
 Eindhoven University of Technology

MASTER

An Empirical Study on Dynamic Curriculum Learning in Information Retrieval

Qian, Chen

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/8997497f-b7fd-4d52-9ec6-a882ad583ab0

An Empirical Study on
Dynamic Curriculum

Learning in Information
Retrieval

Master Thesis

Chen Qian
c.qian@student.tue.nl

1443348

Department of Mathematics and Computer Science

Supervisor: Dr. Meng Fang

Graduation Committee:
Dr. Meng Fang

Dr. rer. nat. Morteza Monemizadeh
Dr. Yulong Pei

Final Report

Eindhoven, September 2021

Contents

Contents ii

1 Introduction and Background 2

1.1 Introduction . 2

1.2 Background . 3

1.2.1 Natural Language Processing . 3

1.2.2 Neural Language Model . 5

1.2.3 Non-convex Optimization . 7

1.2.4 Continuation Method . 8

1.2.5 Curriculum Learning . 9

2 Problem Formulation 12

2.1 Motivation . 12

2.2 Formalization . 13

2.2.1 Conversation Response Ranking . 13

2.2.2 Curriculum Learning . 13

3 Related Work 17

3.1 Neural Ranking Models . 17

3.2 Curriculum Learning Frameworks . 18

3.3 Remaining Challenges . 18

4 Methodology 20

4.1 Curriculum Learning Framework . 20

4.1.1 Generating Scoring File . 20

4.1.2 Sampling with Pacing Function . 20

4.2 Dynamic Rescoring Method . 20

4.3 Noise Method . 21

5 Experiments and Results 24

5.1 Experimental Setup . 24

5.1.1 Conversation Response Dataset . 24

5.1.2 BERT . 27

5.1.3 Implementations . 27

5.2 Results . 30

5.2.1 Basic Experiments with CL Framework . 30

5.2.2 Dynamic Rescoring Method . 32

5.2.3 Noise Method . 35

ii An Empirical Study on Dynamic Curriculum Learning in Information Retrieval

CONTENTS

6 Conclusions and Future Work 39
6.1 Conclusions . 39

6.1.1 Contributions . 39
6.1.2 Limitations . 40

6.2 Future Work . 40

7 Acknowledgement 42

Bibliography 43

An Empirical Study on Dynamic Curriculum Learning in Information Retrieval iii

Abstract

Most humans need to spend nearly twenty years on well-organized training before fully functioning
in human society. For many people, well-organized training means following a school curriculum,
which prepares the knowledge in a meaningful order, usually from easier concepts to more complex
concepts. Providing the previously learned knowledge can accelerate the learning speed of new
ones. Resembling the human learning process, curriculum learning (CL) has been successfully ap-
plied in many machine learning fields. Given that lack of training data has become the bottleneck
of many research questions. Curriculum learning is a promising research direction to tackle this
problem, as it can improve model performance without extra computational cost and requirements
for additional data. Also, there remains a research gap of CL in Information retrieval (IR). We
contribute to this research gap by doing empirical explorations with the state-of-the-art language
model BERT in one of the complex IR tasks, conversation response ranking (CRR). The exist-
ing CL frameworks contain two main steps, first the difficulty criterion to arrange the data from
easy to difficult, and second the speed criterion to control the pacing of transferring from easy to
difficult data. However, the difficulty criterion or the speed criterion usually remains unchanged
and static during the entire training process. For a more comprehensive exploration, we propose
the dynamic rescoring method for the first step, and the noise method for the second step. The
experimental results show: 1) the dynamic rescoring method has no exciting improvement over
the baseline CL methods, whereas the noise method can slightly outperform the baselines with a
non-excessive noise ratio; 2) the comparisons of different settings inform us that a good difficulty
criterion and a proper speed criterion are essential for CL to be effective.

Key words: curriculum learning, information retrieval, conversation response ranking, BERT

An Empirical Study on Dynamic Curriculum Learning in Information Retrieval 1

Chapter 1

Introduction and Background

1.1 Introduction

Curriculum learning (CL) is a training strategy in machine learning. CL is inspired by the human
learning process at school. The school curriculum is well-organized training, usually preparing the
knowledge from easier concepts to more complex ones. Providing the previously learned knowledge
can accelerate the learning speed of the new knowledge. Humans also learn much faster and better
with the knowledge presented in a meaningful order instead of randomly presented. The earliest
studies of applying this human-like learning process to machines started at the intersection of cog-
nitive science and machine learning (Elman et al.[13]; Rohde & Plaut et al.[42]; Krueger & Dayan
et al.[25]). Slightly later, Bengio et al.[3] formally proposed the vanilla CL in 2009 by designing CL
training on three different tasks, including binary classification, shape recognition, and language
modeling. They hypothesized that a well-designed curriculum works as a continuation method
that helps find a better local minimum of a non-convex training criterion, and a regularizer that
regularizes the process leading to a lower generalization error. Their success has led to a flourish
of researches in CL with many exciting achievements in multifarious fields, including computer
vision [6][20] and natural language processing [24][5][55].

Compared with random sampling, CL has been proved to accelerate the convergence and enhance
model performance without extra computational costs and requirements for additional training
data. CL can be a promising direction to tackle the problem that lack of data has become the
bottleneck for many complex tasks with deep neural models. The idea of vanilla CL is to design
a training curriculum by first sorting training data from easy to difficult and then training the
model with easy samples in the early stages and gradually including in more difficult data later.
There are mainly two challenges in making CL effective: 1) how to judge the difficulty of
data with a good difficulty criterion; 2) how to determine the speed of transferring
from easy data to difficult data according to a proper speed criterion.

In this work, we aim to contribute to tackling the challenges by conducting empirical explorations
of CL in information retrieval (IR), as there exists a research gap of applying CL in IR. We choose
conversation response ranking (CRR) as the IR task, because CRR task is challenging and com-
plex with multi-turn conversations and responses. We choose the pre-trained deep language model
BERT [12] as the neural ranking model, because BERT has been proved to perform outstandingly
on multiple retrieval and ranking tasks [10][7][32].

We base our work on the CL framework from Penha et al.[35], where they have experimented with
several static difficulty criteria and speed criteria. However, exploration of any dynamic strategy
is absent in their work. Thus in response to the two CL challenges and the absence of dynamic
strategy:

2 An Empirical Study on Dynamic Curriculum Learning in Information Retrieval

CHAPTER 1. INTRODUCTION AND BACKGROUND

• 1) For the difficulty criterion step, we design the dynamic rescoring method to explore
if re-sorting the data several times according to the current model can help improve the
performance. The motivation of the dynamic rescoring method is that while the model is
learning, its evaluation of the difficulty is also changing.

• 2) For the speed criterion, in addition to determining the speed by a pacing function, we
combine the idea from the work of Fang et al.[14] and apply the noise method. In brief,
their vision is to allow the model to have more explorations in the early learning stages
and gradually back to its learning goal. Likewise, in our work, by adding noise to the CL-
scheduled data with a shrinking amount automatically adapted with the number of iterations,
we explore if more flexibility can be beneficial.

1.2 Background

In this section, we introduce the basic knowledge of our research questions, including the back-
ground of information retrieval (IR), which is a sub-field of natural language processing (NLP),
the model architecture and attention mechanism of Transformer, as well as the development and
NLP related applications of curriculum learning.

1.2.1 Natural Language Processing

Natural language processing (NLP) is the intersection of linguistics and computer science (in-
cluding artificial intelligence). The goal of NLP is to train the machines to understand human
language and be capable of processing and analyzing massive natural language data precisely and
efficiently. In NLP, popular challenging tasks involve machine translation, speech processing, nat-
ural language understanding, and natural language generation. In the research history of NLP, it
has witnessed mainly three stages [51]: the first one is classical symbolic NLP from the 1950s to
the early 1990s where complicated linguistic rules were added into the NLP system; the second
one is empirical and statistical NLP from the 1990s to 2010s where machine learning algorithms
were implemented into the system thanks to the steady growth of computational power and the
gradual diminishing of the dominance of Noam Chomsky’s linguistics theories; finally the Neural
NLP, as the one being dominant currently, relies heavily on deep neural architectures due to the
widespread of representation learning and state-of-art performance of deep neural networks in
recent years.

Non-neural Methods

We merge the first and second stages into the category non-neural methods and briefly introduce
this subsection. In the period of classical symbolic NLP, many systems were based on complex
sets of hand-written rules. Traditionally [19], the entire process is decomposed into several stages,
as somehow listed in a granularity order, are tokenization, lexical analysis, syntactic analysis, se-
mantic analysis, and pragmatic analysis. Tokenization and lexical analysis are at the level of the
word, while the rest are usually at the level of sentence, paragraph, or document. Tokenization
is to split a sentence into words, which is not a problem for some languages (e.g., English words
can be easily separated because it is space-delimited), whereas it is essential to separate words
correctly for some other languages (e.g., Chinese, Japanese, and Thai). Lexical analysis is also to
perform text analysis at the level of the word, of which a basic task is to relate the morphological
variants of one word to its original version in the dictionary (e.g., relate does, did, done to do).
For syntactic analysis, the task is to analyze the sentence according to its grammatical structure.
Semantic analysis extracts the semantic or literal meaning from the sentence, and it sometimes
works also at the level of the word, whereas pragmatic analysis focuses on the task to determine
the meaning of the utterance or text at the paragraph or document level. Although it can be hard
to split the task into these stages in real-life NLP applications, such a separation makes software

An Empirical Study on Dynamic Curriculum Learning in Information Retrieval 3

CHAPTER 1. INTRODUCTION AND BACKGROUND

engineering tasks more manageable.

In the time of empirical and statistical NLP, many methods were adopted from machine learning
algorithms, including supervised (e.g., naive Bayes, support vector machine, and logistic regres-
sion), unsupervised (e.g., mixture models, and expectation-maximization models), and methods
used in sequence analysis (e.g., hidden Markov chain, conditional random field). With the increase
in computational power, machine learning methods achieved exciting breakthroughs in many NLP
tasks, where those methods outperformed the classical symbolic methods and dominated in the
fields of NLP. Although many researchers at that time were fascinated by the incredible power of
machine learning methods, some still saw the prospective future of incorporating linguistics rules
into statistical methods.

Neural Methods

The neural methods are based on the deep neural architectures, and thus in this subsection, we
give an intuition of the neural methods by illustrating a fundamental and general neural network
[11] with one hidden layer (it is not a deep network, but it can be expanded easily with more hidden
layers). This network, shown in figure 1.1, is a simple fully-connected feed-forward network with
an input layer (xi, i ∈ 1, 2, . . . , n0), one hidden layer (hi, i ∈ 1, 2, . . . , n1) and an output layer (yi,
i ∈ 1, 2, . . . , n2). It is worth noting that a feed-forward network is a multi-layer network whose
units connect with no circles. Moreover, fully connected means each unit in each layer takes all
the units from the previous layer as input and has connected with all of them.

Figure 1.1: A basic example of neural network.

Take a neural unit of the hidden layer as an example (a blue circle with symbol hi in figure 1.1),
the unit takes a weighted sum of its input with an additional term called bias. As shown in the
equation 1.1, b denotes the bias term, w denotes a vector of weights.

hi = b+
∑
i

wixi (1.1)

And then an activation function (f) is applied to hi in equation 1.2, usually f could be sigmoid
function, ReLU or tanh function.

y = f(hi) = f(b+
∑
i

wixi) (1.2)

Then, by expanding the above equations on a single unit to the entire 3-layer network, we can
have the following equations 1.3 [11]. W is a matrix consists of the weight vectors w of every unit
in the hidden layer, b denotes a vector of bias items, U is a similar weight matrix of the output
layer, σ denotes the sigmoid function as an activation function, and finally, a softmax function
is applied as the final output should be a probability between 0 and 1.

4 An Empirical Study on Dynamic Curriculum Learning in Information Retrieval

CHAPTER 1. INTRODUCTION AND BACKGROUND

h = σ(Wx+ b)

z = Uh

y = softmax (zi) =
ezi∑d
j=1 e

zj
1 ≤ i ≤ d

(1.3)

Information Retrieval

According to [29], an academic definition of information retrieval (IR) can be: IR is usually to find
documents of an unstructured nature (e.g., text) from massive collections stored on computers to
answer an information query. Following the above definition, when the query and documents are
in natural language (without an easy-for-a-computer structure), IR can be seen as a subfield of
NLP. Distinguished by the operating scale, IR systems can be categorized into three categories:
web search, enterprise/institutional/domain-specific search, and personal search, from big scale
to small scale. In web search, the IR system needs to search over billions of documents within a
satisfying short responding time. Thus many issues need to be tackled, including good indexing,
building an efficient system to work with enormous scale, and against the tricks played by site
providers to boost the flow to their pages. The task conversational response ranking (CRR),
which we are interested in, is covered by web search. In brief, CRR ranks the retrieved documents
(responses) according to their relevance to the query (conversation) by analyzing the content.

1.2.2 Neural Language Model

A language model [2] is a function or an algorithm for gaining such a function that can capture the
probability distributions of natural language sequences of words. Usually, a language model can
predict the next word when the previous words are given. Specifically, a neural language model
is based on neural networks, and it alleviates the curse of dimensionality by learning distributed
representations. Generally speaking, the curse of dimensionality means that with the number of
input features increasing, the number of training data needed grows exponentially. Specifically, in
language models, the curse of dimensionality comes from the explosion in the number of possible
different word sequences. For example, with a 5000-word vocabulary, a 15-word sequence can have
500015 variants. In the following subsections, we introduce one state-of-the-art language model of
interest called Transformer [49].

Architecture of Transformer

Transformer was proposed by Vaswani et al.[49]. Complying with the paper name “Attention is all
you need”, the Transformer has a new architecture relying entirely on the attention mechanism.
The architecture of the Transformer is shown in figure 1.2, which consists of two parts, the left
half is the encoder, while the right half is the decoder. Both the encoder and decoder have a
stack of N = 6 identical blocks as the corresponding one shown in figure 1.2. For the encoder, the
block is composed of two sub-layers. The first one is a multi-head attention layer, and the second
is a position-wide fully-connected feed-forward layer. While for the decoder, in addition to the
same two sub-layers as the encoder, one extra multi-head attention sub-layer is added to attend
the output of the encoder, also a masking strategy is applied to guarantee that the prediction at
position i only depends on the previous positions less than i. Besides, for each sub-layer, a residual
connection followed by layer normalization (Add & Norm) is applied, which can be expressed as
LayerNorm(x + Sublayer(x)). They also note that to facilitate these residual connections, the
dimensions of the outputs of all the layers in the model is dmodel = 512.

Attention of Transformer

Generally speaking, an attention function takes a query and a set of key-value pairs as input and
produce output correspondingly. With the query, keys and values all being vectors, firstly dot

An Empirical Study on Dynamic Curriculum Learning in Information Retrieval 5

CHAPTER 1. INTRODUCTION AND BACKGROUND

Figure 1.2: The architecture of Transformer [49].

products are taken between query and each key, then the dot products serve as the weights to
compute a weighted sum of the values, which is the output. The attention mechanism used in
Transformer can be seen in figure 1.3, including Scaled Dot-Product Attention and Multi-Head
Attention. A mathematics expression of the Scaled Dot-Product Attention is shown in equation
1.4, a scale of

√
dk is added in case that a large value of dk can make the gradients of the softmax

function extremely small. Whereas the Multi-Head Attention is mathematically shown in equation
1.5, where the projections are parameter matrices WQ

i ∈ Rdmodel ×dk ,WK
i ∈ Rdmodel ×dk ,WV

i ∈
Rdmodel ×dv and WO ∈ Rhdv×dmodel . Multi-Head Attention is proved to be beneficial and the
authors assume that the model can jointly attend to different representation subspaces at various
positions. In Transformer, h = 8 parallel attention heads are implemented with the dimension
of each head reduced as dk = dv = dmodel /h = 64., so that multi-head strategy has a similar
computational cost as the single-head attention with full dimensionality.

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V (1.4)

MultiHead(Q,K, V) = Concat (head 1, . . . , head h)WO

where head i = Attention
(
QWQ

i ,KW
K
i , V W

V
i

) (1.5)

Position-wise Feed-Forward Networks

The feed-forward layer as mentioned in the architecture consists of two linear transformations with
a ReLU activation in the middle, as shown in equation 1.6.

FFN(x) = max (0, xW1 + b1)W2 + b2 (1.6)

As Transformer has no recurrent or convolutional layers, it is essential to infuse positional inform-
ation into the model. That is the reason why “positional encoding” is added to the embedding.
And the type of “positional encoding” in Transformer can be seen in equation 1.7, where pos is
the position, and i is the dimension.

6 An Empirical Study on Dynamic Curriculum Learning in Information Retrieval

CHAPTER 1. INTRODUCTION AND BACKGROUND

Figure 1.3: The attention mechanism of Transformer [49].

PE(pos,2i) = sin
(
pos/100002i/dmodel

)
PE(pos,2i+1) = cos

(
pos/100002i/dmodel

) (1.7)

1.2.3 Non-convex Optimization

A generic definition of optimization problem is shown in equation 1.8 [21], where x is the variable
of the problem, function f : Rp → R is the objective function, and C ⊆ Rp is the constraint set of
the problem.

minx∈Rp f(x)
s.t. x ∈ C (1.8)

Concerning the optimization problem in machine learning, the objective function are usually en-
coded with some specific behavior wanted by the algorithm designer, for example, fitting the model
well to the training data by minimizing a proper loss function. Moreover, the constraint set adds
restrictions to the model, for instance, limiting the model size.

In order to be called a convex optimization problem, one must have both convex objective func-
tion and convex constraint set, otherwise it is a non-convex optimization problem. So first we will
introduce some of the basic definitions of convex function, as well as the definition of convex set.
For a continuously differentiable function f : Rp → R to be considered convex, it should satisfy
that f(y) ≥ f(x) + 〈∇f(x), y − x〉 for every x, y ∈ Rp, where ∇f(x) is the gradient of f at x.
Also, there is a simpler definition without considering notions of derivatives, which defines convex
functions f : Rp → R as following f((1−λ) ·x+λ · y) ≤ (1−λ) · f(x) +λ · f(y) for every x, y ∈ Rp
and every λ ∈ [0, 1]. Whereas for a set C ∈ Rp to be considered convex, it should follow that
(1− λ) · x+ λ · y ∈ C for every x, y ∈ C and λ ∈ [0, 1]. A visualization of several kinds of convex
function is shown in figure 1.4, whereas a visual representation of convex and non-convex set is
displayed in figure 1.5.

In real life, it is more common for people to encounter non-convex optimization problems, which
makes it necessary to focus more on non-convex optimization problems. Especially in recent years,
more and more applications that require learning algorithms to deal with high dimensional data
have been emerging rapidly, such as large-scale web documents classification, recommendation
systems with both millions of items and customers, and medical image analysis. The blooming of

An Empirical Study on Dynamic Curriculum Learning in Information Retrieval 7

CHAPTER 1. INTRODUCTION AND BACKGROUND

Figure 1.4: Several different types of convex functions [21].

Figure 1.5: Some examples of convex and non-convex set [21].

such modern applications makes it necessary to facilitate the learning model with well-designed
structural constraints from estimating the training data, and such structural constraints usually
are in the non-convex set. On the other hand, deep neural architecture, as one of the most lead-
ing and popular models for tackling these applications, always leads to a non-convex objective
function. The conversation response ranking task selected in this work is also a non-convex optim-
ization problem. A visualization of two simple non-convex objective function examples are shown
in figure 1.6.

Figure 1.6: Examples of non-convex objective function surface: multiple local minima (left), saddle
point (right) [21].

1.2.4 Continuation Method

Continuation method [1] is an optimization strategy that tackles minimizing non-convex criteria
by first optimizing a smoothed (simplified) objective and gradually moving to a less smoothed
objective. It is with the intuition that a smoothed, or in other words, a simplified version, can
give an overview of the original problem. According to one definition by Bengio et al.[3], suppose
Cλ(θ) is a single-parameter family of cost functions, where C0 is a smoothed version that can

8 An Empirical Study on Dynamic Curriculum Learning in Information Retrieval

CHAPTER 1. INTRODUCTION AND BACKGROUND

be optimized easily, and C1 is the real target criterion. So one starts from optimizing C0, then
increases λ slowly towards the target C1. During this process, as C0 is a simplified version of C1,
θ is likely to end in the basin of attraction of a dominant minimum of C1, a local or sometimes
global minimum.

1.2.5 Curriculum Learning

The majority of humans need to spend nearly twenty years on well-organized training before they
are fully functional and ready to start their careers. Usually, for many people, well-organized
training means following a school curriculum designed and adjusted constantly based on numer-
ous educational researches. The school curriculum prepares the knowledge in a meaningful order,
usually from easier concepts to more difficult concepts, providing that the previously learned know-
ledge can accelerate the learning speed of the new ones. Inspired by the human learning process,
some researchers (Elman et al.[13]; Rohde & Plaut et al.[42]; Krueger & Dayan et al.[25]) at the
intersection of cognitive science and machine learning started to wonder whether this curriculum
learning strategy would be effective for machines.

To answer this question and explore when and why a curriculum can make machine learning more
effective than random sampling, Bengio et al.[3] proposed vanilla curriculum learning in 2009.
They hypothesized that a well-established curriculum could function as a continuation method.
That is to say, at a high level, a curriculum can also be seen as a sequence of training criteria.
In each sequence stage, the corresponding training criterion assigns a different set of weights to
the training samples. Typically, the early stages favor easier examples, while the later stages pay
more attention to more difficult examples. Finally, the re-weighting of the examples is uniform
that equals training on the target training set or distribution. One can define curriculum learning
as follows. Let z be a random variable representing a training example for the machine, P (z) is
the target training distribution of the interest for the learner, 0 ≤ wλ(z) ≤ 1 is the weight assigned
to the example z at step λ in the curriculum stages, with 0 ≤ λ ≤ 1 (monotonically increasing
from 0 to 1), and W1(z) = 1. The corresponding training distribution at step λ is

Qλ(z) ∝Wλ(z)P (z) ∀z (1.9)

such that
∫
Qλ(z)dz = 1, then it follows that

Q1(z) = P (z) ∀z (1.10)

They also give a simple definition of curriculum as follows. For a distribution Qλ satisfying
equation 1.9 and 1.10, if its entropy follows equation 1.11 and weight Wλ+ε(z) is monotonically
increasing in λ as shown in equation 1.12, then Qλ is called a curriculum. Intuitively speaking,
increasing λ means new samples (weight) are added so that training data’s diversity (entropy) is
also increasing. They want the training to start with a relatively small set of easy examples and
end with the target training set. In a word, curriculum learning proposed by Bengio et al.[3] is
an optimization method targets at benefiting the process of minimizing a non-convex criterion by
organizing the training data in an easy-to-difficult order. However, “easy examples” or “difficult
example” are sometimes hard to define and highly depends on the problem. Thus more exploration
is needed in this direction.

H (Qλ) < H (Qλ+ε) ∀ε > 0 (1.11)

Wλ(z) ≤Wλ+ε(z) ∀z,∀ε > 0 (1.12)

To explore the effectiveness of CL, Bengio et al.[3] have experimented on three different problems.
The first one was a simple toy problem of binary classification, where they artificially generated
training data to train a Perceptron and used two simple ways to define easiness. One defined the
examples that were correctly classified by a linear SVM model as easy examples and the rest as

An Empirical Study on Dynamic Curriculum Learning in Information Retrieval 9

CHAPTER 1. INTRODUCTION AND BACKGROUND

difficult examples, while the other introduced noisy examples whose inputs were irrelevant to the
label as difficult examples. For the result that the curriculum was significantly better, they argued
that although difficult examples are more informative, they can confuse the model compared with
easier examples. The second problem was shape recognition (3-class multi-classification), where
they generated easy examples with less variability in object shape, size, position, orientation, and
greyscales of the foreground and background. They trained a neural network (3 hidden layers)
with a two-stage curriculum training for this problem. At the first stage, the model was trained
only on the easy examples, and then when it reached the switch epoch, the training switched
to the stage with only difficult examples. For curriculum training, the testing error on the dif-
ficult examples was much lower. The third case is on language modeling, where they designed
the curriculum training with four stages based on vocabulary size. Specifically, for the first stage,
only text containing the 5000 most frequent words was used for training, then the vocabulary was
enlarged by 5000 words per stage until it reached 20000 words. A significant improvement by
curriculum training also applied to this problem.

Since then, curriculum learning has aroused massive research interest. Very recently, Soviany et
al.[44] have written a survey to summarize these works. They formalized the curriculum learning
from a great diversity of studies into a generic formulation, which is shown in Algorithm 1.

Algorithm 1 General curriculum learning algorithm [44].
.

M – a machine learning model;
E – a training data set;
P – performance measure;
n – number of iterations or epochs;
C – curriculum criterion or difficulty measure;
l – curriculum level;
S – curriculum scheduler;
for t ∈ 1, 2, . . . , n do
p← P (M)
if S(t, p) = True then
M, E∗, P ← C(l, M, E, P)

end if
E∗ = Select(E)
M = Train(M, E∗, P)

end for

The original definition from Begio et al.[3] only focuses on the training dataset (E), while it can be
seen in Algorithm 1 that subsequent studies have expanded curriculum learning to model (M) and
performance measure (P) as well. According to Soviany et al.[44], applying curriculum learning
on training dataset (E), model (M), or performance measure (P) all have the same goal, namely
to smooth the loss function. The curriculum criterion or difficulty measure (C) in the algorithm
is the methodology of how to determine the ordering, and it modifies the training dataset (E)
by, for example, sorting the data from easy to difficult; the model (M) by for example increasing
model capacity; the performance measure (P) by for example adding complexity to the objective
function. The curriculum is a sequence of training criteria that differ on different levels (l). Fi-
nally, the curriculum scheduler (S) is another critical component determining when to update C
for each level.

A more intuitive example of curriculum learning over the training dataset (E) is shown in figure
1.7, where there are three curriculum levels based on the time from t-k to t+k. The data is sorted
and separated into three difficulty levels by curriculum criterion. These subgroups of data are
then fed to the model one by one at the corresponding time stage, and the performance of the

10 An Empirical Study on Dynamic Curriculum Learning in Information Retrieval

CHAPTER 1. INTRODUCTION AND BACKGROUND

trained model is evaluated each time.

Figure 1.7: General framework of curriculum learning on training dataset [44].

Curriculum learning has been explored in various domains and proved to be effective in many of
them, such as natural language processing (including speech processing), computer vision, medical
imaging, and reinforcement learning. In addition to the vanilla curriculum learning proposed by
Bengio et al.[3], other researches can be categorized into the following groups by a multi-perspective
categorization: self-paced learning (SPL), self-paced CL, balanced curriculum, progressive CL,
teacher-student CL, and implicit CL. For a brief introduction, unlike vanilla CL pre-defines the
curriculum criterion, SPL re-evaluates the difficulty of the training data during the training
process and resorts the data accordingly; self-paced CL is a combination of vanilla CL and
SPL with both a pre-defined criterion and dynamical adjustments of the criterion; balanced
curriculum guarantees the training data to be diverse enough so that the training can cover a
balanced diversity; progressive CL modifies the task settings progressively, for example, Morerio
et al., [31] apply progressive CL by proposing a time scheduling to mutate the dropout probability;
teacher-student CL improves performance by jointly training two models, for example [22], one
model evaluates the importance of the training samples (teacher) and the primary model (student)
follows the evaluation while training; implicit CL is utilizing CL without sorting the training
data in an apparent order.

An Empirical Study on Dynamic Curriculum Learning in Information Retrieval 11

Chapter 2

Problem Formulation

In this chapter, we first motivate the research question that we focus in this thesis, including the
prospect of utilizing curriculum learning (CL) and the research gap in applying CL in information
retrieval (IR). Then we give a formal definition of the CL framework in this work.

2.1 Motivation

Curriculum learning (CL), as a training strategy, can be applied to the training dataset, model,
or performance measure, with the common goal to smooth the loss function or the objective func-
tion. Different CL methods are introduced in chapter 1. This paper mainly focuses on the vanilla
CL [3], that is utilizing CL on the training dataset by sorting the data in a meaningful order
(e.g., from easy to difficult according to a difficulty criterion) and then training the model with
the sorted data. Compared with random sampling, CL can improve the training process (e.g.,
accelerate the convergence) and enhance model performance without extra computational costs
and requirements for additional training data. These advantages or effectiveness of CL can be a
promising research direction to tackle the following existing problem:

With recent breakthroughs and growing interest in models with deep neural architectures and
million (e.g., BERT [12]) or even billion (e.g., GPT-3 [4]) parameters, the demand for datasets
of massive size is dramatically increasing as well. However, it is sometimes hard to satisfy this
longing for more training data, thus creating an obstacle to improving the model performance. For
example, Talmor et al.[45], who have conducted an empirical investigation of generalization and
transferring on ten reading comprehension (RC) datasets with the model DocQA [8] and BERT,
believe that the bottleneck is the dataset size rather than the models.

Besides the benefits of utilizing CL, another motivation is the research gap in applying CL in
information retrieval (IR). Although CL has been proved to work effectively on many natural
language processing (NLP) fields, including machine translation [24][57][26] and speech processing
[5][59][50], yet the effectiveness of CL has rarely been explored in IR [35]. Also, as far as we know,
CL has rarely been studied in neural ranking models, except for the work by Penha et al.[35],
where they accomplished an empirical study of CL on conversation response ranking (CRR) task
with BERT. Their work tried seven different scoring functions and seven different pacing functions
to compare if there is significant improvement with CL-scheduled training to baseline. It is worth
noting that they name the difficulty criterion as scoring function, and the speed of transferring
from easy data to difficult data as pacing function. Their results show that CL can improve model
performance significantly. They also argue that neural ranking models are more suitable for
utilizing CL than traditional Learning to Rank (LTR) models because no efficiency improvement
over random sampling is found on the LTR with CL [15]. Also, traditional LTR models create
representations based on manually engineered input features, whereas the neural ranking models

12 An Empirical Study on Dynamic Curriculum Learning in Information Retrieval

CHAPTER 2. PROBLEM FORMULATION

learn the representations automatically. In addition, Penha et al.[35] mainly focus on how to
predefine the curriculum, which remains unchanged during the entire training process. Still, there
is no exploration of any dynamic strategy. The dynamic strategy here means the difficulty criterion
or speed criterion can change during the training.

2.2 Formalization

Corresponding to the motivations, this work explores how to apply curriculum learning (CL)
dynamically on a neural language model to improve the model performance in IR. Following the
choices of Penha et al.[35], we choose BERT as the neural language model as BERT has performed
outstandingly on a wide range of NLP tasks. We choose conversation response ranking (CRR)
as the task in IR not only as CRR is challenging and complex with multi-turn conversations and
responses, but also that there are suitable large-scale datasets available. The formalization of the
CRR task and the CL framework in this work is defined in the following subsections. The details
of our dynamic methods are elaborated in chapter 4.

2.2.1 Conversation Response Ranking

A general procedure of conversation response ranking task is for any given conversation (query), to
rank the responses (documents) from the most relevant to the least relevant with a measurement
of relevance. We can formalize the dataset of CRR task D consists of N examples into D =
{(Ci, Ri, Yi)}Ni=1, where Ci denotes the conversation, Ri denotes the responses, and Yi denotes the
measurement of relevance. Every conversation Ci usually consists of multiple utterances that can
be formulated as Ci = {u1, u2, . . . , uτ}. Each conversation Ci is followed by a list of candidate
responses Ri = {r1, r2, . . . , rk}, with a list of k corresponding relevance labels Yi = {y1, y2, . . . , yk}
indicating the relevance of each response rj to the conversation Ci. In our case, the response can
be either relevant or irrelevant, thus the label is binary with each value yj = 1 representing relevant
and yj = 0 representing irrelevant. Then the task is to learn a model or function f(.) to make
predictions of label denoted as f(Ci, r) based on the content of conversation Ci and response r.
A visualization of the CRR task is in figure 2.1.

Figure 2.1: A visualization of the CRR task

2.2.2 Curriculum Learning

The procedure of a normal (non-CL) training of a language model is defined as follows. First the
dataset D is split into training dataset Dtrain, validating dataset Dval and testing dataset Dtest.
Then for the training process, the model updates its parameters to maximize its objective function
or minimize its loss function on the training dataset Dtrain with size N . For each update, the
model goes over a mini-batch of training samples denoted as B = {(Ci, Ri, Yi)}ki=1 from Dtrain

where k � N , which is usually randomly sampled from Dtrain. We define one iteration s as the

An Empirical Study on Dynamic Curriculum Learning in Information Retrieval 13

CHAPTER 2. PROBLEM FORMULATION

model updates its parameters once with a mini-batch of training samples B. We define training
one epoch e as the model sees all the training samples exactly once. Thus a one-epoch training is
a sequence of iterations [s1, s2, . . . , sN/k] and the model can be trained for multiple epochs until
reaching the convergence.

Following the framework from Penha et al.[35], applying CL consists of two steps. The first is to
sort the samples of the training dataset Dtrain according to a difficulty criterion, and the second
is to control the speed of transferring from easy to difficult data following a speed criterion.
Specifically, for the second step, we gradually increase the size of accessible training data for
mini-batch random sampling according to a speed criterion function. An intuitive illustration of
the two CL framework steps is in figure 2.2. The CL-scheduled training of a language model
can be formalized as follows. For the first step of CL, the training dataset with N samples
Dtrain = [d1, d2, . . . , dN] is sorted by a difficulty criterion function fscore(.) into an ordered version
of training dataset Dtrain ordered = [dx1 , dx2 , . . . , dxN]. For the second step of CL, a speed criterion
function fpace(.) takes the sequence of iterations [s1, s2, . . . , sN/k] as the input, and then outputs a
corresponding sequence of pacing values [p1, p2, . . . , pN/k] (monotonically increasing) to gradually
involve more difficult samples in the training. More details of difficulty criterion and speed criterion
are elaborated in the following parts.

Difficulty Criterion

Penha et al.[35] have compared seven different so-called scoring functions as difficulty criteria,
including based on the conversation (number of sentences, number of words in conversation), re-
sponse (number of words in response), the similarity of conversation and response (semantic cosine
similarity, BM25[41]), the output of the model (loss, prediction). Moreover, their results show that
only the scoring function based on the model’s output can significantly improve over the non-CL
trained baseline. Based on their observations, we select the best scoring method from their work
as the difficulty criterion. This best method resembles the idea of Born Again Network[16], which
has a teacher-student knowledge distillation structure. Born Again Network shows that although
they share the same model architecture, the student can outperform the teacher. Now back to
the best scoring method, it first fine-tunes the baseline BERT model on the training dataset, and
then uses the BERT predictions of the label to calculate the score. A formalization of this scoring
method is given as follows.

For each conversation Ci in the training dataset Dtrain, there are one relevant (positive) response
r+ and one irrelevant (negative) response r−. The difficulty score scorei for sample (Ci, Ri =
{r+, r−}, Yi = {1, 0}) is defined as scorei = BERTpred(Ci, r

+) − BERTpred(Ci, r
−). Given that

any prediction satisfies BERTpred(Ci, ri) ∈ [0, 1], the score scorei is between -1 to 1 in theory.
There are two extreme cases: one is scorei = 1, then BERT classifies both r+ and r− correctly;
the other is scorei = −1, then BERT is totally confused by the sample. To some extent, this score
can represent how difficult the sample from the perspective of BERT.

Speed Criterion

Penha et al.[35] have tried seven different so-called pacing functions as the speed criterion. Defini-
tions of the pacing functions are in table 2.1, with the above seven (including the stand training as
the baseline) adopted from [35] and the last two (sigmoid and scurve) implemented by us. Figure
2.3 is a visualization of these pacing functions. Generally speaking, the pacing function outputs a
value according to the current number of iterations. The output determines the range of training
data used for random sampling mini-batches. Take the linear pacing function in figure 2.2 as an
example, when the iteration number is s = 500, the output is fpace(500) = 0.70 which means cur-
rently the first 70% of the ordered training dataset Dtrain ordered can be used for sampling, while
the rest are still inaccessible. Now we can explain further with the notations in the equations. δ
denotes the percentage of dataset accessible at the beginning, and T denotes the number of itera-

14 An Empirical Study on Dynamic Curriculum Learning in Information Retrieval

CHAPTER 2. PROBLEM FORMULATION

Figure 2.2: An intuitive illustration of the CL framework from [35], δ and T are hyper-parameters.

tions after which the complete dataset will be used. In theory, δ should be at least no less than the
mini-batch size, otherwise not enough data for compositing a mini-batch. Besides, all the pacing
functions are monotonic non-decreasing functions with the value ranges from δ to 1, which means
more difficult data are included in the training as the number of iterations increases. It is worth
noting that baseline (standard training) always has the pacing value 1. Thus all mini-batches are
sampled from the entire dataset during training, and it equals random sampling.

An Empirical Study on Dynamic Curriculum Learning in Information Retrieval 15

CHAPTER 2. PROBLEM FORMULATION

Table 2.1: Definitions of pacing functions, δ and T are hyper-parameters.

Pacing function Definition Shape

standard training fpace(s) = 1 /

root fpace(s, n) = min

(
1,
(
s 1−δ

n

T + δn
) 1
n

)
/

linear fpace(s, n) = root(s, 1) straight line
root n (2,5,10) fpace(s, n) = root(s, n) concave

geom progression fpace(s) = min
(

1, 2(s log2 1−log2 δ
T +log2 δ)

)
convex

step fpace(s) =

δ, if s ≤ T ∗ 0.33

0.66, if s > T ∗ 0.33, s ≤ T ∗ 0.66

1, if s > T ∗ 0.66

stepped

sigmoid fpace(s) = 1

1+exp(−10 ∗ s
T +ln 2) s-shape

scurve fpace(s) =

δ, if s = 0
1−δ

(Ts −1)
3
+1

+ δ, else

Figure 2.3: Pacing functions with T = 900, δ = 1
3 .

16 An Empirical Study on Dynamic Curriculum Learning in Information Retrieval

Chapter 3

Related Work

In this chapter, we first review the related neural ranking models to motivate the choice of BERT.
Then we introduce some previous works on the two main steps of vanilla curriculum learning
(CL) as stated in chapter 2, namely the difficulty criterion and the speed criterion. Finally, we
summarize the remaining challenges.

3.1 Neural Ranking Models

Retrieval ranking models retrieve and rank relevant documents by measuring the relevance between
the documents and the query. Different relevance measurement approaches can be used to cat-
egorize these retrieval ranking models into the following types. Traditional text ranking models
[48] usually compute the relevance or similarity by counting the frequency of the presence of query
words in the documents, for example, BM25 [40]. Non-neural machine learning ranking models,
also known as learning to rank (LTR) models, are learned by taking hand-crafted features as in-
put. The requirement for hand-crafted features is a limitation because designing these features is
domain-specific and time-consuming. Whereas neural architectures can take raw text data as in-
put, they have gained more and more attention. Neural ranking models can be roughly categorized
into representation-focused [18][43], interaction-focused [17] and representation-interaction-mixed
[30]. In brief, representation-focused models match query and document into feature vectors sep-
arately and compute the similarity of the vectors, whereas interaction-focused models create a
matrix of query and documents and extract the important interaction pattern.

Recent researches have shown the prospective future of attention-based neural language models.
Transformer, as one of the most leading and influential attention-based models, was proposed by
Vaswani et al.[49]. Transformer is the first sequence transduction model to rely only on the atten-
tion mechanism, as it has disposed of recurrences and convolutions completely. In machine trans-
lation, Transformer can learn explicitly faster than recurrent or convolutional neural networks.
Based on the architecture of the Transformer encoder, Devlin et al.[12] proposed the model known
as Bidirectional Encoder Representations from T ransformers (BERT), which is pre-trained on
a great amount of unlabeled data with the next sentence prediction task and masked language
task. BERT can be fine-tuned on one output layer and generalized to various tasks, showing
state-of-the-art performance on eleven natural language processing (NLP) tasks. In information
retrieval, the sentence pair classification setting in BERT has solved multiple retrieval and rank-
ing tasks [10][7][32]. The outstanding competence of BERT motivates us to use it as a strong
non-curriculum learning baseline in this work.

An Empirical Study on Dynamic Curriculum Learning in Information Retrieval 17

CHAPTER 3. RELATED WORK

3.2 Curriculum Learning Frameworks

Inspired by the human learning process, Bengio et al.[3] proposed vanilla curriculum learning in
2009. They made a breakthrough by showing several cases with deep architectures where cur-
riculum learning could significantly reduce the generalization error compared with non-curriculum
one. They also tried to explain the effectiveness of curriculum learning by introducing a hypo-
thesis that a well-designed curriculum works as a continuation method and a regularizer. That
means such a curriculum helps find a better local minimum of a non-convex training criterion, and
meanwhile, it regularizes the process leading to a lower generalization error. As CL is a prom-
ising method to improve the model performance and make performance converge faster without
requiring for extra data, it has been widely explored in various complex NLP tasks, such as
neural machine translation [24][57][57], speech processing [5][59][50], natural language generation
[28][47][55], and so on.

Meanwhile, many different directions of curriculum difficulty criterion and speed criterion have
been explored. In the work of Kocmi et al.[24], they judged the difficulty of each translation sample
pair based on various linguistics features (e.g., sentence length, number of conjunctions, number
of nouns, number of verbs). Based on the difficulty criterion, they separated the data into mini-
batch buckets and sampled data from easy to difficult. In addition to linguistic features, Zhang et
al.[57] used the confidence of an associate model on its prediction as the difficulty criterion. From
explorations of several different CL-schedules, they believe that CL can reduce convergence time
without any trade-off in translation quality, but it is essential to have a good difficulty criterion.
Regarding the speed criterion, they separated the training into several stages where easy data had
a higher probability of being sampled in the early stages. Inspired by Zhang et al.[57], Zhou et
al.[60] proposed a so-called uncertainty-aware curriculum learning on multiple translation tasks
with two intuitions. The first is that higher cross-entropy and perplexity of a translation pair
means it has a higher complexity. The second is that the uncertainty of the model’s prediction
can be used to determine the curriculum level.

The above-reviewed methods all define the training into discrete stages, whereas Platanios et
al.[37] proposed the first continuous curriculum learning framework. Again linguistic features
(e.g., sentence length, word rarity) was used as the difficulty criterion, but the speed criterion
was a simple continuous function with the value determined by one parameter (the duration of
learning). Compared with the previous CL discrete regimes, their framework requires no manually
designed stages, and it is easy to tune with one parameter and highly adaptive to other tasks.
Based on the framework of Platanios et al.[37], Penha et al.[35] have tried seven different scoring
functions and seven different pacing functions to compare if there is significant improvement with
CL-scheduled training to baseline on the conversation response ranking task. Furthermore, they
found that the only difficulty criterion that achieves statistically significant improvement over
non-CL baseline is the output of the model BERT.

3.3 Remaining Challenges

The various curriculum learning applications in processing language have all witnessed training or
model performance improvement with CL strategies. To our knowledge, there is a research gap
in applying CL in information retrieval (IR). Also, CL has rarely been studied in neural ranking
models, except for the work by Penha et al.[35]. However, the two steps of CL are both static in
their work. Namely, either the difficulty criterion or the speed criterion remains unchanged and
static during the entire training process.

For the first step, they use only the same scoring file (generated by fine-tuning BERT) from the
beginning of the training till the end. We argue that while the model is learning, its evaluation of
the difficulty of the same data is also changing. Thus we design the dynamic rescoring method

18 An Empirical Study on Dynamic Curriculum Learning in Information Retrieval

CHAPTER 3. RELATED WORK

to explore if re-sorting the data several times according to the current model can help improve
the performance. For the second step, in addition to determining the speed by a pacing function,
we combine the idea from the work of Fang et al.[14] and apply the noise method. Fang et
al.[14] proposed the “Goal-and-Curiosity-driven Curriculum (GCC) Learning” in off-policy deep
reinforcement learning with the human-like learning strategy. In brief, their idea is to allow the
model to have more exploration in the early learning stage and gradually back to its learning
goal. Likewise, in our work, by adding noise to the CL-scheduled data of a shrinking amount
automatically adapted with the number of iterations, we explore if more flexibility can be beneficial.
The details are further explained in chapter 4.

An Empirical Study on Dynamic Curriculum Learning in Information Retrieval 19

Chapter 4

Methodology

This chapter first illustrates the curriculum learning (CL) framework in this work, then the dy-
namic method for the first CL step, and the noise method for the second CL step.

4.1 Curriculum Learning Framework

The curriculum learning framework in this work contains two main steps. First, the training
dataset is sorted according to a scoring file generated by fine-tuning the model, and then the
training follows a pacing function to determine the range of training data that can be sampled
at each iteration. In addition to the CL framework [35], we also propose the dynamic rescoring
method as a substitute to the baseline CL strategy with fixed scoring file, and the noise method
adding noise to the CL-scheduled data determined by the pacing function.

4.1.1 Generating Scoring File

As elaborated before in chapter 2, we take the knowledge from the BERT as the difficulty criterion.
Namely, we fine-tune the baseline BERT on the training dataset to generate a scoring file for
sorting. The generated scoring file contains a score for each conversation which is the difference
between the BERT’s predictions of its relevant response and irrelevant response. Naturally, the
bigger the score is, the easier the conversation-responses sample is.

4.1.2 Sampling with Pacing Function

With the ordered training dataset sorted by the scoring file, we then random sample a mini-batch
of data for each iteration. The fraction of the dataset serving as the sampling candidates pool
is determined by the output of a pacing function, which has been formalized and visualized in
chapter 2. As any of the pacing functions is monotonically increasing, more and more difficult data
is added in the pool, thus increases the difficulty of the curriculum. We set two hyper-parameter
T and δ to control the pacing, where δ denotes the percentage of data accessible at the beginning,
and T denotes the number of iterations after which the complete dataset will be used.

4.2 Dynamic Rescoring Method

For the first step, we propose the dynamic rescoring method to compare with the method that uses
the same scoring file and sorts the data only once. For the dynamic rescoring method, the best
model with the highest validating MAP is used to rescore the training samples every few iterations.
We propose this method because we think that while the model is learning, its evaluation of the
difficulty is also changing. Therefore, we want to check if the newly learned information can be
helpful in the subsequent training. A visualization of the dynamic rescoring process is shown in

20 An Empirical Study on Dynamic Curriculum Learning in Information Retrieval

CHAPTER 4. METHODOLOGY

figure 4.1, each square represents a sample, and the darker color indicates the sample is more
difficult. The first row means the original dataset with no order, then the fine-tuned baseline
BERT generates the starting scoring file and sorts the data into the second row, after which the
color changes because the parameters of the model have been updated and the updated model
generates new scores.

Figure 4.1: Rescoring by the best model at different training time.

4.3 Noise Method

For the second step, we propose the noise method resembling the idea of a trade-off between
exploitation and exploration from the work of Fang et al.[14]. For this method, we use a small
part of difficult data as noise to replace some of the easy data from the sampling candidate pool.
Moreover, the noise part is shrinking with the number of iterations increases as shown in figure
4.2, where the blue part represents the original cl-scheduled data by the pacing function root 2,
and the orange part represents the noise data. This noise method resembles a human-like learning
strategy where humans tend to explore more in the early learning stages and then gradually focus
on their learning goal.

We have two parameters λ (noise lambda) and q (noise difficult ratio) to support this method.
The parameter λ is for adjusting the amount of noise along with the iterations, and the parameter
q determines the range of difficult data that serves as the noise candidates pool. We combine
λ ∈ [0.99, 0.995, 0.999] and q ∈ [1, 0.66, 0.5] and show nine situations in figure 4.2. We further
illustrate this method by the pseudo-code of algorithm 2, where s denotes the number of iterations,
p denotes the output of pacing function, ns denotes the size of the noise part, cls denotes the size
of the CL-scheduled part, and bs denotes the batch size. It is worth noting that the size of the
noise part ns decreases exponentially with the number of iterations, so a relatively bigger value of
λ is preferred. Otherwise, the noise disappears too early. Also, we include the difficult data that
starts from the end of the dataset as noise, so q means the last q of samples. In a word, we add
a shrinking amount of noise data to replace part of the CL-scheduled data in the early training
stages, and the noise data is randomly sampled from the relatively more difficult samples. Also,
we give a visualization of the noise method in figure 4.3.

An Empirical Study on Dynamic Curriculum Learning in Information Retrieval 21

CHAPTER 4. METHODOLOGY

Figure 4.2: Visualization of the noise method with different noise lambda and noise difficult ratio.

Algorithm 2 Noise method.

p←Min(pacing function(s), 1)
ns← λs × p
cls← p− ns
cl data← RandomSample(Dtrain ordered[: cls], cls)
noise data← RandomSample(Dtrain ordered[1− q :], ns)
sampling pool = Concat(cl data, noise data)
batch = RandomSample(sampling pool, bs)

22 An Empirical Study on Dynamic Curriculum Learning in Information Retrieval

CHAPTER 4. METHODOLOGY

Figure 4.3: A visualization of the noise method.

An Empirical Study on Dynamic Curriculum Learning in Information Retrieval 23

Chapter 5

Experiments and Results

This chapter consists of two sections. The first section introduces two large-scale conversation
response ranking (CRR) datasets, MSDialog and MANtIS, and the state-of-the-art language model
BERT. Then we present the experimental implementations, including data pre-processing, training
setting, and evaluation metric. In the second section, we report the results of the baseline CL
framework with new pacing functions, the dynamic rescoring method, and the noise method, with
the validating MAP presented in figures and the testing MAP listed in tables. We also give our
discussions of the results. All the experiments were run on the Google Colab GPU. The source
code and results are available in the link https://github.com/ChenSQian/master-thesis.

5.1 Experimental Setup

5.1.1 Conversation Response Dataset

A general format of data in the CRR dataset is in table 5.1. There could be one or more relevant
responses and several irrelevant responses for one conversation. The task is to rank the relevant
ones to the front and the irrelevant ones to the end. In this work, we use MSDialog and MANtIS,
which are further introduced in the following sections.

Table 5.1: Format of CRR data.

Label Conversation Response
1 utterance 1 [SEP] utterance 2 [SEP] . . . [SEP] relevant response
1 utterance 1 [SEP] utterance 2 [SEP] . . . [SEP] relevant response

.
1 utterance 1 [SEP] utterance 2 [SEP] . . . [SEP] relevant response
0 utterance 1 [SEP] utterance 2 [SEP] . . . [SEP] irrelevant response
0 utterance 1 [SEP] utterance 2 [SEP] . . . [SEP] irrelevant response

.
0 utterance 1 [SEP] utterance 2 [SEP] . . . [SEP] irrelevant response

MSDialog

The MSDialog [56][39][38] dataset contains more than 35k dialogues of question answering inter-
actions between information seekers and answer providers on Microsoft products from the forum
Microsoft Community. The forum provides high-quality technical support from Microsoft staff
and other experienced users to the questions posted by information seekers. MSDialog has several
versions, and we use the MSDialog-ResponseRank version for the CRR task. The MSDialog-
ResponseRank dataset is constituted by first filtering in the dialogues with the number of turns

24 An Empirical Study on Dynamic Curriculum Learning in Information Retrieval

https://github.com/ChenSQian/master-thesis

CHAPTER 5. EXPERIMENTS AND RESULTS

ranges from 3 to 90, and then splitting the dataset into training/validating/testing according to
the time of the question, and finally using the true answer from the agent as the relevant response
and negative sampling the irrelevant responses. An example of MSDialog is in table 5.2 and a
statistical descriptions of MSDialog is in table 5.3.

Table 5.2: An example of MSDialog.

Label Conversation Response
1 Every time I open my outlook web app, the

same e-mail from 9/10/2014 is displayed in
the preview panel. It’s not caused any prob-
lems yet, . . . I’ve tried changing the preview
settings back and forth from ““Show the first
message automatically”” to ““Show a message
only after I select it”” . . . [TAB] Hi PER-
SON PLACEHOLDER, We appreciate your
time and effort for getting back to us and I
apologize for the delay in responding. [TAB]
Hi PERSON PLACEHOLDER, Thanks for
checking up! Yes the issue is still there. Any
suggestions you have will be appreciated!

<<<AGENT>>>: Hi PER-
SON PLACEHOLDER, We ap-
preciate your time and effort for
getting back to us and I apo-
logize for the delay in respond-
ing. I understand that even
after deleting certain e-mails, it
is still showing in the preview
Window whenever you open the
Mail app. If you have configured
your e-mail account in multiple
devices. . .

0 Every time I open my outlook web app, the
same email from 9/10/2014 is displayed in the
preview panel. It’s not caused any problems
yet, . . . I’ve tried changing the preview set-
tings back and forth from ““Show the first
message automatically”” to ““Show a message
only after I select it”” . . . [TAB] Hi PER-
SON PLACEHOLDER, We appreciate your
time and effort for getting back to us and I
apologize for the delay in responding. [TAB]
Hi PERSON PLACEHOLDER, Thanks for
checking up! Yes the issue is still there. Any
suggestions you have will be appreciated!

<<<AGENT>>>: Thank you
for posting your response. We
would like to know the version
of Windows Photo Gallery you
are using. I suggest you check
the Region and Language setting
on your computer, if it is set to
your current location. As Order
Prints option in Windows Photo
Gallery . . .

Table 5.3: Statistical descriptions of MSDialog.

Type Train Valid Test
Time of questions 2005/11-2017/08 2017/08-09 2017/09-10

Original Number of (C, r) pairs 174k 37k 35k
Number of (C, r) pairs we use 35k 37k 35k
Avg number of words per C 55.8 55.8 52.7
Avg number of words per r 67.3 68.8 67.7

Number of r+ per C 1 1 1
Number of r− per C 1 9 9

MANtIS

The MANtIS [34] is a multi-domain information-seeking dataset containing more than 80k dia-
logues collected from the question answering forum Stack Exchange. The MANtIS also has a
conversation response ranking version that is generated similarly to MSDialog. However, due to
a problem with the URLs of the dataset with irrelevant candidates, we can only access the one

An Empirical Study on Dynamic Curriculum Learning in Information Retrieval 25

CHAPTER 5. EXPERIMENTS AND RESULTS

with no irrelevant responses. So, we have used the negative sampling method from [36] and data
transformation to add irrelevant responses. An example of MANtIS is in table 5.4 and a statistical
descriptions of MANtIS is in table 5.5.

Table 5.4: An example of MANtIS.

Label Conversation Response

1 Im using windows 8 my system is :İntel
core2duo t6400 2.0 ghz 2mb cache6 gb ddr3
1033 mhz ramNvidia 9600mGS Gpuand i have
500 gb hdd i love to play games so i prefer
windows 8 for games but i would lıke to use
ubuntu for my daily use i am thinking to
use it alongside with windows 8 it is possible
right? . . . [UTTERANCE SEP] Ubuntu
12.04 is a Long Term Support Release (LTS)
while 13.04 is a Regular Release.If you want
the latest and cutting edge technologies that
Ubuntu has to offer, you may use 13.04 (or
13.10) but if you are looking for a tried and
proven stable environment with continuous
updates in the near future, I will stick with
12.04.. . . [TURN SEP] first of all thank you
for your answer i will use ubuntu for only
daily use watch movies and internet surf so
i am downloading 13.04 now but is my system
enough for ubuntu ? beacuse ı was tried 12.04
before and it was feeling a bit laggy . . . [UT-
TERANCE SEP] [UTTERANCE SEP]

Ubuntu’s system requirements
are quite modest according to
the [System Requirements] Page
(https://help.ubuntu.com). The
lag that you experienced before
might be due to the fact that
your video card drivers are not
installed.

0 Im using windows 8 my system is :İntel
core2duo t6400 2.0 ghz 2mb cache6 gb ddr3
1033 mhz ramNvidia 9600mGS Gpuand i have
500 gb hdd i love to play games so i prefer
windows 8 for games but i would lıke to use
ubuntu for my daily use i am thinking to
use it alongside with windows 8 it is possible
right? . . . [UTTERANCE SEP] Ubuntu
12.04 is a Long Term Support Release (LTS)
while 13.04 is a Regular Release.If you want
the latest and cutting edge technologies that
Ubuntu has to offer, you may use 13.04 (or
13.10) but if you are looking for a tried and
proven stable environment with continuous
updates in the near future, I will stick with
12.04.. . . [TURN SEP] first of all thank you
for your answer i will use ubuntu for only
daily use watch movies and internet surf so
i am downloading 13.04 now but is my system
enough for ubuntu ? beacuse ı was tried 12.04
before and it was feeling a bit laggy . . . [UT-
TERANCE SEP] [UTTERANCE SEP]

I get the impression you are new
to Ubuntu. Drivers are not in-
stalled by coaxing the operating
system to look in a certain place
and find them, the way windows
has always been. In Ubuntu, and
all versions of Linux I’ve ever
used, there’s a procedure and
that procedure is usually spelled
out in detailed instructions that
were probably included inside
a text file which came in the
compressed file you have already
downloaded. If you give me
the name of the file you down-
loaded I will see if I can down-
load it and read the instructions
for you.CORRECTION!!!!. . .

26 An Empirical Study on Dynamic Curriculum Learning in Information Retrieval

CHAPTER 5. EXPERIMENTS AND RESULTS

Table 5.5: Statistical descriptions of MANtIS.

Type Train Valid Test
Time of questions the oldest 70% the middle 15% the last 15%

Original number of (C, r) pairs 90k 18k 18k
Number of (C, r) pairs we use 165k 181k 180k
Avg number of words per C 98.2 107.2 110.4
Avg number of words per r 91.0 100.1 94.6

Number of r+ per C 1 1 1
Number of r− per C 1 9 9

5.1.2 BERT

The BERT model was proposed by Devlin et al.[12], which stands for Bidirectional Encoder
Representations from T ransformers. BERT is a deep pre-trained language model with multiple
Transformer[49] encoder layers. The procedures for general pre-training and question answering
task fine-tuning with BERT is shown in figure 5.1. Unlike many standard unidirectional language
models, the BERT is pre-trained by using a “masked language model” (MLM) pre-training object-
ive, which enables it to get deep bidirectional representations from the unlabeled text by jointly
conditioning on both its left and right context. MLM means that the BERT randomly puts masks
on some words and force itself to predict those masked words according to the context on both left
and right side. Another special design of BERT is that the model adopts next-sentence-prediction
tasks for training. As shown in figure 5.1, pairs of sentences are taken as input, and the BERT
is trained to discriminate whether sentence B is the next sentence after A or not. This design
enables the BERT to learn relationships between sentences and have a better understanding of
the context. This sentence pair classification setting in BERT has been proved to solve multiple
retrieval and ranking tasks [10][7][32]. The outstanding competence of BERT motivates us to use
it as a strong non-curriculum learning baseline. We use the uncased BERT-base (12 layers, hidden
size of 768, 110M parameters) as the neural ranking model in this work.

Figure 5.1: Overall pre-training and fine-tuning procedures for BERT [12].

5.1.3 Implementations

Pre-process MANtIS

The MANtIS train/valid/test dataset available online [33] is an incomplete one with no negative
responses. The available format only has two columns, conversation and relevant response. Thus
we have set up a pre-processing pipeline to transform the data into the form as desired. The first
step is to add a label column with the value 1 to the dataset as originally, all the responses are

An Empirical Study on Dynamic Curriculum Learning in Information Retrieval 27

CHAPTER 5. EXPERIMENTS AND RESULTS

relevant. Then we use the negative sampling methods from the transformers ranker library [36]
to sample irrelevant responses. Among three sampling methods, we choose the BM25 [40] method
to comply with the baseline curriculum learning framework [35].

The BM25 ranks a set of documents by considering the query terms appearing in each document,
regardless of their proximity within the document [52]. The similarity score of BM25 method is
calculated as presented in equation 5.1, where qi denotes the word in the query, IDF(qi) denotes
the inverse document frequency weight of the query term qi, f(qi, D) denotes the term frequency of
qi in document D, |D| denote the number of words in document D, avgdl is the average document
length, and ki and b are two hyper-parameters that can be chosen freely. In our case, for each
conversation, the BM25 sampling method uses its relevant response as the query, and retrieves
the most similar irrelevant responses from the sampling candidates pool. We use all the responses
from itself and the training dataset as the sampling candidates pool for both validating and testing
datasets. We have used the training dataset to reduce duplicated irrelevant responses as we need
a huge number of negative samples, nine irrelevant responses for each conversation.

score(D,Q) =

n∑
i=1

IDF (qi) ·
f (qi, D) · (k1 + 1)

f (qi, D) + k1 ·
(

1− b+ b · |D|avgdl

) (5.1)

After the negative sampling step, the retrieved irrelevant responses still contain unwanted symbols
that can be easily predicted as negative responses by BERT (with a validating MAP of 0.99).
Thus we remove the unwanted symbols from the irrelevant responses. Finally, we sort the dataset
according to the conversation and put the relevant response at the beginning, followed by nine
irrelevant responses. A visualization of the pre-processing pipeline is shown in figure 5.2.

Figure 5.2: Pre-processing Pipeline of MANtIS.

Training and Evaluating Setting

Following the framework of Penha et al.[35], we use the uncased base BERT with the Hugging Face
library [53]. For the input, we concatenate the conversation and response with the SEP token. We
take the conversation as segment A and the response as segment B. As we have set the maximum
sequence length to 128, we truncate the sequence with the heuristic to keep a length balance
between A and B whenever the concatenated sequence is excessively long. On the other hand, if
the sequence is too short, we add padding tokens. The processed input format is illustrated in
figure 5.3, consisting of four parts. The sequence is first tokenized by the BERT tokenizer, after
which the tokens are converted into ids. The input ids, together with the input mask indicating
if it is real tokens (1 for real tokens and 0 for padding tokens), the segment ids indicating the
segment (0 for segment A and 1 for segment B), and the label ids constitute the input for BERT.
We then fine-tune the BERT for sentence classification with the CLS token.

During training, we only select one irrelevant response to make the number of positive samples
equal to the negative samples for each conversation in the training dataset. For optimization,
the default cross-entropy loss and Adam optimizer [23] are used with a learning rate of 2e-5 and

28 An Empirical Study on Dynamic Curriculum Learning in Information Retrieval

CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.3: Convert data into valid input for BERT.

ε = 1e − 8. We train the model three epochs on MSDialog and one epoch on MANtIS with a
batch size of 64. Because the MANtIS is around four times bigger than MSDialog, the model
converges at different times. We evaluate the model performance on the validating dataset with
the Mean Average Precision (MAP) metric every a fixed number of iterations to check if the model
converges. However, for the MANtIS, with a limitation in training time with Google Colab GPU,
we randomly sample 1/3 each time to validate instead of using the entire validating dataset. To
eliminate the influence by initialization, we run each experiment with several runs (five seeds for
MSDialog and three seeds for MANtIS again considering the data size) and use the average.

Evaluation Metric

Mean average precision (MAP) [46] is a popular metric used to measure the performance of models
in the field of information retrieval (IR). MAP is the mean of the average precision (AP) of every
conversation in the dataset according to its name. Compared with the widely known precision that
measures the ratio of true positive predictions, the average precision also considers the position of
true positive predictions to judge the model’s ranking ability. Before clarifying how to calculate
the MAP, we need to define the precision at k (P@k) shown in equation 5.2, which means the ratio
of true positives until the kth position. Then equation 5.3 shows a general formula for calculating
AP. Under the scenario of IR, n refers to the number of retrieved documents for a query, GTP
is the number of ground truth positives, k denotes the position ranging from 1 to n, rel@k is an
indicator function defined in equation 5.4 which is 1 and 0 for the relevant document at k and
irrelevant document at k, respectively. Finally, MAP is the mean of APs of all the queries in the
dataset, as shown in equation 5.5.

P@k =
| { relevant documents@k} ∩ { retrieved documents@k} |

| { retrieved documents@k} |
(5.2)

AP@n =
1

GTP

n∑
k=1

P@k × rel@k (5.3)

rel@k =

{
1 if document@k ∈ { relevant documents }
0 if document@k ∈ { irrelevant documents }

(5.4)

MAP@n =

∑Q
q=1 AP@n(q)

Q
(5.5)

A visualization of two examples of calculating AP can be seen in figure 5.4. In these examples,
the green ones with a checkmark and the orange ones with an X mark are relevant documents and

An Empirical Study on Dynamic Curriculum Learning in Information Retrieval 29

CHAPTER 5. EXPERIMENTS AND RESULTS

irrelevant documents, respectively. So the number of ground truth positives (GTP) is 3. Intuit-
ively, the above example is worse than the below example because two irrelevant documents are
ranked ahead of the relevant documents. In addition, the below example is a particular example
that the ranking is entirely correct, and it gets an AP of 1. And the MAP of these two samples
is the mean of their APs.

Figure 5.4: The calculation of MAP of two samples.

In the experimental setup of this work, the training dataset contains conversations with one
relevant response and one irrelevant response for each. In comparison, both the validating and
testing dataset consist of conversations with one relevant response and nine irrelevant responses.
The different setting in the training dataset is to generate a scoring file for curriculum learning
which has been elaborated on in chapter 4. MAP is calculated in the same way on both validating
dataset and testing dataset. We take one arbitrary conversation Ci from the validating dataset
for example, Ci has a response list {r0, r1, r2, . . . , r9} of length ten, where only r0 is a relevant
response. We get the corresponding model predictions {pred0, pred1, pred2, . . . , pred9} with every
predj ∈ [0, 1], after which we sort the predictions to a descending order. And then, together with
the true label indicating the position of the relevant response r0, we calculate the AP on the sorted
list of predictions, as well as MAP both in the same way as the examples in figure 5.4.

5.2 Results

5.2.1 Basic Experiments with CL Framework

We first use the CL framework of Penha et al.[35] to do some basic experiments on the relatively
smaller dataset MSDialog to check if their CL framework is beneficial for improving model per-
formance. The scoring file we use for these experiments is generated by fine-tuning the baseline
BERT three epochs with the training batch size of 8. Then, we compare CL and inverse CL
results with six different pacing functions by the values of the mean average precision (MAP) of
the BERT (the best till the moment) evaluated on the validating dataset and the MAP on the
testing dataset. For the testing, we also use Student’s t-test to check the statistical significance
over baselines. In addition, we implement two more pacing functions called sigmoid and scurve
to compare with the original ones. Likewise, for the model performance of the other experiments,
we judge all by the same metric MAP. Besides, any of the single lines in the following figures is
the average of five or three runs. Furthermore, the testing MAP results are listed in the following
tables with an order of MAP values from high to low.

30 An Empirical Study on Dynamic Curriculum Learning in Information Retrieval

CHAPTER 5. EXPERIMENTS AND RESULTS

CL and Inverse CL

The baseline non-CL is denoted as standard training in the following figures and tables. The
pacing function for the non-CL is always 1, so the complete training dataset is always accessible
during the entire training process. As shown in the left part of figure 5.5, we can see all the
CL training outperforms the baseline (black) from the beginning iterations. We also do the
inverse CL experiments by sorting the data in inverse order from difficult to easy, the results
of which are shown in the right part of figure 5.5. In inverse CL, the baseline beats all the
others, with a pronounced distance, especially at the beginning between the baseline and several
pacing functions (e.g., geom progression, step, linear). Furthermore, for any pacing function, the
validating MAP of CL is at least 3% higher than inverse CL with the same pacing function.
We argue the results indicate that difficult examples can easily confuse the model, especially at
early training stages when the model has little knowledge of the training dataset. The results
comply with the hypothesis that CL can smooth the objective function with more straightforward
examples. Overall, by comparing the CL and inverse CL results, we could see CL can improve the
MAP of BERT on the validating dataset.

Figure 5.5: Validating MAP with CL (left) and inverse CL (right) training.

New Pacing Functions: Sigmoid and Scurve

Then we implement two s-shape curve functions, sigmoid and scurve, to compare with the original
pacing functions. As the figure 2.3 shows in chapter 2, the original seven pacing functions can be
categorized into four types including convex (geom progression), concave (root n), straight line
(linear) and stepped (step). Convex type starts slow and becomes faster later, whereas concave
type starts fast and slows down later. Linear keeps a stable speed from the beginning to the end,
whereas step splits the process into several stages and has a speed jumping from one stage to the
next stage.

For a broader exploration, we adopt another type of different shape, where the pacing is from
slow to fast and back to slow. This idea also comes from one idealized general form of the human
learning curves [54], where people make progress slowly at first and gradually accelerate in the
middle and slow down again when the learning activity reaches its limit. Unfortunately, the results
of the sigmoid and scurve in figure 5.6 are worse than the other pacing functions. Especially the
validating MAP with scurve is lower than the baseline, which on the other hand tells us that a
proper pacing function is essential. It is worth noting that because the pacing function should
start at 1/3 and reach 1 after 90% of iterations because of the experimental setting, the shape
of the sigmoid function is an incomplete s-shape but is close to a convex curve. This incomplete
s-shape can explain why sigmoid is better than scurve. Regarding the failure of the scurve, we

An Empirical Study on Dynamic Curriculum Learning in Information Retrieval 31

CHAPTER 5. EXPERIMENTS AND RESULTS

think it increases the pace too slowly at the first half training part (e.g., only the first 40% training
data is accessible before the 30% of training iterations). Thus the model sees easier examples more
times than difficult ones and assigns very uneven weights to the easy and difficult ones.

Figure 5.6: Validating MAP with sigmoid and scurve pacing function.

The testing results are shown in table 5.6, where they are sorted by testing MAP from high
to low. Based on the validating results, we select the best CL pacing function root 2 and the
worst inverse CL pacing function geom progression. We also test on the new pacing functions
sigmoid and scurve, as well as the baseline standard training. Overall the testing results comply
with the validating results that CL training outperforms inverse CL training. Moreover, the most
outstanding difference is between CL and inverse CL with geom progression, where CL is 4% better
than CL. The t-test shows root 2 trained models with seeds 1 and 4 outperform the baseline non-
CL models, while the other seeds have no statistically significant improvement. Nevertheless, we
also see many inverse CL trained models, including the inverse geom progression models with all
five seeds, are defeated by the baseline non-CL models at a 99% confidence interval.

Table 5.6: MSDialog testing MAP results of baseline non-CL (standard training), baseline CL,
inverse CL, and new pacing functions: sigmoid and scurve with five runs. The best testing MAP
of each run is in bold. Superscripts(∗∗/∗) indicate statistically significant improvements over the
baseline non-CL (standard training), where * means the Student’s t-test p-value is less than 0.05,
and ** means p-value is less than 0.01.

Seed 1 2 3 4 5 Average SD

root 2 0.729∗∗ 0.713 0.728 0.722∗∗ 0.732 0.725 0.007
geom progression 0.728∗ 0.714 0.727 0.723∗∗ 0.730 0.724 0.006
sigmoid (ours) 0.719 0.704 0.722 0.722∗∗ 0.725 0.718 0.007
baseline non-CL 0.718 0.707 0.726 0.703 0.727 0.716 0.010
inverse root 2 0.713 0.692 0.713 0.703 0.703 0.705 0.008
scurve (ours) 0.707 0.681 0.705 0.709 0.691 0.699 0.011
inverse geom progression 0.701 0.664 0.696 0.665 0.696 0.684 0.016

5.2.2 Dynamic Rescoring Method

In this section, we discuss the exploration of the dynamic rescoring method designed by us. We
apply this method only on the smaller dataset MSDialog as it requires more time to rescore several

32 An Empirical Study on Dynamic Curriculum Learning in Information Retrieval

CHAPTER 5. EXPERIMENTS AND RESULTS

times than the original static CL approach. This rescoring method takes more time because each
time to generate a new scoring file, the model needs to evaluate the entire training dataset for an
epoch with a batch size of 2 (a conversation with one relevant and irrelevant response). In this
exploration, we manipulate two hyper-parameters, one is the starting scoring file, and the other
is the frequency of rescoring. They are manipulated separately. Namely, the frequency is fixed
when we compare different scoring files and vice versa.

For the first hyper-parameter, we generate five different scoring files by fine-tuning the baseline
BERT for zero (use the BERT directly) to four epochs with a batch size of 64. The corresponding
results are denoted as preds dif dynamic n root 2 in figure 5.8 and table 5.8 with n indicating
the number of fine-tuning epochs of the starting scoring file. We set this hyper-parameter because
we want to know how much the quality of starting scoring file matters.

We judge the quality of starting scoring file by their MAP on the training dataset after the
fine-tuning, as shown in table 6.2. More intuitively, we visualize their distribution of scores on
the training samples in figure 5.7. The score is the difference between BERT’s prediction of the
relevant and the irrelevant response as stated in chapter 2. Thus, negative score means wrong
prediction (orange in figure 5.7), while positive score means correct prediction (green in figure
5.7). We can see that the more epochs the BERT is fine-tuned, the higher training MAP and the
more correct predictions it gets. Moreover, we infer BERT has reached its highest training MAP
before the fourth epoch because the sub-figures of three and four epochs are almost the same, and
the training MAP decreases. Another outstanding observation is that the zero-epoch fine-tuned
BERT has much more wrong predictions than the others, shown by the first sub-figure in figure 5.7.

Table 5.7: Training MAP of different starting scoring files.

Number of fine-tuning epochs 0 1 2 3 4
Training MAP 0.728 0.946 0.965 0.978 0.977

The fine-tuning batch size used before is 8, which is time-consuming. Thus we use 64 for this part.
Furthermore, we pick root 2 for this part as it is one of the best pacing functions on MSDialog
from the previous CL experiments. Besides, we fix the rescoring frequency to every 200 iterations,
which means the model rescores eight times during the three-epoch training.

From the validating MAP, we can see that the dynamic rescoring method fails to outperform the
baseline non-CL (black) in the left part of figure 5.8, but work equally well as the baseline CL
(root 2) method. Another observation is that the scoring file generated by fine-tuning with more
epochs is slightly more informative and beneficial on the validating dataset. This observation com-
plies with the intuition that fine-tuning facilitates the BERT with more knowledge of the training
data. However, on the testing dataset, the dynamic methods work almost equally well with each
other except for the one with the starting scoring file generated by zero-epoch fine-tuned BERT.
The dynamic 0 root 2 is outperformed by root 2 with all five seeds at the confidence interval of
95% or 99%. This extreme case shows that a starting scoring file generated by a completely “in-
experienced” model can be misleading. On the other hand, for generating the starting scoring
file, one-epoch fine-tuning can be good enough. Thus we can save time in this step. Also, the
dynamically trained models show statistically significant improvement over baseline non-CL and
the baseline CL trained models averagely in one seed out of five seeds. This observation might
indicate that the dynamic method has no exciting performance.

For the second hyper-parameter, we fix the starting file to the three-epoch fine-tuned one and com-
pare three different values of rescoring frequency, namely 200, 400, and 800 iterations. The results
of 400, 800 are denoted as preds dif dynamic 34 root 2 and preds dif dynamic 38 root 2,
respectively. The results in the right part of figure 5.8 show that rescoring every 800 iterations

An Empirical Study on Dynamic Curriculum Learning in Information Retrieval 33

CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.7: The distribution of scores on the training dataset, where the number of fine-tuning
epochs ranges from 0 to 4. Orange indicates negative score, while green indicates positive score.

works best, and both frequencies of 400 and 800 iterations outperform the baseline CL, but they
still cannot outperform the baseline non-CL. Moreover, the testing results only show a trivial
difference between the CL methods and baseline non-CL. To conclude, our dynamic rescoring
method is not beneficial compared with the baseline non-CL, while it works slightly better than
the static baseline CL method.

Besides, because we spot that the original root 2 can not outperform the baseline non-CL in figure
5.8, which is contradictory to the result from the basic CL experiments in figure 5.5. This finding
motivates us to rerun the same basic CL experiment with the scoring file generated with the only
difference that the fine-tuning batch size is changed from 8 to 64. Furthermore, as the result in
figure 5.9 tells, almost no pacing function outperforms the baseline non-CL. This again means

34 An Empirical Study on Dynamic Curriculum Learning in Information Retrieval

CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.8: Validating MAP with dynamic rescoring: different starting scoring file (left), different
frequencies of rescoring (right).

Table 5.8: MSDialog testing MAP results of dynamic method with five runs. Superscripts(∗∗/∗)
indicate statistically significant improvements over the baseline non-CL (standard training), while
subscripts(∗∗/∗) indicate over the baseline CL (root 2), where * means the Student’s t-test p-value
is less than 0.05, and ** means p-value is less than 0.01.

Seed 1 2 3 4 5 Average SD

baseline CL 0.729 0.712 0.726∗ 0.710 0.726 0.721 0.008
dynamic 38 root 2 (ours) 0.729 0.705 0.726∗ 0.716∗ 0.727 0.720 0.009
dynamic 1 root 2 (ours) 0.721 0.714 0.728 0.703 0.733 0.720 0.011
dynamic 34 root 2 (ours) 0.728 0.703 0.736∗∗∗∗ 0.704 0.723 0.719 0.013
dynamic 2 root 2 (ours) 0.731∗ 0.705 0.719 0.722∗∗∗∗ 0.716 0.718 0.008
dynamic 3 root 2 (ours) 0.732∗ 0.707 0.724 0.702 0.726 0.718 0.012
dynamic 4 root 2 (ours) 0.725 0.710 0.725 0.706 0.723 0.718 0.008
baseline non-CL 0.722 0.708 0.718 0.707 0.730 0.717 0.009
dynamic 0 root 2 (ours) 0.720 0.694 0.716 0.702 0.716 0.709 0.010

selecting a proper scoring file is nontrivial. Sometimes a tiny difference in setting can lead to an
opposite conclusion. In other words, if the scoring file is misleading, the CL method would also be
ineffective. Unfortunately, due to the limited time, we have not got the chance to run the dynamic
method with a batch size of 8.

5.2.3 Noise Method

In this section, we discuss our experimental results of applying the noise method on both MS-
Dialog and MANtIS, which are presented in the figure 5.11 and 5.12, respectively. We fix the
corresponding best pacing function for each dataset, which is root 2 for MSDialog and root 5 for
MANtIS. Before implementing the noise method introduced in chapter 4, we first tried a more
straightforward method with a fixed noise of 1/2, 1/3, 1/4, and 1/8 on the MSDialog dataset. For
example, if the noise is 1/2, for each iteration, we compose the sampling candidate pool by con-
catenating half data from the CL-scheduled data and the rest randomly from the entire dataset.
As the left half of figure 5.11 shows, the simple noised root 2 outperforms the baseline non-CL
but loses to the baseline CL.

Then we consider giving the training more flexibility. Thus we implement this noise method by ad-
justing the noise dynamically with the number of iterations as explained and visualized in chapter

An Empirical Study on Dynamic Curriculum Learning in Information Retrieval 35

CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.9: Validating MAP with the scoring file generated by BERT with a fine-tuning batch size
of 64.

4. The influence of this noise method on the validating dataset can be seen in the right part of fig-
ure 5.11, where the corresponding results are denoted as root 2 l λ r q with the noise lambda
λ and the noise difficult ratio q. With the pink being the baseline CL and the light blue
being the baseline non-CL, many trained with the noise method outperform them on the valid-
ating dataset. We suppose that the noise method resembles the human learning process, where
sometimes students learning difficult concepts out of the school curriculum helps them perform
better in school work. Also, this noise method resembles the human-like learning strategy that al-
lows more exploration in the early learning stages and gradually back to focus on the learning goal.

We also apply the noise method on the MANtIS dataset, as shown in figure 5.12 with the same
denotations. Again many trained with the noise method outperform the baseline non-CL but no
explicit improvement over the its baseline CL (root 5). Besides, because the best pacing function
for MANtIS is root 5, using noise lambda λ = 0.999 during the training requires the noise
candidate pool size to be bigger than 0.6 of the training dataset size as visualized in figure 5.10,
thus noise lambda λ = 0.999 and noise difficult ratio q = 0.5 is excluded on MANtIS.

Figure 5.10: Setting with λ = 0.999 and root 5 exceeds q = 0.5 during the training(left), while
the same setting is safe with root 2 (right).

The testing results of both are listed in the following table 5.9. For MSDialog, the number of
superscripts (∗∗/∗) indicates many of the noise method trained models outperform the baseline

36 An Empirical Study on Dynamic Curriculum Learning in Information Retrieval

CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.11: Validating MAP with the noise method on MSDialog.

Figure 5.12: Validating MAP with the noise method on MANtIS.

non-CL statistically significantly. Although the best noise method with (λ = 0.995, q = 0.5) is
0.5% higher than the baseline CL on the validating dataset, it only works equally well as root 2
on the testing dataset. For MANtIS, although the validating results witness no explicit difference
between the noise method and the original method, the best method with (λ = 0.995, q = 0.66)
is 0.3% better than both baseline non-CL and root 5 on the testing dataset. Also, as the sub-
scripts (∗∗/∗) tells, the other top noise methods also have statistically significant improvement
over non-CL and root 5. Another interesting finding is that the baseline CL trained model cannot
outperform the baseline non-CL on the testing dataset, which is contradictory to the results of
Penha et al.[35]. We think this is because we have used an extra strategy to randomly sample a
third of the validating data each time for validating while they use the entire dataset. As explained
before, we use this extra strategy mainly due to the limitation of computation resources (google
Colab) we have.

The difference between the results of MSDialog and MANtIS can be explained by two reasons. The
first is that the validating and testing dataset are almost of the same size for MSDialog, while the
testing is two times bigger than the validating dataset for MANtIS. The second potential reason
is that MANtIS datasets are around four times bigger than MSDialog. To summarize, the noise
CL methods have improved over the baseline non-CL and CL on the smaller MSDialog validating
dataset but not on the testing dataset, whereas the situation is the opposite on the much bigger
MANtIS dataset. These different observations on two different datasets indicate the unsteadiness

An Empirical Study on Dynamic Curriculum Learning in Information Retrieval 37

CHAPTER 5. EXPERIMENTS AND RESULTS

of our noise method. As stated before, we save the best model of the highest validating MAP to
do testing. The MSDialog results indicate that the models can not generalize well on the testing.
On the other hand, the noise methods have good generalization performance on the larger dataset
MANtIS. We tend to believe that a larger dataset is more convincing and trustworthy than a
smaller dataset. Besides, either from validating or testing results of both datasets, we can see that
the noise methods with λ = 0.999 generally have poor performance. We think this λ is excessively
big that it has introduced too much noise, which is harmful to the training. Whereas for the other
parameter q, no explicit preference can be concluded from the results.

Table 5.9: MSDialog and MANtIS testing MAP results of noise method with three runs.
Superscripts(∗∗/∗) indicate statistically significant improvements over the baseline non-CL (stand-
ard training), while subscripts(∗∗/∗) indicate over the baseline CL (root 2 for MSDialog, root 5
for MANtIS), where * means the Student’s t-test p-value is less than 0.05, and ** means p-value
is less than 0.01.

MSDialog
Seed 1 2 3 Average SD

baseline CL 0.734∗∗ 0.712∗ 0.732∗∗ 0.726 0.010
root 2 l 995 r 05 (ours) 0.726 0.714∗∗ 0.734∗∗ 0.725 0.008
root 2 l 995 r 1 (ours) 0.731∗ 0.713∗∗ 0.726∗ 0.723 0.007
root 2 l 99 r 1 (ours) 0.729 0.711∗ 0.729∗∗ 0.723 0.008
root 2 l 99 r 66 (ours) 0.730∗ 0.710∗ 0.729∗∗ 0.723 0.009
root 2 l 995 r 66 (ours) 0.731∗ 0.711∗ 0.726∗ 0.723 0.009
root 2 l 99 r 05 (ours) 0.730∗ 0.708 0.729∗∗ 0.722 0.010
root 2 l 999 r 1 (ours) 0.724 0.704 0.734∗∗ 0.721 0.012
root 2 l 999 r 66 (ours) 0.724 0.704 0.722 0.716 0.009
baseline non-CL 0.722 0.702 0.718 0.714 0.009
root 2 l 999 r 05 (ours) 0.715 0.700 0.711 0.709 0.006

MANtIS
Seed 1 2 3 Average SD

root 5 l 995 r 66 (ours) 0.720 0.715∗∗ 0.720∗∗ 0.719 0.002
root 5 l 99 r 1 (ours) 0.720 0.712∗∗ 0.720∗∗ 0.717 0.004
root 5 l 99 r 05 (ours) 0.721 0.710∗ 0.718 0.716 0.004
root 5 l 995 r 05 (ours) 0.719 0.712∗∗ 0.719 0.716 0.003
baseline non-CL 0.718 0.713∗∗ 0.717 0.716 0.002
baseline CL 0.720 0.708 0.720∗ 0.716 0.006
root 5 l 999 r 1 (ours) 0.719 0.707 0.717 0.714 0.005
root 5 l 99 r 66 (ours) 0.720 0.708 0.714 0.714 0.005
root 5 l 995 r 1 (ours) 0.706 0.713∗∗ 0.717 0.712 0.004
root 5 l 999 r 66 (ours) 0.716 0.705 0.714 0.712 0.005

38 An Empirical Study on Dynamic Curriculum Learning in Information Retrieval

Chapter 6

Conclusions and Future Work

This chapter summarizes the conclusions of the experimental results presented in chapter 5, includ-
ing our contributions and limitations. Finally, corresponding to the limitations, we give several
directions for future work.

6.1 Conclusions

In this work, we explored whether and how Curriculum Learning (CL) can make the state-of-
the-art neural language model BERT perform better in Information Retrieval (IR), taking two
conversation response ranking (CRR) datasets MSDialog and MANtIS as examples. CL can
improve model performance without requiring additional training data, which is beneficial for
training, especially when a lack of training data is the bottleneck for many problems. For the
CL, we focused on the vanilla CL [3], which is to design a curriculum for the training dataset.
The general procedure of the vanilla CL in this work consists of two steps, the first is to sort the
data from easy to difficult with a scoring file, and the second is to train the model on the ordered
dataset in the speed determined by a pacing function.

6.1.1 Contributions

On the CL framework of Penha et al.[35], we first compared the results of some basic experiments
with CL and inverse CL. We found easy samples first (CL) more beneficial than difficult ones first
(inverse CL). We argue that difficult samples can confuse the model, especially at early training
stages, while easy samples can smooth the objective function for the model. On the other hand,
we found that CL methods fail to outperform the non-CL baseline when the scoring file is gener-
ated with a slight difference in the setting. We also implemented two more pacing functions with
the s-shape curve to imitate a human-like learning speed, which accelerates at early stages and
slows down later. Unfortunately, the s-shape functions failed to outperform the original pacing
functions, and we think it is because it allocates excessive weights to easy examples. We conclude
from the above observations that it is nontrivial to find a proper scoring file and a practical pacing
function. On the other hand, once they are found, CL can outperform the baseline above 1%.

We also implemented two new methods for more comprehensive exploration: the dynamic rescoring
method for the first step and the noise method for the second step. The results of the dynamic
rescoring method have witnessed no performance improvement with our dynamic method over the
baseline but some slight improvement over the original pacing function. More importantly, we
found that scoring files generated with more fine-tuning steps are more informative and beneficial,
and a comparatively lower rescoring frequency is better. The noise method works much more
effectively than the dynamic rescoring method, according to the experiment results. Especially
on the larger dataset MANtIS which is more convincing and trustworthy, our best noise method

An Empirical Study on Dynamic Curriculum Learning in Information Retrieval 39

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

has a 0.3% higher testing MAP than the baseline CL and non-CL. We assume this effectiveness
comes from the noise method resembling the human learning process, where some difficult concepts
picked up occasionally by students out of school curriculum can help them perform better in school
work. Moreover, this noise method allows the model more exploration in the early learning stages
and gradually back to focus on the learning goal. Another finding is that the amount of noise
should not be excessive. Otherwise, it harms the performance.

6.1.2 Limitations

According to our experimental results, the CL methods are not stably effective. For example, with
the MSDialog dataset, the noise CL methods show exciting improvement over baselines on the
validating dataset. However, they show no difference with the baseline CL when testing. Also,
statistically significant improvement of testing MAP is not seen in every run. Even the baseline CL
only outperforms the baseline non-CL for two out of five seeds with a confidence interval of 99%.
Another problem is that informative scoring files and suitable pacing functions are essential for
CL strategies to be effective. However, it is hard to find proper scoring files and pacing functions.
Also, practical experiments seem to be preferred to theoretical analysis because doing experiments
is faster and more effective. Still, lacking theory support can be misleading.

We have made some compromises with the limitations of the computation resource (Google Colab),
which can influence the results. For example, for validating on the large dataset MANtIS, we ran-
domly sample a third instead of the complete validating dataset for computing validating MAP
each time. This extra validating sampling strategy can lead to different observations from MS-
Dialog and MANtIS because the validating and testing size are almost the same for the former,
while the validating size is only a third of the testing size for the latter.

Another limitation is that the reasons for performance improvement by CL strategies over baseline
non-CL are not analyzed clearly. We mainly have summarized the experimental observations and
tried explaining the results by proposing hypotheses. However, the details of what the models
have learned remain unknown.

6.2 Future Work

We leave the above-stated remaining limitations to the following future work. Besides, we are also
interested in the direction of dynamic sampling as our dynamic rescoring method has no exciting
performance over the baselines.

• Finding a good way to measure the difficulty of data is still one of the biggest problems
for applying curriculum learning in many fields. In this work, we followed the best scoring
method from Penha et al.[35] by first pairing each training conversation with one relevant
response and one irrelevant response, and then using the difference of BERT’s predictions of
them as the difficulty score. Nevertheless, this scoring method has made the training dataset
different from the validating or testing dataset. Because the training data has an even number
of relevant and irrelevant responses, while the validating or testing data has eight times more
irrelevant responses than relevant responses. This data distribution difference can affect the
model performance when validating and testing. So we could utilize all the nine irrelevant
responses to generate the scoring file to counteract this data distribution difference.

• The vanilla CL method usually pre-defines a curriculum that is fixed and static during
the training process. We have proposed the dynamic rescoring method to let the model
re-evaluate the difficulty with newly learned knowledge. Unfortunately, our method has
no exciting improvement over baselines. As there are other related learning methods with
dynamic sampling strategies, for example, self-paced learning [27][58] and active learning [9].
We can explore more in this direction.

40 An Empirical Study on Dynamic Curriculum Learning in Information Retrieval

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

• Finally, a more thorough analysis of the differences between models trained with CL and
non-CL is worth investigating. We have seen improvement in the validating and testing
MAPs from CL methods to baseline non-CL, yet we are unaware of what happens in the
inner side of the model. For example, we could analyze the knowledge learned by each model
layer and investigate where the model has put most of its attention on. More analyses and
explanations can give more instructions to the subsequent work.

An Empirical Study on Dynamic Curriculum Learning in Information Retrieval 41

Chapter 7

Acknowledgement

I feel thrilled to have finished my graduation project. Meanwhile, I appreciate all the help and
support from those critical people and the Eindhoven University of Technology. First of all, I
would like to thank my supervisor for his supervision, including sharing ideas, giving suggestions,
and discussing with me in the weekly meetings. Also, I appreciate the suggestions and help on
my thesis and final presentation from the graduation committee. Then I have to say thanks to
my university TU/e. During these two years, I have learned much new knowledge and picked
up many skills by completing those practical works one by one. I love the library, which is a
perfect place for studying. Besides, I also love the student sports center, where I enjoy my free
time with various exciting sports (especially climbing) and become more energetic to study. Very
importantly, I would like to thank my friends and family sincerely because, without their support,
it is impossible for me to start and enjoy the two years of doing the master’s degree that I treasure
so much. I feel so lucky to get a lot of helpful feedback on the practice presentation from my
friends. Finally, I want to thank myself for all my effort along the way.

42 An Empirical Study on Dynamic Curriculum Learning in Information Retrieval

Bibliography

[1] Eugene L. Allgower and Kurt Georg. Introduction to Numerical Continuation Methods. So-
ciety for Industrial and Applied Mathematics. 8

[2] Y. Bengio. Neural net language models. Scholarpedia, 3(1):3881, 2008. revision #140963. 5

[3] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In Proceedings of the 26th Annual International Conference on Machine Learning - ICML ’09,
pages 1–8. ACM Press. 2, 8, 9, 10, 11, 12, 18, 39

[4] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCand-
lish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners.
12

[5] Antoine Caubrière, Natalia Tomashenko, Antoine Laurent, Emmanuel Morin, Nathalie
Camelin, and Yannick Estève. Curriculum-based transfer learning for an effective end-to-
end spoken language understanding and domain portability. 2, 12, 18

[6] Xinlei Chen and Abhinav Gupta. Webly supervised learning of convolutional networks. 2

[7] Zhiyu Chen, Mohamed Trabelsi, Jeff Heflin, Yinan Xu, and Brian D. Davison. Table search
using a deep contextualized language model. pages 589–598. 2, 17, 27

[8] Christopher Clark and Matt Gardner. Simple and effective multi-paragraph reading compre-
hension. 12

[9] D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active learning with statistical models. 40

[10] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, and Ruslan
Salakhutdinov. Transformer-XL: Attentive language models beyond a fixed-length context.
2, 17, 27

[11] James H. Martin Dan Jurafsky. Speech and language processing. 4

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. 2, 12, 17, 27

[13] Jeffrey L. Elman. Learning and development in neural networks: the importance of starting
small. 48(1):71–99. 2, 9

[14] Meng Fang, Tianyi Zhou, Yali Du, Lei Han, and Zhengyou Zhang. Curriculum-guided hind-
sight experience replay. page 12. 3, 19, 21

An Empirical Study on Dynamic Curriculum Learning in Information Retrieval 43

BIBLIOGRAPHY

[15] Nicola Ferro, Claudio Lucchese, Maria Maistro, and Raffaele Perego. Continuation methods
and curriculum learning for learning to rank. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, pages 1523–1526. ACM. 12

[16] Tommaso Furlanello, Zachary C. Lipton, Michael Tschannen, Laurent Itti, and Anima
Anandkumar. Born again neural networks. 14

[17] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W. Bruce Croft. A deep relevance matching model
for ad-hoc retrieval. pages 55–64. 17

[18] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck. Learning
deep structured semantic models for web search using clickthrough data. In Proceedings of the
22nd ACM international conference on Conference on information & knowledge management
- CIKM ’13, pages 2333–2338. ACM Press. 17

[19] Nitin Indurkhya and Fred J Damerau. Natural language processing. page 676. 3

[20] Radu Tudor Ionescu, Bogdan Alexe, Marius Leordeanu, Marius Popescu, Dim P. Papado-
poulos, and Vittorio Ferrari. How hard can it be? estimating the difficulty of visual search
in an image. 2

[21] Prateek Jain and Purushottam Kar. Non-convex optimization for machine learning. 7, 8

[22] Tae-Hoon Kim and Jonghyun Choi. ScreenerNet: Learning self-paced curriculum for deep
neural networks. 11

[23] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 28

[24] Tom Kocmi and Ondrej Bojar. Curriculum learning and minibatch bucketing in neural ma-
chine translation. pages 379–386. 2, 12, 18

[25] Kai A. Krueger and Peter Dayan. Flexible shaping: How learning in small steps helps.
110(3):380–394. 2, 9

[26] Gaurav Kumar, George Foster, Colin Cherry, and Maxim Krikun. Reinforcement learning
based curriculum optimization for neural machine translation. In Proceedings of the 2019
Conference of the North, pages 2054–2061. Association for Computational Linguistics. 12

[27] M Pawan Kumar, Ben Packer, and Daphne Koller. Self-paced learning for latent variable
models. page 9. 40

[28] Cao Liu, Shizhu He, Kang Liu, and Jun Zhao. Curriculum learning for natural answer
generation. page 7. 18

[29] Christopher Manning, Prabhakar Raghavan, and Hinrich Schuetze. Introduction to informa-
tion retrieval. page 581. 5

[30] Bhaskar Mitra, Fernando Diaz, and Nick Craswell. Learning to match using local and dis-
tributed representations of text for web search. 17

[31] Pietro Morerio, Jacopo Cavazza, Riccardo Volpi, Rene Vidal, and Vittorio Murino. Cur-
riculum dropout. 11

[32] Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with BERT. 2, 17, 27

[33] Gustavo Penha. MANtIS - a multi-domain information seeking dialogues dataset. 27

[34] Gustavo Penha, Alexandru Balan, and Claudia Hauff. Introducing MANtIS: a novel multi-
domain information seeking dialogues dataset. 25

44 An Empirical Study on Dynamic Curriculum Learning in Information Retrieval

BIBLIOGRAPHY

[35] Gustavo Penha and Claudia Hauff. Curriculum learning strategies for IR: An empirical study
on conversation response ranking. 2, 12, 13, 14, 15, 18, 20, 28, 30, 37, 39, 40

[36] Gustavo Penha and Claudia Hauff. On the calibration and uncertainty of neural learning to
rank models for conversational search. In Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics: Main Volume, pages 160–170.
Association for Computational Linguistics. 26, 28

[37] Emmanouil Antonios Platanios, Otilia Stretcu, Graham Neubig, Barnabas Poczos, and
Tom M. Mitchell. Competence-based curriculum learning for neural machine translation.
18

[38] C. Qu, L. Yang, W. B. Croft, J. Trippas, Y. Zhang, and M. Qiu. Analyzing and characterizing
user intent in information-seeking conversations. In SIGIR ’18, 2018. 24

[39] C. Qu, L. Yang, W. B. Croft, Y. Zhang, J. Trippas, and M. Qiu. User intent prediction in
information-seeking conversations. In CHIIR ’19, 2019. 24

[40] S. E. Robertson and S. Walker. Some simple effective approximations to the 2-poisson model
for probabilistic weighted retrieval. In Bruce W. Croft and C. J. van Rijsbergen, editors,
SIGIR ’94, pages 232–241. Springer London. 17, 28

[41] Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework: BM25 and
beyond. 3(4):333–389. 14

[42] Douglas L.T Rohde and David C Plaut. Language acquisition in the absence of explicit
negative evidence: how important is starting small? 72(1):67–109. 2, 9

[43] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. Learning semantic
representations using convolutional neural networks for web search. In Proceedings of the 23rd
International Conference on World Wide Web, pages 373–374. ACM. 17

[44] Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A
survey. 10, 11

[45] Jonathan Talmor, Alon, Berant. MultiQA: An empirical investigation of generalization and
transfer in reading comprehension. 12

[46] Ren Jie Tan. Breaking down mean average precision (mAP). 29

[47] Yi Tay, Shuohang Wang, Luu Anh Tuan, Jie Fu, Minh C. Phan, Xingdi Yuan, Jinfeng
Rao, Siu Cheung Hui, and Aston Zhang. Simple and effective curriculum pointer-generator
networks for reading comprehension over long narratives. 18

[48] Mohamed Trabelsi, Zhiyu Chen, Brian D. Davison, and Jeff Heflin. Neural ranking models
for document retrieval. 17

[49] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS 2017 conf. 5, 6, 7,
17, 27

[50] Chengyi Wang, Yu Wu, Shujie Liu, Ming Zhou, and Zhenglu Yang. Curriculum pre-training
for end-to-end speech translation. In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 3728–3738. Association for Computational
Linguistics. 12, 18

[51] Wikipedia contributors. Natural language processing. Page Version ID: 1037947074. 3

[52] Wikipedia contributors. Okapi BM25. Page Version ID: 1008742667. 28

An Empirical Study on Dynamic Curriculum Learning in Information Retrieval 45

BIBLIOGRAPHY

[53] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-
of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, pages 38–45, Online, Oc-
tober 2020. Association for Computational Linguistics. 28

[54] Lijun Wu, Fei Tian, Yingce Xia, Yang Fan, Tao Qin, Lai Jian-Huang, and Tie-Yan Liu.
Learning to teach with dynamic loss functions. page 12. 31

[55] Benfeng Xu, Licheng Zhang, Zhendong Mao, Quan Wang, Hongtao Xie, and Yongdong Zhang.
Curriculum learning for natural language understanding. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 6095–6104. Association for
Computational Linguistics. 2, 18

[56] L. Yang, M. Qiu, C. Qu, J. Guo, Y. Zhang, W. B. Croft, J. Huang, and H. Chen. Re-
sponse ranking with deep matching networks and external knowledge in information-seeking
conversation systems. In SIGIR ’18, 2018. 24

[57] Xuan Zhang, Gaurav Kumar, Huda Khayrallah, Kenton Murray, Jeremy Gwinnup, Mari-
anna J. Martindale, Paul McNamee, Kevin Duh, and Marine Carpuat. An empirical explor-
ation of curriculum learning for neural machine translation. 12, 18

[58] Qian Zhao, Deyu Meng, Lu Jiang, Qi Xie, Zongben Xu, and Alexander G Hauptmann. Self-
paced learning for matrix factorization. page 7. 40

[59] Siqi Zheng, Gang Liu, Hongbin Suo, and Yun Lei. Autoencoder-based semi-supervised cur-
riculum learning for out-of-domain speaker verification. In Interspeech 2019, pages 4360–4364.
ISCA. 12, 18

[60] Yikai Zhou, Baosong Yang, Derek F. Wong, Yu Wan, and Lidia S. Chao. Uncertainty-
aware curriculum learning for neural machine translation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 6934–6944. Association for
Computational Linguistics. 18

46 An Empirical Study on Dynamic Curriculum Learning in Information Retrieval

	Contents
	Introduction and Background
	Introduction
	Background
	Natural Language Processing
	Neural Language Model
	Non-convex Optimization
	Continuation Method
	Curriculum Learning

	Problem Formulation
	Motivation
	Formalization
	Conversation Response Ranking
	Curriculum Learning

	Related Work
	Neural Ranking Models
	Curriculum Learning Frameworks
	Remaining Challenges

	Methodology
	Curriculum Learning Framework
	Generating Scoring File
	Sampling with Pacing Function

	Dynamic Rescoring Method
	Noise Method

	Experiments and Results
	Experimental Setup
	Conversation Response Dataset
	BERT
	Implementations

	Results
	Basic Experiments with CL Framework
	Dynamic Rescoring Method
	Noise Method

	Conclusions and Future Work
	Conclusions
	Contributions
	Limitations

	Future Work

	Acknowledgement
	Bibliography

