairings of
all the names detected in Module 1. For each pair, we compute all the similarity metrics needed
as features for the classification model as shown in figure 4.7.

namel name2 PhoneticsDist PartialfuzzyMatch cosine levenshtein jaro_winkler jaccard

0 Anna  Mieke 0.50 0.0 0.000000 0.666667 0.000000 0.000000
1 Anna Michael 0.75 0.5 0.000000 1.000000 0.464286 0.000000
2 Anna Antje 0.25 1.0 0.301511 0.000000 0.633333 0.176471
3 Mieke Michael 0.00 0.8 0.233550 0.333333 0.676190 0.130435
4  Mieke Antje 0.75 0.4 0.090909 0.333333 0.466667 0.047619
5 Michael Antje 1.00 0.4 0.000000 1.000000 0.447619 0.000000

Figure 4.7: Output of the first step of module 2: Computing Similarities

In the second step of this module, we take all the pairs and the computed similarity metrics and
use the classification model to label co-referent and non-co-referent pairs. Table 4.11 shows the
output of the classification model. Notice that, ‘Mieke’ and ‘Michael’ are classified as a co-referent
pair. However, this can not be confirmed or rejected until further analysis is conducted on the
text to see if the two names were exchangeable.
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Table 4.11: Output of the second step of module 2: Supervised Classification For Record Linkage

Namel | Name2 Label
Anna Mieke | non co-referent pair
Anna Michael | non co-referent pair
Anna Antje co-referent pair
Mieke Michael co-referent pair
Mieke Antje non co-referent pair
Michael Antje | non co-referent pair

4.3 Module 3: Anonymization

After linking names inside the text using our classification model that classifies co-referent and
non-co-referent pairs of names. Personal names should be anonymized while storing the model
output to keep a reference for names that possibly refer to the same individual.

4.3.1 Storing Records Links Between Anonymised Names

To store links between names in the text, one option was to cluster all co-referent pairs that might
refer to the same individual. However, the relationship between the co-referent pairs was found
to be non-transitive. This means that two non-co-referent names can have the same co-referent
name. Therefore, if {namel, name2} is a co-referent pair as well as {name2, name4,} this doesn’t
imply that {namel, name4} is a co-referent pair. Therefore, it was not possible to partition names
into groups of co-referent pairs. For illustration, let’s take an example of real names where the
grouping technique fails to represent the relation between names. The name 'Bert’ can be a co-
referent name of both ‘Robert” and ‘Albert’. However, ‘Robert’ and ‘Albert’ aren’t a co-referent
pair so placing them in the same group can be misleading due to the non-transitive relationship
between the two co-referent pairs, i.e. {‘Robert’, ‘Bert’} and {‘Albert’, ‘Bert’}. Consequently,
each of the name records and their variant was stored with a unique identifier. The output of the
classification model between pairs was stored between each of those identifiers.

On the other hand, FuzzyWuzzy © is used to compute the percentage of the match between each
of the name pairs to be stored. FuzzyWuzzy is a python library that has a powerful partial_ratio()
function that allows us to perform substring matching. The FuzzyWuzzy partial ratio works
by taking the shortest string and matching it with all substrings that are of the same length.
Computing this ratio between all pair matches classified by the classification model will enable
us to store more linkage information among names in text after anonymization. Table 4.12 shows
results of co-referent names extracted from a sample text after applying classification and the
FuzzyWuzzy similarity ratio. The first two columns of table 4.12 show several name pairs that
were labeled as 1, i.e. co-referent names, whereas the FuzzyWuzzy ratio column represent the
similarity percentage between the two names. Note that, names that are substrings of other
names are shown a definite match, i.e. partial_ratio = 100, such as ‘Alex’ and ‘Alexander’. On
the other hand, this similarity ratio can be considered as an indicator of the type of variant those
two names are, i.e. nicknames, misspellings, ..etc.

Shttps://pypi.org/project/fuzzywuzzy/
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Table 4.12: Records linkage before anonymization

Name 1 | Name 2 | Classification label | FuzzyWuzzy Ratio
Fabio Fab 1 100
Daniil Daniel 1 83
Rublev Rob 1 67
Robert Rob 1 100
Alexander Alex 1 100
Alex Alber 1 75
Albert Alber 1 100

The next step is to encrypt all names in the text by replacing every unique names in the given
text by a unique code as well as storing the record linkage information computed in the previous
steps.

4.3.2 Encryption of Names in Text

In order to anonymize names in text, the inforcehub ™ python package was used. The package
contains an Anonymize module that creates a one-way encrypts (hashes) of the data so that it
cannot be re-retrieved. The module contains a class that transforms a Pandas® data frame into
an anonymized data frame using the python hmac” package for encryption. When instantiating
an object of this class, the salt init attribute can be specified which enables encryption results to
be reproduced. If none is supplied, a randomized password is created instead for security. For this
project, we specify the salt init attribute as none to create a unique randomized hash for each of
the names recognized in the text. Names are then replaced with these hashes in the text while
storing record linkage information between each pair of names.

4.3.3 Example

Using the same example from previous sections, the following paragraphs show the input and
output text before and after anonymization. Note that, misspelled names are encrypted with the
same identifiers as the original names. Whereas name variants are stored with unique identifiers.
Furthermore, record links are stored in a separate table with all the information about the co-
referent and non-co-referent pairs as shown in table 4.13.

Input Text “Anna houdt van Engelse en wiskunde. Haar wiskundeleraar heet Michial.
Micheal is een zeer goede leraar. Haar lerares Engels heet Mieke. Miek geeft Antje graag
veel opdrachten. ”

Output Text “17fdf174a857eddf74e2423d09b325af houdt van Engelse en wiskunde. Haar
wiskundeleraar heet 919f2f0becd467856c8f7932b6149823. 919f2f0becd467856c8f7932b6149823
is een zeer goede leraar. Haar lerares FEngels heet 597e1fa1460c793615d4fdb1f3378cbc.
597e1fa1460c793615d4fdb1f3378cbc geeft e07c3d132fe8f9774244e8406bc0480c graag veel
opdrachten. ”

Thttps://inforcehub. readthedocs.io/en/latest/modules/anon.html
8https://pandas.pydata.org
9https://pkg.go.dev/crypto/hmac
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Table 4.13: Records linkage after anonymization

Name 1 Name 2 Classification label | FuzzyWuzzy Ratio
17fdf174a857eddf74€2423d09b325af | e07c3d132{e819774244e8406bc0480¢c 0 0
17{df174a857eddf74e2423d09b325af | 919f2f0becd467856¢8{7932b6149823 0 25
17fdf174a857eddf74e2423d09b325af | e07c3d132{e819774244e8406bc0480c 1 50
597e1fa1460c793615d4fdb1£3378cbc | 919f2f0becd467856¢8{7932b6149823 1 40
597e1fa1460c793615d4fdb1£3378cbc | e07c3d132{e8f9774244e8406bc0480c 0 20
919f2f0becd467856¢8{7932b6149823 | e07c3d132{e8f9774244e8406bc0480c 0 20

4.4 Conclusion and Future Work

In this chapter, we have addressed some of the challenges faced to detect different variations of
co-referent personal names in the unstructured text (i.e. user-generated text). We discussed the
mechanism and tools used for personal name detection in the unstructured text as well as typo-
graphical errors. Next, research was conducted on different similarity measures that can represent
similarities between co-referent name pairs in a given text. We explored edit-based, token-based,
and phonetics-based similarities. Five algorithms were introduced: two of which were edit-based,
two were token-based, and one is phonetics-based. It was found that edit-based similarities and
phonetics-based similarities are most useful for spelling checks and minor typographical errors.
Token-based distances are advantageous in accurately representing similarities between strings re-
gardless of the difference in length. This is particularly beneficial in matching alternative naming
(i.e. nicknames) since they might differ in size from the original co-referent name.

Each of those similarity measures excels in finding at most 2 different types of name forms (e.g.,
spelling variations, typos, nicknames, ..etc). However, if we are to find the maximum possible
number of name variants, relying on a single static similarity measure was found ineffective.
Therefore, a classification model was trained and tested on different types of name forms to
classify name pairs in the text as co-referent or non-co-referent. Finally, we encrypt all names in
text using a one-way hashing function while storing the record linkage information between each
pair of hashes to minimize information loss after anonymization.

For future work, an analysis could be done on different domain-specific textual data to explore
record linkage techniques most suitable for domain-specific name variants. Furthermore, the clas-
sification model can be trained to label each pair of personal names in a given text by the type
of the co-referent name variant. This allows us to choose the most relevant similarity measure for
different types of name forms.
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Chapter 5

Evaluation and Results

In this chapter, we aim to present and evaluate the results of the proposed methodology. To
achieve this goal, we generated an unbiased test case to evaluate the results for each of the
method modules. Next, a method analysis was conducted to explore the benefits and the risks of
the approach.

5.1 Module 1: Finding Personal Names in Unstructured
Dutch Text

In this section, we aim to describe the steps followed to evaluate the results of our method in
detecting personal names in unstructured Dutch text. Firstly, we describe the procedures taken
to generate a test case, then we analyze and evaluate the obtained results.

5.1.1 Test Case Generation

To test our method in detecting personal names with typographical errors, different types of errors
were considered. Typographical errors are usually caused by one of five following types [20]:

1. Substitution error: occurs when another character replaces the correct character.

2. Deletion error: occurs when a user misses a particular character in a word.

3. Transposition error: occurs when two consecutive characters are typed out of order.
4. Insertion error: occurs when an additional character is inserted by mistake.

5. Replication error: occurs when a character is repeated twice.

To generate similar typographical errors in the test data, a function was created to randomly alter
letters in a word. The altered character was replaced by a nearby character on the keyboard which
is the most likely to be swapped or inserted during typing. The function relies on the QWERTY
keyboard design that is the most commonly used keyboard layout. The following table 5.1 shows
examples of different types of typographical errors generated by the function for a single name.

Table 5.1: Auto-generated typos

Original word | Miss-typed word | Error type
Margriet Margeiet substitution
Margriet Mrgriet deletion
Margriet Margiret transposition
Margriet Margridet insertion
Margriet Marrgriet replication
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Using the previously mentioned function, random typographical errors were generated in the
text to evaluate the performance of our method in detecting misspelled personal names for every
type of error. Firstly, we evaluated the results of detecting personal names from the text. Then,
each type of typographical error was analyzed separately to evaluate the effectiveness of our method
in detecting errors.

5.1.2 Method Analysis and Results

In this section, we aim to evaluate the performance of our method in detecting personal names
from the text. In this step, we assume that each individual’s name is mentioned once in the text
in the correct form with no typographical error. The method works by combining detected names
using the Stanza NER system and a list of names that were previously collected from various
sources. To evaluate this method, we asked 5 Dutch individuals to provide us with a list of Dutch
names as well as variations of Dutch names (such as ‘Antje’ which is the Dutch diminutive for
‘Anna’). This sample was used to test our results with an unbiased sample that can mimic real-life
data. Consequently, a list of 96 names was collected for testing and evaluation. Those collected
names are divided into 72 original names and 24 name variants. Out of the 96 names, 4 original
names and 3 name variants were not detected by the algorithm with an accuracy of more than
92%. All the undetected names were found to be names of old foreign origins such as Roman or
Greek origins. For these names to be detected, they have to be manually added to the names list.

The rest of the names, 89 personal names, were then used to analyze the effectiveness of the
method in detecting mistyped names in the text. A short Dutch text was created consisting of
two sentences where the same name is mentioned two times in different parts of speech, once in
the correct form and another time with one type of typographical errors. We assume that one
of those two occurrences is the correct spelling of the name so that it is detected by our NER
and names list combination approach. Afterward, part-of-speech was used to find all other nouns
and proper nouns in the text and compare those to all the detected names using a Levenshtein
edit-based distance to decide if there is a misspelled name that was not detected. To evaluate this
method, we look at the following metrics:

e The number of false positives: which are the words that are detected as names when they
are not actual names. This can happen when a word in the text is similar in spelling to
one of the personal names detected in the text such as ‘Jaap’ and ‘jaar’. ‘Jaap’ is a Dutch
name that can be short for ‘Jacob’ or ‘Jacobus’, whereas ‘jaar’ is the Dutch word that means
‘year’. In case both are mentioned in a text. This can result in a false positive as ‘jaar’ in
this case will be considered as a misspelling for ‘Jaap’.

e The number of false negatives: which are the names that are not detected. This can happen
for one of the following two reasons:

1. If there are foreign names that were not detected by NER and are not in our names
list.

2. If a name has more than one type of typographical error. In this case, the edit-based
distance between the original name and the misspelled name might be high so that it
will not be detected as a potential misspelling.

In the following sections, we analyze separately the ability to detect names with a specific type of
typographical error.

Substitution Errors

Substitution errors are one of the most common errors that happen while typing. It is highly
dependent on the layout of the keyboard. Intuitively, a character is more likely to be replaced
by a nearby character on the QWERTY keyboard. For example, if we are to type a word that
contains the letter ’g’ and substitution typos is to happen, the altered letter would probably be
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a ’f’, ’t), 'y’, ’h’, v’ or 'b’. With this in consideration, a function was created for evaluation
that randomly alters a random character in a name with a nearby character. Therefore, we can
find out if our typo detection method can be effective in such cases. For evaluation, each of
the 89 names was inserted into sentences in Dutch, once in a correct form and another with a
randomly generated substitution typographical error. The results showed that 100% of mistyped
names were able to be identified using Levenshtein edit-based distance. For experimental purposes,
Two different thresholds were used for Levenshtein distance. Firstly, we set the threshold to 1
so that mistyped names cannot be more than 1 apart from the original name. Then, we set
the threshold to be smaller than or equal to 2. This did not impact the results for this type of
typographical error. Since the Levenshtein distance between any two words in which one of them
has a single substitution error will always be equal to 1. This is not the case when we have more
than one substitution error in a single word. Setting a higher threshold for the edit-based distance
between two words can improve the fault tolerance. However, increasing the threshold results
in compromised overall accuracy by introducing more false positives where more words can be
matched with the original name as mistyped names.

Deletion Errors

Another type of typographical error is the deletion error which happens when the user skips a
particular character that should have been entered. To simulate this type of error in our test
sample, a function was created to randomly delete a single character from the inserted word.
The method was tested with the 89 names with two different Levenshtein edit-based distance
thresholds. Setting the threshold to be equal to 1 or 2 did not affect the results. In both cases,
only 1 of 89 names was detected as a misspelled name. This happens because after removing 1
letter from the name, especially the first letter, the name’s part-of-speech changes to be neither
a noun nor a proper noun. This means that it gets excluded from the sample of words that are
compared to the original name. To overcome this problem, the sample of words in the text can
be expanded not to be limited to only nouns and proper nouns. However, this increases the risk
of false positives as we compare to many more words that might be similar to the original correct
name.

Transposition Errors

The transposition error is when two consecutive characters are switched in order. A function was
created to simulate the transposition error in the inputted names. The function randomly chooses
two consecutive letters and switches their order. The Levenshtein edit-based distance between an
original name and the same name with simulated transposition error mostly equals 2 since this
error is equivalent to two substitution operations. Consequently, when the names were tested with
the error when the edit distance threshold was equal to 1, only 12% of the mistyped names were
able to be recognized. Whereas increasing the threshold to 2, improve the results significantly to
be 94% of all mistyped names were recognized.

Insertion and Replication Errors

Insertion errors when a character is inserted by mistake in a word, while replication error is
when a character is repeated twice. Both errors result in the same edit-based distance from the
original word when they occur. When a character is inserted into a word, no matter the position,
the Levenshtein edit-based distance between the original word and mistyped word is equal to 1.
Therefore, increasing the distance threshold does not impact the results. After simulating these
errors and testing, it was found that 99% (88 out of 89) of all mistyped names with insertion
or replication errors are recognized using Levenshtein distance. In some cases mistyped names
are not detected, despite the small distance between the mistyped name and the original name.
These cases occur when the inserted letter changes the part-of-speech of the word so that it is not
detected by the NER system as a noun or a proper noun.
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5.1.3 Discussion

Combining a NER system with a names’ list to detect personal names in Dutch text has proven
to be very effective. In this thesis, the names’ list resembles Dutch names collected from different
online sources. Accuracy can be significantly increased if the list of names contains all peronal
names in given textual data. For instance, if the given textual data represent patient reports, the
list of names could be patients’ names which ensures detecting at least all correctly spelled names
in text. Consequently, mistyped names can be easily recognized by comparing them to the detected
names using edit-based distance. The sample used for testing consists of 89 names detected by
our name detection method out of 96 names. The whole sample was collected by asking 5 Dutch
individuals for a list of Dutch names. Figure 5.1 shows the number of detected names for each
type of typographical error with 2 different Levenshtein distance thresholds. It was found that
deciding the threshold for the Levenshtein distance to match mistyped names can be crucial in
finding certain types of errors. Levenshtein distance can be a great choice for substitution, deletion,
insertion, and replication errors since with a threshold = 1, we can detect approx. 90% of those
types of typographical errors. However, transposition errors require increasing the threshold to be
recognized. The goal is to find a balanced threshold that can match mistyped names with their
original names without compromising the accuracy that leads to increased rates of false positives.
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Number of Recognized Mistyped Names in the Text for Each Typographical Error Type
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Figure 5.1: Distribution of recognized mistyped names in the text for each type of typographical
error
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5.2 Module 2: Record Linkage of Personal Name Variants

This section is dedicated to evaluating the second module of this research paper. In this module,
we use supervised classification for record linkage. This uses learnable similarity metrics to train
a binary machine learning classifier to distinguish between co-referent and non-co-referent name
pairs. For evaluation, we firstly discuss how the test case was generated to evaluate the performance
of the model. Then, we use this test sample to compute and analyze the results stored after
anonymization.

5.2.1 Test Case Generation

To evaluate the performance of the model in distinguishing co-referent names and non-co-referent
names, we had to collect an unbiased sample that is different from the dataset that was used for
training. Consequently, we asked 5 Dutch people to give us a list of names as well as a list of
common Dutch variants for each of the names. The list of the names contained 55 names and their
variants that resulted in 165 pairs of co-referent names. To test the classification model, the name
pairs the list of co-referent pairs was used. For each of the 165 pairs of names in this dataset, the
similarity metrics (e.g., features) were calculated. To provide a comparison, 154 random name
pairs were also generated from the same dataset. These random name pairs were cross-checked
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to ensure they were not present (in either order, as the co-referent pairs dataset contains directed
name pairs). A high-quality model should be able to differentiate as many of the matching name
pairs as possible from the random name pairs.

5.2.2 Method Analysis and Results

In this section, the test case sample was used to test and evaluate the performance of the model
in differentiating the co-referent and non-co-referent name pairs. Firstly, the similarity metrics
were calculated and normalized for all the test sample name pairs. All the pairs were given a label
1: as co-referent and 0: as non-co-referent. These labels are assigned to be compared with the
output of the binary classifier for evaluation. The classification model that was used for testing
is the gradient boosting classifier, which gave the best results when compared to other classifiers.
To evaluate the results, we examined the confusion metrics which were calculated using the test
case sample data with the actual labels and the model predicted labels. Table 5.2 summarises the
classification model confusion matrix results. The model was able to predict the true label with
an accuracy of approx. 78% which is a good indication for the performance of the model when
tested on new sample data.

Table 5.2: Gradient boosting classifier confusion metrics

Actual Labels

True | False | Total

Positive 108 13 121

Negative | 141 57 198
Total 249 70 319

Predicted Labels

We could observe that the number of false negatives is relatively high, which indicates that some
of the co-referent name pairs were not classified as a match by the model. Therefore, we decided
to investigate the false negatives sample to identify the reasons why there are a significant number
of false negatives. It was found that the reason for most of the false negatives resulted from the
fact that some of the Dutch name variants originated from diminutives old names. Those variants
can have one common name origin, but, they do not look similar. For example, some variants
of the name ‘Bartholomeus’ are ‘Bart’, ‘Bartel’, or ‘Mies’. Despite the fact that both ‘Bart’ and
‘Mies’ are Dutch diminutives of the same name, the two names are not alike. Therefore, the model
could not match them as co-referent name pairs.

On the other hand, when investigating the false positives, it was found that most of them
resulted from token-based similarities between names such as ‘Liese’ and ‘Mies’ that share the
same three letters (e.g, ‘ies’). Although the two names do not share the same first name, they still
share a common token that increases the similarity between them and results in a false positive.

5.2.3 Discussion

The similarity learning classification model showed some promising results in distinguishing name
variants. The challenge of matching names can be more complicated than just similar name
spelling or pronunciation. Human language is sophisticated and matching co-referent names is
highly dependent on the context and the field from which the textual data was extracted. On
the other hand, results obtained from the classification model can balance information loss and
privacy. Storing links between names in the text after anonymization helps facilitate social network
analysis of the textual data.

In the following section, we discuss how personal names are anonymized and how links between
names are stored before anonymization without breaching privacy.
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5.3 Module 3: Anonymisation

In this section, we aim to discuss how names are anonymised in the text at the end of the data
pipeline after detecting and linking all personal name records.

5.3.1 Method Analysis and Results

Anonymisation is the final part of our data pipeline where we aim to anonymize personal names
in the text while satisfying the following two criteria:

1. Names cannot be re-identified.
2. Meaningful links between personal name records are stored.

To satisfy those, we chose one-way encrypts that do not allow for the re-retrieval of data. All
names are replaced with those hashes in the text while storing linkage information between the
names pairs. Mistyped personal names were given the same hashes as the original names, whereas
name variants such as nicknames were replaced with unique hashes than the original name. In
addition, we stored the FuzzyWuzzy library fuzzy match scores between all the name pairs to
provide an insight into the degree of similarity between each of the pairs.

5.3.2 Discussion

In this phase, the objective is to save basic information that helps in finding name variants without
risking re-identifying the names. This technique is not only assumed to result in less information
loss after anonymization but also facilitates secondary analysis done on the given text. Other
data can be stored to help to increase the usability of the data for analysis such as the gender of
the name (either feminine, masculine, or neutral). However, adding more information will always
compromise data privacy. Therefore, it is important to take into consideration if the data to be
stored after anonymization can help re-identifying the names. Besides, if the stored data is going
to help analyze the text further.

5.4 Conclusion

In this chapter, we presented an evaluation of the results of the data pipeline introduced in
this project. In the first phase, we generated a test case of textual data with different types
of typographical errors to measure the accuracy of the algorithm in finding mistyped names in
the text. In the next phase, we collected different name variants from native Dutch speakers to
evaluate the similarity learning classification model in recognizing co-referent and non-co-referent
pairs. Lastly, we gave an overview of how names are anonymized in the text to satisfy two
important criteria which are the inability to re-retrieve the data and preserving meaningful links
between name records.
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Conclusions

This thesis presents a data pipeline that enables us to process unstructured Dutch text to detect
personal names records and link names variants that refer to the same individuals. This enables
us to anonymize name records while storing links between records that can assist in text analytics
without compromising privacy. To achieve the goal of this graduation project, we formulated it
as follows:

Research Goal Anonymising personal names in unstructured Dutch text to allow text analytics
without breaching the privacy of individuals mentioned in the text.

In order to achieve this goal, different types of personal names inconsistencies in unstructured
were investigated. It was found that names with typographical errors and name variants that
refer to the same individual would decrease the usability of the data for analytics after anonym-
ization. Therefore, the research was directed to tackle the following research question.

Research Question How to detect all personal names in unstructured Dutch text as well
as linking all the possible variations of records that refer to the same individual to minimize
information loss after anonymization?

6.1 Summary of Contributions

As discussed in Chapter 4, this project consists of a data pipeline that is divided into three
modules. In the first module, the pipeline process unstructured Dutch text to detect all personal
names including those with typographical errors. Personal names in the text were detected with
an accuracy of 92% of the sample test data which was divided into 75% of original personal names
and 25% of name variants. Levenshtein edit-based distance was used to detect five different types
of typographical error (i.e. insertion, deletion, transposition, substitution, and replication). By
setting the threshold of the Levenshtein distance to be equal to 1, we were able to detect four types
of typographical errors (i.e. insertion, deletion, substitution, and replication) with approximately
90% accuracy. Whereas transposition errors needed the Levenshtein distance threshold to be
adjusted to be equal to 2 to be detected with reasonable accuracy. This is because transposition
errors happen due to switching two consecutive letters in a word resulting in two edit operations.

In the second module, we conducted record linkage research to investigate name variants that
refer to the same individual. In this step, we firstly investigated similarity measures that can assist
in detecting name variants. It was found that static similarity measures (e.g, Levenshtein distance,
cosine similarity, ..etc) can not accommodate the variability that may occur due to the multiple
ways of referring to the same individual such as nicknames, abbreviations, or misspellings. There-
fore, different similarity metrics were combined using classification similarity learning. A machine
learning classifier was trained on features extracted using labeled pairwise string comparisons (i.e.
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static similarity scores). The performance of the several machine learning models was compared
using three different metrics: (1) the overall accuracy, (2) the log loss, and (3) the ROC - AUC.
Gradient boosting classifier was one of the most accurate in the binary classification of co-referent
and non-co-referent name pairs. In addition, it had a very high computational speed compared to
others with the same accuracy. To test the model, different name variants were collected from mul-
tiple Dutch individuals. Using this dataset, we created 319 pairs of name variants. The gradient
boosting classifier was able to predict the true labels with an accuracy of approximately 78%.

In the third and last module, we anonymized all the names in the text using one-way hashes
that don’t allow the re-retrieval of the data. All the classification labels of the gradient boosting
classifier model were stored between all the pairs along with a FuzzyWuzzy [21] similarity ratio.
the objective is to store links between the name records that can minimize information loss that
results from data anonymization. The stored links information between records can be further used
to assist in conducting text analytics on anonymised data. In the following section, we introduce
some of the limitations that we faced throughout the project.

6.2 Limitations

Throughout the project, some challenges had arisen that led to the following work limitations:

1. Lack of available domain-specific unstructured textual data: Real-life textual data
in a specific domain would have been beneficial for the analysis of possible challenges in
detecting and linking records of name variants in unstructured text. It is also important to
mention that this might have changed the scope of the project having to focus on domain-
specific textual data.

2. Sample size: To test machine learning models for record linkage, we were limited by the
sample size of the name variants that we were able to collect. Increasing the sample size of
the test data would have resulted in a better evaluation of the results.

3. Evaluation of anonymized data: Due to time limitations, we have not been able to thor-
oughly analyze the anonymised data. This could have been done by conducting a secondary
textual analysis study to assess the usability of the data and the required information to be
stored without compromising privacy.

In the following section, we provide some recommendations to consider while replicating this
project for a specific case study.

6.3 Recommendations

The results showed that there is no single best technique for co-referent name matching; however,
the following recommendations can be considered in choosing different techniques for different
applications:

1. considering the way the names in the text are parsed in a standardized way.

2. Training the learnable similarity classification model on a dataset that is representative of
the types of name variants of specific domains. Since semantic similarities are not only
language-dependent but also domain-dependent. For instance, name forms used in emails
or medical reports can be remarkably different than forms used in social media posts.

3. The choice of the similarity measures is crucial for the types name variants of specific do-
mains.

In the next section, the possible future work for further development of our method is presented.
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6.4 Future Research

While conducting research for this project, we thought of ways this work can be more generalised.
This section provides an overview of possible future research that can benefit from this project.

Expanding to other languages: This research is expected to be extendable to other languages.
In this project, Dutch name variants were studied carefully to choose the suitable similarity meas-
ures that can represent the similarity between co-referent name variants. By studying the types
of name variants in different languages, we can identify types of similarity measures that can be
representative of the similarities between name variants. For example, some languages use name
variants that can be phonetically similar in which case it can be easily detected using phonetic-
based distances. Whereas, in other languages, name variants can be an abbreviation of the original
name in which case token-based distances can be the most representative of the similarity. For
languages with Latin alphabets such as English or French, it can be very similar to Dutch which
makes this method for names detection and record linkage perfectly applicable. However, this
might change for other languages.

Social Network Analysis This project can assist in conducting social network analysis on
anonymized textual data. Stored links between name records can provide insights about records
that refer to the same individuals and records that are not. Different types of secondary analysis,
using the provided record linkage data, can be done to confirm or reject the hypothesis of which
records are co-referent or non-co-referent. For example, if two name records are mentioned in the
same sentence, this can be an indication the two records do not refer to the same individual.

Personal Names Records Detection And Linkage In Unstructured Dutch Text 37
For Anonymisation






Bibliography

[1]

2]

[3]

[4]

[5]

[6]

“Stanza — A Python NLP Package for Many Human Languages.” [Online]. Available:
https://stanfordnlp.github.io/stanza ix, 6

T. D. D. P. Authority. Tasks and powers of the dutch DPA. [Online]. Available:
https://autoriteitpersoonsgegevens.nl/en/about-dutch-dpa/tasks-and-powers-dutch-dpa 1

The stanford natural language processing group. [Online]. Available: https://nlp.stanford.
edu/ 5

W. W. Cohen, P. Ravikumar, and S. E. Fienberg, “A comparison of string distance metrics
for name-matching tasks,” in IIWEB’03: Proceedings of the International Conference on
Information Integration on the Web. American Association for Artificial Intelligence, pp.
{73-78}. 6, 19

V. I. Levenshtein, ““binary codes with dropout correction, insertions and substitutions of
symbols 7,7 vol. 163, no. 4, pp. {845-848}. [Online]. Available: http://mi.mathnet.ru/
dan31411 6

W. E. Winkler, “String comparator metrics and enhanced decision rules in the fellegi-sunter
model of record linkage,” in Proceedings of the Section on Survey Research, 1990, pp. 354-359.
7

B. Li and L. Han, “Distance weighted cosine similarity measure for text classification,” in
Intelligent Data Engineering and Automated Learning — IDEAL 2013, ser. Lecture Notes in
Computer Science, H. Yin, K. Tang, Y. Gao, F. Klawonn, M. Lee, T. Weise, B. Li, and
X. Yao, Eds. Springer, pp. 611-618. 8

F. Hassan, J. Domingo-Ferrer, and J. Soria-Comas, “Anonymization of unstructured data via
named-entity recognition,” in MDAIL 9

S. Dadas, “Combining neural and knowledge-based approaches to named entity recognition
in polish.” [Online]. Available: http://arxiv.org/abs/1811.10418 10

R. Santos, P. Murrieta-Flores, and B. Martins, “Learning to combine multiple string
similarity metrics for effective toponym matching,” vol. 11, no. 9, pp. 913-938. [Ouline].
Available: https://www.tandfonline.com/doi/full/10.1080/17538947.2017.1371253 10

J. Foxcroft, A. d’Alessandro, and L. Antonie, “Name2vec: Personal names embeddings,” in
Advances in Artificial Intelligence, ser. Lecture Notes in Computer Science, M.-J. Meurs and
F. Rudzicz, Eds. Springer International Publishing, pp. 505-510. 11

P. Grzebala and M. Cheatham, “Private record linkage: Comparison of selected techniques
for name matching,” in The Semantic Web. Latest Advances and New Domains, ser. Lecture
Notes in Computer Science, H. Sack, E. Blomqvist, M. d’Aquin, C. Ghidini, S. P. Ponzetto,
and C. Lange, Eds. Springer International Publishing, pp. 593-606. 11

Personal Names Records Detection And Linkage In Unstructured Dutch Text 39
For Anonymisation


https://stanfordnlp.github.io/stanza
https://autoriteitpersoonsgegevens.nl/en/about-dutch-dpa/tasks-and-powers-dutch-dpa
https://nlp.stanford.edu/
https://nlp.stanford.edu/
http://mi.mathnet.ru/dan31411
http://mi.mathnet.ru/dan31411
http://arxiv.org/abs/1811.10418
https://www.tandfonline.com/doi/full/10.1080/17538947.2017.1371253

BIBLIOGRAPHY

[13]

[14]

[15]

[16]

Appendix:dutch diminutives of given names - wiktionary. [Online]. Available: https:
//en.wiktionary.org/wiki/Appendix:Dutch_diminutives_of _given_names 14, 21, 23

R. Grishman and B. Sundheim, “Message understanding conference-6: a brief history,”
in Proceedings of the 16th conference on Computational linguistics - Volume 1, ser.
COLING ’96. Association for Computational Linguistics, pp. 466-471. [Online]. Available:
https://doi.org/10.3115/992628.992709 14

Databases.  [Online].  Available: https://www.meertens.knaw.nl/cms/nl/collecties/
databanken 14

W. E. Winkler and Y. Thibaudeau, “AN APPLICATION OF THE FELLEGI-SUNTER
MODEL,” vol. Statistical Research Report Series RR91/09, p. 22. [Online]. Available:
https://www.census.gov/srd/papers/pdf/rr91-9.pdf 18

J. J. Pollock and A. Zamora, “Automatic spelling correction in scientific and scholarly text,”
vol. 27, no. 4, pp. 358-368. [Online]. Available: https://doi.org/10.1145/358027.358048 18

M. Del, M. Angeles, and A. Espino-Gamez, “Comparison of methods hamming distance, jaro,
and monge-elkan.” 20

S. Narkhede, “Understanding auc-roc curve,” Towards Data Science, vol. 26, pp. 220227,
2018. 23

K. Shah and G. de Melo, “Correcting the autocorrect: Context-aware typographical error
correction via training data augmentation,” in Proceedings of the 12th Language Resources
and Evaluation Conference. European Language Resources Association, pp. 6930-6936.
[Online]. Available: https://aclanthology.org/2020.Irec-1.856 29

A. Cohen, “fuzzywuzzy: Fuzzy string matching in python.” [Ounline]. Available:
https://github.com/seatgeek /fuzzywuzzy 36

40

Personal Names Records Detection And Linkage In Unstructured Dutch Text
For Anonymisation


https://en.wiktionary.org/wiki/Appendix:Dutch_diminutives_of_given_names
https://en.wiktionary.org/wiki/Appendix:Dutch_diminutives_of_given_names
https://doi.org/10.3115/992628.992709
https://www.meertens.knaw.nl/cms/nl/collecties/databanken
https://www.meertens.knaw.nl/cms/nl/collecties/databanken
https://www.census.gov/srd/papers/pdf/rr91-9.pdf
https://doi.org/10.1145/358027.358048
https://aclanthology.org/2020.lrec-1.856
https://github.com/seatgeek/fuzzywuzzy

	Contents
	List of Figures
	List of Tables
	Introduction
	Thesis Context
	Problem statement
	Research Approach
	The Structure of This Thesis

	Preliminaries
	Named Entity Recognition
	Stanza 

	Similarity Measures for Text Analysis
	Edit-based Similarity Measures
	Phonetics-based Similarity Measures
	Token-based Similarity Measures


	Literature Review
	Anonymization of Unstructured Data via Named-Entity Recognition
	Combining Neural Networks and Knowledge-based Approaches to Named-Entity Recognition in Polish
	Learning to Combine Multiple String Similarity Metrics for Effective Toponym Matching
	Name2Vec: Personal Names Embeddings
	Private Record Linkage: Comparison of Selected Techniques for Name Matching
	Conclusion

	Method 
	Module 1: Finding Personal Names in unstructured Dutch Text
	Named Entity Recognition Model and List-based Hybrid Approach for Names Detection
	Detecting Personal Names with Typographical Errors 
	Example

	Module 2: Record Linkage of Personal Name Variants 
	Computing Similarities
	Supervised Classification for Record Linkage
	Example

	Module 3: Anonymization
	Storing Records Links Between Anonymised Names
	Encryption of Names in Text
	Example

	Conclusion and Future Work

	Evaluation and Results
	Module 1: Finding Personal Names in Unstructured Dutch Text
	Test Case Generation
	Method Analysis and Results
	Discussion

	Module 2: Record Linkage of Personal Name Variants
	Test Case Generation
	Method Analysis and Results
	Discussion

	Module 3: Anonymisation
	Method Analysis and Results
	Discussion

	Conclusion

	Conclusions
	Summary of Contributions
	Limitations
	Recommendations
	Future Research

	Bibliography

