
 Eindhoven University of Technology

MASTER

mTESTAR for scriptless GUI testing on Android and iOS applications

Jansen, Thorn

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/9668c8e5-05e5-4b86-a29f-189bd2d84b24

mTESTAR for scriptless GUI testing on
Android and iOS applications

Eindhoven, September 29, 2021

This report counts 67 pages

Author:
Thorn Jansen | 1003562

Supervisors:
Luo Yaping (TU/e)
Kevin van der Vlist (ING)
Robbert van Dalen (ING)
Jeroen Keiren (Comittee Member)

Other Supervisors:
Pekka Aho (Open Universiteit)
Tanja Vos (Open Universiteit)

Mathematics and Computer Science Department

M.Sc. Computer Science and Engineering
Eindhoven University of Technology

Abstract

Software development is a very large industry where trillions of dollars are being spent. At the same
time, a lot of this money is lost due to high failure costs. Software testing aims to reduce the waste of
resources. GUI testing is a crucial aspect of the overall testing process due to its ability to test end-to-end
and the GUI being the user facing component of the software. Traditionally, manual tests and scripted
automated tests are used to determine if the GUI meets the requirements. However, both approaches are
very costly in terms of both money and time. Scriptless testing attempts to address the costs associated
with GUI testing. With a rapidly growing mobile application market, there is an opportunity to apply
scriptless testing. However, scriptless testing is not well-established in this area. Therefore, this study
presents a tool for scriptless GUI testing in the mobile domain.

We present a literature study on the available tools and the failure detection component (oracle) for au-
tomated testing. We extract several design aspects important for creating a scriptless GUI testing tool.
Additionally, we obtain an overview of testing oracles. Next, we present the mTESTAR tool for scriptless
GUI testing in the mobile domain and the implemented oracles. Lastly, we validate mTESTAR on the
industrial ING Bankieren application. From the validation, we determine that mTESTAR outperforms
two state-of-the-art tools and achieves similar performance as the scripted testing on ING Bankieren.
Overall, mTESTAR is to be used in combination with scriptless testing to provide maximum value for
the testers.

Acknowledgements

First of all I would like to thank Yaping Luo, Robbert van Dalen, and Kevin van der Vlist for their time
and valuable input for my graduation project. Their input throughout the weeks and presence in the
weekly meetings has been crucial to completing this project.

Next, I would like to thank Pekka Aho and Fernando Pastor Ricós for their help with TESTAR and
interesting suggestions throughout the project.

Finally, I would like to thank my family for their continuous support throughout my studies.

Master Thesis
ING

Eindhoven University of Technology

Contents

List of Figures 6

List of Tables 7

1 Introduction 8
1.1 A closer look at automated GUI testing . 8
1.2 Automated GUI testing for the mobile domain . 9
1.3 Research questions . 9
1.4 Research design . 10

2 Background and related work 11
2.1 The need for automated GUI testing . 11
2.2 Scriptless GUI exploration algorithms . 11
2.3 Oracles for automated GUI testing . 13
2.4 TESTAR a tool for scriptless GUI testing . 14

2.4.1 General execution flow TESTAR . 15
2.4.2 State and state model . 16
2.4.3 TESTAR oracle . 16

2.5 Mobile scriptless GUI testing tools . 17
2.6 Discussion . 21

2.6.1 Scriptless Design Aspects . 22

3 Mobile scriptless GUI testing 23
3.1 Architecture of mTESTAR . 23

3.1.1 State Management . 24
3.1.2 Action Selection . 25
3.1.3 Action Execution . 26
3.1.4 mTESTAR GUI . 26
3.1.5 Design aspects . 27

3.2 Accessibility API . 27
3.3 Spy mode in mTESTAR . 28

3.3.1 Implementation spy mode . 31
3.4 Generate mode in mTESTAR . 32

3.4.1 State model in mTESTAR . 32
3.4.2 Abstract state . 34
3.4.3 Abstract action . 35

3.5 Oracle . 36
3.5.1 Devised oracles . 38
3.5.2 Oracle composition . 40

3.6 Conclusion . 41

4 mTESTAR for scriptless GUI testing

ING
Eindhoven University of Technology Master Thesis

4 Industrial validation 42
4.1 Code coverage . 42
4.2 Experiment setup . 43
4.3 Results . 44

4.3.1 Package level results . 48
4.4 Discussion . 51

5 Threats to validity and Future work 53
5.1 Threats to validity . 53
5.2 Future work . 54
5.3 Personal recommendations for ING . 55

6 Conclusion 56

Bibliography 58

A System information 63
A.1 Device for mTESTAR runs . 63
A.2 Emulator . 64

B Running TESTAR 65
B.1 Settings . 66

mTESTAR for scriptless GUI testing 5

Master Thesis
ING

Eindhoven University of Technology

List of Figures

2.1 TESTAR general execution flow. Taken from testar.org 15
2.2 Example of how the state model of TESTAR can look visually. 16

3.1 The architecture of the implementation of mTESTAR for mobile applications. Compo-
nents colored in orange have been modified for mTESTAR. Purple components indicate
an external service. Green components are unmodified. 24

3.2 More detailed information on the sub-components of the mTESTAR architecture shown
in Figure 3.1. Note that this figure abstracts away from the external accessibility API and
the connection between the different components. 25

3.3 Screenshot of Spy mode of the home page after login for the ING android application. . . 28
3.4 A screenshot of the Spy mode where an element of the tree is clicked and another widget

is hovered over in the screenshot of the ING application. 29
3.5 A screenshot of Spy mode for a screen with click and type actions for the ING android

application. 30
3.6 The class diagram of the Spy mode implementation for Android and iOS applications. . . 32
3.7 Figure illustrating button click effect when using concrete state. 33
3.8 Figure illustrating button click effect when using abstract state. 34
3.9 Screenshot of the GUI state of the Android ING Bankieren application where abstract

action can be valuable. 36
3.10 The mTESTAR execution-flow with a visualization of how the oracle and oracle composi-

tion takes place within this execution flow. 38
3.11 The visual tree representation of the oracle composition tree created by mTESTAR. The

diagram is generated from DSL code through plantUML. 40

4.1 Figure showing the coverage over sequences for Q-learning and the different mTESTAR
settings. 46

4.2 Figure showing the coverage over sequences for Random and the different mTESTAR
settings. 47

4.3 Figure showing the coverage over sequences for Unvisited actions first and the different
mTESTAR settings. 47

4.4 Violin plot for package level difference in coverage between mTESTAR and Espresso . . . 49
4.5 Figure showing the 20% of the packages with respect to the difference in coverage between

mTESTAR and Espresso. 50

B.1 Screenshot of the TESTAR GUI highlighting the buttons to select different TESTAR modes. 65
B.2 Screenshot of the first screen presented when opening TESTAR 66
B.3 Screenshot of the TESTAR GUI filter settings . 67
B.4 Screenshot of the TESTAR GUI time settings . 67

6 mTESTAR for scriptless GUI testing

testar.org

ING
Eindhoven University of Technology Master Thesis

List of Tables

2.1 The table with a summary of the tools presented in Section 2.5. Note the symbols used
mean the following; −−:very poor, −:poor, 0:neutral, +:good, ++: very good. 21

3.1 The table which shows the pros and cons for each spy mode synchronization approach. . . 31

4.1 The table with the coverage results for the Android ING Bankieren application. 44
4.2 The table with the time performance for the different settings of mTESTAR. 45
4.3 The table with the coverage results on the Android ING Bankieren application with the

Q-learning algorithm, 10 sequences, and 300 actions per sequence. 45
4.4 The table with the coverage results of additional mTESTAR runs to verify the settings

chosen for mTESTAR. 48

mTESTAR for scriptless GUI testing 7

Master Thesis
ING

Eindhoven University of Technology

Chapter 1

Introduction

IT is a large global industry. Global IT spending will grow to $4.4 trillion in 2022, of which 15% is spent
on software development [1]. At the same time software development has high failure costs. A lot of
resources go to waste due to failing software, studies estimate the damage worldwide to be approximately
$3 trillion [2]. Software testing is part of the software development process aimed at lowering the waste
of resources. To do so, testing validates the software quality, software security, and software reliability.
Ideally, by validating these three attributes software testing ensures software is error or bug-free. How-
ever, software testing cannot ensure the absence of errors and bugs, it can only determine the presence
of errors. Therefore, validating quality, security, and reliability only allows software testing to determine
if requirements are met. Meeting the requirements lowers the waste of resources.

According to Mike Cohn, the tests on software consists of three types; unit tests, service tests, and
Graphical User Interface (GUI) tests [3]. Unit tests focus on testing small individual components, ser-
vice tests verify the quality of a combination of the small individual components, and GUI tests focus
on end-to-end testing of the whole application under test (AUT). GUI tests are a critical aspect of the
whole software testing process. It is the only type of test which tests the AUT end to end, validating
the quality of all components of the application together. Additionally, the GUI is the user facing part
of the software application. Having it meet the security, quality and reliability requirements is essential
as it directly affects the user of the AUT.

1.1 A closer look at automated GUI testing

Traditionally, there is manual GUI testing and automated GUI testing [4]. In manual testing humans
interact with the available GUI to determine if the GUI meets the requirements. In automated test-
ing test sequences are created by developers to explore and repeatedly test the GUI, this is also called
script-based testing. In each of these test sequences it is checked if the requirements for quality, security,
and reliability are met. Manual testing has the ability to leverage the domain specific knowledge the
human tester possesses, while automated scripted testing supports better repetition support. However,
both manual and script-based testing have the important weakness related to cost. It is very expensive
to repeatedly let humans explore the application under test [5]. Although script-based testing lowers
the resources required compared to manual testing, there is still a significant cost to maintaining the
test scripts [4]. Additionally, script based testing no longer has direct involvement of human testers and
therefore the challenge of integrating domain specific knowledge. Lastly, script based testing struggles to
mimic the random behavior of users. Overall, this results in an expensive (up to 50% of the development
costs [6, 7]) and challenging road to verifying if the GUI meets the requirements. This has also been
confirmed by a survey held under a number of software developers active in the industry.

8 mTESTAR for scriptless GUI testing

ING
Eindhoven University of Technology Master Thesis

Scriptless testing attempts to address the challenges present in manual and automated GUI testing.
This is a process in which the tests are both generated and executed completely automatically, saving
resources and time. Algorithms are used to achieve the automated generation of test sequences. Due to
the algorithms generating the test sequences, the resources consumed by scriptless testing are lower than
for manual or scripted testing. Additionally, scriptless testing allows for randomness in the generating of
test sequences. Therefore it addresses the limitation of scripted testing concerning mimicking the random
behavior of users. A tool that provides a scriptless GUI testing platform is TESTAR [8]. TESTAR is
open source, providing scriptless testing for web and desktop applications. TESTAR’s approach and im-
plementation have been industrially verified while also saving time and resources compared to automated
scripted testing [9–11]. Thus, proving that scriptless testing can benefit the development of software.

1.2 Automated GUI testing for the mobile domain

In recent years the trend of “Mobile First” is gaining significant traction [12]. This is the trend where
software is first designed for mobile and progressively enhanced for larger screen real estate (e.g. desktop
and web application). This leads to a rapidly-growing mobile application market [13,14], specifically for
Android and iOS applications. The growing mobile application market, together with the Mobile First
trend, creates an important opportunity to design a scriptless testing method for mobile GUI testing in
an attempt to lower resource needs.

Looking at scriptless testing for mobile applications there are a few challenges that need to be addressed
before it can effectively be applied in an industrial setting. Most notably, although gaining traction,
scriptless testing is not yet well established in the mobile application development industry [15]. Tools
like TESTAR for desktop or web application scriptless testing are not applicable to mobile. The majority
of the android scriptless GUI testing tools available are academic tools, that are neither well maintained
and established, nor properly verified on industrial-grade software applications. While for iOS applica-
tions, to the best of our knowledge, there do not exist any scriptless testing tools.

A notable second challenge is the oracle problem [16,17]. Oracles are components that distinguish whether
the AUT has quality issues or meets the requirements specified [16]. There is little work available on
oracles for automated testing and even less for scriptless testing [17]. However, test oracles significantly
contribute to test effectiveness and reduction of costs [18]. Therefore, it is valuable to create oracles that
are effective for scriptless testing.

Both challenges together provide an opportunity for developing a scriptless testing tool for Android and
iOS applications while simultaneously integrating an oracle improvement for determining whether the
AUT meets the requirements. Additionally, it is important to validate the scriptless testing tool on an
industrial case to ensure the tool is applicable in industry.

1.3 Research questions

In this research the main goal is to develop a tool for scriptless GUI testing in the mobile domain. We
make use of the knowledge and insights that are currently available to give direction to the development
of the tool. Leading to the following research question guiding the work in this paper:

RQ: How can we apply scriptless GUI testing for mobile applications in an industrial environment?

mTESTAR for scriptless GUI testing 9

Master Thesis
ING

Eindhoven University of Technology

TESTAR is open source tool and has promising approaches for test sequence generation available. It has
been decided to extend TESTAR for mobile applications. It will be validated on an industrial use case
of the ING bank. This leads following sub research questions being extracted:

RQ1: What is the state of the art in the scriptless GUI testing for mobile applications?

RQ2: How can we extend TESTAR for either or both iOS and Android mobile applications in an in-
dustrial environment?

RQ3: What types of testing oracles can be used for mobile applications and how?

1.4 Research design

The research design employed in this thesis is design and action research [19]. To understand the state
of the art in mobile GUI testing and understand oracles for scriptless GUI testing we perform a litera-
ture analysis. We analyze the design of the most important testing tools and determine the important
design aspects. Based on this, we develop a tool called mTESTAR for scriptless mobile GUI testing.
Additionally, we describe how we approach the oracle problem in mTESTAR. To validate the design and
implementation presented, the performance of mTESTAR is measured on an industrial application, the
Android ING Bankieren application, and compared to scripted testing and two state of the art mobile
scriptless testing tools.

The remainder of the paper is organized as follows. Chapter 2 describes the background information and
the related work. Chapter 3 presents the engineering work performed to develop a scriptless testing tool
for the mobile domain. Chapter 4 introduces experiment setup, results and a discussion of the results.
Chapter 5 discusses the threats to the validity of the experiment and proposes possible directions for
future work. Finally, chapter 6 concludes.

This graduation project is realized at the Software Engineering and Automation chapter of the Om-
niChannel API Platform at ING1 with support of the Open Universiteit2. Moreover, the graduation
project is part of the Industrial-grade Verification and Validation (V&V) of Evolving Systems (IVVES)
project. IVVES is an international project that connects 26 partners from 5 different countries aiming to
improve AI-based approaches to achieve robust and comprehensive, industrial-grade V&V. Through, for
example, machine-learning for control of complex, mission-critical evolving systems and services covering
the major industrial domains in Europe [20].

1https://www.ing.com/
2https://www.ou.nl

10 mTESTAR for scriptless GUI testing

https://www.ing.com/
https://www.ou.nl

ING
Eindhoven University of Technology Master Thesis

Chapter 2

Background and related work

In this chapter the background material and related work for the topic of scriptless GUI testing for mobile
applications will be described. The related work is divided into five subsections; the need for automated
GUI testing, GUI exploration algorithms, oracles for automated GUI testing, introduction to the GUI
scriptless testing tool TESTAR , and tools for scriptless GUI testing in for mobile applications.

2.1 The need for automated GUI testing

The GUI is an interface that allows users to interact with applications through graphical elements. As
the GUI is the main point of entry for most users it is important to prevent failures and have the software
respond as expected. To prevent these failures testing is applied, including testing the GUI. However,
Alégroth et al. state that testing can take up to 50% of the development costs. In an attempt to lower the
testing costs Alégroth et al. suggest automated scripted GUI testing can help [4]. Alégroth et al. validate
this suggestion by using automated testing at Saab and Siemens. In both companies automated scripted
test cases have been developed and a greater return on investment (ROI) can be observed compared to
the manual testing approach.

Patel et al. evaluated if random scriptless testing, also called monkey GUI testing, is more effective than
manual testing in the setting of Android applications [21]. They concluded, after empirical analysis of
79 applications, that manual testing and monkey testing achieve very similar code coverage. However,
Patel et al. note that the costs for monkey testing are lower than the costs for manual testing.

Vos et al. discuss the scriptless testing tool TESTAR [22]. In their work, they claim that there is an in-
creasingly widespread use of incremental processes and continuous integration for software testing. To use
these processes effectively and successfully scriptless testing is a requirement. The reason mentioned for
requiring scriptless testing is the decrease in available quality assurance time for each release, combined
with the increasing level of complexity of software systems. Although it is not specifically mentioned to
what degree scriptless testing can help the overall process, Vos et al. determined it essential to maintain
the current day CI processes. Furthermore, scriptless testing is posed to lower the high maintenance
costs associated with automated testing. Potentially improving the resources saved even more.

2.2 Scriptless GUI exploration algorithms

A scriptless testing tool automatically generates the test sequences for the AUT. To do so, it needs an
exploration algorithm (also called the action selection algorithm) to generate the events for each test
sequence. Several algorithms are used for GUI exploration for scriptless testing tools. To understand

mTESTAR for scriptless GUI testing 11

Master Thesis
ING

Eindhoven University of Technology

scriptless testing better, we introduce the most common algorithms.

• Random exploration [23] is a basic exploration algorithm. It is often also called monkey test-
ing [24] as it mimics the behavior of a monkey using a computer. Without optimizations or im-
provements, the concept is simple; it arbitrarily takes one action out of all possible actions for the
current state of the GUI.

• The unvisited action first algorithm is a simple algorithm improving upon the random explo-
ration algorithm. Unvisited action first selects actions at random, but actions that already have
been executed are not considered. The idea is that actions already executed do not lead to new
GUI states.

• Breath-First-Search is an algorithm aimed at systematically exploring the GUI of the AUT [25].
In BFS all actions of the current GUI state are executed, and the resulting GUI states are saved on
a stack. Once all actions have been executed the top state is pulled from the stack and the process
starts over. The exploration continues until the whole GUI has been explored.

• Depth-First-Search is also an algorithm aimed at systematically exploring the GUI of the
AUT [26]. In DFS once an action has been found it is executed. This continues until there is
a GUI state without actions, or an already discovered GUI state is encountered. The algorithm
then proceeds to revert one state and execute the second action. DFS continues until no more new
GUI states are discovered.

• Supervised learning is a technique based on learning [27, 28]. In supervised learning, a dataset
with actions executed by users on similar applications as the AUT is required. Using this dataset
the algorithm learns how to interact with applications. Once done learning, the algorithm received
the AUT, and it decides for every GUI state which action to take.

• Q-learning is a reinforced learning approach [29]. In Q-learning, the algorithm is first allowed to
investigate the AUT. From this investigation stage it learns which (type of) actions lead to new
states. Next is the the exploration stage. During exploration actions leading to new states are
worth a reward. Q-learning tries to maximize the reward obtained and therefore tries to explore
the AUT aiming to find new GUI states.

• Genetic algorithms [30] mimic the natural process of evolution; improving over time in an attempt
to reach an optimal solution. For GUI exploration this means that several test sequences are
generated for which the performance is measured. The genetic algorithm proceeds to slightly
change each sequence. After the evolution of the test sequences, the performance is measured
again. From the difference in performance, the genetic algorithm learns and proceeds to evolve all
test sequences. Once the genetic algorithm finishes, a set of different test sequences exploring the
GUI is obtained.

• System action generation [28] explores the AUT randomly. For each GUI state encounters
it generates a number of system actions (orientation rotations, calls, moving application for fore-
ground to background, ect.) and adds them to the test sequence. If already visited GUI states are
encountered no system actions are added to the test sequences.

12 mTESTAR for scriptless GUI testing

ING
Eindhoven University of Technology Master Thesis

2.3 Oracles for automated GUI testing

Oracles are components that can distinguish between correct behavior and incorrect behavior for the
AUT [16]. Due to this, test oracles used during testing significantly contribute to test effectiveness and
reduction of costs [18]. Therefore, it is important to evaluate the existing literature on automated and
scriptless GUI testing oracles.

When looking at test oracles there are two ways we can classify the oracles:

• Online/ offline oracles

• The type of oracle

Online oracles are oracles that run when testing the application. During the execution of the test
sequence, the oracle continuously verifies whether the AUT is in a no-fault state. Offline oracles [31] are
oracles that are applied after the test sequences have completed running, e.g. validating the state model
discovered by the test sequences. For the type of oracle four categories can be distinguished [16,32].

• Specified oracles: An oracle that leverages the formal specification of the AUT, where the formal
specification defines what behavior is acceptable and what behavior qualifies as fault-state. For
example, a predefined state model where all transitions are defined. If an action results in a
different transition than specified in the state model, a fault has occurred.

• Derived oracles: An oracle that determines the correctness of an application based on the in-
formation derived from artifacts (e.g. documentation, system executions) or other versions of the
AUT. For example, requiring multiple executions of an test sequence to conform to the first result
obtained when executing the specific test sequence.

• Implicit oracles: An oracle that relies on general or implicit knowledge to determine if a ap-
plication is in a fault-state or not. For example, if the AUT is no longer running a fault has
occurred.

• (Reduced) human oracles: These are not automatic oracles but rather support systems to make
it easier for humans to determine the correctness of the AUT. For example, providing an overview
of the differences in output between multiple runs of the same test sequence.

Specified oracles are generally not preferred for scriptless testing. In specified oracles, it is required to
have a formal specification of the application under test. When the application changes, this formal
specification requires maintenance to correctly model the AUT. Essentially making use of specified ora-
cles will move the maintenance burden from the scripts in testing to the oracle but does not address the
overall maintenance cost problem. Note that there are exceptions for oracles based on invariants or very
specific system properties. In these specific cases, specified oracles can be leveraged in scriptless GUI
testing and require limited domain knowledge to be inserted into the oracle.

Derived oracles all work on the same principle; consistency or agreement between program executions.
Examples of derived oracles are the following:

• N-version programming [33] which evaluates whether independent implementations of the same
program return the same outputs.

• Metamorphic relations [34] which focuses on whether the same test sequence consistently returns
the same output.

• Regression testing [35] focusing on whether different versions of the AUT behave the same.

mTESTAR for scriptless GUI testing 13

Master Thesis
ING

Eindhoven University of Technology

• Inferring models from system execution and then using these models as a formal specification of
the AUT [36].

What all these derived oracle techniques have in common is that they are looking for agreement or con-
sistency between several program executions. The problem for derived oracles is their tailoring for one
application. Overall, derived oracles require a lot of domain knowledge to be useful and therefore cannot
be used by scriptless testing tool for generic use.

Implicit oracles are extremely suited for scriptless testing. Implicit oracles by definition are oracles that
require no domain knowledge nor a formal specification to implement, and they apply to almost all pro-
grams [16]. This makes it possible to define generic oracles in scriptless testing tools which can be reused
for different applications and requiring little maintenance if an application changes over time.

Human oracles are not the desired online oracles for scriptless testing. In the case of online oracles, they
are infeasible as it would require a human to interact with the scriptless testing tool after each action
taken on the GUI. In the case of offline oracles they can be used for helping algorithms learn or providing
tables and graphs to the tester.

Note that with any type of oracle it is important to record false positives such that they are filtered out
after one occurrence. As this list requires maintenance no oracle truly avoids maintenance costs.

Atif Memon is an active researcher in the area of GUI oracles [37]. He presents multiple different ap-
proaches to GUI oracles in his papers. Memon et al. defines GUI oracles to consist of two components;
oracle information and oracle procedure [18]. Oracle information is the component that holds the infor-
mation the oracle requires for comparing actual output and expected output. Oracle procedure is how
the comparison takes place. Using these two building blocks Memon introduces different types of oracles
in his (co-)authored papers. The first suggestion he makes is an improvement on the “golden version”
oracle, a derived oracle. In the ”golden version” oracle a version of the application is taken and assumed
to be perfect. Now when tests are performed the output is compared to this ”golden” version and when
there is a difference the test has failed. The critical weak point is that obtaining a golden version of
the application under test is not realistic. To address this issue Memon et al. suggest taking multiple
versions and compare the results [38].

A second oracle suggested by Memon et al. is making use of a decision table, where the table represents
a simplified model of the application under test. One axis is used for conditions and the other axis is
used for actions. When certain conditions hold, it can then be determined from the table which actions
are possible [38].

Formal modeling is a more extensive method of creating oracles. Memon et al. suggest building a model
of the GUI under test. In test cases the resulting states are compared to the expected states according
to the model, if there is a mismatch the test is marked as failed [38]. Memon et al. suggest using AI
planning to support the model generation. In different papers Memon describes different approaches for
creating the formal model of GUIs [39–41].

2.4 TESTAR a tool for scriptless GUI testing

A tool for the scriptless testing of desktop and web application is TESTAR [8]. TESTAR is an open-
source tool that automatically generates and executes test sequences on an application under test (AUT).
The set of possible actions on the AUT are based on the derived structure of the GUI at the time of

14 mTESTAR for scriptless GUI testing

ING
Eindhoven University of Technology Master Thesis

testing. The goal of TESTAR is to detect violations of system requirements. These violations can be
recognized through system crashes or error messages, or through user specified oracles. TESTAR achieves
its functionality on the desktop and web applications by leveraging the accessibility application program-
ming interface (accessibility API) for desktop applications [42], or the Selenium Webdriver [43] for web
applications. For desktop applications, the operating system accessibility API allows TESTAR to retrieve
the current structure and component information of the AUT. At the same time, the OS accessibility
API is also used for executing actions on the AUT. For web applications, the same principle holds but
instead the Selenium Webdriver is used as accessibility API. For both desktop and web applications,
visualizations are drawn at the OS level of the host machine.

As not all applications work the same, it is valuable to support entering domain knowledge into TESTAR
without requiring much maintenance of this domain knowledge. To support domain knowledge, TESTAR
has customizable components, called protocols, in which the tester can add information or settings suited
to the specific application under test. For example, the tester can customize which exploration algorithm
is used, or which behaviors are classified as bugs.

2.4.1 General execution flow TESTAR

In Figure 2.1 the general execution flow of TESTAR is displayed. In more detail, the steps can be de-
scribed as follows:

Figure 2.1: TESTAR general execution flow. Taken from testar.org

Step 1: Start the application under test (AUT) and wait until it is ready for interaction.

Step 2: Inspect the AUT to obtain information about the application and the individual components
present in its current state. As a result a tree with the structure of the current state of the application
is obtained, so-called widget tree.

Step 3: From the obtained widget tree determine which actions can be taken on the AUT.

Step 4: From the derived list of actions possible, select one specific action. Which action is selected
depends on the action selection algorithm TESTAR is run with. By default TESTAR allows for random
selection, takes an action previously unvisited, or uses the reinforced learning approach, Q-learning, to
determine an action [44].

mTESTAR for scriptless GUI testing 15

testar.org

Master Thesis
ING

Eindhoven University of Technology

Step 5: Execute the selected action by interacting with the AUT.

Step 6: If no fatal faults are found steps 3,4, and 5 are repeated until the desired sequence length has
been generated. The resulting sequence is evaluated and the AUT is stopped.

Step 7: If the desired number of sequences has not be reached yet the whole process is repeated from
step 1.

Step 8: TESTAR finishes and exits gracefully.

2.4.2 State and state model

TESTAR works with the concept of state. At each point in time the GUI of the application under test is
in a certain state. TESTAR uses this definition of state to create a state model of the GUI which helps
with action selection. TESTAR identifies the state of the GUI under test by applying a hash function to
all attributes of each widget on the current visible GUI, this result is called the concrete state. However,
due to the vast number of widgets and the vast number of attributes of each widget usually present
on a GUI state, the state model using the concrete state suffers from the state explosion problem [45].
Therefore, TESTAR abstracts and looks only at certain attributes of widgets to quantify a state, this is
called the abstract state. In TESTAR the tester determines which attributes are used in the definition
of the abstract state.

To store the states and state model, TESTAR makes use of the graph database OrientDB [46]. OrientDB
is a multi-model open-source graph database that supports schema-less, schema-full, and mixed-schema
modes. In the case of TESTAR, nodes in the Orient database correspond to the abstract states (which
in turn represent states of the GUI) and transitions correspond to actions that resulted in the switch of
the abstract state. For an example of how the state model stored in OrientDB is visualized see Figure 2.2.

Figure 2.2: Example of how the state model of TESTAR can look visually.

2.4.3 TESTAR oracle

As TESTAR tries to test applications to determine if there are any faults present, it is vital that TESTAR
can detect these faults. To achieve the detection of faults oracles are used. Currently, TESTAR supports

16 mTESTAR for scriptless GUI testing

ING
Eindhoven University of Technology Master Thesis

an implicit oracle and a specified oracle; the implicit oracle checks if the application is still open and
responding, also called the crash oracle. The second oracle is a specified oracle, it checks for for suspicious
strings. The suspicious strings oracle allows for the specification of regular expressions that are checked
in each string that has been found in the state. If it detects any of the suspicious regular expressions to
be present it will report and exit. It is possible in TESTAR to program your own oracle in the source
code, allowing testers to add domain knowledge to oracles within TESTAR. For the state of the art in
oracle development see section 2.3.

2.5 Mobile scriptless GUI testing tools

Although scriptless GUI testing is not well established in the industry there exist a number of academic
(Android) scriptless GUI testing tools. To understand the scriptless testing methods used by these tools
it is important to investigate these tools. In this subsection a number of tools with the most interesting
scriptless testing approaches will be introduced. Each method will be described on;

• Its overall approach to scriptless testing.

• The exploration algorithms used.

• The approach to understanding the GUI presented.

• The tools’s flexibility to add application-specific information of the AUT.

• The tool’s overall strengths and weaknesses

Before introducing different scriptless testing tools it is important to highlight the UI/Application Exer-
ciser Monkey1 [21]. This tool is built into the Android development environment and allows for random
gestures on an application. This tool is often used as a benchmark of performance for scriptless testing
tools to compare to. The reason for its function as benchmark is because of its availability. Beyond
randomly sending touch events to the Android mobile device it does not possess any unique attributes.

Eskonen et al. introduced a tool that uses image-based deep reinforced learning to achieve scriptless
testing [47]. Although originally designed for web applications, the authors claim the tool can easily be
applied to other platforms as well due to the concept of image-based reinforced learning. What makes
this tool unique is that it understands the GUI under test through screenshots, it does not interact with
accessibility APIs or the OS of the device the AUT runs on to obtain information of the widgets on the
screen. Instead, the concept of widgets is completely ignored by Eskonen et al. The reinforced learning
algorithm tries to maximize the number of states visited, where non-identical screenshots are different
states. Once the reinforced learning algorithm receives the input screenshot, it computes a probability
on every pixel, the pixel with the largest probability is the location of the screen that should be inter-
acted with. The tool by Eskonen et al. does not allow for modification to add application-specific AUT
information. Additionally, it does not use test oracles. The core strength of the tool is that it needs
very limited access to the AUT, as screenshots are the only requirement. Additionally, if the reinforced
learning algorithm has a well-designed cost function and rewards, it has the potential to efficiently explore
the states of the AUT. Overall, the authors claim that the reinforced learning tool performs significantly
better than random scriptless testing tools.

Mao et al. designed a tool for systematic/ search -based scriptless testing on Android called Sapienz [48].
Sapienz’s approach is to create test sequences that systematically explore the AUT. To improve Sapienz
performance, genetic evolution algorithms are applied to the sequences created to get an even more

1https://developer.android.com/studio/test/monkey

mTESTAR for scriptless GUI testing 17

https://developer.android.com/studio/test/monkey

Master Thesis
ING

Eindhoven University of Technology

diversified set of sequences. At the same time, Mao et al. try to minimize the sequence length while
maximizing the code coverage and faults found. This stems from the belief of the authors that short
sequences are more likely to occur in practice and thus are preferred over longer sequences. Sapienz orig-
inal code is publicly available, however, Facebook has acquired Sapienz in 2017 and has since been for
Facebook’s internal use only, unobtainable for interested parties outside Facebook. The original Sapienz
code adjusts its way of working based on the availability of the AUT. When the source code is available
it is possible to examine the code at a closer level and get more coverage information at runtime. When
the code of the AUT is not available, repackaging is attempted to achieve the code coverage at runtime.
Lastly, Sapienz allows for integrating application-specific knowledge of the AUT. If desired, the developer
can add certain actions which should be executed in sequence once certain, tester specified, conditions
hold. Overall, the strength of Sapienz is its ability to create a diversified set of sequences that have the
potential to cover the AUT extensively. The weakness of Sapienz is the testing oracle, as it only checks
for application crashes.

Azim et al. have designed an Android systematic scriptless testing tool called A3E [49]. Azim et al.
concluded from a user study that manual testing does not adequately cover Android applications. Their
approach to solving this problem is a scriptless testing tool that builds a control flow graph from the
byte code of the Android application under test. This means states and events changing the state of
the application are modeled without the source code of the AUT. Through the bytecode A3E captures
the data of widgets present in each GUI state. Once the event graph is obtained A3E offers two modes
for generating test sequences; Targeted exploration tries to generate test sequences covering the different
activities of the Android AUT and Depth-first-search exploration, which uses the same concept as depth-
first-search to explore the AUT. At the time of writing, A3E outperformed the Android monkey tool
concerning code coverage. Furthermore, A3E does not seem to support adding any application-specific
knowledge to the exploration strategy and does not use an oracle. A3E’s strong point is that there is
more than one exploration strategy available. Unfortunately, A3E has not been maintained since 2013
so is unlikely to work on the latest Android releases and it is unclear if it still performs similar to current
day scriptless testing tools.

Li et al. have designed a model based Android scriptless testing tool called DroidBot [50]. DroidBot
builds a model of the AUT at runtime. The tester proceeds to select or implements its exploration method
for this model to generate test sequences. DroidBot’s interesting feature is that it does not require source
code access and works on applications that can not be instrumented (encrypted applications) as it builds
the model of the AUT at runtime and not through static (byte)code analysis. DroidBot has three main
built-in exploration methods; depth-first, random, and unvisited action first. In each of the algorithms
the performance is measured through code coverage achieved. DroidBot uses the Android UIAutoma-
tor2 for determining the GUI hierarchy tree. As DroidBot allows developers to create their exploration
strategy (or edit the existing strategies), DroidBot offers great support for injecting application-specific
information of the AUT. Overall, DroidBots strengths stem from its flexibility to adjust for specific
applications, while this is also its weakness as the tester cannot expect the best performance with the
default exploration methods. Lastly, DroidBot does not look at the correctness of the GUI states,
thus lacks an oracle component. Li et al. released DroidBot as an open-source tool and at the time of
writing DroidBot is still actively maintained, making sure DroidBot works on the latest Android releases.

Li et al. have continued developing Android scriptless testing tools and have designed an extension on
top of the DroidBot tool called Humanoid [27]. The tool is specifically designed to provide another explo-
ration method for DroidBot. Humanoid is an image-based supervised deep learning method for exploring
and creating Android test sequences. Humanoid works based on screenshots of the AUT. It is trained on
a large dataset of human Android application interactions. From this dataset the deep learning model

2https://developer.android.com/training/testing/ui-automator

18 mTESTAR for scriptless GUI testing

ING
Eindhoven University of Technology Master Thesis

learns how humans usually interact with Android applications. When learning and passing screenshots of
the AUT to Humanoid are done, the location the deep learning model would click, type, swipe, or long-
click for each screenshot are returned. Humanoid replaces the exploration method of DroidBot and thus
uses DroidBot its functions for interacting with the AUT. One of the core problems with Humanoid is
that it is a big challenge to keep an up-to-date dataset from which the deep learning model can learn how
users interact with Android applications. Additionally, the applications in the training set do not need to
be representative of the AUT. Humanoid itself is also open source but has not been maintained since 2019.

Stoat is an Android stochastic model-based scriptless testing tool designed by Su et al. [51]. The ap-
proach used by Stoat contains both a dynamic and static code analysis component to create a model
(finite state machine) of the GUI of the AUT. The dynamic analysis is a weighted GUI exploration in the
sense that exploration is focused on actions that have a promise to increase code coverage. The model
created contains the different states and transitions of the GUI that Stoat managed to extract. Once the
model has been created Stoat uses a stochastic probability model to create sequences maximizing the
code coverage of the application under test. In essence, the transition probabilities are semi-randomly
mutated to get unique test sequences. Using this technique, Stoat outperformed A3E, UI/Application
Exerciser Monkey, and Sapienz in terms of code coverage and detected crashes. Stoat needs code coverage
information about the AUT to optimize its dynamic exploration, therefore Stoat has build in coverage
measuring capabilities. For closed source tools ELLA [52] is used. For open-source tools EMMA [53] is
used. Using both these tools allows Stoat to work on both closed and open-source applications. Stoat is
released as an open-source tool but has not been maintained since early 2020. Additionally, while being
open source it has no flexibility for injecting application-specific information about the AUT without
drastically editing source code. Overall, Stoat strong point is its unique two stages approach of first
creating a model followed by the approach of stochastic genetic mutation to generate the test sequences.
The downside of Stoat is its inflexibility to adjustments for specific AUT’s, its reliance on outside tools
(EMMA and ELLA) for optimal performance, and having limited oracle support as it only looks at
crashes of the as fault behavior.

Borges et al. created an Android monkey scriptless testing tool called DroidMate [54]. DroidMate sits
between the Android OS and the AUT and uses the native Android UIAutomater tool to retrieve the
GUI hierarchy tree (GUI state). DroidMate not only allows testers to develop their action selection
strategy but offers four default strategies as well. The four strategies offered are random selection, least
explored action first, record & playback, and fitness proportionate. Where fitness proportionate uses a
mined interaction model to predict the probability of each UI element having an event and uses these
probabilities to select the next action to execute. To evaluate the performance of the exploration of the
GUI and to monitor for any crashes, DroidMate intercepts all API calls between the Android OS and the
AUT. This allows for detailed information to be retrieved as all API calls are intercepted, however, it also
means instrumentation of the AUT is required. This implies either the AUT’s code must be open source
or open to repackaging. If either is not possible DroidMate can not work on the AUT. As DroidMate
has inbuilt support for testers to design their action selection approaches, DroidMate is a flexible tool
allowing for injecting application-specific information. Overall, their approach does not seem to have
unique components that are not present in other scriptless testing tools. Lastly, note that DroidMate
does not verify the correctness of the GUI state, no oracle module is present.

PUMA is a systematic exploration tool created by Hao et al. focused on analyzing Android applica-
tions [55]. Although the main focus of the creators of PUMA is analyzing Android applications, PUMA
can be used for scriptless testing without requiring changes to the tool. PUMA consists of two parts, the
first part is the exploration component which contains the logic on how the explore the AUT. The default
exploration strategy of PUMA is BFS. When residing in a state, all actions at this state are executed and
the unique resulting states are added to a stack. Only when the stack is empty PUMA stops exploration.

mTESTAR for scriptless GUI testing 19

Master Thesis
ING

Eindhoven University of Technology

What defines a unique state is determined by the tester. When a low abstract level is chosen by the
tester a difference in small details defines a new unique state, leading to a long exploration stage, but a
well-explored application. Vice-versa, a high abstraction level leads to a shorter exploration state, but
the application might be less explored. As states are saved on a stack PUMA can explore the AUT in
parallel speeding up the process. The second component of PUMA is the analysis part where the logic
to analyze the runtime properties of the AUT after each action is located. There is no default imple-
mentation for this, the tester needs to specify what it considers non-expected behavior. To help testers
specify non-expected behavior, a domain-specific language is created by Hao et al. called PUMAScript.
If the tester defines no requirements it is assumed analysis of possible erroneous behavior takes place
after complete exploration based on the saved state transition graph. Overall, PUMA provides an inter-
esting scriptless testing tool using an exploration strategy that can run in parallel on multiple machines.
Puma does not require source code to be available but instead instruments the bytecode of the AUT.
Additionally, PUMA has a lot of flexibility as it allows testers to define requirements the AUT needs to
adhere to in PUMAScript. The weakness of PUMA also lays in this flexibility. For every application the
analysis stage needs to be developed, leading to additional costs for maintenance of PUMA. PUMA also
does not make use of an oracle as it does not check the correctness of the state of the GUI. PUMA is an
open-source tool available online for all interested parties, however, the codebase has not been maintained
since 2014 so PUMA is unlikely to work on new Android versions.

Mirzaei et al. describe and implement a scriptless testing tool called SIG-Droid [56]. SIG-Droid uses a
symbolic execution approach to achieve scriptless testing for Android applications. In symbolic execution,
the AUT is analyzed to determine what inputs cause each conditional branch of the AUT to execute.
This results in constraints for each conditional branch present in the AUT. Using these constraints, test
cases can be generated. This approach lowers the number of test inputs that have to be tried as the
constraints to achieve each possible behavior is known. Usually, this approach is applied to unit tests but
SIG-Droid applies it to Android GUIs. SIG-Droid learns the constraints on the conditional branches of
the AUT by analyzing the interface model. The behavioral model captures the event-driven behavior of
the AUT. Both models are extracted from the source code of the AUT, this indicates SIG-Droid can only
work on open source applications. The source code is also used to determine the GUI widgets present
on the GUI state. The performance of SIG-Droid is measured through the code coverage it achieves.
Overall, it seems like SIG-Droid has a promising approach for unit testing of an application, but the
unproven potential for GUI testing. Since SIG-Droid is unavailable, it cannot be inspected or tested on
current Android applications. Additionally, SIG-Droid only works on applications where the source code
is available, limiting the ability to use the tool on industrial applications and has not oracle component
to verify the correctness of a GUI state.

Adamo et al. have developed a tool for reinforced learning-based scriptless GUI testing for Android
applications [57]. To improve code coverage they propose to use a reinforced learning algorithm called
Q-learning [58] for determining what action should be executed at each point in time on the AUT. The
concept of Q-learning in the tool proposed by Adamo et al. iteratively identifies events that are likely
to discover unexplored states and revisit partially explored states. This means that when the Q-learning
agent needs to choose an action, each action has a reward based on associated rewards derived from
past iterations. The higher the reward for an action, the more likely the Q-learning agent selects this
action next. To identify widgets present in the GUI Adamo et al. use Appium and the Android UIAu-
tomator. Adamo et al. compared the performance of their implementation to UI/Application Exerciser
Monkey and noted an improved performance between 3%-18%, depending on the tested application.
Overall, Adamo et al. focus more on the Q-learning algorithm and the benefit it can potentially pro-
vide to the action selector of scriptless testing tools than providing a functioning tool or framework for
scriptless testing. As they focus mainly lies on the Q-learning algorithm no oracle component is discussed.

20 mTESTAR for scriptless GUI testing

ING
Eindhoven University of Technology Master Thesis

CrashScope is a tool created by Moran et al. [59]. CrashScope is designed to achieve systematic
exploration-based scriptless GUI testing for Android applications. The unique factor of CrashScope
is its ability to generate detailed crash reports when encountering a problem in the AUT. The crash
report contains screenshots, reproduction steps, exception trace, and a replayable script to reproduce
the crash on the AUT. To find crashes in the AUT CrashScope systematically explores the application
using a DFS or random approach. Before trying to apply the DFS or random exploration method to the
AUT, static code analysis is used to create a model of the AUT. CrashScope is set up to allow parallel
exploration of the AUT, speeding up the testing process. CrashScope’s performance is measured by how
many reproducible crashes it can locate. In the two empirical evaluations Moran et al. claim CrashScope
is as effective as the state of the art scriptless testing tools and its crash reports as are useful as hu-
man written crash reports. Overall, the unique component of CrashScope is its crash report generation,
this indicates CrashScope has an oracle component. In the oracle component designed by Moran et al.
the focus is on application crashes and the logs generated to determine if the application is in a fault state.

SwiftMonkey3 is a tool designed by the Zalando company for monkey testing on iOS applications. It
essentially is an attempt to create a similar tool as UI/Application Exerciser Monkey but for iOS. The
tool cannot be classified as a scriptless testing tool as its only capability is clicking on random screen
coordinates of the iOS device. Nevertheless, it is relevant to be aware of the existence of SwiftMonkey
as to our knowledge it is the only non scripted testing tool for iOS devices.

2.6 Discussion

In the mobile scriptless testing domain there exist numerous tools focused on the Android system, see Ta-
ble 2.1 for a summarized overview of the tools. It can be noted DroidBot and DroidMate could be suited
for extension. However, DroidMate is limited to the random exploration algorithm as has no other algo-
rithms supported. Its flexibility is mainly to integrate domain specific information, not completely new
exploration algorithms. DroidBot has the same problem and is limited in the domain specific informa-
tion which can be integrated. Additionally, many of the available scriptless testing tools are abandoned,
untested on industrial systems, or lack in performance and intelligence. For the iOS operating system
there seem to be no scriptless testing tools available. This leaves a promising opportunity to develop an
industrial verified Android and iOS scriptless testing tool.

Table 2.1: The table with a summary of the tools presented in Section 2.5. Note the symbols used mean
the following; −−:very poor, −:poor, 0:neutral, +:good, ++: very good.

Feature set Eskonen et
al.

Sapienz A3E DroidBot Humanoid Stoat DroidMate PUMA SIG-Droid Adamo et al. CrashScope

Publicly
available

No No Yes Yes Yes Yes Yes Yes No No No

Actively
maintained

No Yes No Yes No No Yes No No No Yes

Exploration
algorithm

Reinforced
learning

Systematic/
search

Systematic Systematic,
Random

Supervised
learning

Stochastic
model based

Random Systematic Symbolic exe-
cution

Reinforced
learning

Systematic

Flexibility
wrt domain
knowledge

−− + 0 + −− 0 ++ ++ − − −−

Concept of
state

No Yes Yes Yes No Yes Yes Yes Yes No Yes

Failure detec-
tion

−− ++ −− + −− + −− − −− −− ++

From the analysis of the different scriptless testing tool, we extracted a number of design aspects which
can be used to create a better performing, industrial tested, scriptless testing application (see Section
2.6.1).

3https://github.com/zalando/SwiftMonkey

mTESTAR for scriptless GUI testing 21

https://github.com/zalando/SwiftMonkey

Master Thesis
ING

Eindhoven University of Technology

For automated testing there is research work being conducted to improve oracles used in testing. However,
for scriptless testing in the mobile domain not all automated testing oracles are suitable and at the time
of writing there seems to be very limited oracle research available for mobile scriptless testing tools. The
only oracles available seem to be log and crash oracles. This leaves an opportunity to work on oracles
for scriptless testing in the mobile environment.

2.6.1 Scriptless Design Aspects

From the scriptless testing approaches and tools highlighted in section 2.5 we extracted a number of
design aspects important for scriptless testing. These design aspects can be leveraged in the mobile
scriptless GUI testing tool to be implemented in this thesis. The following design aspects have been
highlighted in the related work which we believe to have value.

• Exploration algorithm

• Flexibility to add domain specific AUT information

• GUI state information

• Concept of state

• Failure detection

The exploration algorithm is a core design aspect as it determines which actions are contained in the
test sequences. With the wrong exploration algorithm, intelligence in creating the test sequences can
be missing, thus a larger part of the application may stay uncovered compared to a smarter exploration
algorithm. Therefore exploration algorithms are essential for a scriptless testing tool. For exploration
algorithms to work well memory is required to log what components of the application have been explored
and which actions have been taken, a state model is used for this. Therefore, there must be a concept
of state and a state model in the scriptless testing tool. Additionally, the concept of state allows for
abstraction such that unnecessary details can be skipped over in test sequence generation. The flexibility
to add domain-specific AUT information to the scriptless testing tool is an important design aspect as
one would like to keep this as simple as possible for the tester. Making this easier allows for better
maintenance of the domain-specific information. To work with a GUI it is important to understand the
GUI. If there are more details available on the GUI state, more information can be leveraged for creating
test sequences. Therefore, the ability to gain GUI state information and the ability to gain detailed
information is important. Lastly, the goal of scriptless testing is to find failures in the AUT. This means
the detection of failure is important for the functioning of a scriptless testing tool, leading to failure
detection being an important design aspect of a scriptless testing tool.

22 mTESTAR for scriptless GUI testing

ING
Eindhoven University of Technology Master Thesis

Chapter 3

Mobile scriptless GUI testing

The goal of this thesis is to develop a scriptless testing tool for mobile apps (Android and iOS [60]) and
apply the tool to an industrial use case. In Chapter 2, a number of existing scriptless testing tools for the
Android operating system are introduced. However, these tools have shortcomings. All of the publicly
available tools are academic tools, often lacking maintenance. The tools which are still maintained are
often not verified on industrial-sized mobile applications or lack intelligent exploration/ test sequence
generation algorithms. Additionally, all available tools lack a failure detection component (test oracle).
Despite these shortcomings, design aspects can be learned from the existing tools. In this Chapter, we
extend the previously introduced scriptless testing tool TESTAR for Android and iOS applications, we
name the extended TESTAR tool mTESTAR. Ideally, we create a tool with a shared core for Android
and iOS scriptless testing to minimize maintenance costs. mTESTAR will be validated on the Android
ING Bankieren mobile application1, in order to ensure that its design and implementation are correct
(see Chapter 4).

In this chapter, the components relevant to the design and implementation of the mTESTAR tool are
described. The first section described the architecture of mTESTAR as well as the changes required to
make the mTESTAR architecture suited for mobile applications, see Section 3.1. Followed by a section
focusing on the new accessibility API integrated into mTESTAR to allow for interaction with mobile ap-
plications, see Section 3.2. Next, the two modes of mTESTAR relevant for mobile scriptless testing are
described, namely, Spy mode, see Section 3.3, and Generate mode, see Section 3.4. The generate mode
section consists of sub-sections discussing the different components relevant to achieve the generation of
test sequences. As highlighted previously in Section 2, the existing tools lack failure detecting capabili-
ties and scriptless testing oracles are under-explored. Therefore, we introduce the concept of test oracles
for scriptless testing and how it can be leveraged in the context of scriptless mobile testing, see Section 3.5.

3.1 Architecture of mTESTAR

Figures 3.1 and 3.2 show the mTESTAR architecture. In Figure 3.1, the mTESTAR components and their
relations are displayed. Components that are modified (compared to TESTAR) for scriptless testing of
mobile applications are colored orange. Before discussing the architecture in more detail, it is important
to note that the general execution flow of mTESTAR cannot be observed through these two figures. The
execution flow of mTESTAR is the same as TESTAR’s execution flow, which can be observed in Figure
2.1.
The accessibility API allows mTESTAR to retrieve the current structure and component information
of the AUT. At the same time it also allows mTESTAR to execute actions on the host platform of the

1https://play.google.com/store/apps/details?id=com.ing.mobile

mTESTAR for scriptless GUI testing 23

https://play.google.com/store/apps/details?id=com.ing.mobile

Master Thesis
ING

Eindhoven University of Technology

Figure 3.1: The architecture of the implementation of mTESTAR for mobile applications. Components
colored in orange have been modified for mTESTAR. Purple components indicate an external service.
Green components are unmodified.

AUT. It can be observed that the accessibility API, Appium in our case, is located between the mobile
AUT and mTESTAR, more detail on how the mobile-specific accessibility API Appium is leveraged in
Section 3.2. The OrientDB is an open-source graph database used as the memory of mTESTAR. It is
used to store detected states, and actions taken by mTESTAR.

3.1.1 State Management

The State Management component is the central component of mTESTAR which takes care of capturing
the GUI state of the AUT, saving the GUI state to the OrientDB, and managing the abstract state and
abstract actions, see Figure 3.2. The concept of state is important to manage in a scriptless testing tool as
it is required for certain exploration algorithms (e.g. Q-learning, unvisited actions first). When the State
Management component receives the GUI state from the accessibility API, it translates the GUI state
into an internal mTESTAR state. Translating the GUI state for the AUT already existed in TESTAR
for web and desktop applications. However, Appium is not the same accessibility API as in either web or
desktop TESTAR, therefore the engine which builds the mTESTAR state from the received GUI state
has been adapted. The GUI state that Appium passes is an XML document with the different Android
or iOS widgets in a tree format. This tree is parsed and each element is saved as a widget together
with its corresponding attributes. Although Appium claims the data it provides abstracts away from the
OS from which the information is obtained, in practice there are significant differences between iOS and
Android. For example, Appium obtains different widget attributes for Android and IOS applications.
Due to this difference, two engines have been constructed generating mTESTAR state for Android and
iOS separately. When saving the state to the OrientDB, the obtained mTESTAR state is combined with

24 mTESTAR for scriptless GUI testing

ING
Eindhoven University of Technology Master Thesis

Figure 3.2: More detailed information on the sub-components of the mTESTAR architecture shown in
Figure 3.1. Note that this figure abstracts away from the external accessibility API and the connection
between the different components.

a screenshot. We have changed the procedure to obtain screenshots through the accessibility API. The
process of saving the mTESTAR state and screenshot to the OrientDB has been left unchanged. Abstract
state and abstract action are important concepts for the performance of the test sequence generation,
therefore we will discuss then in Section 3.4.2 and 3.4.3 respectively.

3.1.2 Action Selection

The Action Selection component of mTESTAR takes care of deriving the possible actions which can be
taken on a specific mTESTAR state. Consequently, one action is selected from the list of possible actions,
and executed. The action derive components are newly build for both Android and iOS, as deriving the
possible actions depends on the widgets and their attributes. For Android, the actions click, long-click,
scroll, type, back, and system actions have been implemented. For iOS click, scroll, and type actions have
been implemented. Long-clicks and back actions are not implemented for iOS given that these functions
do not exist. Secondly, system actions are not supported for iOS due to their absence in Appium. To
determine which of the implemented actions are possible on which widgets of the state, each widget in
the state is iterated over and its attributes are inspected. When predefined widget attribute values are
found, the action and the widget on which the action can be executed are added to the derived actions
list. E.g. Android widgets carry the property clickable, if this boolean is true we add the widget with the
click action to the derived actions list. Unfortunately, not all actions have clear mappings between widget
attributes and actions. In these cases the widget class property can be used. E.g. iOS class attribute

mTESTAR for scriptless GUI testing 25

Master Thesis
ING

Eindhoven University of Technology

being XCUIElementTypeButton means the widget is clickable. Which classes map to each action depends
on the AUT.

Once a list of possible actions has been derived for a state, it must be determined what action will be
executed. mTESTAR has support for three different action selection algorithms; 1) Random where an
action is chosen from the derived list at random, 2) Unvisited actions first where the state model in the
OrientDB is leveraged to select an action that has not previously been executed, and 3) the reinforced
learning algorithm Q-learning [44]. The action selection algorithm returns the action to be executed,
which is passed to the action execution component. Note that action selection algorithms are out of
the scope of this thesis, therefore we have not improved upon the action selection algorithms currently
present in TESTAR. For an overview of the action selection algorithms/ GUI exploration algorithms see
Section 2.2.

3.1.3 Action Execution

The Action Execution component is dedicated to getting the selected action executed on the AUT. As
mentioned before, Android supports the actions click, long-click, scroll, type, back, and system actions,
while iOS supports click, scroll, and type actions. The Action Execution component takes the action
which should be executed and translates it to Appium commands representing the same action. In turn,
Appium is instructed to execute the passed command on the AUT and return the results back to the
Action Execution component. Additionally, the newly received AUT state is passed to the State Man-
agement component. The State Management component is required to be informed of new states as it is
the component in charge of distributing the GUI state to other components of mTESTAR.

The last core component of mTESTAR is failure detection, also called the oracle component. Failure
recognition is a critical element in mTESTAR and required for a well functioning mobile scriptless testing
application. Additionally, the oracle component contains several additions for mTESTAR, therefore we
will discuss it in detail in Section 3.5.

3.1.4 mTESTAR GUI

The mTESTAR GUI is used for multiple purposes. The mTESTAR GUI enables the tester to configure
mTESTAR at runtime. Next, testers can use the spy mode to get additional information about the AUT
widgets visually, see Section 3.3. Lastly, testers can view the test sequences generated once mTESTAR
has finished. As a mobile operating system significantly differs from web and desktop operating systems,
we have decided to no longer use the OS of the device which runs mTESTAR for visualization. Therefore,
both the spy mode and the post test sequence generation visualization have been modified. Note that the
settings (E.g. number of sequences, number of actions, etc.) which can be adjusted in the mTESTAR
GUI have not been modified in this thesis.

The Post Test Generation Visualization component visualizes the sequence of actions taken by mTES-
TAR in the generate mode. This can be used by the tester to inspect if a crash occurs on the application
being tested. Using the Post Test Generation Visualization it is possible to visually retrace the test se-
quences mTESTAR has generated to produce a crash. To provide this functionality, mTESTAR creates
an HTML file with information on each state, the action highlighted, and detailed information about the
widget on which the action takes place.

26 mTESTAR for scriptless GUI testing

ING
Eindhoven University of Technology Master Thesis

3.1.5 Design aspects

It is important that the design aspects deemed important from the literature research, see Section 2.6.1,
are incorporated into the different architectural components of Figure 3.1. The important design as-
pects mentioned were; exploration algorithms, flexibility to add domain-specific AUT information, GUI
state information, the concept of state, and failure detection. Each of these design aspects are present
in one or more components of mTESTAR. The exploration algorithms are incorporated in the action
selection component, they are used to determine which action is executed on the AUT. Detailed GUI
state information is obtained from the AUT through the accessibility API, and the state management
component takes care of translating it to an mTESTAR state. The state management component also
ensures the concept of state is present in mTESTAR and that state abstraction can be used. The oracles
of mTESTAR ensure failure detection is incorporated. Lastly, mTESTAR supports the flexibility to add
domain-specific AUT information throughout all its architectural components. State management allows
testers to determine the abstraction for states and actions to be used throughout the testing. In the
oracle composer, testers can define their composition and individual oracles. While the action selection
component ensures testers can modify the action derivation algorithm.

3.2 Accessibility API

mTESTAR obtains information and executes actions on the GUI of AUT’s through the accessibility
API [42], no explicit environment information is used in mTESTAR outside of the accessibility API. A
framework that is designed for automating GUI tests on mobile applications, specifically the Android
and iOS platform, is Appium [61]. The reason for choosing Appium as accessibility API is threefold.

Firstly, Appium returns the structure of the GUI of the AUT on the widget level, allowing mTESTAR
access to information on the individual components of the AUT. This aids with understanding the GUI
opposed to working with, for example, screenshots.

Secondly, Appium provides a single API for both Android and iOS such that developers do not need to
maintain two different setups for two API’s separately2. It interacts with Android applications through
Google’s UiAutomator23 and with iOS applications through Apple’s XCUITest4.

Thirdly, Appium can be added to the application at runtime. By using the vendor-provided automation
frameworks UIAutomator2 and XCUITest, Appium makes sure that compiling specific Appium or third-
party code into the application under tests is not necessary, this allows the tester to be sure that the
application tested is the same as the application that is being released.

Appium works with the concept of a session; a connection between the AUT and the Appium server is
set up and a connection between the Appium server and mTESTAR is set up. Appium continuously
listens to mTESTAR to see if any commands are being sent, if any commands are received it translates
these commands and pushes them to the mobile device. The accessibility operations implemented in
mTESTAR are actions, system actions, screenshots, obtaining GUI state, obtaining AUT states, and
starting and stopping applications. As the Appium implementation of these operations differs between
Android and iOS, two separate Appium implementations are created in mTESTAR.

2https://appium.io/docs/en/about-appium/intro
3https://developer.android.com/training/testing/ui-automator
4https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_

xcode/chapters/01-introduction.html#//apple_ref/doc/uid/TP40014132-CH1-SW1

mTESTAR for scriptless GUI testing 27

https://appium.io/docs/en/about-appium/intro
https://developer.android.com/training/testing/ui-automator
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/01-introduction.html#//apple_ref/doc/uid/TP40014132-CH1-SW1
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/01-introduction.html#//apple_ref/doc/uid/TP40014132-CH1-SW1

Master Thesis
ING

Eindhoven University of Technology

It is important to note the difference in performance for Appium between Android and iOS. Executing
operations on the AUT does not delay mTESTAR in either of the operating systems. However, retriev-
ing the state takes significantly longer for iOS as Appium in iOS retrieves all widgets of the GUI state,
not only the visible ones. This leads to a massive performance hit. For Android retrieving the GUI
state takes on average 10ms on the ING application we tested for. For iOS, it takes around 2000ms
to retrieve the GUI state on the ING application under tests. This significantly slows down mTESTAR
execution for iOS applications as obtaining the GUI state is common action within mTESTAR. The poor
performance for the GUI state retrieval for iOS is a point of concern which needs attention in future work.

3.3 Spy mode in mTESTAR

The Spy mode of mTESTAR is an inspection mode where the GUI of the application under test can be
examined in detail. Besides showing the visible components, the Spy mode provides attribute information
on each widgets of the application. The widget information can be used for setting up the test sequence
generation of mTESTAR. If the tester requires no additional information, the spy mode can function as
an exploration tool. For example, during exploration the tester can determine what the right settings for
mTESTAR’s sequence length and the number of sequences are.

Figure 3.3: Screenshot of Spy mode of the home page after login for the ING android application.

28 mTESTAR for scriptless GUI testing

ING
Eindhoven University of Technology Master Thesis

In Figure 3.3 the spy mode running on the Android ING application can be observed. Box number one
shows a screenshot of the mobile device on which the ING application is running. Additionally, widgets
on which actions can be taken are highlighted with colored dots. In the case of Figure 3.3, the green dots
indicate click actions (note that in Figure 3.5 another type of action highlight can be observed, namely
blue dots highlighting widgets where type actions are possible). Box number two shows the hierarchical
tree of the elements present in the current GUI state of the AUT. The elements in the tree can be clicked
and will be highlighted on the screenshot and vice versa, see Figure 3.4. In box number three additional
information of the selected widget can be observed, all attribute information known to mTESTAR about
the selected widget is displayed here.

Figure 3.4: A screenshot of the Spy mode where an element of the tree is clicked and another widget is
hovered over in the screenshot of the ING application.

mTESTAR for scriptless GUI testing 29

Master Thesis
ING

Eindhoven University of Technology

Figure 3.5: A screenshot of Spy mode for a screen with click and type actions for the ING android
application.

An important design choice worth highlighting is the synchronization of the Spy mode with the ac-
tual GUI state of the AUT. There are three possible approaches for synchronization of the Spy mode
interface; synchronization on command, synchronization on change, continuous synchronization. In syn-
chronization on command the user determines when the Spy mode should retrieve new information, in
synchronization on change the Spy mode interface is only updated when changes are detected, and in
continuous synchronization the Spy mode interface continuously pulls the AUT GUI state and refreshes
its information. In Table 3.1 the pros and cons for each approach are listed.

30 mTESTAR for scriptless GUI testing

ING
Eindhoven University of Technology Master Thesis

Table 3.1: The table which shows the pros and cons for each spy mode synchronization approach.

Pro’s Con’s
Synchronization
on command

Performance: No overhead of un-
necessary synchronizations or state
comparisons. Reliability: no com-
parisons of state are being computed
to determine if changes occurred, thus
no wrong comparisons results can be
reached. Control: user is in control
with determining when the Spy mode
should refresh.

Delay: When changes occur at the
AUT GUI the changes are not re-
flected to the Spy mode until the user
explicitly takes an action to retrieve
the updates. Non-consistency: the
Spy mode for other platforms (web,
desktop) does not work with synchro-
nization on command. Thus, us-
ing it for mobile would cause in-
consistency between platforms within
(m)TESTAR.

Synchronization
on change

Consistency: AUT GUI and the Spy
mode stay consistent. If the AUT
GUI changes, the Spy mode visual-
ization will also change. Balance
performance vs consistency: As
the Spy mode is only updated when
changes occur, resources are saved.
The comparison of GUI states can
happen in the background.

State difference: Need to correctly
compute whether the GUI state dif-
fers from the Spy mode state without
requiring to much computation time.
Overhead: Additional state compar-
ison overhead, but as this can happen
separately from the Spy mode GUI
thread, impact is limited.

Continuous syn-
chronization

Consistency: any changes of the
AUT GUI are reflected in the Spy
mode. Overhead: No state compar-
ison overhead.

Overhead: very high GUI overhead
as GUI elements are continuously re-
drawn in the Spy mode.

After evaluating the pros and cons of the three synchronization approaches we have opted for the syn-
chronization on change. This ensures the Spy mode is synchronized with the AUT GUI but does not
negatively impact the performance as the GUI elements are only redrawn when a change is detected. The
state comparison algorithm implemented compares the widgets and widget attributes and thus should
detect any changes to the AUT GUI.

3.3.1 Implementation spy mode

In Figure 3.6 the class diagram of the implementation of the Android spy mode can be seen, the iOS
spy mode class diagram is identical except for object names. Four main classes can be observed in the
diagram, the general class AndroidVisualization which passes information between the components visi-
ble in the screenshot. The class OverlayVisualization, which supports the highlighting of widgets on the
screenshots by plotting OverlayBox elements. Lastly, the TreeVisualization class takes care of construct-
ing the hierarchical tree from the mTESTAR state and displays the widget information when a specific
element is clicked.

mTESTAR for scriptless GUI testing 31

Master Thesis
ING

Eindhoven University of Technology

Figure 3.6: The class diagram of the Spy mode implementation for Android and iOS applications.

3.4 Generate mode in mTESTAR

The Generate mode is the main focus of mTESTAR. In this mode, the GUI is explored through several
sequences consisting of various actions. More mistakes within the AUT are detected when the sequences
have a greater coverage of the AUT. Several design aspects play an important role for the generate mode
to function correctly and efficiently. In this section, we will discuss the state model, the concept of ab-
stract state, and the concept of abstract action. One can note that the action selection algorithms have
a large effect on GUI exploration. However, the concept of action selection algorithms falls outside the
scope of this thesis. The action selection mTESTAR does support are; random action selection, unvisited
actions first, and Q-learning.

3.4.1 State model in mTESTAR

The mTESTAR state and state model have already been introduced in Section 2.4.2. The concept of
state and the state model are very important for the Q-learning and unvisited actions first action selec-

32 mTESTAR for scriptless GUI testing

ING
Eindhoven University of Technology Master Thesis

tors as they need to be aware of which actions and states have already been discovered. As GUIs have
a large volume of output [62], storing and dealing with every small change in the GUI as a separate
state becomes infeasible and can limit the effectiveness of mTESTAR in exploring the application. To
solve this state-explosion problem [45], we can abstract away from certain details in a state, this leads to
multiple similar GUI states being grouped, a group is also called an abstract state. See Figure 3.7 and
Figure 3.8 for an illustration of how this helps with preventing unnecessarily repeated action execution.

Figure 3.7: Figure illustrating button click effect when using concrete state.

mTESTAR for scriptless GUI testing 33

Master Thesis
ING

Eindhoven University of Technology

Figure 3.8: Figure illustrating button click effect when using abstract state.

In Figure 3.7 ConcreteState1 and ConcreteState3 are very similar, the only difference being the text in
the textbox. For both states clicking Button1 leads to ConcreteState2. However, as the state model sees
ConcreteState1 and ConcreteState3 as different states it interprets clicking Button1 in each state as a
completely different action. In practice both states are almost identical and the resulting state is the
same. Therefore, executing both actions is very likely not to find any new faults compared to executing
one of the actions. In Figure 3.8 we defined the abstract state in such a way that ConcreteState1 and
ConcreteState3 now are recognized as AbstractState1 (see Section 3.4.2). Now when Button1 is clicked
in either concrete state it will not be recognized as a new action in the other concrete state, this results
in less repeated actions and thus requiring less runtime to achieve coverage.

3.4.2 Abstract state

Mobile applications GUIs are very different from web or desktop applications due to the smaller screen
of mobile phones [63]. Thus, the abstract state definition for mobile applications will significantly differ
from desktop or web applications. The abstract state definition must be defined for every application
under test separately, to get optimal performance out of mTESTAR and its state model. In the case of
mobile applications we define which widget attributes should be compared to differentiate states. When
the attributes are identical, the states are classified as the same abstract state. When the attributes
differ, the states will be classified as different abstract states.

Before defining the abstract state for our validation application, the ING bankieren app, we looked at
state of the art mobile scriptless testing and how they approach the abstract state problem. Four different
approaches have been found:

• Use the Android Activity as abstract state [49].

• Same widgets on the screen (identical hierarchy tree of widgets) [50].

• Identical hierarchy tree of widgets and identical widget attributes [22,51,55].

• Identical screenshots [47,54].

34 mTESTAR for scriptless GUI testing

ING
Eindhoven University of Technology Master Thesis

Using Android Activity as the abstract state does not work for dynamic Android apps as a lot of changes
can occur within one Android activity. Identical screenshots would lead to no state abstraction as any
change in the pixels of the screenshot results in a new abstract state. A tester-defined number of widget
attributes to be identical seems to be the best approach for abstract state definition in the mobile domain.

For the ING application, we have opted to define everything which has identical widget class names to
be the same abstract state (for other applications different settings can be selected). Essentially, if two
states have the same class of widgets at the same location in the hierarchy tree, the states fall in the same
abstract state group. E.g. text changing in the AUT does not change the abstract state or checkboxes
being marked or unmarked does not affect the abstract state.

Note that how mTESTAR computes the comparison of the GUI states once it receives the attributes to
compare, remains unchanged in this thesis (compared to TESTAR).

3.4.3 Abstract action

Using abstract states decreases the number of redundant actions being taken on the AUT, but it does
not entirely prevent redundant actions. As we aim to minimize time and resource wasted, we introduce
the concept of abstract action. To to best of our knowledge, no (scriptless) testing tool is working with
a concept of abstract action.

In a state there are multiple actions possible on the GUI, some of them might have the same effect or be
on the same sort of widget. Ideally, instead of taking all of these actions as separate unique actions, we
group similar actions together, also called abstract action. When an abstract action has been executed, it
will classify all of the actions in the abstract action group as executed. Figure 3.9 is an example of where
the concept of abstract action can be valuable. All widgets marked by the red box result in a nearly
identical state, only the name of the specific bank transaction changes. Having mTESTAR explore each
of these actions and resulting states would result in a lot of wasted computation time.

For the best performance the definition of the abstract action is application specific. For the ING appli-
cation, we have opted to apply abstract actions in two locations. The first location is in every GUI state
which is related to the transactions. The second location is date pickers in the ING application. For
transaction GUI states we have opted to let actions on widgets with the same Android class map to the
same abstract action group. This is to prevent individual action interactions for every bank account or
every transaction of a bank account. Additionally, we realized that mTESTAR can spend a large number
of actions on date pickers as clicking on a day of the month is a specific action that can be repeated
31 times in the worst case. Abstract actions can also be applied more generally based on the widget
attributes. However, for the ING application we have chosen not to define the abstract action more gen-
erally as we believe it would not improve the performance. Wrongly defining the abstract actions would
also cause actions which lead to new states being skipped, limiting the exploration ability of mTESTAR.

mTESTAR for scriptless GUI testing 35

Master Thesis
ING

Eindhoven University of Technology

Figure 3.9: Screenshot of the GUI state of the Android ING Bankieren application where abstract action
can be valuable.

3.5 Oracle

The different types of oracles, and the oracles in existence for automated testing have been introduced
in Section 2.3. Using these concepts we have extended the test oracle within mTESTAR in an attempt
to create oracles that are better at detecting incorrect behavior. In order to improve the fault detection
of the mTESTAR mobile scriptless testing tool, it is important to not only design the individual oracles
detecting different problems but also to create a framework in which the oracle results can be combined.
Additionally, testers should be able to define oracles themselves for verifying application-specific require-
ments. To achieve both we introduce an oracle framework for mTESTAR.

We define the requirements for individual oracles in this framework as follows:

36 mTESTAR for scriptless GUI testing

ING
Eindhoven University of Technology Master Thesis

• Oracles shall be able to be composed to allow for combining the results of different oracles.

• An oracle shall be atomic; the oracle at most takes care of one type of fault.

• Oracles shall be deterministic; the oracle will always produce the same output for the same input.

• Oracles shall be able compute their output within 3.0 seconds of receiving the GUI state.

• The oracles shall be generic; aim to require as little maintenance as possible (when the AUT
changes).

• The oracle shall output a number between 0-1 specifying the likelyhood of a potential fault, where
0 indicates no faults were found and 1 indicates a (fatal) crash was encountered.

For the composition of the oracles, we require that the tester can specify how the outputs (value between
0-1) of the oracles are combined into a final output value which is translated to a verdict. A verdict is
one of the following three statements: (OK, WARNING, ERROR) together with the string description
of the oracle findings. In Figure 3.10 it can be observed how the oracle framework with the composition
of oracles would be positioned within the mTESTAR execution flow.

mTESTAR for scriptless GUI testing 37

Master Thesis
ING

Eindhoven University of Technology

Figure 3.10: The mTESTAR execution-flow with a visualization of how the oracle and oracle composition
takes place within this execution flow.

3.5.1 Devised oracles

The individual oracles we devised and determined valuable for detecting incorrect behavior during script-
less testing are as follows:

• Crash oracle

38 mTESTAR for scriptless GUI testing

ING
Eindhoven University of Technology Master Thesis

• Log oracle

• Suspicious text oracle

• Language oracle

• Deadlock oracle

• Livelock oracle

• Profiler oracle

• Model difference oracle

The crash oracle is an implicit oracle and monitors the AUT and the mobile device on which the ap-
plication is running. If a fatal error occurs (stopping the AUT or crashing the mobile device) the crash
oracle logs the information and returns that a fault has been found. This is a simple oracle that can be
found in all scriptless testing tools which have a fault detection component.

The log oracle is an implicit oracle and monitors logs send by the operating system of the mobile device.
The log oracle records information about any warning or errors with as subject the AUT. Based on the
severity of the warning or error it reports a different verdict score. The log oracle can be found in some
mobile scriptless testing tools (e.g. Stoat and Sapienz).

The suspicious text oracle is taken from TESTAR for desktop and web applications. In this specified
oracle regular expressions are specified, the oracle will check for every GUI state whether these regular
expressions are mentioned anywhere in the widgets. If there is a match the oracle logs the widget infor-
mation in which the suspicious text can be found and returns a verdict with this information.

The language oracle [64] is an implicit oracle focused on the accessibility of the AUT. To the best of our
knowledge, this type of oracle has not been implemented in the scriptless testing for mobile application.
The language oracle requires the tester to specify the language setting of the AUT. The oracle proceeds
to scan all text present in the GUI on spelling errors encountered by comparing the text to a dictionary.
Additionally, the language oracle verifies if there are no language inconsistencies in the application like
missing translations. If any spelling or translation issues are encountered the oracle records the informa-
tion in its verdict.

mTESTAR makes use of a state model to record what GUI states and actions it already has encoun-
tered. If mTESTAR gets stuck in the same, or a group of similar states it could indicate that that
the user can get stuck in a certain part of the GUI without having the option to return or progress to
other states. This is undesirable behavior for most GUIs. To detect this fault the implicit deadlock and
livelock [65] oracle are devised. The deadlock oracle verifies the application is not stuck in one specific
GUI state. The livelock oracle verifies the application is not stuck in a small set of GUI states. To the
best of our knowledge, there exists no oracle for scriptless testing tools checking for deadlock and livelock.

The profiler oracle monitors the CPU, memory, network, energy consumption of the mobile device run-
ning the AUT. This oracle checks if the device does not exceed the maximum values specified by the
tester for any of the aforementioned properties. Additionally, the oracle monitors if a peak in any of the
monitored properties occurs when the GUI changes. E.g. the network should not be maximally loaded
at page switch, or the CPU heavily used when the GUI page is scrolled.

Lastly, we have the model difference oracle. This is a human oracle. All previously introduced oracles
are online oracles, the model difference oracle is an offline oracle. The goal of the model difference oracle

mTESTAR for scriptless GUI testing 39

Master Thesis
ING

Eindhoven University of Technology

is to support the tester in comparing different AUT versions. The tester specifies which versions of the
AUT should be compared, and the model difference oracle will report on the differences in the abstract
and concrete state models mined. The tester can use this report to determine if any unexpected changes
occurred. State model difference can be computed through the PLTSDiff algorithm devised by Bogdanov
et al. [66]. Additionally, the value of this oracle has been confirmed by software testers of the ING bank.
They indicated this oracle would help them out when new features are introduced into the application.

Note that the profiler oracle and the model difference oracle have not been completed for mTESTAR. The
language oracle has partly been implemented for mTESTAR. However, all three oracles would provide
further issue detection capabilities to mTESTAR.

3.5.2 Oracle composition

To allow testers to combine the different oracles (self-designed oracles or predefined mTESTAR oracles) a
domain-specific language (DSL) has been designed in which the combining strategy desired by the tester
can be specified. The idea behind the DSL is to construct a hierarchical tree of the oracles, which need
to be constructed from the code the tester submits. In the tree, leaves are the oracles and intermediate
nodes are combined verdicts, see Figure 3.11 for an example. This tree corresponds to the DSL code in
Listing 3.1:

Listing 3.1: DSL code example
[Spe l l checkOrac l e] [CrashOracle , LogOracle]
[Susp ic iousTextOrac le] [DeadlockOracle , L ive lockOrac l e]

Figure 3.11: The visual tree representation of the oracle composition tree created by mTESTAR. The
diagram is generated from DSL code through plantUML.

40 mTESTAR for scriptless GUI testing

ING
Eindhoven University of Technology Master Thesis

In the DSL the tester specifies oracles that it directly wants to combine between squared brackets,
separated by a command ([oracle1,oracle2]). Oracles that need to be combined with this compos-
ite result are specified on the same line within squared brackets ([oracle1,oracle2][oracle3] or [ora-
cle1,oracle2][oracle3][oracle4]). If there is more than one composite result that has to be combined,
one of the compositions must be specified on a separate line, see code block 3.1. There is no limit to the
number of lines that can be used in the DSL.

The composition function used in combining oracle results can be specified by the tester. mTESTAR
supports two approaches; max combiner and threshold combiner. In the max combiner, the oracle result
with the value closest to one is the result passed to the combined oracle verdict. When there is more than
one oracle result with the same max value all of these results are passed. In the threshold combiner the
tester defines a value between 0-1, all oracle results greater or equal to this value are stored and passed
up in the tree as oracle result.

Visualizing the oracle composition tree allows the tester to verify if the oracle tree specified in the DSL
is the oracle composition intended. The visualization of the tree happens through the PlantUML open
source project5.

3.6 Conclusion

This chapter presents the mTESTAR tool and the oracles designed. mTESTAR allows testers to use
scriptless GUI testing for mobile applications. Additionally, an oracle framework is designed within
mTESTAR. The framework allows testers to specify the oracle compositions and creating new oracles.
mTESTAR implements the design aspects extracted from the literature research.

Overall, mTESTAR answers the question of how TESTAR can be extended for Android and iOS appli-
cations. Additionally, mTESTAR also answers how testing oracles can be used for scriptless testing.

5https://plantuml.com

mTESTAR for scriptless GUI testing 41

Master Thesis
ING

Eindhoven University of Technology

Chapter 4

Industrial validation

In this chapter, we will present the performance of mTESTAR on the ING Bankieren application in terms
of the code coverage metric. ING is a well-established bank1, which has a significant IT component2 due
to the current-day importance of software in (E-)banking [67]. ING Bankieren is the official application
to access the bank’s information for Dutch ING clients. Additionally, the ING Bankieren application is
downloaded over 5 million times3. Therefore, we select the ING Bankieren application for validating the
performance of mTESTAR, given that it is an industrial and in-use application.

Presenting the performance of mTESTAR in isolation provides no comprehensive idea about the effec-
tiveness of the tool. Instead the performance of mTESTAR should be compared to a baseline. Therefore,
we have also measured the code coverage achieved by the Espresso GUI tests designed by the Android
development team of the ING bank. Espresso tests are scripted tests designed for testing the GUI of
an Android application. Comparing the Espresso result and the mTESTAR result is of great value.
From this comparison, we can determine the value of mTESTAR for industrial use and evaluate whether
mTESTAR’s scriptless testing can outperform or equal the performance of the scripted testing.

Additionally, to determine how mTESTAR performs versus other state-of-the-art scriptless testing ap-
proaches, we evaluate Stoat and DroidBot (see Chapter 2) on the same ING application. The comparison
allows us to evaluate the design choices made.

4.1 Code coverage

To evaluate the performance of the designed and implemented mTESTAR GUI scriptless testing tool,
we use the performance metric of code coverage. Code coverage is a commonly used testing performance
metric [68] and many of the scriptless testing tools mentioned in Section 2 use it as a performance metric.
The concept behind code coverage is that the code which is covered does not have issues. If the covered
code contained faults, they would have shown during the tests covering the code. Therefore, more code
covered implies more potential faults found.

To determine the performance of the mTESTAR implementation, we will measure its performance on
the Android ING Bankieren application. We need an additional tool for measuring the code coverage.
As Android is Java-based, we can use Java code coverage tools to measure the code coverage. The tool
we have opted to use is Java Code Coverage (JaCoCo). JaCoCo is an open-source project which has
no restrictions in terms of allowed use. As Android is developed through Java and the Android SDK,

1https://www.ing.com/About-us/Profile/History.htm
2https://www.ing.com/Newsroom/News/Nothing-beats-engineering-talent-INGs-agile-transformation.htm
3https://play.google.com/store/apps/details?id=com.ing.mobile

42 mTESTAR for scriptless GUI testing

https://play.google.com/store/apps/details?id=com.ing.mobile

ING
Eindhoven University of Technology Master Thesis

JaCoCo can be leveraged to obtain code coverage on the ING Bankieren application. Note that the
EMMA [53] and ELLA [52] code coverage tools have been investigated and applied to the Android ING
Bankieren app given their prominence in the literature concerning code coverage. However, both tools
are unmaintained and did not function as intended on the Android ING Bankieren application, therefore
we will not incorporate them in our evaluation.

JaCoCo works with the concept of instrumentation on the byte code level. JaCoCo creates instrumented
versions of the original class definitions to keep track of what has been executed. It achieves this by
attaching itself to the JVM and instrumenting the classes during runtime at class loading. Using the
instrumentation, JaCoCo can determine which classes are called and what instructions are executed. To
translate this information into coverage reports, JaCoCo needs access to the source code. Byte level
coverage does not directly translate to the same source code coverage [69]. Using the source code it
obtains details on the classes and which instructions are on each line. This results in the coverage on
package, method, line, and instruction level. JaCoCo working at build time requires that the source code
must be available to set up JaCoCo. This limits JaCoCo’s use to applications of which the source code
is accessible to the tester.

Although Android is Java based, Android and Java are not identical. Additionally JaCoCo is designed
to work for predefined test cases. In scriptless testing, test sequences are not predefined but instead are
dynamically constructed. To help with setting up JaCoCo for Android applications and support code
coverage for dynamically constructed test sequences, we use the COSMO tool [69]. COSMO installs
the JaCoCo tool on the source code of the application for which the code coverage must be measured.
Broadcasts are sent to the mobile device to obtain the code coverage dynamically. These broadcasts
result in coverage files that are passed back to JaCoCo to generate reports.

We evaluate the code coverage over the whole ING Bankieren application and investigate the code cov-
erage at the package level. With the use of JaCoCo, we obtain the code coverage achieved by the ING
Espresso tests. With both JaCoCo and COSMO, we obtain the code coverage of mTESTAR, Stoat, and
DroidBot on the Android ING Bankieren application.

4.2 Experiment setup

When evaluating the performance of mTESTAR, we test for different settings: exploration algorithm,
number of test sequences, and the number of actions per test sequence. For the exploration algorithm, we
test the random selection algorithm, the unvisited actions first algorithm, and the Q-learning algorithm
as these are supported in mTESTAR. Before evaluation, the optimal performing settings for the number
of sequences and sequence length are unknown, so multiple combinations have been tried. The total
number of actions in any mTESTAR run is the same; 3000 actions, to ensure that the different settings
can be compared. We tested the combinations of; 6 sequences - 500 actions, 10 sequences - 300 actions,
30 sequences - 100 actions, 50 sequences - 60 actions, and 100 sequences - 30 actions.

All experiments have been carried out on an Android emulator running on the same device to ensure the
hardware does not affect the test results. See Appendix A for the detailed system information.

The ING Android developers create the Espresso tests. As Espresso tests are scripted no settings can be
modified. Stoat and DroidBot do not work with test sequences. Both tools test until a limit for the total
number of actions is reached. To achieve a fair comparison between mTESTAR, Stoat, and DroidBot,
the number of actions for Stoat and DroidBot is also set to 3000.

mTESTAR for scriptless GUI testing 43

Master Thesis
ING

Eindhoven University of Technology

4.3 Results

To measure and compare the performance for Espresso, mTESTAR, Stoat, and DroidBot, we present the
code coverage over the whole Android ING Bankieren application. For mTESTAR, we list the perfor-
mance for the combination of all settings introduced in Section 4.2. For an overview of the performance
see Table 4.1. The best performing setting for mTESTAR is 10 sequences, 300 actions, and the Q-
learning algorithm with a code coverage between 40.8-41.9%. This code coverage is slightly worse than
the performance achieved by Espresso. However, mTESTAR achieves significantly better performance
compared to Stoat and DroidBot.

Table 4.1: The table with the coverage results for the Android ING Bankieren application.

Tool Algorithm Sequences Actions Instructions Covered Lines Covered Methods Covered
mTESTAR Unvisited action 10 300 34.9% 34.5% 35.8%
mTESTAR Unvisited action 30 100 37.2% 36.8% 38.0%
mTESTAR Unvisited action 100 30 37.0% 37.0% 38.5%
mTESTAR Unvisited action 60 50 34.2% 34.0% 35.4%
mTESTAR Unvisited action 6 500 35.2% 35.1% 36.7%
mTESTAR Random action 10 300 40.2% 39.9% 40.2%
mTESTAR Random action 6 500 36.7% 36.7% 37.7%
mTESTAR Random action 30 100 36.2% 35.6% 37.0%
mTESTAR Random action 100 30 35.6% 35.5% 37.1%
mTESTAR Random action 60 50 38.1% 38.3% 39.3%
mTESTAR Q-learning 10 300 41.0% 40.7% 40.8%
mTESTAR Q-learning 30 100 37.7% 37.9% 38.8%
mTESTAR Q-learning 100 30 39.1% 39.0% 40.0%
mTESTAR Q-learning 60 50 38.4% 38.5% 39.5%
mTESTAR Q-learning 6 500 40.4% 40.3% 40.8%

ING scripted tests - - - 43.9% 43.4% 45.9%
Droidbot Unvisited actions first - - 34.9% 34.1% 35.7%
Droidbot Random - - 34.3% 33.7% 35.3%

Stoat - - - 23.7% 22.6% 25.7%

As the exploration algorithms used by mTESTAR are non-deterministic, the coverage results for runs
with the same settings can differ. Due to the time restrictions, it is infeasible to run each mTESTAR
setting combination until the central limit theorem [70] can be applied. Table 4.2 shows the recorded
runtime for each setting of mTESTAR. Note that runtimes recorded are subject to variance as the run-
time is not averaged over multiple mTESTAR executions.

44 mTESTAR for scriptless GUI testing

ING
Eindhoven University of Technology Master Thesis

Table 4.2: The table with the time performance for the different settings of mTESTAR.

Algorithm Number of sequences Number of actions Time taken
Unvisted action 10 300 274min
Unvisted action 30 100 301min
Unvisted action 100 30 340min
Unvisted action 60 50 303min
Unvisted action 6 500 248min
Random action 10 300 257min
Random action 30 100 277min
Random action 100 30 350min
Random action 60 50 318min
Random action 6 500 270min

Q-learning 10 300 228min
Q-learning 30 100 263min
Q-learning 100 30 348min
Q-learning 60 50 297min
Q-learning 6 500 237min

Assuming the central limit theorem can be applied after obtaining 30 results [71], with a total of 15 differ-
ent settings and an average runtime of 287minutes, the total computation time required would be 2,152.5
hours or approximately 90 days of continuous running. This runtime is infeasible for the scope of this the-
sis. Therefore, it has been opted to only run the best performing mTESTAR settings ten additional times.

The extra mTESTAR runs will allow for observing the variation in the result caused by the non-
determinism of the exploration algorithm. Additionally it can be used to validate that the result is
not caused by randomness. The results of the additional runs for Q-learning: 10 sequences - 300 actions,
are presented in Table 4.3.

Table 4.3: The table with the coverage results on the Android ING Bankieren application with the
Q-learning algorithm, 10 sequences, and 300 actions per sequence.

Run number Instructions Covered Lines Covered Methods Covered
Original run 41.0% 40.7% 40.8%

1 39.8% 39.7% 39.9%
2 39.5% 39.5% 40.0%
3 40.1% 40.3% 40.6%
4 40.9% 40.7% 40.9%
5 40.0% 40.3% 40.7%
6 40.8% 41.0% 41.1%
7 41.0% 41.3% 41.6%
8 40.5% 40.4% 40.8%
9 39.8% 39.5% 39.9%
10 40.3% 40.4% 40.8%

AVERAGE 40.4% 40.3% 40.7%
VARIANCE 0.29 0.34 0.28

mTESTAR for scriptless GUI testing 45

Master Thesis
ING

Eindhoven University of Technology

From the results in Table 4.3, we observe that the average over ten runs is slightly lower than the origi-
nal performance recorded. Additionally, the variance observed is low, indicating the randomness in the
Q-learning algorithm does not affect the overall coverage results. Together it allows us to claim with
more confidence that mTESTAR achieves performance very close to the Espresso tests. Note that non-
determinism in the Random exploration and unvisited action first algorithms is greater. Therefore, we
expect that the results differ more between runs for these algorithms. Additional experiments will have
to be carried out to confirm this expectation.

It could be the case the mTESTAR runs achieve higher coverage given more time. To validate the number
of sequence settings tested, we present the coverage increase per sequence. If the code coverage increase
flattens, it indicates more test sequences would not significantly improve the code coverage. See the code
coverage over sequences for the different exploration algorithms in Figure 4.1, Figure 4.2, and Figure 4.3.

Figure 4.1: Figure showing the coverage over sequences for Q-learning and the different mTESTAR
settings.

46 mTESTAR for scriptless GUI testing

ING
Eindhoven University of Technology Master Thesis

Figure 4.2: Figure showing the coverage over sequences for Random and the different mTESTAR settings.

Figure 4.3: Figure showing the coverage over sequences for Unvisited actions first and the different
mTESTAR settings.

From Figures 4.1, 4.2, and 4.3 we observe that for the settings; 30 sequences - 100 actions, 50 sequences
60 actions, and 100 sequences - 30 actions, the curve for the code coverage has flattened. This indicates

mTESTAR for scriptless GUI testing 47

Master Thesis
ING

Eindhoven University of Technology

increasing the number of sequences for these settings would not significantly increase code coverage.
For 10 sequences - 300 actions and 6 sequences - 500 actions, it can be argued that the curve has not
flattened, and an increase in sequences could improve the performance. To validate if the performance
can be increased the best performing algorithm for both these settings, Q-learning, is selected and the
number of sequences is increased. The performance of these mTESTAR runs is presented in Table 4.4.
As can be observed, the results are similar to the non-extra sequences runs of mTESTAR, indicating
additional sequences do not improve the code coverage.

The code coverage increase halting when running more sequences (increasing the overall actions exe-
cuted) is unexpected. Expected is that given enough time, exploration will reach more (border) cases
and increase the code coverage. However, there are possible arguments for a code coverage lower than
100%. Firstly, 100% coverage is infeasible is because the ING Bankieren application has a significant
amount of code that is inaccessible. The code is either no longer called or legacy code. We could not
filter out all these code components as they are sub-components of classes, and filtering on method level
proved impossible. However, the inaccessible code is not 50% of the total code, indicating there must be
other factors affecting the code coverage of mTESTAR not growing past 45%.

A potential second factor limiting the code coverage obtainable is that the ING Bankieren application
ran in a test environment as connecting to the live environment was not permitted for the testing of
mTESTAR. ING Bankieren developers do indicate this should not significantly affect the code possible
to be covered. Further tests must be carried out for finding additional factors limiting the code coverage
obtainable by mTESTAR.

Table 4.4: The table with the coverage results of additional mTESTAR runs to verify the settings chosen
for mTESTAR.

mTESTAR Instructions Covered Lines Covered Methods Covered
15 Sequences, 300 Actions

Q-learning 40.7% 40.2% 40.7%

10 Sequences, 500 Actions
Q-learning 40.1% 40.0% 40.5%

4.3.1 Package level results

The results presented previously are the coverage results over the whole ING Bankieren application.
As the performance of the Espresso tests and mTESTAR are similar, it is interesting to examine the
performance of mTESTAR versus Espresso in more detail. To obtain a more detailed comparison, we
investigate the code coverage at the package level. For each package we record the code coverage of
mTESTAR and subtract the code coverage of the Espresso test. The expectation is that most packages
will have similar coverage for both mTESTAR and Espresso, thus the difference will be approximately
zero. The expectation is confirmed by the violin plots of Figure 4.4.

48 mTESTAR for scriptless GUI testing

ING
Eindhoven University of Technology Master Thesis

Figure 4.4: Violin plot for package level difference in coverage between mTESTAR and Espresso

The density of all three violin plots is near the 0.0 mark, indicating both mTESTAR and Espresso
achieved similar coverage for most packages in ING Bankieren. This confirms the result that mTES-
TAR works as well as scripted testing (Note that the Espresso tests are the actual tests used by ING
before release). However, there are some packages near 1.0 and −1.0, indicating mTESTAR or Espresso
achieved a much better coverage compared to the other. The top 20% of the packages concerning code
coverage difference is displayed in Figure 4.5. Note that again for each package the code coverage of
Espresso is subtracted from the code coverage of mTESTAR. Additionally, the names of the packages
are anonymized as the names contain confidential ING information.

mTESTAR for scriptless GUI testing 49

Master Thesis
ING

Eindhoven University of Technology

Figure 4.5: Figure showing the 20% of the packages with respect to the difference in coverage between
mTESTAR and Espresso.

From Figure 4.5, it can be observed that the absolute value of the outliers decreases reasonably quickly.
Examining the top 10% shows that the difference in coverage has already decreased until approximately
0.5. Evaluating the characteristics of the packages where mTESTAR outperforms Espresso (or vice
versa) would allow for detecting possible relations between these packages. Therefore, we will perform
an analysis of the outlier classes.

The packages containing operations and settings modifying the information available to ING users pre-
login are in the outliers, mTESTAR achieved better code coverage for these packages. These packages
contain the code relevant for customers to modify what is visible pre-login but also the code relevant to
displaying the actual information to the customer. mTESTAR is capable of covering this code as it able
to log-out within the application and continue exploring the AUT.

The second characteristic of packages where mTESTAR outperforms Espresso is related to exporting.
From the ING application information related to bank accounts can be exported. The packages con-
taining the operations for exporting information are in the outliers concerning code coverage differences.
Specifically, mTESTAR covers the code related to generating PDF’s with different types of information.
Depending on the type of information to be exported different PDF generating code is called. mTESTAR
seems capable of performing the export function from multiple contexts.

As the performance on the complete ING Bankieren application is better for the Espresso tests, there
are numerous packages where Espresso outperforms mTESTAR. Espresso achieves greater code coverage
for all packages related to security. A number of the security packages are in the outliers of Figure 4.5.
Additionally, the packages for login obtain higher code coverage through the Espresso tests. mTESTAR
has a predefined login sequence setup to get into the ING Bankieren application reliably. This could be
the cause of the lower code coverage achieved for the login packages. However, it does not explain the
worse performance of mTESTAR for the security packages.

Due to the difference in coverage between packages, it is interesting to determine what the code coverage
is if Espresso and mTESTAR are used together. Using JaCoCo, we obtain the following code coverage
for Espresso and mTESTAR

50 mTESTAR for scriptless GUI testing

ING
Eindhoven University of Technology Master Thesis

• Instructions Covered: 52.3%

• Lines Covered: 52.1%

• Methods Covered: 52.3%

This is a very significant increase in coverage, even compared to Espresso. Overall, Espresso and mTES-
TAR cover different aspects of the ING Bankieren application, where the best coverage is achieved by
using them together.

4.4 Discussion

From the results we observe that mTESTAR outperforms both Stoat and DroidBot in terms of code
coverage for the ING Bankieren application. Therefore, we claim mTESTAR adequately implements the
design aspects extracted from the related scriptless testing tools, see Section 2.6.1. Additionally, as it
outperforms both Stoat and DroidBot, we can consider mTESTAR to have state of the art scriptless
testing performance for the industrial ING application.

It can be argued domain-specific knowledge has been added to mTESTAR, causing it to perform bet-
ter than DroidBot and Stoat (mTESTAR has the abstract state and abstract action setup for ING
Bankieren). However, both DroidBot and Stoat are supplied with domain-specific information as well.
For Stoat and DroidBot, a login sequence and the filtering of widgets are added as domain-specific knowl-
edge. To ensure Droidbot does not escape the AUT, it has additional predefined actions specified. As
both Stoat and DroidBot do not support adding any additional domain-specific information (E.g. no
abstract state or abstract action), the comparison between the tools can be justified.

It must be noted that Stoat and DroidBot only use a subset of the available scriptless testing approaches
(e.g. we did not compare performance versus a tool like SIG-Droid using symbolic execution to explore
the GUI). To be able to claim the design choices and settings used in mTESTAR achieved the best
performance of all possible tools, comparison versus more state of the art tools is required.

The central limit theorem could not be applied to the mTESTAR performance obtained. Running all tests
enough times to get normally distributed results would take too much time with the available resources.
However, it is shown that the randomness of the Q-learning algorithm employed is limited, and there is
a low variance in the best performing mTESTAR setting. Together with the observation mTESTAR is
within 2% of the Espresso performance, we can conclude mTESTAR’s performance is comparable to the
scripted Espresso tests on the ING Bankieren application.

Although mTESTAR and Espresso achieve similar code coverage results, it is complicated to fairly com-
pare scripted and scriptless testing. For Espresso tests, it is still relatively simple to leverage the domain
knowledge of the tester in the scripts by having the expected results coded in. This allows for testing
at a functional level. For mTESTAR, the ability to test whether the AUT meets the requirements must
happen through the oracles. Creating oracles with all the domain knowledge required to test at the
same functional level as scripted testing would massively increase maintenance costs, essentially remov-
ing the advantage of scriptless testing having less resource (time and maintenance effort) consumption.
Instead, mTESTAR is well suited to test for implicit requirement breaches. Implicit oracles require little
maintenance and mTESTAR itself as well. Therefore, the test created in Espresso searching for implicit
breaches of the requirements is best transferred to mTESTAR. Overall, we believe mTESTAR has value
in the process of testing industrial applications but should be used together with scripted (Espresso) tests.

mTESTAR for scriptless GUI testing 51

Master Thesis
ING

Eindhoven University of Technology

From the results it can be observed mTESTAR takes a significant time to execute the test sequences.
Especially considering the Espresso tests run for approximately an hour. This difference in runtime can
be an important factor affecting where in the development cycle mTESTAR can be used. For nightly
builds or release builds the runtime for mTESTAR should not be an issue as they can be run in parallel
with any other tests. However, running mTESTAR every time a developer wants to integrate its changes
may significantly slow down the development cycle. Do note that although Espresso runs quicker, it does
require a significant amount of time to design and create the tests, opposed to mTESTAR which only
has the runtime.

In conclusion, we believe mTESTAR has value in the process of testing the ING Bankieren application.
However, it cannot just replace the scripted testing. mTESTAR tests with a different scope (not suited
for functional testing) and the coverage of mTESTAR is different than the coverage of Espresso. Using
mTESTAR and Espresso together is the approach in which mTESTAR adds value to the testing process.

52 mTESTAR for scriptless GUI testing

ING
Eindhoven University of Technology Master Thesis

Chapter 5

Threats to validity and Future work

This chapter consists of three sections. Section 5.1 highlights the risks to the validity of the research and
how we have attempted to mitigate them. Section 5.2 presents possible future work directions. Section
5.3 contains personal recommendations for ING.

5.1 Threats to validity

Runeson et al. [72,73] present a structure for evaluating the threats to the validity of software engineering
research. We apply this framework to our work to evaluate the threats.
Runeson et al. introduce four types of threats that can affect the validity of software engineering research;

• Construct validity: The construct validity evaluates to what degree the measures studied ac-
curately represent what is investigated according to the research questions. To evaluate the per-
formance of the testing methods used, we use the metric of code coverage. The problem with the
code coverage metric is that it does not directly relate to the ability of the testing tool to find
faults within the software. It can be the case all bugs are concentrated in one method of the code.
Testing everything but this method would result in very high code coverage but not discover any
faults. Having tests only cover the method with all bugs would have low code coverage but find all
problems. The low code coverage test thus has better performance for fault detection. However,
as it is unknown beforehand if and how many faults are present in the software, code coverage is
generally accepted as the best solution for measuring the performance of tests.

• Internal validity: The internal validity is concerned with to what extent the observed results rep-
resent the truth in the studied population. To mitigate this threat, we evaluate which components
of the code-base should be covered by the tests together with the ING Bankieren developers. This
ensures the code coverage is only measured for the packages the tool should be testing. Addition-
ally, JaCoCo is verified by manually comparing the result for identical test sequences and checking
the code coverage is identical.

• External validity: The external validity is concerned with to what extent the results and find-
ings can be generalized. Additionally, it is concerned to what extent the findings are of value to
people outside the investigated case. We validated mTESTAR on one industrial application; the
ING Bankieren app. Although this is an industrial application actively used by millions of people,
it is only a single application. Additional testing needs to take place to prove mTESTAR works
for other industrial applications. However, mTESTAR has been designed such that it is a tool
generally usable. The domain-specific information added to support testing the ING Bankieren

mTESTAR for scriptless GUI testing 53

Master Thesis
ING

Eindhoven University of Technology

application is easily adjustable.

• Reliability: The reliability is concerned with the degree to which the researchers affect the results.
Ideally, if the study is repeated, the results should be the same. The reliability is a significant threat
to the validity of the thesis. For most of the settings of mTESTAR, the tool is only executed one
or two times. As the algorithms used for exploration are non-deterministic, there is a chance the
results will vary when running mTESTAR again. Due to the long-running times, it was infeasible
to run all settings multiple times such that the central limit theorem could be applied. Therefore,
the reliability threat could not be completely mitigated. However, the best performing setting of
mTESTAR has been executed an additional ten times showing low variance. This indicates the
best performance recorded can consistently be achieved, mitigating the reliability threat somewhat.

5.2 Future work

There are four future work directions for the scriptless GUI testing tool mTESTAR;

• Oracles: Future work can focus on improving the oracles for scriptless GUI testing in the mobile
domain. We have designed and implemented some oracles in this thesis, most of which are implicit
oracles. A deeper look at specified oracles could potentially lead to more oracles for scriptless
testing. Additionally, with the growing possibilities of machine learning, this avenue can also be
explored to develop new oracles. An example would be collecting a dataset of Android applications
showing unexpected behavior. A supervised machine learning algorithm could then learn from this
dataset and be taught to monitor an application and report abnormal behaviors.

• iOS: mTESTAR for iOS can be improved. Currently, Appium is used as accessibility API. How-
ever, Appium has a bottleneck; it is slow in returning the GUI state for iOS. Specifically, it takes
Appium 2000ms on average to return the GUI state. As mTESTAR often requests the GUI state,
the overall testing is significantly slowed down. Having a very long testing process every time the
GUI tests need to run is highly undesirable. Therefore, improving the iOS testing speed would be
a valuable improvement to mTESTAR.

• Data generation: The type action has room for improvement. The type action currently either
enters a randomly generated input or enters an input from a predefined list. As almost every ap-
plication has input fields that can be interacted with (possibly affecting the following up actions
that can be executed on the GUI), it would be valuable to have the possibility to generate input
related to the domain of the application. An avenue that can be explored is generating synthetic
data from the input of real users1. Overall, allowing the input data to resemble real input improves
the ability to explore an application.

• Validation of mTESTAR: It would be valuable to extend the validation of the performance of
mTESTAR. The validation can be improved in two ways; different metrics or more experiments.
The current validation is focused on the metric of code coverage. Although code coverage is a gen-
erally accepted metric to measure the performance of tests, it does not report if and what the faults
found within the AUT are. Validating mTESTAR on an application with known bugs would be
valuable to determine how reliably mTESTAR can find them. As mentioned, the mTESTAR runs

1https://news.mit.edu/2020/real-promise-synthetic-data-1016

54 mTESTAR for scriptless GUI testing

ING
Eindhoven University of Technology Master Thesis

take a long time and we were unable to obtain enough results to apply the central limit theorem
in the available time. Completing the runs for the presented mTESTAR settings would strengthen
the claims made.

5.3 Personal recommendations for ING

My graduation project at ING was kicked off by the question of how ING could improve its GUI testing
for Android and iOS applications. Specifically through testing methods that do not involve scripted
(user-story based) testing. Through the experience obtained during this thesis, I would like to mention
three suggestions.

The first recommendation is to continue working with teams developing the ING application and allow
them to generate new idea’s for oracles. During the thesis, I came in contact with multiple teams and
engineers who had valuable inputs. The engineers allowed us to understand what they deem important
to test, where problems occur, and what helps them do their testing. As the developers have first-hand
experience with the bugs that can arise in the applications, this is valuable information. The next step
in the process would be facilitating the developers in creating their own oracles. Additionally, the oracles
are an important factor for the fault detection capabilities of mTESTAR. Thus having them well defined
is crucial.

The second recommendation is to open source the non-ING-specific components of mTESTAR. Allowing
the testing community to improve the core components of mTESTAR leads to additional resources and
ideas being contributed to mTESTAR. Original ideas can benefit the performance of mTESTAR and
thus benefit ING in their testing process as well. By only releasing the non-ING-specific information as
open-source, no confidential information is leaked.

The last recommendation is to closely evaluate the iOS performance and determine if there is a need for
a different accessibility API. Although mTESTAR functions for iOS, it is slow. When there are time
restrictions for the tests, slowness can limit the usability of mTESTAR. If it is possible to speed up
mTESTAR for iOS, it could prove more valuable for the ING iOS development teams.

mTESTAR for scriptless GUI testing 55

Master Thesis
ING

Eindhoven University of Technology

Chapter 6

Conclusion

Software development is a giant industry and continuously evolving. As organizations and people increas-
ingly rely on software, it is important the software developed meets its requirements. Software testing is
an important aspect of the software development cycle ensuring the quality of applications. GUI testing
is crucial within software testing as it allows for end-to-end testing of the AUT and tests the user-facing
part of the AUT. Traditional approaches to GUI testing (manual and scripted testing) are expensive and
time intensive. To address this resource issue, the concept of scriptless testing has been conceived. In
scriptless testing, algorithms are used to automatically generate test sequences in an attempt to lower
maintenance requirements. As the mobile platform is becoming increasingly important, it provides an
opportunity to apply scriptless testing for mobile applications.

This research aims to design and implement a scriptless GUI testing tool for mobile applications and
validate it on an industrial application. To guide the work we formulated research questions.

The first research question we propose is; “What is the state of the art in the scriptless GUI testing for
mobile applications?”. We answered this question through a literature study in Chapter 2. The literature
study covers the need for automated GUI testing, the GUI exploration algorithms used in scriptless test-
ing tools, introduces oracles for automated GUI testing, and evaluates state of the art tools for mobile
scriptless testing. We found a number of state of the art tools that can be used for scriptless GUI testing.
However, there are several reasons we deemed these tools not suited. The tools discussed were either
not maintained, not obtainable, limited flexibility to add domain specific information, or not industrially
verified. From the existing tools, we did extract a number of design aspects we deem important for
scriptless testing tools;

• Exploration algorithm

• Flexibility to add domain specific AUT information

• GUI state information

• Concept of state

• Failure detection

From the literature we established that TESTAR is a scriptless testing tool proven valuable for desktop
and web applications but does not support scriptless testing for the mobile platforms. We have therefore
opted to extend the TESTAR tool for the mobile platform, leveraging the extracted design aspects. We
call this new tool mTESTAR. Simultaneously, this is our second research question; “How can we extend

56 mTESTAR for scriptless GUI testing

ING
Eindhoven University of Technology Master Thesis

TESTAR for either or both iOS and Android mobile applications in an industrial environment?”. The
outline of the architecture of TESTAR has stayed the same but nearly all architectural components have
been changed to work for mobile applications. Additionally, the unique points of abstract action, the ap-
proach to visualization of the mobile AUT, and the failure detection component have been incorporated
into mTESTAR, this is all covered in Chapter 3.

mTESTAR has been validated for an industrial application; ING Bankieren, see Chapter 4. The ING
Bankieren application is used to measure and compare the performance of mTESTAR with two state of
the art scriptless testing tools and scripted testing. From results we conclude that mTESTAR achieves
better performance than the two state of the art scriptless testing tools. Additionally, it achieves similar
performance to scripted testing. From the results it can be observed the runtime of mTESTAR is sig-
nificantly longer than the scripted testing to achieve this performance, and is especially slow for the iOS
platform. Note that we did not take into consideration the development time of the scripted tests. Addi-
tionally, we conclude the performance of mTESTAR should be further validated through additional tests
with different settings. The case study completes the second research question as it validates mTESTAR
for an industrial application.

Research question 3 focuses on testing oracles, specifically; “What types of testing oracles can be used
for mobile applications and how?”. The literature study in Chapter 2 introduces the types or oracles for
automated testing. We conclude there is very limited work done on oracles for scriptless testing in the
mobile environment. From the available work on oracles, we establish that the implicit oracle is best
suited for scriptless testing as it requires little maintenance and can be generally defined for different
applications. An oracle framework and a number of oracles are presented and implemented, see Chapter
3, to ensure testers can create and combine oracles. However, the oracle problem is complex and more
domain specific oracles should be introduced for mTESTAR to improve its error detection further.

The main research question of this research is; “How can we apply scriptless GUI testing for mobile
applications in an industrial environment?”. It is our believe that mTESTAR answers this question
based on the results presented. With mTESTAR we have developed a tool that outperforms two state of
the art tools for scriptless GUI testing in the mobile domain and is validated on an industrial application.
We envision mTESTAR to be used in combination with scriptless testing to provide maximum value for
the testers. Possible directions for future work is to improve the (domain specific) oracles of mTESTAR,
extend the validation of mTESTAR on different applications or with different settings, and improve the
execution speed of mTESTAR for Android and iOS applications.

mTESTAR for scriptless GUI testing 57

Master Thesis
ING

Eindhoven University of Technology

Bibliography

[1] “Gartner forecasts worldwide it spending to grow 9% in 2021,” Gart-
ner, Jul 2021. [Online]. Available: https://www.gartner.com/en/newsroom/press-releases/
2021-07-14-gartner-forecasts-worldwide-it-spending-to-grow-9-percent-2021 8

[2] H. Krasner, “The cost of poor quality software in the us: A 2018 report,” Consortium for IT Software
Quality, Tech. Rep, vol. 10, 2018. 8

[3] M. Cohn, Succeeding with agile: software development using Scrum. Pearson Education, 2010. 8

[4] E. Alégroth, R. Feldt, and P. Kolström, “Maintenance of automated test suites in industry: An
empirical study on visual gui testing,” Information and Software Technology, vol. 73, pp. 66–80,
2016. 8, 11

[5] D. Asfaw, “Benefits of automated testing over manual testing,” International Journal of Innovative
Research in Information Security, vol. 2, no. 1, pp. 5–13, 2015. 8

[6] M. Ellims, J. Bridges, and D. C. Ince, “The economics of unit testing,” Empirical Software Engi-
neering, vol. 11, no. 1, pp. 5–31, 2006. 8

[7] B. Hailpern and P. Santhanam, “Software debugging, testing, and verification,” IBM Systems Jour-
nal, vol. 41, no. 1, pp. 4–12, 2002. 8

[8] T. E. Vos, P. M. Kruse, N. Condori-Fernández, S. Bauersfeld, and J. Wegener, “Testar: Tool sup-
port for test automation at the user interface level,” International Journal of Information System
Modeling and Design (IJISMD), vol. 6, no. 3, pp. 46–83, 2015. 9, 14

[9] S. Bauersfeld, T. E. Vos, N. Condori-Fernández, A. Bagnato, and E. Brosse, “Evaluating the testar
tool in an industrial case study,” in Proceedings of the 8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, 2014, pp. 1–9. 9

[10] F. P. Ricós, P. Aho, T. Vos, I. T. Boigues, E. C. Blasco, and H. M. Mart́ınez, “Deploying testar
to enable remote testing in an industrial ci pipeline: a case-based evaluation,” in International
Symposium on Leveraging Applications of Formal Methods. Springer, 2020, pp. 543–557. 9

[11] H. Chahim, M. Duran, and T. E. Vos, “Challenging testar in an industrial setting: the rail sector.”
9

[12] T. Schadler and J. C. McCarthy, “Mobile is the new face of engagement,” Forrester Research, vol. 13,
pp. 1–30, 2012. 9

[13] “Share of android os of global smartphone shipments from 1st quarter 2011
to 2nd quarter 2018.” [Online]. Available: https://www.statista.com/statistics/236027/
global-smartphone-os-market-share-of-android 9

58 mTESTAR for scriptless GUI testing

https://www.gartner.com/en/newsroom/press-releases/2021-07-14-gartner-forecasts-worldwide-it-spending-to-grow-9-percent-2021
https://www.gartner.com/en/newsroom/press-releases/2021-07-14-gartner-forecasts-worldwide-it-spending-to-grow-9-percent-2021
https://www.statista.com/statistics/236027/ global-smartphone-os-market-share-of-android
https://www.statista.com/statistics/236027/ global-smartphone-os-market-share-of-android

ING
Eindhoven University of Technology Master Thesis

[14] P. Borasi and S. Baul, Mobile Application Market by Marketplace (Apple iOS Store, Google Play
Store, and Other Marketplaces) and App Category (Gaming, Entertainment & Music, Health &
Fitness, Travel & Hospitality, Retail & E-Commerce, Education & Learning and Others): Global
Opportunity Analysis and Industry Forecast, 2019–2026. Allied Market Research. 9

[15] M. Linares-Vásquez, K. Moran, and D. Poshyvanyk, “Continuous, evolutionary and large-scale: A
new perspective for automated mobile app testing,” in 2017 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 2017, pp. 399–410. 9

[16] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The oracle problem in software
testing: A survey,” IEEE transactions on software engineering, vol. 41, no. 5, pp. 507–525, 2014. 9,
13, 14

[17] G. Jahangirova, “Oracle problem in software testing,” in Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2017, pp. 444–447. 9

[18] A. Memon, I. Banerjee, and A. Nagarajan, “What test oracle should i use for effective gui testing?” in
18th IEEE International Conference on Automated Software Engineering, 2003. Proceedings. IEEE,
2003, pp. 164–173. 9, 13, 14

[19] M. K. Sein, O. Henfridsson, S. Purao, M. Rossi, and R. Lindgren, “Action design research,” MIS
quarterly, pp. 37–56, 2011. 10

[20] Jul 2021. [Online]. Available: https://ivves.eu/ 10

[21] P. Patel, G. Srinivasan, S. Rahaman, and I. Neamtiu, “On the effectiveness of random testing
for android: or how i learned to stop worrying and love the monkey,” in Proceedings of the 13th
International Workshop on Automation of Software Test, 2018, pp. 34–37. 11, 17

[22] T. E. Vos, P. Aho, F. Pastor Ricos, O. Rodriguez-Valdes, and A. Mulders, “testar–scriptless testing
through graphical user interface,” Software Testing, Verification and Reliability, vol. 31, no. 3, p.
e1771, 2021. 11, 34

[23] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp, M. Harman, M. J.
Harrold, P. McMinn, A. Bertolino et al., “An orchestrated survey of methodologies for automated
software test case generation,” Journal of Systems and Software, vol. 86, no. 8, pp. 1978–2001, 2013.
12

[24] N. Nyman, “Using monkey test tools,” Soft. Testing and Quality Eng., 2000. 12

[25] J. J. Holdsworth, “The nature of breadth-first search,” 1999. 12

[26] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM journal on computing, vol. 1,
no. 2, pp. 146–160, 1972. 12

[27] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Humanoid: A deep learning-based approach to automated
black-box android app testing,” in 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2019, pp. 1070–1073. 12, 18

[28] V. Riccio, “Enhancing automated gui exploration techniques for android mobile applications.” Ph.D.
dissertation, University of Naples Federico II, Italy, 2018. 12

[29] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–292, 1992. 12

[30] D. Whitley, “A genetic algorithm tutorial,” Statistics and computing, vol. 4, no. 2, pp. 65–85, 1994.
12

mTESTAR for scriptless GUI testing 59

https://ivves.eu/

Master Thesis
ING

Eindhoven University of Technology

[31] F. de Gier, D. Kager, S. de Gouw, and E. T. Vos, “Offline oracles for accessibility evaluation with the
testar tool,” in 2019 13th International Conference on Research Challenges in Information Science
(RCIS). IEEE, 2019, pp. 1–12. 13

[32] M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “A comprehensive survey of trends in oracles for
software testing,” University of Sheffield, Department of Computer Science, Tech. Rep. CS-13-01,
2013. 13

[33] L. Chen and A. Avizienis, “N-version programming: A fault-tolerance approach to reliability of
software operation,” in Proc. 8th IEEE Int. Symp. on Fault-Tolerant Computing (FTCS-8), vol. 1,
1978, pp. 3–9. 13

[34] S. Segura, D. Towey, Z. Q. Zhou, and T. Y. Chen, “Metamorphic testing: Testing the untestable,”
IEEE Software, vol. 37, no. 3, pp. 46–53, 2018. 13

[35] H. K. Leung and L. White, “Insights into regression testing (software testing),” in Proceedings.
Conference on Software Maintenance-1989. IEEE, 1989, pp. 60–69. 13

[36] M. N. Irfan, C. Oriat, and R. Groz, “Model inference and testing,” in Advances in Computers.
Elsevier, 2013, vol. 89, pp. 89–139. 14

[37] O. Rodŕıguez-Valdés, T. E. Vos, P. Aho, and B. Maŕın, “30 years of automated gui testing: A bib-
liometric analysis,” in International Conference on the Quality of Information and Communications
Technology. Springer, 2021, pp. 473–488. 14

[38] S. R. Shahamiri, W. M. N. W. Kadir, and S. Z. Mohd-Hashim, “A comparative study on automated
software test oracle methods,” in 2009 fourth international conference on software engineering ad-
vances. IEEE, 2009, pp. 140–145. 14

[39] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and A. M. Memon, “Using gui
ripping for automated testing of android applications,” in 2012 Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering. IEEE, 2012, pp. 258–261. 14

[40] Q. Xie and A. M. Memon, “Using a pilot study to derive a gui model for automated testing,” ACM
Transactions on Software Engineering and Methodology (TOSEM), vol. 18, no. 2, pp. 1–35, 2008. 14

[41] A. Memon, I. Banerjee, and A. Nagarajan, “Gui ripping: Reverse engineering of graphical user
interfaces for testing,” in 10th Working Conference on Reverse Engineering, 2003. WCRE 2003.
Proceedings. Citeseer, 2003, pp. 260–269. 14

[42] A. Gonzalez and L. G. Reid, “Platform-independent accessibility api: Accessible document object
model,” in Proceedings of the 2005 International Cross-Disciplinary Workshop on Web Accessibility
(W4A), 2005, pp. 63–71. 15, 27

[43] S. Gojare, R. Joshi, and D. Gaigaware, “Analysis and design of selenium webdriver automation
testing framework,” Procedia Computer Science, vol. 50, pp. 341–346, 2015. 15

[44] A. I. Esparcia-Alcázar, F. Almenar, M. Mart́ınez, U. Rueda, and T. Vos, “Q-learning strategies for
action selection in the testar automated testing tool,” 6th International Conferenrence on Meta-
heuristics and nature inspired computing (META 2016), pp. 130–137, 2016. 15, 26

[45] A. Valmari, “The state explosion problem,” in Advanced Course on Petri Nets. Springer, 1996, pp.
429–528. 16, 33

[46] C. Tesoriero, Getting started with OrientDB. Packt Publishing Ltd, 2013. 16

60 mTESTAR for scriptless GUI testing

ING
Eindhoven University of Technology Master Thesis

[47] J. Eskonen, J. Kahles, and J. Reijonen, “Automating gui testing with image-based deep rein-
forcement learning,” in 2020 IEEE International Conference on Autonomic Computing and Self-
Organizing Systems (ACSOS). IEEE, 2020, pp. 160–167. 17, 34

[48] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated testing for android applica-
tions,” in Proceedings of the 25th International Symposium on Software Testing and Analysis, 2016,
pp. 94–105. 17

[49] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for systematic testing of android
apps,” in Proceedings of the 2013 ACM SIGPLAN international conference on Object oriented pro-
gramming systems languages & applications, 2013, pp. 641–660. 18, 34

[50] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Droidbot: a lightweight ui-guided test input generator for
android,” in 2017 IEEE/ACM 39th International Conference on Software Engineering Companion
(ICSE-C). IEEE, 2017, pp. 23–26. 18, 34

[51] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and Z. Su, “Guided, stochas-
tic model-based gui testing of android apps,” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, 2017, pp. 245–256. 19, 34

[52] ELLA, “A tool for binary instrumentation of android apps,” in https://github.com/saswatanand/ella.
19, 43

[53] EMMA, “open-source toolkit for measuring and reporting java code coverage,” in
http://emma.sourceforge.net. 19, 43

[54] N. P. Borges, J. Hotzkow, and A. Zeller, “Droidmate-2: a platform for android test generation,” in
2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE,
2018, pp. 916–919. 19, 34

[55] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “Puma: Programmable ui-automation
for large-scale dynamic analysis of mobile apps,” in Proceedings of the 12th annual international
conference on Mobile systems, applications, and services, 2014, pp. 204–217. 19, 34

[56] N. Mirzaei, H. Bagheri, R. Mahmood, and S. Malek, “Sig-droid: Automated system input genera-
tion for android applications,” in 2015 IEEE 26th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2015, pp. 461–471. 20

[57] D. Adamo, M. K. Khan, S. Koppula, and R. Bryce, “Reinforcement learning for android gui test-
ing,” in Proceedings of the 9th ACM SIGSOFT International Workshop on Automating TEST Case
Design, Selection, and Evaluation, 2018, pp. 2–8. 20

[58] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-learning,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 30, no. 1, 2016. 20

[59] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome, and D. Poshyvanyk, “Crash-
scope: A practical tool for automated testing of android applications,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C). IEEE, 2017, pp. 15–18.
21

[60] StatCounter-Global-Stats, “Mobile operating system market share worldwide,” in
https://gs.statcounter.com/os-market-share/mobile/worldwide, Jul 2021. 23

[61] M. Hans, Appium Essentials. Packt Publishing Ltd, 2015. 27

mTESTAR for scriptless GUI testing 61

Master Thesis
ING

Eindhoven University of Technology

[62] Q. Xie and A. M. Memon, “Designing and comparing automated test oracles for gui-based software
applications,” ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 16,
no. 1, pp. 4–es, 2007. 33

[63] J. Lentz, “User interface design for the mobile web,” Jul 2011. [Online]. Available:
https://developer.ibm.com/articles/wa-interface/ 34

[64] R. Ramler and R. Hoschek, “How to test in sixteen languages? automation support for localization
testing,” in 2017 IEEE International Conference on Software Testing, Verification and Validation
(ICST). IEEE, 2017, pp. 542–543. 39

[65] S. Lafortune, “Discrete event systems: Modeling, observation, and control,” Annual Review of Con-
trol, Robotics, and Autonomous Systems, vol. 2, pp. 141–159, 2019. 39

[66] K. Bogdanov and N. Walkinshaw, “Computing the structural difference between state-based models,”
in 2009 16th Working Conference on Reverse Engineering. IEEE, 2009, pp. 177–186. 40

[67] A. Jalal-Karim and A. M. Hamdan, “The impact of information technology on improving banking
performance matrix: Jordanian banks as case study,” in European Mediterranean and Middle Eastern
Conference on Information System, 2010, pp. 21–33. 42

[68] L. Lazic and N. Mastorakis, “Cost effective software test metrics,” WSEAS Transactions on Com-
puters, vol. 7, no. 6, pp. 599–619, 2008. 42

[69] A. Romdhana, M. Ceccato, G. C. Georgiu, A. Merlo, and P. Tonella, “Cosmo: Code coverage made
easier for android,” in 2021 14th IEEE Conference on Software Testing, Verification and Validation
(ICST). IEEE, 2021, pp. 417–423. 43

[70] M. Rosenblatt, “A central limit theorem and a strong mixing condition,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 42, no. 1, p. 43, 1956. 44

[71] A. Ghamesi and S. Zahediasl, “Normality test for statistical analysis,” A Guide for Non-Satisticians,
2012. 45

[72] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study research in software
engineering,” Empirical software engineering, vol. 14, no. 2, pp. 131–164, 2009. 53

[73] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experimentation in
software engineering. Springer Science & Business Media, 2012. 53

62 mTESTAR for scriptless GUI testing

https://developer.ibm.com/articles/wa-interface/

ING
Eindhoven University of Technology Master Thesis

Appendix A

System information

A.1 Device for mTESTAR runs
Key Value

Model Name MacBook Pro
Processor Name 8-Core Intel Core i9
Processor Speed 2,3 GHz

Number of Processors 1
Total Number of Cores 8
L2 Cache (per Core) 256 KB

L3 Cache 16 MB
Hyper-Threading Technology Enabled

Memory 32 GB
Boot ROM Version 1554.140.20.0.0 (iBridge: 18.16.14759.0.1,0)

System Version macOS 10.15.7 (19H1323)
Kernel Version Darwin 19.6.0
Boot Volume Macintosh HD
Boot Mode Normal

Secure Virtual Memory Enabled
System Integrity Protection Enabled

mTESTAR for scriptless GUI testing 63

Master Thesis
ING

Eindhoven University of Technology

A.2 Emulator
Key Value

CPU/ABI Google APIs Intel Atom (x86)
Target google apis Google APIs (API level 30)

SD Card 512M
runtime.network.speed full

hw.accelerometer yes
hw.device.name Nexus 6

hw.lcd.width 1440
hw.initialOrientation Portrait

image.androidVersion.api 30
hw.mainKeys no

hw.camera.front emulated
hw.gpu.mode auto
hw.ramSize 1536

hw.cpu.ncore 4
hw.keyboard yes

hw.sensors.proximity yes
hw.lcd.height 2560
vm.heapSize 384

hw.device.manufacturer Google
hw.gps yes

hw.camera.back virtualscene
hw.lcd.density 560

hw.arc false
hw.trackBall no
hw.battery yes
hw.sdCard yes

runtime.network.latency none
hw.sensors.orientation yes

avd.ini.encoding UTF-8
hw.gpu.enabled yes

64 mTESTAR for scriptless GUI testing

ING
Eindhoven University of Technology Master Thesis

Appendix B

Running TESTAR

TESTAR has a GUI to set certain settings and select what TESTAR should do. In Figure B.1 the five
main buttons to start different modes are highlighted. The settings available in the GUI will be explained
in Section B.1. Box number one highlights the link to activate the spy mode of TESTAR. In this mode
the SUT is launched and additional information about the widgets present in the GUI of the SUT are
displayed. The spy mode can help to supply TESTAR with domain knowledge about the application
if required. Box number two highlights TESTAR’s generate mode, this is the mode in which TESTAR
starts its general execution flow and tests the SUT. Box number three highlights the record mode, in
here the tester can record a sequence that can be replayed by TESTAR to see if the same results are
obtained. Box number four highlights the replay mode though which TESTAR can replay a sequence of
actions recorded in the record mode. Lastly, box number five is the inspect mode, in this mode TESTAR
allows the tester the inspect all steps of a sequence recorded in the record mode.

Figure B.1: Screenshot of the TESTAR GUI highlighting the buttons to select different TESTAR modes.

mTESTAR for scriptless GUI testing 65

Master Thesis
ING

Eindhoven University of Technology

B.1 Settings

TESTAR provides a GUI in which the tester can specify certain settings concerning the runs TESTAR
will perform. In this section, the general settings will be explained. Figure B.2 shows the first screen
presented when launching TESTAR. In box number one, it is specified which application should be
launched and tested by TESTAR. In this specific example, the target application is a website so the
chromedriver.exe location and the URL of the website are specified. Box number two specifies how many
sequences TESTAR should run before terminating (corresponds to previously mentioned step1 - step 6).
Box number three specifies how many actions are executed in each sequence. Lastly, box four allows you
to specify the name of the application and the version of the application such that the results will be
stored with these textual identifiers.

Figure B.2: Screenshot of the first screen presented when opening TESTAR

Figure B.3 shows a screenshot of the filter settings tab in TESTAR. In the top textbox on this screenshot,
regular expressions matching certain words can be specified. If a regular expression is matched to text in
a component of the GUI of the SUT, this component will not be interacted with. The second box allows
for specifying regular expressions as well. If the regular expression is matched to a process running on
the host machine, this process is terminated.

Figure B.4 shows the time settings available in the TESTAR GUI. Action duration refers to how much
time is reserved for the execution of a single action. Action wait time specifies how long TESTAR will
wait for the result of an action to be reflected to the SUT. These are both required as occasionally actions
can be performed too fast for TESTAR to recognize. Startup time is the time allowed by TESTAR for
the SUT to launch before starting interaction, required to make sure no interaction takes place with a
still unavailable application. Lastly, max test time specifies the upper limit of a TESTAR run, even if
not all sequences have been completed, if the runtime reaches this number TESTAR will quit testing.

66 mTESTAR for scriptless GUI testing

ING
Eindhoven University of Technology Master Thesis

Figure B.3: Screenshot of the TESTAR GUI filter settings

Figure B.4: Screenshot of the TESTAR GUI time settings

mTESTAR for scriptless GUI testing 67

	List of Figures
	List of Tables
	Introduction
	A closer look at automated GUI testing
	Automated GUI testing for the mobile domain
	Research questions
	Research design

	Background and related work
	The need for automated GUI testing
	Scriptless GUI exploration algorithms
	Oracles for automated GUI testing
	TESTAR a tool for scriptless GUI testing
	General execution flow TESTAR
	State and state model
	TESTAR oracle

	Mobile scriptless GUI testing tools
	Discussion
	Scriptless Design Aspects

	Mobile scriptless GUI testing
	Architecture of mTESTAR
	State Management
	Action Selection
	Action Execution
	mTESTAR GUI
	Design aspects

	Accessibility API
	Spy mode in mTESTAR
	Implementation spy mode

	Generate mode in mTESTAR
	State model in mTESTAR
	Abstract state
	Abstract action

	Oracle
	Devised oracles
	Oracle composition

	Conclusion

	Industrial validation
	Code coverage
	Experiment setup
	Results
	Package level results

	Discussion

	Threats to validity and Future work
	Threats to validity
	Future work
	Personal recommendations for ING

	Conclusion
	Bibliography
	System information
	Device for mTESTAR runs
	Emulator

	Running TESTAR
	Settings

