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Detection of self-labeled emotions from social media texts

Lukas Malik1

Abstract
Inferring the emotional state of an author from a
written document has been a long-standing task
in Natural Language Processing. Most datasets
rely on annotations provided by readers. However,
annotations provided by readers are problematic
as emotions are a subjective experience. Instead,
this work uses a self-labeled dataset provided by
the social media platform Vent to train and com-
pare state of the art natural language models. I
conduct a comparison on three test datasets - a
random sample, a sample with new users and
a dataset from a later period of time. The best
performing classifier is a roBERTa model, that
I provide as a Huggingface model1. The clas-
sifiers are compared to human performance on
a small sample using Amazon Mechanical Turk
workers. Humans perform significantly worse
than all classifiers, questioning the validity of an-
notation by human readers. I perform additional
validation on the ISEAR and the EmoInt dataset.
Performance overall is worse than that of a BERT
model trained on the ISEAR dataset but outper-
forms the ISEAR trained model on the emotion
Anger. On the EmoInt dataset used in the Se-
mEval competition, performance is comparable
to Median Team performance but worse than the
specialized architecture used by the winning team.
I discuss possible reasons for the results as well
as consequences for the field of textual emotion
recognition.

1. Background
Emotions are a central component of human communication
and the main drivers of behaviour (Hancock et al., 2007).
Despite their importance, understanding what an emotion
is or what even counts as an emotion has proven difficult.
Many psychologists have tried to determine a fixed set of
emotions - often called basic emotions, that are independent
of culture, time and the individual and therefore offer uni-
versality (Ekman, 1999). However, the universality of most

1https://huggingface.co/lumalik/
vent-roberta-emotion

if not all of the emotion frameworks has been called into
question (Ortony & Turner, 1990) and what can and can
not be considered a basic emotion is therefore still up for
debate. In addition to the problem of constructing frame-
works to understand emotion comes the fact that emotions
are a subjective experience. While other people can pick up
on cues indicating the presence or absence of an emotion,
these cues can be missed or misunderstood, often leading to
miscommunication.

Humans express emotions in a variety of mediums. In recent
years there has been a steady shift in communication towards
online communication, which mostly occurs through text
messages (Scott et al., 2017). As more and more interactions
occur in the digital space, online texts offer an additional
lens through which to observe social phenomena. Under-
standing emotions from texts could offer important insights
into social phenomena (Garcia & Rimé, 2019) and might
reveal possibilities for intervention to counter phenomena
like political polarization (Schweitzer et al., 2020; Garcia
et al., 2015) or hate speech (Zhang & Luo, 2018).

Emotion detection from texts is a form of sentiment analysis,
where the objective is to detect several emotions in the text.
The number of emotions should be more than two because
a set of only two principal emotions would revolve around
valence. Because there are limits in expressing emotions
through texts, the emotions detected by the reader might not
be the same as the emotion attributed by the author. Text
inherent factors that can influence the difficulty of emotion
detection from the text are the valence of the underlying
emotion, the medium of the text, language proficiency of
the author and last but not least, how good the person is
at expressing their emotions. In addition to text inherent
factors, the accuracy of the reader might also be influenced
by individual factors like stress and anxiety (MacCann &
Roberts, 2008).

Few datasets have been curated, to tackle emotion classifi-
cation tasks. The most prominent was featured in SemEval
- a yearly ongoing series of natural language processing
challenges that aims to push the state of the art in seman-
tic analysis and help create high quality annotated datasets.
Sentiment analysis tasks were featured as early as 2016.
Here the task was to assign positive or negative sentiment
and not fine-grained emotion labels (Rosenthal et al., 2017;
Nakov et al., 2019). However, sentiment detection as de-

https://huggingface.co/lumalik/vent-roberta-emotion
https://huggingface.co/lumalik/vent-roberta-emotion
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tecting positive or negative valence is considered an easier
task than emotion detection (Mohammad et al., 2018). The
first dataset that concerned emotion detection to my knowl-
edge was the LiveJournal dataset that was collected in 2009
(Keshtkar & Inkpen, 2009). The dataset contains over 815
thousand blog entries, self-annotated with one of 132 moods.
The first dataset in SemEval that concerned emotion detec-
tion was the EmoInt dataset (Mohammad et al., 2018). The
dataset comprises randomly chosen tweets (Mohammad
& Bravo-Marquez, 2017; Mohammad et al., 2018) written
between 2016 and 2017. The tweets were then filtered ac-
cording to four basic emotions - anger, fear, joy and sadness
and for three languages English, Arabic and Spanish. There
is also a multi-label version of the annotations, annotating
each tweet with the presence or absence of one or more
of eleven non-exclusive emotions. Crowdsource workers
performed all annotations, and seven workers annotated
each tweet. Each tweet was labeled with an intensity score
for one of the emotions. This intensity score was calcu-
lated by asking crowdworkers to order tweets by intensity
concerning one of the four emotions.

Another related task introduced in the year 2018 is emoji
detection (Barbieri et al., 2018). Emoji detection can be
regarded as a particular form of emotion detection because
emojis are attributed by the author but are also part of the
text message itself. Texts with emojis are also unique,
as emojis are mainly used under specific circumstances
- namely, when communication is casual and the valence of
the emotion is high. Furthermore, emojis tend to be used
more frequently in positive situations (Bai et al., 2019). For
example, very few people would use emojis in a business
context (Ćorić et al., 2018) or when writing a neutral docu-
ment. Furthermore, because emojis are also part of the text,
they can also change the meaning of a text.

At this point, it is important to note that all of the previously
mentioned data sets and competitions with the exception of
the LiveJournal dataset only consider emotion labels coming
from external annotators. The labels are not self-labeled
by the author. Emoji prediction datasets form an exception
under the limitations provided in the previous paragraph.
We summarize that data, where authors annotate their texts
with emotion labels, are mostly a blind spot for research in
emotion detection.

The data used to train the emotion classifier in this work
comes from the social media platform Vent (Lykousas et al.,
2019). Vent is a platform that requires users to tag their
posts with an emotional label. Vent is built on the principles
of self-expression, support, life enrichment, fun and privacy
(Lykousas et al., 2019). The data set counts a total of over 33
million posts coming from over 900 thousand users collected
over a period from October 2013 to October 2018 (Lykousas
et al., 2019). Because users need to tag their posts, this

dataset allows researchers to train a classifier to detect self-
labeled emotions. There are a total of 63 emotions. Most do
not fall into established basic emotions and instead are what
are called seasonal emotions, indicating some event. For a
detailed analysis of the emotion labels, I refer to section 2.

In addition to labeled data, emotion detection from texts
also requires efficient natural language processing algo-
rithms. Early work in emotion detection used weighted
term frequency counts or word concurrences to represent
texts (Sundaram et al., 2021; Winarsih et al., 2016; Mohsen
et al., 2016). It has been demonstrated that Support Vector
Machines are very effective with these frequency count fea-
tures (Mohsen et al., 2016). One of the most widely used
frequency word count techniques is term frequency inverse
document frequency (TF-IDF). Here the frequency of the
word is weighted inversely by how often the word occurs in
documents (Ramos et al., 2003). The idea here is that words
that appear in every document are less important than words
that appear in only a few documents. However, frequency
count methods come with some drawbacks. First, they do
not incorporate a concept of word similarity (Qaiser & Ali,
2018). Second, they operate directly in word count space
and might be very slow for large vocabularies (Qaiser &
Ali, 2018). Third, they assume that word counts provide
evidence of similarity (Qaiser & Ali, 2018). Last but not
least, another problem of frequency count is that any word
order is lost in this representation.

Because of these shortcomings, other forms of text represen-
tations have been developed. Another, more elaborate rep-
resentation comes in the form of word embeddings, where
words map to a multidimensional vector such that similar-
ities between words correspond to the similarity in space
(Mikolov et al., 2013). These embeddings derive from a sin-
gle layer neural network that tries to predict the next word,
given the previous word (Mikolov et al., 2013). In contrast
to TF-IDF where the whole text maps to a vector, word em-
beddings map individual words to vectors. Bojanowski et al.
(2016); Joulin et al. (2016) enrich these word embeddings
by using character or subword information to enhance clas-
sification. To obtain a representation for a document, we can
calculate the average of the word vectors in the document
(Bojanowski et al., 2016; Joulin et al., 2016). One draw-
back of this approach is that the resulting representation no
longer considers word order. However, Bojanowski et al.
(2016); Joulin et al. (2016) demonstrated that text embed-
dings derived from the simple average word embeddings in
a document could beat more sophisticated methods. More
sophisticated methods include Long Short Term Memory
models (LSTM) or Convolutional Neural Networks trained
on individual word embeddings (Bojanowski et al., 2016;
Joulin et al., 2016).

In the last few years, there has been a shift towards trans-
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former models (Vaswani et al., 2017) for natural language
processing to directly classify texts (Tenney et al., 2019;
González-Carvajal & Garrido-Merchán, 2020). The most
frequently used architecture is that of a bidirectional encoder
representation from transformers, also known as BERT (De-
vlin et al., 2019). BERT builds on the concepts of masked
language modelling, next sentence prediction and the us-
age of multi-head self-attention and subword tokenization.
BERT was trained on two large corpuses - the Wikipedia
corpus, with 2500 million words and the BookCorpus, with
800 million words. The model is supposed to be fine-tuned
on specific tasks (Devlin et al., 2019).

Masked language modelling is a technique where individ-
uals words in texts are masked from the network, and the
network aims to correctly determine the masked word using
all of the non-masked words in the sentence. This way,
BERT ensures that the context of the word is sufficiently
considered. This approach is bidirectional, meaning that
words previous to the masked word and the words after the
masked word are taken into consideration by the network.
In addition to masked language modelling, BERT is also
trained using next sentence prediction. In a next sentence
prediction task, given two sentences, BERT has to determine
whether the two sentences follow each other or whether two
random sentences were concatenated. This approach is use-
ful to enhance performance in question answering tasks.
Self-Attention is a method that for each word encourages
the network to look for other words that relate to that word
(Alammar, 2018). Multi-Head self-attention creates multi-
ple self-attention representations, with each representation
first randomly initialized and then learned during training.
Multi-Head self-attention allows the network to learn from
multiple representations and enhances the models’ ability
to focus on different positions (Alammar, 2018). Last but
not least, subword tokenization describes a method that is
used when the network does not know a word. In this case,
the word is divided into subwords known by the network.
Subword tokenization is especially useful when it comes
to grammar, as slight deviations would otherwise create
unknown words (Devlin et al., 2019).

Since the first inception of the BERT architecture, much
research has focused on adjusting the architecture to the
various needs of natural language processing researchers.
These adjustments included, increasing the size and the
number of parameters (Lan et al., 2020), decreasing the
number of parameters (Sanh et al., 2019; Sun et al., 2020) or
using a more flexible tokenizer and improved pre-training
regime (Liu et al., 2019). Especially the vocabulary present
in the BERT tokenizer has proven to be limited in social
media contexts (Delobelle & Berendt, 2019). One limitation
is that emojis are not included as part of the tokenizer and
should be added manually to improve performance on social
media data (Delobelle & Berendt, 2019). A recent trend in

tokenization has been to move from word piece tokenizers
to byte-pair-tokenizers as they offer more flexibility (Liu
et al., 2019). I aim to compare the previously mentioned
classification algorithms and test their efficacy in detecting
self-labeled emotions in the Vent social media dataset.

The main contributions of this work to the literature on
emotion detection are:

• I train and compare popular models on emotion clas-
sification from text data, self-labeled by the authors
of the text on a social media platform. I focus on five
emotions namely Anger, Happiness, Sadness, Fear and
Affection. I perform tests on three test sets: a random
test set, a user set with users not contained in the train
set, and a time test set with posts published after the
train set. The best model is accessible via the Hugging-
face model hub.

• I compare the performance of the classifier to human
performance. Human Performance is assessed with a
random set of texts annotated by Amazon Mechanical
Turk Workers. For more information on the sample, I
refer to section 2.

• Additionally, I test the performance of this classifier on
two unseen datasets. First, on the ISEAR dataset (Dan-
Glauser & Scherer, 2012). Second, on the EmoInt
dataset used on task 1 of the emotion detection chal-
lenge from SemEval 2018 (Mohammad et al., 2018).
The ISEAR dataset comes from a different time epoch
and describes emotional situations (Dan-Glauser &
Scherer, 2012). The tweets from the EmoInt dataset
are shorter due to the character restrictions and encour-
age the usage of hashtags. I chose these two datasets
to demonstrate the robustness of the classifier.

2. Material and Methods
The Vent dataset contains a total of 33,623,415 posts and
emotion labels coming from 934,095 users. English is the
most frequently used language. I assessed language fre-
quency by using the Python langdetect library (Dan-Glauser
& Scherer, 2012) on a random sample of 10,000 posts. The
distribution is depicted in figure 4 in the appendix. The basic
emotion labels in Vent are Feelings, Surprise, Happiness,
Creativity, Sadness, Fear, Affection, Anger and Positivity.
Additionally, there are also 53 seasonal emotions that can
be selected for a limited time like LGBT+ Pride Ramadan
and many more.

Nikolas Hammerl conducted most of the preprocessing of
the data. This included filtering the dataset for the basic emo-
tions Anger, Affection, Happiness, Sadness, Surprise and
Fear and splitting the data in train and test sets. The emo-
tions were selected on the basis of Ekman’s basic emotions
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Anger, Joy, Disgust, Sadness, Surprise and Fear (Ekman,
1999). Joy is replaced by Affection and Happiness. Disgust
is not available as a label. After filtering the dataset for
these basic emotions, the data comprises 11,231,491 posts
with their respective labels. The data was split into one train
and three test sets - a random set, a user set with users not
present in the train set and a time test set consisting of posts
published after the train set. The user and time test set were
composed in such a way that they each contain roughly 10
percent of the data. The train set comprises 7,945,618 posts;
the random test set 1,093,109 posts, the user set 1,102,291
posts, and the time set 1,090,473 posts.

My team and I established a baseline for human perfor-
mance using the members of our research group, see table
6 in the appendix. For the baseline, 60 samples were ran-
domly drawn and annotated by six coworkers. Following
this baseline experiment, we decided to exclude Surprise as
there was little agreement between the annotators and the
labels of the authors. Also, Surprise does not contain posi-
tive or negative valence and is therefore hard to categorize.
Furthermore, ”Surprise” was the least frequent label with
only 244,753 samples. After removing Surprise from the
dataset, I filtered for English posts using langdetect (Shuyo,
2010). I also introduced a minimum character requirement
of four characters.

For the second experiment we wanted to obtain a better
estimate on the accuracy of humans on this dataset. We con-
ducted an experiment with 1000 randomly sampled posts
- 200 for each of the category (Happiness, Sadness, Fear,
Affection and Anger). In addition to the 1000 posts, we hand-
picked 15 posts as control questions that we considered easy
- three for each emotion label. We divided the posts into 33
questionnaires. Ten questionnaires had 11 posts and three
control questions and 23 questionnaires with ten posts and
three control questions each. We introduced an additional
requirement of a maximum of 500 characters so that work-
ers do not spend too much time on one sample. We used
Amazon Mechanical Workers to conduct the annotation. A
total of five workers annotated each sample. We used the
control questions to identify bad workers. If two out of the
three control questions were answered wrong by a worker, I
labeled the worker and their answers as ”bad workers”. A
total of 160 unique workers answered the questionnaires.
Out of these 160 workers, we marked 70 workers as ”Bad
Workers”. We used these annotations to derive two mea-
sures of human performance. First, an ”individual accuracy”
was inferred from the average per item accuracy of the five
workers, subtracting the number of invalid answers (”Don’t
know” and answers by ”bad workers”). For a histogram
of individual worker performance, I refer to figure 2 in the
appendix. Second, we derived a ”wisdom of crowd” label
through a majority vote of the five workers. If the majority
vote was ”Don’t know” or the majority of the workers were

bad workers, we chose the next best emotion label. In case
of a tie between two or more than two labels, we chose a
random emotion from the tied emotions.

Validation for the best classifier is performed on two ad-
ditional benchmarks to test generalizability. First, on the
ISEAR dataset (Dan-Glauser & Scherer, 2012) because it
includes texts that do not come from social media, consider
emotional situations, and was collected from psychology
students in the 1990s. Because students were instructed to
think of situations for an emotional state and not assign an
emotional state to a situation, sentence structure is different
from the Vent dataset. Validation of this data should reveal
whether the classifier can generalize to texts that come from
a completely different time epoch. Examples for the ISEAR
dataset are available in table 9 in the appendix. The ISEAR
dataset only contains a total of 7666 examples with 1093
to 1096 examples per class. Second, the EmoInt dataset
which was used for the emotion classification task of task 1
of the SemEval 2018 benchmark competition (Mohammad
et al., 2018). I chose this dataset because SemEval is the
most prominent sentiment and emotion analysis benchmark
from texts focusing on social media data. The dataset con-
tains tweets collected from Twitter between 2016 and 2017.
However, the annotation task differ slightly from the anno-
tations in Vent, such that annotators were asked to assess
the intesity of an emotional state of the writer instead of
the emotion the writer wanted to express. Examples for the
EmoInt dataset are available in table 10 in the appendix.

I assess model performance for the three test sets using
the weighted average F1-Score over all emotions. I also
denote the weighted F1-Score for each emotion. I chose
the F1-Score because it equally weights Precision and Re-
call. I use the weighted average because emotion labels
are not equally distributed - see table 7 in the appendix -
and detecting emotions is equally important for all classes.
For classifier comparison, bootstrapping is used to derive
confidence intervals. For the three Vent test sets, I randomly
drew samples with a size equal to the number of samples in
each respective test set for 10,000 rounds with replacement.
The median of the bootstrapped results provides the average
performance.

Confidence intervals are denoted by the 2.5 and 97.5 per-
centile of the ordered bootstrapped results. I also use boot-
strapping to derive confidence intervals and median perfor-
mance on the human comparison dataset, the ISEAR dataset
and the SemEval dataset. Here I also use a random sample
with replacement with a size equal to the number of samples
in each respective dataset for 10.000 rounds. Confidence
intervals are calculated in the same way as described above.
Because emotion categories are equally distributed in the
data used to assess human performance, I use the accuracy
score to compare classifiers and human performance.
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I use two McNemar tests to compare the classifier perfor-
mance to human performance. One McNemar test is per-
formed on an individual level under the exclusion of ”Don’t
know” answers and answers from ”bad workers”. Another
McNemar test is performed on the majority votes. The Mc-
Nemar test was here performed by considering each item
once.

To stay consistent with the report of Adoma et al. (2020) on
the ISEAR dataset, I report F1, precision and recall. Because
the emotions Disgust, Shame and Guilt are not present in
the ISEAR dataset, I excluded the texts with these emotions
from the data. I compare the classifier to a BERT model
trained on 80 percent of the ISEAR dataset and testing on
the remaining 20 percent by Adoma et al. (2020). This can
be regarded as an upper bound for performance.

On the SemEval dataset, I report the Pearson correlation be-
tween the softmax output for each emotion and the intensity
score for the label annotated by the workers. Because Joy
is not part of the Vent dataset, I added the softmax output
of the emotions Happiness and Affection and relabeled the
result as Joy. Results are compared to the median team
and the winning team. The winning team used a custom
architecture that they call SeerNet (Duppada et al., 2018). It
consist of multiple encoding techniques - such as DeepMoji
(Felbo et al., 2017), skip-thought vectors for sentence repre-
sentations (Kiros et al., 2015) and custom lexical features
that the authors fed into four XGBoost models (Chen &
Guestrin, 2016).

Because the emotions are not equally distributed in the train
set - see table 7 in the appendix - I used random undersam-
pling to train all the classifiers. Undersampling leads to
845,800 samples for each emotion in the train set, based
on the least frequent emotion Happiness. I split the train
set into 90 percent and 10 percent development sets for
all classifiers for parameter tuning and loss monitoring. I
use TF-IDF with Support Vector Machine Classifier with
a linear kernel and average Fasttext supervised classifier
as baseline methods. Because of the space complexity of
Support Vector Machines, I used a subsample of 10.000
samples for each emotions - thus a total of 50.000 samples
to train the TF-IDF Support Vector Machine model. The
Fasttext supervised classifier averages the word embeddings
per document and adds a multinomial logistic regression to
derive the final prediction. The regression was fitted using
stochastic gradient descent with a learning rate of 0.3, the
default learning rate. I tested learning rates of 0.01, 0.1, 0.3
and 0.5. A learning rate of 0.3 was determined to perform
best on the development set.

I also trained two transformer architectures. I trained a
cased BERT (Devlin et al., 2019) architecture provided by
the HuggingFace library (Wolf et al., 2020) and a roBERTa
model provided on the Huggingface model hub. An un-

cased BERT was also trained but showed slightly lower
performance, therefore I only report the results for the cased
BERT. Because Vent contains many emojis and these are not
recognized by the pretrained BERT architecture by default
(Delobelle & Berendt, 2019), I added the 200 most frequent
emojis to the tokenizer. For a depiction of the most frequent
emojis in the Vent dataset, see figure 3 in the appendix. The
second transformer model I used was roBERTa pretrained
on a Twitter dataset for a sentence prediction task as part of
the TweetEval benchmark (Barbieri et al., 2020). RoBERTa
(Liu et al., 2019) was chosen because the byte-pair tokenizer
could be better able to adapt to social media texts, which
contain spelling mistakes, abbreviations and emojis (Liu
et al., 2019). I chose a model pretrained on Twitter data be-
cause the Vent dataset shows huge similarities with Twitter
in that users share posts and react to other people’s posts.
However, one crucial difference is that Vent posts do not
have a 128 character limit. For a depiction of the character
length distribution in the Vent train set, I refer to figure 2 in
the appendix.

Both transformers were trained using the Pytorch Lightning
framework (Falcon, 2019). I deduced the appropriate learn-
ing rate for the models from a method called the learning
rate finder (Smith, 2017). The learning rate finder uses a
learning rate range test. Different learning rates are applied
on mini-batches of the data starting from a very small learn-
ing rate and progressively moves to a very high learning
rate. The learning rate finder suggests a learning rate where
the loss on the mini-batch with respect to the learning rate
shows the steepest descent. Figure 5 and 6 in the appendix
depict the learning rate range plot for BERT and roBERTa
respectively. For the BERT architecture, a learning rate of
3.63e-4 was determined. For the roBERTa architecture, a
learning rate of 8.32e-5 was determined. Training with the
suggested learning rate showed a small improvement over
a the learning rate suggested in the literature of 2e-5 for
roBERTa. For BERT, the suggested learning rate was too
high, resulting in no progress relating to the F1-Scores on
either train or test set. I, therefore, used a standard learning
rate of 2e-5 to train the BERT architecture.

I used an Adam Optimizer (Kingma & Ba, 2014) in con-
junction with a linear learning rate scheduler. The learning
rate scheduler increases the learning rate during training be-
fore then decreasing the learning rate to allow for more fine
weights adjustments. One-third of the batches are warm-up
steps. The remaining two-thirds are used to decrease the
learning rate. I chose a token limit of 128 tokens because
the focus of the emotion classifier was to detect emotions on
social media datasets, and most of the posts in Vent contain
fewer characters, see figure 2 in the appendix. The batch
size was set to 512. Ten epochs were used as a maximum
number. However, the F1 on the validation set was used
as a stopping criterium. Both transformers terminated their
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training after six epochs, with the highest score occurring in
the fifth epoch. I conducted the training of the transformer
models on the NVIDIA Cluster of the Technical University
of Graz on a single NVIDIA QUADRO RTX 8000.

3. Results

Table 1. Median F1-Scores for all classifiers on the Vent random,
time and user test data. Confidence intervals are derived using
bootstrapping. The best performance is marked as bold.

TEST TYPE EMOTION TF-IDF+SVM FASTTEXT BERT+EMOJIS ROBERTA-TWITTER

RANDOM AFFECTION 54.0 [53.8, 54.2] 63.6 [63.4, 63.8] 72.1 [72.0, 72.3] 73.00 [72.8, 73.1]
ANGER 55.7 [55.6, 55.9] 63.3 [63.1, 63.5] 70.9 [70.8, 71.1] 71.6 [71.4, 71.7]
FEAR 52.0 [51.8, 52.2] 59.0 [58.8, 59.2] 66.8 [66.7, 67.0] 67.8 [67.6, 68.0]
HAPPINESS 50.2 [50.0, 50.4] 63.6 [63.3, 63.8] 72.0 [71.8, 72.2] 72.5 [72.3, 72.7]
SADNESS 53.3 [53.2, 53.5] 63.3 [63.1, 63.4] 69.6 [69.5, 69.8] 70.3 [70.1, 70.4]

AVERAGE 53.3 [53.2, 53.4] 62.5 [62.4, 62.6] 70.0 [69.9, 70.1] 70.8 [70.7, 70.9]

USER AFFECTION 54.0 [53.8, 54.2] 60.7 [60.4, 60.9] 70.4 [70.2, 70.6] 70.5 [70.4, 70.7]
ANGER 55.6 [55.4, 55.8] 61.6 [61.4, 61.8] 69.6 [69.4, 69.8] 69.8 [69.7, 70.0]
FEAR 52.0 [51.8, 52.2] 57.4 [57.2, 57.6] 65.6 [65.4, 65.8] 65.9 [65.8, 66.1]
HAPPINESS 50.1 [49.9, 50.4] 60.4 [60.1, 60.6] 70.1 [69.9, 70.3] 70.0 [69.7, 70.2]
SADNESS 53.4 [53.3, 53.6] 62.2 [62.1, 62.4] 68.8 [68.7, 69.0] 69.2 [69.0, 69.3]

AVERAGE 53.3 [53.2, 53.4] 60.6 [60.5, 60.7] 68.7 [68.6, 68.8] 69.0 [68.9, 69.0]

TIME AFFECTION 59.6 [59.4, 59.8] 65.2 [65.0, 65.4] 73.6 [73.4, 73.7] 74.0 [73.9, 74.2]
ANGER 54.8 [54.6, 55.0] 60.7 [60.5, 60.8] 68.9 [68.7, 69.0] 69.3 [69.1, 69.4]
FEAR 51.9 [51.7, 52.1] 56.8 [56.6, 57.0] 64.5 [64.3, 64.7] 65.0 [64.8, 65.1]
HAPPINESS 46.0 [45.8, 46.3] 56.8 [56.5, 57.0] 66.5 [66.2, 66.7] 66.1 [65.9, 66.4]
SADNESS 55.7 [55.6, 55.9] 64.3 [64.2, 64.5] 70.4 [70.3, 70.6] 71.0 [70.9, 71.2]

AVERAGE 54.7 [54.6, 54.8] 61.6 [61.5, 61.7] 69.2 [69.1, 69.3] 69.7 [69.6, 69.8]

Table 1 depicts the results for all the classifiers on the Vent
random, time and user test sets. The TF-IDF-SVM classifier
provides the worst results, followed by the supervised Fast-
text classifier. The two transformer models provide the best
performance. When considering the average median perfor-
mance, the emoji enhanced BERT model provides slightly
worse performance than the roBERTa model on all three test
sets. Also, concerning individual emotions, we observe that
the roBERTa model provides the best performance for all
test sets and all emotions except for Happiness on the user
and time test set.

However, the confidence intervals for the two classifiers re-
veal a huge overlap for both transformer models. Therefore,
we can conclude that the performance of the two transformer
models seems comparable. With respect to the type of the
test set, we observe a slight performance deterioration from
random test set to the user and time test set. The perfor-
mance decrease is also slightly larger for the user test set
than for the time test set. Concerning the performance on
individual emotions, we see that Affection and Happiness
are easiest to detect on the random and time test set. Inter-
estingly we see that performance on Happiness deteriorates
for the time test set, indicating that there are time specific
features that influence the detection of Happiness. BERT,
roBERTa and Fasttext all show the worst performance on
Fear among all three test sets.

For the second experiment, I compared the performance of
the classifiers trained on Vent to human performance on a
sample of 1000 posts randomly drawn from the random test
set. The results are depicted in table 2. Again, we observe

Table 2. Comparison of the models trained on the train set with the
accuracy of human annotators on a sample from the random test
set. I assessed average individual worker performance per item, as
well as a performance of an worker ensemble calculated from a
majority vote.

EMOTION TF-IDF+SVM FASTTEXT BERT+EMOJIS ROBERTA-TWITTER INDIVIDUAL WORKER WORKER MAJORITY VOTE

AFFECTION 56.0 [49.2, 62.9] 56.5 [49.5, 63.3] 67.6 [61.0, 74.0] 70.5 [64.2, 76.8] 41.0 [36.0, 46.2] 53.5 [46.6, 60.5]
ANGER 57.5 [50.5, 64.3] 64.5 [57.8, 71.1] 71.6 [65.0, 77.7] 68.0 [61.3, 74.4] 40.0 [34.7, 45.3] 34.4 [28.0, 41.1]
FEAR 53.0 [46.2, 59.9] 59.0 [52.1, 65.8] 66.0 [59.2, 72.5] 65.5 [58.7, 72.0] 33.1 [28.3, 38.0] 41.5 [34.7, 48.3]
HAPPINESS 62.0 [55.1, 68.6] 60.5 [53.7, 67.0] 76.6 [70.4, 82.2] 81.1 [75.3, 86.2] 63.2 [57.7, 68.5] 65.5 [58.8, 72.1]
SADNESS 48.5 [41.6, 55.3] 66.5 [59.8, 73.1] 68.5 [62.0, 74.8] 65.0 [58.3, 71.5] 49.0 [43.7, 54.1] 47.0 [40.0, 53.9]

AVERAGE 55.4 [52.3, 58.4] 61.4 [58.4, 64.4] 70.0 [67.1, 72.9] 70.0 [67.2, 72.8] 45.2 [42.9, 47.6] 48.4 [45.3, 51.5]

Figure 1. Violin plot of classifier accuracy gathered from bootstrap-
ping (top). Histogram of accuracy of each worker (bottom).

that BERT and roBERTa show comparable and better per-
formance than the baseline models, when we observe the
average accuracy. Regarding the performance on individual
performance, we observe that roBERTa performs slightly
better than BERT on Affection, Anger and Happiness. Re-
garding the workers’ performance in this annotation task,
we can see that although the majority vote of the workers
shows higher accuracy than the individual performance of
the workers, they still perform the worst out of all the classi-
fiers. Comparing overall roBERTa performance to human
performance using a McNemar test revealed highly signif-
icant differences between roBERTa and individual human
performance (t=195, p < 0.001) as well as for the majority
vote (t=74, p< 0.001). Figure 7 depicts violin plots of the
distribution of accuracy scores for the classifiers and the
majority vote gathered from bootstrapping at the top and a
histogram of the accuracy scores for each worker at the bot-
tom. Figure 7 and 8 in the appendix depicts the confusion
matrix for the majority vote and roBERTa respectively. We
observe that for the majority vote, Affection and Happiness
are mixed up, as well as Fear and Sadness. For the roBERTa
model Anger and Sadness are more frequently mixed up
than Fear and Sadness. RoBERTa is also prone to mix up
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Affection and Happiness.

Table 3. Evaluation of roBERTa trained on Vent and only tested on
the ISEAR data with a comparison with a previous BERT trained
on the ISEAR data

BERT TRAINED ON ISEAR ROBERTA TRAINED ON VENT

EMOTION PRECISION RECALL F1 PRECISION RECALL F1

JOY 89.0 94.0 92.0 82.7 [77.7, 88.4] 90.8 [86.0, 94.8] 86.3 [82.0, 89.8]
FEAR 89.0 84.0 86.0 80.3 [74.6, 85.8] 72.5 [66.4, 78.2] 76.2 [71.4, 80.5]
ANGER 56.0 74.0 64.0 74.2 [68.6, 79.6] 81.0 [75.6, 86.0] 77.4 [73.0, 81.4]
SADNESS 85.0 73.0 78.0 76.8 [70.7, 82.3] 69.8 [63.6, 75.8] 73.2 [68.1, 77.6]
DISGUST 83.0 62.0 71.0 - - -
SHAME 64.0 64.0 64.0 - - -
GUILT 54.0 60.0 57.0 - - -

For the third experiment, I tested the roBERTa model on
the ISEAR dataset. The results are summarized in table
3. For comparison, I use the results from Adoma et al.
(2020). The authors trained an uncased BERT on 80 per-
cent of the ISEAR dataset and testing on the remaining 20
percent (Adoma et al., 2020). I calculated the output for
Joy by summing the outputs of roBERTa for Affection and
Happiness. I excluded samples labeled as Disgust, Shame
or Guilt. The results show that the classifier trained on the
ISEAR dataset performs better for emotions Joy, Fear and
Sadness. However, the classifier trained on Vent achieves
better performance on the emotion Anger.

For the fourth experiment, I tested the roBERTa model on
the EmoInt dataset from the SemEval 2018 competition.
Table 4 depicts a comparison between SeerNet - the winning
model, the median team and the roBERTa model trained on
the Vent data. The comparison is conducted using the metric
from the competition, the Pearson correlation on the logits
for each label with the labels derived from the annotation
of seven workers using Best-Worst-scaling. Overall, the
performance of the roBERTa model seems comparable to
the performance of the median team but considerably worse
than the performance of the winning team. 2. Some selected
examples are listed in table 5. Possible reasons for these
differences are provided and discussed in section 4.

Table 4. Evaluation of roBERTa trained on Vent on the EmoInt
dataset compared to the winning model and median team perfor-
mance using the competition metric.

SEERNET (RANK 1) MEDIAN TEAM ROBERTA TRAINED ON VENT

EMOTION PEARSON CORRELATION PEARSON CORRELATION PEARSON CORRELATION

JOY 79.2 64.8 62.5 [61.1, 69.1]
FEAR 77.9 67.4 60.1 [55.8, 63.9]
ANGER 82.7 65.4 66.4 [62.4, 70.1]
SADNESS 79.8 63.5 63.7 [58.9, 68.0]
AVERAGE 79.9 65.3 63.8 [61.8, 65.8]

2Differences in the predictions from the roBERTa model
and the official labels are collected in the file semeval_
differences.txt

Table 5. Selected missclassification on EmoInt. Intensity score
was derived from best-worst scaling.

Text EmoInt label
(Intensity)

Vent roBERTa

”I gave up on the U20 Rugby
bet on the Roosters! nrl ”

Joy (0.58) Anger

”Anyway I’m in a car with a
furious white men and I have
a really funny story to tell
when I’m sober :‘)”

Anger (0.33) Happiness

”#Obama #DOJ have de-
stroyed USA!These #Charlot-
teProtest are acts of #terror-
ism dating back to Ferguson
Terrorism is how it should be
treated”

Fear (0.60) Anger

”Not a great start but good
comeback from the boys to
earn a point. Bring on Satur-
day #blues”

Sadness (0.36) Happiness

4. Discussion
First, the results in section 3 reveal that machine learning
models, especially transformer architectures, can accurately
infer human emotions from text, given a limited set of emo-
tions in a multi-output classification task. The best perform-
ing classifiers are a cased BERT model, emojis added to
the tokenizer, and a roBERTa model pretrained on Twitter
data. The median performance of the roBERTa model is
marginally higher than median performance of the BERT
model. RoBERTa uses a byte-pair tokenizer, allowing it
to behave more flexible in case of unknown word pieces.
Unseen emojis, for example, are encoded by the tokenizer
using byte-pairs, allowing for a more robust classifier.

Classifier performance is relatively stable over all three test
sets. However, we observe a slight deterioration in perfor-
mance concerning the time and even more pronounced for
the user test set. All classifiers are affected by this deteriora-
tion. Both - user and time test set - are more restrictive than
the random test set. A performance deterioration in the user
set indicates that the classifier picked up on user-specific
language features. Performance deterioration in the time
test set suggests that the classifier picked up on language
features that are very sensitive to the time of data collection.
It is no surprise that language is constantly adapting and
changing over time. Social media serves as an accelerator
to this phenomenon.

Second, I compared the performance of the classifiers to
human annotators using a small random test sample. Human
annotators were sourced from Amazon Mechanical Turk
and annotated the samples, which we spread over multiple
questionnaires to lower processing time per worker. A total
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of five workers annotated each sample. In addition to the
samples, for each questionnaire, I handpicked three easy
control questions. Workers that incorrectly answered two
or more out of three control questions were marked as bad
workers and excluded from the evaluation.

Despite this check, human annotator performance was defi-
cient, and all the trained classifiers performed better on the
samples. Introducing a majority vote slightly improved ac-
curacy scores. Given the results obtained from the bootstrap-
ping and referring to figure 7 we observe that the TF-IDF
model with a Support Vector Machine is the only model for
which accuracy score distribution overlaps with the distri-
bution of the majority vote. No overlap between accuracy
scores was observed for all other classifiers, demonstrat-
ing the superior performance in this limited experiment.
Statistical tests revealed that differences in performance of
roBERTa and the majority vote and individual performance
are highly significant. Possible reasons for the difference
in human and algorithm performance are difficulties in lan-
guage comprehension, a lack of effort and motivation or a
lack of knowledge about the dataset. These findings have
considerable implications for the field of emotion recog-
nition from text. The fact that emotion labels by crowd
workers show little accordance with self-labeled emotions
reveals possible problems with datasets that rely on crowd
workers for annotations, such as the EmoInt dataset.

The main problems with crowdsourcing are difficulties in
language comprehension and a lack of effort and motivation.
Concerning the lack of language understanding, this might
be the case if English is not the first language of the annota-
tors. Annotators might also be unfamiliar with abbreviations
or idioms used in the samples or the emotional labels. Con-
cerning the lack of effort and motivation, we must consider
that Mechanical Turk workers are incentivized to spend as
little time as possible on the questionnaires to maximize
their salary. In addition to these problems, familiarity with
the dataset and the emotional labels should also affect per-
formance. The confusion matrix reveals that in general
mixups between the human majority vote and the roBERTa
are similar. Affection and Happiness are frequently mixed
up, as well as Anger and Fear.

Third, to test the generalizability of the classifiers on data
that is different to Vent, I tested the classifier on the ISEAR
data. I remapped the emotions from the Vent classifier such
that they matched the labels in the ISEAR dataset. Although
the classifier trained on the ISEAR dataset foreseeably per-
formed better on four out of five tested emotions than the
classifier trained on the Vent dataset, the performance was
comparable. It even outperformed the ISEAR classifier for
the emotion Anger. This is surprising as the ISEAR dataset
is very different from the Vent dataset. Firstly, the ISEAR
dataset was composed in the 1990s - it is therefore written

in a completely different style than the social media data
in Vent. Differences in style come from emojis, which are
not used in the ISEAR data, frequency of spelling mistakes
and sentence length. Secondly, the psychology students
were asked to find situations for each emotion instead of
matching emotions to their situation. Although this might
not sound like it should make a difference, this greatly im-
pacts the sentence’s grammatical structure. See table 9 in
the appendix.

Last but not least, I also tested the classifier on the EmoInt
dataset from the SemEval 2018 competition. Although the
classifier performance is comparable to that of the median
team, it is worse than the winning team that used a custom
architecture. Overall it is not surprising that this model per-
forms worse than specialized architecture, especially since
the classifier was not trained on this dataset. However, a look
at the misclassifications also reveals dubious competition
labels. In table 5 I collect some dubious misclassifications.
It might also be the case that there is a relationship between
emotion intensity scores and the softmax output of the clas-
sifier, however this relationship is not strictly linear.

Now, regarding the limitations of this work. We should
consider that on the Vent platform, emotion labels are given
according to the emotion that the author wants to express.
However, the emotion that the author wants to express might
be different from the emotional state that the author is in.
Considering the example: ”Let go of resentment, it will
hold you back”. RoBERTa labels this as Affection, while
one could reasonably assume that the emotional state of
the author at the time of writing the post was most likely
Anger. Additional limitations are due to the fact that we
collected a benchmark for human performance using only
Mechanical Turk workers. To get a real benchmark on
human performance, a less biased selection should be con-
sidered. If we want to prove that machine learning models
offer superior performance to humans in textual emotion
recognition, future work should recruit people with high
emotional understanding like psychotherapists for annota-
tions. Regarding a selection bias, we should acknowledge
that the Vent platform attracts a non-representative sample,
namely people who want to express how they feel and want
to see others who express how they feel. This selection bias
is also supported by the fact that Happiness and Affection
are the least frequent emotions while Sadness takes the top
spot.

The results of this work should motivate researchers in
the field of textual emotion recognition to consider self-
labeled data instead of crowdsourcing annotations. Previous
datasets such as the EmoInt dataset could be improved by
highlighting dubious classifications and re annotating these
examples by psychologists or other motivated individuals
trained in emotion recognition.
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A. Appendix
A.1. Initial human performance benchmark pilot

Table 6. Initial human performance benchmark pilot: Samples
(n=60) human performance benchmark with coworkers (n=6). Per-
formance is measured by average F1 score over all coworkers. A
Roberta pretrained on Twitter data was used and trained on the
Vent training data with random undersampling. The emotional cat-
egories Surprise and Fear showed little agreement with assessment
of human annotators.

EMOTION HUMANS (F1) ROBERTA-TWITTER (F1)

AFFECTION 59 67
ANGER 53 54
FEAR 31 44
HAPPINESS 65 80
SADNESS 54 60
SURPRISE 30 33
AVERAGE 49 56

A.2. Exploratory Analysis of Vent

Table 7. Distribution of emotion labels over the train set, the ran-
domly drawn test set, the set with new users and the time test set
respectively. We see that Happiness is the least frequent class and
sadness occurs more than twice as often throughout all test sets,
even more than thrice as often in the time validation set.

EMOTION TRAIN RANDOM USER TIME

AFFECTION 1,072,255 151,986 156,486 193,941
ANGER 1,607,705 218,567 218,535 199,820
FEAR 1,432,801 196,075 200,223 181,358
HAPPINESS 845,800 113,123 111,735 88,751
SADNESS 1,848,326 256,656 260,401 286,560
TOTAL 6,806,887 936,407 947,380 950,430

Figure 2. Character length distribution for the all Vent posts with a
length smaller than 2000 characters. Created with an overlay and
opacity set to 0.75. Median number of characters in each Vent is
70. Angry posts are longer with a median character length of 80.
The maximum character length for one post is 9534.

Figure 3. Emoji distribution for top 50 emojis in the train set

Figure 4. Languages used on a sample of 10,000 random posts.
Some posts contain only smilies.
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A.3. Learning rate finder plots

Figure 5. Learning rate finder results for BERT with added emojis
tokens. The best learning rate is at 3.63e-4

Figure 6. Learning rate finder results for Roberta pretrained on
Twitter. The best learning rate is at 8.32e-5

A.4. Human benchmark

Figure 7. Confusion matrix on majority vote of workers.The
columns refers to the predicted class. The row refers to the target
class.

Figure 8. Confusion matrix on majority vote of roBERTa. The
columns refers to the predicted class. The row refers to the target
class.

A.5. Examples from the datasets

Table 8. Examples from Vent

Text Label

”I am sooooo obsessed with George Harrison’s vo-
cals on ’devil in her heart’ I just wanna explode.
George Harrison... Ugh I can’t even...”

Affection

”My boyfriend is still mad at me and tomorrow will
be our 1 month anniversary. Fucking hell I am so
mad with myself.”

Anger

”Competition is this week and I am not ready at
all!!!!!!!!!!!!!!!!”

Fear

”My crush told me I looked pretty...do you know
how happy I am?”

Happiness

”the smiths are the best to listen to” Sadness
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Table 9. Examples from ISEAR

Text Label

”During the period of falling in love, each time that
we met and á especially when we had not met for a
long time.”

Joy

”When I was driving home after several days of hard
work, there á was a motorist ahead of me who was
driving at 50 km/hour and á refused, despite his low
speeed to let me overtake.”

Anger

”When I was involved in a traffic accident.” Fear
”When I lost the person who meant the most to me.” Sadness

Table 10. Examples from EmoInt

Text Label

”Modern family never fails to cheer me up. Especially
Phil.”

Joy

”At the point today where if someone says something
remotely kind to me, a waterfall will burst out of my
eyes”

Anger

”So nervous I could puke” Fear
”Luckily I was helped by some good people. And they
also managed to free me of my depression. Unfortu-
nately it only lasted a little while.”

Sadness


