
 Eindhoven University of Technology

MASTER

Detecting Rectangular Hotspots in Offline and Streaming Models

Chen, Yuxin

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/ee186f9e-ba74-4ed3-9eb0-82b0c617e8fa

Detecting Rectangular
Hotspots in Offline and

Streaming Models
Master Thesis

Yuxin Chen

Department of Mathematics and Computer Science
Algorithms, Geometry and Applications Group

Supervisors:
Morteza Monemizadeh

Eindhoven, November, 2021

Abstract

Hotspots are parts of data that are denser (or hotter) than their surrounding sparse (or cool) neighborhoods. In
real world scenarios when data is constantly changing, hotspots form, fade and change rapidly. Often retail
companies, ride hailing services, financial services and airlines are interested in identifying and tracking
hotspots of their data. In particular, they study hotspots to classify and forecast significant changes in
their customer shopping patterns. This in turn helps them to adjust their production and marketing plans
accordingly.

We model hotspots as a set of points that are generated from a mixture of uniformly distributed (axis-
alinged) rectangles and a background noise (which could be a significant portion of data) and our goal
is to efficiently and approximately find these rectangular hotspots. We propose two efficient algorithms
for detecting hotspots. Indeed, we test these algorithms on synthetic as well as real datasets and we show
that the precision, recall and the F-score of these algorithms are very high (often, above 75%). Our first
algorithm is based on random sampling pairs of points and our second algorithm is an extension of the
classical DBScan algorithm [13]. We show that our former algorithm is very fast, but the latter one has
better performance.

We also apply our algorithms in the streaming setting where points are given in a streaming fashion and
we are interested in detecting hotspots that are forming, fading and changing dynamically.

ii Detecting Rectangular Hotspots in Offline and Streaming Models

Contents

Contents iii

List of Figures iv

List of algorithms vi

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Related Works . 5

2 Preliminaries 6
2.1 Centroid Based Clustering . 6

2.1.1 k-means . 6
2.1.2 k-means++ . 7

2.2 Density Based Clustering . 8
2.2.1 DBScan . 8
2.2.2 Boxgraph . 9

2.3 Sliding Window . 15
2.4 F-score . 15
2.5 Kernel Density Estimate . 16

3 Proposed Algorithms 19
3.1 Random Sampling Based Algorithm . 19
3.2 Adapted DBScan algorithm . 21

3.2.1 Adapted DBScan in Offline Model . 21
3.2.2 Adapted DBScan in sliding window model . 24

4 Experiments and Evaluation 25
4.1 Setting . 25
4.2 Dataset . 25
4.3 Parameter Selection . 27

4.3.1 Rectangle Dataset . 27
4.3.2 Taxi dataset . 29

4.4 Offline models . 34
4.5 Sliding Window Model . 37

5 Conclusions 47

Bibliography 49

Detecting Rectangular Hotspots in Offline and Streaming Models iii

List of Figures

1.1 Illustration of the mixture of hotspots and background noise. Hotspot points are in blue and
the noise points are in gray. 2

1.2 Illustration of the gerrymandering phenomenon in the US election [16]. From left to right,
the first plot shows the actual votes, the second one shows a fair division of electoral districts,
and the third one divides the electoral districts to steal the election from the blue party. . . 3

1.3 Illustration of Maxwell’s demon, from https://www.sciencenews.org/article/scientists-peek-
inside-mind-maxwells-demon. A demon controls a small massless door between two
chambers of gas. As individual gas molecules (or atoms) approach the door, the demon
quickly opens and closes the door to allow only fast-moving molecules to pass through
in one direction, and only slow-moving molecules to pass through in the other. Because
the kinetic temperature of a gas depends on the velocities of its constituent molecules, the
demon’s actions cause one chamber to warm up and the other to cool down. This would
decrease the total entropy of the two gases, without applying any work, thereby violating
the second law of thermodynamics. 4

2.1 Illustrations of k-means clustering when the initialization of the centroids is random, results
could be different. Clusters are in different colors, red points are the centroids. 6

2.2 Directly reachable and reachable. 9
2.3 The points are divided into boxes in the DBScan algorithm using box graphs. 11
2.4 Illustration of sliding window. 15
2.5 To show F-score in a direct way, it can be visualized. The points in green and red are the

actual positive points while the points in purple and blue are the actual negative points.
Precision can be represented by the red points divided by red and blue points, recall can be
represented by the red points divided by red and green points. 16

2.6 Difference of hitsogram and KDE, from [8]. Data points used are {−2.1,−1.3,−0.4, 1.9, 5.1, 6.2},
which are marked on the x-axis. 17

2.7 An example of 2-dimension KDE for a normally distributed dataset, and the data points are
in white. 18

3.1 Illustration of the minimum rectangle constructed by two points as the corner points. . . . 20

4.1 Different spatial relations that rectangles have. 26
4.2 New York taxi dataset, this figure shows pickup data of January 10th, 2015, from 7 am to 8

am. Two rectangles are planted as hotspots, which include 3000 points with a half of the
chance to be in each of rectangular hotspots. Hotspot points are shown in blue while the
noise/non-hotspot points are in gray. 26

4.3 RSB samples different z pairs of points depending on k, comparisons are made between
them and measured by F-score, precision and recall. We run the algorithm 100 times with
the same parameters to obtain density functions. The z of each curve is described in the
caption. 27

4.4 RSB samples different z pair of points depending on k, run this algorithm 100 times with
the same parameters, the density function of running time of each is shown together. . . . 28

iv Detecting Rectangular Hotspots in Offline and Streaming Models

LIST OF FIGURES

4.5 The density functions for choosing the minimum area parameter on rectangle set shown in
Figure 4.1, measured by F-score, precision, and recall. Each density function curves are
obtained by running RSB algorithm 100 times with the same parameters. 28

4.6 The density function of F-score for choosing the minimum area parameter on the rectangle
dataset and the taxi dataset, measured by running time. 29

4.7 Using the rectangle dataset, and set k = 3, z = 10 · k = 30, Smin = 1, the relation between
overlapping rate and F-score is shown. The density functions are attained by running the
RSB with the parameters mentioned 100 times. 30

4.8 Using the rectangle dataset, and set k = 3, z = 10 ·k = 30, Smin = 1, the density functions
of running time of different maximum overlapping rate are shown. They are attained by
running the RSB with the parameters mentioned 100 times. 30

4.9 The F-score and running time curves of adapted DBScan on the rectangle dataset with
different S(D)

min. The maximum overlapping rate using here is 1. 30
4.10 The F-score and running time curves of adapted DBScan on the rectangle dataset with

different β(D). The minimum area using here is 1. 31
4.11 KDE plotting for choosing the minimum area parameter on New York taxi dataset, measured

by F-score, precision, and recall. 31
4.12 Using data from 7 a.m. to 8 a.m. on Jan. 10th, 2015, the density functions of F-score and

precison, recall are shown. 32
4.13 Using data from 7 a.m. to 8 a.m. on Jan. 10th, 2015, the density function of running time of

different maximum overlapping rate is shown. 32
4.14 Comparison between different value of minimum area measured by F-score and running time. 33
4.15 Comparison between different value of maximum overlapping rate measured by F-score

and running time. 33
4.16 Comparison between k-means++ algorithm, adapted DBScan algorithm, RSB algorithm. . 34
4.17 The density and time cost contribution of adapted DBScan algorithm and RSB algorithm. . 35
4.18 Comparison between k-means++ algorithm, adapted DBScan algorithm, RSB algorithm. . 36
4.19 The F-score and running time of data using adapted DBScan and RSB on the taxi dataset. 36
4.20 Running time for three algorithms with different number of points. 37
4.21 The F-score of data using adapted DBScan in sliding window. Sliding window moves every

30 minutes, the window size is one hour. Parameters are only updated at the beginning and
it does not change from then on. 38

4.22 The F-score of data using adapted DBScan in sliding window with updating ε and MinPts.
Sliding window moves every 30 minutes, the window size is one hour. 39

4.23 The F-score of data on Christmas, 2015 using adapted DBScan in sliding window with
updating ε andMinpts. Sliding window moves every 30 minutes, the window size is one
hour. 40

4.24 Update parameters at every point, the F-score of data on Christmas, 2015 using adapted
DBScan in sliding window is much smoother. 41

4.25 Using dynmaic planted rectangle dataset on the taxi dataset on Christmas, 2015, the compar-
ison measured by F-score is shown. 42

4.26 Using dynmaic planted rectangle dataset on the taxi dataset. The number of hotspot in the
dataset here is onely one. In this sliding window, data is from 8 p.m. to 9 p.m.on Christmas,
2015. A 2-dimension KDE is shown. 43

4.27 Using dynmaic planted rectangle dataset on the taxi dataset. The number of hotspot in the
dataset here is two. In this sliding window, data is from 8 p.m. to 9 p.m.on Christmas, 2015.
A 2-dimension KDE is shown. 44

4.28 Using dynmaic planted rectangle dataset on the taxi dataset. The number of hotspot in the
dataset here is three. In this sliding window, data is from 8 p.m. to 9 p.m.on Christmas,
2015. A 2-dimension KDE is shown. 45

4.29 Using data on Saturday, January 10th, 2015, without the updates. Red rectangles are the
predicted rectangular hotspots, and the black rectangles are the generated hotspots. 46

Detecting Rectangular Hotspots in Offline and Streaming Models v

List of Algorithms

1 KMEANS(k, P) . 7
2 CENTROIDINITIALIZATION(k, P) . 8
3 KMEANSPLUSPLUS(k, P) . 8
4 COMPUTESTRIPS(ε, P) . 9
5 COMPUTEBOXES(ε,L) . 10
6 COMPUTEBOXNEIGHBORS(ε,B) . 12
7 IDENTIFYCOREPOINTS(ε,MinPts,B) . 13
8 COMPUTECLUSTERS(ε,B) . 13
9 ASSIGNBORDERPOINTS(ε,B) . 14
10 DBSCANBOXGRAPHS(P, ε,MinPts) . 14
11 RandomSamplingBasedClustering(P, z, k, β) . 21
12 FINDPOINTSINRECTS(RECTS, P) . 22
13 ADAPTEDDBSCAN(E ,MP, Smin, β, P) . 23

vi Detecting Rectangular Hotspots in Offline and Streaming Models

Chapter 1

Introduction

1.1 Motivation and Problem Statement
A common scenario in cloud computing1 and streaming2 is that there is a big network of small devices
sending their current state (such as their position in terms of latitude and longitude, battery charge level,
and so on) to the cloud. Servers in the cloud analyze the information that is gathered from all devices and
inform devices what they should do next. Any sudden change in a big set of devices could potentially
be interesting. As an example, let us see how ride-hailing services such as Uber and Lyft operate say in
Manhattan New York3. Uber cars and cabs keep sending their locations (latitude and longitude), pick-up
and drop-off dates/times, pick-up and drop-off locations to Uber servers. The servers continuously monitor
these incoming data and if a large set of ride requests coming from somewhere in Manhattan inform Uber
cars to drive to nearby locations in order to have a higher chance of receiving a request.

As an example suppose that many soccer fans are watching World cup final 2018 at sports bars. One
can guess that French and Croatian restaurants and bars4 in New York were packed watching the final and
right after the match, fans would like to leave bars and take Uber and Lyft cars and cabs going back home.
Soon there will be few hotspots around these bars and Uber and Lyft services want to provide services as
fast as they can. Ride-hailing services monitor the number of requests that are coming from these bars and
detect the surrounding areas of these hotspots and inform drivers to drive and wait around those hotspots. In
reality, small hot areas of people form and then they get cooler as fans start moving to neighbor blocks since
they think they have a better chance of getting a ride if they walk a few blocks. All these things happen in a
very short amount of time.

Almost the same scenario can happen in many real-life phenomena such as

• when a computer crashes and this failure5 spreads out across the whole network [22],

• traffic congestion after an accident is spreading to the surrounding streets, sensors of cars [18] that are
in the vicinity, and of that traffic starts sending data to servers in the cloud, or

• when a large portion of the population of a city subscribes to a new service that a competitor retail
company67 provides or unsubscribe an old service that a retail company provides.

In fact, there is a study related to analyzing the hotspot cases mentioned above, which is on the real-time
hotspot detection at Amazon Kinesis Analytics8. Amazon Kinesis is a software that provides streaming
algorithms to aggregate statistics of data that is given in a streaming fashion. It makes it easier for users

1https://aws.amazon.com/
2https://aws.amazon.com/kinesis/
3http://toddwschneider.com/posts/analyzing-1-1-billion-nyc-taxi-and-uber-trips-with-a-vengeance/
4https://www.amny.com/things-to-do/world-cup-final-viewing-parties-nyc-1.19767224
5https://en.wikipedia.org/wiki/Cascading_failure
6https://www.retaildive.com/news/how-amazon-and-walmarts-head-to-head-competition-is-changing-retail/595762/
7https://www.infoentrepreneurs.org/en/guides/understand-your-competitors/
8https://aws.amazon.com/blogs/aws/real-time-hotspot-detection-in-amazon-kinesis-analytics/

Detecting Rectangular Hotspots in Offline and Streaming Models 1

CHAPTER 1. INTRODUCTION

Figure 1.1: Illustration of the mixture of hotspots and background noise. Hotspot points are in blue and the
noise points are in gray.

to write SQL queries with less domain knowledge to derive information from data. It is able to detect the
subsection of data that needs attention right in time.

In all these scenarios, the big question is how to find areas of hotspots and how fast we can detect that
new hotspots are forming or old hotspots are fading, shrinking or expanding. We model the hotspot problem
as a mixture of hyper-rectangular regions that are endowed with uniform distributions and this mixture is
mixed with a noise which is itself a distribution that is defined for the whole space Rd. Our goal is to extract
the hotspots (approximately) when the background noise could be a big portion of this mixture. An example
of it could be depicted by the rectangle dataset in Figure 1.1.

Avoding Gerrymandering Phenomenon. One may think that hotspots can have arbitrary shapes and so,
it may be hard to detect them. Although this is a fair argument, we think due to the following reasons,
reporting simple-shape hotspots is worth exploring.

• Hotspots that are basic geometric plane shapes such as circle, triangle, rectangle, rhombus, square and
trapezoid are easy to explain and interpret.

• Simple-shape hotspots can avoid overfitting problem9. Complex hotspots often correspond too closely
to a particular set of data, and may therefore fail to fit additional data or predict future observations
reliably.

• In geographical maps, often residence blocks/neighborhoods or streets are simple shapes such as a
rectangle or a square.

Therefore, we think avoiding the gerrymandering phenomenon is a good way to handle hotspots. The
gerrymandering phenomenon– drawing political boundaries to give your party a numeric advantage over
an opposing party– is a classic example to explain an unfair election. In this phenomenon, one (arguably
in an unfair manner) changes the result of an election to the opposite by setting boundaries of electoral
districts into a more complex way. For example, two subgraphs on the left in Figure 1.2 depicted that the
blue party will win the election, by either the votes in total or separating the electoral districts evenly in
a rectangular shape. Nevertheless, the third case in Figure 1.2 provides a different means to divide the
electoral districts in order to make the red party win, which means the minority wins. The same situation
could happen when detecting hotspots, when the blue party represents the correct hotspot points and the red
ones are the non-hotspot points, shapes of high complexity will end up in a case like the third subgraph in
Figure 1.2, a wrong prediction of hotspots. The above case tells that shapes of simple complexity provide
results that can explain a phenomenon better and hopefully better handle the overfitting problem10. To this

9https://en.wikipedia.org/wiki/Overfitting
10https://en.wikipedia.org/wiki/Overfitting

2 Detecting Rectangular Hotspots in Offline and Streaming Models

CHAPTER 1. INTRODUCTION

Figure 1.2: Illustration of the gerrymandering phenomenon in the US election [16]. From left to right, the
first plot shows the actual votes, the second one shows a fair division of electoral districts, and the third one
divides the electoral districts to steal the election from the blue party.

end, in this thesis, we focus on detecting hotspots that are rectangles and we think these types of hotspots
can resemble residence blocks or streets in a geographical map.

Hotspot Definition. More formally, for a given parameter k ∈ N, let D = w1µ(H1) + · · ·+wkµ(Hk) +
wk+1µ(N) be a mixture of a set of axis-aligned rectangular hotspots H1, . . . , Hk ⊆ N and a background
noise N ⊆ Rd that is also a rectangle. Here, w1, . . . , wk+1 are the mixing weights with

∑k+1
i=1 wi = 1

and k is a natural number. We denote by vol(H) the volume of a rectangle H ⊆ Rd, which is area in the
two-dimension case. In the d-dimensional Euclidean space Rd a rectangle is in fact a hyper-rectangle, but
abusing the notations, we use the word rectangle for hyper-rectangles even in Rd.

Intuitively, when we think of hotspots of data, we think of regions of data that are denser and much
smaller than their sparser and bigger surrounding neighborhoods. Also, hotspots shall not cover whole
data, otherwise, there is no point of reporting hotspots. Moreover, hotspots should not completely overlap,
otherwise it will be very hard (if not impossible) to detect them separately.

We define hotspots as multi-dimensional heavy hitters of data as follows.

Definition 1 ((α,β)-Hotspot). Let 0 < α,β ≤ 1. Let D = w1µ(H1) + · · ·+wkµ(Hk) +wk+1µ(N) be
a mixture of a set of axis-aligned rectangular hotspots H1, . . . , Hk ⊆ N and a background noise N ⊆ Rd
that is also a rectangle. We say Hi is an (α,β)-hotspot for the mixture D if

1. Dense Enough: wi ≥ α, and

2. Not Completely Overlapped: for each two α-hotspots Hi and Hj we have vol(Hi) ∩ vol(Hj) ≤
β ·min(vol(Hi), vol(Hj)).

Observe that there are at most min(k, 1
α
) hotspots for a mixture D. We should mention that we do not

try to optimize the parameters of Definition 1 as the focus of this thesis is in defining and capturing hotspot
formations as a real-life phenomenon. To some extend the dynamic scenario that we think can capture and
explain hotspot forming and fading is based on Maxwell’s demon 11.

After defining the (α,β)-Hotspot, we next define the density of a rectangular region. This will help us
later once we develop our algorithm, to rank a set of computed candidate rectangles and decide which one
could be a potential hotspot.

Definition 2 (Density of a rectangle). Let R ⊆ R2 be an arbitrary rectangle. Let n(R) = |R
⋂
P| denote the

number of points covered in rectangle R. The area of a rectangle is computed by its width multiplied by its

11https://www.sciencenews.org/article/scientists-peek-inside-mind-maxwells-demon

Detecting Rectangular Hotspots in Offline and Streaming Models 3

CHAPTER 1. INTRODUCTION

Figure 1.3: Illustration of Maxwell’s demon, from https://www.sciencenews.org/article/scientists-peek-
inside-mind-maxwells-demon. A demon controls a small massless door between two chambers of gas. As
individual gas molecules (or atoms) approach the door, the demon quickly opens and closes the door to
allow only fast-moving molecules to pass through in one direction, and only slow-moving molecules to pass
through in the other. Because the kinetic temperature of a gas depends on the velocities of its constituent
molecules, the demon’s actions cause one chamber to warm up and the other to cool down. This would
decrease the total entropy of the two gases, without applying any work, thereby violating the second law of
thermodynamics.

height, i.e. area(R) = wR · hR. Then, the density of a rectangle that is denoted by density(R) is defined as

density(R) =
n(R)

area(R)
.

We assume that hotspots cannot be extremely small like a single point of high weight in a 2-dimensional
Euclidean space, otherwise, the density of a point is extremely high since its area is almost zero. To avoid
these abnormal cases, we assume vol(Hi) ≥ γ · vol(N) for some parameter 0 < γ ≤ 1.

There is still one ambiguous place in the concept of hotspots, how to assign points to such regions. The
dataset only contains points and their own contributes, efforts should be made to divide regions. In order to
divide points into regions, clustering methods are to used.

Furthermore, if the dataset is massive enough, it will take a huge amount of time to process. The solution
to it is to adopt a kind of method that is able to receive data as data streams continuously, which is the sliding
window method in this thesis.

Our Contribution. We develop two offline algorithms for detecting axis-aligned rectangular hotspots and
a streaming algorithm.

1. Random Sampling: The first algorithm is a random sampling based algorithm that samples a small
subset of pairs of points and for each pair considers the minimum enclosing rectangle that covers
the pair. It then ranks the candidate rectangles that are computed in this way and greedily finds and
reports those rectangles that could be potential hotspots.

2. Adapted DBScan: The second algorithm is an extension of the classic DBScan [13] algorithm.
DBScan has two parameters. We discretize the space of these parameters and enumerate these
discretized choices. For each such choice, we invoke the DBScan algorithm to report arbitrary clusters
and compute enclosing rectangles for the best clusters. The rest of the algorithm would be the same
as the first algorithm. That is, we then rank the candidate rectangles that are computed in this way and
greedily find and report those rectangles that could be potential hotspots.

3. Streaming Hotspots: Given a set of points that are revealed in a streaming fashion, we run either
of these algorithms on sliding windows that consist of windows ofW latest (i.e., newest) points of
the stream, for a parameterW ∈ N. To speed up the algorithms, we run them on sampled subsets of
points that are in the sliding windows.

We test our hotspot detection algorithms on synthetic as well as real datasets. We observe that the
random sampling algorithm is very fast compared to the adapted DBScan algorithm. However, the adapted
DBScan algorithm has better performance (in terms of precision, recall, and F-score) compared to the
random sampling algorithm. We also see that our streaming algorithm performs well in detecting hotspots
of data that are forming, fading and changing.

4 Detecting Rectangular Hotspots in Offline and Streaming Models

CHAPTER 1. INTRODUCTION

1.2 Related Works
DBScan Clustering As for clustering, density-based clustering is one of the popular clustering methods,
and DBScan is the most representative one. The DBScan clustering algorithm was proposed by M. Ester
et al.[9] as an efficient solution to find clusters with arbitrary shapes on spatial data and use only one
input parameter epsilon (MinPts is fixed). The detailed algorithm is explained in section 2.2. Gan and
Tao [10] discussed that though a large amount of time is used to run all DBScan algorithms it can be
decreased to O(n) with slight inaccuracy in the clustering results, and DBScan with dimension more than 3
is computationally intractable even on moderately large n. Another further research on work of Gan and
Tao is discussed by E. Schubert et al. [21], they claimed that the proposed algorithm in [10] to replace
DBScan on big data is not conclusive, and DBScan in [9] with proper parameters and indexes is sufficiently
competitive. A faster DBScan algorithm proposed by A. Gunawan in [13] and [7] uses box graphs and
computes the algorithm in O(n logn) time in R2, where epsilon is to be determined and MinPts is fixed to
be 4, details will be shown in section 2.2.2.

DBScan in data streams F. Cao et al. proposed a DBScan algorithm[3], DenStream, to discover arbitrary
shapes of clusters in an evolving data stream, it is noise-sensitive as well. The pruning strategy proposed in it
to limit the memory consumption is to get rid of the outliers and keep the potential clusters in the meantime.
Based on the work of Cao et al., Kumar and Sharma proposed a DDenStream algorithm[14]. It is based on a
fading window model where the weight of the data points is deduced over time. It also improves the quality
when multiple clusters overlap by using DCQ-Means algorithms.

Agglomerative Clustering Hierarchical clustering (HC) includes two different methods, one of which is
from top to bottom, and the other one is from bottom to top. The bottom-up clustering is called agglomerative
clustering, the decomposition of it is represented by the dendrogram. It begins with one cluster of all points
as the root node of a tree, which is divided into sub-clusters, and the cluster at the leaf node contains only one
object. Hierarchical clustering research of Charikar et al.[5] proposed two new hierarchical algorithms that
outperform the average-linkage method, a similarity HC and a dissimilarity HC. In [4], they also proposed
an algorithm on Euclidean data under vector-based similarity measures which the main focus is on the
Gaussian kernel, it outperforms the average-linkage method and can be scaled to high dimensions.

Clustering in the Streaming Model An algorithm, CURE, of clustering for large datasets is proposed by
Guha et al.[12]. CURE can identify non-spherical and even other shapes of clusters and can process large
databases by using random sampling and partitioning. But it is not able to deal with data streams. Another
work from Guha et al.[11] explained a clustering algorithm that can handle large data streams to use less
memory.

Detecting Rectangular Hotspots in Offline and Streaming Models 5

Chapter 2

Preliminaries

In this chapter, we define the notations that we use through this thesis. We also explain the clustering
algorithms that we use and implement in this thesis. In particular, we define the k-means algorithm [15]
and the k-means++ clustering [2]. We later introduce the known DBScan clustering [9] and its fast
implementation that is known as DBScan with Box-graphs [13]. Later, we define the sliding window model.
To compare different clustering algorithms we also introduce the notions of precision, recall, and F-score
that we define next. A nice way of representing the distribution of data is what is called Kernel Density
Estimation (KDE) that we define at the end of this chapter. We first expalin the k-means problem and
k-means algorithm.

2.1 Centroid Based Clustering

2.1.1 k-means
The k-means clustering algorithm is a classic centroid-based clustering algorithm, which refers to Lloyd’s
algorithm [15]. It defines a cluster by a center point, also called centroid, therefore each cluster is defined
by a cenroid and a set of points that are close to the centroid. The main idea of k-means algorithm is to
minimize the squared Euclidean distance between cluster points and their nearest centroids.

Let P ⊆ Rd be a set of points of size n given in a d-dimensional Euclidean space and a parameter
k ∈ N. In the k-means clustering, we would like to report k center points in Rd such that the sum of squared
Euclidean distances of each point to its nearest center is minimum. Suppose we have the optimal centers
C∗ = {c∗1, · · · , c∗k}, then in the k-means problem we assign each point to its nearest center in C∗. Thus, we
can define the cluster C∗i for i ∈ {1, 2, · · · , k} as all the points that are closer to the center c∗i than the other

(a) An example when the initialization of centroids is
random, so the clusters are not divided as expected.

(b) Good clustering result can be obtained after a good
centroid initialzation.

Figure 2.1: Illustrations of k-means clustering when the initialization of the centroids is random, results
could be different. Clusters are in different colors, red points are the centroids.

6 Detecting Rectangular Hotspots in Offline and Streaming Models

CHAPTER 2. PRELIMINARIES

centers, where the ties are broken arbitrarily. In this way, we can say the center c∗i is the center of the cluster
C∗i . It is known that c∗i is the center of mass or the center of gravity of the cluster C∗i . That is,

c∗i =

∑
p∈C∗

i
p

|C∗i |
.

where |C∗i | denotes the number of points in the i-th cluster.
Since the optimal clustering have the minimum sum of squared Euclidean distances of all points to their

assigned centroids, the sum of the distances of the i-th cluster cost(C∗i) is introduced as the cost,

cost(C∗i) =
∑
p∈C∗

i

‖ p− c∗i ‖22 .

Thus, for each cluster the optimal centroid should have the minimal distances to all of its assigned points,
that is,

c∗1, · · · , c∗k = arg min
k∑
j=1

cost(C∗j) = arg min
k∑
j=1

∑
p∈C∗

j

‖ p− cj ‖2

The pseudo-code in Algorithm 1 explains the whole process. The algorithm is initialized by randomly
choosing k points C = {c1, . . . , ck}, C ⊆ P, as the set of centroids. Then, each point p ∈ P is assigned to a
centroid closest to p. After all points in P are assigned, the centroid of each cluster will be updated. The
process repeats assigning each point p to the new centroids that are nearest to p and computing new centroids
again, then stops when all k clusters converge. At the end, we have the optimal clusters {C∗1, · · · , C∗k}.

Algorithm 1 KMEANS(k, P)

Require: k: the number of required clusters; P: set of data points;
Ensure: every point is assigned to one of k clusters, the distances between points and their assigned

centroids are minimized.
1: Initialize cluster centroids c1, c2, . . . , ck ∈ R2 randomly;
2: repeat
3: for each i ∈ {1, . . . , n} do
4: find the closest centroid for point pi, labeli = arg minj∈{1,··· ,k} ‖ pi − cj ‖22;
5: assign point pi to its nearest centroid, Clabeli = Clabeli

⋂
pi;

6: end for
7: for each j ∈ {1, . . . , k} do
8: compute a new centroid for every cluster after assigning points to their closest centroids,
cj =

∑
i∈{1,...,n}pi∈Cj pi/|Cj|;

9: end for
10: until the cluster assignment converges.

The shortcoming of it is obvious that the random initialization of the centroids could lead to bad clustering
as shown in Figure 2.1(a), since the result of the k-means algorithm relies heavily on the initialization of the
centroids at the beginning.

2.1.2 k-means++

The k-means++ algorithm [2] adapts the k-means algorithm on the initialization of the centroids. Instead
of choosing all the centroids randomly at one time, it picks one point p ∈ P randomly as the first centroid
c1 and adds it in the set of selected centroids C. Then, the next centroid is randomly chosen with a set of
weights, the weight of a point pi is the proportion of the distance between pi and its closest centroid in C to
the sum of the distance between all points and their closest centroids in C. Each weight can be computed by

weighti =
distimin∑n
i=1 distimin

,

Detecting Rectangular Hotspots in Offline and Streaming Models 7

CHAPTER 2. PRELIMINARIES

where distimin is the notion of the distance between each point pi ∈ P and its nearest centroid cj ∈ S, and it
is computed by

distimin = min
j={1,...,k}

distpi,cj = min
j={1,...,k}

‖ pi − cj ‖22 .

According to the function of weights, it is observed that the further a point is to its closest centroid in C,
the bigger chance a point has to be chosen as the next centroid. It repeats appending centroids into C using
weights computed in the way described before until there are already k centroids in C. The resulting set of
centroids C is regarded as the optimal set of centroids, so C∗ = C. Then it runs the k-means algorithm with
the optimal centroid set C∗ = c∗1, . . . , c∗k as the initial centroid set, the pseudo-code is shown in Algorithm 3.

Algorithm 2 CENTROIDINITIALIZATION(k, P)

Require: k: the number of required clusters; P: set of data points;
Ensure: C∗, a set of k optimal centroids

1: distance← empty list;
2: pick one point p ∈ P as the first centroid c1 in a uniformly random way, append it in the set of centroids
C = {c1};

3: repeat
4: for each i ∈ {1, . . . , n} do
5: for each cj ∈ C do . the number of centroids in C will increase.
6: compute the distance distpi,cj =‖ pi − cj ‖2 between pi ∈ P and cj ∈ C;
7: dimin = min(distpi,cj , d

i
min);

8: end for
9: append the distance dimin between point pi and its nearest centroid to distance;

10: end for
11: choose the next centroid with the probability of dimin∑

n
i=1 d

i
min

;
12: until |C| = k

Algorithm 3 KMEANSPLUSPLUS(k, P)

Require: k: the number of required clusters; P: set of data points;
Ensure: correct labeled and clustered points

1: invoke CENTROIDINITIALIZATION(k, P);
2: invoke KMEANS(k, P);

2.2 Density Based Clustering

2.2.1 DBScan

A representative density-based clustering algorithm is the DBScan algorithm [9]. The purpose of it is to
identify points that are in the dense regions, and each region that has sufficiently high density is considered
as a candidate for clusters. Moreover, compared to the centroid-based clustering as mentioned in section 2.1,
the resulting clustering of DBScan is able to be in arbitrary shapes instead of only linearly separated.

There are two important parameters in DBScan clustering. The important parameters are ε and MinPts,
respectively. A point p ∈ P is defined as a CorePoint if within the distance of ε around p there exists at
least MinPts points (p is also counted). A few concepts should be introduced as well before we explain
the DBScan algorithm. A core point pc is DirectlyReachable to a point pi in P if the distance between
them is within ε, which is depiected in Figure 2.2(a). For the core point px and point py, if there is a
path px, . . . , py and each point pi is directly reachable to pi+1, then px is Reachable to py, as shown in
Figure 2.2(c). Other than core points, there are other kinds of points, point p is a BorderPoint if there are
less than MinPts points within distance ε from p, otherwise, it is a NoisePoint.

8 Detecting Rectangular Hotspots in Offline and Streaming Models

CHAPTER 2. PRELIMINARIES

(a) A core points pc is directly reach-
able to a point pi, which means that the
distance between pc and pi is less than
or equal to ε.

(b) From px to px+2, there is a path
{px, px+1, px+2}, px is directly reach-
able to px+1, px+1 is directly reachable
to px+2. So, px is reachable to px+2.

(c) There is a path {px, . . . , py}, and
each point pi is directly reachable to
pi+1. So, px is reachable to py.

Figure 2.2: Directly reachable and reachable.

The abstract process of the DBScan algorithm is described as follows. With points in P and parameters
ε and MinPts, a point p ∈ P is chosen randomly. If there are MinPts points within distance of ε from the
point p, p is a core point. If p is not a core point, then continue to search for the next point. What comes
next is to find all points that are directly reachable from point p and not visited yet, add them into a set
of neighbor points of p, denoted as NeighborPts, and assign these points to a new cluster C1. Next, find
directly-reachable points from each of those newly-assigned points in NeighborPts and add them into the
set NeighborPts. If these neighbor points in NeighborPts are not assigned to any cluster yet, append them to
C1. Then keep expanding the cluster C1 until all points that are reachable from p are visited. A new random
point is selected to do the same process. The algorithm repeats the above steps until all points are visited.

2.2.2 Boxgraph

Due to the fact that the DBScan algorithm computes the distance between every two points, more time
is spent on calculating the edges of the neighborhood graph, a faster DBScan algorithm was proposed to
improve that by using box graphs. The faster DBScan algorithm using box graphs costsO(n · logn) running
time in the worst case and needs O(n · logn) space.

In terms of box graph, vertices and edges should be introduced. Points in P are divided into boxes
B = {B1, . . . , Bm}, each box is regarded as a vertice. When there is a core point in B1 has a distance within
ε to a core point in B2, then B1 and B2 are neighbors, an edge between B1 and B2 is formed.

The algorithm is composed of four phases: (i) divide points in disjoint boxes; (ii) identify core points;
(iii) compute clusters for core points; (iv) assign border points in clusters.

Algorithm 4 COMPUTESTRIPS(ε, P)

Require: ε: within distance ε from a point p, if there are MinPts points, p is a core point; P: a set of points;
Ensure: ordered strips list with width of at most ε/

√
2

1: sort P by x-coordinates and denote P = {p1, · · · , pn} as a set of points in increasing order;
2: L← φ;
3: S← p1; leftS ← x1;
4: for each i ∈ [2, n] do
5: if xi ≤ leftS + ε/

√
2 then

6: append pi to S;
7: else
8: end if
9: end for

10: append S to L;
11: return L

Detecting Rectangular Hotspots in Offline and Streaming Models 9

CHAPTER 2. PRELIMINARIES

Algorithm 5 COMPUTEBOXES(ε,L)

Require: ε: within distance ε from a point p, if there are MinPts points, p is a core point; L: a list of
ordered strips;

Ensure: a list of boxes with width and height of at most ε/
√
2

1: boxes← φ;
2: for each strip Si ∈ L do
3: sort points in Si by y-coordinates and denote Si = {pi1, · · · } as a set of points in increasing order;
4: B ← φ;
5: Q← a set with only one strip S1; bottomQ ← yi1;
6: for j← 2 to |S| do
7: if yij ≤ bottomQ + ε/

√
2 then

8: append Sj to Q;
9: else

10: create box B; n(B) ← Q where n(B) = |B
⋂
P|; rectangle(B) ← bounding box of Q;

neighbors(B)← φ;
11: append B to B; Q← a set with Sj; bottomQ ← yij);
12: end if
13: end for
14: create box B; n(B)← Q; rectangle(B)← bounding box of Q; neighbors(B)← φ;
15: append B to B; append B to boxes;
16: end for
17: return boxes

Firstly, points are divided into grids with disjoint rectangular boxes with side length of at most ε as
in Algorithm 4. Points are sorted by their x-coordinate at the beginning. The leftmost point that has the
minimum x-coordinate leftS is denoted as pleft, points having x-coordinates within [leftS, leftS + ε/

√
2]

are divided into a strip of at most ε/
√
2 in width. The starting point of the next strip is the first point p′left

having x-coordinate left′S > leftS + ε/
√
2, set leftS = left′S. Repeat this until there are points left and the

width of the next strip is less than or equal to ε/
√
2, divide all points left into one strip. After all points

are divided into strips as in Figure 2.3, strips are divided into boxes of the height of at most ε/
√
2 as in

Algorithm 5. Points in one strip are sorted by their y-coordinates. The first box of one strip Si starts from
the bottom point pb that has the minimum y-coordinate yb. All points in Si with y-coordinates within
[yb, yb + ε/

√
2] are assigned into Si. The starting point of the next box p′b ∈ Si is the first point in Si that

has y-coordinate y′b > yb + ε/
√
2, so let pb = p′b. Repeat dividing points in Si into boxes of at most

ε/
√
2 in height until there are points left and the height of the next box is less than or equal to ε/

√
2, divide

all points left into one box.
After dividing points in boxes, it is necessary to compute the neighbor of boxes, its pseudo-code is

shown in Algorithm 6. It can be observed that neighbors of a box can only be boxes in the two strips on the
left and two strips on the right, 5 neighbor strips in total. That is because two boxes are neighbors if they
have a distance of at most ε which is less than the width of two strips

√
2ε. Then, a sweepline approach is

used to find the neighbors for boxes. The sweepline is actually a horizontal line moving from bottom to top,
every time it approaches the lower bound of a box, the box and its neighbor are added to the sweepline. For
boxes in 5 neighbor strips of a box, all boxes that are within distance ε and lower bound of it is below the
sweepline will be added to each other’s neighbors. If the upper bound of a box is more than ε away from the
sweepline, the box will be removed from the sweepline.

The second phase is to compute the core points, as in Algorithm 7. The iteration goes over all the boxes,
if the number of points of a box is bigger than or equal to MinPts, all points in that box are labeled as core
points since the distances between any two points in a box are less than ε. Else, if the number of points in
a box is less than MinPts, the points in the box can also be labeled as core points if they have more than
MinPts neighbors which are also within distance ε. The running time of Algorithm 7 is O(n).

In the third phase, clusters are computed, the algorithm is depicted in Algorithm 8. Like the classic
DBScan algorithm, if a core point p1 of B1 and a core point p2 of B2 have distance within ε between them,

10 Detecting Rectangular Hotspots in Offline and Streaming Models

CHAPTER 2. PRELIMINARIES

(a) Points are divided into strips by
width of ε/

√
2.

(b) Each strip is divided into boxes by
the height of ε/

√
2.

Figure 2.3: The points are divided into boxes in the DBScan algorithm using box graphs.

these two boxes should belong to one cluster. It starts from a random box and all of its neighbors and iterates
over all boxes. The running time for Algorithm 8 is O(n · logn).

Only the core points are assigned in the previous phases, finally, the border points are assigned to the
nearest cluster in the last phase, pseudo-code is shown as Algorithm 9. It iterates over all the points in all
boxes, and computes the distance between the border points and their neighbor core points, each border
point will be assigned to a cluster of the nearest core point.

After all, the DBScan algorithm using box graphs is composed of all phases mentioned above, as shown
in Algorithm 10. The required inputs are a point dataset P, the distance ε, the minimum number of points
MinPts within ε (but MinPts is often set to be 4 and not regarded as an input). The points in the dataset are
first divided into strips, each of which is divided into boxes. Then neighbors of all boxes are computed. With
boxes computed before, the algorithm is able to find all core points, which enables the clusters computing
phase. In the end, the border points are also assigned.

Detecting Rectangular Hotspots in Offline and Streaming Models 11

CHAPTER 2. PRELIMINARIES

Algorithm 6 COMPUTEBOXNEIGHBORS(ε,B)

Require: ε: within distance ε from a point p, if there are MinPts points, p is a core point; B: a list of boxes
in strips L;

Ensure: a list of boxes with correct neighbors
1: Q← empty priority queue;
2: for i← 1 to |L| do
3: for each box B ∈ Si do
4: ytop, ybottom ← minimum and maximum y-coordinates of the bounding box of a box denoted

as rectangle(B);
5: add (ybottom, B, i) to Q with priorith ybottom;
6: add (ytop + ε, B, i) to Q with priority ytop;
7: end for
8: end for
9: sweepline← an array of |L| empty lists;

10: while Q is not empty do
11: (y, B, i) the last row in Q, which has the minimum priority;
12: if y is the bottom coordinate of rectangle(B) then
13: for each j ∈ {i− 2, i− 1, i, i+ 1, i+ 2} do
14: if 1 ≤ j ≤ size(sweepline) then
15: for each box B in sweeplinej do
16: if minimum distance between B and B′ is at most ε then
17: add B to neighbors(B′); add B′ to neighbors(B);
18: end if
19: end for
20: end if
21: end for
22: else
23: remove B from sweeplinei;
24: end if
25: end while
26: B ← empty list;
27: for each strip S ∈ L do
28: for each box B ∈ S do
29: append B to B
30: end for
31: end for
32: return B

12 Detecting Rectangular Hotspots in Offline and Streaming Models

CHAPTER 2. PRELIMINARIES

Algorithm 7 IDENTIFYCOREPOINTS(ε,MinPts,B)

Require: ε:within distance ε from a point p, if there are MinPts points, p is a core point; MinPts: within
distance ε, if there are MinPts points, it is defined as the Core Point; B: a list of boxes;

Ensure: each core points will be labeled;
1: for each box B in B do
2: if n(B) ≥ MinPts then
3: mark each point in points(B) as core point;
4: else
5: for each point p in B do
6: count← n(B);
7: for each box B′ in neighbors(B) do
8: for each point q in B′ do
9: if dist(p, q) ≤ ε then count← count + 1

10: end if
11: end for
12: end for
13: if count ≥ MinPts then
14: mark p as core point;
15: end if
16: end for
17: end if
18: end for

Algorithm 8 COMPUTECLUSTERS(ε,B)

Require: ε:within distance ε from a point p, if there are MinPts points, p is a core point; B: a list of boxes;
Ensure: correct cluster labels for each core points

1: label← 1;
2: for each box B in B do
3: if cluster(B) = none and B contains a core piont then
4: cluster(B)← label; front← {B};
5: while front is not empty do
6: remove a box B from front;
7: for each point p in B do
8: if p is a core point then
9: cluster(p) = label;

10: end if
11: end for
12: for each box B′ in neighbors(B) do
13: if cluter(B′) = none and B′ contains a core point then
14: if coredistance(B,B′) ≤ ε then
15: cluster(B′) = label; add B′ to front;
16: end if
17: end if
18: end for
19: end while
20: label← label + 1;
21: end if
22: end for

Detecting Rectangular Hotspots in Offline and Streaming Models 13

CHAPTER 2. PRELIMINARIES

Algorithm 9 ASSIGNBORDERPOINTS(ε,B)

Require: ε: within distance ε from a point p, if there are MinPts points, p is a core point; B: a list of boxes
with core points;

Ensure: assignment of border points;
1: for each box B in B do
2: for each point p in B do
3: if cluster(p) = none then
4: nearest← none; distance←∞;
5: for each point q in B do
6: if dist(p, q) ≤ distance and cluster(q) 6= none then
7: nearest← q; distance← dist(p, q);
8: end if
9: end for

10: for each box B′ in neighbors(B) do
11: for each point q in B do
12: if dist(p, q) ≤ distance and cluster(q) 6= none then
13: nearest← q; distance← dist(p, q);
14: end if
15: end for
16: end for
17: if distance ≤ ε then
18: cluster(p)← cluster(nearest);
19: end if
20: end if
21: end for
22: end for

Algorithm 10 DBSCANBOXGRAPHS(P, ε,MinPts)

Require: P: dataset, a set of points; ε: within distance ε; MinPts: if there are MinPts points within distance
ε from point p, p is defined as a core point;

Ensure: correct cluster labels for each points;
1: L = ComputeStrips(ε, P);
2: B = ComputeBoxes(ε,L);
3: B = ComputeBoxNeighbors(ε,B);
4: invoke IndentifyCorePoints(ε,MinPts,B);
5: invoke ComputeClusters(ε,B);
6: invoke AssignBorderPoints(ε,B);

14 Detecting Rectangular Hotspots in Offline and Streaming Models

CHAPTER 2. PRELIMINARIES

2.3 Sliding Window

(a) The window size here is 9 hours, and it moves per
1 hour. If the data in the sliding window is not full, it
waits until all data in the sliding window is received
from nine minutes ago till now t = 9.

(b) The sliding window is full and it moves to the next
hour. In the meanwhile, it deletes data received at the
oldest minute, and append data received from t = 9
to t = 10.

Figure 2.4: Illustration of sliding window.

We develop offline algorithms for detecting rectangular hotspots. Later we show how to implement
these algorithms in the sliding windows model as shown in Figure 2.4. The sliding windows model was
introduced by Datar, Gionis, Indyk, and Motwani [6] as is as follows. We are given a stream of points
possibly of infinite length and a window size W, and we are interested in computing a function (either
exactly or approximately) for a window of sizeW of latest (newest) points in the stream. At any time t, we
call the window that consists of points with arrival time between [max(1, t −W), t] the current window.
Here we assume that at any time t only one point arrives, but in reality it can happen that at any timestamp t
more than one point arrives, say a burst of points arrive. The idea is at any time t, the number of points that
arrive is less than W and the current window covers W points that has the latest arrival time. For any point
p, we denote by ta(p) the arrival time of p. Here we assume that one point arrive at a time.

After an interval v, the time now is t′ = t+ v, therefore, the current window deletes oldest points having
arrival time between [max(1, t−W),max(1, t′ −W)] and adds points arriving between [t, t′].

2.4 F-score
F-score [19], also as known as F1-score, is an evaluation measure often used in information retrieval systems,
it is also used to evaluate the binary classification. Whether hotspots are detected or not could be considered
as a binary classification problem as well, so F-score is a useful evaluation method. The F-score can be
computed with respect to precision and recall:

F-score = 2 · precision · recall
precision + recall

.

The precision mentioned above could be computed by the following function,

precision =
TP

TP + FP

where TP is the number of true positives, FP is the number of false positives. It ranges from 0 to 1. A true
positive point is when a point in hotspot region is predicted as a hotspot point. A false positive point is when
a noise point is predicted as a hotspot point. Precision represents the rate of the correct prediction over all
predictions.

The recall ranging from 0 to 1 is the probability of points that are detected as the hotspot points over
all actual hotspot points, which shows the relation between actual hotspot points. It can be formulated as
follows.

recall =
TP

TP + FN

The number of false negatives denoted as FN is the number of points in hotspot region that are predicted to
be background noise.

Detecting Rectangular Hotspots in Offline and Streaming Models 15

CHAPTER 2. PRELIMINARIES

Figure 2.5: To show F-score in a direct way, it can be visualized. The points in green and red are the
actual positive points while the points in purple and blue are the actual negative points. Precision can be
represented by the red points divided by red and blue points, recall can be represented by the red points
divided by red and green points.

There is often a negative relation between precision and recall, improving one could decrease the other
one in the meantime. Hence, they always show up together as balanced measures. When precision equals 1,
all points that are predicted as hotspot points are indeed hotspot points, but it does not promise all the other
actual hotspot points can be detected correctly. The recall of 1 indicates that all hotspot points are detected
when it does not reflect the situation that noise points are detected by mistake as well. The precision of 1
could be achieved by only detecting a small proportion of real hotspot points, and it is also easy to attain
recall of 1 by detecting an actual hotspot point as one hotspot. Thus, a perfect precision or recall does not
guarantee a perfect performance of an algorithm, F-score is come up with as a combination of precision and
recall to balance the impact of both of them.

2.5 Kernel Density Estimate
In order to obtain the probability density function of the dataset, two density estimations can be used, which
are non-parametric density estimation and parametric density estimation. The former one assumes that the
dataset follows a certain probability distribution, such as likelihood estimation and Gaussian estimation,
then it fits the parameters of the distribution according to the dataset. However, because it requires prior
knowledge and there are big differences between the assumption and the real model, the result of this
kind of estimation is not always satisfactory. The parametric density estimation does not involve any prior
knowledge and assumption, instead, it estimates the density according to the characteristics and property
of the data. A classic parametric density estimation, kernel density estimation (KDE), was first proposed
by Rosenblatt [20] and Parzen [17] as the Parzen window. Before introducing the KDE, the histogram is
unavoidable to talk about. The histogram is a widely used density estimation method. Intuitively, it shows
the percentage of points that fall in a certain interval, such as [yi, yi+1), which is called a bin as well. The
range of the histogram is between the minimum and the maximum value of the data. Given the number of
bins, the width of the bin is range

number of bins . Then the probability density function is computed by the average
of a fraction, which is the number of observations that fall in one specific bin as x divided by the width of
the bin mentioned above. It is formulated as follows, where b stands for the bandwidth of the bin.

f̂hist(x) =
1

n

of Xi in same bin as x
width of bin containing x

=
1

n

n∑
i=1

1

b
1{xi ∈ [x−

1

2
b; x+

1

2
b)} .

Finally, one of the parametric estimations, KDE is introduced. The difference between KDE and the
histogram method is the kernel function, which histogram uses a constant and KDE uses a continuous
function. If the denominator nb is ignored, at the observed point, histogram adds one while KDE adds a
kernel function, as shown in Figure 2.6. Therefore, KDE smooths the density function by adding value
on not only the observed point but also its neighbors, which is the reason why the curve of probability

16 Detecting Rectangular Hotspots in Offline and Streaming Models

CHAPTER 2. PRELIMINARIES

density function estimated by KDE covers the values that the data does not include, such as when x ≤ −4
and x ≥ 8. The probability density function is estimated by KDE with the formula as follows, where b is

Figure 2.6: Difference of hitsogram and KDE, from [8]. Data points used are
{−2.1,−1.3,−0.4, 1.9, 5.1, 6.2}, which are marked on the x-axis.

the bandwidth of the kernel function, K(·) is the kernel. The kernel weights differently depending on the
distance between the observation and the x.

f̂kde(x) =
1

n

N∑
i=1

K(x− xi) =
1

nb

N∑
i=1

K

(
x− xi
b

)
The kernel K(·) has lots of choices, the Gaussian function is being chosen here, therefore, the above function
can be expressed by

f̂kdeg (x) =
1

nb

n∑
i=1

(
1√
2πσ

e
−x−xi

2

2σ2b2

)
.

As for the bandwidth b, it uses b = n
−1
d+4 , where d is the dimension.

Other than that, KDE is extended to estimate multivariate densities, and 2-dimension KDE is used in
the following sections and thus is elaborated. It can be easily shown in Figure 2.7, which is contour map
intuitively. The probability density function then needs to be extended to two dimensions, which is

f̂kde(x;H) =
1

n|H|1/2

n∑
i=1

K
(
H−1/2(x− Xi)

)
where K(·) is the multivariate kernel, and H is the bandwidth matrix, which also can be regarded as a
covariance matrix of a multivariate normal density with mean Xi. The kernel function used here is the
two-dimensional Gaussian kernel, i.e. K(x) = (2π)−d/2H−1/2e−

1
2
xTH−1x

Detecting Rectangular Hotspots in Offline and Streaming Models 17

CHAPTER 2. PRELIMINARIES

Figure 2.7: An example of 2-dimension KDE for a normally distributed dataset, and the data points are in
white.

18 Detecting Rectangular Hotspots in Offline and Streaming Models

Chapter 3

Proposed Algorithms

There are a large number of clustering algorithms suitable for numerous datasets and problems. In this
thesis, the hotspot problem is the main focus. The concept of the hotspot was first come up with by J. Tuzo
Wilson in [23], hotspots are defined as the volcanic regions that are assumed to be fed by the underlying
mantle that is anomalously hot. The word hotspot is then known for some famous places for tourism or
entertainment. Nevertheless, in the computing field, hotspot stands for a region of a computer program that
occurs a large number of executed instructions or that costs most of the time of the execution of the whole
program, as defined in Wikipedia description [1]. In this thesis, a (α,β)−hotspot is defined in Definition 1
as the region that covers points of higher density than its neighbors.

In this chapter, we propose two offline algorithms for rectangular hotspots detecting, and a stream
algorithm. They are all based on density. The first one, the random sampling based algorithm, is a simple
clustering algorithm that outputs k densest rectangles it samples as resulting hotspots. The limitation of
it is that it depends more on the initial set of randomly sampled rectangles, so the results are relatively
random. The second one is based on the DBScan clustering algorithm with box graphs [13], after choosing
the optimal ε and MinPts, the top k densest rectangle are reported among all clusters where k is given in
advance.

3.1 Random Sampling Based Algorithm
The primary idea of the random sampling based (RSB) algorithm is to select two points p1, p2 ∈ P randomly,
construct a minimum rectangle R1 with p1, p2, then compute the density of R1 as in Definition 2, repeat
selecting the remaining z− 1 rectangles by two random points, then return k rectangles that have the highest
density and overlap with each other at most β of the area.

There are 2 main phases in this algorithm:

• Sampling: Randomly sample z pairs of points and construct z minimum rectangles with these z pairs
of points. Append z minimum rectangles into a setR.

• Sorting and reporting: Compute the densities of z rectangles inR, sort rectangles inR by densities
computed. At the end, report k rectangles inR as the hotspots {H1, · · · , Hk}. These k hotspots have
highest density inR and any reported hotspot Hi overlap with any Hj at most β of the minimum area
between Hi and Hj where i, j ∈ {1, · · · , k}.

The pseudo-code is shown in Algorithm 11.
At the sampling stage, two points p1, p2 are selected randomly from P (p1 = p2 is possible), then

construct a minimum rectangle with p1 and p2 as two of the corners, as shown in Figure 3.1 and defined in
Definition 3.

Definition 3 (Minimum rectangle). A minimum rectangle R of two points p1, p2 can be represented

R(xmid;ymid;wR;hR) ,

Detecting Rectangular Hotspots in Offline and Streaming Models 19

CHAPTER 3. PROPOSED ALGORITHMS

(a) A rectangle is constructed by two red
points as two of the corner points, in the
meantime, the rectangle is the minimum
enclosing rectangle that is axis-aligned.

(b) Another rectangle that is also con-
structed by these two points as two of
the corner points, but this rectangle is
not the minimum rectangle, the area of
the rectangle is random as the other two
corner points could be random. There-
fore, this case is not used.

Figure 3.1: Illustration of the minimum rectangle constructed by two points as the corner points.

where xmid = 1
2
(x1 + x2) is the x-coordinate of the center point of R, ymid = 1

2
(y1 + y2)) is y-

coordinate of the center point of R,wR = |x1 − x2| stands for the width of R, hR = |y1 − y2| represents the
height of R.

The rest of the rectangles are chosen by repeating the same process. At the end of this phase, a list of
rectanglesR = {R1, . . . , Rz} of size z is selected and stored as the sampled rectangles for the next phase.
Any rectangle Ri ∈ R can overlap with other rectangles inR at most β of the minimal area between Ri and
other rectangles inR. The sampled number z is actually a function of k, i.e.z = f(k), and z ≥ k. As for the
selection of z, it is a trade-off between the precision and time consumed, which would be chosen through
experiments in section 4.3 and k is given in advance.

Apparently, the random selection brings up the overlapping problem. As points are sampled randomly,
there is a certain probability that a rectangle constructed by a pair of points will be overlapped with another
sampled rectangle. The overlapping rate of two rectangles R1 and R2, denoted as β1,2, is computed as

β1,2 =
area(R1)

⋂
area(R2)

min(area(R1), area(R2))
.

The maximum overlapping rate is denoted as β as in a (α,β)−hotspot, an upper bound of the overlapping
rate of all reported rectangles, which will be chosen with the highest F-score in section 4.3.

Definition 4 (Maximum overlapping rate). Let Hi, Hj ∈ R2 be two overlapping rectangualr hotspots.
Let βi,j denote the overlapping rate of Hi and Hj. For any two rectangular hotspots Hi and Hj, Hi can
intersect with Hj at most β, that is

area(Hi)
⋂

area(Hj) ≤ β ·min(area(Hi), area(Hj)) .

A higher proportion of overlapping areas may result in the detection of fewer hotspots, because when
they overlap, all reported rectangles are very close to each other. Though repeating detection increases the
reliability of the repeating area to be a correct hotspot prediction, the algorithm may have less information
of the neighbor region or the other places. Nevertheless, a smaller rate of the overlapping area increases the
probability to search for hot spots at more places.

An explicit problem also can not be overlooked, a tiny area of sampled rectangles causes false-high
density. For instance, when two close points are selected, or even worse, the same point is selected twice,
the area of the minimum rectangle R constructed by these two close points is extremely small, or even
zero, causing the density of R incredibly huge even when there is only one point in R. It is definitely not
an expected case when a tiny place having one point is defined as a dense region. Therefore, it is of great
importance to set up the minimum area Smin expected in advance, which should be at least 1.0 to avoid the

20 Detecting Rectangular Hotspots in Offline and Streaming Models

CHAPTER 3. PROPOSED ALGORITHMS

false high-density problem. If the Smin is set to be smaller than 1.0, then the mentioned problem of false
high-density has the ability to have a fairly bad influence on clustering, but if it is too big, R covering too
many non-hotspot points will result in lower precision. Hence, setting a suitable modest value for Smin is
essential. The selection for Smin is done by experiments in section 4.3.

At the sorting and reporting stage, the densities of the selected rectangles R are calculated first as it
is the criterion for sorting. Next, z rectangles are sorted based on their density decreasingly, other than
reporting the first k rectangles, it selects the first densest rectangle R1 at first, and then append the next
rectangle R2 that β1,2 ≤ β, and repeat selecting the rectangles with β until there are k rectangles. Then
report the k densest rectangles that having maximum overlapping rate β as k rectangular hotspots.

Algorithm 11 RandomSamplingBasedClustering(P, z, k, β)

Require: P: the set of points; z: the number of pairs of points that needs to be sampled; k: the number of
clusters; β: the optimal overlapping proportion of area two rectangura hotspots can at most intersect.

1: for each i ∈ {1, . . . , z} do
2: From P sample a pair of points (pi1, pi2) randomly;
3: Construct a rectangle Ri with width, height, and the average of sampled two points as its coordinate,

i.e. width=|xi1 − xi2|, height=|yi1 − yi2|, (xi, yi) = (1
2
(xi1 + xi2), (

1
2
(yi1 + yi2));

4: Compute the density of Ri by density(Ri) =
n(Ri)

area(Ri)
, where n(Ri) = |RI ∩ P|;

5: end for
6: Sort z rectangles decreasingly according to their densities, so the first rectangle R1 of the sorted rectangle

setR has the highest density;
7: Initialize the set of HotspotsH = {R1};
8: repeat
9: compute the overlapping rate βi,j between the next rectangle Ri ∈ R and the rectangles Rj ∈ H,

the next rectangle Ri is selected in decreasing order of sortedR;
10: if ∀Rj ∈ H, the overlapping rate βi,j ≤ β, append Ri toH;
11: until (|H| ≥ k)

Lemma 5. The running time complexity of Algorithm 11 is O(n logn+ z(n+ k)).

Proof. Line 2 and 3, 10 can be done in O(1) time, computing density involving counting points in a
rectangle takes O(n) time, so line 1 to 5 takes O(nz) time. The sorting at line 6 takes O(n logn) time,
and line 7 takes only O(1) time. Line 9 needs to compare each rectangles inR and rectangles inH, which
takes O(|R| · |H|) = O(zk). Therefore, the result can be obtained by summing up all of them, which is
O(nz+ n logn+ zk) = O(n logn+ z(n+ k)). 2

3.2 Adapted DBScan algorithm
The adapted DBScan runs a bit differently in the offline model and the sliding window model. In the offline
model, the input dataset is fixed while in the sliding window model it is continuously changing. Also, to
speed up the adapted DBScan algorithm in the sliding window model, a sampling trick is also used. The
details can be seen in the following subsections.

3.2.1 Adapted DBScan in Offline Model
The main idea of the adapted DBScan algorithm is to first find the optimal ε and MinPts for DBScan, then
run the DBScan algorithm using box graphs with these parameters on a dataset. After that, points are
assigned into several clusters, the bounding box of a cluster is regarded as a rectangle. These rectangles are
sorted by their densities defined in Defintition 2, then top k rectangles are reported as the rectangular hotspots,
hence points covered in those regions will be reported as hotspot points. The pseudo-code elaborates it in
Algorithm 13.

Detecting Rectangular Hotspots in Offline and Streaming Models 21

CHAPTER 3. PROPOSED ALGORITHMS

At first, the optimal ε and MinPts for DBScan should be found with the F-score used as the evaluation
measure of experiments. To select the best ε and MinPts, the algorithm first enumerates a list of ε and a list
of MinPts. The list of ε is generated with respect to the maximum value of width and height of the whole
region. A parameter λ between [0, 1] is used, 1+ λ is used as the base. The biggest ε could be as big as the
bigger value between width and height of the canvas, that is LongSide = max{width, height}, hence the
maximum value of ε is given by

εmax = LongSide = log1+λ(1+ λ)
LongSide.

Set the minimum ε to be the side length of the minimum area of the box graphs Smin, that is,

εmin =
√
Smin = log1+λ(1+ λ)

√
Smin .

Therefore, the reasonable range of epsilon E is defined as (1+ λ)j, where j ∈ {εmin, εmin+ 1, . . . , εmax}.
The same procedure could be done for the list of MinPts, denoted asMP, the corresponding parameter is
defined as γ ∈ [0, 1], which means the base is 1 + γ. The maximum value of MinPts will be the number
of points of the dataset n, thus, MinPtsmax = n = log1+γ(1 + γ)

n. So the list of MinPts is defined as
(1+ γ)i, where i ∈ {0, 1, . . . ,MinPtsmax}.

However, the optimal pair of ε and MinPts is not fixed forever, they could be different over time since
the data changes over time. Hence, it is essential to update the optimal pair of ε and MinPts at a certain
interval since data in a specific time range could be extremely dense or sparse.

While enumerating each ε in E , each MinPts in MP, DBScan algorithm returns zi,j clusters in each
iteration using εi and MinPtsj. For any cluster C in {C1, · · · , Czi,j }, find the bounding box R(C) of cluster
C, that is, {xlower = xmin, xupper = xmax, ylower = ymin, yupper = ymax}, and let it represent the
cluster C. Then compute the density of this rectangular cluster density(R(C)), and append the tuple of
rectangle and its density to a list

RectDenList = {(R(C1), density(R(C1))), . . . , (R(Czi,j), density(R(Czi,j)))}.

The RectDenList is then sorted by the density density(R(C1)). Among zi,j rectangles, the algorithm first
picks the first rectangle that has the highest density in a set of rectangles which is denoted by kRectList.
Then compute the overlapping rate βi,j between each rectangle R(Ci) ∈ RectDenList and rectangles R(Cj)
already in kRectList, if the overlapping rate βi,j ≤ β and area(R(Ci)) ≥ Smin, append rectangle R(Ci)
and its density as a pair to the kRectList. Each iteration with different pair of epsilon and MinPts results in
k different clusters, let the (ε,MinPts) be the key of a dictionary Dic which has size of (i× j), and the list
kRectList that has k hotspots be the value of Dic. Then, find the optimal hotspot detectionH∗ among all
hotspots of different epsilon and MinPts in Dic by comparing the average of density. In the end, the set of
hotspots that has highest average density is returned as the best hotspot detection result.

Algorithm 12 FINDPOINTSINRECTS(RECTS, P)

Require: rects: a list of rectangles; P: a list of points;
Ensure: Prects = rects

⋂
P: a list of points that are covered in the rectangles in rects.

1: Prects ← empty list;
2: for each r ∈ rects do
3: find the bounding edges of r, they are xmin, xmax, ymin, ymax;
4: for each p ∈ P do
5: if xmin ≤ x(p) ≤ xmax and ymin ≤ y(p) ≤ ymax then
6: append point p in Prects, i.e. Prects = Prects

⋃
p;

7: end if
8: end for
9: end for

10: return Prects;

Lemma 6. The running time complexity of Algorithm 12 is O(|rects|n).

22 Detecting Rectangular Hotspots in Offline and Streaming Models

CHAPTER 3. PROPOSED ALGORITHMS

Proof. Line 3 and Line 5 to 6 take O(1) running time, so from line 4 to 8, it takes O(n). Therefore, the
algorithm takes O(|rects|(n+ 1)) = O(|rects|n). 2

Algorithm 13 ADAPTEDDBSCAN(E ,MP, Smin, β, P)

Require: E : a list of ε; MP: a list of MinPts; Smin: minimum area of the hotspot; β: the optimal
overlapping proportion of area two rectangles can at most intersect; P: a list of points;

Ensure: optimal hotspot detectionH∗
1: Dic← empty dictionary; RectDenList← empty list; kRectList← empty list;
2: for ε in E do
3: for MinPts inMP do
4: Invoke DBScanBixGraphs(P, ε,MinPts), then we have z clusters {C1, . . . , Cz};
5: for any cluster C in {C1, . . . , Cz} do
6: construct the bounding rectangle of the cluster R(C) and compute the density of R(C),i.e.

density(R(C)), with the points covered in R(C) by invoking FindPointsInRects(R(C), P) ;
7: append (R(C), density(R(C))) to RectDenList;
8: end for
9: sort RectDenList by density(R(C)) decreasingly so that the first item in RectDenList has the

highest density;
10: add the first R(C1) in RectDenList to kRectList;
11: repeat
12: if next R(Ci) in RectDenList intersect rectangles R(Cj) in kRectList at most β of

min(area(R(Ci)), area(R(Cj))), and area of R(Ci) is at least Smin then
13: add (R(Ci), density(R(Ci))) in RectDenList to kRectList;
14: end if
15: until there are k items in kRectList
16: Add (ε,MinPts) , kRectList to Dic;
17: end for
18: end for
19: The optimal set of hotspotsH∗ ← all rectangles in kRectList of the first item in Dic;
20: for (ε, MinPts), kRectList in Dic do
21: Rects← all R(C) in kRectList;
22: compute the average density of Rects, Davg(Rects);
23: if Davg(kRectList) > Davg(H∗) then
24: H∗ ← Rects;
25: end if
26: end for
27: returnH∗

Lemma 7. The running time complexity of Algorithm 13 is O(|E | · |MP|(n logn+ z(k+ n))).

Proof. As mentioned in the preliminaries section, DBScan using box graphs takes O(n logn) running time,
which is at line 4. Because computing the density of a rectangle involves Algorithm 12, which takes O(n)
time when the number of the required rectangle is one at each iteration. The computing time of line 5 to 8 is
O(zn) with line 7 taking onely O(1). The sorting phase in line 9 takes O(n logn) and O(1) for line 10.
The progress in Line 11 to 15 uses two loops, one for each rectangle in RectDenList, one for each rectangle
in kRectList, so it costs O(kz). The adding action in line 16 takes O(1). So for the above iterations, the
running time is

O(|E | · |MP|(n logn+ zn+O(n logn) + kz)) = O(|E | · |MP|(n logn+ z(k+ n))).

Line 19, 21, 22 and 24, each of them costs O(1) time. So from line 19 to 26, it takes O(|E | · |MP|) time.
Overall, this algorithm takes O(|E | · |MP|(n logn+ z(k+ n))) running time. 2

Detecting Rectangular Hotspots in Offline and Streaming Models 23

CHAPTER 3. PROPOSED ALGORITHMS

3.2.2 Adapted DBScan in sliding window model
Before running the DBScan algorithm using box graphs on line 4 in Algorithm 13, a sampling trick is used
to speed up the algorithm in the sliding window model. When we sample a proportion of data to run the
DBScan, the top k densest rectangular hotspots on sampling data are returned, which can be considered as
the hotspots on the whole dataset. This probability of sampling is denoted as the sampling rate Sr ∈ (0, 1),
which has effects on the speed of the algorithm. When Sr = 0.5, it samples half of the data points randomly
and runs the DBScan algorithm on the sampled dataset. The smaller the Sr is, the faster the algorithm runs.
Although a low Sr could speed up the algorithm, it may end up with horrible cluster results since a low
Sr fraction of data could hardly represent the whole dataset. Here, the Sr is set to be 0.25. After this, the
sampled data is used as the point set P in Algorithm 13.

Also, the sliding window shifts for intervals of lengthW and we move it every time for a time interval v.
Random sampling is used at every interval so that when the window moves, as new data is appended and
some of the old data is deleted, data is always sampled before adding to the window. Next, DBScan is used
on sampled points inside each window. However, there are two ways to tune the parameters of DBScan:

• Parameters are only updated once at the beginning and it does not change further.

• Parameters are updated once in a while after observation has been made to the result of the algorithm
in terms of F-score is deteriorating.

Besides the parameter tuning, the number of rectangular hotspots is also changed over time, which is for
the purpose of checking the performance of the algorithm when hotspots change.

24 Detecting Rectangular Hotspots in Offline and Streaming Models

Chapter 4

Experiments and Evaluation

4.1 Setting

Experiments are implemented on a laptop with Intel i7-3687 CPU and 8 GB RAM, programmed via Python
using Jupyter Notebook.

4.2 Dataset

Two datasets are used to evaluate the algorithms, they are the rectangle dataset and the New York taxicab
dataset of TLC record data from the public data of the New York government1, which is abbreviated as the
taxi dataset in this thesis. The generated rectangle dataset could contain an arbitrary number of rectangular
hotspots, background noise data (non-hotspot points), say generate points in three rectangular hotspots and
three background rectangles, as shown in Figure 1.1.

The first dataset introduced is the rectangle dataset. As shown in Figure 1.1, the number of points of the
rectangle dataset used in this thesis is 2300 in total, including 1500 background/noise points and 800 hotspot
points. The whole canvas has a width of 10 and a height of 10. All of the background rectangles have both
width and height of 4 (gray rectangles) while those of rectangular hotspots are both 1 (blue rectangles). The
center point of each background rectangle is at (2, 6), (5, 3), (8, 7), respectively. Background points have a
probability of 0.1 to be anywhere on the canvas (could be in the hotspots), and a probability of 0.3 to be in
each of the background rectangles. The center point of each rectangular hotspot is at (2, 8), (4, 4), (5, 5),
respectively. Hotspot points have an even probability to be in each of the rectangular hotspots, which is 1

3
.

Points in blue are the generated hotspot points, they are normally distributed. The non-hotspot points
are in gray, some of them are in the rectangular bounding box and some of them are scattered. Let m be
the number of generated hotspot points, each point has different probabilities to be in different rectangular
hotspots, which is Pbhotspot = {pb1, pb2, . . . , pbf}, where f is the number of rectangular hotspot.
Those m points are also possible to be scattered and the probability is pbs. Thus

∑f
i=1 pbi + pbs =

1. Therefore, the number of points in each rectangular hotspot can be computed approximately, i.e.
{m ·pb1,m ·pb2, . . . ,m ·pbf,m ·pbs}, but these values are not the exact number since they are randomly
generated. Other than the coordinates, points are also generated with other information, such as datetime
and ID. The datetime is generated randomly within a specific required time (Python DateTime format), and
ID is the generated order (an integer).

Hotspot points and background points can have three spatial relations, which are completely overlapped,
partly overlapped, and disjoint. As shown in Figure 4.1, the grey points are the background points, the blue
points are the hotspot points. The hybrid of three relations in Figure 4.1 is already shown in Figure 1.1,
which is also the rectangle dataset that will be used in this thesis. It is obvious that if hotspot points intersect
with background points (Figure 4.1(c)) it will be easier for clustering algorithms to divide clusters while it is

1https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Detecting Rectangular Hotspots in Offline and Streaming Models 25

CHAPTER 4. EXPERIMENTS AND EVALUATION

harder for the other two relations since they may be seen as one cluster if the clustering algorithm is not
good at separating denser clusters or parameters of it are not suitable.

(a) Rectangles completely overlap with
each other.

(b) Rectangles intersect each other
partly.

(c) Rectangles disjoint completely.

Figure 4.1: Different spatial relations that rectangles have.

Another dataset is the New York taxicab dataset, in which only the part of points that are in the Manhattan
region is used. Points are generated in several rectangular regions to simulate hotspot points. As shown in Fig-
ure 4.2, there are 3000 generated hotspot points in blue, and points in gray are the non-hotspot points from the
New York taxicab dataset (filtered by datetime). The New York taxi dataset contains 19 columns, which are
vendorID, tpep_pickup_datetime, tpep_dropoff_datetime, passenger_count, trip_distance, pickup_longitude,
pickup_latitude, dropoff_longitude, dropoff_latitude, store_and_fwd_flag, RateCodeID, payment_type,
fare_amount, extra, mta_tax, tip_amount, tolls_amount, improvement_surcharge, total_amount. The
useful columns are the ones related to pickup or drop-off datetime, pickup or drop-off longitude and
latitude. For convenience, The longitude and latitude attributes are transformed into x and y coordinates.
Before running algorithms, the radius of the Earth denoted as rE is required for all coordinates. The
rightmost x-coordinate is based on longitude and cosine of the average of the range of latitude, that is
xmax = longitude · rE · cos(average(latitude)). The uppermost y-coordinate is related to the latitude, that is
ymax = latitude · rE. The coordinates of points in between can be easily computed by using the proportion.

Figure 4.2: New York taxi dataset, this figure shows pickup data of January 10th, 2015, from 7 am to 8 am.
Two rectangles are planted as hotspots, which include 3000 points with a half of the chance to be in each of
rectangular hotspots. Hotspot points are shown in blue while the noise/non-hotspot points are in gray.

26 Detecting Rectangular Hotspots in Offline and Streaming Models

CHAPTER 4. EXPERIMENTS AND EVALUATION

4.3 Parameter Selection
In the proposed algorithm section, there are several parameters that are to be determined by experiments,
which will be discussed in this section. For different datasets, parameters for different algorithms are
discussed.

4.3.1 Rectangle Dataset
As for the parameter selection for the RSB algorithm, the number of rectangular hotspots k is set to be 3, the
other three parameters involved are: the sampled number z, the minimum area of the sampled rectangle
S
(RSB)
min , the maximum overlapping rate β(RSB). They are chosen by experiments and comparisons between

different values of the same parameter while other parameters stay still.

RSB algorithm

Sampled number z The number of rectangles that RSB samples is denoted as z, which is actually the
number of sampled pairs of points. It is a function of k, which is the number of clusters. Several linear
functions are considered, they are: z = {k, 2k, 5k, 10k, 50k, 100k, n} where n is the number of points.
Since k is set to be 3 in advance, comparison between different z = f(k) = {3, 6, 15, 30, 150, 300, 2300} of
the same k = 3 could be shown in Figure 4.3.

(a) The density function of F-score, each
curve has different number of sampled
pair of points z on rectangle set.

(b) The density function of precision
of different number of sampled pair of
points z on rectangle set.

(c) The density function of recall of dif-
ferent number of sampled pair of points
z on rectangle set.

Figure 4.3: RSB samples different z pairs of points depending on k, comparisons are made between them
and measured by F-score, precision and recall. We run the algorithm 100 times with the same parameters to
obtain density functions. The z of each curve is described in the caption.

Although lots of pairs of points are sampled, the F-score is not increased rapidly. It can be seen in
Figure 4.3, sampling 2300 pairs of points (rectangles) does not change the majority of F-score, though there
are some having high scores, they only account for a small percentage. That is because the randomness
of sampling points has a deep influence. Although having a large number of sampling pairs does not
increase the F-score greatly, it still increases the probability of having a higher F-score, so the purpose is to
have as many sampled pairs as possible. However, the number of sampled pairs affects the running time
greatly, as shown in Figure 4.4(b), the density functions of the running time of z ≤ 30 are very close. Here
z = 30 = 10k is chosen in order to trade off the requirements that z should be as big as possible to be more
likely to gain a higher F-score and as small as possible to speed up the algorithm.

Minimum area S(RSB)min As shown in Figure 4.5, the F-score, precision, and recall are compared between
different minimum areas. Each of the returned k rectangles should have an area of at least Smin. The
majority of the F-score of a higher S(RSB)min is lower than those having a smaller minimum area, which is

Detecting Rectangular Hotspots in Offline and Streaming Models 27

CHAPTER 4. EXPERIMENTS AND EVALUATION

(a) The density function of running time of different number of sampled pair of
points z on rectangle set.

(b) Let us zoom in the subgraph(a) to
take a close look since curves of smaller
z are not clear.

Figure 4.4: RSB samples different z pair of points depending on k, run this algorithm 100 times with the
same parameters, the density function of running time of each is shown together.

(a) The density function of F-score of
different minimum area S(RSB)min on rect-
angle set.

(b) The density function of precision of
different minimum area S(RSB)min on rect-
angle set.

(c) The density function of recall of dif-
ferent minimum area S(RSB)min on rect-
angle set.

Figure 4.5: The density functions for choosing the minimum area parameter on rectangle set shown in
Figure 4.1, measured by F-score, precision, and recall. Each density function curves are obtained by running
RSB algorithm 100 times with the same parameters.

28 Detecting Rectangular Hotspots in Offline and Streaming Models

CHAPTER 4. EXPERIMENTS AND EVALUATION

quite understandable since larger rectangles have more probability to cover more non-hotspot points and
thus lower the precision, especially when the sampled rectangle is much larger than the generated rectangle.
A fun fact could be found that the performance of the algorithm is extremely random when there is no limit
on S(RSB)min , which is caused by the randomness of the process that chooses pairs of points. According to
Figure 4.5, the majority of F-score of smaller S(RSB)min is higher, especially when Smin = {1, 2, 3}. Here
Smin = 1 is used to reduce the probability to contain more noise points.

(a) The density function of F-score of different min-
imum area S(RSB)min on New York taxi set.

(b) The density function of F-score of different min-
imum area S(RSB)min on rectangle set.

Figure 4.6: The density function of F-score for choosing the minimum area parameter on the rectangle
dataset and the taxi dataset, measured by running time.

However, the running time of every dataset is not affected by the variant of minimum area, which can be
illustrated by Figure 4.6.

Maximum Overlapping Rate β(RSB) Set k = 3, z = 10 · k = 30, Smin = 1, comparison is made over
β(RSB) = {0, 0.1, . . . , 1}, when β(RSB) = 0 it means all rectangles of selected clusters could not intersect
at all, and β(RSB) = 1 means they could be completely overlapped or could have inclusion relation. The
choice of this parameter is given by experiments as shown in Figure 4.7. The density functions of F-score or
precision or recall of different β(RSB) are really similar. It is apparent that there is no such relation between
overlapping rate and F-score, therefore, a compromised value, 0.5 is chosen.

From Figure 4.8, it can also tell that different value of β(RSB) does not affect the running time at all.

Adapted DBScan

The minimum area and maximum overlapping area are also parameters in the adapted DBScan algorithm.
To be clear, superscripts are used to indicate the parameter is for which algorithm such as minimum area
denoted as S(D)

min is for the adapted DBScan and S(RSB)min is for the RSB algorithm.

Minimum area S(D)
min Observation can be made from Figure 4.9 that the best S(D)

min is 1 when it has the
highest F-score and a relatively low running time. This implies that the size of hotspot detecting results is
quite close to the actual hotspots which is a 1× 1 rectangle.

Maximum overlapping rate β(D) Observation can be made from Figure 4.10 that the best maximum
overlapping rate β(D) is 0.9 or 1, to avoid completely overlapping, β(D) = 0.9 is used.

4.3.2 Taxi dataset
RSB algorithm

Sampled number z It uses the same value as the rectangle dataset, z = 10k = 30.

Detecting Rectangular Hotspots in Offline and Streaming Models 29

CHAPTER 4. EXPERIMENTS AND EVALUATION

(a) The density function of F-score of
different minimum area β(RSB) on rect-
angle set.

(b) The density function of precision of
different minimum area β(RSB) on rect-
angle set.

(c) The density function of recall of dif-
ferent minimum area β(RSB) on rect-
angle set.

Figure 4.7: Using the rectangle dataset, and set k = 3, z = 10 · k = 30, Smin = 1, the relation between
overlapping rate and F-score is shown. The density functions are attained by running the RSB with the
parameters mentioned 100 times.

Figure 4.8: Using the rectangle dataset, and set k = 3, z = 10 · k = 30, Smin = 1, the density functions of
running time of different maximum overlapping rate are shown. They are attained by running the RSB with
the parameters mentioned 100 times.

(a) The F-score curve of adapted DBScan on the rect-
angle dataset with different S(D)

min.
(b) The running time curve of adapted DBScan on the
rectangle dataset with different S(D)

min.

Figure 4.9: The F-score and running time curves of adapted DBScan on the rectangle dataset with different
S
(D)
min. The maximum overlapping rate using here is 1.

30 Detecting Rectangular Hotspots in Offline and Streaming Models

CHAPTER 4. EXPERIMENTS AND EVALUATION

(a) The F-score curve of adapted DBScan on the rect-
angle dataset with different β(D).

(b) The running time curve of adapted DBScan on the
rectangle dataset with different β(D).

Figure 4.10: The F-score and running time curves of adapted DBScan on the rectangle dataset with different
β(D). The minimum area using here is 1.

Minimum area S(RSB)min The performance of the RSB algorithm is largely affected by the minimum area
S
(RSB)
min of the sampling rectangles. Since this parameter highly depends on the dataset, this parameter is

set differently for each dataset. The Algorithm 11 shows that it samples k rectangles having an area of at
least S(RSB)min , so a lower S(RSB)min could result in a very small recall since it only finds a small part of points,
also a worse precision because of the false high-density problem brought by the small area. In another way,
a smaller S(RSB)min is possible to lead to a high F-score when it finds correct larger rectangles by accident
though the S(RSB)min is set low, therefore, a smaller S(RSB)min will lead to random performance, as seen in Figure
4.11(a) for New York taxi dataset, where the KDE plots of F-score of the lower minimum area have wider
bandwidth. A thinner bandwidth of the F-score curve implies a more stable performance because that means
the F-score is more concentrated. Also, the KDE curve chart has thinner bandwidth and it peaks at a higher
F-score when the Smin = {1024, 2048}, but the peak of Smin = 2048 is higher. It is in accord with the
actual area of the generated hotspot rectangles, which are 35× 35 = 1225 and 40× 40 = 1600. In Figure

(a) F-score of different minimum area
S
(RSB)
min .

(b) Precision of different minimum area
S
(RSB)
min .

(c) Recall of different minimum area
S
(RSB)
min .

Figure 4.11: KDE plotting for choosing the minimum area parameter on New York taxi dataset, measured
by F-score, precision, and recall.

4.11(b), RSB using lower minimum area often gains higher precision, if the sampled rectangle is small
enough, say covers only one point, which happens to be a hotspot point, then the precision reaches 1.0. But
in return, they will achieve lower recall, as shown in Figure 4.11(c), since the rectangles cover fewer correct
points.

Detecting Rectangular Hotspots in Offline and Streaming Models 31

CHAPTER 4. EXPERIMENTS AND EVALUATION

(a) The F-score curve of adapted DB-
Scan on the rectangle dataset with differ-
ent β(RSB).

(b) The precision curve of adapted DB-
Scan on the rectangle dataset with differ-
ent β(RSB).

(c) The recall curve of adapted DBScan
on the rectangle dataset with different
β(RSB).

Figure 4.12: Using data from 7 a.m. to 8 a.m. on Jan. 10th, 2015, the density functions of F-score and
precison, recall are shown.

Figure 4.13: Using data from 7 a.m. to 8 a.m. on Jan. 10th, 2015, the density function of running time of
different maximum overlapping rate is shown.

32 Detecting Rectangular Hotspots in Offline and Streaming Models

CHAPTER 4. EXPERIMENTS AND EVALUATION

Maximum overlapping rate βR From Figure 4.12, it is shown that the maximum overlapping rate does
not affect the F-score since the density functions of all maximum overlapping rates are quite similar. Also,
Figure 4.13 shows that the running time is not influenced by βR as well. Therefore, any βR will be fine,
βR = 0.5 is chosen here.

Adapted DBScan

Minimum area S(G)
min In Figure 4.14(a), there is a horizontal line that can not be overlooked, that is when

the minimum area is from 22 to 29. The F-score of them holds still while the minimum area increases and
it peaks at that range. The reason for that is that returned rectangles that have the highest density are the
same when the minimum area is required to be bigger than 22 or even 29. Therefore, when the minimum
area S(G)

min is set to be smaller than 4, many small rectangles that will cause false high density are able to
influence the F-score to a great extent. That is also the reason and necessity of selecting this parameter.
When the algorithm is able to rule out those tiny rectangles to prevent the false high-density cases, it is
sufficient for it to obtain better performance. It is observed in Figure 4.14(b) that when the minimum area is

(a) F-score of different minimum area S(G)
min. (b) Running time of different minimum area S(G)

min.

Figure 4.14: Comparison between different value of minimum area measured by F-score and running time.

bigger than 29, the running time decreases, while the F-score with a minimum area smaller than 29 fluctuates
around 0.67 seconds. This is understandable since when the minimum area is big, the rectangles that meet
the requirements are less, the time needed to find the rectangles is less. When the minimum area is set to be
big, the F-score reduces, though running time reduces as well, it is not the best choice. Therefore, the only
requirement for choosing this parameter is to exclude values that are too small. Thus, set it as the mid-value
of the range from 22 to 29, since it is not an integer, take the bigger one, that is 26.

Maximum overlapping rate β(RSB) An interesting fact is found when running adapted DBScan al-
gorithm on taxi set with different maximum overlapping rate, which means that any two of the rectangles
can not have overlapping area more that β(RSB). The experiments are done running on the same result set

(a) F-score of different maximum overlapping rate
β(RSB).

(b) Running time of different maximum overlapping
rate β(RSB).

Figure 4.15: Comparison between different value of maximum overlapping rate measured by F-score and
running time.

of z rectangles, and only maximum overlapping rate changes. In Figure 4.15, the F-score is a horizontal line,
that is because DBScan clusters each point in one cluster so that the clusters do not overlap at all, especially
when DBScan using box graphs finds more rectangular clusters, the probability for two clusters to overlap is
tiny. Therefore, the β(RSB) is not one of the contributing factors. So, let β(RSB) = 0.5.

Detecting Rectangular Hotspots in Offline and Streaming Models 33

CHAPTER 4. EXPERIMENTS AND EVALUATION

4.4 Offline models
From the previous section, several datasets needed are introduced for the upcoming experiments. In this
section, datasets will be used on some offline models where "offline" means that the algorithm receives data
in advance when the sliding window model receives data constantly.

Here, the parameters of rectangle dataset use the values that are evaluated as the best. For instance,
for apdapted DBScan algorithm on the rectangle dataset, S(D)

min = 1, β(D) = 0.9, for RSB algorithm on
the rectangle dataset, z = 10k = 30, S(RSB)min = 1, β(RSB) = 0.5; for apdapted DBScan algorithm on the
taxi dataset, S(D)

min = 64, β(D) = 0.5, for RSB algorithm on the taxi dataset, they are S(RSB)min = 2048,
β(RSB) = 0.5, z = 10 ∗ k = 30.

The performance of three clustering algorithm using the rectangle dataset is compared by comparing
the F-score of each algorithm, which is shown in Figure 4.16. Different colors of points in 4.16 (a) and (b)
represent various clusters, each blue big point in 4.16 (a) is the center point of each cluster. The k parameter
for every algorithm is set to be 3, hence, there are three colors in 4.16 (a) and three rectangles in 4.16 (b)
and (c).

(a) k-means++ algorithm. (b) Adapted DBScan algorithm. (c) RSB algorithm.

Figure 4.16: Comparison between k-means++ algorithm, adapted DBScan algorithm, RSB algorithm.

Dataset used here consists of two non-hotspot rectangles and two smaller hotspot rectangles, and they
could be completely or partly overlapped, or disjoint. It is observed that the F-scores of these three algorithms
are between (0.61, 0.82) at this particular experiment. However, the F-score of k-means++ is only related
to the proportion of hotspot points and the other points, because k-means++ algorithm clusters all points
including noise points. Therefore, the recall for it is always 1.0 and the precision of it only relates to the
proportion of hotspot points among all points. The DBScan using box graphs has the highest F-score, as
the best clustering it gets finds the hotspots, and the rectangles are smaller so that they will not include too
many non-hotspot points, so the precision and recall are both high. The result of the RSB algorithm is quite
random since it samples rectangles randomly, so the performance is random. The running time taken by each
algorithm is completely different, the k-means++ algorithm takes the least amount of time, the adapted
DBScan algorithm comes next, and the RSB algorithm is the most time-consuming one. Nevertheless,
Figure 4.16 shows one specific case, it may not tell the whole story, in Figure 4.17, the density of F-score
and time cost for the adapted DBScan algorithm are given by blue shadowed curves, and those for the RSB
algorithm are given in red shadowed curves.

The F-score of k-means++ algorithm holds still as a constant when the number of points does not
change, so there is no need to analyze the F-score of it. The other two algorithms are compared with
respect to F-score and running time. It can be observed that the F-score of the adapted DBScan algorithm
is concentrated between 0.6 and 0.95, and it peaks at around 0.7. Also, the running time of it is around
[2, 4] seconds. At the same time, the F-score of the RSB algorithm has a similar distribution as the adapted
DBScan algorithm, the majority of them are between 0.4 and 0.75, and the density peaks at around 0.6,

34 Detecting Rectangular Hotspots in Offline and Streaming Models

CHAPTER 4. EXPERIMENTS AND EVALUATION

(a) Density of all F-score running adapted DBScan al-
gorithm and RSB algorithm 100 times on the rectangle
dataset.

(b) Density of time cost when running adapted DB-
Scan algorithm and RSB algorithm 100 times on the
rectangle dataset.

Figure 4.17: The density and time cost contribution of adapted DBScan algorithm and RSB algorithm.

which is less than that for the adapted DBScan algorithm. However, most of them take around [0.75, 1.5]
seconds of running time, which is obviously less than the adapted DBScan algorithm. Therefore, the adapted
DBScan algorithm clearly outperforms the other two algorithms, RSB comes next, which still has better
performance than k-means++, but they both take more running time than k-means++.

Also, when searching for the best pair of ε and MinPts, the DBScan using box graphs can always find
the ε that is very close to the width or height of the actual hotspots.

Now that the observation has been made, validation could be made by comparing three algorithms
using the New York taxi dataset. For convenience, the dataset in Figure 4.2 is employed. The hotspot area
simulates cases that there is an event at that particular region which leads to a large number of people calling
a taxi to leave or to go because it uses the pickup data here. For example, the hotspot area is the residential
area and the residents need to go to work or school during rush hour in the morning, or it is a stadium and
people tend to call a taxi to leave when the concert ends. Here show the clustering results of three algorithms
in Figure 4.18. It is easy to tell that the clustering result of k-means++ algorithm is less than satisfactory,
it linearly separates k clusters among all points. Using the optimal parameters from the previous section,
the adapted DBScan algorithm and the RSB algorithm both perform better than k-means++ algorithm.
Although in 4.18(b), only one hotspot is detected completely while a small part of the other one is detected,
the high precision also causes a better F-score.

Similarly, more results could provide sufficient evidence for the performance of all algorithms. The KDE
plot of the F-score of running the adapted DBScan and RSB is shown for this taxi dataset in Figure 4.19. It
is illustrated in 4.19(a) that the majority of the F-score of the adapted DBScan algorithm is concentrated at
around 0.7, and the running time is between 46 and 61 seconds while some outliers take over 70 seconds.
Conclusions can be drawn that the performance of the adapted DBScan algorithm remains stably high, but it
takes more time when confronted with a larger number of data points.

Then, the running time of a different number of points is shown in Figure 4.20, which shows that when
the number of points increases, the running time of all three algorithms increases. However, the running
time of adapted DBScan increases rapidly as the number of points increases.

Detecting Rectangular Hotspots in Offline and Streaming Models 35

CHAPTER 4. EXPERIMENTS AND EVALUATION

(a) k-means++ algorithm. (b) Adapted DBScan algorithm. (c) RSB algorithm.

Figure 4.18: Comparison between k-means++ algorithm, adapted DBScan algorithm, RSB algorithm.

(a) The KDE plot of the F-score of running the adap-
ted DBScan and RSB 100 times on the taxi dataset.

(b) The KDE plot of the running time of running
the adapted DBScan and RSB 100 times on the taxi
dataset.

Figure 4.19: The F-score and running time of data using adapted DBScan and RSB on the taxi dataset.

36 Detecting Rectangular Hotspots in Offline and Streaming Models

CHAPTER 4. EXPERIMENTS AND EVALUATION

Figure 4.20: Running time for three algorithms with different number of points.

4.5 Sliding Window Model
In this section, instead of fixing the dataset in a specific time range, it uses the sliding window and moves to
the next time slot every interval, so that it is able to receive data continuously. Compared to the generated
rectangle dataset, the taxi dataset is more suitable to present the result for the sliding window since it collects
the real data and is able to reflect some fun facts, while the timestamp of the points in the rectangle dataset is
randomly generated. It is used here for the purpose of getting to know the trend of the changing distribution
of taxis at a specific range of time and how the algorithm will perform when the data is changing.

To speed up the process, the dataset was sampled by a sampling rate Sropt, set it to be 0.25, which means
that approximately 25% of the data is used in the algorithm. After the algorithm running on a fraction of the
data, a few rectangular hotspots are reported. In the end, F-score is computed on all points instead of only the
sampled points. For example, there are 1000 points in total in P = {p1, . . . , p1000}, which is approximately
250 points after sampling, Psample. The algorithm clusters on Psample and returns a predicted rectangle
listRpredicted of 3 rectangles as hotspots. Say the generated rectangle list isRgenerated, and points from
1000 points in all generated rectangles are presented as points(Rgenerated). The precision is computed
by,

precision =
points(Rpredicted

⋂
Rgenerated)

points(Rpredicted)
.

And the recall is computed by,

recall =
points(Rpredicted

⋂
Rgenerated)

points(Rgenerated)
.

So the F-score is computed on 1000 points instead of only 250 points.
Several special cases should be shown when one attempts to figure out the hotspot condition of taxi

pickups, such as at the rush hour or the off-peak hour of weekdays and weekends. Thus, four days are used
as representatives, they are Friday, Saturday, Sunday, and Monday. The rush hours could be very different
between weekdays and weekends, for example, taxis are often to be called at around 7 to 10 in the morning
and 4 to 7 in the afternoon on a weekday, but on weekends or holidays, people tend to obtain more sleep in
the morning and have fun at night. There are also some tiny differences from each day. Confronted with
different densities of data of the different times of days, algorithms should have the ability to recognize the
real hotspots or even the potential ones.

Take four specific days as examples, the F-score of data using adapted DBScan algorithm without the
sliding window is shown in Figure 4.21, from which bigger fluctuations can be observed. That is because
the optimal ε and MinPts are chosen only for that specific distribution of data at the beginning, but as
the window slides, data changes, so the parameters are no longer suitable. Thus, another condition is
that parameters are updated a few times after the observation of results that only update parameters at the
beginning. The pruning time could be set to the time when the taxi data fluctuates a lot during the rapid

Detecting Rectangular Hotspots in Offline and Streaming Models 37

CHAPTER 4. EXPERIMENTS AND EVALUATION

(a) Using data on Friday, January 9th, 2015.

(b) Using data on Saturday, January 10th, 2015.

(c) Using data on Sunday, January 11th, 2015.

(d) Using data on Monday, January 12th, 2015.

Figure 4.21: The F-score of data using adapted DBScan in sliding window. Sliding window moves every 30
minutes, the window size is one hour. Parameters are only updated at the beginning and it does not change
from then on.

38 Detecting Rectangular Hotspots in Offline and Streaming Models

CHAPTER 4. EXPERIMENTS AND EVALUATION

change of rush hour and after it, or the point that the F-score is incredibly low. As shown in Figure 4.22,
different update time is customized for each day.

(a) Using data on Friday, January 9th, 2015. The ε and MinPts update at 10 am, 4 pm, 7 pm, 9 pm, which
are indicated at the red arrows.

(b) Using data on Saturday, January 10th, 2015. The ε and MinPts update at 10 am, 12 pm, 4 pm, 7 pm.

(c) Using data on Sunday, January 11th, 2015. The ε and MinPts update at 10 am, 4 pm, 7 pm, 9 pm.

(d) Using data on Monday, January 12th, 2015. The ε and MinPts update at 10 am, 4 pm, 7 pm, 9 pm.

Figure 4.22: The F-score of data using adapted DBScan in sliding window with updating ε and MinPts.
Sliding window moves every 30 minutes, the window size is one hour.

Next, taxi data of festivals, such as Christmas or new year, are also worthwhile parts to make an
observation. The F-score line chart of Christmas in 2015 without updates is shown in Figure 4.23(a), from
which can be seen that the F-score fluctuates more wildly within some periods, such as from 2:30 am
to 8 am, from 3 pm to 9 pm, thus parameters should be updated at those specific moments in order to
make fluctuations smaller, as shown in Figure 4.23(b). Despite of the fluctuation, the average F-score is
high as well even without updating parameters, which means that the hotspot regions on that day change
gently or even slightly, so using the same parameters is sufficient. In Figure 4.23(c), the F-score list with
parameter updates subtracts that without parameter updates. The positive value in Figure 4.23(c) illustrates
that parameters after updating are more suitable for that period of data, and negative values mean that the
parameters without updates are better. It is clearly depicted that updating parameters improve the F-score
to a great extent since lots of subtractions are bigger than zero, and most of the absolute value of positive
subtractions is a lot bigger than that of negative subtractions. Moreover, most of them increase by more
than 0.1. Instead of updating the parameters at some specific time, what if they are pruned at every time
point, which is shown in Figure 4.24. It shows clearly that the F-score line is much smoother than that in
Figure 4.23(b). Although it performs better, the running time is too much and unaffordable, especially in the
sliding window model.

Detecting Rectangular Hotspots in Offline and Streaming Models 39

CHAPTER 4. EXPERIMENTS AND EVALUATION

(a) Using taxi data on Christmas in 2015. The ε andMinPts is not updated. A red horizontal line of the
average F-score is added, which is y = 0.7019.

(b) Using taxi data on Christmas in 2015. The ε and MinPts update at 0 am, 3 am, 9 am, 12 am, 7 pm,
which are indicated by the gray vertical lines. A red horizontal line of the average F-score is added, which is
y = 0.7257.

(c) Subtract the F-score list without updates from that with updates. Gray vertical lines are the update time,
the black dashed horizontal line indicates y = 0, green dashed horizontal lines are y = 0.3 and y = −0.3,
and the average of all is added as the red horizontal line, which is y = 0.0238.

Figure 4.23: The F-score of data on Christmas, 2015 using adapted DBScan in sliding window with updating
ε andMinpts. Sliding window moves every 30 minutes, the window size is one hour.

40 Detecting Rectangular Hotspots in Offline and Streaming Models

CHAPTER 4. EXPERIMENTS AND EVALUATION

Figure 4.24: Update parameters at every point, the F-score of data on Christmas, 2015 using adapted
DBScan in sliding window is much smoother.

Besides a fixed dataset of generated rectangles, experiments are done on a dataset that is planted a
various number of rectangles, the F-score comparison is shown in Figure 4.25. Three of the clustering results
of the adapted DBScan on Christmas, 2015 is shown, the one with only one rectangular hotspot is shown in
Figure 4.26, the one with two and three rectangular hotspots are shown in Figure 4.27 and Figure 4.28.

To have a better view of the hotspots of the taxi dataset, a 2-D kernel density estimate is a fairly good
visualization tool. The data in Figure 4.2 is used to create a KDE plot, and some of them can be seen in
Figure 4.29. Red rectangles of the figure are the predicted hotspots using sampled data points, and the
F-score is computed on the whole dataset without sampling. Black rectangles are the generated hotspots, the
F-score is high when all red rectangles cover only and completely all black rectangles. The main focus of
Figure 4.29 is the rainbow contour. It can be noticed in 4.29(c) that there are other regions that have the
same color as hotspot rectangles, which means that they have the same high density as hotspots. This is due
to the fact that there are events in those regions if the density is high the whole day. If the density of those
regions is high for a certain period, then they are most likely to be the business or office districts. Hence, it
detects potential hotspots and it is of great importance.

Detecting Rectangular Hotspots in Offline and Streaming Models 41

CHAPTER 4. EXPERIMENTS AND EVALUATION

(a) The dashed vertical lines are the timing that the number of rectangular hotspots changes. At the
beginning, there are 2 rectangular hotspots. At the time marked by yellow, green, and blue lines, the number
of hotspots changes to be 1, 2, 3, respectively.

(b) The F-score after updating at the dashed vertical lines.

(c) The subtration between the previous two figures.

Figure 4.25: Using dynmaic planted rectangle dataset on the taxi dataset on Christmas, 2015, the comparison
measured by F-score is shown.

42 Detecting Rectangular Hotspots in Offline and Streaming Models

CHAPTER 4. EXPERIMENTS AND EVALUATION

Figure 4.26: Using dynmaic planted rectangle dataset on the taxi dataset. The number of hotspot in the
dataset here is onely one. In this sliding window, data is from 8 p.m. to 9 p.m.on Christmas, 2015. A
2-dimension KDE is shown.Detecting Rectangular Hotspots in Offline and Streaming Models 43

CHAPTER 4. EXPERIMENTS AND EVALUATION

Figure 4.27: Using dynmaic planted rectangle dataset on the taxi dataset. The number of hotspot in the
dataset here is two. In this sliding window, data is from 8 p.m. to 9 p.m.on Christmas, 2015. A 2-dimension
KDE is shown.
44 Detecting Rectangular Hotspots in Offline and Streaming Models

CHAPTER 4. EXPERIMENTS AND EVALUATION

Figure 4.28: Using dynmaic planted rectangle dataset on the taxi dataset. The number of hotspot in the
dataset here is three. In this sliding window, data is from 8 p.m. to 9 p.m.on Christmas, 2015. A 2-dimension
KDE is shown.Detecting Rectangular Hotspots in Offline and Streaming Models 45

CHAPTER 4. EXPERIMENTS AND EVALUATION

(a) The starting time of this sliding win-
dow is 9:30 p.m., the window size is
one hour. The red color represents the
densest area. In this subgraph, three pre-
dicted rectangles highly overlapped with
the generated ones, which means that
they have higher precision and recall,
which results in a higher F-score.

(b) The starting time of this sliding win-
dow is 2 p.m., the window size is one
hour. In this subgraph, the yellow/orange
area covers more area, which means that
lots of the places have higher density.

(c) The starting time of this sliding win-
dow is 11 p.m., the window size is one
hour. In this subgraph, there is another
area as dense as the generated hotspots,
which is the potential hotspot. It is de-
tected by the algorithm, though it leads
to a low F-score.

Figure 4.29: Using data on Saturday, January 10th, 2015, without the updates. Red rectangles are the
predicted rectangular hotspots, and the black rectangles are the generated hotspots.

46 Detecting Rectangular Hotspots in Offline and Streaming Models

Chapter 5

Conclusions

By the result of thesis we have shown that

• Random Sampling vs. Adapted DBSCan: Random sampling where we sample a set of pair of
points and then find the most qualitative rectangles is faster than the adapted DBScan that we propose
in this thesis. However, the result that we obtain using the adapted DBScan has a better performance
in terms of precision, recall.

• Randomness in Random Sampling: In the random sampling approach we randomly sample pairs
of points and so, the result of multiple runs might not be the same. On the other hand, the adapted
DBScan is a deterministic algorithm and thus, the result of multiple runs are similar.

• Adapted DBScan in the sliding windows model: We observe that if we frequently learn the para-
meters of the adapted DBScan, the performance of the adapted DBScan is much better than if we
train its parameters only at the beginning and fix it during the stream. This is mainly because different
windows in the sliding windows model may have different hotspots (e.g., the hotposts during the
runsh hour might be different than the hotspots during the normal hours, therefore, if we train the
parameters of the adapted DBScan, the algorithm can adapt itself to dynamic changes). However, it is
not clear to us how often we need to train the parameters of the adapted DBScan for different datasets.
One approach would be if we see that the reported hotspots are deviating from ones we have been
reporting, this may be a hint that we should train the parameters again.

• Semi-supervised learning: In general, detecting hotspots is an unsupervised learning where we do
not have any label for the correct and incorrect hotspots. But we could use labels when training to
evaluate the algorithms. We think having a partial data that our algorithm can use would help the
performance of our algorithms.

Detecting Rectangular Hotspots in Offline and Streaming Models 47

Acknowledgment

I want to give big thanks to my supervisor Morteza Monemizadeh who has been provided lots of advice and
I have learned a lot from him. Also, I am grateful to the committee members Marcel Roeloffzen and Nikolay
Yakovets, thank you for attending my defense. Last but not least, thanks to my super supportive families
who have offered me so much patience and love, and always care about me even if I was abroad. Especially
my mother, Hongjuan Song, it is her strong willpower that influences me and also pushes me all the time.

48 Detecting Rectangular Hotspots in Offline and Streaming Models

Bibliography

[1] Hot Spot wikipedia description. https://en.wikipedia.org/wiki/Hot_spot_
(computer_programming). Accessed: 2021-09-30. 19

[2] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. Technical
report, Stanford, 2006. 6, 7

[3] Feng Cao, Martin Estert, Weining Qian, and Aoying Zhou. Density-based clustering over an evolving
data stream with noise. In Proceedings of the 2006 SIAM international conference on data mining,
pages 328–339. SIAM, 2006. 5

[4] Moses Charikar, Vaggos Chatziafratis, and Rad Niazadeh. Hierarchical clustering better than average-
linkage. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2291–2304.
SIAM, 2019. 5

[5] Moses Charikar, Vaggos Chatziafratis, Rad Niazadeh, and Grigory Yaroslavtsev. Hierarchical clustering
for euclidean data. In Kamalika Chaudhuri and Masashi Sugiyama, editors, The 22nd International
Conference on Artificial Intelligence and Statistics, AISTATS 2019, 16-18 April 2019, Naha, Okinawa,
Japan, volume 89 of Proceedings of Machine Learning Research, pages 2721–2730. PMLR, 2019. 5

[6] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream statistics over
sliding windows. SIAM J. Comput., 31(6):1794–1813, 2002. 15

[7] Mark de Berg, Ade Gunawan, and Marcel Roeloffzen. Faster db-scan and hdb-scan in low-dimensional
euclidean spaces. arXiv preprint arXiv:1702.08607, 2017. 5

[8] Drleft at English Wikipedia. Comparison of 1d histogram and kde, 2010. [Online; accessed November,
2021]. iv, 17

[9] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for
discovering clusters in large spatial databases with noise. In kdd, volume 96, pages 226–231, 1996. 5,
6, 8

[10] Junhao Gan and Yufei Tao. Dbscan revisited: Mis-claim, un-fixability, and approximation. In
Proceedings of the 2015 ACM SIGMOD international conference on management of data, pages
519–530, 2015. 5

[11] Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan. Clustering
data streams: Theory and practice. IEEE transactions on knowledge and data engineering, 15(3):515–
528, 2003. 5

[12] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Cure: An efficient clustering algorithm for large
databases. ACM Sigmod record, 27(2):73–84, 1998. 5

[13] Ade Gunawan and M de Berg. A faster algorithm for dbscan. Master’s thesis, 2013. ii, 4, 5, 6, 19

Detecting Rectangular Hotspots in Offline and Streaming Models 49

https://en.wikipedia.org/wiki/Hot_spot_(computer_programming)
https://en.wikipedia.org/wiki/Hot_spot_(computer_programming)

BIBLIOGRAPHY

[14] Manoj Kumar and Ashish Sharma. Mining of data stream using “ddenstream” clustering algorithm.
In 2013 IEEE International Conference in MOOC, Innovation and Technology in Education (MITE),
pages 315–320. IEEE, 2013. 5

[15] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):129–
137, 1982. 6

[16] Nass, Steven. How to steal a election, 2015. [Online; accessed November, 2021]. iv, 3

[17] Emanuel Parzen. On Estimation of a Probability Density Function and Mode. The Annals of
Mathematical Statistics, 33(3):1065 – 1076, 1962. 16

[18] Patrizio Pelliccione, Eric Knauss, S. Magnus Ågren, Rogardt Heldal, Carl Bergenhem, Alexey Vinel,
and Oliver Brunnegård. Beyond connected cars: A systems of systems perspective. Science of
Computer Programming, 191:102414, 2020. 1

[19] David MW Powers. Evaluation: from precision, recall and f-measure to roc, informedness, markedness
and correlation. arXiv preprint arXiv:2010.16061, 2020. 15

[20] Murray Rosenblatt. Remarks on Some Nonparametric Estimates of a Density Function. The Annals of
Mathematical Statistics, 27(3):832 – 837, 1956. 16

[21] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu. Dbscan revisited,
revisited: why and how you should (still) use dbscan. ACM Transactions on Database Systems (TODS),
42(3):1–21, 2017. 5

[22] Julius Strake, Franz Kaiser, Farnaz Basiri, Henrik Ronellenfitsch, and Dirk Witthaut. Non-local impact
of link failures in linear flow networks. 21(5):053009, may 2019. 1

[23] J Tuzo Wilson. A possible origin of the hawaiian islands. Canadian Journal of Physics, 41(6):863–870,
1963. 19

50 Detecting Rectangular Hotspots in Offline and Streaming Models

	Contents
	List of Figures
	List of algorithms
	Introduction
	Motivation and Problem Statement
	Related Works

	Preliminaries
	Centroid Based Clustering
	k-means
	k-means++

	Density Based Clustering
	DBScan
	Boxgraph

	Sliding Window
	F-score
	Kernel Density Estimate

	Proposed Algorithms
	Random Sampling Based Algorithm
	Adapted DBScan algorithm
	Adapted DBScan in Offline Model
	Adapted DBScan in sliding window model

	Experiments and Evaluation
	Setting
	Dataset
	Parameter Selection
	Rectangle Dataset
	Taxi dataset

	Offline models
	Sliding Window Model

	Conclusions
	Bibliography

