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Abstract

In this study we aim to develop a model that predicts if a hospital patient is deteriorating. The
model can be applied to an affordable healthcare monitoring solution that tracks a patients vital
signs and only electrocardiogram (ECG) data and basic patient-specific information will be needed
for the model input. The model aims to predict if a patient is likely to die within the next 24
hours and is therefore most probably deteriorating.

To create and evaluate such a model we will be using a big amount of ECG waveform data.
Peak detection is performed on ECG data and RR-intervals are extracted, from which statistical
features on the intervals as well as the interval distribution are calculated to be used as input.
A random forest is trained and evaluated using this data and further evaluation is performed on
slight alterations of the model by including patient-specific variables and by applying sampling
techniques to counter the class imbalance.

The results seem promising as the accuracy on deteriorating patients is high enough to catch
most of them. Applying the model in a real world setting can potentially have a big positive impact
on healthcare in low resource settings as the predictions can help allocate the limited resources
better. Further research and real world testing are however needed to truly see the effect of such
a model and to find out how the model can best be implemented given the needs in a specific
healthcare setting.
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Chapter 1

Introduction

In recent years data has been playing an increasingly important role in research and development.
Machine learning (ML) and artificial intelligence (AI) are playing a more important role in our
daily lives and are rapidly evolving in many different fields. One of the most crucial fields within
this development, but which is slow in uptake and lacking behind, is healthcare. What makes this
development so crucial is the ability to save lives, be it by assisting a doctor or fully taking over
part of it’s job [51]. Promising results have been show, but the implementation and adaptation
of such improvements within healthcare take time. The reason for this is the need for rigorous
testing and legal requirements needing to be satisfied, among other things [17], before moving the
ML and AI assisted tools from research and development (R&D) to a real world setting.

This barrier has not slowed down the research and development efforts however. Experts have
projected an AI in healthcare market of around $45B by 2026 from an estimated $4.9B in 2020
[2], around a 9x growth. This not only shows the massive growth that the healthcare space can
still go through, but also the importance of money, both for purchasing and implementation, as
well as for development. As a result the focus of many companies is on developed countries where
a lot of money is available for healthcare and any improvements in it. Unfortunately this leaves
the developing countries mostly on the sidelines, while these are the places that can benefit most
from even small improvements in healthcare.

Basic monitoring systems and small technological improvement can already have a significant
impact on the level of healthcare that can be provided in developing countries. This can as a result
reduce mortality and morbidity in the general population, saving a great number of lives. The
impact is greater in developing countries compared to developed countries as often deterioration
is detected later in LRS leaving more room for improvement. A key aspect for such systems is
affordability, as hospitals in low resource setting often lack the monitor systems to collect and
process large amounts of data, as well as funds to purchase such devices. The focus on these
low resource settings is thus to develop a light weight model that only takes a small amount of
generally available variable as input and assists healthcare workers where possible.

The main goal of this thesis, is to develop a predictive model for healthcare in low resource
settings, that can predict patient deterioration based on quantified ECG features and some patient
specific inputs like gender, age and diagnosis. When talking about low resource settings we note
both the limited monitoring systems and other hardware available at a hospital as well as the
lack of staff and take both into account in our research. The main focus is therefore on providing
information for healthcare workers on the well-being of their patients. More precisely the well-
being of the patients that are currently being monitored by a monitoring system that has our
model implemented while only using a limited amount of variables.

Data mining in ECG data to predict patient deterioration in low resource settings 1



Chapter 2

Problem statement and research
goals

2.1 Healthcare and the need for ML and AI

The COVID pandemic has shown us that there are still a lot of improvements to be made in the
healthcare sector. Prediction, prevention, active care and recovery are all fields that can benefit
from AI and ML enhancements. A positive note on this global pandemic is the willingness to
invest more in research and development and speed up the implementation of new healthcare
solutions. A major benefit that an algorithm has over a person is that it does not tire, is not
effected by irrelevant circumstances and can deal with large amounts of data. On the flip side it
can only use data that is measured or entered and can not make clinical observations itself. As
the possibilities for AI grow we find more and more tasks that can be taken over by machines and
algorithms. Think of smart robot assisted surgery [63] and virtual nurses [10] inside hospitals, but
also of administrative tasks or auto generated reports.

An important problem of AI in healthcare that we wish to address in this work is real time
tracking of vital signs for patients in the Intensive Care Unit (ICU). Vital signs themselves can
give a good impression of the current well being of a patient but almost exclusively at the time of
observation. Algorithms can in real time track the vital signs and detect changes that might be
indicators of deterioration or a certain adverse event.

2.2 Healthcare in low resource settings

For various reasons ranging from funding to the availability of data from hospitals and the level of
education, the focus on AI and ML developments in healthcare have been on developed countries.
This leaves out most underdeveloped countries and regions that are already behind on healthcare
innovations as is. This does mean that relatively small improvements, be it new or already in use
technologies, can have a big positive impact on the state of healthcare in these regions. Overall
healthcare in low resource settings can improve the most relatively to the further developed regions,
but the lack of money and a solid base to build on makes it harder for new state of the art systems
to be implemented. One of the main challenges, which we will focus on in this thesis, is to research
and develop a ML model to support healthcare in low resource settings, e.g. by using a minimal
amount of data.

2.3 Neonates

A big problem in developing countries is the relatively high death rate among newborns. One of
the leading causes of death among babies born in developing countries is sepsis. What makes the

2 Data mining in ECG data to predict patient deterioration in low resource settings
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death rate so much higher compared to other countries is often the delay in diagnosing of sepsis
and as a result a delayed treatment. This can happen because of a lack of monitoring systems,
but also because of a lack of staff, resulting in large time intervals between checks, both signs of
how low resources alone can have a big negative impact. A real time monitoring system, that
can be used to warn staff when a new born is showing signs of sepsis or overall deterioration can
help prevent a large amount of these deaths. The main focus of this thesis was originally on this
specific use case, but because of a lack of data, or access to it, researching this population was not
possible.

2.4 Healthcare data availability

Not getting access to the neonatal healthcare data planned for this thesis pointed out another
obstacle in ML research for healthcare. As healthcare data is highly sensitive personal data, it can
be hard to obtain, both in a direct way where patient data is collected as well as in an indirect way
where access to already collected healthcare data is required. A reason can be that the patient
signed a consent form allowing only the entity that collects the data to be allowed to use it. One
way to make healthcare data more publicly usable is by anonymizing it to the point there is it
near impossible to connect a health record to any single person, effectively removing the sensitive
personal side of the data. One such health data set is the Medical Information Mart for Intensive
Care (MIMIC)-III database [44] [45], which has a separate MIMIC-III Waveform database [44]
[57], hosted on PhysioNet [30]. The MIMIC-III database contains a wide range of healthcare data
from over 40.000 patients, collected over an 11 year period between 2001 and 2012 at the Beth
Israel Deaconess Medical Center in Boston. This data includes lab results, diagnosis, medication
and billing information among many other variables. In this thesis we focus mostly on the age
and diagnosis of a patient.

The MIMIC-III Waveform database contains raw waveform and numerical data from various
monitoring devices like the electrocardiogram (ECG) from various leads, ambulatory blood pres-
sure (ABP) and photoplethysmogram (PPG). A separate subset [56] is also available with subject
IDs that are matched with the subject IDs from the MIMIC-III database. As we will be using
data from both sets the matched subset will be used in this thesis.

The MIMIC-III database however lacks in data from minors age 18 and under, as only a handful
can be found among all patients. A supplement was proposed by Zeng et al [91] which includes
data from the Children’s Hospital Zhejiang University School of Medicine’s pediatric ICUs. The
database is structured in a similar way to MIMIC-III, but there is no subsequent waveform data
made available to complement the database.

2.5 Main goals

The main goal of this thesis is to create a model that predicts if a given patient is deteriorating
based on its ECG data and some patient-specific information. In the list below the main goals
and targets we will discuss in this thesis are summarized.

• Develop a ML model for healthcare that can be used and deployed in low-resource set-
tings. Important aspects for this are low computational power of the hardware deployed in
these hospitals. Also limited need for input data e.g. only using one vital sign and basic
patient-specific information instead of a vast amount of data like multiple lab results, pa-
tient background and multiple vital signs data streams, can make the model more widely
applicable.

• Train and evaluate ML models to predict patient deterioration using only an ECG signal for
input. From this ECG signal features will be extracted and used as model input.

• Optimize the model and tune its performance using a small amount patient-specific data,
e.g. age and gender.

Data mining in ECG data to predict patient deterioration in low resource settings 3



CHAPTER 2. PROBLEM STATEMENT AND RESEARCH GOALS

• Further optimize the model and tune its performance using patient-specific diagnosis inform-
ation that could have a big effect on the ECG data, i.e. heart related diagnoses.

• Gain knowledge on feature importance for each classification.
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Chapter 3

Literature review

3.1 Healthcare in low resource settings

In a 2009 paper, Naicker et al. [62] compared healthcare numbers of developing countries like
Africa with the rest of the world. The severe shortage of healthcare workers becomes immediately
apparent when looking at the amount of healthcare workers per 1000 inhabitants, which stands
at only 2.3 in Africa versus 24.8 in America. When looking at just doctors, we see that most
sub-Sahara countries have only 1 or 2 doctors per 10000 inhabitants. This is for a big part due
to educated healthcare professionals leaving the country for better jobs abroad. Losing these
professionals has a negative impact on healthcare in Africa, but also educating people to become
healthcare professionals in the first place is a harder task in developing countries. Initial research
done at the Medical Library, College of Medicine at the University of Nigeria also showed a lack
of ICT infrastructure needed for information gathering and knowledge transfer [89]. Such an
infrastructure is needed to bring healthcare education to a higher level as well as to support the
research and development of healthcare solutions that require locally collected data.

No matter the reason, a clear image is shown of the lack of healthcare professionals in Africa.
New innovations in healthcare technology can fill part of this gap and give some much needed
assistance.

3.2 ML and AI in healthcare

Applying ML using big data in healthcare [9] was a logical next step after successfully using it in
various other fields like finance and politics [61], [66]. With this comes also the shift to a more
patient centered care [77]. A key factor is the use of electronic health records (EHRs) which
hold all personal healthcare information of a patient, which has seen a lot of growth after the
Health Information Technology for Economic and Clinical Health Act [11]. This data and the
information gained from it has already supported the diagnosis procedure which previously was
purely symptom based. The amount of data gathered in EHRs and in healthcare as a whole has
grown exponentially over the past decade, which went hand in hand with a broader adoption of
EHR usage [47]. The data collected in these health records are important to the development of
new ML solutions. They can help with diagnosis and to optimise a patients hospital stay, but
also find the optimal date for a check-up or risk assessment [41]. An EHR can hold a wide variety
of data, including textual data which can be used in natural language processing [42], patient
specific data like age and gender or data specific to a doctors visit or hospital stay like symptoms,
diagnosis or vital signs if monitored.

Data mining in ECG data to predict patient deterioration in low resource settings 5
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3.3 Predicting deterioration

3.3.1 Early warning scores

There are multiple ways in witch the term deterioration in healthcare can be interpreted. This
can for instance be predicting the chance of re-hospitalisation after discharge based on past in-
formation. In this thesis we will focus on real-time prediction of deterioration for patients in an
ICU based on live vital sign monitoring. To predict deterioration the severity of the illness is
important. The initial focus for this thesis was on neonates, for which multiple severity scores
have been developed. The Clinical Risk Index for Babies (CRIB) is a severity score that predicts
mortality for newborns with a gestational age of less than 32 weeks [14] and was developed in
1990 using logistic regression to find 6 variable that were most indicative to predict mortality. It
was later improved in CRIB-II [64] by using fewer variable that most notably aren’t effected by
care given. Another score that was created around that time was the Score for Neonatal Acute
Physiology (SNAP) [76]. This score is based on 28 variables collected within the first 24 hours
after birth. This makes the score harder to compute as any missing values would effect it. An
extension on this was made called SNAP-PE (Perinatal Extension), which included 4 variables
[74]. Because of the difficulty of getting all these variable both the SNAP and SNAP-PE scores
were updated to include only 6 and 4 variable respectively and are based on measures done in the
first 12 hours after birth [75]. More scores based on patient data have been created, like the Na-
tional Institute of Child Health and Human Development (NICHHD) score [39] and the Neonatal
Mortality Prognosis Index (NMPI) [28]. One notably different score is the National Therapeutic
Intervention Scoring System (NTISS) [32], as its variables are derived from the treatment given
to a patient as opposed to measures from the patient itself.

These scores were still manually calculated based on the attained variables, but with the
rapid development of computer technology and later ML, predictions and scores can be calculated
automatically and in real time. One such scores is the Targeted Real-time Early Warning (TREW)
Score [36] which predict the risk of patients developing sepsis. It uses both vital signs as well as
regular lab results to predict if a patient is at risk of developing sepsis.

3.3.2 Real time tracking

Real time tracking of vital signs is used in various different ways to predict deterioration. Joshi
et al. [46] used Heart Rate Variability (HRV) features, respiratory features and an estimated
movement based of ECG signals of preterm infants to predict late-onset sepsis (LOS). The aver-
age HR acceleration response and the respiratory interdecile range were shown to be two good
indicators of LOS, seeing a significant change multiple hours before onset. Using vital signs to
track neonates is of extra importance as they are quite vulnerable, especially when born pre-term
and/or underweight, as well as for the fact that they lack the ability to communicate clearly with a
healthcare worker about their own well being. For this reason a lot of studies have been preformed
on newborns tracking the heart rate1, pulse oximetry monitoring2, respiratory rate3 and blood
pressure4.

3.3.3 ECG-based

Research even closer to the core of this thesis are those using only ECG data to make predictions.
ECG data is used to monitor a patient’s heart rate, but a lot more information can be extracted
from it. A very informative variable that can be calculated from an ECG signal is the HRV, which
measures the variability between consecutive heart rates and can be a good indicator for someones
current health state as well as a predictor for possible deterioration [3]. Fairchild and Aschner

1[26] [34] [59] [80] [20] [4] [83] [82] [29] [27] [86] [33] [24] [25]
2[88] [16] [25] [6] [69] [19] [81] [72] [87] [18] [50] [12]
3[88] [21] [65] [55] [38] [84]
4[15] [31] [53] [7] [49] [37] [52] [68] [79] [78]
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[23] combined the HR with sample asymmetry and sample entropy to calculate the Heart Rate
Characteristics (HRC) [58]. Real time tracking of the HRC was used to monitor neonates and
predict the onset of sepsis and to create a warning score that indicates the likelihood of a patient
getting sepsis. A monitoring system called ’HeRO’ was created for real world use of the predictive
model. A randomized trial of 3003 neonates was conducted to research the effect of their early
warning score on mortality. They concluded that the overall mortality reduced by over 20% when
using the HeRO score [22].

3.3.4 MIMIC-III

Shifting the focus towards the MIMIC-III database and an adult population, we see that it has
been used to predict deterioration [43] as well. In one such study, Hou et al. [40] created and
tested three models to predict 30-day mortality for patients with sepsis. As input geographic data,
vital signs and laboratory values were used of patients who stayed in the ICU for a period of at
least 24 hours. The vital signs used were numeric vital signs stored in the MIMIC-III database as
opposed to the raw vital sign data offered in the MIMIC-III Waveform database.

Taoum et al. [85] did use a combination of the MIMIC-II and its waveform databases. The
aim of their study was to predict Acute Respiratory Distress Syndrome (ARDS) for patients in
an ICU. They used HR and Breathing Rate (BR) to make their predictions. Their results have
shown that the HR was more informative in making the prediction.

3.4 ECG features

An ECG displays the energy flow of the heart. The most visible and easy to spot part in an ECG
chart is called the QRS complex, as shown in Figure 3.15, which displays the main spike of energy
released during a heart beat. The time between heartbeats is called the RR-interval, as it is the
time between R-peaks.

Figure 3.1: Typical QRS complex.

5https://en.wikipedia.org/wiki/QRS_complex#/media/File:SinusRhythmLabels.svg
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Features extracted from an ECG signal can either be frequency based or time based. Because
of the way the ECG data in the MIMIC Waveform database is scaled and processed it is unsuitable
for certain frequency domain algorithms, as stated by the publishers. For this reason the ECG
features used in our study are limited to time based features.

ECG data has been used to improve detection of deterioration when used on top of existing
models [60] and in many studies ECG derived data has been used for early warnings of patient
deterioration or mortality [71], but almost exclusively in combination with other data or on very
specific diagnoses or conditions. HRV is often a key indicator and has been used to predict
deterioration in patients with specific deceases, e.g. sepsis [8], chronic kidney decease [13] or
sudden death in epilepsy [73]. For this reason the HRV measures are one of the key features to
extract from our data.

HRC have been used in multiple studies on neonatal sepsis and is a strong indicator for pre-
dicting sepsis and sepsis-like illnesses. A key feature used in the HRC is the sample asymmetry
(SampAsy), which has shown to be a good indicator by itself in the study by Joshi et al[46]. In this
same study the interdecile range, meaning the difference between the 10th and the 90th percentile,
of the respiratory rate was also used and shown to be a good indicator of patient deterioration.
The interdecile range can also be used in the heart rate detected as a possible indicator, although
no research has been found using this method.

A popular way of visualizing HRV is by creating a Poincaré plot, which shows the difference
in successive RR-interval length, as shown in the example in Figure 3.2 where Xi is the ith RR-
interval.
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Figure 3.2: Example Poincaré plot from patient 822, hour 14

The plot shows the temporal correlations of RR-intervals within a certain time frame, e.g.
one hour. The deviation along the diagonal shows the variability over the longer term, while
the deviation perpendicular to the diagonal shows the variability over the short term between
successive heart beats. The symmetry in the plot represents the symmetry of the heart beats,
making asymmetry easy to spot. Guzik et al. [35] created an index (GI) that calculates the
contribution of deceleration’s to short-term HRV by calculating the ratio of the distance of point
below the diagonal to the overall distance of the point in the plot.

Another way to assess the asymmetry in the RR-interval distribution is to calculated the ratio
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of the number of points below the diagonal versus the total amount of points, as introduced by
Porta et al. [70].

3.5 Current gap in literature

What stands out when reading the latest work on predictive models for healthcare is that they
tend to focus on a very specific subgroup such as a specific disease, e.g. sepsis, and/or a specific
age group. From a research perspective this is interesting and highly accurate models are created
as a result. From an application perspective this is however not always very helpful, as some
models need a lot of input data to work, or are only applicable on a small subgroup of patients.
In this thesis we try to tackle this problem by using few input data and training the model on a
wide variety of patients. Another reason why new models might not perform well in a real world
setting is the knowledge gap between healthcare and machine learning knowledge. Extensive
machine learning knowledge is not needed to use a model, but by not knowing what a model bases
its prediction on a healthcare worker might be skeptical or simply ignore the model outcome.
In this thesis we will use a relatively easily interpretable model which enables the possibility to
interpret and translate the model workings to support the prediction outcome.

Data mining in ECG data to predict patient deterioration in low resource settings 9



Chapter 4

Methods

4.1 Data exploration and cleaning

The MIMIC-III database contains a vast array of different data, both patient specific as well as
generic data like billing codes. Each patients has a unique SUBJECT ID which is used among
different tables in order to match entries for the same subject. Dates have been shifted in order to
anonymise the data, but a patient’s age can still be derived by calculating the difference between
the date of birth and the admission date. For ages 89 and above the dates were further shifted
to increase anonymity and are therefore excluded from this study. The initial focus when using a
different database was to focus on neonatal and/or pediatric patients, but as seen in Figure 4.1
there are close to no patients under the age of 18 in the MIMIC database. For this reason a change
in approach was needed and the population for our study were changed to adults, age 18 through
88. In total the database contains 46520 unique patients, of which 36559 remained after filtering
by age.
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Figure 4.1: Age distribution of patients in the MIMIC-III database, excluding 89+

In the next step we looked at what patients had waveform data by matching the SUBJECT ID
from the admissions with those in the matched waveform subset. In the base directory of the
waveform database a RECORDS file was kept that contains all folders in the database. The first
layer of folders are named after the first 2 digits of a SUBJECT ID appended to the letter ’p’, with

10 Data mining in ECG data to predict patient deterioration in low resource settings



CHAPTER 4. METHODS

the folders in the second layer being named after the SUBJECT ID, also appended to the letter
’p’, e.g. base/p01/p014837/. To match the IDs we downloaded the RECORDS file, extracted the
IDs from the folder names and matched these with the 36559 subjects left after filtering. This
resulted in 9874 subjects age 18 through 88 that had waveform data available.

For our research we wanted to focus on the final 24 hours of an ICU stay. One of the tables
in the MIMIC-III database named ICUSTAYS contains the length of stay variable, indicating in
days how long the ICU stay of a patient was, varying from a couple minutes for some to multiple
weeks for others. At this stage multiple ICU stays by the same patient were all included as long
as they were at least 24 hours in length, resulting in 14474 ICU stays by 8961 unique patients.

The next step in filtering was done by checking if the waveform data contained the ECG lead
II signal, a signal where peaks are clearly visible. In order to do this the header file of an ICU
stay has to be read. Each ICU stay’s waveform data is divided into segments and each segment
has a header and a data file. The first line of the header file starts with the name of the segment,
which is denoted as the waveform ID, a unique ID for each ICU stay, followed by a 4 digit segment
number, e.g. 3544749 0001. This is followed by the amount of channels recorded, e.g. 3, 2 ECG
channels and 1 blood oxygen measurement, the signal frequency, which is 125Hz for all data, the
amount of data points in the segment and ends with the time of the segment. The other lines
in the header file give information on the different signal channels in the data file. An example
header file can be found in the appendix section A.1. To retrieve the file name we had to download
each patient’s RECORDS file and extract all waveform IDs and segment numbers. Using this each
ICU stay’s data signals were checked by reading the header files and patients without ECG lead
II (denoted by a ’II’ at the end of the line) were excluded from the population. After this filtering
step 8213 patients and 13591 unique stays were left.

Although the patients had been filtered by an ICU stay of at least 24 hours, this does not
mean that there is 24 hours of ECG data available. At 125Hz the sum of segments has to be at
least 125 ∗ 60 ∗ 60 ∗ 24 = 10800000 data points in size to contain 24 hours of data. To check this
the segment length of each segment per unique stay was added after reading the first line of each
header file. Filtering out another 1690 patients and 2770 stays that did not contain enough data,
leaving 6523 patients and 10821 ICU stays.

For any patient with multiple ICU stays one can ask the question if they are related. Multiple
stays can happen is a patient is moved to surgery in between, or had been discharged but gotten
sick again and had to return for instance. Because of the uncertainty as to why a patient could
have multiple ICU stays we decided to only look at the final stay. A patient couldn’t have died
during an earlier ICU stay and there is a chance that he or she wasn’t fully or rightfully discharged
so labeling these stays as discharged or expired would not be possible without any uncertainty.
An earlier ICU stay can also have an effect on a later one, but as the outcome of the last ICU stay
would still be discharged or expired, and final, having had earlier ICU stays would not effect the
labeling of these stays. This brings the total stays equal to the amount of patients, namely 6523.

The ECG features will eventually be split into hourly segments for input to the classification
model. To get an overview of the waveform data we created a dataset containing the SUBJECT ID,
waveform ID, segment number, start time, end time, hour (1-24) and gap length, in case there
were gaps or 00:00 otherwise. This way we know for each hour in what data segment file we need
to look and if there are any significant gaps between them. When looking at the last 24 hours of a
stay we have to start at the end and work backwards in order to go through the data. The main
challenge that arises here is that the segments are of variable length and that there may be gaps
between segments. This can create a couple different scenarios. Let x be the length of a segment,
r the remaining time in the hour we are gathering information on, g the length of a gap and h the
length of one hour.

1. The segment is less than an hour long, x < h.

In this case we have to keep track of how much of the hour we have processed before we
move to the next segment. The time that is remaining in the hour is r = h− x, as shown in
Figure 4.2.
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Figure 4.2: An illustration of a segment that is shorter than an hour

2. The segment is exactly one hour long, x = h.

In this case we can use the entire segment as one hour of data.

h

Segment

x

Figure 4.3: An illustration of a segment that is exactly one hour long

3. The segment is more than an hour long, x > h.

In this case we check how many hours fit in the segment and split it up. We denote the
amount of whole hours in the segment as n, where n = bxhc and what is left is denoted as
l, where l = x mod h. After processing an hour the length of x decreases by h, so that
xnew = xold − h. After processing n hours we are left with x < h and x will be handled as
in 1 (Figure 4.2), where x = l. In the cases that l = 0 this scenario can be split up into
multiple cases of scenario 2.

h

x

Segment

Figure 4.4: An illustration of a segment that is longer than an hour

The above scenarios work for the first segment or when starting an hour at the start of a
segment, but when a part of an hour is left by the end of the segment, r 6= 0 and l 6= 0, we move to
the next segment to check if it contains the remaining data to get to one hour. The next segment
can again be of various lengths. The data already added to the hour we are processing is denoted
by l. l can be what was leftover in the previous segment as in scenario 3 or the length the the
previous segment as in scenario 1, which are equal in this case. With r data missing to fill the
hour we can again fall into three different scenarios.

4. The segment is shorter than the time remaining in the hour, x < r.

In this case the segment is added to the hour, rnew = rold − x and lnew = lold + x and we
move on to the next segment.
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Figure 4.5: An illustration of a segment that is shorter than the remaining time

5. The segment is the exact length of the time remaining in the hour, x = r.

Although unlikely, in this scenario we can use the segment to complete our hour and start a
new hour on the next segment as in scenarios 1-3.
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Figure 4.6: An illustration of a segment that is the same length as the remaining time

6. The segment is longer than the time remaining in the hour, x > r.

In this case we add what is left to the current hour and move to the next. This time is
subtracted from x so xnew = xold− r. We can now treat the remaining x as in scenarios 1-3.
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Figure 4.7: An illustration of a segment that is longer than the remaining time

Whenever we move to a new segment however, as after scenarios 1, 2, 4 and 5, there is a chance
that there is a gap of missing data between them. To calculate this we calculate the end time of
the new segment and compare it with the start time of the segment we just finished. As the time
is expressed in 24 hours, there exists a chance that the last segment started just after midnight,
say 00:05, and the new segment ended just before midnight, say 23:55 (note we are calculating
backwards in time). In this case we cannot simply look at the difference in time, as it would return
a gap of -23:50, were as the actual gap was only 10 minutes. To deal with such scenarios we added
the total time in one day to the difference modulo the total time in one day. A gap can again
have various lengths. The length of a gap is denoted as g and there are four different scenarios to
consider.

7. The gap is shorter than the time remaining in the hour, g < r.

In this case we note the gap in our dataset and add the length of the gap to the time
we have processed in our hour, lnew = lold + g and subtract is from the remaining time,
rnew = rold − g. With what is left we go to the next segment and proceed as in scenarios
4-6.
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Figure 4.8: An illustration of a gap that is shorter than the remaining time

8. The gap is exactly the length of the time remaining in the hour, g = r.

Although unlikely, in this scenario we can note the gap in our dataset and start the new
hour at the start of the next segment, as in scenarios 1-3.
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Figure 4.9: An illustration of a gap that is the same length as the remaining time

9. The gap is larger than the time remaining in the hour, g > r.

In this case we can add the remaining time to our hour and note it as a gap in the dataset. The
length of the gap is than decreased by the time we had remaining in the hour, gnew = gold−r.
The remaining length of the gap can be processed as in scenarios 1-3, with the difference
being the data being processed being a gap instead of a segment, effectively replacing x by
g but following the same procedures.
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Figure 4.10: An illustration of a gap that is longer than the remaining time

10. A new hour starts with a gap.

In the unlikely case of scenarios 2 and 5 there is a chance that the next segment doesn’t
align with the start of the new hour, meaning it will start with a gap. In this case we also
handle the gap g as we do x in scenarios 1-3, with gap lengths being noted in the dataset.

In any case where an hour is fully processed to check if it was the 24th hour. If so we stop and
move to the next patient.

In all cases where either g > r or x > r with, r ≤ h, we split either g or x up into pieces
smaller or equal to the data needed to process an hour, r. As a result, in each possible scenario
we have h = l + x+ g + r where r is always filled up by either x or g as xtotal ≥ 24 ∗ h and thus
no data is ever missed when processing the waveform data.

We decided that data of a patient will only be used if no more than 5% of data is missing in
any single hour. Having too many gaps and the uncertainty of the exact length of a gap in days
makes for a strict limit in allowance of missing data between segments. After filtering our patients
with more than 5% of missing data between segments in any single hour we were left with 4353
patients with sufficient ECG data in the last 24 hours of their stay, totalling 4353 ∗ 24 = 104472
hours.
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4.2 ECG feature extraction

All features that will be extracted from this data are time based and calculated from the RR-
intervals. In order to get the RR-intervals we first need to detect the R-peaks. To open and view
the data files the WFDB library [54] from MIT is needed. This library can read, process and plot
the waveform files and will be used to find the R-peaks in the ECG data.

4.2.1 Peak detection

In the previous section we have analysed the waveform data header files and created a table
which contains information on what hourly data can be find in which files. This information can
now be used to determine what parts of a data file need to be read in order to get one hour of
R-peaks. When multiple files contain data for one hour the newly found peaks will be shifted
according to the time that has already been processed. this way each hour starts at 0 and ends
after 125 ∗ 60 ∗ 60 = 450000 data points. The WFDB library’s processing.qrs.gqrs detect()
can be used to find peaks in the ECG signal. An example using 2000 data points, or 16 seconds,
can be seen in Figure 4.11, where an X denotes a found peak.
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Figure 4.11: Initial detected peaks

Although the peak detection has returned peaks, they aren’t the R-peaks we are looking for.
To correct this processing.peaks.correct peaks() is used, indicating that we are looking for
upwards pointing peaks. The result can be seen in Figure 4.12. This method returns the location
of the found peaks. To get the RR-intervals we calculate the distance between peaks and save
these per patient and per hour.
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Figure 4.12: Corrected detected peaks

4.2.2 Outlier detection

Although the gaps between data segments are there to account for missing data, not all data files
contain a clear ECG signal. As a result a lot of the hours calculated can still have more than the
5% threshold of missing data on which they were filtered earlier. Also corrupted files or gaps of
data stored as Not a Number (NaN) values were found, and as no peaks could be detected in such
files they were excluded from the dataset. In total 35939 hours of data were excluded after being
unable to detect peaks due to missing values and 4281 hours because of the amount of peaks being
below the threshold of an average HR of 30 over a time period of at least 55 minutes, namely
30 ∗ 55 = 1650 peaks. An upper limit of an average HR of 230 over a full hour was also set as
an exclusion criteria, but no hour contained that many detected peaks. In total this leaves 64252
hours of data.

The peak detection and correction correctly return peaks in most cases, however, this process
returns unexpected results when ECG data have poor quality. This can occur, for instance, because
of poor skin preparation or a patient movement leading to a loss of electrode-to-patient contact.
For this reason there can be outliers in the RR-intervals. To detect these outlier we calculate
the mean and standard deviation for an hour of data and set the threshold for exclusion as any
interval with a length more than 2 standard deviations from the mean. This method is known as
the z-score, where the score of a point is calculated as

z =
‖x− µ‖

σ
(4.1)

x is our sample interval, µ our mean interval length and σ out standard deviation. A max distance
of 2 standard deviations thus excludes intervals with a z-score of z > 2. As an example we look
at a randomly selected patient and hour, patient 328 and hour 3. After the peak detection and
RR-interval calculation we have a shortest interval of 296ms and a longest interval of 1592ms.
These correspond to a HR of 203 and 38 respectfully, while the average HR was only 81 beats
per minute. As such a swing in HR is extremely unlikely and that these extremes only occurred
few times as they are barely visible in the distribution in Figure 4.13, we can safely say these are
outliers that occurred due to either a faulty signal or peak detection.
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Figure 4.13: RR-interval distribution after peak detection

When applying our z-score and removing the outliers we find a shortest interval of 656ms and
a longest interval of 832ms, corresponding to a HR of 91 and 72 respectfully. With the average
still being 81 beats per minute this distribution seems more likely, as seen in Figure 4.14.
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Figure 4.14: RR-interval distribution after outlier removal

An example where the HR is not (near) normal distributed is for a patient with atrial fibrillation
(AF). AF is a condition where the HR goes up significantly for a short period of time before coming
back down and is common among patients in ICU [5]. This condition is easy to spot as the RR-
interval distribution shows 2 clear peaks, as shown in Figure 4.15. Most outliers are seen on the
right side of the distribution, where the RR-intervals are the longest. Note that the x-axis ranges
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from the lowest to the highest RR-interval lengths, where some lengths only occur one to a few
times, making them hard to see in the graph.
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Figure 4.15: RR-interval distribution of a patient with AF after peak detection

When applying the same outlier detection with a z-score of 2, the longest interval was 984,
down from 1640. It is visible though that with more extreme variability in intervals fewer outliers
might be detected, as shown in Figure 4.16.
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Figure 4.16: RR-interval distribution of a patient with AF after outlier removal

Although big changes in HR can occur in patients in the ICU, a significant amount of cor-
responding intervals is to be expected when this occurs, for instance when the patient is in pain
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or undergoes stress. A significant enough amount of such intervals would alter the mean and
standard deviation, making them less likely to be classified as outliers. As the data is vast and
includes patients of all ages and diagnoses it is out of the scope of our research to specifically
pick outliers as some might be patient specific physiological changes while others are simply faulty
data. For this reason the minimum and maximum intervals will not be used as inputs for the
model, whereas they could be a telling variable in other cases. Also the z-score of 2 is used to not
exclude or include too much data in most cases, as this would mostly occur in extreme cases where
a smaller of larger z-score would be needed for a more accurate outlier detection and removal.

4.2.3 Feature extraction

All intervals per hour are saved as its length in data points, Ldp. To convert the length to
milliseconds, Lms, we apply the following formula.

Lms =
Ldp

125
∗ 1000 (4.2)

After converting all intervals from data points to milliseconds we will extract 7 different features
from the data, x1,x2,...,x7, which will be the input variables for out model.

Mean heart rate

The mean heart rate M in beats per minute of each hour is calculated as follows

M =
60000∑n
i=1Xi/n

= x1 (4.3)

where Xi is the ith interval, n the total amount of intervals in the hour and 60000 the amount of
milliseconds per minute. In many cases the mean heart rate can give a good estimate of a patient’s
well being. Each age has an interval of beats per minute deemed healthy when at rest and a big
diversion out of this interval can already trigger a healthcare worker to take action. As such the
mean heart rate can be a key indicator in many cases.

Kurtosis

Kurtosis, k, is often improperly used to described peakedness [90]. Kurtosis actually says some-
thing about the combined weight of the tails of a distribution relative to the rest of a distribution
and is calculated as the forth moment of the distribution

K =

n∑
i=1

(Xi − X̄)4

ns4
= x2 (4.4)

where Xi is the ith interval, n the total amount of intervals and s the standard deviation of the
intervals. A high peak and thin tails of an RR-interval distribution means that the heart rate
changed very little during the hour, and vice versa. This means that there was a low overall HRV.
This measure however does not take the ordering of intervals and successive changes into account
and can thus be seen as a simplified measure of HRV.

Skewness

The skewness, S, calculates the (a)symmetry of a distribution and is calculated as the third
moment of the distribution

S =

n∑
i=1

(Xi − X̄)3

ns3
= x3 (4.5)

where Xi is the ith interval, n the total amount of intervals and s the standard deviation of the
intervals. The skewness is the asymmetry over the entire distribution without taking the ordering
of intervals into account. Asymmetry over the entire distribution can in cases signal a change in
heart rate.
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RMSSD

The first measure of HRV we use if the Root Mean Square of Successive Differences (RMSSD) of
the intervals.

HRV =

√∑n−1
i=1 (Xi −Xi−1)2

n− 1
= x4 (4.6)

where Xi is the ith interval and n the total amount of intervals in the hour. The RMSSD is the
most popular HRV measure and has often shown to be a good indicator of a patient’s well being
as discussed in section 3.3 and section 3.4.

NN50

The second HRV measure we use is the amount of successive RR-intervals that differ by more than
50ms. The distance between R-peaks is also known as an NN-interval and although in detail they
might be different, where the NN-interval would exclude certain abnormal peaks, in practise the
terms are interchangeable.

NN50 =

n−1∑
i=1

{‖Xi+1 −Xi‖ > 50} = x5 (4.7)

where Xi is the ith interval and n the total amount of intervals in the hour.

Guzik

The Guzik Index (GI) calculates as ratio of the difference in distance to the diagonal of a Poincare
plot for points above the diagonal over the distance of all points to the diagonal.

GI =

∑o
i=1 d(Pi)∑n
i=1 d(Pi)

= x6 (4.8)

where

d(Pi) =
‖Xi+1 −Xi‖√

2
(4.9)

is the distance from point Pi on the Poincare plot to the diagonal, n the total amount of points
and o the number of points above the diagonal.

Porta

Porta’s index (PI) calculates asymmetry as the ratio of points under the Poincare plot’s diagonal
over all points that are not on the diagonal. This differs from Guzik’s index by only taking the
placement of the points with respect to the diagonal into account and not its distance to the
diagonal.

PI =

∑n−1
i=1 {‖Xi+1 −Xi‖ < 0}∑n−1
i=1 {‖Xi+1 −Xi‖ 6= 0}

= x7 (4.10)

Where Xi is the ith interval and n the total amount of intervals in the hour.

IDR

The IDR calculates the difference between the first and the ninth deciles, denoted as D1 and D9

IDR = D9 −D1 = x8 (4.11)

Where the minimum and maximum interval length can be heavily influenced by the outlier removal,
the IDR is less affected. This makes it a good way to look at the range of a distribution.
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4.3 Data labeling

The PATIENTS table provides patient specific data including the date of birth and date of death,
both for in hospital or thereafter if the death occurred in the period the data collection was still
ongoing. Any patients who died after being discharged will be labeled as discharged regardless of
the time between discharge and death. Since we are only looking at the last ICU stays of patients
in case of multiple stays, we will label any hour from patients who died in the hospital as class
label 1, and all other patients label 0. This leaves us with an unbalanced dataset of 64252 hours
where 11533 (18%) hours are labeled as 1 and the remaining 52719 (82%) as 0.

4.4 Diagnosis

By taking the ECG of all patients the predictive model will be generalised over multiple diagnoses
and ages. Because ECG data records the heart we decided to split patients with any heart related
diagnoses from the rest, as they would most likely have the most diverging ECG data from the
population average. The MIMIC-III database uses International Classification of Diseases, Ninth
Revision, (ICD9) codes to document a patient’s diagnosis. The D ICD DIAGNOSES table consists
of 14567 ICD9 codes, including a short and a long title. To find all heart related diagnoses the
codes are filtered on keywords in either the short or the long title. The keywords used are the
following

• heart

• atrial

• cardiovascular

• myocardial

• coronary

• cardiac

• ventricular

Using these keywords a total of 191 ICD9 codes were identified as diagnoses related to the heart
and can be seen in section A.2. When filtering by these codes we found that 2435 patients had
heart related diagnoses and 1918 non heart related. This split will be made when creating training
and testing sets for our patient specific models, but can be viewed as one group when calculating
the ECG features.

4.5 Model creation

An important aspect to consider when choosing a model is interpretability. The reason is twofold;
first off, it is important to retrieve what features are deemed important for possible feature selection
and future work. This can give insight to researchers on what is important and where they can
possibly find improvements. The second reason is for real world usage. When users, in our case
healthcare workers, do not know how a model works they are less likely to trust it and therefor
also less likely use and apply it. By being able to retrieve what variables were important and
why when making a new classification, this information can be translated and shown to the model
user. This can both increase trust as well as provide further support when using the prediction
to determine what patient’s might need extra help. Therefore a Random Forest Classifier (RFC)
will be used to predict if a patient will deteriorate or recover in the next 24 hours. A RFC is a
white box model where we can directly see how a classification is made and what features were
important for each single instance. The ECG features derived from the vital sign data will be used
as input and the output will be either class 0 or class 1 as labeled based on in hospital deaths.
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ECG features + patient-specific data

Tree - 1 Tree - 2 Tree - n

Patient deteriorating Patient deterioratingPatient not deteriorating

Majority Voting

Final prediction

Figure 4.17: Example of a random forest classifier.

A random forest consists of a number of decision trees. Decision trees are easy to interpret and
use, but are hard to generalize as they tend to quickly overfit on training data and have trouble
correctly classifying new instances. A random forest uses a large collection of decision trees to
counter this problem. By using bootstrapping, the random forest will randomly select samples
to create a bootstrapped dataset (i.e. bagging) and use a specified number of variables from this
dataset to train a tree. This process is repeated for all trees in the random forest. Once completed
a new instance can be used as input for the RFC and each tree will classify it according to the
variables they are trained on. A majority vote is then used to get to a final classification. An
example of this is shown in Figure 4.17.

4.6 Performance evaluation

Different model parameters will be tested to optimise the performance of the model. The perform-
ance of a model is often denoted by the accuracy on testing data, the precision, which represents
the fraction of correctly classified cases over all classified cases per class. Or by the area under the
receiver operator characteristics curve (AUC), which plots the true positive rate (TPR) against the
false positive rate (FPR) from 0.0 to 1.0. The model also calculates an out of the bag (OOB) score,
which is retrieved by evaluating a tree on the data samples that were left out when bootstrapping.

Since we are predicting patient deterioration and misclassifying a patient who is deteriorating
can have fatal consequences we will be looking at more metrics than just the accuracy of the
model. One important metric is the recall, also known as sensitivity, which is the fraction of
correctly classified cases among all cases for a specific class. A high accuracy with a low recall
score means that a lot of patients who were deteriorating were misclassfied even though those who
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were classified as deteriorating often in fact were. The reverse is the case if most of the people
who were deterioration were correctly classified, but also patients who weren’t deteriorating were
classified as if they were, resulting in a high recall but low accuracy.

In terms of the health of a patient it is important to correctly classify any patient that is
deteriorating, thus a high recall is very important. In terms of resource allocation however it is
important that not too many patients are classified as deteriorating when they in fact weren’t.
Both the accuracy as well as the recall are thus important.

The fact that the classes are heavily imbalanced shows that overall only a small amount (in our
case 20%) is actually deteriorating. As a result we can assume that a somewhat lower accuracy
of class 1 will not increase the amount of false positives by too much and thus a higher recall is
deemed more important. To confirm this we will look at the ROC and precision-recall curves in
all cases and will aim to optimize this areas under the curves while focusing on achieving a high
recall score. We will also look at the effect of under and over sampling of the data using a random
under sampler, Near Miss, random over sampler and SMOTE, on the performance of the model
as well as introducing class weights.

After creating and evaluating the model we will try to further improve by adding some patient
specific variables like the age and/or gender of a patient. This information can make the model
input less generic as now patients of different ages and genders can be classified accordingly. This
will hopefully enable the model to predict more patient specific cases while not requiring a large
amount of patient data, as this data and information can often be missing in low resource settings.

We will split the data in patients with a heart related diagnoses and patients without and will
train and evaluate two separate models as well as the effect of introducing a variable that reflects
this split in diagnosis. The outcomes will be compared with the main model that takes all data
as input to determine if heart related diagnoses significantly differ from other cases by comparing
model performance.

As a final evaluation we will look at different times before the end of stay and see if there is a
trend in model performance over time, as this can give extra information about the patient’s well
being and if he or she is recovering or not.

4.7 Feature importance

Single decision trees can often be graphically represented if they aren’t too big (e.g. depth and
number of variables). A random forest however often contains hundreds of trees and can therefor
not be easily visually interpreted by a human anymore. But as the structure can still be read we
can see what nodes/decisions are used to get to a prediction and thus calculate the importance of
a feature. This can be done on the model level, where each tree is analyzed and the information
gain at each node for each feature can be calculated. Another way is by following a single instance
as it goes through the model during classification and again looking at the information gain. This
is called the observation level feature importance and can be applied in real time when using the
model in an application. We will consider both types of feature importance in this thesis.
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Experiments

5.1 Summary

In the following sections we will be fitting, evaluating and optimizing random forest classifiers. For
the evaluation of the model we will keep track of the AUC, precision, recall and OOB scores. Apart
from the precision and recall scores by themselves we also look at the area under the precision-
recall curve, which shows the trade-off between precision and recall, where a high area means both
a high precision as well as a high recall.

To start we will train a model using default parameter values and will optimise the most
important features using a grid search. Once we found the best performing parameter values we
will try under and oversampling techniques and add class weights to deal with the data imbalance
and further improve the model performance.

We will then try to obtain an even higher model performance by adding patient specific vari-
ables to our input dataset. This addition will be tested on two previously best performing models
based on different scores. For patients with heart related diagnoses we make a separate subset
as well as a new input variable and we evaluate and compare the performance of using separate
subsets and models versus using the diagnoses class as an input variable.

After these experiments we continue with the two best performing models and test them in
series by using the positively classified subset from one model as input for the next and evaluate
the effect on the true and false positive rates.

Another metric that will be obtained is the performance and classification probability over
time, ranging from the first to the last hour of the patient’s ICU stay.

The two best performing models will then be taken under the loop and feature importance on
both model as well as observation levels will be extracted and evaluated.

Finally we will look at the effect of using different threshold levels on the classification per-
formance of one of our models with the aim to get a more balanced output.

5.2 Base model

5.2.1 Default parameter values

To start we trained a Random Forest Classifies with its default settings as given by the Sklearn
library [67] on all the data. The main parameters of these settings are shown in Table 5.1.
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Parameter Value Description
max depth None The max depth of a tree

n estimators 100 The number of trees

min sample split 2
The minimum number of samples required

to split an internal node

min sample leaf 1
The minimum number of samples required

to be at a leaf node

Table 5.1: Most important model parameters and values

Note that ’None’ is the default parameter for the max depth of a tree and means that nodes are
expanded until all leaves are pure or until all leaves contain less than min samples split samples.
The data is split in 80% training (51401) and 20% testing (12851) and the class ratio is kept the
same over both subsets as seen in Table 5.2.

Subset Class count Percentage

Training
Class 0: 42175
Class 1: 9226

Class 0: 82%
Class 1: 18%

Testing
Class 0: 10544
Class 1: 2307

Class 0: 82%
Class 1: 18%

Table 5.2: Training and testing subsets

The model was fitted on the training data and afterwards evaluated on testing data. On top
of this the OOB score was also tracked. The results are shown in Table 5.3.

Precision Recall
Class 0 0.85 0.99
Class 1 0.76 0.18

Table 5.3: Base model performance using default parameter values

The OOB score was 0.84, which is in line with the precision of the model and reached an AUC
of 0.77, as seen in Figure 5.1. When looking at the recall however we notice that class 1 scores
very low. This means that a lot of patients who were deteriorating have been missed. The reason
why the precision and AUC are still fairly high stems from the imbalance in the data and the
model overfitting on class 0.
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Figure 5.1: ROC curve of the base model using default parameter values
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This was also resulted in a low area under the precision-recall curve of class 0 of only 0.494,
whereas class 1 reached an area of 0.927, as seen in Figure 5.2.
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micro-average Precision-recall curve (area = 0.893)

Figure 5.2: Precision-recall curve of the base model using default parameter values

5.2.2 Optimization

To increase model performance we ran a grid search on the main parameters of the RFC. The grid
search tries all combinations of parameter values given. The value ranges are shown in Table 5.4.

Parameter Min value Max value Step size
max depth 2 50 8

n estimators 500 2000 150
min sample size 2 5 1
min samples leaf 1 4 1

Table 5.4: RFC parameter value grid

The grid search uses 3-fold cross validation and fits the model on the same dataset. The best
parameters were a max depth of 50, a n estimators of 650, min sample size of 2 and min sample leaf
of 1. This combination of parameters resulted in a precision of 0.78, an AUC of 0.78 and an OOB
score of 0.84. What stands out is that most of the tweaked parameters are not far from its default
value except for the max depth, which was best at its max. Looking at the scores in Table 5.5
however we can see that this depth did not increase the performance significantly, while greatly
adding to the complexity of the model.

Precision Recall
Class 0 0.85 0.99
Class 1 0.78 0.18

Table 5.5: Base model performance using grid search’s best parameter values

To see the effect of the max depth of the model we ran the optimal parameters with an
increasing max depth from 1 till 50 and plot the precision and recall in Figure 5.3 to see at what
depth we already find a similar score with the aim of using a smaller depth as this would reduce
the model complexity.
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Figure 5.4: ROC curve of the base model using optimized parameter values
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Figure 5.3: Precision and recall at different depths

We can see that the recall reaches its limit at a depth of 30 and performs as good as with a
depth of 50. The final parameter changes after optimisation are thus a max depth of 30 and using
650 estimators.

Using these parameter values we fitted and evaluated the model and compared the AUC as
well as the precision-recall curve with the one from the base model. The AUC slightly increased
from 0.77 to 0.78, while on the precision-recall curves the class 1 curve area increased from 0.494
to 0.514 and that of class 0 from 0.927 to 0.931, as seen in Figure 5.4 and Figure 5.5. The OOB
score remained the same at 0.84. Overall the model performed slightly better on these optimised
parameters.

5.2.3 Dealing with unbalanced data

Although the model’s precision is fairly high, the recall of class 1 is too low for any real world
usage. The reason for this is the imbalance of the data, making the model favour classifying
instances as class 0 over class 1. To counter this we will use both under as well as over sampling
techniques. We are using both because with undersampling only original data will be used in the
final training set, where as with oversampling new instances will be created the were either not in
the original dataset or are duplicates of original instances and therefor not adding any new data
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Figure 5.5: The precision-recall curve of the base model using optimized parameter values

to learn from. Class weights will also be used to try and counter the class imbalance and model
bias.

Under sampling

One way of countering class imbalance is by under sampling the majority class. For this the
Random Under Sampler (RUS) and Near Miss from imblearn [48] are used.

The RUS method randomly selects and removes instances from the majority class until the
two classes are of the same size, i.e. 9226. The model is trained on the new balanced subset
but still tested and evaluated on the unbalanced testing set. The accuracy as seen in Table 5.6
is significantly different, most noticeably the precision of class 1 decreased while increasing the
recall. The decrease in precision is also noticeable in the OOB score which dropped to 0.68.

Precision Recall
Class 0 0.91 0.67
Class 1 0.32 0.70

Table 5.6: Model performance on undersampled data using RUS

In our case this can be a more desirable outcome as only 30% of the deteriorating patients are
missed. One third of the recovering patients were classified as deteriorating, meaning an extra
3480 patients would have gotten extra care when not needed if applied in a real world setting.

The difference in performance did not affect the AUC much as it only slightly decreased from
0.78 to 0.76. The steep drop in precision did however result in a worse precision-recall curve as
the area was only 0.457.

The second method, Near Miss, selects instances to remove by first calculating the distance
between instances of both classes and selecting the ones of the majority class closest to the minority
class to be removed first, eliminating the instances that were a ”near miss”. However hen applying
this method to our data, the model heavily leans towards class 1, reaching a high recall but
low accuracy as seen in Table 5.7, and an OOB score of 0.86. Although this means that most
deteriorating patients are correctly classified it does also misclassify most instances of class 0,
making the model not useful for real world usage. One possible reason for this is that class
0 instances might be more spread out. Class 1 instances in the middle between such class 0
instances would be filtered out while being relatively further separated from class 0 compared to
instances that are close to class 0 but not in between. This and other specific class distributions
can cause near miss to not perform optimal.
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Precision Recall
Class 0 0.87 0.27
Class 1 0.20 0.82

Table 5.7: Model performance on undersampled data using Near Miss

As a result the AUC dropped to 0.54 and the precision-recall area dropped all the way down
to 0.19 for class 1, with 0.376 for the micro average curve area.

Over sampling

Another technique of balancing the data is oversampling the minority class. We trained two
separate models using two oversampling techniques, namely Random Over Sampling (ROS) and
synthetic minority oversampling technique (SMOTE).

ROS creates new samples of the minority class that are close to the existing instances or in
some cases duplicates. It does this until both classes are of equal size, i.e. 42175. After evaluating
on the testing data the scores are retrieved as seen in Table 5.8. The OOB score increased to 0.98.

Precision Recall
Class 0 0.86 0.97
Class 1 0.66 0.26

Table 5.8: Model performance on oversampled data using ROS

The difference compared to the base model is mostly noticeable in class 1 as the precision went
down and the recall went up while not seeing a significant difference in class 0 and having a AUC
of 0.78. Compared to the optimised base model the precision-recall curves are almost identical,
with a 0.515 area under the curve for class 1 and 0.932 for class 0.

SMOTE is a commonly used oversampling technique which looks at the k-nearest neighbors of
an instance in the minority class and creating new samples by linear interpolation in this space.
The default value for k is 5 and to see the effect of different k values we ran the over sampler with
values ranging from 2 to 25. The corresponding precision and recall are plotted in Figure 5.6 and
it is clearly visible that the k-value has little to no impact on the model score.
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Figure 5.6: Model precision and recall after oversampling using SMOTE with varying k-values

The best score was achieved using k=8 and the model performance is shown in Table 5.9 and
an OOB score of 0.88.
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Precision Recall
Class 0 0.88 0.88
Class 1 0.46 0.45

Table 5.9: Model performance on oversampled data using SMOTE with k=8

Using SMOTE with k=8 resulted in an AUC of 0.76, slightly lower compared to ROS. Also
the precision-recall was slightly worse when using SMOTE, with the class 1 area under the curve
dropping to 0.473 while class 0 stayed almost the same at 0.926.

Class weights

A way of accounting for class imbalance without changing the dataset in any way is by introducing
class weights. To create an equal weight we will weigh our classes 1:4, with class 1 weighing 4
times as much as class 0. The RFC takes these weights into account when fitting to the data
and will try to optimize the precision. A higher precision is desired but as discussed in previous
sections the recall is of bigger importance and as seen in the results in Table 5.10 the recall has
decreased even further when comparing to the base model and a slightly lower OOB score of 0.84
was scored.

Precision Recall
Class 0 0.84 0.99
Class 1 0.79 0.15

Table 5.10: Model performance using class weights

Adding class weights does not alter the actual amount of instances per class and as a result the
increase in class 0 classifications did not result in a change in either the AUC or the precision-recall
curves, with both reaching the same areas under the curve as without the class weights.

5.3 Patient specific model

The imbalance in the data can reasonably be countered by undersampling resulting in a more
favorable accuracy for a real world setting. It is however still lower than desired as almost a third of
the deteriorating patients is still missed and a fairly large amount of recovering patients are wrongly
classified. This model did however decrease the area under the precision-recall curve compared to
our optimised base model and as such both models will be used for further optimisation. The main
reason for these model outcomes is the population the data is gathered from. By generalising over
all patients of all ages 18-88 and all diagnoses the model can be theoretically applied in settings
were patient information might be missing. Adding a few patient specific constant variables to the
model could however increase the performance significantly as on top of the differences in ECG
features the instances could be further distinguished and split by the RFC. To not increase the
requirements for the model too much we only added easy to gain information, namely a patients
age and gender.

5.3.1 Adding gender

Original data

We first fit and evaluate a model which includes the patients gender without augmenting the data.
We use the same model parameters to have a clear comparison between models. The results and
comparison to our optimised models without gender are shown in Table 5.11 where we see a small
increase in class 1 precision. Also the OOB score slightly increased to 0.85.
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Precision Recall Precision diff Recall diff
Class 0 0.85 0.99 0.00 0.00
Class 1 0.82 0.18 +0.04 0.00

Table 5.11: Model performance and comparison when including patient’s gender

As the results were slightly better than the original model the AUC increased a little to 0.79.
Also the precision-recall area for class 1 and 0 increased to 0.539 and 0.937 respectively.

Undersampled data

The same evaluation is performed on a model fitted with balanced data including gender using
RUS. As seen in Table 5.12 the model performance slightly increased compared to the model train
using RUS in the previous section, with the OOB score also slightly increasing to 0.69.

Precision Recall Precision diff Recall diff
Class 0 0.91 0.68 0.00 +0.01
Class 1 0.33 0.71 +0.01 +0.01

Table 5.12: Model performance and comparison when including patient’s gender and balancing
the classes using RUS

As the results weren’t very different from the original model the AUC did not change, reaching
the same 0.77. The slight increase in precision and recall for class 1 are however visible in the area
under the precision-recall curve, increasing from 0.457 to 0.48.

5.3.2 Adding age

Next we look at the effect of adding the patient’s age as an input. The results are again compared
to our optimised models without age using both the original data as well as undersampled data.

Original data

The model performance using the data including the patient’s age is shown in Table 5.13. Including
the patient’s age has a significant effect on model performance, increasing the class 1 precision
and recall greatly as well as the OOB score which increased to 0.87.

Precision Recall Precision diff Recall diff
Class 0 0.87 0.99 +0.02 0.00
Class 1 0.90 0.32 +0.12 +0.14

Table 5.13: Model performance and comparison when including patient’s age

This increase is clearly visible in the AUC, increasing the score from 0.78 to 0.88, while also
increasing the area of class 1 precision-recall curve from 0.514 to 0.703 and class 0 to 0.966.

Undersampled data

The same evaluation is again performed on a model fitted with balanced data including age using
RUS and compared with the optimised model on data without the patient’s age and using RUS.
As seen in Table 5.14 the model performance increase all over the board and seeing an increase of
OOB score to 0.76.
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Precision Recall Precision diff Recall diff
Class 0 0.94 0.74 +0.03 +0.07
Class 1 0.40 0.77 +0.08 +0.07

Table 5.14: Model performance and comparison when including patient’s age and balancing the
classes using RUS

The model also got an AUC of 0.85, significantly higher than any previous model at 0.76. The
increase didn’t translate to the precision-recall curve where the area for class 1 decreased from
0.688 to 0.621 and for class 0 slightly from 0.967 to 0.958.

5.3.3 Adding gender and age

Both gender and age showed improvements in model performance. We tested if adding both
variables as input to the model would show significant improvements over adding either one.

Original data

Perhaps unsurprisingly adding both gender and age as input increased the performance of the
model even further, as seen in Table 5.15. This inclusion also improved compared to the previous
best model using only age as the precision and recall of class 1 increased by another 0.02 and 0.01
respectively. The OOB score slighly increased as well 0.88.

Precision Recall Precision diff Recall diff
Class 0 0.87 0.99 +0.02 0.00
Class 1 0.92 0.33 +0.14 +0.15

Table 5.15: Model performance and comparison when including patient’s age and gender

This increase also improved the AUC to 0.90, reaching an area under the precision-recall curve
of 0.738 for class 1 and 0.972 for class 0.

Undersampled data

This increase in performance is also noticeable in the model after using RUS to balance the data
when both variables are added, as shown in Table 5.16. This means that only 21% of deteriorating
patients were missed while only 24%, or 2530, patients were misclassified as deteriorating while
they were not. The model scored an OOB score of 0.77 using this method.

Precision Recall Precision diff Recall diff
Class 0 0.94 0.76 +0.03 +0.09
Class 1 0.42 0.79 +0.10 +0.09

Table 5.16: Model performance and comparison when including patient’s age and gender and
balancing the classes using RUS

The AUC also went up to 0.86 while the precision-recall curve improved and reached an area
under the precision-recall curve of 0.645 for class 1 and 0.962 for class 0.

5.3.4 Heart related versus other diagnoses

When using ECG data as input it means the heart is the key to making the prediction. Naturally
speaking if someone has a heart condition this can result in different ECG data and thus different
feature values. To further optimise the performance, the data is split into two subset; one of
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patients who had a heart related diagnosis and one without. Two models were fitted for each
subsets and evaluated on the models having age and gender as an input as described in the
precious section.

Heart related diagnosis

After filtering, the subset for patients with a heart related diagnosis contains a total of 35770
hours of data, of which 23288 class 0 and 5328 class 1 in the training subset.

Original data

First we fit and evaluate the model without altering the data. The performance and comparison
with the previous best performing model is shown in Table 5.17, got an OOB score of 0.89 and
improved mostly for class 1.

Precision Recall Precision diff Recall diff
Class 0 0.88 0.99 +0.01 0.00
Class 1 0.94 0.39 +0.02 +0.06

Table 5.17: Model performance and comparison when fitting and evaluating on patients with heart
related diagnoses

The AUC improved slightly from 0.90 to 0.91. Also the precision-recall curve improved to
0.782 for the class 1 area and stayed roughly the same at 0.973 for class 0.

Undersampled data

We also undersampled class 0 and fit the model as in the previous sections. The result as shown
in Table 5.18 shows again an increase in performance, compared to the previously best performing
model after adding age and gender and using RUS, and achieving an OOB score of 0.80.

Precision Recall Precision diff Recall diff
Class 0 0.94 0.79 0.00 +0.03
Class 1 0.47 0.80 +0.05 +0.01

Table 5.18: Model performance and comparison when fitting and evaluating on patients with heart
related diagnoses and balancing the classes using RUS

The increase in performance also resulted in an increase in AUC, reaching 0.88, and as a result
of the increased performance also the precision-recall curve improved to 0.708 for class 1 and 0.964
for class 0.

Non heart related diagnosis

The data that is left belongs to all patients that did not have any heart related diagnosis. Although
this is still a mixture of many different diseases and cases, the difference in ECG data and features
can be expected to be less extreme compared to those with heart related diagnoses. In total this
subset consists of 28482 hours of data, of which 18887 hours of class 0 and 3898 hours of class 1
in the training set.

Original data

The model performance and comparison are shown in Table 5.19. The most notable change is the
increase in recall for class one. The OOB score for this model was 0.89.
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Precision Recall Precision diff Recall diff
Class 0 0.89 0.99 +0.02 0.00
Class 1 0.92 0.43 0.00 +0.10

Table 5.19: Model performance and comparison when fitting and evaluating on patients without
heart related diagnoses

Although some scores increased significantly it did not result in a much higher AUC, which
was up 0.01 from that of the model considering all patients at 0.91. As a result of the increased
performance the precision-recall curve did improve significantly as the area for class 1 increased
by 0.045 to 0.783 and the class 0 area with 0.007 to 0.979.

Undersampled data

As a final experiment to increase the model performance and real world applicability data was
undersampled using RUS and a model was fitted and evaluated agains the previously best per-
forming model. The results on this subset when using RUS, as shown in Table 5.20, show again
an increase in performance as well as in OOB score, which was 0.80 for this model.

Precision Recall Precision diff Recall diff
Class 0 0.95 0.80 +0.01 +0.04
Class 1 0.45 0.80 +0.03 +0.01

Table 5.20: Model performance and comparison when fitting and evaluating on patients without
heart related diagnoses and balancing the classes using RUS

This difference is also noticed in the AUC, which increased by 0.02 to 0.88. Finally the
precision-recall curve also improved to an area for class 1 of 0.688 and a class 0 area of 0.970.

Diagnosis as input

In the previous section we have seen that splitting the data by diagnoses improves the model
performance. This does however double the amount of models needed to account for each pos-
sible combination of wanted output and patients diagnosis. A way to combine this is by us-
ing an input variable to denote if a patient has a heart related diagnosis or not. The variable
HEART RELATED will be used for this and is 1 for patients with a heart related diagnosis and
0 otherwise. A model is trained and evaluated on both the original data (Model 1) including this
variable as well as balanced training data using RUS (Model 2) and compared to the averages of
the two models for both diagnosis groups in the previous section.

As seen in Table 5.21 The performance when separating by diagnosis using a variable is nearly
identical to the average of using two separate models when using the original dataset except for
the decrease in class 1 recall, which was already very low. Furthermore the model got an OOB
score of 0.88, a slight decrease.

Precision Recall Precision diff Recall diff
Class 0 0.88 1.00 -0.01 +0.01
Class 1 0.94 0.36 +0.01 -0.05

Table 5.21: Model performance and comparison when fitting and evaluating using the heart related
diagnosis as an input variable versus using two separate models when using the original dataset

The decrease in model performance was barely noticeable in the precision-recall curve and not
at all in the ROC, which actually increased to an AUC of 0.92.
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The overall performance thus slightly decreased, but with the aim of not misclassifying recov-
ering patients as to limit resources the class 0 recall and class 1 precision are desired to be high,
which the model did achieve. With the aim of not missing any deteriorating patients we want
to achieve an as high as possible class 1 recall, which thus far has been achieved when training
the model using the RUS, we performed the same model fitting using balanced data and com-
pared it with the average of the previous models that were trained using split data. As shown
in Table 5.22 this model also performed slightly worse compared to the average of the previously
evaluated models, but not on the most important score, being the class 1 recall, which increased
to 0.81. The model received an OOB score of 0.78, slightly lower than the 0.80 from the previous
models.

Precision Recall Precision diff Recall diff
Class 0 0.95 0.78 0.00 -0.02
Class 1 0.44 0.81 -0.02 +0.01

Table 5.22: Model performance and comparison when fitting and evaluating using the heart related
diagnosis as an input variable versus using two separate models when using RUS to balance the
dataset

The decrease in performance resulted in a the same AUC of 0.88, and only a slight decrease in
the area under the precision-recall curve to 0.677 for class 1 and 0.966 for class 0.

5.4 Models in series

As seen in the previous section there is a cost when using the diagnosis as input instead of using
separate models. The benefit however is a smaller need for resources, as a single model has a size
of up to 500MB and a medical device might have limited capacity. Although exact requirements
for this are not known as of writing, the first estimate as given are to stay below 1GB in total
size. Given how the decrease in performance was mostly noticed in the less important scores for
each model, we will assume that the benefits of only using two models outweigh the costs.

Combining these tho model can result in an even higher score when first classifying all de-
teriorating patients on Model 2, with high class 1 recall, and further evaluation the outcome by
feeding this sub population into Model 1, with a high class 1 precision.

To test this we use the entire testing dataset containing of 12851 hours of data, of which 10544
belong to class 0 and 2307 belong to class 1. As seen in Table 5.23, there were 4211 hours classified
as deteriorating, of which 1863 were true positives and 2348 false positive.

Class 0 Class 1
Class 0 8196 2348 10544
Class 1 444 1863 2307

8640 4211 12851

Table 5.23: Confusion matrix after running the testing data through the first model

All hours labeled as class 1 are filtered out of the original test set to create the output subset
of the first model. This output subset is then used as input for the second model. The model
output is shown in Table 5.24.
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Class 0 Class 1
Class 0 2297 51 2348
Class 1 1027 836 1863

3324 887 4211

Table 5.24: Confusion matrix after running the model 1 output subset data through the second
model

The second model also performed slightly better on class 1 as it did on the entire test set, with
the class 1 recall increasing from 0.36 to 0.45 while keeping the precision at 0.94.

As a result out of 2307 deteriorating patients 836, or 36%, were correctly classified. On the other
side out of 10544 recovering patients only 51, or 0.5%, ended up being classified as deteriorating,
meaning that in a real world setting where the balance in data is comparable with our dataset
(80% recovering versus 20% deteriorating), there are hardly any false positives.

5.5 Performance over time

In a real world setting as patient’s heart rate and variability can change a lot from hour to hour
and it is therefore also important to look at the change over time. To validate if our models show
a trend in predictions following the trend in recovery or deterioration we will evaluate the model
on data from 1, 12 and 24 hours before the end of stay. In other words, when a patient recovers
or deteriorates, we assume the closer they are to release or death, the more clearly it can be seen
in the data, resulting in a higher model performance and a higher certainty closer to the end of
stay. We will both look at the model performance on these specific hours as well as the change in
probability when classifying. For the change is probability we will look at the mean probability
over all positive and negative labels, regardless of them being correctly classified or not, i.e. the
probability can be < 0.50 if there are a lot of false negative/positives.

After filtering the testing data on hours before end of stay we get subsets as described in
Table 5.25.

Hours till end of stay Class 0 Class 1 Total
1 377 84 461
12 417 116 533
24 419 83 502

Table 5.25: Data amounts for different times before end of stay

5.5.1 Model 1

Figure 5.7 shows the trend in model performance and prediction probability for both classes at
times 24, 12 and 1 hour(s) before the end of stay. No clear upwards trend was found when using
the first model.
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Figure 5.7: Change over time in model 1 performance and prediction probability

This means that the model is not more certain that a patient is deteriorating closer to its
death than it is 12 or 24 hours before. A reason for this can be that the chronological order of the
hours is not taken into account when fitting the model. Each hour is an instance that is handled
individually from the rest and changes per successive hour are not taken into account. However a
trend could still be reasonably expected, as a patient should be in a much worse condition close
to its death compared to half a day or more before.

5.5.2 Model 2

In model 2 we again see no strong trend, as can be seen in Figure 5.8, although we do see a
slight increase in the mean probability when predicting deterioration, which is the key indicator
in real world usage, as this tell the healthcare worker how certain the model is that a patient is
deteriorating. This outcome is comparable with model 1.
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Figure 5.8: Change over time in model 2 performance and prediction probability

5.5.3 Models in series

The key indicator in real world usage is the probability that a patient is deteriorating. As a final
check we will look at how the models in series perform on class 1 predictions, looking at the final
output. As seen in Figure 5.9 the recall decreases the closer we get to a patients death. Although
this means we are missing more patients who are deteriorating, we do see a slight increase in model
certainty that these patients are deteriorating.
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Figure 5.9: Change over time for the models in series performance and prediction probability

5.6 Feature importance

Now that we have two models fitted and evaluated, the next step is to interpret them and retrieve
what features are the most important when making a classification.

5.6.1 Model level feature importance

The model level features are directly derived from the model and reflect which features are most
important in explaining the output of the model. Note that gender and the heart related diagnosis
flag are binary variables while this method can be biased towards continues variable, making these
binary variables less important at model level.

We first look at Model 1. As seen in Figure 5.10 the most important features are a patient’s
age and mean heart rate, while the heart related diagnosis and gender variables are deemed least
important. The same can be observed when looking at the feature importance of Model 2 as
shown in Figure 5.11.
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Figure 5.10: Model 1 feature importance at model level
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Figure 5.11: Model 2 feature importance at model level

5.6.2 Observation level feature importance

An arguably better way of retrieving feature importance is at the observation level, were we look
at the feature contribution when making a classification. For this we use the treeinterpreter
python library [1]. The tree-interpreter gives as output the model bias plus the contribution
of each feature to the final prediction. This method can be used to e.g. see what features
are most important when predicting deterioration, to find out what features contribute most to
misclassifications or to what features seem overall less important. On top of this the interpreter
can be used in real time to give healthcare workers more insight into what the model bases its
prediction on.

Model 1

We first look at model 1 and run the tree-interpreter on the model given the test set. As the model
was evaluated on unbalanced testing data it is very biased towards class 0, with a bias of 0.82
versus a bias for class 1 of 0.18. For an instance to be classified as 1 the sum of feature importance
has to be ≥ 0.32. To evaluate what features are most important we look at the true positives and
retrieve for each instance what feature had the biggest positive impact. An overview of the most
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important features is shown in Figure 5.12 and shows that the patient’s age is by far the most
important feature.
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Figure 5.12: Model 1 feature importance at observation level when classifying true positives

Furthermore we look at what variables are most often the leading factor in making a true
positive prediction and see that age is the most important feature in over 42% of the cases, as
shown in Figure 5.13, followed by the mean heart rate in almost 21% of the cases.
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Figure 5.13: Model 1 percentage of feature being leading in making a true positive classification

Another interesting group to analyse are the false negatives, where we can look at what features
weigh heaviest in making these misclassifications. In Figure 5.14 we can see that although the
features on average all predict a negative importance, meaning that they lean towards the positive
class in case of a false negative result, the total feature importance is not enough to outweigh the
bias that the model has.
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Figure 5.14: Model 1 feature importance at observation level when classifying false negatives

How often it is the main reason for a false negative can be seen in Figure 5.15, where somewhat
surprisingly the age of a patient is only a leading factor in 11.3% of the cases while the IDR is in
over 18%.
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Figure 5.15: Model 1 percentage of feature being leading in making a false negative classification

Model 2

The same test are done for the second model, where we again observe that the age is the most
important factor, but follow by the IDR as the second most whereas in the first model the mean
heart rate had a higher importance. We do again observe that the binary features for the patient’s
gender and heart related diagnosis were least important (Figure 5.16).
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Figure 5.16: Model 2 feature importance at observation level when classifying true positives

This was also reflected in the percentage of classifications each features was deemed most
important as shown in Figure 5.17.
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Figure 5.17: Model 2 percentage of feature being leading in making a true positive classification

The same evaluation is done on the false negative prediction. One thing that is clearly visible
when looking at Figure 5.18 is that almost all features on average weigh towards the negative class
it was classified as. Another interesting finding is that both the gender as well as heart related
diagnosis variables do point towards the positive class. This is also the first case where a patient’s
age wasn’t the clearly most important feature, as it scored nearly equal to the mean heart rate
and NN50 while the IDR was most important.
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Figure 5.18: Model 2 feature importance at observation level when classifying false negatives

Somewhat surprisingly the average feature importance was not reflected in the percentage of
cases where the features were most important in making the classification. In Figure 5.19 we can
see that the age was still the most important in most cases, followed by the IDR and mean heart
rate. The NN50 was most important in only 10.9% of cases were as on average is was the second
most important feature.
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Figure 5.19: Model 2 percentage of feature being leading in making a false negative classification

5.7 Threshold

The default threshold for binary classification is 0.5, meaning that a probability ≥ 0.5 will be
classified as 1, and as 0 otherwise. As seen in Figure 5.14, model 1 on average had a negative
feature importance on false negative classifications, meaning its features predicted the opposite
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class, namely positive, but the bias was too big to get a class 1 probability of ≥ 0.5. This bias
can be countered by lowering the threshold level needed to classify a prediction as true positive.
To test this we used threshold levels ranging from 0.1 to 0.5 and plotted the precision, recall and
f1-score, as seen in Figure 5.20. As we can see the optimal f1-score is reached at a threshold of
0.3.

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Threshold level

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e
Model performance using different thresholds

Recall
Precision
F1-score

Figure 5.20: Model 1 performance using various threshold levels

The model performance using this threshold is shown in Table 5.26 and is compared to the
model when using a threshold of 0.5. We can see that the model strikes a better balance between
precision and recall. As with the two model previous models also this model’s applicability depends
on the needs in a specific real world setting.

Precision Recall Precision diff Recall diff
Class 0 0.93 0.94 +0.05 -0.06
Class 1 0.71 0.69 -0.23 +0.33

Table 5.26: Model performance and comparison when using a lower threshold

5.8 Overview

In Table 5.27 below we can see the performance scores of our models. The overall best performing
model was using original data including age, gender and the heart related diagnosis flag. This
model was also used when comparing threshold levels and showed the best balance in performance
metrics as well as precision and recall balance when using a lower threshold.
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Performance scores
Data AUROC pre-rec (class 0) pre-rec (class 1) OOB

Base Model Default Original 0.77 0.93 0.49 0.84
Optimized Original 0.78 0.93 0.51 0.84

Balancing data Undersample RUS 0.76 0.97 0.69 0.68
Near Miss 0.54 0.86 0.19 0.86

Oversample ROS 0.78 0.93 0.52 0.98
SMOTE 0.76 0.93 0.47 0.88

Class weights Original 0.78 0.93 0.52 0.84

Patient-specific model Gender Original 0.79 0.94 0.54 0.85
RUS 0.77 0.93 0.48 0.69

Age Original 0.88 0.97 0.70 0.87
RUS 0.85 0.96 0.62 0.76

Gender & age Original 0.90 0.97 0.74 0.88
RUS 0.86 0.96 0.65 0.77

Diagnoses-specific model Heart related diagnosis subset Original subset 0.91 0.97 0.78 0.89
RUS subset 0.88 0.96 0.71 0.80

Non heart related diagnosis subset Original subset 0.88 0.98 0.78 0.89
RUS subset 0.88 0.97 0.69 0.80

(Non) heart related diagnosis variable Original 0.92 0.98 0.78 0.88
RUS 0.88 0.97 0.68 0.78

Table 5.27: Overview of model performances
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Chapter 6

Future work

One of the key challenges in this thesis was to make a model that would predict deterioration
using just the ECG signal and without knowing too much about the patient. Some basic patient
information as gender, age and, if known, is the diagnosis was heart related were added to improve
model performance. In future work this can be further extended to include more variables like
for instance a patient’s weight. Further optimizing the model’s performance while keeping the
requirements for use low by not asking hard to retrieve information as input will make the model
more applicable for real world use.

For now the two models serve two different purposes; one with a high recall, aiming not to miss
any deteriorating patients, and one with a high precision, aiming no to misclassify any recovering
patients. Closer work with healthcare providers like the ICU in a hospital can provide more
insights into what is most desired for each setting. This feedback can than be used to optimize a
model more to their specific needs.

Another aspect that can be modified for real world use are the time frames used. All current
tests are done using the last 24 hours of data, split in data per hour. This time window can be
greater or smaller, as well as the time per instance, e.g. 48 hours of data, or 6 hours split per 30
minutes. Using a small time frame could for instance be used in cases where the model would be
applied as more of a last minute warning system for cases that have been missed, where as a longer
time frame could be used a more subtle supporting tool to confirm or contradict the healthcare
worker’s estimation of a patient.

Not only the time frames but also what features to extract from the ECG data can be altered.
There was a clear difference in feature importance as shown in section 5.6. Excluding some features
could decrease model complexity while not hurting performance much, which could be preferable
in some applications.

Other data as from a difference dataset or collected personally could also allow for the extraction
of frequency based ECG features such as peak heights, as this was not possible with the MIMIC
dataset. These features could give way more insight and result in a higher performance.

As is the model only predicts if an instance of an hour belongs to someone who is deteriorating
or recovering. As see in section 5.5 there is no clear trend in patient prediction closer to the end
of stay. Such a trend would however be an even more helpful tool as it would take away much
uncertainty that can arise from a score that changes each hour. If no clear trend is seen the model
would only alert if it notices something, which could be temporary and only happen in a certain
hour. With a trend over time however the change per hour could be taken into account and the
direction of the trend could be used as an indicator for a patient’s well being.

Aside from the differences desired model performance and real world applicability, the targeted
population is also important. The original goal of this thesis was to predict deterioration in
newborns in the NICU. If data on this population can be gathered, similar research can be done
on this population.
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Conclusion

The aim of this thesis was to create a predictive model using a minimal amount of needed input,
reaching an as high as possible performance. To tackle the first challenge we have used only
data retrieved from one ECG lead in combination with the most basic patient related variables,
namely age and gender. When the diagnosis is known to be heart related or not this can add
to the performance. To reach the maximum result, separate models are needed for these two
cases, as using the diagnosis as a separate input variable resulted in slightly worse performance.
If this is favorable relies on the technical limitation of the application the models would be used
in. The second part, the model performance, did not reach a height that would make it directly
applicable in most settings. For now, either a lot of deteriorating patients are missed, making
the model less useful when it comes to triggering early intervention, or the model classifies too
many false positives, making the model less useful for resource management. The amount of false
positives are however only high because of the imbalance in the data, which could be an accurate
reflection of the real world. But this data is also collected from an American hospital, which could
have a higher recovery rate than hospitals in low resource settings. Depending on the current
situation and needs of a hospital in a low resource setting, the addition of either of these models
could therefore still have a positive effect, although not optimal. Important to note is that in any
scenario such a model would be used to assist healthcare workers, and not to take over their task
of estimating a patient’s well being or if he or she is showing signs of recovering or not. When
adjusting the threshold we reach a model performance that could be considered high enough to
be applied in a real world setting, especially taking into account the vast room for improvement
in the hospitals in low resource settings.

The most challenging problem, besides only using ECG data, was the fact that the population
was extremely diverse, considering a collection of patients in a wide age group, from all different
backgrounds and different diagnoses. Some patients had multiple ICU stays, co-morbidities or
other factors that could affect their state, while others might have only had a short stay and
would be considered to fall in a completely different category. Fitting and evaluating a model on
such a diverse group of people while barely taking into account patient specific variables deemed
to be a big challenge and is most probably the reason for the less than optimal performance.

A lot of insights have however be gathered from these models such as what features are most
important when making a prediction. A followup study with the same aim as ours can learn from
the findings in this thesis and the models can be used side-by-side with newly trained ones for
comparison in a real world environment.
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[48] Guillaume Lemâıtre, Fernando Nogueira, and Christos K. Aridas. Imbalanced-learn: A py-
thon toolbox to tackle the curse of imbalanced datasets in machine learning. Journal of
Machine Learning Research, 18(17):1–5, 2017. 28

[49] JA Low, AB Froese, RS Galbraith, JT Smith, EE Sauerbrei, and EJ Derrick. The association
between preterm newborn hypotension and hypoxemia and outcome during the first year.
Acta Paediatrica, 82(5):433–437, 1993. 6

[50] Kemi K Mascoll-Robertson, Rose M Viscardi, and Hyung C Woo. The objective use of pulse
oximetry to predict respiratory support transition in preterm infants: an observational pilot
study. Respiratory care, 61(4):416–422, 2016. 6

[51] Scott Mayer McKinney, Marcin Sieniek, Varun Godbole, Jonathan Godwin, Natasha An-
tropova, Hutan Ashrafian, Trevor Back, Mary Chesus, Greg S Corrado, Ara Darzi, et al.
International evaluation of an ai system for breast cancer screening. Nature, 577(7788):89–
94, 2020. 1

52 Data mining in ECG data to predict patient deterioration in low resource settings



BIBLIOGRAPHY

[52] Vivienne M Miall-Allen, Linda S de Vries, Lilly MS Dubowitz, and Andrew GL Whitelaw.
Blood pressure fluctuation and intraventricular hemorrhage in the preterm infant of less than
31 weeks’ gestation. Pediatrics, 83(5):657–661, 1989. 6

[53] VM Miall-Allen, LS De Vries, and AG Whitelaw. Mean arterial blood pressure and neonatal
cerebral lesions. Archives of disease in childhood, 62(10):1068–1069, 1987. 6

[54] MIT-LCP. Native python wfdb package. https://github.com/MIT-LCP/wfdb-python, 2021.
15

[55] Mary A Mohr, Karen D Fairchild, Manisha Patel, Robert A Sinkin, Matthew T Clark, J Ran-
dall Moorman, Douglas E Lake, John Kattwinkel, and John B Delos. Quantification of peri-
odic breathing in premature infants. Physiological measurement, 36(7):1415, 2015. 6

[56] Moody G. Moody B., Clifford G. Villarroel M., and Silva I. Mimic-iii waveform database
matched subset (version 1.0). 2020. 3

[57] Moody G. Moody B., Clifford G. Villarroel M., and Silva I. Mimic-iii waveform database
(version 1.0). 2020. 3

[58] J Randall Moorman, Douglas E Lake, and M Pamela Griffin. Heart rate characteristics
monitoring for neonatal sepsis. IEEE Transactions on Biomedical Engineering, 53(1):126–
132, 2005. 7

[59] Joseph Randall Moorman, Waldemar A Carlo, John Kattwinkel, Robert L Schelonka, Peter J
Porcelli, Christina T Navarrete, Eduardo Bancalari, Judy L Aschner, Marshall Whit Walker,
Jose A Perez, et al. Mortality reduction by heart rate characteristic monitoring in very low
birth weight neonates: a randomized trial. The Journal of pediatrics, 159(6):900–906, 2011.
6

[60] M. T. Moss T. J., Clark, Enfield Calland J. F., Voss J. D. Lake K. B., D. E., and Moorman J.
R. Cardiorespiratory dynamics measured from continuous ecg monitoring improves detection
of deterioration in acute care patients: A retrospective cohort study. PloS one, 12(8):e0181448,
2017. 8

[61] Travis B Murdoch and Allan S Detsky. The inevitable application of big data to health care.
Jama, 309(13):1351–1352, 2013. 5

[62] Saraladevi Naicker, Jacob Plange-Rhule, Roger C Tutt, and John B Eastwood. Shortage of
healthcare workers in developing countries–africa. Ethnicity & disease, 19(1):60, 2009. 5

[63] Shane O’Sullivan, Nathalie Nevejans, Colin Allen, Andrew Blyth, Simon Leonard, Ugo
Pagallo, Katharina Holzinger, Andreas Holzinger, Mohammed Imran Sajid, and Hutan
Ashrafian. Legal, regulatory, and ethical frameworks for development of standards in artifi-
cial intelligence (ai) and autonomous robotic surgery. The International Journal of Medical
Robotics and Computer Assisted Surgery, 15(1):e1968, 2019. 2

[64] Gareth Parry, Janet Tucker, William Tarnow-Mordi, UK Neonatal Staffing Study Collabor-
ative Group, et al. Crib ii: an update of the clinical risk index for babies score. The Lancet,
361(9371):1789–1791, 2003. 6

[65] Manisha Patel, Mary Mohr, Douglas Lake, John Delos, J Randall Moorman, Robert A Sinkin,
John Kattwinkel, and Karen Fairchild. Clinical associations with immature breathing in
preterm infants: part 2—periodic breathing. Pediatric research, 80(1):28–34, 2016. 6

[66] Vimla L Patel, Edward H Shortliffe, Mario Stefanelli, Peter Szolovits, Michael R Berthold,
Riccardo Bellazzi, and Ameen Abu-Hanna. The coming of age of artificial intelligence in
medicine. Artificial intelligence in medicine, 46(1):5–17, 2009. 5

Data mining in ECG data to predict patient deterioration in low resource settings 53

https://github.com/MIT-LCP/wfdb-python


BIBLIOGRAPHY

[67] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011. 24

[68] Jeffrey M Perlman, Joseph B McMenamin, and Joseph J Volpe. Fluctuating cerebral blood-
flow velocity in respiratory-distress syndrome: relation to the development of intraventricular
hemorrhage. New England Journal of Medicine, 309(4):204–209, 1983. 6

[69] Christian F Poets, Robin S Roberts, Barbara Schmidt, Robin K Whyte, Elizabeth V As-
ztalos, David Bader, Aida Bairam, Diane Moddemann, Abraham Peliowski, Yacov Rabi,
et al. Association between intermittent hypoxemia or bradycardia and late death or disabil-
ity in extremely preterm infants. Jama, 314(6):595–603, 2015. 6

[70] Alberto Porta, S Guzzetti, N Montano, T Gnecchi-Ruscone, R Furlan, and A Malliani. Time
reversibility in short-term heart period variability. In 2006 Computers in Cardiology, pages
77–80. IEEE, 2006. 9
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Appendix A

Appendix

A.1 Example header file

3544749 0001 4 125 3811 17:48:00.230
3544749 0001.dat 80 1/mV 8 0 -72 4808 0 II
3544749 0001.dat 80 1/mV 8 0 -72 -14144 0 AVF
3544749 0001.dat 80 1/mmHg 8 0 -72 8708 0 ABP
3544749 0001.dat 80 1/mmHg 8 0 -72 4808 0 PAP
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A.2 Filtered IDC9 Codes

ROW ID ICD9 CODE SHORT TITLE LONG TITLE
369 0860 Chagas disease of heart Chagas’ disease with heart involvement
423 09389 Cardiovascular syph NEC Other specified cardiovascular syphilis
488 09885 Gonococcal heart dis NEC Other gonococcal heart disease
1332 1641 Malignant neopl heart Malignant neoplasm of heart
2423 2127 Benign neoplasm heart Benign neoplasm of heart
4299 39890 Rheumatic heart dis NOS Rheumatic heart disease, unspecified
4300 39891 Rheumatic heart failure Rheumatic heart failure (congestive)
4301 39899 Rheumatic heart dis NEC Other rheumatic heart diseases
4306 40201 Mal hypert hrt dis w hf Malignant hypertensive heart disease with heart failure
4308 40211 Benign hyp ht dis w hf Benign hypertensive heart disease with heart failure
4310 40291 Hyp ht dis NOS w ht fail Unspecified hypertensive heart disease with heart failure

4318 40401 Mal hyp ht/kd I-IV w hf
Hypertensive heart and chronic kidney disease, malignant, with heart failure and with
chronic kidney disease stage I through stage IV, or unspecified

4320 40403 Mal hyp ht/kd stg V w hf
Hypertensive heart and chronic kidney disease, malignant, with heart failure and with
chronic kidney disease stage V or end stage renal disease

4322 40411 Ben hyp ht/kd I-IV w hf
Hypertensive heart and chronic kidney disease, benign, with heart failure and with
chronic kidney disease stage I through stage IV, or unspecified

4324 40413 Ben hyp ht/kd stg V w hf
Hypertensive heart and chronic kidney disease, benign, with heart failure and chronic
kidney disease stage V or end stage renal disease

4326 40491 Hyp ht/kd NOS I-IV w hf
Hypertensive heart and chronic kidney disease, unspecified, with heart failure and with
chronic kidney disease stage I through stage IV, or unspecified

4328 40493 Hyp ht/kd NOS st V w hf
Hypertensive heart and chronic kidney disease, unspecified, with heart failure and chronic
kidney disease stage V or end stage renal disease

4335 41000 AMI anterolateral,unspec Acute myocardial infarction of anterolateral wall, episode of care unspecified
4336 41001 AMI anterolateral, init Acute myocardial infarction of anterolateral wall, initial episode of care
4337 41002 AMI anterolateral,subseq Acute myocardial infarction of anterolateral wall, subsequent episode of care
4338 41010 AMI anterior wall,unspec Acute myocardial infarction of other anterior wall, episode of care unspecified
4339 41011 AMI anterior wall, init Acute myocardial infarction of other anterior wall, initial episode of care
4340 41012 AMI anterior wall,subseq Acute myocardial infarction of other anterior wall, subsequent episode of care
4341 41020 AMI inferolateral,unspec Acute myocardial infarction of inferolateral wall, episode of care unspecified
4342 41021 AMI inferolateral, init Acute myocardial infarction of inferolateral wall, initial episode of care
4343 41022 AMI inferolateral,subseq Acute myocardial infarction of inferolateral wall, subsequent episode of care
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4344 41030 AMI inferopost, unspec Acute myocardial infarction of inferoposterior wall, episode of care unspecified
4345 41031 AMI inferopost, initial Acute myocardial infarction of inferoposterior wall, initial episode of care
4346 41032 AMI inferopost, subseq Acute myocardial infarction of inferoposterior wall, subsequent episode of care
4347 41040 AMI inferior wall,unspec Acute myocardial infarction of other inferior wall, episode of care unspecified
4348 41041 AMI inferior wall, init Acute myocardial infarction of other inferior wall, initial episode of care
4349 41042 AMI inferior wall,subseq Acute myocardial infarction of other inferior wall, subsequent episode of care
4350 41050 AMI lateral NEC, unspec Acute myocardial infarction of other lateral wall, episode of care unspecified
4351 41051 AMI lateral NEC, initial Acute myocardial infarction of other lateral wall, initial episode of care
4352 41052 AMI lateral NEC, subseq Acute myocardial infarction of other lateral wall, subsequent episode of care
4359 41080 AMI NEC, unspecified Acute myocardial infarction of other specified sites, episode of care unspecified
4360 41081 AMI NEC, initial Acute myocardial infarction of other specified sites, initial episode of care
4361 41082 AMI NEC, subsequent Acute myocardial infarction of other specified sites, subsequent episode of care
4362 41090 AMI NOS, unspecified Acute myocardial infarction of unspecified site, episode of care unspecified
4363 41091 AMI NOS, initial Acute myocardial infarction of unspecified site, initial episode of care
4364 41092 AMI NOS, subsequent Acute myocardial infarction of unspecified site, subsequent episode of care
4365 4110 Post MI syndrome Postmyocardial infarction syndrome
4366 4111 Intermed coronary synd Intermediate coronary syndrome
4367 41181 Acute cor occlsn w/o MI Acute coronary occlusion without myocardial infarction
4368 41189 Ac ischemic hrt dis NEC Other acute and subacute forms of ischemic heart disease, other
4369 412 Old myocardial infarct Old myocardial infarction
4374 41401 Crnry athrscl natve vssl Coronary atherosclerosis of native coronary artery
4379 41406 Cor ath natv art tp hrt Coronary atherosclerosis of native coronary artery of transplanted heart
4380 41407 Cor ath bps graft tp hrt Coronary atherosclerosis of bypass graft (artery) (vein) of transplanted heart
4381 41410 Aneurysm of heart Aneurysm of heart (wall)
4382 41411 Aneurysm coronary vessel Aneurysm of coronary vessels
4383 41412 Dissection cor artery Dissection of coronary artery
4384 41419 Aneurysm of heart NEC Other aneurysm of heart
4385 4142 Chr tot occlus cor artry Chronic total occlusion of coronary artery
4387 4144 Cor ath d/t calc cor lsn Coronary atherosclerosis due to calcified coronary lesion
4388 4148 Chr ischemic hrt dis NEC Other specified forms of chronic ischemic heart disease
4389 4149 Chr ischemic hrt dis NOS Chronic ischemic heart disease, unspecified
4396 4161 Kyphoscoliotic heart dis Kyphoscoliotic heart disease
4398 4168 Chr pulmon heart dis NEC Other chronic pulmonary heart diseases
4399 4169 Chr pulmon heart dis NOS Chronic pulmonary heart disease, unspecified
4430 4250 Endomyocardial fibrosis Endomyocardial fibrosis
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4440 4260 Atriovent block complete Atrioventricular block, complete
4441 42610 Atriovent block NOS Atrioventricular block, unspecified
4442 42611 Atriovent block-1st degr First degree atrioventricular block
4443 42612 Atrioven block-mobitz ii Mobitz (type) II atrioventricular block
4444 42613 Av block-2nd degree NEC Other second degree atrioventricular block
4453 4266 Other heart block Other heart block
4454 4267 Anomalous av excitation Anomalous atrioventricular excitation
4459 4270 Parox atrial tachycardia Paroxysmal supraventricular tachycardia
4460 4271 Parox ventric tachycard Paroxysmal ventricular tachycardia
4468 42761 Atrial premature beats Supraventricular premature beats
4470 42781 Sinoatrial node dysfunct Sinoatrial node dysfunction
4471 42789 Cardiac dysrhythmias NEC Other specified cardiac dysrhythmias
4473 4280 CHF NOS Congestive heart failure, unspecified
4474 4281 Left heart failure Left heart failure
4475 42820 Systolic hrt failure NOS Systolic heart failure, unspecified
4476 42821 Ac systolic hrt failure Acute systolic heart failure
4477 42822 Chr systolic hrt failure Chronic systolic heart failure
4478 42823 Ac on chr syst hrt fail Acute on chronic systolic heart failure
4479 42830 Diastolc hrt failure NOS Diastolic heart failure, unspecified
4480 42831 Ac diastolic hrt failure Acute diastolic heart failure
4481 42832 Chr diastolic hrt fail Chronic diastolic heart failure
4482 42833 Ac on chr diast hrt fail Acute on chronic diastolic heart failure
4483 42840 Syst/diast hrt fail NOS Combined systolic and diastolic heart failure, unspecified
4484 42841 Ac syst/diastol hrt fail Acute combined systolic and diastolic heart failure
4485 42842 Chr syst/diastl hrt fail Chronic combined systolic and diastolic heart failure
4486 42843 Ac/chr syst/dia hrt fail Acute on chronic combined systolic and diastolic heart failure
4492 4294 Hrt dis postcardiac surg Functional disturbances following cardiac surgery
4495 42971 Acq cardiac septl defect Acquired cardiac septal defect
4496 42979 Other sequelae of MI NEC Certain sequelae of myocardial infarction, not elsewhere classified, other
4498 42982 Hyperkinetic heart dis Hyperkinetic heart disease
4500 42989 Ill-defined hrt dis NEC Other ill-defined heart diseases
4544 390 Rheum fev w/o hrt involv Rheumatic fever without mention of heart involvement
4548 3918 Ac rheumat hrt dis NEC Other acute rheumatic heart disease
4549 3919 Ac rheumat hrt dis NOS Acute rheumatic heart disease, unspecified
4550 3920 Rheum chorea w hrt invol Rheumatic chorea with heart involvement
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4551 3929 Rheumatic chorea NOS Rheumatic chorea without mention of heart involvement

6470 64850 Congen CV dis preg-unsp
Congenital cardiovascular disorders of mother, unspecified as to episode of care or not
applicable

6471 64851 Congen CV dis-delivered
Congenital cardiovascular disorders of mother, delivered, with or without mention of
antepartum condition

6472 64852 Congen CV dis-del w p/p
Congenital cardiovascular disorders of mother, delivered, with mention of postpartum
complication

6473 64853 Congen CV dis-antepartum Congenital cardiovascular disorders of mother, antepartum condition or complication
6474 64854 Congen CV dis-postpartum Congenital cardiovascular disorders of mother, postpartum condition or complication
6475 64860 CV dis NEC preg-unspec Other cardiovascular diseases of mother, unspecified as to episode of care or not applicable

6476 64861 CV dis NEC preg-deliver
Other cardiovascular diseases of mother, delivered, with or without mention of antepartum
condition

6477 64862 CV dis NEC-deliver w p/p Other cardiovascular diseases of mother, delivered, with mention of postpartum complication
6478 64863 CV dis NEC-antepartum Other cardiovascular diseases of mother, antepartum condition or complication
6479 64864 CV dis NEC-postpartum Other cardiovascular diseases of mother, postpartum condition or complication
7112 65970 Abn ftl hrt rate/rhy-uns Abnormality in fetal heart rate or rhythm, unspecified as to episode of care or not applicable

7113 65971 Abn ftl hrt rate/rhy-del
Abnormality in fetal heart rate or rhythm, delivered, with or without mention of antepartum
condition

7114 65973 Abn ftl hrt rate/rhy-ant Abnormality in fetal heart rate or rhythm, antepartum condition or complication
7314 7455 Secundum atrial sept def Ostium secundum type atrial septal defect
7319 7458 Septal closure anom NEC Other bulbus cordis anomalies and anomalies of cardiac septal closure
7331 7467 Hypoplas left heart synd Hypoplastic left heart syndrome
7335 74684 Obstruct heart anom NEC Obstructive anomalies of heart, not elsewhere classified
7337 74686 Congenital heart block Congenital heart block
7338 74687 Malposition of heart Malposition of heart and cardiac apex
7339 74689 Cong heart anomaly NEC Other specified congenital anomalies of heart
7340 7469 Cong heart anomaly NOS Unspecified congenital anomaly of heart
7936 76381 Ab ftl hrt rt/rh b/f lab Abnormality in fetal heart rate or rhythm before the onset of labor
7937 76382 Ab ftl hrt rt/rh dur lab Abnormality in fetal heart rate or rhythm during labor
7938 76383 Ab ftl hrt rt/rhy NOS Abnormality in fetal heart rate or rhythm, unspecified as to time of onset

8588 86102 Heart laceration-closed
Laceration of heart without penetration of heart chambers or without mention of open
wound into thorax

8589 86103 Heart chamber lacerat-cl
Laceration of heart with penetration of heart chambers without mention of open wound
into thorax

8590 86110 Heart injury NOS-open Unspecified injury of heart with open wound into thorax
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8591 86111 Heart contusion-open Contusion of heart with open wound into thorax
8592 86112 Heart laceration-open Laceration of heart without penetration of heart chambers, with open wound into thorax
8593 86113 Heart chamber lacer-opn Laceration of heart with penetration of heart chambers with open wound into thorax
8586 86100 Heart injury NOS-closed Unspecified injury of heart without mention of open wound into thorax
8587 86101 Heart contusion-closed Contusion of heart without mention of open wound into thorax
8951 7797 Perivent leukomalacia Periventricular leukomalacia
9055 77210 NB intraven hem NOS Intraventricular hemorrhage unspecified grade
9056 77211 NB intraven hem,grade i Intraventricular hemorrhage, grade I
9057 77212 NB intraven hem,grade ii Intraventricular hemorrhage, grade II
9058 77213 NB intravn hem,grade iii Intraventricular hemorrhage, grade III
9059 77214 NB intraven hem,grade iv Intraventricular hemorrhage, grade IV
11948 V4321 Heart assist dev replace Organ or tissue replaced by other means, heart assist device
11949 V4322 Artficial heart replace Organ or tissue replaced by other means, fully implantable artificial heart
12276 9720 Pois-card rhythm regulat Poisoning by cardiac rhythm regulators
12280 9724 Pois-coronary vasodilat Poisoning by coronary vasodilators
12285 9729 Pois-cardiovasc agt NEC Poisoning by other and unspecified agents primarily affecting the cardiovascular system
10140 V4581 Aortocoronary bypass Aortocoronary bypass status
13385 E8726 Fail sterile heart cath Failure of sterile precautions during heart catheterization
10141 V4582 Status-post ptca Percutaneous transluminal coronary angioplasty status
10458 9920 Heat stroke & sunstroke Heat stroke and sunstroke
9881 V4500 Status cardc dvce unspcf Unspecified cardiac device in situ
9883 V4502 Status autm crd dfbrltr Automatic implantable cardiac defibrillator in situ
9884 V4509 Status oth spcf crdc dvc Other specified cardiac device in situ
11407 99600 Malfunc card dev/grf NOS Mechanical complication of unspecified cardiac device, implant, and graft
11408 99601 Malfunc cardiac pacemake Mechanical complication due to cardiac pacemaker (electrode)
11409 99602 Malfunc prosth hrt valve Mechanical complication due to heart valve prosthesis
11410 99603 Malfunc coron bypass grf Mechanical complication due to coronary bypass graft
11411 99604 Mch cmp autm mplnt dfbrl Mechanical complication of automatic implantable cardiac defibrillator
11412 99609 Malfunc card dev/grf NEC Other mechanical complication of cardiac device, implant, and graft
11437 99661 React-cardiac dev/graft Infection and inflammatory reaction due to cardiac device, implant, and graft
12586 E8706 Acc cut/hem w heart cath Accidental cut, puncture, perforation or hemorrhage during heart catheterization
12596 E8716 FB post heart catheter Foreign object left in body during heart catheterization
11993 V5301 Adj cerebral vent shunt Fitting and adjustment of cerebral ventricular (communicating) shunt
11998 V5331 Ftng cardiac pacemaker Fitting and adjustment of cardiac pacemaker
11999 V5332 Ftng autmtc dfibrillator Fitting and adjustment of automatic implantable cardiac defibrillator
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12000 V5339 Ftng oth cardiac device Fitting and adjustment of other cardiac device
14501 V810 Scrn-ischemic heart dis Screening for ischemic heart disease
14503 V812 Screen-cardiovasc NEC Screening for other and unspecified cardiovascular conditions
12346 99683 Compl heart transplant Complications of transplanted heart

13740 E9429 Adv eff cardiovasc NEC
Other and unspecified agents primarily affecting the cardiovascular system causing adverse
effects in therapeutic use

10949 79430 Abn cardiovasc study NOS Abnormal cardiovascular function study, unspecified
10951 79439 Abn cardiovasc study NEC Other nonspecific abnormal results of function study of cardiovascular system
12986 7852 Cardiac murmurs NEC Undiagnosed cardiac murmurs
12987 7853 Abnorm heart sounds NEC Other abnormal heart sounds
12994 7859 Cardiovas sys symp NEC Other symptoms involving cardiovascular system
13947 V1253 Hx sudden cardiac arrest Personal history of sudden cardiac arrest
9454 V1365 Hx-cong malform-heart Personal history of (corrected) congenital malformations of heart and circulatory system
10078 V151 Hx-major cardiovasc surg Personal history of surgery to heart and great vessels, presenting hazards to health
10120 V171 Family hx-stroke Family history of stroke (cerebrovascular)
10122 V173 Fam hx-ischem heart dis Family history of ischemic heart disease
10123 V1741 Fam hx sudden card death Family history of sudden cardiac death (SCD)
10124 V1749 Fam hx-cardiovas dis NEC Family history of other cardiovascular diseases
11613 E8583 Acc poisn-cardiovasc agt Accidental poisoning by agents primarily affecting cardiovascular system
11630 99671 Comp-heart valve prosth Other complications due to heart valve prosthesis
11631 99672 Comp-oth cardiac device Other complications due to other cardiac device, implant, and graft
13402 E8745 Instrmnt fail-heart cath Mechanical failure of instrument or apparatus during heart catheterization
14061 V717 Obs-susp cardiovasc dis Observation for suspected cardiovascular disease
14084 V7281 Preop cardiovsclr exam Pre-operative cardiovascular examination
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