EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

An In-depth Analysis of the AZORult Infostealer Malware Capabilities

van Rijn, H.W.J.

Award date:
2021

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/bc51bc56-5724-483b-bb62-e56edf90eb1d

Technische Universiteit
Eindhoven
University of Technology
Department of Mathematics and Computer Science
Security Research Group

An In-depth Analysis of

the AZORult Infostealer
Malware Capabilities

Master Thesis

H.W.J. van Rijn

Supervisors:
Dr. Luca Allodi

Michele Campobasso MSc
Dr. Tanir Ozcelebi

Eindhoven, September 2021

An In-depth Analysis of the AZORult Infostealer Malware Capabilities

HUUB W.J. VAN RIJN, Eindhoven University of Technology, The Netherlands

The AZORult malware has been used in many criminal use cases. One
particular use case is the stealing of information from its victims that can
be used to impersonate the user and providing this stolen information to
an underground marketplace, which, in turn, sells this information. In this
paper we analyse four samples of the AZORult malware to find out what its
information stealing methods are, what information it is capable of stealing
and how this information is processed by the malware. Finally, we run an
experiment that shows that, using the AZORult malware, we can successfully
impersonate a user across a variety of experimental setups. Our results show
that the malware is heavily targeting browser user data and has the means
and customisability that allows a criminal to steal the relevant data for
impersonation attacks and more.

Additional Key Words and Phrases: Malware, AZORult, Impersonation-as-a-
Service

1 INTRODUCTION

In recent years, the cybercrime domain has been in a constant arms
race against advancing antivirus software, smarter network moni-
toring systems and better corporate security training of employees.
This arms race gives rise to a constant need of innovation on both
the attacking as well as the defending side of the domain. A re-
cent development in the threat landscape is a threat model called
“Impersonation-as-a-Service” — IMPaaS for short [4]. In the IMPaaS
model, the product sold is a bundle of information, namely ‘finger-
prints’, that has been harvested from thousands of computer systems
by means of a so-called ‘infostealer’ malware. This malware has the
capability to steal various pieces of information about the infected
device, such as credentials, cookies, browser and user behaviour
metadata. An attacker having access to these products can inject
this information into a browser to mimic the identity of a victim. By
doing so, an attacker can circumvent state-of-the-art authentication
mechanisms, such as Risk-Based Authentication (RBA) that may
trigger further verification via Two Factor Authentication (2FA).
In the IMPaa$ model, large amounts of machines compromised
by infostealer malware provide the market with valuable informa-
tion, while the market, effectively, sells the means to achieve victim
impersonation. The AZORult malware has been suspected to be the
leading supplier of so-called ‘fingerprints’ within the Impersonation-
as-a-Service model[4] that are potentially created from the stolen
data, supplying an underground market with products (the ‘fin-
gerprints’) to sell[13]. This suspicion is partially confirmed by the
report from KELA[6], who were able to “link over 300,000 AZORult
infections" to such an underground market. These ‘fingerprints’ are
essentially sets of identifiable pieces of information of a user that
can be used in Risk Based Authentication (RBA) measures (used by
websites such as Google, Steam and Facebook[17]) to evaluate the
true identity of the user through information such as system locale,
system time, IP-address and what browser the user is using, on top of
the more traditional user and password combination. When an RBA
mechanism finds an oddity amongst the identifying information of

Author’s address: Huub W.J. van Rijn, h.w.j.v.rijn@student.tue.nl, Eindhoven University
of Technology, Eindhoven, The Netherlands.

a user, for example, a detected log-in location that does not match
the user’s IP-address, it often forces the user to use their chosen
2-Factor-Authentication (2FA) method, such as a confirmation email
or text message.

1.1 AZORult

The AZORult malware was first discovered in 2016/2017 [16][12]
and is mainly used to steal information such as credentials to web-
sites and programs like Skype, Discord and Steam, a user’s browser
history and cookies, cryptocurrency wallet private keys and system
files from a victim’s system. The malware sends this information
as a ZIP-file to its affiliated Command-and-Control (C2) server. An
important secondary behaviour of the malware is that it can receive
a specific list of information to steal from the victim’s system, as
well as a list of commands to execute or external executables to
download and run. Based on this behaviour the AZORult malware
can also be classified as a dropper, based on the fact it can download
and execute extra files. An example of the AZORult 3.4.1 control
panel used in the C2 server is shown in Figure 1. A predefined
list of functionalities creates a clear picture of what information
this malware is stealing. The Files grabber line allows the person
controlling the malware to add specific file names or directories
to be stolen. Finally, the Loader line allows the person controlling
the malware to include a list of links to executables that should be
downloaded and executed. Furthermore, AZORult is used by mul-
tiple malware families and exploit kits as the information-stealing
component[1][16].

® Config

Repeated reports:

Saved passwords:

Browsers cookies and autocomplete:
Browsers history:

Cryptocurrency clients files:

Skype History:

Telegram:

Steam files:

Screenshot:

(<l <

[<

(< |

[+] Add rule
[+] Add rule

Files grabber:

bk L]

Loader: Hide mode: W

Toos: \:‘

Self-deletion:

Fig. 1. The configuration panel used on the C2 server for AZORult version
3.4.1.

It is known that AZORult has been developed and updated over
the years[1], as various versions have been identified. We also know

2 « VanRijn

that the programming language, C, was used to create the initial
program and in the versions, after version 3.3, C++ is used. The
driving factor behind the malware’s development is highly likely
to be the successes it has booked within the Malware-as-a-Service!
(MaaS) model[14], where developers create and sell customisable
malware to suit the buyer’s needs. One of the places AZORult has
flourished is in the supply chain for underground markets[4][5][6].

1.2 Research Questions

A number of questions remain about what stolen information is
required to successfully impersonate a user, how the processing
of this stolen information leads to a fingerprint and how the fin-
gerprints of the same victims are continuously updated. Also, it is
unknown how exactly the malware steals information and what
specific information this includes. Since this malware steals infor-
mation that, combined or processed, creates fingerprints that are
used to circumvent certain RBA measures, it can be of value to
understand how certain information is gathered by the malware, or
to find a distinction between legitimate sessions (where a regular
user produces a fingerprint) and sessions using the stolen, injected
fingerprints. When there is a better understanding of these intricate
details of the malware and the stolen information in relation to the
fingerprints, measures against the methods that AZORult and its
affiliated IMPaaS platforms employ can be strengthened. Therefore
the main research question (MRQ) is:

What are the capabilities of AZORult with respect to infor-
mation stealing as an enabling step to impersonate infected
internet users?

The following research questions are defined to aid in answering
the main research question:

RQ1 What information is stolen from a computer system that is
infected with AZORult?

RQ2 How does AZORult steal the specific information from the
computer system it infects?

RQ3 To what extent can the data stolen by AZORult be used to
impersonate the victim when using online services?

Together with answering these research questions, two other
contributions are made in this paper. During the analysis we (i)
give an in-depth look into multiple AZORult samples and their
capabilities and (ii) give an insight into the variety of roles AZORult
can fulfil in the cybercrime landscape.

2 RELATED WORK

Multiple parties have analysed renditions of AZORult versions 3.2
and 3.3. Trustwave and BlackBerry have showed how the C2 server
communication was set up and encrypted with a simple XOR key
and what the C2 server looked like [8][9][15]. Trend Micro has infor-
mation regarding the use of AZORult in multiple campaigns, where
AZORult is used by different other exploit kits or malware kits to
infect victims [16]. The team of Securelist found a change in the de-
velopment process of AZORult where, in some cases, they switched
from using the C programming language to C++. This can aid us in

IThis is the ‘criminal equivalent’ of the better known Software-as-a-Service (SaaS)
model.

determining what AZORult we are dealing with [1]. Securelist also
found an underground market that uses the IMPaaS model and lists
some of the information that is used to impersonate users by that
market [13]. Campobasso and Allodi coined the term Impersonation-
as-a-Service and their work indicates that AZORult is used as an
infostealer malware in the scheme of an IMPaaS market[4]. The
findings by the team at KELA also confirm the use of AZORult in
IMPaaS$ and fingerprinting practices.[6] Wiefling et al. showed how
online services determine which login attempts are suspicious using
an Risk-Based Authentication (RBA) system. They identified the
most important properties an online service can check for to deter-
mine the trustworthiness of the login attempt. The fingerprints in
the IMPaaS model are intended to circumvent these RBA systems by
means of spoofing the properties that such an RBA system checks
for such that it looks as if the victim is logging in based on these
properties. [17][18]

3 METHODOLOGY

In this section we describe the strategy that we use to answer the
research questions, and what techniques are implemented to derive
those answers. After that, the environment used to analyse the mal-
ware is described. Next the rationale behind the static and dynamic
analysis is described and to what end various tools aid in applying
this rationale to the problem. Finally, an experiment is described that
simulates the step-by-step scenario of an AZORult infection, fol-
lowed by the information stealing and finally impersonation using
this stolen information.

3.1 Strategy

In order to answer the research questions, first we should establish
a number of behavioural and characterising malware features that
can be used to compare and distinguish the different samples. These
features can aid in determining the differences between the samples
with respect to, for example, the information that is stolen or the way
information is exfiltrated. The features to be compared are listed in
Table 1 and discussed below. Then, a number of acquired AZORult
samples are obtained and described. Once obtained, a strategy to
find an answer to each individual research question is described.
Next, the static and dynamic analysis that is to be performed on
the samples with the goal of answering RQ1 and RQ2 is described.
Finally, an experiment is detailed in Section 3.3 to answer RQ3. The
mapping of research questions to the focus and applied methods is
detailed in Figure 2.

3.1.1 Features. In order to compare and identify differences be-
tween samples of the AZORult malware, we define a set of fea-
tures, listed in Table 1. This approach is based on the features of
the ATT&CK matrix by MITRE [3], that uses the philosophy that
among most adversarial cyber threats, a set of tactical and technical
features can be combined to describe a threat as a whole. We select
a subset of features based on the assumptions that (i) in order to
steal the relevant information the malware has to access files and
registry keys on Windows machines, as this is the place where the
information is stored, and (ii) the malware has to exfiltrate this infor-
mation via a network service in some shape or form. Furthermore,
analyses by other instances [8][1] show that older strains of the

An In-depth Analysis of the AZORult Infostealer Malware Capabilities « 3

l Feature Technique Why Relevant
Packed Static analysis, Packing identification Distinguishing samples
Networking Network analysis, Dynamic analysis Identifying means of exfiltration

Additional configuration
Evasive behaviour
Dropping behaviour
Persistence

Process injection

Registry interactions API hooking, logging
File system interactions API hooking, logging
Executable size Preliminary analysis
Installation artefacts
Cryptography

Self deletion

Dynamic analysis, API hooking

Dynamic analysis, API hooking

Static code analysis

Network analysis, Static and dynamic code analysis
Dynamic analysis, static code analysis

Dynamic code analysis, API hooking

Insight in modularity and capability

Insight in MO

Insight in MO

Distinguishing samples, means of exfiltration
Identifying the data flow

Indication of amount of data stolen
Indication of amount of data stolen
Footprint, IOC

Manual observation, API hooking, static code analysis Footprint, data flow
Static and dynamic code analysis, API hooking
API hooking, command logging, Manual observation, Footprint, Distinguishing samples

Data processing

Table 1. A list of features used in the comparison between malware samples, the techniques to find if these features are present in a sample and the software

implementing these techniques

4 Static Analysis Dynamic Analysis
RQ1| | What information is | | List file paths API hooking
stolen? List registry keys Memory analysis
\ Analyse CFG Debugging
4 Static Analysis Dynamic Analysis
How is it stolen and Network lysi
RQ2 . etwork analysis
processed? List commands API hooking
Analyse CFG D)
\ ebugging
(Experiment
What is the
RQ3 impersonation .
quality? Baseline EC1 | EC2 | EC3 | EC4
N

Fig. 2. Mapping from research questions to the focus and methods per
research question.

AZORult malware gather extra actions to perform in the shape of
commands from their affiliated C2 server, giving us another fea-
ture to check for and compare samples with (seen in Table 1 as
‘Additional configuration’). Additionally, AZORult has been seen in
the wild as part of other exploit kits and is often not the sole piece
of malware[16] involved in a campaign. Finally, AZORult also has
the option to drop additional payloads. The samples that we have
acquired for this analysis might therefore be separate stages of the
infection or alternatively have kill chains that differ in length that
eventually lead to the AZORult malware execution. Therefore we
will analyse the features ‘evasive behaviour’, ‘dropping behaviour’
and ‘persistence’. Table 1 summarises these features.

3.1.2 Samples. A set of AZORult samples was obtained from an
underground forum that trades and shares malware. The samples
are given away freely, as the developer of the malware supposedly
stopped support for those specific samples and the malware became
outdated.

In this paper four samples of the AZORult information stealer
malware are analysed. The first three are named
‘azorult 2019-03 (1).exe’, ‘azorult 2019-05 (2).exe’ and
‘azorult 2019-05 (3).exe’. For the remainder of this paper, they
are referred to as “(1)’, ‘(2)” and ‘(3)’, respectively. Each one of
these consist of a single binary executable (.exe) file each.

Next to these three samples, a fourth sample of the malware is
analysed. It consists of a C2 server (with instructions on how to
install it on a webserver) and a builder executable that generates an
AZORult payload upon giving the builder a URL. This URL should
point to the C2 server setup such that the final payload uses that
URL as its C2 server for exfiltrating information and receiving extra
configuration instructions, as seen in Figure 1. The resulting payload
of this builder is henceforth referred to as ‘(4)’.

Analysing multiple samples gives us an insight in the ‘average’
capability of the AZORult malware and it provides us with infor-
mation on techniques and a possible modus operandi (MO) for the
malware in general. For example, some samples might show persis-
tent behaviour where others don’t, but perhaps all samples steal an
identical (sub)set of information. This ‘core capability’ can then be
identified by looking at a set of AZORult samples which will answer
our research questions in a way that covers the AZORult malware
in a more general sense and not just on a one-sample basis. The
background on the main techniques used in this work (static and
dynamic analysis) is given Appendix A.

3.1.3 RQ1. In order to find out what exact information is stolen
by AZORult, the malware samples are statically and dynamically
analysed. Static analysis is necessary because there might be useful
information in the malware’s binary that does not require execution
to find and can also aid in finding code that might be deliberately
ignored while running the malware. This information could include
literal filenames, directories or commands the malware might use
and therefore give clues to what kind of information is stolen. Dy-
namic analysis tools can aid in capturing networking behaviour that

4 « VanRijn

potentially includes the exfiltration of the stolen information we are
after. Also, dynamic analysis using debugging tools can give clues
with regards to the handling of this stolen information. For example,
if any pre-processing is involved to send the data that is stolen in a
certain format that cannot be deduced by capturing the networking
behaviour alone or is too complex to statically analyse. The details
of these analyses are described later. In order to answer RQ1, our
attention during these analyses is mainly focused on observing the
interaction that the malware has with the filesystem and Windows
Registry, as these are the two main sources of information on a
Windows machine. During dynamic analysis, a network capture can
be made to see what data is sent to a potential C2 server and in what
format it is sent. Furthermore, sample (4) supplies us with a unique
look into what configurations that specific version of AZORult sup-
ports and can give insights in what information is stolen when the
builder payload and C2 server are set up to work correctly.

Finally, a comparison between the analyses of the samples is in
order to see if there exists a common set of information that is
always stolen by AZORult and what additions to this set are made
in the different samples.

3.1.4 RQ2. To answer this question, we aim to understand the
malware’s kill chain from the point of infection to the point of upload
of information to the malware’s C2 server. Using static analysis, we
can firstly see if the malware already has any suspicious strings
related to directories or registry keys in its data. Secondly, it can
reveal any insights of how the malware saves, processes or packages
the data it steals. Then, using dynamic analysis, the Windows API
functions imported by the malware and flow of information from
the system through the malware out towards a potential C2 server
can be seen step-by-step.

Sample (4) can aid in understanding the final ‘visible’ step of the
chain before creating and selling the fingerprints. As it gives us a
look into the C2 infrastructure and possibly how the credentials are
saved this might reveal valuable insights in what data is deemed
more important than others and if any processing is done on the C2
side of the attack. Therefore, we simulate the attacker and victim
environment at the same time by installing the C2 server on the
analysis virtual environment as described below in Section 3.2. A
payload can then be generated (sample (4)) that sends its stolen
information to the locally hosted C2 server as if the machine were a
victim. This allows us to observe any data storage or data processing
that is performed on this stolen data by the C2 server.

By comparing the stealing and information processing techniques
used by the different samples we come to a conclusion that shows
the differences in processes and, more importantly, the similarities
that lead to a proper description of how AZORult treats its stolen
information before it is sold on an underground market, either as
stolen data or as a fingerprint.

3.1.5 RQ3. Since we know that the information stolen by AZORult
is in some way crafted into a fingerprint that, in turn, is used by an
attacker to impersonate the victim, we can attempt to do the same
in an experimental scenario. In a virtual environment a fake user
is created for a number of online services: Google, Facebook and
Twitter. These were selected because it is confirmed by Wiefling et

al.[18] that the services Google and Facebook employ RBA systems
and an expected response is given. It was decided to use Twitter as a
third service as there is not much known about its RBA system nor
its RBA responses. Then, the browsing information of that fake user
is stolen by AZORult using sample (4) and ‘manually’? injected into
a second environment. This environment should closely mimic the
adversary environment suggested by the information available on
the underground market. When logging into the accounts on this
second environment, we monitor the email account of this user to
see if any of the online services deem our login attempt suspicious or
not. Depending on the success rate of these logins, we can attempt
to gradually remove features or data that are similar between the
victim and attacker environment to see what information is needed
to successfully impersonate the victim.

3.2 Analysis setup

In order to securely analyse the samples for RQ1 and RQ2, we have
to set up a safe environment. We have decided to use FLARE VM3
to perform most analytic tasks in. FLARE VM comes with a large
amount of pre-installed tools that aid in the analyses of important
aspects of binaries. There is no internet connection to and from
the virtual machine other than a Remote Desktop connection. This
was a choice, such that the analysis does not lead to flooding any
malicious C2 servers with data about the virtual environment and
to hide the fact that an analysis is being done. This leads to a prob-
lem where a malware sample fails to connect to its C2 server and
therefore decides to change its behaviour, as it is often an indication
of a sandboxing environment. To circumvent this shortcoming of
the virtual environment, the internet can be partially mimicked by
means of allowing DNS requests to resolve to the machine itself
and a webserver can be installed to send responses to the requests.
These might not be the responses the malware is expecting, but
could lead to more information about what the ‘correct’ response
may look like during dynamic analysis. Any URLs that are found
during analysis which do not resolve can be added to the ‘hosts’
file* on the machine pointing towards 127.0.0.1 (also known as
localhost, the machine itself) such that DNS requests to this pre-
viously unknown domain will be resolved from then on and point
towards the (XAMPP) webserver running on the machine itself.

3.3 ImpaaS experiment setup

This experiment is done to answer RQ3. In order quantify the extent
of the impersonation we need to determine the minimum amount of
information that is required to not trigger a negative RBA response.
We define a negative RBA response as follows: After logging in to
the online service, the service either (i) denies entry altogether or (ii)
the user needs to provide extra authentication or (iii) a security alert
is sent to the account’s owner. When the required information for a
successful attack can be stolen by AZORult alone, it would mean the

2This entails simply copying the stolen data and pasting it into the target folder,
overwriting existing files in that folder.

3“a fully customisable, Windows-based security distribution for malware analysis,
incident response, penetration testing, etc." https://github.com/fireeye/flare-vm

4This file, located in C:\\Windows\System32\drivers\etc\hosts is the first list checked
for DNS resolution. It contains an editable list of a mapping from domain names to
IP-addresses.

https://github.com/fireeye/flare-vm

stolen data is enough to perform such an attack and factors outside
this information (such as IP address or ASN/ISP) are not necessarily
needed to aid this attack. Then, the data stolen by AZORult can be
deemed sufficient and would prove that AZORult alone is enough
to support an Impaa$ attack with the necessary information.

3.3.1 Experimental Conditions. A baseline and a set of experimen-
tal conditions (EC) is defined that gradually change the attacker’s set
of properties in comparison to the victim’s properties per different
EC. The general approach of the experiment is as follows: we first
simulate the victim machine as close as possible and call this the
attacker machine. Then, we incrementally change the set of infor-
mation that we inject into this attacker machine such that we can
measure the responses from online services based on the changes
we made. Every new setup we create when changing this set of
stolen information is a new At first, we shall attempt to reproduce
the underground market’s product where an attacker possesses the
fingerprint of a user. The market recommends its users to obtain a
SOCKSS5 proxy near the victim in order to impersonate the victim
as closely as possible. We shall refer to this setup as the baseline.
The only difference between the baseline and victim setup (in the
eyes of an RBA system belonging to an online service) will be the
IP address. The hypothesis is that the setup in the baseline is at best
equal to the real one, therefore able to achieve a successful login on
all online services.

Then, we create the ECs. The order of ECs is based on the work
of Wiefling et al. [17] where they provide a ranking of RBA features
based on how important they are in deciding what login attempts are
malicious and which are not. We make incremental changes using
the properties ‘TP-address’, ‘ISP’, ‘geolocation’ and ‘User Agent’. The
victim machine and EC1 differ in IP address and ISP. For EC2, the set
of differences is IP address, ISP and geolocation, where the location
is about 70km away from the victim machine but within the same
country. For EC3 we then have a foreign geolocation, different IP
address and a different ISP. Finally, EC4 has differs in User Agent and
IP address from the victim machine, as we think User Agent alone
weighs more heavily than EC3’s foreign geolocation, IP address and
ISP change, according to Wiefling et al. [17].

3.3.2 Measurements. We measure the response of the RBA system
per online service by seeing if the services respond with on-screen
alerts, notifying the victim with emails or texts, or asking for addi-
tional authentication. For every EC and online service combination
we then define the following 2 outcomes:

Outcome 1: The RBA system has a positive response: The attacker
is allowed entry to the services without further (user-known) suspi-
cion.

Outcome 2: The RBA system has a negative response: The user
is (i) denied entry to the services OR (ii) needs to provide extra
authentication OR (iii) the victim is alerted by means of email or
text message.

An In-depth Analysis of the AZORult Infostealer Malware Capabilities « 5

4 ANALYSIS

This section contains the findings of the analysis following the
methodology of Section 3 of the four acquired samples (1), (2), (3)
and (4). An overview of the findings and comparison between the
four samples can be found in Table 2.

4.1 Analysing AZORult 2019-03 (1)

4.1.1 Overview. When opening the file properties of sample (1),
Windows identifies it as an Application (.exe file) with the descrip-
tion LetsSee! Setup. The sample behaves as an installer and installs
a program named YTLoader. Upon executing sample (1), the pro-
gram spawns the familiar Windows Installer Wizard window, as
it is the same as when installing any other arbitrary program on
Windows. The last step of this installer asks the user if it would
like to launch the installed program: YTLoader. When answered
with ‘yes’, the program YTLoader then opens up and presents a
simple GUI consisting of an input field for a URL and one of seven
included adverts below the input field. The URL input field expects
a YouTube video link that it would then download as an MP4 file.
The GUI can be seen in 3. The YTLoader program sends a suspicious
request to a domain that is listed by online sources like AnyRun and
VirusTotal as a malicious C2 domain. The request includes proces-
sor and operating system information and suggests that YTLoader
sends this information as a means of identifying potential victims
for further infection or additional payload drops via the smpchost
or YTLoader program. This is the most suspicious and malicious
interaction found in this sample by analysis. VirusTotal and AnyRun
show other potential outcomes with analyses where the C2 servers
were still responding. The complete infection chain can be seen
in Figure 4. Three files are dropped and executed from the initial
infection, namely YTLoad. exe, which in turns drops smpchost . exe
and YTLoader . exe. This information answers the following for our
research questions:

RQ1 What information is stolen from a computer system that is
infected by AZORult? The malware steals the following set of infor-
mation: the operating system and its version, whether the processor
is 64 or 32 bits, the processor name, model and manufacturer and
a unique hardware ID generated by the malware. Online analysis
tools VirusTotal and AnyRun find more stolen information that cor-
respond to the functionalities as seen in Figure 1, with the exception
of the Skype, Telegram and Steam information. This adds ‘saved
passwords’, ‘browser cookies and autocomplete’, ‘cryptocurrency
wallets’ to the stolen information. The discrepancy between our
analysis and the online analysis tools is deemed to be due to limita-
tions in our setup discussed later in Section 4.5.

RQ2 How does AZORult steal the specific information from the
computer system it infects? This sample has an evasive execution
path (see Figure 4) with multiple installers. Eventually the sample in-
stalls a program named ‘YTLoader’ which is a modified open source
program that now contains a malicious function which steals the
data listed above and sends it to its affiliated C2 server using a simple
GET request. The online analysis tools VirusTotal and AnyRun lead

6 « VanRijn

Sample (1) Sample (2) Sample (3) Sample (4)
Packed Partially? Partially? No No
Networking Yes Yes Yes Yes
Additional configuration Possibly! Possibly! Highly probable! Yes
Evasive behaviour High Medium None None
Dropping behaviour Yes Yes Highly probable! Possible
Persistence Possibly! Possibly! Yes3 No
Process injection No No No No
Registry interactions® 26204 19051 9856 3785
File system interactions® 14574 11840 16102 3401
Executable size 3.5MB 3.7MB 80kB 112kB
Installation artefacts Yes Yes No No
Cryptography Possibly! Weak? Possibly! Weak? Yes, Weak? Yes, Weak?
Self Deletion No No Yes Yes, by config

! There are no live C2 servers for these samples so additional configuration cannot be tested. However, based on the analysis of
(3), (4), and VirusTotal and AnyRun reports these seem highly probable.

2 This cryptography consists of encoding data with a 3-byte XOR key.

3 Only when the program runs on specific Windows Server versions, this is assumed to either support further infection on a

network and having direct access instead of behind a firewall.

4 Only the file smpchost . exe was packed by the UPX packer. This file is dropped by both samples (1) and (2).
5 Average amount of interactions measured over 3 executions for each sample.

Table 2. Comparison of the features used in Table 1 found during the analysis of the four samples. Sample (4) was always able to connect to its (locally
hosted) C2 server and receive a configuration, the other samples merely received a HTTP 200 response in order to reduce unrealistic crashing.

us to believe the the sample is a dropper and a more sophisticated
and targeted executable is loaded in realistic circumstances.

@ Youtube Downloader - [m] X

BECOME A PART OF TRAVEL REVOLUTION.
Claim your 30 % bonus now!

df AIRPOD

Fig. 3. The GUI of YTLoader, dropped by samples (1) and (2).

4.1.2 Static analysis. When analysing the executable with PEiD,
there are no signs of a packer® being used to pack the executable.

The binary of sample (1) is scanned for potential clues using
the Strings tool and a few unexpected values stand out. Sample
(1) lists the string Inno Setup at a number of locations. Inno Setup®
reveals itself to be open-source installer software that can be used
to install any bundle of executable files on a Windows system. This
is probably used such that the executable looks more generic as an
installer, as Inno Setup is a common installer and so would avoid
suspicion. This supports the idea that sample (1) is using evasive
behaviour to disguise it’s actual intent.

The dropped files YTLoad. exe, smpchost . exe and YTLoader . exe
show different behaviours. When statically analysing YTLoad. exe
using IDA, Strings and Ghidra, it shows imports of only Windows
libraries that would assist in installation of the files smpchost.exe
and YTLoader . exe. Multiple strings referring to Registry keys and

5See Appendix A.1.1 for more details on packing.
®https://jrsoftware.org/isinfo.php

file paths refer only to default installation information needed to
install any program, therefore YTLoad. exe is only as malicious as
the files it installs. It is therefore a step in the evasive behaviour of
sample (1).

Statically analysing YTLoader . exe using Strings and DnSpyx86
(without debugging or running) shows references to a possible
author of the program. Using dnSpy, we can analyse decompiled code
that is syntactically equal to the source code. The YTLoader program
still has specifically named namespaces and other symbols that can
be used to identify the software. The program is an edited version of
the open source project YoutubeExplode . The parts that are different
from the GitHub repository are 7 advertisements consisting of . png
files and corresponding website URLs that were found. and the most
significant line of code:
new StreamReader (
WebRequest.Create("https://istats.club/KosUS"

+ this.response()).GetResponse()
.GetResponseStream()).Close();

Where the function this.response() creates a URL-encoded string
to add to this istats[. Jclub/KosUS URL as GET request data. The data
consists of the machine’s operating system, the amount of bits the
processor supports (32 or 64), the exact processor model and a ‘hwid’.
After reverse engineering how this ‘hwid’ is constructed, it turns
out to be an MD5 hash over the concatenation of the values con-
tained in the Windows Registry keys Software\Microsoft\Windows
NT\CurrentVersion\ProductName and Software\Microsoft\Windows
NT\CurrentVersion\Productld like so:

hwid = MD5(ProductName + ProductId)

"https://github.com/Tyrrrz/YoutubeExplode

https://github.com/Tyrrrz/YoutubeExplode

Altogether, the empty webrequest looks as follows:

GET https://istats[. Jclub/kosUS?0s=&bit=&processor=&model=
&manufacturer=&hwid=. What is interesting to note is that the pro-
gram does not use the response of the server in any way, where
one would expect the program to do more than just exfiltrate oper-
ating system and processor info. The only other information that
would be gained is the IP address of the victim’s machine, which,
altogether, is a rather small amount data to exfiltrate by itself.

4.1.3 Dynamic analysis. Executing sample (1) leads to a multi-
stage process tree found by Process Monitor that can be seen in
Figure 4. The program drops multiple files, renames them and then
repeats this a number of times. Often this behaviour is purposefully
built into malware in order to evade anti-virus programs or to obfus-
cate malicious behaviour from the user. Furthermore the files and
registry keys accessed can be listed to find a list of information that
can be stolen by the malware. The list of files and Registry keys that
are accessed by this main component are by no means malicious, as
no information other than that required for installing an arbitrary
Windows program is read.

When the process chain of sample (1) reaches the execution of
the installed file YTLoader . exe, a number of registry keys are read
that contain information about the hardware and operating system
of the infected computer. The template GET request found in our
static analysis in Section 4.1.2 is filled with the stolen information
and sent to the ‘istats[dot]club/KosUS’ URL, as is confirmed by using
Fiddler to analyse the traffic generated by the malware.

Dynamic analysis of the smpchost . exe binary leads to only more
confusion about the goal of this piece of the malware, as it attempts
no internet connections and crashes for unknown reason after a
lot of fuzzy, unclear functionality. The executable is checked for
Structured Exception Handler (SEH) chain manipulation, as the
binary adds its own SEH to the chain and seems to crash on purpose.
This technique uses the fact that the binary can add its own code as a
SEH to the front of the SEH-chain and then deliberately crashing the
program, executing their code as an error handler. This usually goes
unnoticed in programs like IDA and Ghidra that analyse ‘reachable’
parts of the code and ignore SEH functions. In this case, using
OllyDbg, a part of code that was labelled as ‘data’ by Ghidra during
our static analysis, is actually identified as a function that is added
to the SEH chain by smpchost. However, nothing malicious seems to
happen within this function and the exception simply gets passed on
to the next SEH in the chain. However, the VirusTotal report links to
a report by Yomi Hunter (a sandboxing environment like Any.Run)
suggests that smpchost . exe should be connecting to a C2 server
of its own and attempting to open a backdoor using, among other
things, the command cmd.exe /c netsh firewall add portopening TCP
3389 "Remote Desktop". Unfortunately, we were not able to reproduce
this connection in our testing environment. Since VirusTotal also
lists process injection as one of the actions this binary performs,
it is analysed with API Monitor to look for calls to API functions
that are commonly used for this technique, but these are not used
during the execution of smpchost . exe on the virtual machine. This
leads us to believe that the crash of smpchost . exe was induced by a
lack of environmental features, as no ‘real’ internet connection was
available for the malware on our FLARE VM to download additional

An In-depth Analysis of the AZORult Infostealer Malware Capabilities « 7

configuration or payload(s) from a C2 server as VirusTotal describes
was successful in their analysis.

4.2 AZORult 2019-05 (2)

4.2.1 Overview. Upon execution of sample (2), nothing visual hap-
pens, but the program YTLoader is also installed in the same di-
rectory as when sample (1) is executed. Sample (2) has the same
behaviour as the intermediate stage of sample (1), YTLoad.exe. This
is illustrated in Figure 4.

RQ1 What information is stolen from a computer system that is
infected by AZORult? The malware steals the exact same information
as we found in sample (1).

RQ2 How does AZORult steal the specific information from the
computer system it infects? As sample (2) behaves identical to the
intermediate step of sample (1), the same methods of stealing and
sending are found in sample (2).

4.2.2 Static analysis. When hashing the sample with the MD5 hash-
ing tool, the hash is not equal to the hash of YTLoad. exe, the inter-
mediate stage of sample (1). However, when hashing the dropped
file YTLoader . exe, it turns out both versions are identical. For the
smpchost.exe binary this is not the case, as their hashes differ.
Upon further inspection with PeID, we find that both versions
of smpchost.exe are packed using different versions of the UPX
packer. Hashing these unpacked versions with the MD5 hashing
tool still results in different hashes. However, the remaining meta-
data listed by the MD5 hashing tool is almost identical: both are
compiled on the same date, but at a different time, and their PE ver-
sions, import hashes, compiler signatures and linker signatures are
identical. Using binwalk we then find that some additional random
bytes were added to the unpacked version of smpchost.exe that is
dropped by sample (2). We assume it was done to change the size
and hash of the binary by a minor amount. The contents are equal
as found in sample (1), as confirmed by carving out the individual
parts and hashing those parts one by one for each sample.

4.2.3 Dynamic analysis. As the files are overall unchanged, the
same behaviour is found here as it was in sample (1).

4.3 AZORult 2019-05 (3)

4.3.1 Overview. This sample is a smaller — 80kB, where (1) =
3.5MB, (2) = 3.7 MB - and single-process executable that deletes
itself after execution. It does not drop any files but opens up a large
amount of registry keys and files and attempts to send this to a C2
server located at ravor[dot]ac[dot]ug in a single XOR-encoded POST
request. The analysis shows that within the binary there is code that
can open a RDP backdoor. It shows little resemblance to the samples
(1) and (2) as it shows no evasive behaviour and the executable is
small and straight forward in its execution. There is no obfuscation
or protection of the intention of the malware and it is obvious from
static analysis alone that this is a simple but thorough infostealer.
The process chain for sample (3) is illustrated in Figure 5.

RQ1 What information is stolen from a computer system that is
infected by AZORult? Sample (3) steals ‘system information’ that
consists of the PC name, username, system locale, system time(zone),
OS version, processor information, currently running processes

8 « VanRijn

Sample (1)
Execution start

Sample (2)
Execution start

azorult 2019-03 (1).exe ' 1 A\azorult 2019-03 (1).tmp

3 B\azorult 2019-03 (1).tmp

> Drop &
Execute

> Execute

YTLoad.exe

azorult 2019-05 (2).exe

5 YTLoader.exe
5

OR

Windows software

6 - . -3 WerFault.exe

Fig. 4. Sample (1) and (2) combined process spawn chain. All interactions except for arrow 2 are drop-and-execute interactions. Arrow 2 executes a new
instance of azorult 2019-03(1).exe that, in turn, continues with arrow 3 by dropping and executing another .tmp file. Arrow 6 executes WerFault.exe, a Windows
error handling program. After arrow 4 the execution paths of sample (1)’s stage ‘YTLoad.exe’ and the main stage of sample (2) are identical.

N o

Windows software

cmd.exe

]— 2 —)[Conhost.exe '

[azorult 2019-05 (3).exe]— 1 —»[

"C:\Windows\system32\cmd.exe" /c timeout 1
&& del "cC:\Users\blab\Desktop\azorult 2019-05 (3).exe"

Fig. 5. Sample (3) process spawn chain. Most operations occur within azorult 2019-05 (3).exe and the command executed in cmd.exe is listed underneath,

signalling to remove the original executable file after waiting one second.

and a list of installed software. Also, it steals the IP address, a list
of browser cookies and finally a single screenshot taken during
execution of the malware.

RQ2 How does AZORult steal the specific information from the
computer system it infects? Where in samples (1) and (2) there was
a lot of evasive installing and execution behaviour, sample (3) is
very straightforward. It executes, shows no signs of anything being
executed except for a busy-cursor and proceeds to read the files and
registry keys it wants to steal and finally makes a screenshot. The
information is then neatly ordered into the files ‘System.txt’, ‘ip.txt’,
‘scrjpg’ and ‘CookieList.txt’. Next, the malware creates a ZIP-file of
these files. Finally, this ZIP-file is encrypted using a simple XOR-key
and sent to the sample’s affiliated C2 server using a POST request.

4.3.2 Static analysis. Running Strings on this binary returns only
410 strings, due to the small size of the binary. Yet, there’s a few
that stand out. Firstly, the name ‘azorult’ is present in what seems a
directory listing of the original development environment of this exe-
cutable, namely ‘F:\orders\cpp\azorult_new\Release\azorult_new.pdb’.
The string ‘cpp’ is highly likely to relate to the programming lan-
guage C++. When searching the internet for the MD5 hash of the
file, it turns out that sample (3) is one of the samples discussed
in [1]. The directory ‘orders’ could be considered as proof of this
malware being built for a customer, as if it were one of more orders
the author received to build malware. Then there’s a single URL
http://ravor|.Jac[.Jug, possibly the C&C server of the malware. Fur-
thermore, there are multiple strings hinting at the information the
malware attempts to steal, like ‘PasswordsList.txt’, ‘ CookieList.txt’,

‘Coins\%s\wallet.dat’. Moreover, the malware lists multiple Windows
API functions that allow the malware to connect to the internet.
Also, a cmd command string stands out: ‘/c netsh firewall add por-
topening TCP 3389 "Remote Desktop”’. When this command would
be run in ¢md, it would attempt to add a firewall exception for port
3389, which would allow an external user to use the Remote Desktop
Protocol to connect to the machine if they have credentials for a
user on this machine and acting as a backdoor. Finally, there are
a number of strings hinting at possible internet connectivity by
the malware, namely ‘POST’ and ‘Content-Type: application/x-www-
form-urlencoded’ which are strings normally found in a HTTP POST
request, implying the malware at some point builds a POST request.

The overal CFG of the malware is relatively short and concise. Its
start function consists of only 24 nodes. There is a section within
this start function that is a list of if statements, where it checks
a list of bytes one by one to see if they are zero or not. At every
comparison, a decision is made to go into the following function or
not. This is repeated 6 times. These 6 functions are attempting the
following, respectively: Firstly, attempting to open up a program
called Vault® that is used to save passwords in a secure way locally
on a system and read the secrets the Vault software is safekeeping.
Secondly, it attempts to steal browser cookies. Thirdly, a function
that screenshots the entire display at the moment of execution.
Then fourth, a function that searches for cryptocurrency wallets
and attempts to steal the private keys of these wallets. Fifth, a list
of stolen passwords is written to the file PasswordsList.txt. Finally

8For more information and documentation on Vault, see https://www.vaultproject.io/

https://www.vaultproject.io/

sixth, a list of stolen cookies is created indicated by file writing to
CookieList.txt. After all these function have either been executed
or skipped, the malware continues with a function that is never
skipped and where the system information is stolen. A file called
System.txt is then created where a large number of information is
written concerning the exact details of hardware of the machine, the
current user, system time, locale, timezone, machine ID, PATH value,
the Windows product version, graphics card and driver information
and a list of programs installed on the machine listed in the Windows
registry.

What is important to note is that the set of information stealing
functions is very similar to the list of checkboxes seen in Figure 1.

After this large info stealing set of functions, the .txt files are
zipped in memory — such that no files are ever created on the sys-
tem and everything is done in memory — and added to a POST
request to be send to the malware’s C2 server. The malware then
attempts to create a backdoor using RDP. It has a hardcoded user-
name and password combination, namely user=7J0nPFTYqvCO, pass-
word=GWsBUkp5rKGgK42R which it attempts to add as a user to the
network’s local group. This is followed by the malware changing the
registry keys to allow for RDP connections, followed by running the
command cmd /c netsh firewall add portopening TCP 3389 "Remote
Desktop” which opens the port 3389 for TCP connections on the
device, allowing for incoming RDP connections. This serves as a
backdoor — a form of persistence — and would allow the attacker
with the correct credentials to access the machine later on and might
be an indication of how the AZORult malware was able to update
its stolen information as mentioned in Section 1. This code only
executes when the malware is on a specific Windows environment,
as it checks the build and OS versions.

Finally, the malware decides to either exit the process with a
call to ExitProcess or run the final command /c timeout 1 && del
\"%s\, where %s will be filled in with the original executable’s name,
therefor deleting itself after waiting 1 second. During this 1 second,
the process exits with a call to ExitProcess, after which the command
to delete the file will be executed and the original executable deleted.

4.3.3 Dynamic analysis. Executing the sample without any analysis
tools running results in the Windows wait cursor appearing for a few
seconds and then disappearing. After a few more seconds, the exe-
cutable file disappears and therefore shows clear self-deletion. Then,
using Process Monitor, the file and registry interactions are observed.
As expected, a large amount of registry keys are accessed, mainly
in relation to the strings found during static analysis. Browser data,
cryptocurrency wallets and system information is stolen, zipped
and sent to its C2 server located at ‘ravor[dot]ac[dot]ug’. We can
perform an man-in-the-middle attack on this traffic with Fiddler
and adding the C2 server to our hosts file such that it points at our
XAMPP setup.

When analysing the network traffic with Fiddler during execution,
the a large POST request is sent to the C2 domain. This POST request
is not in clear text. After cutting out the data part of the request, the
data can be decrypted by performing a block-wise XOR operation
over the data using the key ‘0x03 0x55 OxAE’ as was used in earlier
versions of AZORult and is documented in Trustwave’s blogpost [8].

An In-depth Analysis of the AZORult Infostealer Malware Capabilities « 9

This gives us a ZIP-file that contains the files ‘CookieList.txt’, ‘ip.txt’,
‘scr.jpg’ and ‘System.txt’, containing the stolen cookies, the victim’s
IP, a screenshot and stolen system information, respectively.

The behaviour shown by sample (3) has been listed in the Virus-
Total reports of both sample (1) and (2), mainly the RDP backdoor
and self-deletion commands discussed in Section 4.3.2. These com-
mands are identical across all three of VirusTotal’s analyses.

The RDP connection seen in the code in Section 4.3.2 is not exe-
cuted when running the sample in our environment.

4.4 Builder Payload (4)

4.4.1 Overview. This binary has a lot of resemblance to sample (3)
in size — 112 kB, where (3) = 80 kB, — and behaviour. It performs all
operations in memory and leaves no temporary files on the system.
The information stolen also consists of almost the same data as
sample (3), with some more ‘modern’ additions of Telegram, Skype
and Steam data.

4.4.2 Static analysis. Sample (4) contains similar strings and has a
similar CFG structure in comparison to sample (3). Of those strings,
the most similar ones are the ones for the output files that are sent
to the C2 server. Their names are equal to the ones found in Section
4.3.3. The CFG also contains very similar part where some of the 6
steps discussed in Section 4.3.2 are seen again. In the case of sample
(4), these refer to the steps to perform or skip according to the
configuration sent by the C2 server.

However, there are some notable differences. There is no notion
of the RDP backdoor in this sample, as no part of the code supports
this. Also, a number of functions that are present in sample (4) are
not present in sample (3), such as functions that are used to steal
Telegram, Skype or Steam data.

4.4.3 Dynamic analysis. Without any analysis tools running, the
sample behaves similar to sample (3), as the only visible evidence of
the program running is the Windows wait cursor popping up. The
executable does only delete itself if the checkbox for ‘self-deletion’
is checked in the C2 configuration. Analysing the execution of the
binary with Fiddler shows that it follows the exact same networking
process as described by Trustwave [9], where the malware first
subscribes to the C2 server, then receives a configuration from the
server, performs the steps according to the configuration, creates a
ZIP-file of the stolen information, XOR-encodes it using the same
3-byte key and sends it to the C2 server. Process Monitor lists sig-
nificantly lower amounts of registry and file system interactions
compared to sample (3). This in combination with the fact that self-
deletion is not built-in to sample (4) leads us to believe that some
‘file grabber’ configuration is built into the payload in the AZORult
version used in sample (3), as this is not the case in sample (4),
where the configuration of the C2 server specifies what files should
be stolen next to information that is stolen by the list of checkboxes
in Figure 1.

4.4.4 Command and Control. For this sample we took the oppor-
tunity to look at the server side of the malware. The installation is
very straightforward — thanks to the clear Russian manual — and
controlling the malware is done by using the control panel seen in 1

10 « VanRijn

as discussed in Section 1.1. The database storing the data is a MySQL
database and stores everything in plain text. The incoming data is
decrypted using the 3-byte XOR key mentioned before in Section
4.3.3 and stored as a unique ZIP-file on the server. A reference to
this filename is stored in the MySQL database and shown in the
‘reports’ panel of the C2 web page. No data processing is done what-
soever, but the web page does support converting cookies from the
Netscape format to JSON and also supports multiple output formats
for exporting stolen user-password combinations as seen in Figure
6.

® Passwords list
® Logins list
® url@login:passwords

® |ogin:passwords
® SOFT HOST USER PASS

Fig. 6. The exporter menu in the C2 server of AZORult v3.4.1.

Overall, the C2 server is clearly designed with the idea of mass
scale information stealing, as there are search and filter functionali-
ties on the webpages that, for example, allow for quick grouping of
victims by country.

A notable difference to what we see in the behaviour of sample
(3) is that here in sample (4), the C2 configuration allows to either
self-delete or not, while in sample (3) this was always done, with
no exceptions. Also, there is no notion of installing a backdoor in
either the code nor the C2 options of sample (4). Nonetheless, there
is the option to make the malware ‘Load” another executable file as
seen in Figure 1.

4.5 Discussion

Of the four samples analysed in this paper, samples (1) and (2) are
identical in two of the files they drop. The two ’installed’ compo-
nents ‘YTLoader.exe’ and ‘smpchost.exe’ revealed themselves to
be identical files (based on MD5 hash) for both samples (1) and (2).
Sample (1) uses a Windows Installer Wizard and (2) does not. Due
to the installation process being slightly different, the analyses for
the main components will differ. Overall the samples (1) and (2)
are very similar in regards to the features we tested for as seen in
Table 2. The differences in ‘# Registry interactions’ and ‘Evasive
behaviour’ are attributed to the fact that sample (2) is essentially
equal to half of the process chain of sample (1) as described in
Section 4.2 and detailed in Figure 4.

Sample (3) showed no similarity to samples (1) and (2) during
our analysis. However, based on the VirusTotal results of sample
(1) that listed several commands executed that were identical to
the ones of sample (3), we suspect that samples (1) and (2) did not
reach their full potential in our analysis setup. This might be because
of a variety of reasons, but the most important one is the fact that
there is no internet connectivity from our analysis environment and
therefore the samples’ affiliated C2 servers are not available in our
setup. Another finding that supports this claim is that we were able
to repair the YTLoader .exe crashing after a failed connection to

its C2 server. Here, we prevented the executable from crashing and
the crash being handled by the Windows Error Reporting program
(WER), but safely running and exiting. This was not the case for the
smpchost. exe program, which crashed unexpectedly and without
clear reason. In the VirusTotal result of sample (1), there is no
notion of WER being run, while in reports of this sample where
the commands equal to that of sample (3) were not run, the WER
program was listed as child process of smpchost. exe. This leads to
believe the program crashes when it cannot connect to its C2 server.

It is certain that sample (3) is the actual AZORult malware and it
is suspected that samples (1) and (2) are droppers for sample (3) or
an equivalent AZORult executable. This idea is supported by the fact
that sample (4) closely resembles sample (3), as it also certainly
is ‘pure’ AZORult without any dropper stages before the actual
payload executes and both have the same method of exfiltrating
data. Samples (3) and (4) both share similar sizes (see Table 2) and
their analyses revealed very similar parts of code (flow) with similar
steps and stealing functions per functionality. Their stolen data
was formatted and sent to their respective C2 servers in the same
fashion (zipped and encrypted with the same XOR key) as discussed
in Sections 4.3.1 and 4.4.1. Finally, given that AZORult is often part
of a malware kit or exploit kit, it is highly likely that a ‘pure’ payload
like in samples (3) and (4) are less commonly found in the wild
without any dropping mechanism before the payload execution.

It should also be noted that these raw executables are often deliv-
ered to a victim in ways that are not in scope of this paper. These
methods include, but are not limited to, Microsoft Office macros and
various layers of obfuscation.

Overall the behaviour is as was expected of an infostealer mal-
ware. It targets information that is important to the user and has a
value on the underground market such as browser cookies, saved
passwords and cryptocurrency wallets, which answers RQ1. How-
ever, it is interesting that samples (1) and (2) both send this GET
request from ‘YTLoader.exe’ to a C2 server consisting of rather su-
perficial (processor and operating system) information. Combined
with the VirusTotal analysis where sample (1) drops and executes
a binary that closely resembles the behaviour shown by sample (3),
we find it likely that the information stolen with this GET request
serves as some sort of preliminary screening to identify interesting
targets for a larger C2 infrastructure where, based on what processor
and OS the machine has, different payloads can be dropped by the
samples (1) and (2) for different purposes. Furthermore, the data
that is stolen is encrypted only lightly with a simple 3-byte XOR
operation and is sent in one big POST request. This would make it
easy for any network intrusion prevention system (IPS) to notice
the malware and is not so stealthily as we expected from the fact the
malware tends to update the information of its victims periodically.

5 IMPERSONATION EXPERIMENT SETUP

The experiment is divided in separate ECs, as described in Section
3.3, and between these ECs, we shall wait a day before progressing
to the next EC. This is done in order to not raise suspicion further
than needed, as some changes might be too drastic, where a user
logs in from The Netherlands and Finland on the same day, for
instance. The experiment is illustrated in Figure 8, where a timeline

An In-depth Analysis of the AZORult Infostealer Malware Capabilities

- 1

Registry Key A Files
PasswordList.txt
.
. Cookies.txt
: —— [
File X
Execute System.txt
AZORult
Subscribe to C2 Receive Configuration Send Data to Process Exit
from C2 c2
O O
Steal data Organise Compress XOR
according to config stolen data data
C2 Configuration File st
ile storage
Send Steal Registry key A
config Report1.zip
— > | Steal File X Report2.2i
eport2.zip
Report3.zip
c2 Self-delete Cc2

Fig. 7. A timeline showing the flow of data during an AZORult infection. The timeline itself depicts the execution of AZORult and shows the steps that
AZORult takes while it is running. It eventually comes to an end at the ‘Process Exit’.

is provided starting at the creation of the fake profile until the end

" Cultivation

" Baseline

[|
@
__ -
Eindhoven VM1 T-Mobile VM1 VM1 Eindhoven VM2 T-Mobile VM2 Eindhoven VM3 KPN
!] | 1
April 19) July 27 July 28 August 4
2021 2021 2021 2021
" . Implant data in Implant data in
Profile Cultivation ~ “3StLOGIn i i et v VM2 & use Infect VM2 VM3 & use
Creation on VM1 y
3 ; profiles profiles

>__-
VM3 Nijmegen VM4 KPN VM4 T:i':“gi’:' VM5 DNA VM5 Eindhoven VM6 T-Mobile
_1 1 t
August 5 August 9 August 11
2021 2021 2021
Implant data in Implant data in Import data into
Infect VM3 VM4 & use Infect VM4 VM5 & use Infect VM5 Firefox on VM6
profiles profiles & browse profiles

Fig. 8. An overview of the timeline of the experimental conditions and the differences between them.

of the experiment.

12« VanRijn

5.1 Setting up the experiment

Overview The experiment is designed to test for the ‘strength’ of
the information stolen by AZORult with regards to impersonation.
We start by creating a profile consisting of three accounts for Google,
Facebook and Twitter and use these over a period of time (in this
case three months) to make the profile credible in the eyes of these
online services. This is done over such a long time to create a set of
trustworthy logins as described by Wiefling et al. [17] that can be
regarded as a non-suspicious login. When the online service’s RBA
systems notice a new login with a difference in some properties (e.g.
IP address or ISP) when compared to the set of older, trusted logins,
it makes a decision about how suspicious this new login attempt is.
The goal of the experiment is then to see what set of information is
needed to evade this RBA system such that it returns a positive RBA
response and not a negative response. This is done by attempting
new logins from a different systems, but where as many properties
of the system are identical to the original victim system where
the ‘trusted logins’ were performed during the cultivation period.
These different systems are the baseline and various experimental
conditions discussed before in Section 3.3 and will be discussed in
detail below.

Firstly, there is VM1. On VM1, the accounts for Google, Face-
book and Twitter were created and cultivated over a period of 3
months. The cultivation consisted of using the accounts at least once
a week over a period of four months. During this cultivation the
various online services were opened and used, by opening emails
on Gmail, watching videos on Youtube (using the Google account),
and browsing, liking and sharing posts (on Facebook and Twitter).
VM1 is setup to appear similar to a generic environment, using Win-
dows 10 and Google Chrome as operating system and web browser,
respectively. VM1 can be seen as the ‘victim’ environment.

The first attacker environment (the baseline environment) will be
simulated by another virtual machine that we denote as VM2. From
what we know of the impersonation attacks and as emerges from
our previous analysis of the malware, an attacker is able to mimic
the victim’s browser (by means of stolen cookies, history, passwords
etc.) and attempts to mimic the geolocation by buying a SOCKS5
proxy near the victim. Therefore VM2 will be setup such that it
mimics the victim’s machine as close as possible to create a baseline
of impersonation that can be tested against in the experimental
conditions EC1 to EC4. In the experimental conditions EC1, EC2,
EC3 and EC4 the VMs per EC are named VM3, VM4, VM5 and VM6,
respectively, as seen in Figure 8.

All VMs in this experiment (the victim, the baseline and the four

ECs) are created from the same Windows 10 Enterprise Evaluation
image (WinDev2102Eval, Version 10.0.19042 Build 19042) and are
running the latest version of Google Chrome (starting at version
91.0.4472.114 64 bit and allowed to automatically update).
Limitations The research is limited by the amount of VMs that
can be run. Since the instances should have different IP addresses
and, generally, VPS solutions are IP-banned by online services such
as Google.com, we are using different and limited residential loca-
tions to conduct the experiment. Therefore the amount of indepen-
dent tests we can do is also lowered. Furthermore, given we have a
single cultivated profile to use, the RBA response will be impacted

by every test we do, as most RBA systems are expected to take the
history of trusted login attempts to create an average baseline login,
as described by Wiefling et al. [17]. This ’average login’ can then
be used to determine suspicious behaviour. When logging in from
places that are not equal to the average login, but close enough to
trust, the login added to this history, therefore altering the prop-
erties and the range of values that is considered to be an ’average
login’. Another limitation is the discrepancy between our baseline
setup and the market product. The market product is most likely
better than this setup, as there exists a process that is unknown
to us between receiving the AZORult data arriving on its affiliated
C2 server and the fingerprints being sold on the market that might
raise the fidelity of the fingerprint product to a higher level than
injecting the bare stolen AZORult data as done in this experiment.

Between EC infections, we do not return to login on the original
victim machine (VM1). This is illustrated in Figure 8 where the data
stolen is implanted, used and then stolen again for the next EC. This
means that every EC is slightly influenced by the past ECs and the
baseline environment. Essentially, this establishes a new baseline
after every EC and is tested against in the next EC that introduces a
new property change like ISP or geolocation.

5.2 Experiment preparation

Victim accounts cultivation The victim machine in this case is
a Windows 10 Evaluation machine, where an account was created
using the Google Chrome browser for the services of Google, Face-
book and Twitter. The profile (consisting of the accounts for multiple
services) was cultivated over a period of 3 months where (at least
once a week) browsing behaviour was simulated by browsing to the
pages of Google, Facebook and Twitter and minimal user interaction
was performed such as retweeting tweets on Twitter, liking posts on
Facebook and opening Gmail and watching YouTube videos using
the Google account. The VM is located in the city of Eindhoven and
uses the ISP T-Mobile.

In order to steal the data, the AZORult C2 server will be installed
on another VM (C2-VM) that is running on the same host machine as
the victim’s machine. Then the victim machine will be infected by a
payload of the malware that is pointed at the C2-VM. The C2 will be
configured such that the Google Chrome ‘User Data’-folder is stolen
in its entirety and sent to the C2 server when the target is infected.
The data will be downloaded from the C2 server, and finally this
will be the set of data used in the following impersonation attacks.

Establishing a baseline To establish a baseline, the attacker
VM is created in a different location within the city of Eindhoven
with the same ISP as the victim machine. This is done to mimic the
situation where an attacker acquires a SOCKS5 proxy close to the
victim - as recommended by the market — such that the attacker has
the same ISP and a roughly identical geolocation when compared to
the victim. VM properties like Display resolution, number of CPU
cores and amount of RAM memory are configured to be identical
to the victim machine and the VM image is identical to that of the
victim’s, therefore it is assumed that the only difference between
victim and attacker machine in the eyes of the online services is the
IP address, as detailed in Figure 8. This is as close as experimentally

possible to the market product and is done to evaluate that the stolen
data is, in principle, enough to impersonate the victim.

The ‘User Data’ folder will be copy-pasted into the same location
as where it was found on the victim machine. After that, we log in
to Google, Facebook and Twitter and see if there is any blocking
behaviour or messages regarding the suspicious login attempt sent
to the fake profile’s email address or associated phone number.

We expect outcome 1 for all services, as this environment is so
similar to the original victim environment that the amount of suspi-
cion the RBA system has should be below the ‘suspicion threshold’
that would trigger an alert or RBA response. Also, given that the
market thrives with essentially the equivalent setup used in this
baseline setup, it supports the hypothesis of this being the most
likely outcome. Observing outcome 2 means that the stolen infor-
mation does not form a baseline for impersonation.

5.3 Experimental conditions

There are 4 different ECs that test different changes to the attacker
setup and therefore will give us a indication of what is the minimum
viable product required for an attacker to successfully perform the
impersonation attack.

EC1: A change in ISP In this case, the attacker VM will also be
situated in Eindhoven, but having a different ISP and IP address.
The remainder of the VMs properties will be equal to the setup on
the victim’s machine and the machine used for the baseline result.

The expected outcome of this EC is outcome 2 for Twitter, as
Twitter might have a less flexible RBA system compared to Face-
book’s and Google’s RBA systems [17]. It might also be the case
that a change of ISP is a clear indication of something being wrong
according to the RBA systems of all online services, but we expect
outcome 1 for Google and Facebook, since they appear to be more
flexible®.

EC2: A change in geolocation within the same country For
EC2, the attacker VM will be almost identical in setup to the VM in
EC1 - where the IP and ISP will be different from the victim machine
- with one additional difference: the geolocation. The attacker VM
will be hosted close to the city of Nijmegen in The Netherlands, such
that the rough geolocation is 70km further away than Eindhoven.

We expect outcome 2 for the Twitter service, as we suspect that
a change of IP address would be enough for the RBA system to have
a negative response as stated in EC1. For Google and Facebook we
also expect outcome 2, as the combination of changing IP, ISP and
geolocation is a group of features that are all individually rated of
high importance to the RBA models described by Wiefling et al.[17],
and - given that all of them change here — are therefore expected
to trigger a negative RBA response.

EC3: A Change in user geolocation to a foreign country For
EC3, an attacker VM will be hosted in Finland, which makes the
following list of differences when compared to the victim’s machine:
IP, ISP and geolocation. The important feature that we will be testing

9This was tested with uncultivated accounts in similar setups by logging into these as
a means to probe the RBA systems.

An In-depth Analysis of the AZORult Infostealer Malware Capabilities « 13

will be a change in response from EC2, where the same differences
are present, but now the geolocation is much further away and in a
different country.

Wiefling et al. [17] showed that the ISP plays a more important
role than the sole IP geolocation, but combining the change of ISP
and border-crossing change in region should suffice to trigger an
RBA response from at least some of the online services, therefore
outcome 2 is expected for all services. We think that it is possible
for users of these services to have such dramatic movement when,
for example, travelling and using a mobile device or laptop to login.
This might contribute to an RBA system that relaxes the requirement
of identical geolocation as previous logins, but is stricter regarding
features that should remain the same when the same device is used
to login in two different places. For example, screen size, browser
(User Agent), operating system and others.

EC4: A change in User Agent For EC4, the attacker VM will be
hosted in Eindhoven again, with only a different IP from the victim
machine. On this machine we will attempt to change the User Agent
variable of the request by switching from a Google browser to a
Firefox browser to see a change in RBA behaviour. This experimental
condition removes the differences used in EC1 to EC3, as the only
difference will be IP address and User Agent. We chose to do so as,
according to Wiefling et al. [17], the User Agent property weighs a
lot heavier than the properties we tested for before. Therefore, we
decided to test the User Agent separately from the other properties.

To switch browsers as cleanly as possible, we import the User
Data from Google Chrome using Mozilla Firefox, which copies the
relevant bookmarks, history, cookies and saved credentials to Fire-
fox. This is done by first installing Google Chrome and Mozilla
Firefox on the attacker machine, then opening Google Chrome once
to make sure it sets up a fresh ‘User Data’-folder. We close Chrome
after that. Then, we copy-paste the stolen ‘User Data’-folder onto
this fresh ‘User Data’-folder. Now we open Firefox and use Firefox’s
built-in ‘Tmport Wizard’ to import all the user data from Chrome.

Now we perform the same test as before, where we log in to the
services Google, Facebook and Twitter one by one and observe the
potential RBA response.

We suspect Outcome 2 for all services, as the User Agent String
is identified as one of the strongest identifying features by Wiefling
etal. [17].

5.4 Results

The baseline was successful and showed outcome 1 across all ser-
vices as expected. No login was needed as the cookies for the services
were still valid and therefore browsing to the websites of Gmail,
Facebook and Twitter resulted in continuing the previous session.
The results for each of the four EC are discussed below.

EC1 The results gained from EC1 showed outcome 1 across all ser-
vices Google, Facebook and Twitter. This is identical to the results
seen in the baseline.

EC2 On EC2, the results also showed outcome 1 across all ser-
vices, with identical behaviour to the baseline and EC1.

14 « VanRijn

EC3 Once more, outcome 1 was found across all services with
yet again the identical behaviour we have seen in the baseline, EC1
and EC2.

EC4 For EC4, outcome 2 was found for the services Google and
Twitter and outcome 1 for Facebook. For EC4, the cookies seemed
to be invalidated as they did not allow for instant access to the ser-
vices without logging in as seen in the behaviour of the other ECs
and the baseline. This is likely due to us using another browser for
EC4. In this case, Google allowed us to login but did send a security
alert to the victim’s email notifying the victim of a login using a
‘new Windows device’, but did not block the login. After logging in
to Google, it showed a notification on the webpage saying ‘Welcome
to your new Windows’ and recommended a ‘privacy check’ and
a ‘security check’ in order to improve the security of the account.
Twitter allowed us to login, yet also sends a security notification to
the victim’s email address notifying them of a new login using an
unknown device. For Facebook the login was successful and did not
notify the user of the new login attempt.

6 DISCUSSION
6.1 RQ1: The stolen data

Our analysis showed that the set of information that AZORult can
steal is in theory infinite, as long as the attacker can specify what
exact information to look for. Analysis of sample (3) and the C2
server of sample (4) showed that criminals that use AZORult can
use it to steal any data as long as they specify it within the ‘file
grabber’-configuration. This ‘file grabber’ begins a search from the
given directory and steals all files within this sub-directory that are
matched to a regex provided in this configuration. That being said,
system information is always stolen and there are simple check-
boxes for stealing — among other information - ‘saved passwords’,
‘browser cookies and autocomplete’ and ‘browser history’. Depend-
ing on the goals of the AZORult user, other files might be stolen
in some cases compared to others. For example, in our imperson-
ation experiment we showed that AZORult is able to steal Google
Chrome’s ‘User Data’ folder successfully.

The system information that is stolen by both samples (3) and
(4) consists of OS information, the computer name and user name,
the screen resolution, the language packs installed, the local time
and timezone information, the CPU model, the amount of RAM
installed, video driver information, the processes running when
executing the malware and finally a list of installed software on the
system.

Remaining information that is stolen by means of the preconfig-
ured checkboxes consists of crypto wallets, Skype history, Telegram
information and Steam files.

6.2 RQ2: How the data is stolen

During the analysis of samples (1) and (2) it became clear that there
can be some extensive evasive behaviour that also potentially serves
as a ‘reconnaissance’ by checking the OS and processor information
and exfiltrating this information only. From samples (3) and (4)
we have learned that the data is stolen from a programmed list of

Registry keys and files on a Windows system when it concerns
the checkbox-configured stealing options. This information is then
organised into separate files with a clear structure by the malware,
then compressed, encrypted and sent to its affiliated C2 server. The
C2 server then decrypts the ZIP-file and saves the information as-is
without further processing. Finally, some of the data (user-password
combinations and cookies) can be exported using some built-in
utilities of the C2 web page. The data flow is illustrated in Figure 7.

6.3 RQ3: Impersonation effectiveness

Overall, the extent of the impersonation capability is large, as our
results show that the stolen information allows us to clone the
Google Chrome installation and User Data in such a way that the
cookies stolen by AZORult remain valid when implanted. This leads
to our results where outcome 1 was observed in EC1, EC2 and
EC3 where no login was even needed and we could still use the
session stored in the cookies. Only EC4, where a different browser
was used, showed outcome 2 for two out of three services (Google
and Twitter), which means there is still impersonation potential in
this scenario as outcome 1 was observed for the Facebook service.
However, we think the import process of the user data from Google
Chrome to the Firefox browser might have rendered the cookies
invalid, as Facebook did allow us to login without a negative RBA
response, but did not automatically open the stored session as we
observed in the results of EC1, EC2 and EC3. All in all, this tells
us that in the scenario that the stolen cookies are valid, the RBA
systems of Google, Twitter and Facebook do not respond negatively
(outcome 2) no matter the IP address, ISP or geolocation involved.

It should be noted that the Google Chrome version used in the
experiments is the latest and not a version that AZORult was de-
signed for. This prevents AZORult from actually decrypting and
stealing the passwords in plaintext as it was designed to do [19].
However, using what Picazo-Sanchez et al. [11] found regarding
how Google uses the Windows user’s SID in its HMAC hashing
to verify its installation and User Data, we found out that these
passwords can still be accessed after stealing and implanting the
data on a new VM that is a clone of the original one, since Google
Chrome is successfully able to hash its files given the fact that the
SID is identical on all VMs we use. If the SID is not the same, Google
Chrome does not automatically login to the Google profile (embed-
ded in the browser, which allows the user to view stored passwords)
and blocks access to stored passwords. However, this does not play
arole in the transfer and workings of the user cookies, as these are
successfully transplanted and their sessions remained valid.

The results of EC1, EC2 and EC3 also seem to imply that, in
our impersonation attacks, the RBA mechanisms used by Google,
Facebook and Twitter are evaded altogether by using the session
cookies. The fact that we do not have to actually log in to the
services and can keep using the stolen (still valid) session cookies
might mean we do not actually pass through any RBA system in the
first place and are therefore always observe outcome 1 as it does
not seem to matter what properties the attacker has with respect to
IP, ISP or geolocation as long as the stolen session cookies contain
a valid session.

7 CONCLUSION

In this paper we have analysed and compared the capabilities of
four samples of the AZORult malware to show that the AZORult
malware is capable of stealing a multitude of information and is
easily customised by an attacker to serve impersonation purposes.
We have also discovered and presented the methods and techniques
used by the AZORult malware to steal, process, send, collect and
store the data. Finally, we conducted an experiment showing that the
infostealing capabilities of AZORult allow for strong impersonation
attacks under the right circumstances.

8 FUTURE WORK

It remains largely unclear to us how in the analysis of samples (1)
and (2) the binaries ‘smpchost.exe’ and ‘YTLoader.exe’ and their
internet connectivity fit in the bigger picture of the infection and
could therefore be further analysed using a more realistic setup and
more experienced malware researchers.

The impersonation experiment we conducted has a lot of room
for improvement. Firstly, there’s the fact that we used clones of the
same Windows VM in our impersonation attacks. This is highly
unrealistic as it is virtually impossible to clone the victim machine
without creating a complete image of the victim’s hard disk, which
would be a difficult task to perform given the massive size of files
involved. Secondly, we experimented with a single profile consisting
of three accounts and had limited locations to attack from. This
renders the data marginal and can be scaled up in the number of
accounts, the number of services and the number of changes to the
implanted data by whoever has the resources to do so, in order to
further define the minimum viable product that the underground
market requires to successfully impersonate a user.

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisors Dr. Luca Allodi and
Michele Campobasso MSc for their helpful feedback and guidance
during this project as well as dealing with my occasional clumsiness
around the experiments. I wish to thank Ganduulga Gankhuyag
MSc for providing me with the virtual analysis environment that I
have used almost every day for a number of months. I wish to thank
my friend Simon for proofreading this paper and providing me with
feedback on the text. Finally, I would like to express my sincere
gratitude to my friends Abel, Eetu, Fernando, Jim, Lars, Loek, Mauk
and my brother Andries for helping me host the virtual machines
for the experiment, I could not have done this experiment without
your help.

REFERENCES

[1] Alexander Eremin. 2019. AZORult++: Rewriting History. https://securelist.com/
azorult-analysis-history/89922/.

[2] U.Bayer, A. Moser, and C. et al. Kruegel. 2006. Dynamic Analysis of Malicious
Code. In J Comput Virol, Vol. 2. 67-77. https://doi.org/110.1007/s11416-006-0012-2

[3] Andy Applebaum et al. Blake E. Strom. 2018. MITRE ATT&CK: Design and
Philosophy. https://attack.mitre.org/docs/ATTACK_Design_and_Philosophy
March_2020.pdf.

[4] Michele Campobasso and Luca Allodi. 2020. Impersonation-as-a-Service: Charac-
terizing the Emerging Criminal Infrastructure for User Impersonation at Scale. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security (Virtual Event, USA) (CCS °20). Association for Computing Machinery,
New York, NY, USA, 1665-1680. https://doi.org/10.1145/3372297.3417892

An In-depth Analysis of the AZORult Infostealer Malware Capabilities « 15

Kaspersky. 2019. Meet Genesis — the underground e-shop with tens of thou-
sands of digital doppelgangers for sale to bypass financial anti-fraud solu-
tions. https://www.kaspersky.com/about/press-releases/2019_meet-genesis-
the-underground- e-shop-with-tens-of-thousands- of-digital-doppelgangers
Raveed Laeb. 2020. Exploring the Genesis Supply Chain for Fun and Profit.
https://ke-la.com/exploring-the-genesis-supply- chain-for-fun-and-profit/
Kaiping Liu, Hee Beng Kuan Tan, and Xu Chen. 2013. Binary Code Analysis.
Computer 46, 8 (2013), 60-68. https://doi.org/10.1109/MC.2013.268

Rodel Mendrez. 2019. Messing with Azorult Part 1: Malware Break-
down. https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/
messing-with-azorult-part- 1-malware-breakdown/. Accessed: 22-12-2020.
Rodel Mendrez. 2019. Messing with Azorult Part 2: Command and Con-
trol. https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/messing-
with-azorult-part-2-command-and-control/. Accessed: 22-12-2020.

Andreas Moser, Christopher Kruegel, and Engin Kirda. 2007. Limits of Static Analy-
sis for Malware Detection. In Twenty-Third Annual Computer Security Applications
Conference (ACSAC 2007). 421-430. https://doi.org/10.1109/ACSAC.2007.21
Pablo Picazo-Sanchez, Gerardo Schneider, and Andrei Sabelfeld. 2020. HMAC and
“Secure Preferences”: Revisiting Chromium-Based Browsers Security. In Cryptol-
ogy and Network Security, Stephan Krenn, Haya Shulman, and Serge Vaudenay
(Eds.). Springer International Publishing, Cham, 107-126.

Darrel Rendell. 2019. Understanding the evolution of malware. Computer Fraud
& Security 2019, 1(2019), 17-19. https://doi.org/10.1016/S1361-3723(19)30010-7
SecureList. [n.d.]. Digital Doppelgangers. https://securelist.com/digital-
doppelgangers/90378/. Accessed: 22-12-2020.

Seqrite. 2019. MaaS Moving Towards APT as a Service? https://www.seqrite.com/
blog/maas-moving-towards-apt-as-a-service/. Accessed: 05-05-2021.

The BlackBerry Cylance Threat Research Team. [n.d.]. Threat Spotlight: Analyzing
AZORult Infostealer Malware. https://blogs.blackberry.com/en/2019/06/threat-
spotlight-analyzing-azorult-infostealer-malware. Accessed: 26-1-2020.

Trend Micro. 2019. AZORULT Malware Information. https:
//success.trendmicro.com/solution/000146108-azorult-malware-information-
kAJ4P000000KEK2WAM.

Stephan Wiefling, Luigi Lo Iacono, and Markus Diirmuth. 2019. Is This Really
You? An Empirical Study on Risk-Based Authentication Applied in the Wild. In
ICT Systems Security and Privacy Protection, Gurpreet Dhillon, Fredrik Karlsson,
Karin Hedstrém, and André Zuquete (Eds.). Springer International Publishing,
Cham, 134-148.

Stephan Wiefling, Luigi Lo Iacono, and Markus Diirmuth. 2019. Is This Really
You? An Empirical Study on Risk-Based Authentication Applied in the Wild. In
ICT Systems Security and Privacy Protection, Gurpreet Dhillon, Fredrik Karlsson,
Karin Hedstrém, and André Zuquete (Eds.). Springer International Publishing,
Cham, 134-148.

ZDNet. 2020. Chrome 80 update cripples top cybercrime marketplace.
https://www.zdnet.com/article/chrome-80-update-cripples-top-cybercrime-
marketplace/.

https://securelist.com/azorult-analysis-history/89922/
https://securelist.com/azorult-analysis-history/89922/
https://doi.org/110.1007/s11416-006-0012-2
https://attack.mitre.org/docs/ATTACK_Design_and_Philosophy_March_2020.pdf
https://attack.mitre.org/docs/ATTACK_Design_and_Philosophy_March_2020.pdf
https://doi.org/10.1145/3372297.3417892
https://www.kaspersky.com/about/press-releases/2019_meet-genesis-the-underground-e-shop-with-tens-of-thousands-of-digital-doppelgangers
https://www.kaspersky.com/about/press-releases/2019_meet-genesis-the-underground-e-shop-with-tens-of-thousands-of-digital-doppelgangers
https://ke-la.com/exploring-the-genesis-supply-chain-for-fun-and-profit/
https://doi.org/10.1109/MC.2013.268
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/messing-with-azorult-part-1-malware-breakdown/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/messing-with-azorult-part-1-malware-breakdown/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/messing-with-azorult-part-2-command-and-control/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/messing-with-azorult-part-2-command-and-control/
https://doi.org/10.1109/ACSAC.2007.21
https://doi.org/10.1016/S1361-3723(19)30010-7
https://securelist.com/digital-doppelgangers/90378/
https://securelist.com/digital-doppelgangers/90378/
https://www.seqrite.com/blog/maas-moving-towards-apt-as-a-service/
https://www.seqrite.com/blog/maas-moving-towards-apt-as-a-service/
https://blogs.blackberry.com/en/2019/06/threat-spotlight-analyzing-azorult-infostealer-malware
https://blogs.blackberry.com/en/2019/06/threat-spotlight-analyzing-azorult-infostealer-malware
https://success.trendmicro.com/solution/000146108-azorult-malware-information-kAJ4P000000kEK2WAM
https://success.trendmicro.com/solution/000146108-azorult-malware-information-kAJ4P000000kEK2WAM
https://success.trendmicro.com/solution/000146108-azorult-malware-information-kAJ4P000000kEK2WAM
https://www.zdnet.com/article/chrome-80-update-cripples-top-cybercrime-marketplace/
https://www.zdnet.com/article/chrome-80-update-cripples-top-cybercrime-marketplace/

16 + VanRijn

A ANALYSIS IN DETAIL
A.1 Static analysis

The goal of static analysis is to find clues regarding the intent of the
malware without executing it. This means that before running the
malware, it gives insight into what capabilities the malware can have
based on what DLL files are loaded (often needed for specific access
to networking infrastructure such as TCP connections, WebSockets
but also functions that can read Windows Registry keys), what URLs
are affiliated with the malware and therefore potential C2 servers
and other identifying string values that can be found within the
data section of some executables.

Furthermore, malware authors are in a constant arms race with
antivirus software authors and malware analysts and will attempt
to hide the behaviour and make it harder to detect the malware in
ways that would prevent an analyst from seeing the ‘real’ behaviour.
An example of this is that the malware checks if it is in a debug
environment or if other programs are running that could potentially
be analysing the malware and based on this information the malware
may alter its behaviour or even completely shut down. Using static
analysis, this behaviour can be spotted beforehand and can be dealt
with by, for example, patching the binary to jump over the code
that is responsible for checking the environment or by altering
the environment to suit the malware’s ‘expectation’ of a ‘victim
machine’ by not using certain analysis programs.

However, malware can make use of different obfuscation meth-
ods to hinder static analysis, some of which make it very hard for
programs that generate control flow graphs (CFG) to analyse the
instruction flow of the program, as Moser et al.[10] has proven. This
also renders static analysis hard to perform, as it can become quite
difficult to comprehend the code and its potential behaviour.

Another technique malware can use to evade static analysis is
using indirect jump tables (IJT), where the malware generates a
table of addresses during run-time, therefore making it impossible
to know some steps within the control flow of the program since
the specific place in the code to be jumped to is unknown. Multiple
other caveats are listed by Liu et al. [7].

Due to caveats like these, dynamic analysis is the next step of
analysing the binary after exhausting the static analysis options.

A.1.1 The process. Firstly, clues can be found by hashing the sample
with an MD5 hashing tool'? and seeing additional information using
the tool like resource imports. After that, the sample is checked to
see if it was packed. Packing is a form of compression of code that
often obfuscates the code. This makes it harder for static analysis to
be performed as instructions are placed in a different order, the file
hash will be different than the unpacked version of the program and
might attempt to evade anti-virus software this way. The samples
are analysed with the tool PEiD!!, which looks for packing artefacts.
When a packer is identified by PEiD, a corresponding unpacker
can often be found online. When PEiD identifies the executable as
a NET application, the program dnSpy'? is applicable. This tool
allows the analyst to use a GUI similar to Visual Studio to debug

19 FLAREVM comes with an MD5 hashing tool as part of the Malcode Analyst Pack:
http://sandsprite.com/iDef/ MAP/

Uhttps://www.aldeid.com/wiki/PEiD

2https://github.com/dnSpy/dnSpy

and analyse the source code of the executable and often serves the
user with a large list of .NET libraries used by the executable to aid
in analysis. Another tool that is used is IDA Free', a disassembler
serving the user by generating assembly language from the binary
and is used to analyse the execution flow of the binary and give
a first look at which Windows API calls it will attempt to make
when run. It produces a list of strings and allocated variables within
the binary, a list of imported functions from the Windows API and
gives a nice overview of the code flow using graphs. The program
Ghidra'* is a reverse engineering tool that also disassembles the
binary into assembly code like IDA, but goes one step further and
make a (decompiled) C code rendition of that same code, which is
more readable than assembly and thereby speeds up the analysis
process. Therefore, Ghidra is used in the analysis to clear up parts
found in the IDA analysis that are large and hard to understand.
Both programs have search functions that aid in finding strings and
variables. Finally, both have cross-referencing search functions that
make it easy to find which parts of the code are used and where
they are located in the program.

A.2 Dynamic analysis

After a static analysis is performed, the dynamic analysis follows.
Here the malware is being run in a safe environment to see how it
behaves, what files and registry keys it attempts to access and to
clear up certain parts of the assembly code that can be debugged
to see the internal state of the program at any point during run-
time. Also, dynamic analysis unveils what specific parts of code
do that remained more opaque in the static analysis. Furthermore,
networking attempts can be captured and their contents analysed
to reveal more about any processing of information before it is
exfiltrated.

As was shortly mentioned earlier in Section A.1, malware can
have anti-virtualmachine (anti-VM) techniques that can be used to
identify the analysis environment the malware is in. Bayer et al.[2]
lists a few of these and they are kept in mind during the dynamic
analysis of the malware.

A.2.1 The process. We start off by seeing if the samples are known
by “VirusTotal.com’!> or ‘AnyRun’!®. These websites potentially
already have reports describing the behaviour and dropped files of
the malware samples that can be matched to the ones analysed in
this paper by their file hash.

The behaviour is then analysed by firstly running the malware
without any analysis programs and observing its behaviour. This
can be used as a baseline to see if the behaviour changes, which
would indicate the malware is capable of detecting potential debug-
ging or analysis programs analysing it and therefore changing its
behaviour. After this dry run the Process Monitor program is used
to list the complete set of events that occur on the machine related

Bhttps://www.hex-rays.com/ida-free/

Yhttps://ghidra-sre.org/

VirusTotal is an online database of known malware samples and their behaviour.
https://virustotal.com

16 AnyRun is an online automatic malware reporting environment. Public reports of
analyses that were run before are usually quite extensive in checking for known
malware indicators-of-compromise. any.run

http://sandsprite.com/iDef/MAP/
https://www.aldeid.com/wiki/PEiD
https://github.com/dnSpy/dnSpy
https://www.hex-rays.com/ida-free/
https://ghidra-sre.org/
https://virustotal.com
any.run

to interaction with files, the Windows registry, UDP/TCP connec-
tions and process control. After having started Process Monitor, the
malware is executed such that the interactive behaviour is logged
by Process Monitor for further analysis. Furthermore the tool ‘API
Monitor’ can be used to render a complete list of all Windows API
calls the program makes, potentially revealing its use of methods

like process injection, privilege escalation or achieving persistence.

An In-depth Analysis of the AZORult Infostealer Malware Capabilities « 17

Combining the information gathered from looking at the execu-
tion flow in the static analysis and the interaction with the operating
system monitored by Process Monitor, several interactions can be
tracked down as to where and when they happen within the execu-
tion of the program by means of debugging.

