
 Eindhoven University of Technology

MASTER

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks

Pálsson, Guðmundur Orri

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/c133d60c-c886-4ac0-88d1-6286c9f41edc

Dynamics modeling using a
combination of Variational
Autoencoders and Einsum

Networks

Master Thesis

Guðmundur Orri Pálsson

Department of Mathematics and Computer Science

Supervisors:
Dr. Cassio de Campos
M.Sc. Alvaro Correia

1.0 version

Eindhoven, September 2021

Abstract

We propose a generative probabilistic model that aims to generate accurate control trajectories
of an dynamical environment using only raw images. We base our method on a combination of
variational autoencoders, for representation learning of the raw images, and an einsum network,
for learning the transitional dynamics of our environment in latent space. We analyse the perform-
ance of our model, based on its ability to reconstruct images resembling the real environment, its
ability to generate accurate image control trajectories, resembling the real environment and the
performance of our model when applied within a deep reinforcement learning framework. Further-
more, we analyse the distribution of our predictions in latent space and we attempt to understand
the meaning behind individual latent variables. To analyse the quality of our method, the results
were compared with a previous method, Embed to Control (E2C).

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks iii

Acknowledgements

First and foremost, my sincere thanks to my supervisors, associate professor Dr. Cassio de Campos
and doctoral candidate M.Sc. Alvaro Correia. Without their support and guidance, throughout
the whole process of writing my thesis, this project would not have been possible. Also, I want to
thank Dr. Meng Fang for being a part of my assessment committee and taking his time to assess
my thesis.

I want to give special thanks to my girlfriend, Júlía Sif Ólafsdóttir, for supporting me through-
out this whole process, encouraging me during difficult times and celebrating with me when things
were going well.

Finally, I want to thank my family, friends and fellow students for their love and support
throughout the process of writing my thesis during difficult times where face to face contact was
not always an option.

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks v

Contents

Contents vii

List of Figures ix

List of Tables xi

1 Introduction 1

2 Background 3
2.1 Variational Autoencoder (VAE) . 3
2.2 β-VAE . 4
2.3 Deep Q-Network (DQN) . 4
2.4 Model-based RL for Atari . 5
2.5 Deep Reinforcement Learning with Double Q-Learning 6
2.6 The Effect of Planning Shape on Dyna-style Planning in High-dimensional State

Spaces . 6
2.7 Probabilistic Circuits . 7

2.7.1 Sum-Product Network (SPN) . 7
2.7.2 Einsum Networks . 8

2.8 Visualization using t-SNE . 10

3 Previous Work 13
3.1 Embed to Control (E2C) . 13

3.1.1 Problem Formulation . 13
3.1.2 Inference Model for Qφ . 14
3.1.3 Generative Model for Pθ . 14
3.1.4 Transition Model for Q̂ψ . 15
3.1.5 Learning . 15
3.1.6 Environments . 15
3.1.7 Experimental Setup . 16
3.1.8 Results . 16

4 Methodology 19
4.1 Problem statement . 19
4.2 Learning a mapping from a high-dimensional image xt to latent space zt 19

4.2.1 VAE implementation . 19
4.3 Learning the transitional dynamics of the real environment in the latent space . . 20

4.3.1 Einsum network implementation . 20
4.4 Combining the VAE and Einsum Network . 21

4.4.1 Choosing the structure of the einsum network 21
4.4.2 Enforcing an agreement in the latent space 22

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks vii

CONTENTS

5 Experimental Setup 25
5.1 Environments . 25

5.1.1 CartPole-v0 . 25
5.1.2 LunarLander-v2 . 25
5.1.3 Acrobot-v1 . 25
5.1.4 Preprocessing . 25

5.2 E2C . 26
5.2.1 E2C architecture . 26
5.2.2 E2C loss function . 26
5.2.3 Network architecture . 27
5.2.4 E2C hyperparameters . 28

5.3 VAE-Einsum and VAE-Einsum-Decoupled . 28
5.3.1 VAE design . 28
5.3.2 Einsum network design . 28
5.3.3 Balancing the VAE-Einsum during training 28

5.4 Reinforcement Learning . 28
5.4.1 Dyna-DQN . 28

5.5 Comparing E2C and VAE-Einsum . 29

6 Results 31
6.1 Training performance . 31
6.2 Trajectory predictions . 34
6.3 Latent space analysis . 37
6.4 Reinforcement learning performance . 40

7 Conclusions 43

Bibliography 45

Appendix 47

A 2-dimensional mapping of latent space with images 47

B Parameter optimization - EM algorithm 50

viii Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks

List of Figures

2.1 Bayesian network (left) and SPN (right). The terminal nodes in the SPN are
indicators for the 3 variables in the model, A, B and C. The root node, n1, computes
the joint and marginal probabilities [12] . 8

2.2 Basic einsum operation: A sum node S with a single child P which itself has 2
children. All nodes are vectorized [14] . 8

2.3 Real SVHN samples(left), samples generated by Einsum Network (right) [14] . . . 10
2.4 2-dimensional mapping of the MNIST dataset [19] 12

3.1 Comparison of different approaches to model learning from raw pixels for the planar
and pendulum systems [21] . 16

4.1 VAE-Einsum architecture . 21

5.1 E2C architecture, provided by Manuel Watter et al. [21] 26
5.2 Encoder architecture . 27
5.3 Decoder architecture . 27

6.1 Average reconstruction error (MSE) of the next state in the CartPole environment 31
6.2 Average reconstruction error (MSE) of the latent space in the CartPole environment 32
6.3 Average reconstruction error (MSE) of the next state (top) and average reconstruc-

tion error in the latent space (bottom) . 32
6.4 Real observed next state of our sample . 33
6.5 Predicted next state using E2C . 33
6.6 Predicted next state using VAE-Einsum . 34
6.7 Predicted next state using VAE-Einsum-Decoupled 34
6.8 Trajectory observed from the real environment . 34
6.9 Trajectory prediction obtained from E2C . 35
6.10 Trajectory prediction obtained from VAE-Einsum 35
6.11 Trajectory prediction obtained from E2C . 35
6.12 Trajectory observed from the real environment . 36
6.13 Trajectory prediction obtained from E2C . 36
6.14 Trajectory prediction obtained from VAE-Einsum 36
6.15 Trajectory prediction obtained from VAE-Einsum-Decoupled 36
6.16 Latent space distribution for all of the models . 37
6.17 t-SNE visualization of the distribution of latent space predictions. Each color rep-

resents the predictions after marginalizing an individual latent variable (total of 8
variables) . 38

6.18 Predicted latent space distributions when removing individual latent variables from
the evidence when making predictions. The letter n represents the index of the
latent variable removed . 38

6.19 Visualization of the reconstructed images on top of the latent space distribution . . 39
6.20 Average score received over 2000 episodes . 40

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks ix

LIST OF FIGURES

A.1 E2C . 47
A.2 VAE-Einsum . 48
A.3 VAE-Einsum-Decoupled . 49

B.1 Parameter optimization of EM algorithm parameters 50

x Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks

List of Tables

6.1 Average MSE for the CartPole environment . 31
6.2 Average reconstruction error (MSE) for each method in each environment 33
6.3 Average score received over 2000 episodes . 40

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks xi

Chapter 1

Introduction

For the past decade, the demand for mobile robots to substitute humans in many fields is ever in-
creasing. Weather their application involves surveillance, planetary exploration, patrolling, emer-
gency rescue operations, industrial automation or medical care, the primary objective is for the
robots to be autonomous, meaning they have the ability to determine actions to be taken in an
environment based on a perception system [17]. For humans, the main perception system we use
to determine actions to take in an environment, is our vision. Through our vision, the human brain
can very quickly learn important information about the dynamics of the environment such as how
different objects in the environment look and how they behave. Knowing this, gives humans the
ability to imagine what will happen in an environment if a certain action is performed without hav-
ing tried it before. In robotics, this can be a very challenging subject, mainly due to two reasons.
On one hand, images are high-dimensional, therefore solving a control problem with only images,
is in itself a very complicated task. On the other hand, the real world dynamics of an environment
can be very complicated and hard to model. Due to that reason, many previous methods do rely
on either the full system model being known or the state-space being low-dimensional. For mobile
robots to succeed in applying control on highly complex dynamical systems, they will however
ultimately need to work using only raw sensory inputs such as images [21]. In this project we
propose a generative probabilistic model that aims to generate accurate control trajectories of a
dynamical environment using only raw images observed from the environment. We suggest using
a combination of variational autoencoders for representation learning on the raw images as well
as an einsum network to learn the transitional dynamics of the environment [14]. We propose two
different methods, VAE-Einsum and VAE-Einsum-Decoupled.

Both methods will be compared with a previous method, Embed to Control (E2C), proposed by
Manuel Watter et al. [21]. The methods will be analysed in terms of their ability to reconstruct
images resembling the real environment, their ability to generate image trajectories resembling
the real environment, the difference between the distribution of the latent spaces based on a
visualization technique called t-SNE as well as their performance within a deep reinforcement
learning framework.

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks 1

Chapter 2

Background

2.1 Variational Autoencoder (VAE)
The framework of variational autoencoders (VAEs) provides a principled method for jointly learn-
ing deep latent-variable models and corresponding inference models using stochastic gradient des-
cent [8]. The term latent-variable refers to variables that are a part of the model but not observed,
and therefor not a part of the dataset. A deep latent variable is therefor a latent variable model
whose distributions are parameterized by a neural network [8].

A variational autoencoder generally includes two components, an encoder and a decoder. The
objective of an encoder, qφ, also referred to as a parametric inference model, is to learn a stochastic
mapping from an observed x-space, whose empirical distribution is typically complicated, and a
latent z-space. The objective of the decoder is then to learn the conditional distribution pθ(x|z).
The variational parameters φ are optimized such that

qφ(z|x) ≈ pθ(z|x) (2.1)

The optimization objective of the VAE is to minimize the evidence lower bound, abbreviated
as ELBO and given by

Lθ,φ(x) = Eqφ(z|x)[log pθ(x, z)− log qφ(z|x)] (2.2)

For any choice of qφ(z|x) we have

log pθ(x) = Eqφ(z|x)

[
log

[
pθ(x, z)

qφ(z|x)

]]
+ Eqφ(z|x)

[
log

[
qφ(z|x)

pθ(z|x)

]]
(2.3)

where the first term is the ElBO and the second term is the Kullback-Leibler (KL) divergence
between qφ(z|x) and pθ(z|x), which is non-negative. Due to the the KL divergence being non-
negative and zero if qφ(z|x) equals the true posterior distribution, the ELBO is a lower bound on
the log-likelihood of the data [8]. There for we have

Lθ,φ(x) = log pθ(x)−DKL(qφ(z|x)||pθ(z|x)) ≤ log pθ(x) (2.4)

The KL divergence therefore determines the gap between ELBO and the marginal likelihood
log pθ(x). The better qφ(z|x) approximates the true posterior distribution pθ(z|x), in terms of the
KL divergence, the smaller the gap [8].

By looking at equation 2.4, the maximization of the ELBO Lθ,φ(x) with respect to parameters
θ and φ, will therefor concurrently optimize two things.

• Maximize the marginal likelihood pθ(x), meaning that our decoder will become better.

• Minimize the KL divergence of the approximation qφ(z|x) from the true posterior pθ(z|x),
so our encoder becomes better.

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks 3

CHAPTER 2. BACKGROUND

In addition to efficient latent-variable inference, the VAE framework also allows for both dis-
crete and continuous observed variables [8].

2.2 β-VAE

Irina Higgins et al. [4] introduce a modification of the variational autoencoder framework by
introducing a hyperparameter β that balances latent channel capacity and idependance constraints
[4].

The authors suggest that learning a disentangled representation of generative factors in the
data can be useful for a large variety of tasks and domains. A disentangled representation can be
defined as one where single latent units are sensitive to changes in single generative factors, while
being relatively invariant to changes in other factors [4].

The solution involves modifying the VAE framework with a single hyperparameter β that
modulates the learning constraints applied to the model. These constraints impose a limit on
the capacity of the latent information channel and control the emphasis on learning statistically
independent latent factors [4].

The authors present the following objective function for the β-VAE

Lθ,φ(x) = Eqφ(z|x)[logpθ (x, z)− βDKL(qφ(z|x)||pθ(z))] (2.5)

where β = 1 corresponds to the original VAE framework. With β > 1 the model is pushed to
learn a more efficient latent representation of the data, which is disentangled if the data contains
at least some underlying factors of variation that are independent [9].

The β-VAE was trained on a variety of datasets such as celebA [10], chairs [1] and faces
[13]. Overall the β-VAE tends to consistently and robustly discover more latent factors and learn
cleaner disentangled representations of them compared to previous methods such as InfoGAN [3]
or DC-IGN [9].

2.3 Deep Q-Network (DQN)

Melros Roderick et al. [16] give a detailed description into their implementation of a Deep Q-
Network (DQN) but the network was trained and evaluated on Atari games.

The DQN differs from regular Q-learning algorithms in mostly three ways. Firstly, instead
of a tabular representation of the Q function the DQN uses a function approximator. Secondly,
mini-batches of random training data are used to update the parameters of the network, rather
then single-step updates on the last experience. Thirdly, older network parameters are used to
estimate the Q-value for each next state.

To sample mini-batches of previous observations from the environment the DQN stores each
transition in an experience replay buffer. Within the experience replay buffer, the DQN stores a
set of five-tuple (s, a, s′, r, T) corresponding to an agent taking an action a in state s, arriving in
state s′ and receiving reward r. To provide the network with a stable training target, the DQN
uses older network parameters to estimate the Q-value for each next state.

The following pseudocode shows the general implementation of the DQN algorithm.

4 Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks

CHAPTER 2. BACKGROUND

Algorithm 1: Deep Q-learning with experience replay
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights θ
Initialize target action-value function Q̂ with random weights θ− = θ
for episode 1,M do

Initialize sequence s1 = {x1} and preprocess sequence φ1 = φ(s1)
for t = 1, T do

With probability ε select a random action at
otherwise select at = argmaxaQ(φ(st), a; θ)
Execute action at in the emulator and observe reward rt and image xt+1

Set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1)
Store experience (φt, at, rt, φt+1) in D
Sample random minibatch of experiences (φj , aj , rt, φj+1) from D

set yj =

{
rj , if episode terminates at step j + 1

rj + γmaxa′Q̂(φj+1, a
′; θ−), otherwise

Perform a gradient descent step on (yj −Q(φj , aj , θ))
2 with respect to the weights θ

Every C step reset Q̂ = Q
end

end

Additionally, Melros Roderick et al. [16] address a common problem in DQN where the per-
formance of the agent fluctuates between iterations. Therefor the agent might reach a high average
number of rewards and then suddenly drop. The authors refer to this as catastrophic forgetting.
One way of addressing this problem is to save the network parameters that resulted in the best
test performance.

2.4 Model-based RL for Atari

L. Kaiser et al. [7] explore how learned video models can enable learning in the Atari Learning
Environment (ALE) benchmark. According to the authors, no prior work has successfully demon-
strated model-based control via predictive models that achieve competitive results with model-free
RL.

The goal of the algorithm is to find a policy which maximizes the expected reward. Apart
from using the Atari emulator environment env the algorithm will use a neural network simulated
environment env′, referred to as the world model. The world model will share the action space and
reward space with env and produce visual observations in the same format. The initial data used
to train env′ comes from random rollouts of env. The following pseudocode shows the iterative
method used by the algorithm [7].

Algorithm 2: Pseudocode for the model-based RL algorithm [7]
Initialize policy π
Initialize model parameters θ of env′
Initialize empty set D
while not done do

Collect observations from real env
D ← D ∪ COLLECT (env, π)
Update model using collected data
θ ← TRAIN_SUPERVISED(env′, D)
Update policy using world model
π ← TRAIN_RL(π, env′)

end

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks 5

CHAPTER 2. BACKGROUND

The world model was constructed using a convolutional feed forward network. The input
consist of four consecutive game frames and an action a. The network outputs the next frame of
the game and the value of the reward. For the policy training, the algorithm uses proximal policy
optimization (PPO). The algorithm generates rollouts of env′ and uses them to improve the policy
[7].

The algorithm was evaluated on 26 games selected on the basis of being solvable with state-
of-the-art model-free RL algorithms. The results showed that the algorithm outperforms the
model-free algorithms in terms of learning speed on nearly all games. In terms of limitations of
the algorithm, its performance varied substantially between different runs on the same game and
overall, the final scores were lower compared to the model-free methods [7].

2.5 Deep Reinforcement Learning with Double Q-Learning

Hado van Hasselt et al. [20] discuss the problem with the Q-learning algorithm in terms of
overestimating action values under certain conditions. In previous work, overestimation has been
linked to insufficiently flexible function approximation and noise. To test this overestimation the
authors test the performance of a recent DQN algorithm. The DQN algorithm combines Q-learning
with a deep neural network. Even in the setting of DQN, the authors show that the algorithm
substantially overestimate the values of the actions. Alternatively, the authors propose a Double
Q-learning algorithm. In the Double Q-learning algorithm, two value functions are learned by
assigning experiences randomly to update one of the two value functions, resulting in two sets of
weights θ and θ′. For each update, one set of weights is used to determine the greedy policy and
the other to determine its value.

The idea of the Double Q-learning algorithm is to reduce over-estimations by decomposing
the max operation in the target into action selection and action evaluation. The algorithm was
compared to previous DQN algorithms in the setting of playing Atari 2600 games.

The results show the overestimation of the DQN in six Atari games. Furthermore the results
show that the Double DQN algorithm finds better policies, obtaining new state-of-the-art results
on the Atari 2600 domain [20].

2.6 The Effect of Planning Shape on Dyna-style Planning in
High-dimensional State Spaces

G. Zacharias Holland et al. [6] discuss a reinforcement learning planning method referred to
as Dyna-style planning. Dyna-style planning is potentially a powerful approach in large-scale
problems. By indirectly influencing the agent’s behaviour via the value function or policy, the
computationally expensive process of planning can be asynchronous with the agent’s decision-
making loop, retaining a model-free agent’s ability to operate on a fine-grained timescale.

The authors experiment with two different value function learners. One was based on the Sarsa
algorithm, using linear value function approximation with Blob-PROST features and the other was
Deep Q-Networks. The DQN used for the experiment used a deep convolutional neural network
to approximate the value function as well as an experience replay buffer to collect transitions used
to update the model [6].

The DQN model was extended by incorporating the Dyna architecture. This approach is called
Dyna-DQN. After each step taken in the environment, a number of start states for planning are
sampled from a planning buffer containing the agent’s recent real experience. For each start state,
an action is selected using the agents current policy and the model is used to simulate a single
transition which is placed into the experience replay buffer alongside the transition observed from
the real environment [6].

As an alternative to the Dyna-DQN the authors suggest planning with longer rollouts instead
of just one step. They hypothesize that it may be possible to generate a more diverse experience
by rolling out more than a single step from the start state during planning. Since each step in

6 Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks

CHAPTER 2. BACKGROUND

the rollout is generated using the current policy some trajectories might have changed from what
was originally observed. This algorithm is called Rollout-Dyna-DQN, using the parameter k to
determine the length of the rollout. Therefor if k = 1, it’s Dyna-DQN [6].

Some different shapes of rollouts were experimented with, such as 100 rollouts of size 1, 10
rollouts of size 10 or 1 rollout of size 100. Each rollout shape requires the same amount of
computation from the model and the experience generated during a multi-step rollout is still
recorded as single transitions in the replay-buffer.

Dyna-DQN and Rollout-Dyna-DQN were both compared on different games including Asterix,
Beam Rider, Space Invaders and Ms. Pac-Man. In all of the games, Rollout-Dyna-DQN scored
higher the Dyna-DQN but the score between different rollout shapes varied between games.

2.7 Probabilistic Circuits

Probabilistic circuits are a family of probabilistic models which allow a wide range of exact and
efficient inference routines [14]. Robert Peharz et al. [14] presents the following definition of a
probabilistic circuit.

Definition (Probabilistic Circuit). Given a set of random variables X, a probabilistic
circuit (PC) P is a tuple (G, ψ), where G denoted as computational graph is a directed acyclic
graph (DAG) (V,E) and ψ : V → 2X , denoted as scope function, is a function assigned a scope
to each node in V , i.e. a sub-set of X. For internal nodes of G, i.e. any node N ∈ V which has
children, the scope function satisfies ψ(V) = ∪N∈ch(N)ψ(N ′). A leaf of G computes a probability
density over its scope ψ(L). All internal nodes of G are either sum nodes (S) or product nodes
(P). A sum node S computes a convex combination of its children, i.e. S =

∑
N∈ch(N) ωS,NN ,

where
∑
N∈ch(N) ωS,N = 1, and ∀N ∈ ch(S) : ωS,N ≥ 0. A product node P computes a product of

its children, i.e. P =
∏
N∈ch(N)N [14].

PCs can be seen as a special kind of neural network. The first layer computes non-linear
functions, or probability densities, over sub-sets X, and all internal nodes compute either weighted
sums or products. The output of a PC is the value of one or more selected nodes in the graph G
[14].

Two interesting attributes of PCs is that they can be both decomposable and smooth. PCs are
decomposable in the sense that for each product node P ∈ V it holds that ψ(N) ∩ ψ(N ′) = ∅, for
N,N ′ ∈ ch(P), N 6= N ′ and the consequence of decomposability is that integrals can be computed
in linear time of the circuit size. The smoothness on the other hand means that for each sum node
S ∈ V it holds that ψ(N) = ψ(N ′) for N,N ′ ∈ ch(S). The smoothness has little computational
advantage on the PCs but it leads to a well-defined probabilistic interpretation [14].

Members of the PC family include sum-product-networks (SPNs), cutset-networks (CNs), prob-
abilistic sentential decision diagrams (PSDDs) and arithmetic circuits (ACs) [14].

2.7.1 Sum-Product Network (SPN)

A sum-product network consists of a directed graph that represents a probability distribution
combined in the form of sum nodes and product nodes. Like arithmetric circuits, SPNs can be
built by transforming a probabilistic graphical model such as a Bayesian network or a Markov
network but they can also be learned from data. One of the main advantages of SPNs is that
several inference tasks can be performed in time proportional to the number of links in the graph
[12]. The following figure from a survey on SPNs by Iage París et al. [12] shows the comparison
between a Bayesian network and a SPN.

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks 7

CHAPTER 2. BACKGROUND

Figure 2.1: Bayesian network (left) and SPN (right). The terminal nodes in the SPN are indicators
for the 3 variables in the model, A, B and C. The root node, n1, computes the joint and marginal
probabilities [12]

SPNs can be seen as a particular type of feed-forward neural network however the main dif-
ference being that SPNs have a probabilistic interpretation while standard NNs do not. Inference
is also different and finding the most probable explanation (MPE) requires a backtrack from the
root to the leaves [12].

2.7.2 Einsum Networks
A way to make PCs denser and thus more efficient is to vectorize them, meaning that we redefine a
leaf L to be a vector ofK densities over ψ(L) instead of a single density. Therefor, a leaf computing
Gaussian density is replaced by a vector [N (·|θ1), ...,N (·|θK)]T , each N (·|θK) being a Gaussian
over ψ(L), equipped with private parameters θk. Furthermore, a product node is re-defined to be
an outer product containing the products of all possible combinations of densities coming from
the child vectors and sum nodes are re-defined to be a vector of K weighted sums, where each
individual sum operation has its private weights and computes a convex combination over all the
densities computed by its children [14].

Basic Einsum Operation

The core computational unit in Einsum Networks is the vectorized PC shown in figure 2.2 [14].

Figure 2.2: Basic einsum operation: A sum node S with a single child P which itself has 2 children.
All nodes are vectorized [14]

8 Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks

CHAPTER 2. BACKGROUND

Figure 2.2 shows a sum node S with a single product child P . The product node has two
children N and N ′ where each one computes a vector of K densities. Mathematically this can be
expressed in Einstein notation:

Sk = WkijNiN
′
j (2.6)

where W is re-shaped into a K ×K ×K element wise non-negative tensor. The indicies i, j, k
label the axes of N,N ′ and W [14].

Einsum layer

Instead of computing single vectorized sums, whole layers can be computed in parallel. First the
PC is organized in a layer-wise structure. The PC is traversed top-down and a topologically sorted
list of the layers of nodes, alternating between sum and products and starting with the leaf nodes
[14].

All nodes in any layer i depend only on nodes in layers strictly smaller than i. Furthermore a
product layer will contain exactly the inputs to the sum layer. The strategy of Einsum Networks
is then to perform efficient parallel computations for the whole leaf layer and the whole sum layer
in each pair of consecutive product and sum layers. The result is a matrix of log-densities, with
as many rows as there are leaves [14].

The leaves of Einsum Networks compute log-densities of an exponential family which has the
form L = log h(x) + T (X)T θ − A(θ) where θ are the natural parameters, h is the base measure,
T is the sufficients statistics and A is the log-normalizer. Many parametric distributions can be
expressed as exponential families such as Gaussian, Binomial and Categorical [14].

Expectation-Maximization (EM)

A natural way to learn PCs is the EM algorithm, known for rapidly increasing the likelihood, espe-
cially in early iterations. Since Einsum Networks represent all probability values in the log-domain,
the PC output is actually logP(x) instead of P(x). Therefor calling automatic differentiation on
logP(x) yields the following derivative for each sum weight

ωS,N :
∂ logP
ωS,N

=
1

P
∂P
∂S

∂S

∂ωS,N
=

1

P
∂P
∂S

N (2.7)

The classical EM algorithm uses a whole pass over the training set for a single update. For
computational purposes it is however possible to define a stochastic version for EM where the
sums over the entire dataset are replaced with sums over mini-batches. The full EM update is
then replaced with gliding averages [14].

Experimental Results

The Einsum Network was tested as a generative model for street-view house numbers (SVHN)
[11]. The total training set included 581k images of size 28×28 pixels and the network was trained
on the image-tailored structure proposed by Hoifung Poon et al. [15], referred to as PD structure.
Using PD structure the images are recursively decomposed into sub-rectangles using axis-aligned
splits, displaced by a certain step size ∆ [14].

The dataset was clustered into 100 clusters using the sklearn implementation of k-means and
then an Einsum Network for each cluster was learned. These 100 Einsum Networks were then used
as mixture components of a mixture model, using the cluster proportions as mixture coefficients
[14].

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks 9

CHAPTER 2. BACKGROUND

Figure 2.3: Real SVHN samples(left), samples generated by Einsum Network (right) [14]

Figure 2.3 shows the original samples as well as the Einsum Network generated samples. For
each Einsum Network component a step size of ∆ = 8 was used for the SVHN dataset. For
the leaves, Gaussians with a diagonal covariance matrix where factorized over the RGB channels.
The vector length for the sums and leaves was set to K = 40. After each EM update the
Gaussian variances were projected to the interval [10−6, 10−2] corresponding to a maximal standard
deviation of 0.1. Each component was trained for 25 epocs, using a batch size of 500 and EM
stepsize of 0.5 [14].

2.8 Visualization using t-SNE

Laurens van der Maaten et al. [19] present a technique called t-SNE or t-Distributed Stochastic
Neighbor Embedding that visualizes high-dimensional data by giving each datapoint a location in
a two or three dimensional map. The technique is an extension to SNE which was presented by
Hinton and Roweis in 2003 [5]. SNE starts by converting the high-dimensional Euclidean distances
between datapoints into conditional probabilities that represents similarities. The similarity of
datapoint xj to datapoint xi is the conditional probability, pj|i, that xi would pick xj as its
neighbor if neighbors were picked in proportion to their probability density under a Gaussian
centered at xi [5].

The probability pi|j is given by the following equation

pi|j =
exp(−||xi − xj ||2/2σ2

i)∑
k 6=i exp(−||xi − xk||2/2σ2

i)
(2.8)

where σi is the variance of the Gaussian that is centered on datapoint xi. For the low-
dimensional counterpars yi and yj of the high-dimensional datapoints xi and xj it is possible to
compute similar conditional probability qi|j [5]. The following equation gives qi|j

qi|j =
exp(−||yi − yj ||2)∑
k 6=i exp(−||yi − yk||2)

(2.9)

If the map points yi and yj correctly model the similarity between the high-dimensional data-
points xi and xj the conditional probabilities pj|i and qj|i will be equal [5]. To minimize the
mismatch between pj|i and qj|i, SNE minimizes the sum of Kullback-Leibler divergences over all
datapoints using a gradient descent method with a cost function C.

C =
∑
i

KL(Pi||Qi) =
∑
i

∑
j

pi|j log
pj|i

qj|i
(2.10)

10 Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks

CHAPTER 2. BACKGROUND

where Pi represents the conditional probability distribution over all other datapoints given
datapoint xi, and Qi represents the conditional probability distribution over all other map points
given map point yi [5].

Even though SNE constructs reasonably good visualizations, it is hampered by a cost function
that is difficult to optimize and by a problem referred to as the crowding problem [19]. The t-SNE
aims to solve these problems by introducing a new cost function that differs from the one used by
SNE in two ways. On one hand it uses a symmetrized version of the SNE cost function with simpler
gradients. On the other hand it uses a Student-t distribution rather than a Gaussian to compute
the similarity between two points in the low-dimensional space [19]. Instead of minimizing the
Kullbeack-Leibler divergence between the conditional probabilities, pj|i and qj|i, it is also possible
to minimize a single Kullback-Leibler divergence between a joint probability distribution, P , in
the high-dimensional space and a joint probability distribution, Q, in the low-dimensional space
[19].

C = KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij

(2.11)

The pairwise similarities in the low-dimensional map qij is given by

qij =
exp(−||yi − yj ||2)∑
k 6=l exp(−||yk − yl||2)

(2.12)

and in the high-dimensional space, pij is defined by

pij =
exp(−||xi − xj ||2/2σ2)∑
k 6=l exp(−||xk − xl||2/2σ2)

(2.13)

If xi is an outlier the values of pij are very small for all j so the location of its low-dimensional
map point yi has very little effect on the cost function. To solve this problem, the joint probabilities
pij in the high-dimensional space are defined to be symmetrized conditional probabilities pij =
pj|i+pi|j

2n . This ensures that
∑
j pij >

1
2n for all datapoints xi, so each datapoint xi makes a

significant contribution to the cost function [19]. Additionally, the gradients of the symmetric
SNE is given by

∂C

∂yi
= 4

∑
j

(pij − qij)(yi − yj) (2.14)

Furthermore, t-SNE uses a Student t-distribution with one degree of freedom as the heavy-
tailed distribution in the low-dimensional map [19], therefor defining the joint probabilities qij
as

qij =
(1 + ||yi − yj ||2)∑

k 6=1(1 + ||yk − yl||2)−1
(2.15)

The justification for using the Student t-distribution is that it closely relates to the Gaussian
distribution, as the Student t-distribution is an infinite mixture of Gaussians. The computationally
convenient property is that it is much faster to evaluate a density of a point under a Student t-
distribution than under a Gaussion since it does not involve an exponential [19]. The gradients of
the Kullback-Leibler divergence between P and the Student-t based joint probability distribution
Q is therefor given by

∂C

∂yi
= 4

∑
j

(pij − qij)(yi − yj)(1 + ||yi − yj ||2)−1 (2.16)

The t-SNE method was demonstrated on the MNIST dataset using a PCA to reduce the
dimensionality of the data. The class of each datapoint was only used to color the points in the
figure [19].

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks 11

CHAPTER 2. BACKGROUND

Figure 2.4: 2-dimensional mapping of the MNIST dataset [19]

Figure 2.4 shows images belonging to the same class close together with some exceptions.
Additionally, the different clusters are spread out relatively to their similarities.

12 Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks

Chapter 3

Previous Work

3.1 Embed to Control (E2C)

For algorithms capable of solving complex dynamical systems from raw sensory data Manuel
Watter et al. [21] introduce Embed to Control (E2C), a method for model learning and control
of non-linear dynamical systems from raw pixel images. The E2C consists of a deep generative
model from the family of variational autoencoders that learns to generate image trajectories from
a latent space in which the dynamics are constrained to be locally linear.

3.1.1 Problem Formulation

Considering the control of unknown dynamical systems of the following form

st+1 = f(st, ut) + ξ, ξ ∼ N (0,
∑
ξ) (3.1)

where t denotes the time steps, st ∈ Rns the system state, ut ∈ Rnu the applied control
and ξ the system noise. The function f represents the system dynamics. The goal is to infer a
low-dimensional latent space model in which optimal control can be performed [21].

The idea is for the model to learn a function m such that a high-dimensional image xt can
be mapped to a low-dimensional vector zt such that the control problem can be solved using zt
instead of xt [21].

Therefor we have

zt = m(xt) + ω, ω ∼ N (0,
∑
ω) (3.2)

where ω accounts for system noise and zt ∼ N (m(xt),
∑
ω) [21]. Assuming locally optimal

control in latent spaces where we have an inferred latent state zt ∈ Rnz from an image xt of state
st and a given dynamics function f lat(zt, ut), we can assume the transition dynamics in latent
space to be zt+1 = f lat(zt, ut) [21].

The next step is to learn an appropriate low-dimensional latent representation of xt

zt ∼ P (Zt|m(xt),
∑
ω)

To solve our control problem using latent spaces, zt, has to have the following properties [21].

1. zt must capture sufficient information about xt.

2. zt must allow for accurate predictions of the next latent state zt+1.

3. The prediction f lat of the next latent state must be locally linearizable for all valid control
magnitudes ut.

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks 13

CHAPTER 3. PREVIOUS WORK

Instead of learning a latent space z and a transition model f lat and combining them with a
stochastic optimal control algorithm, the desired transformation properties are directly imposed
on the representation zt during learning [21].

Following equation 3.2 we let the latent representation be Gaussian P (Z|X) = N (m(xt),
∑
ω).

To infer zt from xt we resort to sampling zt from an approximate posterior distribution Qφ(Z|X)
with parameters φ.

Given a reference trajectory Z̄1:T the current estimate for the optimal trajectory, together with
corresponding controls ū1:T the system is linearized as

zt+1 = A(z̄t)zt +B(z̄t)ut + o(z̄t) + ω, ω ∼ N (0,
∑
ω) (3.3)

where

A(z̄t) =
δf lat(z̄t, ūt)

δz̄t

B(z̄t) =
δf lat(z̄t, ūt)

δūt

(3.4)

are local Jacobians and o(ẑt) is an offset [21].

3.1.2 Inference Model for Qφ

We define the diagonal Gaussian distribution Qφ(Z|X) = N (µt, diag(σ2)) whose mean µt ∈ Rnz
and covariance

∑
t = diag(σ2) ∈ Rnz×nz are computed by an encoding neural network with

outputs

µt = Wµh
enc
φ (xt) + bµ (3.5)

log σt = Wµh
enc
φ (xt) + bσ (3.6)

where hencφ ∈ Rne is the activation of the last hidden layer and φ is given by the set of all
learnable parameters of the encoding network, including the weight matrices Wµ, Wσ and biases
bµ, bσ. Parameterizing the mean and variance of a Gaussian distribution based on a neural network
gives a natural and expressive model for our latent space [21].

3.1.3 Generative Model for Pθ

Using the approximate posterior distribution, Qφ, samples x̃t and x̃t+1 from latent samples zt and
zt+1 are generated by enforcing a locally linear relationship in the latent space following equation
3.3. The generative model can therefor be formalized as

zt ∼ Qφ(Z|X) = N (µt,
∑
t)

ẑt+1 ∼ Q̂ψ(Ẑ|Z, u) = N (Atµt +Btut + Ctot)

x̂t, x̂t+1 ∼ Pθ(X|Z) = Bernoulli(pt)

(3.7)

Reconstruction of an image from zt is performed by passing a sample through multiple hid-
den layers of a decoding neural network which computes the mean pt of generative Bernoulli
distribution Pθ(X|Z) [21].

14 Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks

CHAPTER 3. PREVIOUS WORK

3.1.4 Transition Model for Q̂ψ

The linearization matrices At ∈ Rnz×nz , Bt ∈ Rnz×nu and offset ot ∈ Rnz are predicted following
the same approach as for the distribution means and covariance matrices. All local transformation
parameters from sample zt are predicted based on the hidden represenation htransψ (zt) ∈ Rnt of a
third neural network with parameters ψ. We parameterize the transformation matrices and offset
as

vec[At] = WAh
trans
ψ (zt) + bA

vec[Bt] = WBh
trans
ψ (zt) + bB

ot = Woh
trans
ψ (zt) + bo

(3.8)

where vec denotes vectorization and therefor vec[At] ∈ Rn
2
z and vec[Bt] ∈ Rnz×nu [21].

3.1.5 Learning

The model was trained on a dataset containing observation tuples with corresponding controls
obtained from interaction with the environment. The complete loss function is given by

L(D) =
∑

(xt,ut,xt+1)∈D

Lbound(xt, ut, xt+1) + λKL(Q̂ψ(Ẑ|µt, ut)||Qφ(Z|xt+1)) (3.9)

The first part of the loss is the per-example variational bound on the log-likelihood and the
second part is an additional KL divergence contradiction term with weight λ that enforces agree-
ment between the transition and inference models.

The per-example variational bound on the log-likelihood can be formalized as follows

L(xt, ut, xt+1) = Ezt∼Qφ,ẑt∼ψ [− logPθ(xt|zt)− logPθ(xt+1| ˆzt+1)] +KL(Qψ||P (Z)) (3.10)

where Qφ, Pθ and Q̂ψ are the parametric inference, generative and transition distributions
and P (Zt) is a prior on the approximate posterior Qφ, which we always chose to be an isotropic
Gaussian distribution with mean zero and unit variance [21].

The parameters of the model are learned by minimizing L(D) using stochastic gradient descent
and the expectation in equation 3.9 is approximated via sampling [21].

3.1.6 Environments

The model was evaluated on four visual tasks.

1. Control in a planar system: An agent can move in a bounded two-dimensional plane by
choosing a continuous offset in x- and y-direction. The high-dimensional representation of a
state is a 40 × 40 black-and-white images. The task is to move to the bottom right of the
image, starting from a random position x at the top of the image while avoiding six circular
obstacles. The encodings of the obstacles are obtained prior to planning and an additional
quadratic cost term is penalizing proximity to them.

2. Swing-up for an inverted pendulum: The goal of this task is to swing-up and balance
an underactuated pendulum from a resting position. A depiction of the state is created by
rendering a fixed length line starting from the center of the image at an angle corresponding
to the pendulum position. The algorithm faces two additional difficulties in this environment.
Firstly, the observed space is non-Markov, as the angular velocity cannot be inferred from a
single image. Secondly, discretization errors due to rendering pendulum angles as small as
48× 48 pixel images make exact control difficult.

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks 15

CHAPTER 3. PREVIOUS WORK

3. Cart-pole balancing: The goal of the cartpole system is to balance a pole that is attached
by an un-actuated joint to a cart which moves along a frictionless track. The control problem
involves deciding at each time step weather a force should be applied on the left or right side
of the cart. The objective is to prevent the pole from falling below 15 degrees from vertical
or moving more than 2.4 units from the center.

4. Simulated robotic arm: The goal of the simulated robotic arm environment is to control
a three link robotic arm.

3.1.7 Experimental Setup
Two different types of networks were used for the control problems mentioned above.

• Standard fully connected neural network with up to three layers was used for the
planar system as well as the inverted pendulum swing-up.

• Deep convolutional network for the encoder and an up-convolutional network as the
decoder was used for the CartPole and Simulated robotic arm environments.

For comparison, the E2C method was compared with a standard variational autoencoder (VAE)
and a deep autoencoder (AE) that were trained on the subtasks for visual problems. For the VAE
and AE the action is removed from the training set, disregarding any context between images [21].

To perform optimal control in the latent space of different models, two trajectory optimiza-
tion algorithms were used, iterative linear quadratic regulation (iLQR) and approximate inference
control (AICO) [21].

3.1.8 Results
Control in planar system and inverted pendulum swing-up

Manuel Watter et al. [21] determined the long-term accuracy of the latent space trajectory by
accumulating latent and real trajectory costs to quantify how well the imagined trajectory reflects
reality. Figure 3.1 shows the state and next state loss as well as the trajectory cost and success
percent of E2C compared with the benchmarks [21].

Figure 3.1: Comparison of different approaches to model learning from raw pixels for the planar
and pendulum systems [21]

The success was defined as reaching the goal state and staying ε-close to it for the rest of the
trajectory. While the E2C is not the best in terms of reconstruction performance, it is the only

16 Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks

CHAPTER 3. PREVIOUS WORK

model resulting in a stable swing-up and balance behaviour. The failure of the other models is
explained with the fact that the non-linear latent dynamics model cannot be guaranteed to be
linearizable for all control magnitudes, resulting in undesired behaviour around unstable fixpoints
of the real system dynamics [21].

Balancing a cart-pole and controlling a simulated robot arm

As mentioned in section 3.1.7 deep convolutional and up-convolutional networks were used for the
cart-pole and simulated robot arm environments. As in the previous experiments the E2C model
has no problem finding a locally linear embedding of images into latent space in which control
can be performed. Furthermore, the cost for trajectories obtained by the E2C are only slightly
worse than trajectories obtained by AICO operating on the real system dynamics starting from
the same start-state [21].

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks 17

Chapter 4

Methodology

4.1 Problem statement
Assuming a dynamical system of the form

st+1 = f(st, ut) + ξ, ξ ∼ N(0,
∑
ξ

) (4.1)

where t denotes the time step, st ∈ Rnz the system state, ut ∈ Rnu the applied control and
ξ the system noise [21]. The function f(st, ut) describes the real system dynamics. The goal of
the project is to implement a method that can accurately learn a function f(xt, ut) where xt is
a visual representation, or an image, of the real state st. Our method should therefor be able to
predict xt+1 while only having access to xt as well as the applied control ut.

We define our overall problem into two sub-problems.

1. Learning a mapping from the high-dimensional images xt into a low-dimensional latent space
zt.

2. Learning the transitional dynamics of the real environment in the latent space.

We will start by discussing the sub-problems individually before discussing challenges with
combining the two methods.

4.2 Learning a mapping from a high-dimensional image xt to
latent space zt

To learn a mapping m such that zt = m(xt), we chose to implement a variational autoencoder
(VAE). Our choice was made based on the fact that VAEs are proven to be highly effective,
and especially useful for generative modeling. The VAE achieves the property of continuous
latent spaces by having the encoder predict values for the mean µ and variance σ of a Gaussian
distribution. The individual latent variables are then sampled from the distribution. Due to
sampling, the encoding can vary, even though the mean and variance stay the same.

4.2.1 VAE implementation
The implementation of the VAE was relatively straightforward. We adopted a similar network
design for our encoder and decoder as the one used in the E2C method, explained in section
5.2.3. We experimented with the number of layers as well as the layer sizes, but ultimately
our experiments did not result in any improvements in terms of reconstruction or computational
complexity.

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks 19

CHAPTER 4. METHODOLOGY

4.3 Learning the transitional dynamics of the real environ-
ment in the latent space

Learning the transitional dynamics of the real environment in the latent space involves learning a
function t such that zt+1 = t(zt, ut). To learn this function we decided to use an einsum network.
We motivate our choice of using an einsum network based on the following characteristics.

1. Using an einsum network to predict zt+1, given zt and ut, eliminates the need to constrain
the transition to be linear (as in the E2C method). The added flexibility might however lead
to a more complex optimization problem and potentially worse reconstruction as a result.

2. The einsum network, by design, has a general way of expressing the parametric distributions
as Gaussians, same as with the latent space in the VAE.

3. The einsum network learns the probability distribution, p(zt, ut, zt+1), and can therefor com-
pute any subset of these variables, allowing for more control over the latent space predictions.

4.3.1 Einsum network implementation

Our implementation of the einsum network was based on a code provided by Robert Peharz et al.
[14]. The main challenges involved choosing a suitable structure for the einsum network, adjusting
hyper parameters as well as getting the einsum network to work with categorical actions.

Choosing the structure of the einsum network

Choosing a suitable structure for the einsum network did proof to be particularly difficult. On one
hand, the "optimal" structure of an einsum network does vary a lot depending on the problem.
On the other hand, we were unable to find any literature where an einsum network was applied
to a similar problem. Therefor, we had to spend a lot of time testing the effect of changing the
structure of our network as well as adjusting the hyper parameters. Additionally, the structure
was also highly dependant on the VAE, which we will discuss in a different section.

Einsum network with categorical actions

The current implementation of einsum networks does not include learning the probability distri-
bution p(zt, ut, zt+1) where the action, ut, is a categorical value. To solve this problem, we define
the different actions as classes, which essentially creates a single model with an early split on u.

Training the einsum network

For the einsum network to learn the probability distribution p(zt, ut, zt+1) the values of zt and zt+1

are passed through the einsum networks. The einsum network outputs a vector of size nz × nu,
where nz is the number of latent variables and nu the number of categorical actions, containing
the log-likelihood densities computed by the einsum network. For the einsum network to learn
the probability distribution, p(zt, ut, zt+1), the output of the einsum is multiplied by a one-hot
encoding of the categorical action. This leads to a vector of size nz, containing the log-likelihood
densities for the action ut. Finally, the gradients of the einsum network are computed using the
log-likelihood densities for ut and the EM algorithm used to update the parameters of the network.

Predicting using the einsum network

When making predictions of the latent space embedding of the next state, zt+1, using the ein-
sum network, the latent space embedding of the current state zt is used as evidence to compute
p(zt+1|zt, ut) using MPE.

20 Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks

CHAPTER 4. METHODOLOGY

4.4 Combining the VAE and Einsum Network

We have now defined the individual components of our overall model so the next step is to define
an overall architecture. Figure 4.1 shows the architecture of our overall model but the design is
largely based on the architecture of the E2C.

Figure 4.1: VAE-Einsum architecture

The grey boxes represent the observed image states, xt and xt+1, observed from the real
environment, along with the observed action ut applied at the time step t. The image states are
passed through the encoder to get the latent space embeddings zt and zt+1. The latent spaces are
then passed through the einsum network as well as the decoder to compute the loss function and
update the parameters of the model.

A crucial part of getting the VAE and einsum network to work together was to enforce an
agreement between the latent space embeddings coming from the encoder and the predicted latent
space coming from the einsum. In the following sections we will discuss our method of choosing
the optimal structure of our einsum network as well as our approach of enforcing an agreement
between the two networks in the latent space.

4.4.1 Choosing the structure of the einsum network

As mentioned in section 4.3.1, due to a lack of existing research in applying einsum networks on a
similar problem, our approach of choosing the optimal structure of our einsum network involved
a lot of trial-and-error. The following structural parameters had to be chosen.

• The graph structure.

• The depth of the tree.

• The number of repetitions.

• The vector length for the sums and leaves.

As a starting point, we selected a simplified version of the structure presented by Robert Pehars
et al. [14] for generative image modeling by choosing a random binary tree graph structure with
depth = 2, number of repetitions r = 5 and the vector length for the sums and leaves as K = 5.

To optimize the structural parameters of our network we analysed the reconstruction error
between the MPE prediction of ẑt+1, from the einsum network and zt+1, given by the encoder by

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks 21

CHAPTER 4. METHODOLOGY

computing the mean-squared-error between the two. We then chose the combination of structural
parameters that resulted in the lowest reconstruction error.

The same method was applied for the hyper parameters but the following hyper parameters
had to be chosen.

• Update frequency of the EM algorithm.

• Step-size of the EM algorithm.

• The maximum and minimum values of the projection of Gaussian variances after each EM
update.

To prevent overfitting of our einsum network, we had to chose a relatively small step size for
our EM algorithm as well as a large update frequency. The results of our parameter optimization
are available in appendix B. We were able to achieve the best results by choosing an EM update
frequency of 10 and a EM step size of 0.001. On a larger dataset we did however encounter
instabilities in our training process, where we observed the log likelihood rapidly increasing, so in
our experiments we chose an EM update frequency of 50. This slowed down the training process
of the einsum network but also prevented the model from being unstable. For the interval of the
Gaussian variances we also noted that the predictions of ẑt+1 did improve as the interval was set
to a lower number, but at the same time if the variances were set too low, the training process
also became unstable.

4.4.2 Enforcing an agreement in the latent space

In the E2C method, an agreement between the latent space predictions, ẑt+1, coming from the
transition system and the encoding of the next state, zt+1, is enforced by the contradiction term
proposed in equation 3.9. Since the E2C uses linear transformations, this KL term can be computed
analytically, but the same does not apply for the einsum network.

In an attempt to solve this problem, we experimented with two different implementations of
our VAE-Einsum. We refer to these methods as VAE-Einsum and VAE-Einsum-Decoupled.

VAE-Einsum-Decoupled

For our implementation of the VAE-Einsum-Decoupled, our hypothesis is, that the VAE and
einsum network can be trained separately, and that the agreement between the latent spaces is
enforced by having the einsum learn p(zt, ut, zt+1), where zt and zt+1 are both coming from the
decoder. Additionally, the agreement is enforced by passing the MPE reconstruction ẑt+1 to the
decoder during training.

The VAE and einsum networks are trained as two separate networks, meaning that for each
forward pass through the model as a whole, there are two backward passes, used to compute the
gradients, one for the VAE and one for the einsum networks. After zt and zt+1 are past through
the einsum network, the gradients are computed directly, before using MPE to predict ẑt+1. The
gradients for the VAE are however computed after each forward pass through the model as a
whole.

VAE-Einsum

For our implementation of the VAE-Einsum, our hypothesis is, that the VAE and einsum network
have to be trained as a whole and therefor enforcing the einsum network to act as a regulizer
for the VAE. To achieve this, our approach requires us to modify the regular ELBO loss in the
following way

log p(x, u, x′) ≥ Ez(.|x),z′(.|x′) log

[
p(x|z)p(x′|z′)p(z, u, z′)

q(z|x)q(z′|x′)

]
(4.2)

22 Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks

CHAPTER 4. METHODOLOGY

Using this modification of the ELBO loss, we are able to eliminate the term p(z) from the
regular ELBO loss and instead the einsum network acts as a regulizer by computing p(zt, ut, zt+1).

Therefor the terms p(x|z) and p(x′|z′) are given by our decoder, q(z|x) and q(z′|x′) are given
by the encoder and p(z, u, z′) by the einsum network.

The EM optimizer as well as the optimizer used for the VAE therefor minimize the negative
value of our loss function. Since the EM optimizer is only implemented to maximize the log-
likelihood, our work-around approach was to multiply the gradients of the einsum network by −1
before each EM update.

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks 23

Chapter 5

Experimental Setup

5.1 Environments

The environments used for the experiments were acquired from the OpenAI Gym toolkit for
reinforcement learning research [2].

5.1.1 CartPole-v0

The cartpole environment includes a pole that is attached by an un-actuated joint to a cart which
moves along a frictionless track. The control problem involves deciding at each time step weather
a force should be applied on the left or right side of the cart. The objective is to prevent the pole
from falling below 15 degrees from vertical or moving more than 2.4 units from the center. The
original state available to the agent at each timestep includes four value; the position of the cart,
velocity of the cart, angle of the pole and the rotation rate of the pole.

At each timestep the agent has a choice between two discrete actions left and right. A reward of
+1 is provided for each timestep that the pole remains upright and the environment is considered
solved when an agent is able to reach a reward of 200 for 5 consecutive episodes [2].

5.1.2 LunarLander-v2

The LunarLander environment includes a lander spacecraft where the objective is to move the
lander from the top of the screen to a landing pad. To control the lander the agent has a set of
four actions: do nothing, fire left orientation engine, fire main engine and fire right orientation
engine.

Each episode finishes if the lander crashes or comes to rest receiving an aditional −100 to 100
points. Each leg ground contact is +10 points. Firing the main engine is −0.3 points each frame.
The environment is considered solved if the agent receives 200 points [2].

5.1.3 Acrobot-v1

The Acrobot environment includes two joints and two links, where the joint between the two links
is actuated. At the beginning of each episode both joints are hanging downwards and the goal
is the swing the lower end up to a given height [2]. The agent has a set of three actions; apply
torque to the left, apply torque to the right or do nothing.

5.1.4 Preprocessing

For all the environments the state of the environment at each timestep is a rendered image of the
environment provided by the toolkit. The original size of the images was 400× 600 for all of the

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks 25

CHAPTER 5. EXPERIMENTAL SETUP

environments. To limit computational complexity the images were pre-processed by gray scaling
them as well as limiting their size to 80× 80 pixels.

The training set used for all the models contains tuples (st, ut, st+1) where st is an image at
timestep t, ut was the action taken at that timestep and st+1 is the resulting state after performing
the action [2]. The overall number of tuples collected for each environment was 30000 where 24000
tuples were used for our training set and 6000 for our test set.

5.2 E2C

5.2.1 E2C architecture

As explained by Manuel Watter et al. [21] the E2C method was implemented based on the
following architecture shown in figure 5.1.

Figure 5.1: E2C architecture, provided by Manuel Watter et al. [21]

The grey boxes in figure 5.1 are observed state and action tuples (xt, ut, xt+1) collected from
the environment where xt represents the current state, ut the action taken from the current state
and xt+1 the state observed after taking the action.

Furthermore, hencθ corresponds to the encoder, hdecθ the decoder and htransψ the transition sys-
tem. The current observed state xt is passed through the encoder which outputs the mean µt and
variance

∑
t. Using the reparameterization trick the latent space embedding zt is constructed from

these two variables. The latent space zt is then passed back through the decoder to reconstruct
xt as well as through the transition htransψ to produce the estimation of the latent space ẑt+1

of the next state xt+1. The latent space estimation ẑt+1 is then passed through the decoder to
reconstruct the next state xt+1. Finally, the real observed next state xt+1 is passed through the
encoder to get zt+1.

As discussed in section 3.1 the transition predicts linearization matrices At ∈ Rnz×nz , Bt ∈
Rnz×nu and offset ot ∈ Rnz . The transformation matrices and offset where parameterized using
equation 3.8. To reduce the parameters being estimated from n2z to 2nz, At of size nz × nz was
chosen to be a perturabation of the identity matrix At = (I + vtr

T
t).

5.2.2 E2C loss function

The loss function was implemented following equation 3.9 where the terms logPθ(xt|zt) and
logPθ(xt+1|ẑt+1) represent the reconstruction losses from zt to xt and ẑt+1 to xt+1, KL(Qφ||P (Z))
represents the KL-divergence between the parametric inference distribution from the encoder hencθ

and the prior P (Zt) on the approximate posterior Qφ. The prior is always chosen to be an isotropic
Gaussian distribution with mean zero and unit variance.

The final term in equation 3.9, KL(Q̂ψ(Ẑ|µt, ut)||Qφ(Z|xt+1)) represents the KL-divergence
between the encoding of the next state from the encoder and the estimation of the encoding of

26 Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks

CHAPTER 5. EXPERIMENTAL SETUP

the next state from the transition. This term forces an agreement between the transition and
inference model.

5.2.3 Network architecture

Encoder

The encoder consists of three convolutional layers, each followed by a 2 × 2 max-pooling layer,
batch normalization and a ReLU activation function. The input to the encoder is an image of
size 80 × 80 × 1 and the network outputs flat features of size 512. The flat features are passed
through a linear layer with output of size 8 and a tanh activation function, to estimate the log of
the variance, and a linear layer with output of size 8 and ReLU activation function to estimate
the mean value. Figure 5.2 shows the architecture of the encoder.

Figure 5.2: Encoder architecture

Decoder

The decoder is the reverse of the encoder reconstructing a full image from the latent space. As
with the encoder, the decoder has three convolutional layers, each followed by a 2×2 up-sampling
layer and a ReLU activation function. Figure 5.3 shows the architecture of the decoder.

Figure 5.3: Decoder architecture

Transition

The neural network implemented for the transition system had three hidden layers of size 200. The
outputs of the neural network were parameterized following equation 3.8 where transition matrices
At, Bt and offset ot where estimated. To avoid estimating the full matrix At of size nz × nz, we
choose it to be a perturbation of the identity matrix At = (I + vtrtT). Therefor we only have to
estimate 2nz parameters for At.

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks 27

CHAPTER 5. EXPERIMENTAL SETUP

5.2.4 E2C hyperparameters

We chose the Adam optimizer with a learning rate lr = 0.0001, weight-decay of ε = 10−8 and our
β values were chosen as β1 = 0.9 and β2 = 0.8. The discount factor λ in front of the contradiction
term in 3.9 was chosen as λ = 0.9.

5.3 VAE-Einsum and VAE-Einsum-Decoupled

5.3.1 VAE design

For the VAE, the same network design was used for the encoder and decoder as for the E2C
(explained in section 5.2.3). Additionally, we used the Adam optimizer with a learning rate
lr = 10−5, weight decay of ε = 10−8 and our β values were chosen as β1 = 0.9 and β2 = 0.999.

5.3.2 Einsum network design

The same network design was used for both implementations of the VAE-Einsum. The structure
we chose for our einsum network was a random binary tree graph with depth d = 3 and number
of repititions r = 20. The vector length for sums and leaves was set to K = 10 and after each EM
update the Gaussian variances were projected to the interval [10−6, 0.5]. The EM stepsize was
chosen to be emstep = 0.01 and the EM frequency was set to emfreq = 50.

5.3.3 Balancing the VAE-Einsum during training

To balance the learning process of the VAE and the einsum network in the VAE-Einsum imple-
mentation, we also introduce a variable β in front of the terms p(z, u, z′), q(z|x) and q(z′|x′) that
increases every epoch, starting at β = 0.1 and ending in β = 1.0, with a step size of ∆β = 0.1.

5.4 Reinforcement Learning

To compare the E2C and VAE-Einsum in terms of control in the latent space both methods were
tested within a reinforcement learning framework utilizing imagined trajectory planning. In this
chapter we will refer to the E2C and VAE-Einsum models as world models.

5.4.1 Dyna-DQN

The reinforcement learning framework used to compare the methods was Dyna-DQN inspired by
G. Zacharias Holland et al. [6]. Since our focus is on control in latent space the Dyna-DQN will
only be applied on latent space embeddings of real states observed from the environment as well
as imagined latent space trajectories predicted by our world model.

After each step in the real environment the Dyna-DQN stores transitions (zt, ut, rt, zt) inside
an experience replay buffer Rreal where zt is the latent space embedding of the previous state,
ut is the action taken from zt, rt is the reward received after taking the action and zt+1 is the
latent space embedding of the next state. Each action was chosen based on an ε-greedy policy
with ε = 0.1.

Additionally, after each step in the real environment, the Dyna-DQN samples a starting state
from the experience replay buffer and uses the world model to predict a trajectory of length
K using random actions taken from the sampled starting state. The predicted transitions are
then added to another experience replay buffer Rtotal that contains a mixture of real observed
transitions, also in Rreal, along with predicted transitions from the world models.

To estimate the reward received for each step in the imagined trajectories, the world models
use a linear neural network with a single hidden layer of size 64 that learns from samples in Rreal.

The following pseudo code shows how the Dyna-DQN was implemented.

28 Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks

CHAPTER 5. EXPERIMENTAL SETUP

Algorithm 3: Dyna-DQN
Initialize experience replay buffer Rreal
Initialize experience replay buffer Rtotal
Initialize previously trained world model ENV
Initialize DQN
while Training do

Restart episode
while Episode not finished do

Get current state from environment St
Embed current state to latent space zt using ENV
Choose an action at using DQN (ε-greedy)
Take step uk in real environment and observe st+1

Embed st+1 into latent space zt+1 using world model
Store transition (zt, ut, rt, zt+1) in Rreal Store transition (zt, ut, rt, zt+1) in Rtotal
Sample a starting state s0 from Rreal
Predict a trajectory ((z0, u0, r0, z0+1)...(zk, uk, rk, zk+1)) using world model
Store all trajectory transitions in Rtotal

end
Update DQN using random transitions from Rtotal

end

With K = 0, where no trajectory predictions are made in latent space, the implementation of
Dyna-DQN becomes regular DQN.

5.5 Comparing E2C and VAE-Einsum
The three previously mentioned models, E2C, VAE-Einsum and VAE-Einsum-Decoupled, were
analysed based on the following criteria.

• Performance on the test set based on the reconstruction of the next state st+1 given the
current state st and action ut.

• Their ability to generate image trajectories, resembling the real environment.

• The distribution of the predicted latent-spaces using t-SNE.

• Performance when applied within a reinforcement learning framework for control in latent
space.

All of the models were trained on three different environments, using a training set of 24000
observations and a test set of 8000 observations. We chose a batch size of 10 for all of our models.

For our reinforcement learning experiments, the methods were trained for a total of 2000
episodes. We compare the average score of all our methods using Dyna-DQN with K = 0 (DQN)
with an addition to VAE-Einsum and VAE-Einsum-Decoupled using Dyna-DQN with K = 10.

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks 29

Chapter 6

Results

6.1 Training performance

The models were trained for a total of 60 epochs and after each epoch, the models were compared
in terms of the reconstruction error on the test set. The following figure shows the performance
of each model on the test set, after each epoch in the CartPole environment.

0 10 20 30 40 50
Epoch

0.000

0.001

0.002

0.003

0.004

0.005

0.006

M
ea

n
sq

ua
re
d
er
ro
r

MSE on test set - Cartpole
einsum
e2c
einsum-dec

Figure 6.1: Average reconstruction error (MSE) of the next state in the CartPole environment

The E2C outperforms the other methods in terms of reconstruction error but the other models
are still performing well and after training for 60 epochs the models are achieving the following
average reconstruction error on the test set.

CartPole E2C VAE-Einsum VAE-Einsum-Decoupled
Avg. MSE 5.34× 10−5 6.16× 10−4 3.23× 10−4

Table 6.1: Average MSE for the CartPole environment

Additionally, the reconstruction of the latent spaces was analysed for the einsum networks
where the real state was assumed to be the encoding of the next state. The following figure shows
the average mean-square-error of the einsum networks in the CartPole environment.

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks 31

CHAPTER 6. RESULTS

0 10 20 30 40 50
Epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

M
ea
n
sq
ua
re
d
er
ro
r

Einsum MSE on test set - Cartpole
einsum
einsum-dec

Figure 6.2: Average reconstruction error (MSE) of the latent space in the CartPole environment

The figure shows the einsum networks gradually improving in terms of reconstructing the latent
space embedding of the next state. During the first few iterations, the encoder is still improving
and therefor the predictions from the einsum network are unstable. The following figures show
the same results obtained from the LunarLander and Acrobot environments.

0 10 20 30 40 50
Epoch

0.01

0.02

0.03

0.04

0.05

M
ea

n
sq
ua

re
d
er
ro
r

MSE on test set - Lunar Lander
einsum
e2c
einsum-dec

0 10 20 30 40 50
Epoch

0.00225

0.00250

0.00275

0.00300

0.00325

0.00350

0.00375

0.00400

M
ea

n
sq
ua

re
d
er
ro
r

MSE on test set - Acrobot

einsum
e2c
einsum-dec

0 10 20 30 40 50
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n
sq
ua

re
d
er
ro
r

Einsum MSE on test set - Lunar Lander
einsum
einsum-dec

0 10 20 30 40 50
Epoch

0.6

0.7

0.8

0.9

1.0

1.1

1.2

M
ea
n
sq
ua
re
d
er
ro
r

Einsum MSE on test set - Acrobot
einsum
einsum-dec

Figure 6.3: Average reconstruction error (MSE) of the next state (top) and average reconstruction
error in the latent space (bottom)

32 Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks

CHAPTER 6. RESULTS

The reconstruction loss is considerably higher in the LunarLander environment compared to
the other two. However, the reconstruction of the latent spaces is similar to the results in the
CartPole environment. For the Acrobot environment the reconstructions are better then in the
LunarLander environment but still not as good as in the CartPole environment.

The following table shows the overall results the three methods on all of the environments.

E2C VAE-Einsum VAE-Einsum-Decoupled Environment
5.34× 10−5 6.16× 10−4 3.23× 10−4 Cartpole
9.78× 10−3 2.12× 10−2 2.04× 10−2 LunarLander
2.34× 10−3 3.91× 10−3 3.72× 10−3 Acrobot

Table 6.2: Average reconstruction error (MSE) for each method in each environment

To visualize the performance of each model in terms of reconstruction the following samples
were obtained. The samples were obtained by sampling a random data point from our dataset
and performing a one step prediction with each model.

Original

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

Figure 6.4: Real observed next state of our sample

E2C

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

Figure 6.5: Predicted next state using E2C

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks 33

CHAPTER 6. RESULTS

VAE-Einsum

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

Figure 6.6: Predicted next state using VAE-Einsum

VAE-Einsum-Decoupled

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

Figure 6.7: Predicted next state using VAE-Einsum-Decoupled

The VAE-Einsum and VAE-Einsum-Decoupled have no problem reconstructing the states in
the Acrobot and CartPole environments but they struggle with the LunarLander environment,
especially in terms of reconstructing the spaceship itself.

6.2 Trajectory predictions

The following figures show imagined trajectories, predicted by each method, in the CartPole
environment where the starting state was randomly sampled from the environment along with a
fixed action moving the cart to the right.

Real environment

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

Figure 6.8: Trajectory observed from the real environment

34 Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks

CHAPTER 6. RESULTS

E2C

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

Figure 6.9: Trajectory prediction obtained from E2C

VAE-Einsum

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

Figure 6.10: Trajectory prediction obtained from VAE-Einsum

VAE-Einsum-Decoupled

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

Figure 6.11: Trajectory prediction obtained from E2C

All of the methods succeed in capturing the dynamics of the environment by generating an
imagined trajectory representing the real dynamics of the environment. For the VAE-Einsum and
VAE-Einsum-Decoupled the predictions tend to be a little bit blurrier compared to the E2C. We
also noted that even though both the VAE-Einsum and VAE-Einsum-Decoupled are generally able
to predict good trajectories, resembling the real environment, our models tend to be less reliable
than E2C in their predictions of the next state, mainly in two ways. Firstly, our models occasionally
get stuck, predicting the same next state over and over. Secondly, our models occasionally go
"off-track", meaning that the predictions are completely different from the real environment, for
example predicting the pole in a horizontal position if the previous state was the pole in an upright
position.

For the LunarLander environment the sample reconstructions shown in section 6.1 indicate
that the models are not doing very well in terms of the reconstruction of the next state there-
for generating imagined trajectories was unsuccesfull. The following figures show some sample
trajectories obtained for the Acrobot environment.

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks 35

CHAPTER 6. RESULTS

Real Environment

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

Figure 6.12: Trajectory observed from the real environment

E2C

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

Figure 6.13: Trajectory prediction obtained from E2C

VAE-Einsum

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

Figure 6.14: Trajectory prediction obtained from VAE-Einsum

VAE-Einsum-Decoupled

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

0 20 40 60

0

10

20

30

40

50

60

70

Figure 6.15: Trajectory prediction obtained from VAE-Einsum-Decoupled

All of the models struggle to accurately predict the real trajectory obtained from the environ-
ment. The E2C method seems to show signs of uncertainty in the predictions judging from the
blurriness of the reconstructions. Both VAE-Einsum methods seem to be more deterministic and
the trajectories obtained do more closely resemble trajectories observed from the real environment.

36 Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks

CHAPTER 6. RESULTS

We observe both VAE-Einsum networks capturing the dynamics in reverse compared to the real
environment. This is somewhat expected behaviour. Predicting the next step of the environment
from our starting position is highly dependant on the magnitude and direction of the velocity of
the pendulum before reaching that state. If the pendulum was already moving downwards at our
starting position, the force applied would merely slow down the movement of our pendulum to
the right side. In the real environment the pendulum was in fact moving upward, therefor the real
dynamics involved the pendulum moving further to the left. Without any additional information,
it is therefore impossible for our methods to determine in which direction the pendulum was
moving before the original state.

6.3 Latent space analysis

The latent space predictions obtained from each method were analysed by embedding them into
a two-dimensional space using t-SNE. The following figure shows the distribution of the latent
spaces using a set of 18000 observations from our test set in the CartPole environment. The latent
space was obtained from the transition system so each point in figure 6.16 represents a next state
latent space predicted by the transition system.

Latent Space Distributions

−100 −75 −50 −25 0 25 50 75 100

−100

−75

−50

−25

0

25

50

75

100

(a) E2C
−100 −50 0 50 100

−100

−50

0

50

100

(b) VAE-Einsum
−100 −50 0 50 100

−100

−50

0

50

100

(c) VAE-Einsum-Decoupled

Figure 6.16: Latent space distribution for all of the models

Figure 6.16 shows the difference between the distribution of the latent spaces for each method.
To gain a better understanding for what each point in our plot means, we mapped the resulting re-
construction of the full images onto our distribution. The visualization including the reconstructed
images is available in appendix A.

The distribution of the latent spaces are very similar for VAE-Einsum and VAE-Einsum-
Decoupled but quite different from E2C. For E2C we can clearly visualize different larger clusters,
where each cluster results in similar reconstructed images. Furthermore, within each cluster we
notice a linear pattern between each point. For VAE-Einsum and VAE-Einsum-Decoupled, we
do not observe the same formation of larger clusters. Instead, the latent spaces are more evenly
spread out with the formation of small circular clusters. Judging from our visualization of the re-
constructed images, we do observe similar images being close to each other however the boundaries
are not as clear as in E2C.

We continue our analysis by analysing the effect of individual latent variables on the overall
distribution. For our analysis we use our VAE-Einsum method and we marginalize individual
latent variables when making predictions with our einsum network. When marginalizing a latent
variable we are essentially removing it from the evidence used to make predictions in our einsum
network. Figure 6.17 shows the overall distribution of the predicted latent spaces for a set of 2000

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks 37

CHAPTER 6. RESULTS

observations. For each observation we make predictions while singling out one of our 8 latent
variables, resulting in a total of 16000 latent spaces.

Latent Space Distributions (combined)

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150

Figure 6.17: t-SNE visualization of the distribution of latent space predictions. Each color repres-
ents the predictions after marginalizing an individual latent variable (total of 8 variables)

The overall distribution is very similar to the distribution shown in figure 6.16 and we do not
observe a clear distinction between the effect of each latent variable. To continue our analysis
we separate our overall distribution into 8 subplots. Each subplot represents the removal of one
latent variable. We use n to indicate the index of the latent variable removed.

Latent Space Distributions (individual)

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150

(a) n=0
−150 −100 −50 0 50 100 150

−150

−100

−50

0

50

100

150

(b) n=1
−150 −100 −50 0 50 100 150

−150

−100

−50

0

50

100

150

(c) n=2
−150 −100 −50 0 50 100 150

−150

−100

−50

0

50

100

150

(d) n=3

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150

(e) n=4
−150 −100 −50 0 50 100 150

−150

−100

−50

0

50

100

150

(f) n=5
−150 −100 −50 0 50 100 150

−150

−100

−50

0

50

100

150

(g) n=6
−150 −100 −50 0 50 100 150

−150

−100

−50

0

50

100

150

(h) n=7

Figure 6.18: Predicted latent space distributions when removing individual latent variables from
the evidence when making predictions. The letter n represents the index of the latent variable
removed

38 Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks

CHAPTER 6. RESULTS

From figure 6.18 we observe different gaps appearing in the latent space predictions depending
on which latent variable was removed. This analysis might give us an indication into the meaning
behind each latent variable. As an example, if we remove the first latent variable n = 0 we observe
gaps in the upper half of our latent space distribution, which would suggest that latent spaces
falling in the upper half of our distribution are highly dependant on the first latent variable. We
can compare our results by plotting the reconstructed images on top of the distribution.

Reconstructed images mapped on to latent space distribution

−100 −50 0 50 100

−100

−50

0

50

100

Figure 6.19: Visualization of the reconstructed images on top of the latent space distribution

When comparing figure 6.19 with figure 6.18 we observe that the first two latent variables
(n = 0 and n = 1) seem to be provide our model with evidence for more extreme tilting of the
pole to either side while the final latent variable, n = 7, seems to be provide our model with
evidence for the pole in a central position. For the other latent variables it is more difficult to
analyse their effect. There are some gaps in the latent space distribution that suggest that some
information was lost when making predictions without those variables, but there are also other
factors that are not as easily visible such as the overall information on the reconstruction of the
pole, the position of the cart along the line as well as information regarding the background. It is
also possible that the interaction between the other latent variables is more complex and therefor

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks 39

CHAPTER 6. RESULTS

harder to distinguish between them by marginalizing them individually.

6.4 Reinforcement learning performance
The following figure shows the results obtained from testing our methods when applied within
DQN and Dyna-DQN in the CartPole environment.

Reinforcement learning in CartPole

Figure 6.20: Average score received over 2000 episodes

The baseline method was a regular DQN applied on the original state available from the
environment. The original state of the environment includes four numbers, explained in 5.1.

The methods were compared based on their performance in the real environment when applying
control in latent space. We chose ε = 0.1 for the ε-greedy policy for all of the methods.

The following table shows the average reward per episode after training the model for 2000
episodes.

Method Avg. Reward
Baseline 170.03
E2C 34.87
VAE-Einsum 34.59
VAE-Einsum-Dyna 33.17
VAE-Einsum-Decoupled 17.90
VAE-Einsum-Decoupled-Dyna 9.90

Table 6.3: Average score received over 2000 episodes

The CartPole environment is considered solved if a reward of 200 is received for 5 consecutive
episodes. E2C and both VAE-Einsum methods were unable to solve the environment and our
implementation of Dyna-DQN did not result in any improvements.

For VAE-Einsum and E2C, the results are similar. In Manuel Watters’s et al. [21] paper, E2C
showed promising results using AICO [18], but no results were presented where E2C was applied

40 Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks

CHAPTER 6. RESULTS

within any deep reinforcement learning framework similar to DQN. We expected our methods to
perform better when using DQN. One one hand, the bad performance might be due to a poor
model of the environment. On the other hand, the bad performance might be due limitations to
DQN, such as overestimation of the action values, discussed by Hado van Hasselt et al. [20], or
catastrophic forgetting, discussed by Melros Roderick et al. [16].

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks 41

Chapter 7

Conclusions

Combining the einsum network and variational autoencoder proved to be very difficult, mostly due
to two problems. Firstly, for our model to be able to generate imagined trajectories resembling
the real environment, an agreement between the VAE and einsum network in the latent space
was crucial. Our solution to that problem mainly involved adjusting the Gaussian variances of
our einsum network. Ultimately our variances had to be chosen low enough such that our einsum
network would be able to accurately predict the values of the latent variables, but still high enough
such that the einsum network was not imposing a distribution too complicated for the decoder.
Secondly, our problem involved stabilizing the training process between the two methods. The
difference between the VAE and einsum network in terms of structure and optimization often let
to instabilities during the training process. Our solution to stabilizing the training process was to
choose a very low step-size for the EM algorithm as well as the frequency of its updates. The EM
algorithm, by design, does converge relatively quickly, which ultimately lead to instabilities when
combined with the VAE. By lowering the step-size and update frequency we were able to slow
down the training process of the einsum network and therefor give the VAE a chance to improve
before the einsum network. Slowing down the training process also included adding the β value
to our loss function, explained in section 4.4.2.

During training, the VAE had no problems with accurately learning a low-dimensional embed-
ding of the high-dimensional images and overall the reconstructions, in the CartPole and Acrobot
environments, were very good. For the LunarLander environment, the VAE found it more difficult
to reconstruct the images. The LunarLander environment is a very complicated environment to
reconstruct, mostly due to the spaceship itself being a relatively small part of the full image as
well as the fact that the background environment changes every episode.

In terms of the trajectory predictions the VAE-Einsum and VAE-Einsum-Decoupled were both
able to generate trajectories in the CartPole environment, that closely resembled the real environ-
ment. Both methods were able to show results similar to the E2C. For some samples, we however
notice the VAE-Einsum and VAE-Einsum-Decoupled going "off track", meaning their next-step
prediction were far from the next step observed in the real environment. One possible reason
for this behaviour is that, compared to the E2C, our methods do not constrain the relationship
between the transitions to be linear and therefor we are "allowing" the predictions of the einsum
network to go off track.

In the Acrobot environment, the VAE-Einsum and VAE-Einsum-Decoupled were both able to
successfully generate imagined trajectories that resemble the behaviour of the real environment.
None of the methods were however able to correctly match the simulated trajectory from the
real environment. The reconstruction of the images, coming from the VAE-Einsum and VAE-
Einsum-Decoupled, were however notably better then the ones coming from the E2C. The Acrobot
environment is however a very dynamical system and outside factors, not represented with the
images, such as the velocity of the pole, are crucial to be able to accurately predict the correct
trajectories.

By visualizing the distributions of the latent spaces for all of the methods we noted an in-

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks 43

CHAPTER 7. CONCLUSIONS

teresting difference between the E2C and our methods. For the VAE-Einsum and VAE-Einsum-
Decoupled the distributions are very similar, but at the same time very different from the distri-
bution observed for the E2C. As discussed in section 6.3, we observed that the distribution of the
latent spaces coming from the einsum network were more evenly distributed, there was not a clear
formulation of larger clusters and we did not observe a linear relationship between points within
a cluster.

This might provide us with an explanation to some of the behaviour we noticed earlier. Without
having a clear distinction between larger clusters, representing similar reconstructed images, the
next state predictions of our model might be more likely to go "off-track", meaning that our model
makes a next state prediction completely different from the previous state.

Furthermore, due to the distribution consisting of multiple smaller clusters it might be difficult
for the decoder to recognize the meaning behind different latent spaces within a cluster and
therefore the decoder may find it difficult to recognize smaller changes in our reconstruction.
This might also provide us with an explanation for why the trajectory predictions coming from
VAE-Einsum and VAE-Einsum-Decoupled were generally blurrier than the reconstructions from
E2C.

As discussed in section 4.3, one of the motivations for using einsum networks in latent space is
more flexibility in terms of what we want to predict. By marginalizing individual latent variables
and visualizing the predictions using t-SNE, we were able to analyse the effect of individual
variables. Our analysis resulted in an interesting visualization of the effect of different latent
variables, which allowed us to make an estimation on what information each latent variable might
store.

When applied within a reinforcement learning framework in the CartPole environment, VAE-
Einsum and E2C were very similar in terms of the overall score but both methods were however
unable to solve the control problem. The ability of VAE-Einsum to generate imagined trajectories
in latent space, using Dyna-DQN, did not result in any improvements but the overall score was
still only slightly below regular DQN.

We expected a better performance from all of the models using DQN and Dyna-DQN, but
weather improving on our results involves improving our models, or improving on the DQN al-
gorithm, requires further analysis.

When comparing VAE-Einsum and VAE-Einsum-Decoupled, we did not observe a big dif-
ference in terms of reconstruction or trajectory predictions, but when applied within DQN, the
performance of VAE-Einsum was considerably better. We believe that the difference in perform-
ance can be explained based on the fact, that in VAE-Einsum, an agreement between the VAE
and the einsum network is enforced by having the einsum network act as a regulizer but this agree-
ment between the two, might be crucial when applying control in latent space. Furthermore, by
comparing the performance of VAE-Einsum and VAE-Einsum-Decoupled when using Dyna-DQN
we notice an even larger difference between the two. In Dyna-DQN, we rely more on the einsum
network to make accurate predictions in latent space, compared to DQN. We can therefor assume
that the einsum network in VAE-Einsum-Decoupled is performed considerably worse in generating
accurate latent space trajectories compared to VAE-Einsum.

Overall, our implementation of combining VAEs and einsum networks did not improve the
performance of E2C in terms of generating accurate image trajectories or control in latent space.
Our results were however promising and the increased flexibility in latent space did allow us to
further analyse the meaning behind individual latent variables as well as enabling us to do planning
in latent space using Dyna-DQN.

44 Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks

Bibliography

[1] Mathieu Aubry, Daniel Maturana, Alexei A. Efros, Bryan C. Russell, and Josef Sivic. Seeing
3d chairs: Exemplar part-based 2d-3d alignment using a large dataset of cad models. In 2014
IEEE Conference on Computer Vision and Pattern Recognition, pages 3762–3769, 2014. 4

[2] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016. 25, 26

[3] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. In-
fogan: Interpretable representation learning by information maximizing generative adversarial
nets. CoRR, abs/1606.03657, 2016. 4

[4] I. Higgins, Loïc Matthey, A. Pal, Christopher P. Burgess, Xavier Glorot, M. Botvinick, S. Mo-
hamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained
variational framework. In ICLR, 2017. 4

[5] Geoffrey E Hinton and Sam Roweis. Stochastic neighbor embedding. In S. Becker, S. Thrun,
and K. Obermayer, editors, Advances in Neural Information Processing Systems, volume 15.
MIT Press, 2003. 10, 11

[6] G. Zacharias Holland, Erik Talvitie, and Michael Bowling. The effect of planning shape on
dyna-style planning in high-dimensional state spaces. CoRR, abs/1806.01825, 2018. 6, 7, 28

[7] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H. Campbell,
Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Ryan
Sepassi, George Tucker, and Henryk Michalewski. Model-based reinforcement learning for
atari. CoRR, abs/1903.00374, 2019. 5, 6

[8] Diederik P. Kingma and Max Welling. An introduction to variational autoencoders. CoRR,
abs/1906.02691, 2019. 3, 4

[9] Tejas D. Kulkarni, Will Whitney, Pushmeet Kohli, and Joshua B. Tenenbaum. Deep convo-
lutional inverse graphics network. CoRR, abs/1503.03167, 2015. 4

[10] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in
the wild. In Proceedings of International Conference on Computer Vision (ICCV), December
2015. 4

[11] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng.
Reading digits in natural images with unsupervised feature learning. In NIPS Workshop on
Deep Learning and Unsupervised Feature Learning 2011, 2011. 9

[12] Iago París, Raquel Sánchez-Cauce, and Francisco Javier Díez. Sum-product networks: A
survey. CoRR, abs/2004.01167, 2020. ix, 7, 8

[13] Pascal Paysan, Reinhard Knothe, Brian Amberg, Sami Romdhani, and Thomas Vetter. A
3d face model for pose and illumination invariant face recognition. In 2009 Sixth IEEE
International Conference on Advanced Video and Signal Based Surveillance, pages 296–301,
2009. 4

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks 45

BIBLIOGRAPHY

[14] Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin
Trapp, Guy Van den Broeck, Kristian Kersting, and Zoubin Ghahramani. Einsum networks:
Fast and scalable learning of tractable probabilistic circuits. CoRR, abs/2004.06231, 2020.
ix, ix, 1, 7, 8, 9, 10, 20, 21

[15] Hoifung Poon and Pedro M. Domingos. Sum-product networks: A new deep architecture.
CoRR, abs/1202.3732, 2012. 9

[16] Melrose Roderick, James MacGlashan, and Stefanie Tellex. Implementing the deep q-network.
CoRR, abs/1711.07478, 2017. 4, 5, 41

[17] Francisco Rubio, Francisco Valero, and Carlos Llopis-Albert. A review of mobile robots: Con-
cepts, methods, theoretical framework, and applications. International Journal of Advanced
Robotic Systems, 16(2):1729881419839596, 2019. 1

[18] Marc Toussaint. Robot trajectory optimization using approximate inference. In Proceedings of
the 26th Annual International Conference on Machine Learning, ICML ’09, page 1049–1056,
New York, NY, USA, 2009. Association for Computing Machinery. 40

[19] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of
Machine Learning Research, 9:2579–2605, 2008. ix, 10, 11, 12

[20] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. Proceedings of the AAAI Conference on Artificial Intelligence, 30(1), Mar. 2016.
6, 41

[21] Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, and Martin A. Riedmiller.
Embed to control: A locally linear latent dynamics model for control from raw images. CoRR,
abs/1506.07365, 2015. ix, ix, 1, 13, 14, 15, 16, 17, 19, 26, 40

46 Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks

Appendix A

2-dimensional mapping of latent
space with images

The following figures show the distribution of the latent spaces with full images instead of points.

Figure A.1: E2C

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks 47

APPENDIX A. 2-DIMENSIONAL MAPPING OF LATENT SPACE WITH IMAGES

Figure A.2: VAE-Einsum

48 Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks

APPENDIX A. 2-DIMENSIONAL MAPPING OF LATENT SPACE WITH IMAGES

Figure A.3: VAE-Einsum-Decoupled

Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks 49

Appendix B

Parameter optimization - EM
algorithm

We analysed the effect that the update frequency and step size of the EM algorithm had on the
reconstruction of the einsum network in latent space. We chose three different values for each
parameter and we analysed the effect of all possible combination. For the EM update frequency
we chose values 1, 10 and 50. For the EM step size we chose values 0.1, 0.01 and 0.001. The
following figure shows the results obtained for each combination on a subset of 4000 observations.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00 einsum-dec -> em_freq: 1 em_step_size: 0.1
einsum -> em_freq: 1 em_step_size: 0.1
einsum-dec -> em_freq: 1 em_step_size: 0.01
einsum -> em_freq: 1 em_step_size: 0.01
einsum-dec -> em_freq: 1 em_step_size: 0.001
einsum -> em_freq: 1 em_step_size: 0.001
einsum-dec -> em_freq: 10 em_step_size: 0.1
einsum -> em_freq: 10 em_step_size: 0.1
einsum-dec -> em_freq: 10 em_step_size: 0.01
einsum -> em_freq: 10 em_step_size: 0.01
einsum-dec -> em_freq: 10 em_step_size: 0.001
einsum -> em_freq: 10 em_step_size: 0.001
einsum-dec -> em_freq: 50 em_step_size: 0.1
einsum -> em_freq: 50 em_step_size: 0.1
einsum-dec -> em_freq: 50 em_step_size: 0.01
einsum -> em_freq: 50 em_step_size: 0.01
einsum-dec -> em_freq: 50 em_step_size: 0.001
einsum -> em_freq: 50 em_step_size: 0.001

Figure B.1: Parameter optimization of EM algorithm parameters

We observed the best results for an update frequency of 10 and a step size 0.001.

50 Dynamics modeling using a combination of Variational Autoencoders and Einsum Networks

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Variational Autoencoder (VAE)
	-VAE
	Deep Q-Network (DQN)
	Model-based RL for Atari
	Deep Reinforcement Learning with Double Q-Learning
	The Effect of Planning Shape on Dyna-style Planning in High-dimensional State Spaces
	Probabilistic Circuits
	Sum-Product Network (SPN)
	Einsum Networks

	Visualization using t-SNE

	Previous Work
	Embed to Control (E2C)
	Problem Formulation
	Inference Model for Q
	Generative Model for P
	Transition Model for
	Learning
	Environments
	Experimental Setup
	Results

	Methodology
	Problem statement
	Learning a mapping from a high-dimensional image xt to latent space zt
	VAE implementation

	Learning the transitional dynamics of the real environment in the latent space
	Einsum network implementation

	Combining the VAE and Einsum Network
	Choosing the structure of the einsum network
	Enforcing an agreement in the latent space

	Experimental Setup
	Environments
	CartPole-v0
	LunarLander-v2
	Acrobot-v1
	Preprocessing

	E2C
	E2C architecture
	E2C loss function
	Network architecture
	E2C hyperparameters

	VAE-Einsum and VAE-Einsum-Decoupled
	VAE design
	Einsum network design
	Balancing the VAE-Einsum during training

	Reinforcement Learning
	Dyna-DQN

	Comparing E2C and VAE-Einsum

	Results
	Training performance
	Trajectory predictions
	Latent space analysis
	Reinforcement learning performance

	Conclusions
	Bibliography
	Appendix
	2-dimensional mapping of latent space with images
	Parameter optimization - EM algorithm

