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Abstract

The high-dimensionality of Big Data poses the problems such as storage,
difficulty in understanding and visualizing the data, poor generalization by
models, and lengthy model building times in data analysis. This gives rise to
the need for feature selection to improve the analysis of data. An understand-
ing of the factors that influence the performance of feature selection methods
as well as their impact on various data analysis tasks is key in guiding the
choice of a feature selection method. This study aims to review the factors
that influence the performance of various feature selection methods as well
as how they impact classification in terms of improved training time and ac-
curacy; to propose guidelines for choosing feature selection methods. Eight
feature selection methods were analyzed on four classification algorithms us-
ing 32 real-world datasets and the outcome was used to propose guidelines
for choosing feature selection methods. The results showed that feature selec-
tion impacts binary and multiclass classification differently and although no
one of the studied feature selection methods is best in all cases, we observed
that correlation based and conditional mutual information maximization fea-
ture selection methods gave the best results for multiclass classification. The
Python scikit-learn libraries and scikit-feature repository which have imple-
mented many learning and feature selection algorithms respectively were used
for the experiments.
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Chapter 1

Introduction

1.1 Motivation

Data has been termed the new oil, gold, and even currency of the current
economy; this tells its value. Data comes in varying sizes; from a few kilo-
bytes stored in the SRAM of an embedded system generated during program
execution to hundreds of gigabytes, terabytes, or even petabytes generated
from intensive data-producing processes, for example, data warehousing. Us-
ing data, many advances have been made in science, technology, and other
fields allowing for more informed decision making and automation. Models
that power exciting innovations such as self-driving cars and facial recogni-
tion systems are made possible because of data. The potential that data
holds has led to increased collection whether or not its use is clear at the
time of collection.

With cheaper storage available, many organizations store up data without
proper problem definition hoping to gain some insight from the gathered data
in the future. This ‘blind’ data collection often leaves practitioners with
large-sized noisy data having features that could be irrelevant or redundant.
Irrelevant, meaning that they carry no information about a target feature
alone or in combination with other variable(s). Redundant, meaning that
there exists some other feature(s) that conveys the same information about
the target feature [2].

In certain fields like bioinformatics, in addition to data having a large
number of features, it often has an insufficient number of samples. Microarray
data for example could contain thousands of gene expressions as features but
a few tens or hundreds of samples. With this kind of data, it is almost
impossible to build a model of sufficiently good quality that generalizes the
process which generated the data. The intuitive reasoning with such cases is
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to gather more samples. However, in such cases, data collection can be time
consuming, expensive, or even impossible. Hence, the practitioner is faced
with datasets obtained from insufficient number of samples, having many
features that may be irrelevant or redundant and has to identify and filter
out such features.

1.2 Problem Statement

Although Big Data has played a significant role in building efficient models
for better decision making, it comes with the problems of storage, challenging
data understanding and visualization, poor generalization by models due to
overfitting, and lengthy model building times. As the dimensionality of a
dataset increases, the required number of samples needed to build a model
that generalizes it properly grows more than exponentially [2]. The state
of having insufficient samples compared to the dimensionality of a dataset
is referred to as sparseness and it generally increases as the dimensionality
increases. Sparseness negatively affects the quality of a model’s performance
metrics, for example, its accuracy.

Besides the problem of sparseness, high-dimensional datasets are difficult
to understand and visualize. Models built with such datasets are thus diffi-
cult to explain, especially in terms of the many features; the time required
to build such models could also be very long. Associated with high dimen-
sional data is also the need for relatively more storage space which signifies
increased expenses whether on-site or in the cloud. These resultant chal-
lenges from the high dimensionality of datasets have been termed the curse
of dimensionality. To fight the curse of dimensionality, effective techniques
to reduce the dimensionality of datasets by selecting the most informative
features of a dataset are necessary.

Many of such techniques have been long proposed and are called Feature
Selection (FS) methods. Most FS methods were designed for small-medium
sized datasets with polynomial theoretical runtime [3] and so in the face
of large-sized datasets, their effectiveness becomes jeopardized and they fall
into the curse of dimensionality [4, 2]. Individual FS methods are affected by
various characteristics in the dataset like its dimensionality or the number
of samples. It is therefore imperative to understand the performance of FS
methods with respect to the changing characteristics of datasets; in order to
serve as a guide for choosing FS methods.

Depending on the data analysis task at hand, FS methods yield differing
impacts in terms of improving the building time or accuracy of a model from
a dataset. Therefore, the impact of FS methods differs for classification (bi-
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nary, multiclass), clustering and regression tasks. Besides impacting various
tasks differently, its effect could also differ per learning algorithm, hence, a
context-specific understanding of the impact of FS is necessary.

Research Questions

Focusing on binary and multiclass classification tasks, the impact of eight
FS methods on classification problems is studied in this work to answer the
following questions:

1. What factors influence the runtime of each FS method?

2. How well do the FS methods scale with increasing numbers of fea-
tures/instances?

3. How does FS affect the accuracy of binary/multiclass classification
models?

4. What is the impact of the feature subset size on classifier accuracy-
runtime tradeoff?

5. What are the guidelines for choosing FS methods?
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Chapter 2

Dimensionality Reduction

Datasets seldom come in a form fit for analysis, they are often dirty with in-
accurate, incomplete, or(and) inconsistent data having features that are often
irrelevant or(and) redundant. To prepare the data for analysis, the dataset
has to pass through a number of data-preprocessing steps that broadly con-
sists of data cleaning, data transformation, and data reduction.

Where the dataset has numerous features, data reduction is a necessary
pre-processing step. Dimensionality Reduction (DR) is an umbrella term
for techniques used in data reduction; the aim is to decrease the number of
features of a dataset. DR consists of Feature Extraction (FE) and Feature
Selection (FS) and these are discussed below.

2.1 Feature Extraction

FE is the process of reducing the dimensionality of a dataset by projecting
its features into a lower-dimensional space that is a combination (linear or
nonlinear) of the original features. FE produces fewer new features from the
original features still carrying the same information. Singular Value Decom-
position (SVD), Latent Semantic Indexing (LSI), and Principal Component
Analysis (PCA) are examples of feature extraction techniques

2.2 Feature Selection

FS reduces the dimensionality of a dataset by selecting a subset of datasets’
features that are considered to be most relevant based on defined criteria.
Depending on the type of FS method, FS involves only the first two or all
four of the following steps [5]:

11



• A generation procedure that guides the selection of a subset of the
original features,

• An evaluation procedure in which an evaluation function is used to
quantify the relevance of the features,

• A stopping procedure in the case of iterative FS methods using some
predefined halt criterion, and

• A validation procedure that evaluates the validity of the selected feature
subset.

FS methods can be categorized into supervision, selection strategy, and eval-
uation criteria perspectives [6] elaborated below.

2.2.1 Feature Selection Categorizations

Supervision perspective

Datasets can either be labeled or unlabelled and FS can be applied on either
types of datasets. Based on the reliance of FS methods on the label in a
dataset, they are classified into supervised and unsupervised FS methods.

Supervised FS methods rely on the label of the dataset to evaluate the
relevance of features in the dataset. The goal of these methods is to select
features that rightly discriminate the instances between distinct label values.
Supervised FS methods are mainly applied to supervised problems such as
classification and regression

Unsupervised FS methods on the contrary, do not rely on the label of
the data to evaluate and select features from a dataset. Rather, alternative
methods like distance measures between instances are used to select features
aiming to select features that preserve the intrinsic structure of the dataset.
Although these alternative methods can be applied to both supervised and
unsupervised problems, unsupervised FS methods are originally designed for
unsupervised tasks like clustering.
A large number of supervised methods have been proposed than unsupervised
methods for FS.

Selection strategy perspective

Irrespective of their supervision perspective, FS methods can be classified
by their reliance on a learning algorithm to select the most relevant features
into filter, wrapper, and embedded FS methods.
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Filter methods evaluate and select features independent of any learning
algorithm; solely relying on the characteristics of the dataset to determine
the relevance of a feature. This approach gives the advantage of selecting
a subset of features once and using it with multiple learning algorithms.
Albeit, since these methods do not select features for any particular learning
algorithm, the selected features may not be optimal for any chosen learning
algorithm.

Wrapper methods select features by going through an iterative process
of selecting a subset of features and evaluating its quality by the performance
metric (e.g., accuracy) of a particular learning algorithm. This is done until
arriving at a subset of features that optimize the performance of that learning
algorithm or till a pre-set halt condition is satisfied. Since wrapper methods
select features using a learning algorithm, it leads to selecting a subset of
features that optimize the performance of the learning algorithm. However,
wrapper methods can be time inefficient as the size of the dataset increases
since each iteration requires training the learning algorithm.

Embedded methods refer to learning algorithms that have FS in them.
Embedded methods have the advantages of time efficiency since FS is not
done iteratively; and optimal subset selection since FS is done with the target
learning algorithm. Examples of embedded methods are tree-based learning
algorithms which prune irrelevant features while building the tree model,
using criteria like Gini or Entropy.

Evaluation criteria perspective

In defining a criterion to quantify the relevance of features, FS methods
generally use sparse learning, similarity, statistics measures, or information
theory ; in forming another categorization of FS methods.

Sparse learning-based methods measure the relevance of a feature by
its ability to minimize the fitting errors along with some sparse regularization
terms like the l1 (LASSO) or l2 (Ridge) norm. Studies show that these
methods have good performance and increase model interpretability [6]. This
is because they are typically embedded in the learning algorithm which leads
to selecting a subset of features that is optimal for the particular learning
algorithm with a model that can be explained due to the sparsity of feature
weights these methods produce. Although results from these methods are
optimal for the particular learning algorithm, they are not generalizable as
they might be inefficient when used in another algorithm. Methods like these
often involve expensive matrix operations such as inverse and multiplication
and can thus be computationally inefficient. Examples of these methods
include lasso and ridge regressions and support vector machines.
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Similarity-based methods are the group of FS methods that define
the relevance of a feature based on its ability to preserve data similarity.
Data similarity is derived from the label of the dataset or by some distance
measure, for supervised and unsupervised FS methods respectively. This
implies that there are similarity-based FS methods for both supervised and
unsupervised problems.

These methods are all filter methods (i.e independent of target learning
algorithm), hence, the selected subset of features can be used in many learn-
ing algorithms. However, similarity-based FS methods do not handle feature
redundancy because features are evaluated and selected individually leading
to high ranking redundant features being selected.

Statistical-based methods are a group of FS methods that use well-
known statistical measures like variance, chi-square, and correlation to quan-
tify the relevance of a feature. These methods often evaluate features individ-
ually, not relying on any particular learning algorithm. The selected subset
of features might thus contain redundant features but can be generalized (i.e
can be used with multiple learning algorithms).

This category of FS methods is often computationally inexpensive but
works with only discrete features; continuous features would need to be dis-
cretized before being used in these methods.

Information theoretical-based methods consist of FS methods that
measure the relevance of a feature using various heuristic filter criteria like
entropy or mutual information. Most proposed criteria in this family are de-
signed to select features that maximize relevance and minimize redundancy;
this yields a subset of less redundant features. These methods rely on the la-
bel of the dataset to evaluate and select features, making them only suitable
for supervised tasks. In addition, due to their method filtering attribute,
the resulting feature subset can be applied to any supervised learning algo-
rithm. Finally, these methods work with discrete features and thus require
continuous features to first be discretized before applying them.
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Chapter 3

Background

3.1 Literature Review

The subject of FS has been studied by researchers, especially in recent
decades, due to its relevance in Big Data. The objective of FS is to build
simpler and more understandable models, improve model performance, re-
duce their training time, and prepare data that are clean, understandable,
and easier to visualize [6]. FS has been used in diverse fields including text
mining, image processing, computer vision, industrial applications, bioinfor-
matics, etc [7]; as a tool to fight the problems that come with the size and
volume of Big Data.

However, these challenges of Big Data have caught up with some FS
methods, affecting their effectiveness and posing new challenges for FS [8].
The challenges identified in the literature are scalability, data formats, dis-
tribution, and stability [8, 9]. Due to FS methods being mainly designed
for centralized data that are small to medium in size, it is difficult to apply
them to Big Data that are often distributed for better management, thereby
compromising their scalability with increasing data size. Lastly, a lack of
robustness in the results from FS methods with changes in training data (i.e.
poor stability) dents the reliability of the results. In [10], the scalability of
3 filter methods on 2 datasets was studied and the results confirmed the in-
adequacy of these methods to scale with increasing sizes of data. Although
progress has been made in redesigning some FS methods in a distributed
manner to match the current convention of data management and improve
scalability [11, 12],this has not been done on many more methods.

The choice of FS methods to use depends on the search technique, eval-
uation criteria, and data mining task [3]. In addition to these, the charac-
teristics of the dataset also influence this choice. The study of the effects
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of dataset characteristics; classified into standard measures, data sparsity
measures, statistical measures, information theoretic measures, and noise
measures [13], on FS in [14] showed the inherent relationship between the
FS method performance (in terms of improved learning algorithm runtime
and accuracy) and the characteristics of the dataset. However, the quality
of features selected by FS methods may not be optimal as many of these
methods are designed under the assumption that features are not correlated
which often is not the case [15].

Hundreds of FS methods have been proposed and several benchmarks
to compare their benefits to other analysis, tasks and algorithms have been
conducted. In [16], 22 filter methods were benchmarked on 16 real datasets
with respect to run time and accuracy when combined with three classi-
fication methods. Of these filter methods, three groups were identified to
return similar feature rankings, however, no group outperformed the rest on
all datasets. Based on the review in [7], filter based FS methods with infor-
mation theory evaluation criteria and wrapper based methods using greedy
stepwise selection approaches appear to give the best results. Most of the
reviews and benchmarks were conducted on real data from open repositories
like OpenML1 and UCI2. In [17] however, 11 FS methods using 11 synthetic
datasets allowing for more control on the characteristics of the dataset were
benchmarked and the results obtained were confirmed on two real datasets.
From the results, ReliefF turned out to be the best choice as it selected better
subsets independent of the characteristics of the dataset.

There is a need for more research in FS to fight the challenges, understand
the limits of current methods and propose guidelines around their usage. The
focus of previous studies has been on binary classification due to the avail-
ability of data and ease of evaluation. However, many real world problems
are indeed multiclass in nature and also require FS. Hence in this work, the
impact of eight FS methods is studied not just on binary classification but
also on multiclass classification to understand the factors that influence their
performance, their impact on classification and propose a guideline for using
them.

3.2 Preliminaries

In what follows, some fundamental information and theoretical measures
important to understand the FS methods studied in this work are defined.
Entropy quantifies the uncertainty of a discrete random variable X and is

1https://www.openml.org
2https://archive.ics.uci.edu/ml/index.php
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defined as follows:
H(X) =

∑
xiεX

P (xi) log(P (xi)), (3.1)

where xi is the ith value of X and P (xi) is the probability of xi over all values
of X.

Conditional entropy measures the remaining uncertainty of X given
another discrete variable Y and defined as:

H(X|Y ) =
∑
yiεY

P (yj)
∑
xiεX

P (xi|yj) log(P (xi|yj)), (3.2)

where yi is the ith value of Y , P (yj) is the prior probability of yj over all
values of Y and P (xi|yj) is the conditional probability of xi given yj.

Mutual information is the measure of information shared between two
discrete random variables X, Y and is defined as:

I(X;Y ) = H(X)−H(X|Y ). (3.3)

Conditional mutual information quantifies the amount of information
shared between two discrete random variables X, Y when a third discrete
random variable Z is known. It is defined as:

I(X;Y |Z) = H(X|Z)−H(X|Z, Y ). (3.4)

Bayes’ theorem states that given two events A and B, with P (B) 6= 0,
then:

P (A|B) =
P (B|A)P (A)

P (B)
, (3.5)

where P (A) and P (B) are the prior probabilities of events A and B respec-
tively, P (A|B) is the conditional probability of A given B and P (B|A) vice
versa.

3.3 Feature Selection Algorithms

The generalizability of filter FS methods makes it easier to compare their
impact on multiple learning algorithms since the resulting subset of features
are derived independently of any particular learning algorithm unlike wrap-
per and embedded FS methods. Filter methods are also less time consuming
compared to wrapper methods because they do not require an iterative train-
ing of a learning algorithm to select a subset of features of a dataset. For
these reasons, eight filter methods (Table 3.1) were studied in this work and
are presented below.
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FS method Evaluation criteria Supervision perspective Selection strategy
RFS Sparse learning-based Supervised Filter
ReliefF Similarity-based Supervised Filter
SPEC Similarity-based Supervised, Unsupervised Filter
Gini index Statistical-based Supervised Filter
CFS Statistical-based Supervised Filter
CMIM Information theoretical-based Supervised Filter
JMI Information theoretical-based Supervised Filter
MRMR Information-based Supervised Filter

Table 3.1: FS methods studied and their respective perspectives.

Conditional Mutual Information Maximization (CMIM) is an
information based FS method which iteratively picks features that maximize
mutual information to the class feature conditioned on the already selected
features [18, 19]. Where S is the subset of already selected features, Y the
class feature, and Xk an unselected feature [6, 16], the feature score of Xk

can be defined as:

JCMIM(Xk) = min
XjεS

I(Y ;Xk|Xj). (3.6)

This approach ensures that the selected features are good predictors of the
class label but minimally redundant.

Joint Mutual Information (JMI) is an information based FS method
which iteratively selects features that complement already selected features
with respect to the class feature. Its feature score is defined as follows:

JJMI(Xk) =
∑
XjεS

{I(Y ;Xk|(Xj)}. (3.7)

Minimum Redundancy Maximum Relevance (MRMR) is also an
information based FS method proposed to select features that balance rele-
vance and redundancy. A feature Xk is scored as:

JMRMR(Xk) = I(Y ;Xk)−
1

|S|
∑
XjεS

I(Xk;Xj), (3.8)

where the mutual information between the feature and target feature I(Y ;Xk)
is the measure of relevance while 1

|S|
∑

XjεS
I(Xk;Xj) tells the features redun-

dancy compared to already selected features [16].
Efficient and Robust Feature Selection (RFS) is a sparse learning

based FS method that uses a joint l2,1-norm minimization on both the loss
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function and the regularization. This approach is more robust to noise and
achieves group feature sparsity [6]. The objective function for RFS is:

min
W
||XW − Y ||2,1 + ||W ||2,1. (3.9)

ReliefF is a similarity based FS method which extends the classic relief
FS method [20] for not just binary, but also multi-class classification [21]. The
idea of this method is to select features that maximally distinguish between
instances that are near to each other [22]. The score of a feature Xk is defined
as:

JReliefF (Xk) =
1

c

l∑
j=1

(− 1

mj

∑
xrεNH(j)

d(X(j, i)−X(r, i))

+
∑
y 6=yj

1

hyj

P (y)

1− P (y)

∑
xrεNM(j)

d(X(j, i)−X(r, i))),

(3.10)

where l is the number of randomly selected instances (≤ n total instances),
NH(j) of size mj is the set of instances closest to instance xj and in the
same class,
NM(j, y) with size hjy is the set of instances closest to xj and in class y, and
P (y) is the probability of instances belonging to class y.

Spectral feature selection (SPEC) is a similarity based FS method
which works for both supervised and unsupervised tasks [6]. Given a dataset
X with features F1, F2 . . . , Fm, feature vectors F1, F2 . . . , Fm, normalized
feature vectors f̂1, f̂2, . . . , f̂m and target feature Y in the case of supervised
tasks with class labels, the pairwise similarity of its instances can be encoded
into a similarity matrix S using a similarity measure like the Radial Basis
Function (RBF) kernel. With G being the representative graph of S, SPEC
uses the structural information of G gotten from its spectrum3 to determine
the relevance of a feature. The idea of SPEC is to select features which
preserve the intrinsic structure of the data by assigning similar values to
instances that are close to each other [6]. The relevance of a feature can be

3The spectrum of a graph refers to its eigenvalues and their multiplicities.
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scored by either of the following:

SPECscore1(fi) = f̂i
′
γ(Lnorm), f̂i =

n∑
j=1

α2
jγ(λj)

SPECscore2(fi) =
f̂i
′
γ(Lnorm)

1− (f̂i
′
ε1)2

, f̂i =

∑n
j=1 α

2
jγ(λj)∑n

j=1 α
2
j

SPECscore3(fi) =
m∑
j=1

(γ(2)− γ(λj))α
2
j .

(3.11)

The SPEC scores are derived from the spectral decomposition of the normal-
ized laplacian matrix L of G; in particular its trivial eigenpair (eigenvalue =

0, eigenvector = D
1
2 e). SPEC score2 is used in cases where f̂i is very close

to eigenvector 0 and score3 is used when the number of leading eigenvalues
of L k that optimally separates G into K parts is known.

The selection of features is done in three steps [23]: firstly a similarity set
S from the dataset is built followed by its representative graph. Afterwards,
the relevance of the features are evaluated using the spectrum of the graph
i.e. any of the scores in equation 2.10. Finally, the features are ranked in
descending (score 3) or ascending (score 1 and 2) order in terms of feature
relevance.

Gini index is a very common statistical measure used to quantify the
ability of a feature to separate instances between classes [6] . A feature fi
with r distinct values is scored as:

JGini(fi) = min
W

(p(W )(1−
c∑
s=1

p(Cs|W )2)+p(W )(1−
c∑
s=1

p(Cs|W )2)), (3.12)

with Wfi and Wfi denoting sets of instances with fi value ≤ φ and > φ re-
spectively. Where φ is some jth value of fi. This implies that φ separates the
dataset into Wfi and Wfi . The maximum gini score in binary classification
is 0.5 and lower values imply higher relevance.

Correlation-based Feature Selection (CFS) is a statistical based FS
method with the basic idea of selecting a feature subset S in which features
are highly correlated with the class and uncorrelated with other selected
features. This implies that redundant features are less likely to be selected.
The CFS score of a feature subset dubbed ‘merit’. Is defined as:

JCFS =
krcf√

k + k(k − 1)rff
, (3.13)

where k is the number of features in S, rcf is the average feature-class corre-
lation and rff is the average feature-feature inter-correlation.
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3.4 Classification Algorithms

The classification task is a common problem in practice; for instance, the
bank wants to know if a loan applicant is likely to default or not before
issuing a loan, the grocery store wants to automatically detect items that
span multiple categories. Classification is broadly categorized into binary
classification where subjects are assigned to one of two classes and multiclass
classification where subjects are assigned to one of more than two classes.

In this work, four classification algorithms for binary and multiclass prob-
lems that do not have FS embedded were used to study the impact of FS on
binary and multiclass classification; they are discussed below.

Naive Bayes (NB) is a collection of classification algorithms that are
based on Bayes’ theorem and the assumption that every pair of features Xi,
Xj in a dataset are conditionally independent given the class feature Y i.e.:

P (Xi ∩Xj|Y ) = P (Xi|Y )P (Xj|Y ). (3.14)

NB classifies an instance to the most probable class value y given its feature
vector 〈x1, x2, . . . , xn〉 i.e.

y = argmaxP (yj|x1, x2, . . . , xn). (3.15)

Applying bayes’ theorem,

y = argmax
P (x1, x2, . . . , xn|yj)P (yj)

P (x1, x2, . . . , xn)
. (3.16)

Since P (x1, x2, . . . , xn) is constant for all yjs,

y = argmaxP (x1, x2, . . . , xn|yj)P (yj). (3.17)

With the assumption of independence of features, P (x1, x2, . . . , xn|yj)P (yj) =∏n
i=1 P (xi|yj), hence,

y =
n∏
i=1

P (xi|yj)p(yj). (3.18)

NB is commonly applied in fields like text mining because of its efficiency on
large datasets [24].

K-Nearest Neighbours (KNN) is a commonly used classification al-
gorithm that works on the bird of the same feather flock together principle.
The class of an unknown instance is determined by that of its K closest
neighbors whose instances are known. KNN is considered a lazy algorithm
because it does not build a classifier once for reuse rather it scans through
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Figure 3.1: K Nearest Neighbour classification pseudo-code.

the training data to determine the class if an unknown instance occurs each
time it is called [25]; this makes it computationally expensive. Figure 5.4b
shows a pseudo-code of the KNN algorithm.

Linear Discriminant Analysis (LDA) is a classic classification algo-
rithm that uses linear decision boundary(ies) to build a classifier for unknown
instances. Its closed-form solution4 with no need for hyperparameter tuning
makes it easier to compute and it has demonstrated good performance in
practice [26]. Given an unknown instance x, the probability of x belonging
to a class k of the class feature Y is estimated by:

P (Y = k|X = x) =
P (k)P (x|k)∑k
l=1 P (l)P (x|l)

. (3.19)

However, p(x|y) can be estimated with a Gaussian distribution function
which when substituted leads to a simplified discriminant function for class
k given x defined as:

Dk(x) = x
µk
σ2
− µ2

k

2σ2
+ ln(P (k)), (3.20)

where µk is the mean value of x for the class k and σ2 is the variance across
all inputs x [27]. LDA works with the assumption that the data is normally
distributed and that the variance of all features is equal. It can also be used
for DR by projecting the training data into a linear subspace such that the
separability between classes is maximized [26].

Multilayer Perceptron (MLP) is a type of feedforward artificial neural
network consisting of three layers of nodes; an input layer, output layer5, and
an arbitrary number of hidden layers (Figure 3.2). A full pass of data (epoch)
through the MLP comprises forward and backward passes. In the forward
pass, data is passed from the input layer through the hidden layer(s) to the

4A closed-form solution (expression) is any formula that can be evaluated in a finite
number of standard operations.

5The number of classes in the target feature is the number of nodes in the output layer.
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output layer adjusting the weights of the nodes based on the ground truth.
The backward pass goes in the opposite direction from the output layer to
the input layers to minimize the error of the MLP. The classification model
is built by several epochs of the training data through the MLP after which
it is used to classify unknown instances. MLP is applied in various fields

Figure 3.2: A hypothetical MLP with one input layer, a single hidden layer,
and an output layer (source: [1]).

including speech and image recognition, and natural language processing.
[28] This classifier has the option of regularization which can be seen as
embedded FS however this feature was not used in this work.
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Chapter 4

Methods

To evaluate the performance of FS on classification, we followed a systematic
approach in defining the components of the experiments to be executed as
well as selecting the datasets to be used. These methods are presented in the
following sections.

4.1 Performance Evaluation

In studying the impact of FS on classification, more factors than can be stud-
ied in this work can be analyzed for the FS methods, classifiers, and datasets.
It is therefore important to clearly and methodically define the components
of the experiments as failing to do so can lead to mistakes like unrepresen-
tative workload, erroneous analysis, too complex analysis, etc. The systemic
approach for performance evaluation (Figure 4.1) proposed in [29] was fol-
lowed to avoid common mistakes.
In what follows, we present the details of the ten steps in the systematic
approach to performance evaluation.

1. State Goals and Define the System
The system under performance evaluation consists of the datasets (be-
fore and after FS), the FS methods, and the learning algorithms (Fig-
ure 4.2). The target defined by the subsystem 〈Full Dataset → FS
Method → Filtered Dataset → Learning Algorithm〉 is benchmarked
against the baseline of the system defined as 〈Full Dataset → Learn-
ing Algorithms〉.
In order to answer the research questions stated in section 1.2, the goals
of the experiments conducted are to:
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Figure 4.1: Ten steps of a systematic approach to performance evaluation of
a system.

Figure 4.2: System definition showing components and flow.
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• Measure the performance of the classifiers built in the baseline
and target.

• Measure the execution time (in seconds) of FS on each dataset.

• Measure the model training time (in seconds) of the classifiers in
the baseline and target.

2. Services and Outcomes
The services of the system are delivered by the two processes; the FS
method and the learning algorithm. Depending on the FS method, one
of the first two services are provided:

• Selection of a fixed size of feature subset.

• A ranking of all features by relevance.

• The learning algorithm provides the service of building a classifier
from the dataset.

The outcome from these services are feature subset/ranked features
and a classifier.

3. Metrics
Metrics are the criteria used to evaluate the performance of the system.
The metrics used to evaluate the performance of the defined system
(Figure 4.2) are:

• FS runtime, which is the time taken to derive the feature sub-
set/ranked features.

• Model training runtime change is the ratio of the difference
in time between training the baseline classifier and target classifier
to the training time of the baseline classifier defined as:

Runtime change1 =
Base runtime− Target runtime

Base runtime
. (4.1)

• Classifier accuracy change is the ratio of the difference between
the accuracy of the target classifier and the baseline classifier to
the accuracy of the baseline classifier expressed as:

Accuracy change2 =
Target accuracy −Base accuracy

Base accuracy
. (4.2)

1There is an expected decrease in runtime i.e., Base runtime > Target runtime.
2There is an expected increase in accuracy i.e., Target accuracy > Base accuracy.
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Where accuracy is the fraction of all predictions that were correct;
defined as:

Accuracy =
Correct predictions

All predictions
. (4.3)

4. Parameters
Several characteristics of the system components affect the performance
of the system. These are called parameters and are categorized into
workload and system parameters. The workload parameters are asso-
ciated with the dataset and algorithms and include:

• Dataset parameters

– Number of feature

– Number of instances

– Number of classes

– Dimensionality, which is the feature-instance ratio of a dataset
defined as:

Dimentionality =
Number of features

Number of instances
. (4.4)

– Class balance, this is the distribution of instances amongst the
classes of the target variable.It is measured by the Shannon
entropy which is defined as:

Class balance = −
∑k

i=1
ci
n

log( ci
n

)

log k
, (4.5)

where the dataset has n instances with k classes in the target
variable of size ci. A perfectly balanced dataset with equal
number of instances in each class has a class balance of one
while an extemely unbalanced dataset has a class balance of
zero.

– Class Entropy, this measures the entropy (3.1) of the classes
in the target feature.

– Average feature correlation, is the measure of interdependence
between all features and is quantified by

p =
1

T

k∑
i=1

m−1∑
j=1

m∑
l=j+1

|Pjl|, (4.6)

where Pjl is the Pearson’s correlation coefficient of features j
and l, T is the total number of Pjl’s summed, k is the number
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of classes in the target feature, and m is the number of features
in the dataset. A p value of zero indicates independence of
all features while a value of one indicates high correlation
between features and thus feature redundancy.

• Algorithm parameters

– Number of algorithms

– Features subset size

– Learning algorithm hyper-parameters [30]

While the system parameters are the characteristics of the hardware
used for the system and include among others:

• Processor speed

• RAM/Disk size

• Operating system context switching overhead

5. Factors to Study
The number of parameters controlled in an experiment determines the
workload and the time of the experiment. Considering the limited
time for experimenting, a subset of the parameters must be chosen
to be studied. The five factors; Number of features, Number of in-
stances, Number of classes, Class balance, and Feature subset size were
considered more important and chosen to be studied in this work be-
cause repositories can readily be filtered by them, making data selection
straightforward since the goal is to have representative datasets for the
experiments.

Also, the other workload parameters either depend on the studied fac-
tors (e.g., dimensionality is simply the feature-instance ratio) or were
considered less important; e.g., most FS methods do not factor in the
average correlation of features during FS but rather access features
individually thus it not included in the study.

The system factors were kept fixed as one machine was used for the
whole experiment. The context switch overhead was acknowledged but
not studied. Hence 10 fold cross-validation was employed to ensure re-
sults are as close to accurate as possible. The default learning algorithm
hyper-parameters were used; since the same chosen hyper-parameters
will be used for both baseline and target classifiers, changing the hyper-
parameters is unlikely to affect the relative improvements in training
time and accuracy between the baseline and target classifier derived
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from FS. Also, controlling all parameters for all algorithms would ex-
plode the design space and we would not be able to complete them in
the limited time frame.

6. Evaluation Technique
The studied FS methods and learning algorithms were implemented
in the scikit-feature3 repository and scikit-learn4 library respectively.
The scikit-learn library also provides a metrics library with which the
accuracy of the classification models is measured. The experiments
were done in Python and the time library was used to measure the
runtime of code execution.

7. Workload
This refers to the datasets used in the evaluation of the system. With
the four factors studied being dataset factors and each having two cat-
egories (see Section 4.2), two real-world datasets from OpenML were
selected per 16 possible combinations of these factors, leading to a total
of 32 datasets. Only datasets with no missing values were considered
as candidates to save time in the pre-processing stage in addition to
the potential effect of these missing values on the performance of the
classifier especially in the case that insstances with missing values are
dropped. Lastly, datasets with only numeric values were considered
due to the input constraint by the FS methods studies.

8. Design Experiments
Out of the eight FS methods studied, Gini, RFS, ReliefF, SPEC, and
CFS methods return a ranking of the features in order of relevance while
JMI, MRMR, and CMIM return a subset of the features according to
the specified size. Five possible subset sizes were studied; specifically
(number of features)i, for i ∈ [0.5, 0.6, 0.7, 0.8, 0.9]. This means that
a total of 20 runs (Table 4.1) are required for the eight FS methods. The
four classification algorithms considered in this work require a single
run. Therefore with all 32 datasets, a full factorial experimental design
with 32*20*4 = 2,560 experiments will be used.

9. Analyze and Interpret Data
To derive insights from the results of the experiments Z-test and ANOVA
statistical methods were used to analyse the results (i.e., measured met-
rics). For each of these tests, a null and alternative hypothesis were

3https://github.com/jundongl/scikit-feature
4https://scikit-learn.org/stable
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Feature selection Method Required runs
Gini, RFS, ReliefF, SPEC,CFS 1
JMI, MRMR, CMIM 5
Total 20

Table 4.1: Required number of runs for each feature selection method.

formulated and based on the test result, we either reject or fail to reject
the null hypothesis.

10. Present Results
A combination of tables, bar charts, scatter plots, box plots, and other
visualizations was used to present the conclusions from the analysis of
the results of the experiments.

4.2 Data Selection

Several data repositories provide open data which enables research; OpenML
is one and was used in this work. Considering the limitations of time and
the input constraint of some of the algorithms studied, not all datasets in
OpenML (over 21,000) could be used.
Available datasets were pruned based on the following eligibility criteria:

• Number of features ≤ 1.000

• Number of instances ≤ 10.000

• Number of classes [2,19]

• No missing values

• Numerical types (excluding timestamps)

• Single target variable

After pruning, there were 380 candidate datasets available and the metadata
of these datasets showed a wide range of values for the factors to be studied;
for example, the number of features of the datasets ranged from 2 to 971.
Since not all datasets can be used in the study, it is important to pick a
subset that is a proper representation of these datasets. To achieve this,
each factor in the metadata of the candidate datasets was discretized into
two bins. Although alternatively the factors can be discretized to more than
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two bins, in order to have an experimental design that is achievable within the
available time, we discritized to only two since increasing the number of bins
exponentially increases the full factorial of the experimental design. With two
bins and 4 dataset factors, we had 16(24) possible factor combinations all of
which we need representative datasets. However, some of these combinations
of had as few as three datasets only; increasing the number of bins will result
in more factor combinations some of which will likely have no representative
datasets.

Quantile, uniformed, and clustering discretization methods were explored
on the datasets metadata as is and on the log values (for factors number of
features and number of instances due to the large range of values) while num-
ber of classes were simply classified into binary (two classes) and multiclass
(more than two classes). In what follows, the results from each discretization
method is discussed.

4.2.1 Discretization

Quantile method discretized the input into equally sized bins. The results
of discretization on the values as is and the log values were the same as shown
in Table 4.2.

Factor Bin Number of datasets
0: [27, 383] 187

Number of instances 1: [400, 9.989] 193
0: [2, 12] 187

Number of features 1: [13, 971] 193
0: [0,0385, 0,9877] 188

Class balance 1: [0,9881, 1,0] 192

Table 4.2: Discretization of values of studied factors using the quantile
method.

The result, although balanced in terms of the number of datasets in each
bin, does not reflect the actual distribution of the datasets which is indeed
not uniform as shown in the Figure 4.3.

The uniformed approach returns each bin of the same length. In the
case of discretization of the values as is the result seen in Table 4.3 while
discretizing the log values results in Table 4.4. As with the case of quantile
discretization, the actual distribution of the datasets is not reflected in the
results; leading to factor combinations with no candidate datasets.
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(a) Distribution of number of instances. (b) Distribution of number of features.

(c) Distribution of number of classes. (d) Distribution of class balance.

Figure 4.3: Distribution of values of factors studied in datasets.

Factor Bin Number of datasets
0: [27, 5.000] 338

Number of instances 1: [5.100, 9.989] 42
0: [2, 401] 370

Number of features 1: [501, 971] 10
0: [0,0385, 04899] 45

Class balance 1: [0,5294, 1,0] 335

Table 4.3: Discretization of values of studied factors using the uniformed
method.

Lastly, the clustering discretization method takes into account the
intrinsic distribution of the data values in the creation of bins. Discretizing
the values as is and after log resulted in the bins shown in tables 4.5 and 4.6
respectively.
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Factor Bin Number of datasets
0: [27, 508] 221

Number of instances 1: [45, 971] 159
0: [2, 42] 287

Number of features 1: [501, 971] 93
0: [0,0385, 04899] 45

Class balance 1: [0,5294, 1,0] 335

Table 4.4: Discretization of log values of studied factors using the uniformed
method.

The discretization results from applying clustering on the log values was
used to guide the selection of the datasets from OpenML because it best
describes the distribution of the datasets in the repository and contained
candidates for all 16 (24) combinations of the studied factors.

Factor Bin Number of datasets
0: [27, 2.600] 320

Number of instances 1: [3.107, 9.989] 60
0: [2, 618] 373

Number of features 1: [785, 971] 7
0: [0,0385, 0,8083] 84

Class balance 1: [0,8232, 1,0] 296

Table 4.5: Discretization of values of studied factors using the clustering
method.

After discretization, two datasets were selected randomly for each of the
16 factor combinations. To make the datasets as dissimilar as possible, data
sets were chosen from each side of the diagonal after visualizing the feature
- instance in the combination as shown in Figure 4.4. The final 32 datasets
used in this study are outlined in Table 4.7.
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Factor Bin Number of datasets
0: [27, 846] 246

Number of instances 1: [937, 9.989] 134
0: [2, 16] 205

Number of features 1: [19, 971] 175
0: [0,0385, 0,8083] 84

Class balance 1: [0,8232, 1,0] 296

Table 4.6: Discretization of log values of studied factors using the clustering
method.

Figure 4.4: Plot of datasets with Class(0), Features(0), Instances(1), and
Class balance(1)
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Factors1 Dataset Classes Features Instances Class Balance
0000 confidence 2 4 72 0.055
0000 blood-transfusion-service-center 2 5 748 0.0067
0001 fri c3 250 10 2 11 250 0.9954
0001 disclosure z 2 4 662 0.9981
0010 page-blocks 2 11 5473 0.4763
0010 wilt 2 6 4839 0.3029
0011 delta elevators 2 7 9517 1
0011 stock 2 10 950 0.9995
0100 synthetic control 2 61 600 0.6500
0100 ar4 2 30 107 0.6950
0101 isolet 2 618 600 1
0101 fri c4 250 100 2 101 250 0.9896
0110 mfeat-zernike 2 48 2000 0.4690
0110 clean2 2 169 6598 0.6201
0111 gina 2 971 3153 0.9998
0111 philippine 2 309 5832 1
1000 Engine1 3 6 383 0.5905
1000 heart-h 5 14 294 0.7065
1001 LED-display-domain-7digit 10 8 500 0.9971
1001 heart-long-beach 5 14 200 0.9365
1010 wine-quality-white 7 12 4898 0.6632
1010 volcanoes-d3 5 4 9285 0.1761
1011 JapaneseVowels 9 15 9961 0.9881
1011 wall-robot-navigation 4 5 5456 0.8573
1100 meta all.arff 6 63 71 0.6913
1100 meta ensembles.arff 4 63 74 0.7719
1101 synthetic control 6 61 600 1
1101 robot-failures-lp3 4 91 47 0.9102
1110 Indian pines 8 221 9144 0.6941
1110 cardiotocography 3 36 2126 0.614
1111 cnae-9 9 857 1080 1
1111 texture 11 41 5500 1

1Factors is a 4 digit representation of the studied parameters which stands for Class, Fea-
ture, Instances, and Class balance sequentially.

Table 4.7: Experimental datasets and their properties.
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Chapter 5

Evaluation

To evaluate the FS runtime, model training runtime change, and classifier
accuracy change of the system (Figure 4.2), the runtime for FS on each
dataset was measured during the experiments as well as the training time
and accuracy for the base and target classifiers built. We describe the ex-
perimental setup and execution in sections 5.1 and 5.2 respectively followed
by the results of the experiment and a discussion in sections 5.3 and 5.4
respectively.

5.1 Experimental Setup

All experiments were executed on a Dell XPS laptop with an Intel Core i7-
1065G7 processor, 16GB RAM, and 512 GB storage. The experiments were
executed serially while also limiting other processes on the machine.
Although 32 datasets were selected for the experiments, 31 datasets were
used to evaluate the CFS method. Due to its very high computational cost,
it was unable to finish FS on the largest dataset which had 971 features, 3153
instances, and 2 classes after 9 days.

5.2 Execution

To begin, all features of the dataset were discretized using the uniformed dis-
cretization method; setting the number of bins to q = max{min{n

3
, 10}, 2}

where n is the number of instances in the dataset [16]. Discretizing the fea-
tures is done to meet the input constraint of most FS methods which work
with only discrete features.
Next, the dataset was split into ten partitions; with the training data com-
prising nine partitions and the test data, one partition. After this split, FS
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was done on the training data; the entire training data was used to build
the base classifier while the training data containing only the selected sub-
set of features were used to build the target classifier. Both classifiers were
tested on the test data and the accuracy was measured. The FS, model
building, and testing are repeated ten times for each dataset (i.e., 10-fold
cross-validation); each time a new partition is used as the test data while the
remaining nine are used as the training data.
Using 10-fold validation leads to results that are more robust against over-
fitting, bias, and variation in runtime. At the end of each of the 10-fold
execution, the median runtime and average accuracy were recorded. The
median was used in the runtime for robustness against possible variations
due to context switching or other sources.

Due to the poor stability of some FS methods, different features might be
selected with a change of data samples. Hence, FS and model building were
executed together for each fold to ensure that the performance evaluation is
done on the same data for both FS and classification. Figure 5.1 gives an
overview of the execution described from discretization to measure record-
ing. The Python source code for the experiments are publicly available on
https://github.com/F-U-Njoku/Thesis-BDMA2021-Njoku.

Figure 5.1: Experiment design, components, and flow.
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5.3 Results

5.3.1 Runtime

The runtime of an FS method is affected by various factors and at differing
proportions. Therefore, some may be influenced more by the number of
features while others will be affected more by the number of instances and
so on. The theoretical runtime of the studied FS methods are presented in
Table 5.1, this shows the factors which affect runtime for each FS method,
where S, m, c, n, and t are the feature subset size, number of featues, number
of classes, number of instances, and min(m,n) respectively.

Algorithm Time complexity (theoretical) Source
ReliefF O(n2.m) [31]
MRMR O(‖S‖.m) [32]
CMIM O(‖S‖.m) [19]
SPEC O(n2.m) [23]
Gini O(m.c) [6]
RFS O(t.(3n2m+m2n+mnc+m)) [6]
JMI O(‖S‖.m) [6]

CFS
O(n((m2 −m)/2)+
(m2 −m)/2 + ‖S‖+ (‖S‖2 − ‖S‖)/2)

[33]

Table 5.1: Theoretical runtime complexities of FS methods.

CMIM, JMI, and MRMR all share the same theoretical runtime with the
number of features and the subset size being the factors that predominantly
influence their runtime. The runtime of SPEC and ReliefF is controlled by
the number of instances and features with the number of instances having a
higher impact on the runtime. RFS and CSF have longer runtimes due to the
matrix multiplication operations that are required while Gini has the lowest
runtime and is influenced mainly by the number of features then classes.

Figure 5.4 shows the recorded runtime of CMIM, JMI, MRMR, SPEC,
ReliefF, and SPEC recorded from the experiments against the theoretical
runtime presented in Table 5.1. This is to confirm that the implementations
are aligned to the theory and ensure that results of the experiment are as
expected. The theoretical-actual comparison of the runtime of other methods
can be found in the appendix.

For learning algorithms like LDA that build classifiers after training, FS
reduces the model training runtime as expected. There is over 50% training
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(a) CMIM, JMI, MRMR runtimes.

(b) ReliefF, SPEC runtimes.

Figure 5.2: Theoritical VS actual FS runtime.

time reduction for LDA when the subset size is set to (number of features)0.5

(Figure 5.4a). However, KNN as reported is a lazy algorithm meaning it does
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(a) LDA training time improvement.

(b) KNN training time improvement.

Figure 5.3: The improvement in the training time of LDA and KNN classifers
for varrying sizes of selected feature subset.
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not build a classifier at the point of training, rather it stores useful metadata
that is used at the point of classification. Not following the pattern of other
algorithms, KNN appeared to give the best training time improvement with
a subset size of (number of features)0.8 (Figure 5.4b).

5.3.2 Statistical Analysis

To derive insights from the measures recorded during the experiments, a
number of statistical tests were conducted which are presented in this section.
All statistical tests were performed at an alpha level of 0.05.

One of the objectives for FS is to build models with improved performance
that generalize the data better. Since FS is applicable to both binary and
multiclass classifications, we expect an improvement in the accuracy of the
classifiers after FS for both binary and multiclass classifications. Hence, we
will be investigating the effect of classification type on the accuracy change
obtained after FS. This leads us to the following hypothesis:
H0: The classification type does not influence the change in accuracy derived
from applying FS.
H1: The classification type influences the change in accuracy derived from
applying FS.
By visualization, we see a difference in the accuracy change obtained for
binary and multiclass classifications (Figure 5.4) and this is irrespective of
the FS method used (Figure 5.5).

To test the aforementioned hypothesis, we consider two independent groups.
The binary and multiclass groups, each made up of the change in accuracy for
16 datasets applying the eight FS methods and building four base and target
classifiers (512 result points). Testing the priori hypotheses using Z-test, the
results show the impact of FS on binary classification in terms of accuracy
change (µ = 0.0058, σ = 0.0506, N = 508) was significantly higher than on
multiclass classification (µ = −0.0627, σ = 0.1483, N = 512), Z = 9.2589,
p < 0.001. Hence, going forward, the results from binary and multiclass
classification were analysed separately.

Besides the type of classification, the classification algorithms differ and
thus could interact with the FS methods to give different results in terms of
change in accuracy. Hence, the changes in accuracy for binary classification
were subjected to a two-way analysis of variance with FS methods having
eight (CFS, CMIM, Gini, JMI, MRMR, ReliefF, RFS, SPEC) levels and
classifiers having four (NB, KNN, LDA, MLP). Both effects were found to
be statistically significant. The main effect of the FS method yielded an
F ratio of F(7, 354) = 3.5833, p < 0.001 indicating that the mean change
in accuracy achieved by applying each FS method differed significantly. The
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(a) Binary accuracy improvement.

(b) Multiclass accuracy improvement.

Figure 5.4: The improvement in the accuracy of LDA classifer for varrying
sizes of selected feature subset.
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Figure 5.5: The improvement in the accuracy of all classifers for varrying FS
methods.

main effect of the classification algorithm was statistically significant yielding
an F ratio of F(2, 354) = 3.33, p = 0.04. The interaction (FS method and
classifier) effect was non-significant, F(14, 354) = 0.2802, p > 0.05.

The same two-way analysis of variance was done for multiclass classi-
fication, with FS methods having eight (CFS, CMIM, Gini, JMI, MRMR,
ReliefF, RFS, SPEC) levels and classifiers having four (NB, KNN, LDA,
MLP). The main effect of the classification algorithm was statistically sig-
nificant with an F ratio of F(2, 357) = 7.69 and p < 0.001 while the main
effect of the FS method was non-significant with an F ratio of F(7, 357) =
1.0402 and p > 0.05. The interaction (FS method and classifier) effect was
also non-significant with F(14, 354) = 0.2802, p > 0.05.

In order to propose a guideline for choosing FS methods, given certain
characteristics of a dataset, the FS method which yielded the highest accu-
racy change for each dataset-classifier pair was assigned as the preferred FS
method for that pair. From this, we build a decision tree (Figure 5.6) to
guide the choice of a FS method given the number of features, instances,
classes, and class balance.
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(a) Tree for MLP binary classifier.

(b) Tree for MLP multiclass classifier.

Figure 5.6: Decision trees showing the proposed FS method given the number
of instances, features, and class balance.

5.4 Discussion

There is an expectation for improved runtime and accuracy after applying FS
on a dataset. However, the runtime of most FS methods become an overhead
causing the total time needed for FS and model building to increase beyond
the time it takes to build the model without FS. Of the eight FS methods
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studied, CFS had the highest runtime for feature selection taking an average
of 4810 seconds for all datasets; this is due to the multiple computations of
pairwise correlations between features required by this method. Second to
CFS was RSF which took an average of 867 seconds. The other methods
took less than 50 seconds on average with Gini being the most efficient in
runtime taking less than a second on average for FS. The advantage however
is that when FS is done once on a dataset the selected features can be used
across various learning algorithms one of which can then be selected for use.
The runtime of these FS methods is influenced by various factors. CFS and
Gini are primarily influenced by the number of features, CMIM, JMI, and
MRMR by the size of the feature subset and number of features, ReliefF and
SPEC are more influenced by the number of instances in the dataset, while
RFS by both the number of features and instances.

After FS, the improvement of accuracy of the target classifiers differs
for binary and multiclass classifications. With binary classification, there is
an average improvement of the accuracy while for multiclass classification,
reducing the number of features generally leads to a decrease in accuracy.
CMIM and CFS methods, however, yielded the best result for multiclass
classification; giving the least decrease. Therefore, although FS generally
results in a decrease in multiclass classification accuracy, in the case that the
dataset is too large and FS is indeed needed, CMIM and CFS methods are
most recommended.

With FS selection, there is no one method that is optimal for all cases as
for various factors of a dataset, a different method might be used. From the
results of the statistical tests, the classification type and algorithm signifi-
cantly affect the change in accuracy obtained after FS. Therefore, for each
classification algorithm, a guideline is proposed based on the number of fea-
tures, instances, and class balance for binary and multiclass classifications.
The SPEC method was not recommended for any case. Although it is ap-
plicable to both supervised and unsupervised learning tasks, because this
method of FS is not done using the target feature, the selected features are
less optimal than those selected by other methods. CFS on the other hand
yielded good results in many cases because it uses the correlation of features
to the target feature as well as the pairwise correlation of features for FS.

From the decision trees built, we propose the guidelines for selecting FS
methods for binary classification (Table 5.2) and multiclass classification (Ta-
ble 5.3) with the objective of maximizing change in classification accuracy.
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Classifier Features Instances Class Balance FS method
0 0 0 JMI
0 0 1 CFS
0 1 0 CFS
0 1 1 JMI
1 0 0 GINI
1 0 1 CFS
1 1 0 CFS

NB 1 1 1 MRMR
0 0 0 CMIM
0 0 1 RFS
0 1 0 RFS
0 1 1 CMIM
1 0 0 ReliefF
1 0 1 CFS
1 1 0 CFS

KNN 1 1 1 JMI
0 0 0 CFS
0 0 1 CFS
0 1 0 Gini
0 1 1 CMIM
1 0 0 CFS
1 0 1 Gini
1 1 0 CMIM

LDA 1 1 1 Gini
0 0 0 MRMR
0 0 1 CFS
0 1 0 CMIM
0 1 1 CFS
1 0 0 Gini
1 0 1 CFS
1 1 0 MRMR

MLP 1 1 1 CFS

Table 5.2: Proposed FS method selection guideline for binary classification.
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Classifier Features Instances Class Balance FS method
0 0 0 CMIM
0 0 1 CFS
0 1 0 CMIM
0 1 1 CMIM
1 0 0 MRMR
1 0 1 CFS
1 1 0 MRMR

NB 1 1 1 CMIM
0 0 0 CFS
0 0 1 CFS
0 1 0 CMIM
0 1 1 JMI
1 0 0 CMIM
1 0 1 CFS
1 1 0 MRMR

KNN 1 1 1 CMIM
0 0 0 Gini
0 0 1 CFS
0 1 0 RFS
0 1 1 CMIM
1 0 0 CFS
1 0 1 CMIM
1 1 0 ReliefF

LDA 1 1 1 CMIM
0 0 0 Gini
0 0 1 CFS
0 1 0 JMI
0 1 1 JMI
1 0 0 Gini
1 0 1 CMIM
1 1 0 CMIM

MLP 1 1 1 CMIM

Table 5.3: Proposed FS method selection guideline for multiclass classifica-
tion.
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Chapter 6

Conclusion

In this thesis, we studied the impact of eight filter FS methods on four
classification algorithms using 32 real-world datasets. We found that on
the average, FS improved the accuracy for classifiers of binary classification,
however, for multiclass classification, FS decreased the performance of the
classifiers.

With regards to FS runtime, the Gini FS method was the most efficient
with an average runtime of less than a second making it the recommended FS
method when minimizing runtime is the objective. However, when the goal
is to improve classifier performance, none of the studied FS methods gives
the best performance improvement for all classifiers and datasets. Hence,
from the results of the experiments, we proposed guidelines for selecting
FS methods for binary and multiclass classification for the four classification
algorithms studied given the number of features, instances, and class balance.

Although FS on multiclass classification on the average led to a degra-
dation in classifier performance, we observed that CFS and CMIM methods
gave the best result in that they yielded the least degradation in accuracy
and led to improvement in some cases.

6.1 Future Work

FS can be applied to supervised and unsupervised tasks which implies that
this work can be extended to regression and clustering tasks. It can also be
extended to study other dataset factors with more bins using multiple repos-
itories to facilitate finding representative datasets. For the benchmarking of
FS methods, there is a lack of standardization and this poses a challenge for
comparing already existing benchmarks of FS methods. Having a standard
FS benchmark will be useful for expanding previous studies which at the
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moment are not unified as there are numerous defined benchmarks. New FS
methods are still being proposed and since the existing methods do not per-
form well for multiclass classification, proposing methods that close this gap
will be highly beneficial. Lastly, several existing methods have polynomial
runtimes and do not scale efficiently, more efficient implementation of these
methods aiming for linear or sub-linear time complexity is highly needed
especially with Big Data being ubiquitous.
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Appendix A

Theoritical-Actual Runtime
Comparison

The comparison of expected runtime of the FS methods to the actual run-
time derived from experimenting was done for all studied FS methods. In
Figure A.1, the results of the comparison not reported in Section 5.3 are
presented. The conclusion is the same i.e., the actuals results follow the
expected runtime.

Figure A.1: Theoritical-actual runtime comparison for Gini, CFS, and RFS
FS methods.
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Appendix B

Decision Trees for Proposed
Guidelines

To propose guidelines for choosing FS methods, decision trees maximizing
accuracy change after FS were built for each classifier. Figure B.1 shows the
decision trees for KNN, LDA, and NB classifiers.

Figure B.1: Decision Trees for binary and multiclass cases.
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Appendix C

Training Time Improvement

Applying FS to a dataset reduces the time it takes to train a model on it.
Figure C.1 shows the average training time improvement for NB and MLP
classifiers after applying the eight FS methods studied on 32 datasets.

Figure C.1: Training time improvement for NB and MLP classifiers.
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Appendix D

Accuracy Change

The accuracy of classifiers change depending on the classification task and FS
methods used. Figures D.1 and D.2 show the average change in accuracy for
NB, KNN, and MLP classifiers after applying the eight FS methods studied
on 32 datasets.

Figure D.1: Accuracy change for NB and KNN classifiers.
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Figure D.2: Accuracy change for MLP classifier.
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Appendix E

Scalability

In addition to the experiments reported in Section 5.3, the scalability of
CMIM, Gini, JMI, MRMR, ReliefF and SPEC were tested on a synthetic
dataset which had 1,000 features and 10,000 instances. The number of fea-
tures and instances were fixed at 1,000 and 10,000 for the feature and instance
scalability tests respectively.

Figure E.1: Feature and instance scalabilty of FS methods.
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